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Chanter

!NTRODUCTION

The calculation of natural freauencies (poles) and ratur-

a! modes (free oscillations) of structures is a fundamental

problem of many disciplines. Until recently, the mathemati-

U cal study of these parameters has unfortunately been limited

to canonic geometries which lend themselves to eiaensolution

by separation of variable techniques. The singularity ex-

pansion method (SEM) removes this geometrical restrict-on by

enabling one to obtain the natural frequencies and natural

modes of an arbitrary object. The SEM also enables one to

ete r s *cc c to an arz-rarv forcing

function directly from an appropriate expans on c: the modal

and Pole structure.

The basic theoremical foundations of the SEM were lni-
'ialv presenred using frequency-domain techniques apolied

to electromagnetic equazions by Baum -!I. 3aum's develco-

ment was subseauently extended by Marian and Latham [2]; and
o0

rigorous mathematical -ustification of some of the basic

foundations has recently been presented by Ramm [3]. Ana-

lytic frecuencv-domain SM resultsr orr the conduct-
0

ing soherica scatterer were originally obltained Baum

" ]and numerocal -rcencv-iomain results for =hen, mar-



fe:conduicting cylindrical surfaces were initially present-

ed by Tesche [4].

Interest in time-domain techniques in t-he SEM has not

been as widesoread as frequency-domain methods; however,

severaj. varied contributions have recently been made toward

establishing the versatility of time-dcmain methods. A time-

domain method analogous to the original frequency-domain

method may be found in Baum [5]. The applicability of

t.his mnethod, however, has been somewhat i-Jmited due to the

lev:el of difcficulty of the describing ecuations. Van 3lar~-i

cum and M!ittra 61 develoned a rather univue method whereby

the natural responses may be obtained using Prony s method

cnce z :ransient restronse cf --he zbetis k:-n,:n. An

obviocus comnl:cation with this net-hod is that the determina-

tion of the transient response can be a ncn-trivial problem.

An alternate time-dcmain methocd which sidesteps the compli-

Ca:cns of the above methods has been, introduced by Ccrd-aro

and D-avis [S, Thi s method , known~ as time-doma_'n SEY!

(7D-SEY.M), enables one to find the natural responses directly

fro- :r-- v~~eec epresentation of the -overning

integral ezuations cast in a matrix eiaenvalue form. "nfor-

tunately, the n-z-rices generated -:end t-o be quite large, and

-ence 7.e :re.ciwrk% '-as been Limite:d to cne-di-,ensisnal.

_eoet'esciscre:ized with : w n'-nws --he
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results which have been obtained, however, indicate that the

Cordaro-Davis method is caoable of producing a great deal of

information quite efficiently. The intent of this study is

to extend the applicability of TD-SEM, and extend numerical

time-domain techniques in general.

Toward establishing this intent, the following (print-

pal) set of tasks are defined: (1) determine stability

criteria for various finite difference representations

electromagnetic ecuations, (2) develop simple time-doma

expressions for determining the SEM coupling coefficients

(these are parameters which couple the natural frequencies

and modes to the incident forcing function), (3) develop an

cicensoluticn algorizhm whic will scve the large scabe ma-

trices generated by TD-SEM, (4) obtain a pole distribution

for the linear scatterer discretized with a large number of

unknowns., (5) apply TD-SEM to the two-dimensional rectangu-

lar plate problem. The outline for establishing these tasks

is as follows.

The fundamental governing equations of electromagnetics

are developed in integral form in Chapter 2 using dyadic

Green's function theory. The eauations are initially devel-

oped in general, and are then specialized to describe thin,

oerf-,:6 conductlng surfaces. An effort has been made to

_.een the deVe..men crief by lavina sever :ntermediaze

6 _ ._. e e al i t. . . t

6T



steps to the references. T is acdne since Zh.- o:at:

and s o li:on o f th.Ie _ i _-a re su2z i: ss t:he or _-nc a' ntet of

this *dork and not he mathem-a-:-ca' sub:.'etes o" the deve.l-

cprienz.

The *zasic concezrts of' the 5re-uencv-domain SEYI and the

time-do-main met-hod of' Cordaro and Davi s are presented in

Chanter 3. Numerical solution tachniaues and szabilitv

technicues for the time-domainr eauationcs are also presented.

The stability discussion, as applied to these equations, is

presented for the firstz time.

A vaiety oi: e'aensolution methods acoo-cane= to the ma-

t rices generatec !y the Cordaro--D.avos met-hod are presentet

menz of an eigensoluzion a~gori:nm for _ar~ M-z-oces in

block zompanion form.

:-he t:echn--lzues develored in the nre,:ious chatters are at -

-14OCd in Chatt ers 5 and 6' to t-4o :=cannc examoes. n .. a

ter S, the 3ne-dimensional1, ::hin, perfect- conductinq w~ire Is

cons.-tered -n botnh the reauency- and time-domains; cuzrrent,

eaectzric field, and pole distributi4ons for a '.=ro=e nu.mber *zf

,unk~nowns are nresentea. n Chatter 6, thne :wo-diensi_-na

recotangular =!ate isanalvzed in the tiedmi;:im:e-dc

ain p: sribtins are._,nroziced for tn =suare p-ate.



Chapter I!

FUNDAMTNTAL INTEGRAL EQUATIONS OF
ELECTROMAGNET 1 CS

2.1 :NTROCUCTTON

Singular integral equations (or singular integro-differ-

g ential1 eauations) represent a powerful and widely used ap-

=roach to the solution of both antenna and electromagnetic

scattering problems. A variety of methods may be used to

41 *otain :nhese equations. Poggico and Miller [91 rigorously

develop thie necessary results using the vector Green's zheo-

rem 1Oj. In this formalism, the concemt of incid.ent and

scattzered fie-lis in =cn-4unz icn w'-h eu-ancsour-es -ie-

velops in a natural way. in this chapter, the -frequency-do-

main equations are developed from linear system foundations.

Although, perhaps, this approach is less rigorcus than the

method of PoggiJo and Millier, it yields fundamental result-s

readily, wit-hout extensive :ector manipulations. The --.me-

dcma--n reocresentations of zhese earuations are then obtained

by inverse Fourier transform techniaues. These general Zire-

auencv- and tims- domain results are finall v sneci alized to

-escribe:hfn, tiv condu,.ct:ng surfaces.
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2.2 M-THEYAT!CAL 7cRMALT-sM

The mnathematical. formulation o-f electromagnetic -hencrnena

is fundamentally dependent on a concise set of equations

known as Maxwell's equ.ations. The complexity of these equa-

tions is highly dependent on the host medium. We will res-

trict our discussion throughout to a homogeneous, linear,

and isotropic medium. For such a medium, Maxwell's equa-

tions mnay be written in differential form in the frequency-

domain as (a vector- will be denoted by a single bar; a fre-

-. quency-domaiJn quantity will be denoted by a tilde)

7 c (~w =-jwu H (r; w) - N r; w)

7 (r; w) = 0r~i

7 r;w) rnE (rw)+ rw

Note that the time dependence, ex-p~jwtJ, has been sup-

pressed. The total electric and ma--netic fiJeld 'ntens'ties

are~~ deoe yE(;)adH(;w), the total electric and

*magnetic current densitie-s are denoted by (r;w) and

t --YF' w) , and the parameters P nr') (r-;W), co, ,io, w, and

rdenote, respectivrely, total electric and mnagnetlc charae

*denslzles, electric permnittivity, magnetic per-neabilizy,

frequencv, and obser-vazicn ocs-_tion.

6,

I
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in the case of scattering by an obstacle, we may decom-

pose the total fields and sources as
inc -S ( -a

=t =ino + S1-b
(r;w) H - (r;w) + i (r;w) (2-2b)

jt (';I) 5s (E; ) + i (r;w) (2-2d)

U (r;W) M (r;w) + M (r;w) (2-2e)

= (r; ) = s (~; w) + i (r;w) (2-2f)

-inc inc s =s* where . denote the incident fields which J ,

and m give rise to, and E v. are the scattered fields

due to the sources J, M, p, and m induced on the scatterer
------------------------- ----- -- c zhe-e szu'-=- a=- - a

effective sources that replace the obstacle). The scattered
-s ~s

fields F , H obey, then, the vector Helmholtz equations

7 x 7 x E (;W) - k-E ; - (r;) - 7 xM (r;w)

and

(23b)

where k is the wavenumber, w .

The fields which sat-sfy (2-3) may be found by convolvIng

th e Im response cf (2-3) with the for:zng fuc rons
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present. The impulse response is obtained by determining

the dyadic Green's function, r(r, ';W) (a double bar will

denote a dyadic), which satsfies

7 x 7 x ? (7,;) (r (r,f; ) i (r,T 1 (2-4)

Here, I denotes a unit dyadic, r denotes the source posi-

tin, and ) denotes a three-dimensional Dirac delta

distribuzion. The solution of equation (2-4) is given by

(r,?;7) = () -- 7 G (r,?;w) (2-5)
k"

where G(r, r';) is the free-smace Green' sfnction

-jklr - P;e4 ,r -
(2-6)

=S

The scattered fields ES (--;w) and R. (r; ) may now be ex-

plicit.y represen-ed by

-'. (r; ) = -(r,r; ).[-j~u I (?: ) - -':: S.i (r; )] dr' (2-7a)
0

and

= r s K>E 0 M(r:.)- T' -J - " dr (2-7b)

w "er-  1' denotes -he "'cume ocv.pied cy -e sca!:z--rr.

4

4



We substitute, next, equations (2-7a,b) into equat-ions

(2-2ab). Using the vector identities GV'x7 =7'x(GM)-'7' ,

(V'6).V'x.=-V'.(V'GxM), and the relaticn VG(z,r';w)=

_ -w), we obtain the following space-freauency repre-

sentations for the total electric and magnetic fields:

=t- inc a-Er En(r;) [k'+V] .J(r')G(i,r' ;)dr'

*(r) E: 7(r~;w)d r I+'][k l+ ] i out

+ ] r Vt' (2-8a)

VI

and

S+-L

+ T.(r') x 7'G(r,r',)dr' r i V' (2-8b)

JJ

;ver the surace bounding he vol.ume V'.

Th-e _xpace-time re--resentaticns or the electric and mag-

*netilc fiel's may be cbtained '_v inverse Fourier tranSformning,

the freauencv denendence ::sunc extressicns ~-3~and

(2-Sb) "91 The,, are given by

J0

V
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Er r 6"t 'r --

2 0 t ot Rv ~+ 3-+ 7]J-r) r

" (- M r x r -- ---"t" idV
I V I R c R( 2 - 9 a )

T=t-R/c

an~d

c-

-11 z [ C (r;ut) + - L 2 +

3- 7 x7 J$ ;T)r4

RR

+ (, (r' ;-) x - + ( - )d ' dt r V'

V 3 3j CRr
VR(2-9b)

=T=t-R/c

whnere R- 'Kc dernotes the speed of light in vacuum, and

the parameter t denotes the time delay associated with a

*wave propagating over a scatterer. The notation ( 3/;T )MN(r'T

should be interpreted as (Va)(r' ;t) evaluated at =z.

Expressions (2-0.a,b) are ':rnowr. as the space-time electri c

and magneti:.c £:_eld :n.teagral exzpressions (FMFETE);: wh-er-

eas ax-ress4 zns (2-9a, b) are hescace-re-'encv recre.~enza-

n- :E and

4

IJ



The reDresentaticns presented are general expressions

which are valid for an arbitrary scarterer positioned in the

previously assumed medium for all ? such that F=1' At the

offending point r=r , the expressions become singular and

hence must be evaluated by considering the limit as r ap-

proaches r' [9,121. The Cauchy or Hadamard principal value

[131 is typically used for the description of these integ-

rals. The frequency-domain representations of the electric

and magnetic fields become in the Cauchy principal value

sense (a single bar through the integral will denote a

Cauchy integral)

-t =inc 2
E 2E . 2 FP ..k2 +77]'J(r')G(r,r';w)dr '

E (r;w) - 2Ein(r; ) + ---- o iV'

0 1

- k Y771 J nX (r')G(r,r;w)ds'
k- Ou

- (r') x 7 G(r,?;w)dz' - V' (2-10a)

and

- = c =-
H (r;.) 2H (r;w) 71 n k+7r)(rr)G(rrr;'))drd

outk- ,V

-- x -G(rr'; )dr' r (2-10b)
v.
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Note that an interchange of primed to unprimed coordinates

has been made. Similar factors of two appear in the time-

domain representations, and F? denotes 'the finite part of'.

These results may be specialized to describe thin, per-

fect conducting surfaces [121. On such a surface, the ap-

propriate boundary conditions [101 are that the tangential

total electric field is zero, i.e., nxE=O (n defined to be

the outward normal unit vector on S), and that the tangen-

tial total magnetic field is equal to an equivalent surface

current source, J., i.e., nxH Js. With these boundary con-

ditions, we may immediately write the space-frequency repre-

sentations for the electric and magnetic fields on the sur-

face S as

z inc. - fFP C [12--n (r;w) x EFP ir I + 77].J ( G';) G (r,r'; ) dr'
JWo is s (2-11a)

and

* (r;w) = 2n x H (r;,) (9;) x (

Simiarlv , the scace-time representations are i;-:en by

0C
-. 1 iX E ~ r; t 77'.- I?,- w -

(Z- Za)

-S-/
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and

J(r; = 2 n x (r;t) + x (r ;J; ) x

is1+ S J (r' ;T) x c- R .ds'R/ (2-12b)

S cR Tt-R/C

Note that the equivalent magnetic surface current, M. does

not appear in these expressions. M is related to the total

electric field by

51 = -fix (-13)
S

which vanishes for perfect conducting surfaces. Note, also,

that for good conductors the effective current source j may

.... oac_ zv (z d~eno-es :he conducz iv: y o: hz e Costa-

cle), and therefore terms involving nxJ also tend to zero.

As a final remark, we note that the term 2xHc appear-

ing in expression (2-12b) is commonly known as the physical

optics approximation for the current density !s" This ap-

proximation is useful for testing the validity of results

o obtained from expressions (2-12a,b) when no results for ccm-

parison exist.
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FUMJDAMENTAL CONCEPTS OF THE SINGULARITY
EXPANSION METHOD

3.1 INTRODUCTICN

The motivation for the singularity expansion method (SEM)

is essentially based on experimental observations which haveI
established that the transient surface currents generated on

structures (scatterers) by arbitrary excitation are primari-

ly in the form of damped sinusoids; the particular shape be-

ing dependent on the form of excitation and the specific

geometry of the structure under consideration. By assuming

that a scatterer can be uniquely specified mathematically by

an associated modal and pole structure, and that the form of

the excitation is known, the SEM enables one to determine

the surface c-rre'ts directly from an appropriate expansion

of these parameters. Specifically, the expansion was found

zo require knowledge of four parameters [11: the natural

frequencies and corresponding natural modes, the structure

g of the ncident wave, and scalar coefficients that couple

the nazural resonances zo the incident wave (coupling ccef-

f:cients). Since the form of the exc-"at on is assumed -o

* be known, the natura. frequencies, natural modes, and cou-

o_:na cefflcients need o e determined n order :o estzab-

ish an 3-7.! r _=-sentat:icn of the problem.

14
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Mathematically, the expansion for the space-frequency
surface currents induced by delta function excitation on fi-

nite, perfect conducting objects in free space is given by

[i1

U (r; s) = v(r) (s-S 2 + WJ(r;s) (3-1a)

i In the time-domain, this representation becomes

St
U(;r) 2 (F) + W(r-;t) (3-1b)

in these equations, s is a complex variable which is related

to the frequency, w, by. 1m[sJ=w, U(r;s), U(r;t) denote the

space-fre uencv and space-time surface currents, T derc=es

the coupling coefficient associated with the pole s., va (r),

V,(r) denote the natural mode vectors associated with s

W(r;s) denotes an entire function and W(r;t) denotes the

corresponding time-transformed function, ma denotes the mul-

tiplicity of the pole sa, and the summations are over all

poles. in Section 3.2.1, we consider space-frequency te -

niques for obtaining the natural frequencies, and natural

modes. In Section 3.2.2, we present space-frequency techni-

ues for obtaining the coupling coefficients, and briefly

discuss entire functions. in Section 3.3.1, we develop the

Cordaro-Davis method for obtaining the natural responses.
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Available techniques for analyzing the stability of various

finite difference approximation schemes are also discussed

in that section. And in Section 3.3.2, we present transient

matrix methods for determining the coupling coefficients.

3.2 SPACE-FREQUENCY TECINJIQUES

3.2.1 Natural Frecuencies and Modes

An arbitrary Fredholm integral ecuation of the first kind

(e.g., expression (2-!!a)) may be cast in the general form

" ?(r,r';s).U(r';s)dr' T1(r;s) (3-2)
3R3

where r(= ';s) denotes a dyadic kernel, U(?';s) denotes the

desired unxnown, and 7(-;s) denotes an arbi:rary forcing

function.

For simplicity, we will write these integral ecuations

using the inner product notation [11

<r(rr';s); U(r';s)> = T(r;s) (3-2a)

where the appropriate operation between the kernel and unk-

nown will be given above the comma separating these parame-

ters, and the integration is with respect to :he common spa-

tial variable.

r
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A natural mode, v,(r), satisfies ecuation (3-2a) in the

absence of a forcing function. We may write

' (')> = 0 (3-3)

where s. denotes the corresponding complex natural frequen-

cy.

The parameters s and v,(r) may be found by discretizing

ecration (3-3) using a method of moments [14] formalism. We

obtain

w4here n, mi are positive integers, ( s denot:es an n

m matrix, (vn)I denotes the unknown mode vector of length n,

and (0 n) is a zero vector of length n. The magnitude of

both n and m is dependent on how refined the discretization

is.

Equation (3-4) represents a homogeneous system o e-a-

tions. Such a system has a solution if and only if the ma-

trix (rn,:n(so)) is singular. Hence, the natural frequen-

cies, s., may be found by solving

det (s) 0 (3-5)

nSi '
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The natural modes may now be found from equation (3-4) using

the results of ecuation (3-5).

Equation (3-5) is, in general, extremely complicated to

solve. Numerical solution techniques typically use either a

function iteration root searching technique (Section 4.2.1)

or a contour integration [15] (Section 4.2.2) method. The

use of contour integration allows one to locate desired

roots by partitioning the complex plane.

3.2.2 Ccupling Coefficients and Entire Functions

The following derivation for obtaining the SEM coupling

coefficients patterns a development due to Baum [5].

Associated with the coupling coeff.icient, a i. .u-

pling vector, u (r). The coupling vector is defined to be

the conjugate adjo.nt of the natural mode, v (r), and hence

satisfies

s~~< (a) t -fi-

U a 7r r; s )> = 0 (3-6)

By applying the method of moments, we have

- r@ (s) () (3-7)

The kernel is now expanded in a Taylor series about

s=s as



' - i

) (s-s) 7 (r,r') (3-8a)
Z=0

, (r'r' z ( ' 's i (3-8b)

J S f Sos

The forcing function is similarly expanded as

I(r;s) 7 (s-s ) I (r) (3-9)

I~0jr) = -- (r;s)!is !SoS

Assuming only a first order pole, we may write the res-

ponse from ecuation (3-la) as

U(r;s) = v (r)( s ) - - U r;s; 3-1

where U' (r;s) denotes some analytic function about s=s.

By substituting (3-9), (3-10) and (3-1.) into the basic

equation (3-2a) and matching powers of (s-s) , we cbtain

< , ( ,r')"  v (r)> = 0 (3-11a)

and

7., (r,r'); (r)>- < (r'r'); U"(':s)> = I0,- b

Operating on (3-12b) from -he lef- by (r) Yields

I



< ; - rr) (r)> =<(r); I (r)1> (3-12)

s inc e

<i (r); -' (r,rr); Uj (r';s)>

-7

dr' I dr (r) ,(r r) 0 3P3

R 3rs L 0 (313

by equation (3-6). Therefore,

< IO.a r) (3-14)

(r,,'); (r)

is the expression for the coupling coefficient at ss.

--he coupling coefficients rel~ate the incident waveform to

the modal strUcture of an object. They indicate which modes

I

are excited and the extent to which they are excited. Baum

* [51 as discussed two different, but ultimately equivalent,

tvpes of these coupling coez::c ets in order to treat two

&l ern "nhi losonhi cal intert:retati4ons as to how mcdes are

activated. In one interpretation, all modes are exc:ted

simul-anecusly across an obz4ect no matt-er where on th cb-

ject the excitation criginated. ;n the e intrpr-a

I

"-6) 7 7>(-2
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Stlon, modes in various regions cannot be excited until the

incident wave has reached those regions. We will not pursue

these types further here.

The enfir function, W, associated with the pole, sa, 4s

necessary for equation (3-1a) to be mathematically valid.

Its form and use are not well understood, however. Typical-

ly, the entire function is omitted by the empiric justifica-

tion of obtaining current distributions directly from a set

of poles which are in good agreement with the distributions

obtained by standard methods [5,16]. The physical signifi-

cance of the inclusion or omission of the entire function

requires further consideration.

3.3 SPACE-TIME TEChni-QUES

3.3.1 Natural Frecuiencies, Natural Modes, and Stability
ConsJdera ions

in the time-domain, electromagnetic integral equations of

the first kind may be written in general form as

(rr';t- ') U(r';t')dt'dr' = I(r;t) (3-15)

3 .i

where ';t-') denotes a retarded dyadic Green's func-

tion [111, U(r';t) denotes the desired unknown, and i(r;t)
4

deoe nabtay ocn uc4n



For ilustrative l.urposes, we will restrict th_ discus-

sion in this section to thin, perfect conducting surfaces

for which integral expression (2-12a) is appropriate. The

,.scussion will also be limited to rectangular (x,v,z) coor-

dinate systems. A similar development applies to other ex-

pressions which may be cast in the form of eauation (3-15),

and other coordinate systems.

Since the spatial differential operators appearing in ex-

pression (2-12a) are with respect to the unprimed coordi-

nates, the following variation of this expression is valid:

~0 ii~+~ifl7 J W~(; t-R/c) r
-= - - 7 ( ; - I )

=inc S- -- ZI ( r ) t i I
0 :t -" ' -'_ °

Here, n is the outward normal on some arbitrary surface S.

The integral over this surface is commonly known as the mag-

netic vector potential. By letting A(r;t) denote this po-

tential, we may write (3-16) as

S -t i (r;t) = n" A(r;t). (3-16a)

The current density, J(r;t-R/:), appearing in (3-.5) 1

* tv-icall: the unknown which is desired. 'However, :zr ncta-

t:onal pur-cses, and stab:>t-; analysi=-, exresszcn (3-15a)

:s also o: _.nteresz. Th:7s w11 'beCeome aoarent as we pro-

* gress.

0i
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In general, when a desired unknown appears buried wi:hin

the integrand of an integral equation it is not possible to

determine it analytically. To obtain a numerical solution,

one generally begins by expanding this unknown in some sui-

table set of basis functions. :f the function to be expand-

ed is at least piecewise continuous over the region of in-

terest, a suitable basis set would be a pulse expansion for

the spatial variables. If the function is also reasonably

well behaved through time, the temporal dependence may also

be expanded as pulses. The function J (t-R/c) generally

satisfies these requirements, and hence a pulse expansion in

both space and time is aoropriate. it should be noted,

however, -:"s ar-rox:nation can beconme Zu=ta noc a

surface edges due to the singular behavior of the current

component parallel to the edge. Special care is required

for such structures (Chapter 6).

II The expansion of the current density may be written as

N
J (r;t-R/c) 7 J. P (t-pt-R/c)S.(r) (3-17)

where

1, for t in the time interval centered at oit-R/c

0, elsewhere

i, for r in the space seemenc centered at i-r
S~r

, 0, elsewnere

I
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Here, J. denotes the current amplitude coefficients;

denotes a general spatial index, i.e, 4 may represent one,

two or three integer variables depending on the geometry of

the problem; N denotes a general upper bound for the sumna-

tions corresponding to each of integer variables which i

represents; and Ar denotes a general spatial sampling dis-

tance, i.e., Ar= (Ax,Ay,&z).

Expansion (3-17) enables one to write the vector poten-

tial appearing in expression (3-16a) explicitly as

-!
N N Nkm n

n ,- k n k=p

where

'n (U 4- 2 -1 9 ]./29( +i2)A( +i2)A( +i2) p !n_(u-+v+w-)

G j n, o - 1/2 dudvdw
( -i/2) ~ ~ ~ ~ -, (-/) -/) 4(u'+v-+w')-'

m, n, and k being positive integers which are bounded by Nm,

N n ' and Nk respectively, and p is an unbounded integer (by

causality, p may be restricted to positive integers). Note

that in this expansion we have tacitly assumed that the =-a-

tia sampling distance is uniformly equal zo some constant,

A, so that the continuous variables, (x,y,z), correspond zo



:e discrete variables, (mA,nA,kA). This is typically, but

not necessarily, done.

The current coefficients appearing in (3-18) are the de-

sired parameters. They may be extracted by approximating

the continuous differential operators appearing in (3-16a)

by central finite difference operators. A thorough discus-

sion of finite difference approximation (FDA) techniques may

be found in Ames ('7].

In passing, it is worthwhile to note that it is possible

to establish an analytic equivalence between the finite dif-

ference formulation of a time-domain problem and the basis

set formulation of the ecuivalent frequency-domain problem

. y uzin- ne tansorm techniques. This ec-:4valence 43

satisfying since it establishes that finite difference tech-

niques are not simply convenient mathematical tools for the

soluticn of time-domain problems, but are appropriate, phy-

sically meaningful, methods of solution.

By using finite differences, the time derivative of' the

-* vector potential may be written as

~ (r~t = [(r;(?+l)Lt) + A(r: (p-.L)2.t)

• - 2 A(r;p~t)]1 + (A) .. .

where O((At)a) denotes the order cf the truncat:or. err -

troduced =.he MA. The Zpatia coperators ,ay be similary

differenced (Section 5.3, and Secticns A.3, 6.4).

-S & - -l- - ' . .



PW ~xtression (3-16a) may now be written as (p=1,2,...)

A(r;(p+!).t) = (c.-.e) [i 7(7.A(r;pL ))]

-f! (r;(p-1).t) + 2i x A(r;p-.t) +

2- -;inc-
0(c.I) 0~ n E r:P2.t) + r((LtYU (3-10)

This formulation establishes an explicit or time-marching

fni te time-di 6fferenced scheme fcr the vector potenti a'l.A

extolicit scheme allows one to find future values in termns of

previous results without the need for a matrix in~version.

Note that the values of the vector potential at two Previous

times are required.

B,/ axprass-4on (3-3 i4nt_ t:-e difeece

equation for the vector potential and manipulating the sum-

mations, we may obtain an explicit expzession for the cur-

rent density coefficients, J(general spatial index i).

An explicit expression for these coefficients for the linear

tthn-wire problem mnay be found in Section 5.3. In this sec-

* tion, we consider a general expression for these coeffi-

clents which Is suitable for an arbitrary geometry. The

formulation will naturallyv lead into a discussion of stab-il-

* ity mezhods for finite difference schemes.

By translating heconti nuous temporal and spatial --=era-

tors appear,_ng :.r expre.slon (3-16a) to central---~------i--
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ference operators, and by using expansion (3-13) to repre-

sent the vector potential, the following general representa-

tion for the current density coefficients is obtained (note

"hat the notation, TD+ 1 , used to represent all discrete

functions is interpreted as T(mA,nA,kA,(p+!)At)):

NT

0= 7 B, ' +
p'=-i P P-P p+1

or

N T

-1 = B- ' + (3-21)
LP =0 p

where B. denotes coefficient matrices corresponding to

different times (B_! is a diagonal matrix corresponding to

_p+1 denotes the forcing function at the (p+l)-th

time step; and NT denotes an integer which is one fewer than

the number of time steps required for a wave to propagate

across the maximum distance of the structure; in other

words, if, for example, six time steps are required for a

wave to travel this maximum distance, NT would be five since

the summation begins at zero. The prime, J'9 +!, indicates a

vector of the current density coefficients of every spatial

point of interest on the structure. And as a final remark,

we note that the rank of the 3 matrices is dependent on the

particular geometry of the problem being studied. For con-

I

I
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pvenience, we define the rank of these matrices to be some

integer, N.

To obtain the natural frequencies and natural modes, we

are interested in ecuation (3-21) in the absence of a forc-

ing function, i.e.,

NT

' C, 7' (3-22)
~l p'O

where C,=(B )-1 Bp, . The solution of this difference ecua-

tion may be obtained by z transform techniques. For simple

poles, the solution is given by

z 1) (3-23)Jp+i

where zA=exp{sAt } denotes the transient representation of

the nole, s, and v denotes a vector spatially describing

the natural mode. For poles of multiplicity m , I, the

solution is given by

n m

•:~ (3-24)

where v, denotes the natural mode vector corresponding to

a pole of multiplicity in.,. Note that entire functions do

not appear in -.his develocment; a pole structure only is the

basis for this method. ?ole clusters may attempt to model

an en- - function however, and therefore entire funct:cns



may still be significant although they are not explicitly

represented in the formalism.

By substituting equation (3-23) (assuming first order

poles) into (3-22), we obtain

7 NT

I (p'+I)v = 0. (3-25)

LI 1=0  01~
This is a homogeneous system of equations. The poles may be

found from

NT -(p+l-

det I- I Cp, z - 0.(3-26
Sp'=0 

0

The modes may now be found from (3-25).

There is an alternati;e zo -his z transform soiUtiCn

technique. Any finite difference scheme in the form of

eauation (3-22) may be condensed into an equivalent two-lev-

el matrix form [171 by introducing a state vector, K forP

the p-th time step, such that ( denotes transpose)

-T --K, ,T 7 (3-27)p.. . . . . . . .........P-N

a state transition matrix, 1, such that

4
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--CO  C . . . .. C -

C 0  ........ 0

= 0 (3-28)

0 ...... 0 ..' 0

.1 and forming

K =K p  (3-29)

A discussion of error propagation, or a stability analy-

sis of finite difference schemes is appropriate at this

mime. A discrete finite diff e ence recresen -.izn of a :cn-

tinuous problem may yield an unstable (unbounded) solution

when certain relationships between the sampling distances

used for different variables are not satisfied. For hyper-

bolic equations (wave equations, e.g., equation (3-16)) the

relation between the time sampling (At) and spatial sampling

.G (A, assuming a uniform sampling distance in all directions)

distances are of interest, it has been shown by Courant,

Friedrichs and Lewy (ZFL) (171 that the time sampling dis-

* zance for these equations can be an most equal to the spa-

tia. distance, i.e., At=A. This is the most lax restriction

possible; it can tighten considerably depending on how the
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discretLzation is implemented. Two methods are available to

analyze the stability of finite difference schemes for li-

near eauations. We consider these now.

The state transition matrix appearing in equation (3-29)

contains all the information of the finite difference ap-

proximation (including boundary conditions). A stability

analysis of the difference scheme may be done by examining

the magnitude of the eigenvalues of this matrix. If all the

eigenvalues are less or equal to one in magnitude, errors

40 will not grow through time and hence the solution will be

bounded. This technique is known as matrix stability analy-

sis. The matrix stability method is useful for testing if a

knownFL cYiedl-ds a ble solution. 1z does not

predict, in general, the specific numerical value required

or stability. An alternate method may be used to deter-

mine, or at least approximate, this value.

A simple method known as Fourier stability analysis may

be used to determine the stability criterion for an uncom-

* pressed difference scheme (e.g., equation (3-20) or (3-22)

instead of equation (3-29)). The method analyzes only the

specific difference euazlon and hence ignores the influence

0 of boundary conditions. Since boundary conditions can :n-

fluence the stabiliti of a scheme, the Fourier methc S not

considered as thcrough as the matrix method. .However, since

0
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a srecific number, whether exact or approximate, for the CFL

condition is readily produced, this method provides useful a

priori information about a particular difference formula-

tion. The matrix method may always be used to confirm the

stability criterion given.

in brief, the Fourier method examines the propagating ef-

q fect of a single row of errors along some arbitrary line of

the FDA. This is accomplished by determining an exponential

solution for the difference scheme from discrete separation

of variable techniques. For a stable solution, restrictions

on the exponential solution must be enforced. A one-dimen-

sional example may be found in Section 5.3. Two-dimensional

examples may 'e found ,r Sections .32, 5.4.

Stability alone does not imply convergence of the FDA to

the true solution. For a thorough discussion on matrix and

Fourier stability methods and convergence recuirements one

should refer to Ames [171.

The stability of physical problems is mathematically de-

scribed by the location of poles in the complex plane. The

stability of the finite difference representation of elec-

tromagnetic expressions is dependent on the magnitude of the

eigenvalues of the state transition matrix. 'Hence, we an::-

cizate some relation to exist between these eigenvalues and

the true poles.
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The r-elation follows simply by consiJderiJng the solution

of the dif-fer-ence ecuation, eauation (3-24), applied to the

state transition formulation. For first order poles, we may

write

KP R zP RK (3-30)

or

z R ~ (3-31)

This reoresents an algebraic eigenvalue problem for the ei-

genvalue, z,, and the eigenvector, K.It can be shown that

owl~ -atural mcde, v ,, and K:a are related to one anoth~er b-Y

-N N -1
-T T T-T T - T..., (332K zI VI, Z V (332

The poles, s' may be found by solving

S =ln(z )/A t .(3-33)

3.3.2 Counlina Coeff~icients

A method has been. presented -which determines the natural

frecuencies and natural modes. To complete the SEM! frrn of

solution we need to deter-nine the coef'ficients that couple



z:-e natural frec-uenc-es an-4 modes to the incident :6orzcn

-un c t o n wo diffe-en-t f"ormulations of these Coupling

coefficients are possible in the time-domain. Cordaro [191,

.-as suggested a method to obtain an exact representation of

t.ne coeffcients whien a complete set o: distinct eigenvalues

(frtorder poles) is known. This is accomplished by using

elgenvector decompos Ation techniques. The basic method may

be extended to obtain an annroximatiLon to the coefficients

when only a mar-zialI set of distinct eigenparameters is

known. An a'-rernate fo rmu la-4on :or a nart~a! set c" poles

is ate-o in analog of the frec'uencv-domain technic--ue

previously presented (Section 3.2.21). We ail1 initially

ccns:-der Cordaro's method.

Define a state vector, U3 to represent a normal incfdent

:orlngf-unction at the P- ime step as

i ' , 0.3.....

Here, -7Pand: C are I-I row vectors.

Note that for a del-ta or impulse exci4tation only is

* r-nzero. T e state current distrib-'uti4on may now be written

ex~.c :-as (a state representation o: tnhe forcing:'unc -

--:n has zeen added to equa'zion (3-29))

14
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KI =~

2 0 1

m-i
r, M-i-i -K 2. U. (3-35)

i=0
where m is some arbitrary time step. By assuming a full set

of distinct eigenvalues, A, and corresponding eigenvectors,

r, we may decompose s- as

= rAr 1  (3-36)

-auation (3-35) may now be written as

R AU. (3-37)
i=1

Sice only the first N IC nants Zt e

correspond to the natural modes, we introduce a vector, T

to spatially describe only the first N components of the

state current vector K (the first N components define J;).

We may write (assuming an impulse excitation)

T I 1. 0, , o] -
... . 7 [ .. - 0 (3-38)

Here, I and C denote NxN identity and zero matrices.

Next, we let M be defined to be the un-normalized na-ural

mode matrix and be defined to be the unnormalized vector

sf coupling coeffici n.ts. They are given respectively by

... . (2-39)
0

S
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0 (3-40)

Combining these results yields

T MT ~ (3-41)p

or equivalently

U
T = z n V (3-42)

where he pole sa is related to za by equation (3-33), ,

denotes the coupling coefficients, and V. denotes the cor-

responding natural modes. Equation (3-42) is the desired

SEM renresentaticn.

When only a partial set of eigenvalues is known, the de-

composition of I as given by equation (3-36) is not possible

exactly since the inverse which appears only exists in a

generalized or pseudo inverse sense. Therefore, only a

least squares approximation to the coupllng coefficients 4s

possible In this case.

This complication may be avoided by developing a time-do-

main formulaticn for the coupling coefficients analogous to

the frequency- domain method (Section 3.2.2). We begin zy

replacing r(rr';s) by a matrix function T(z) defined by

N_
) z i CN z L

i=O
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By following similar power series expansions, we then define

TI (z) in analogy with r!,, (r,r') to be

7 N (NT1) (NT-i-iT
T (z ) = (NT+l)z I - - (N -i)Ciz (3-44)

We define, next, the coupling vector, u,(r), to be the first

block of N elements of the left eigenvector corresponding

to the a-th eigenvalue of the state transition matrix.

By replacing the frequency-domain inner product opera-

* "-ions by matrix multiplications, we may write the coupling

coefficient at z=z,=expfsAtj as

I(z )

where -(z ) is the forcing function vector evaluated at za.

It should be noted that when each of the sub-matrices of

the state transition matrix are symmetric, the first N rows

of the left and right eigenvectors are identical to a nor-

malization factor. This is not true for the remaining -or-

tion of these vectors, however, since it can be shown that

0 Let . be the -ri.h eigenvector of -he transtose of some
matrix A corresponding to the eigenvalue k. -hen p sats-
fies A-:=\t. Now ccnsider (A-) -- A=t\. "n this case,

n Is known as the left eigenvec-or of the matrIx A.
Eence. o s e'her the right eiaenvector assoc:ated w:-th
the matrix A' or the 7eft eigen'rect:r associated wlth the
matrix A corresponding to the e:genvalue \.
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the left eigenvectors have a much more complicated structure

than the right eigenvectors.

The matrix decomposition formulation is recommended when

a full set of distinct eigenparameters is known; the left-

right eigenvector formulation is recommended when a partial

set is known.

I In conclusion, we note that although the TD-SEM formula-

tion for obtaining the natural frequencies and -.atural modes

is relatively straightforward, a fundamental complication

I does underlie the method. Since the size of the transition

matrix is highly dependent on the geometry and the level of

discretization of a particular problem, it is possible, even

-0-r sim~lze aeomeries, :o genera:e a -ransiz.c-n riatrix which

surpasses the high speed storage capabilities of the largest

computers. A variety of technicres which attempt to handle

this complication by taking advantage of the form of this

matrix are presented in Chapter 4.

I



Chapter iV

EIGENSOLUTION METODS FOR THE TRANSITION MATRIX

4.1 INTRODUCTION

The TD-SEM model is a straightforward and efficient meth-

od for determining the SEM parameters for simple geometries

discretized with relatively few unknowns. This is accom-

plished by transforming the pole searching problem into an

algebraic eigenvalue problem (Section 3.3.1). As the number
-4

of unknowns increase, however, the matrix which TD-SEM gen-

erates becomes unmanagably large, thereby making the search

for eiaenvalues difficult and complicated.

The matrix i, whose eigensolution is sought, is given by

ec uation (3-28). Some comments are in order about the form

and properties of this matrix.

i is known as a sparse matrix since it contains a large

number of zero elements. t is in block upper Hessenburg,

or more specifically, block Frobenius form [19]. A matrix

in Frobenius form possesses no symmetry properties, and

therefcre, 4 unfortunately falls into the class of unsymme-

tric real matrices, or general real matrices. This is in-
4

deed a ccmplication since the field of eigensoluzion methods

is both narrowed and ccmliicated for unsveoric matrices

due to the possibility of obtaining complex eigenvalues and

4
generalized eigenvectors.

39
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A matrix in Frobenius form possesses the propertv that it

is its own companion matrix. In other words, the problem of

determining the eigenvalues, X, of I may be done in either

of two possible forms. First, we may consider the full ma-

trix and solve

det [ - -i 0 (4-1)I

where I is the identity matrix; alternatively, we may solve

det [ k -+1 1 - X N .... C = 0. (4-2)

where C0, C I ..... :T denote the sub-matrices of the top row

of the transition matrix. The former sch.eme generally leads

to eiaensolution methods, whereas the latter generally leads

to root searching methods. An exception is an application

of Laguerre's root searching method to a matrix in Hessen-

burg form [201.

Laquerre's method and various other root searching mezh-

ods are discussed in Section 4.2. Eigensolution methods for

unsy mmetric matrices are presented in Section 4.3. A survey

of eigenso.ution methods for symmetric matrices may be found

in [21.
I

I

I
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4.2 ROCT SEARCHING METHODS

We are required to find X., i=1,2 ...... N (N +I), such

that

det [Bi] = 0 (4-3

where

NT+1 NT
Bi= [Xi I X - ...... -C NT  (4-4)

-. is an N xN polynomial matrix.

We consider three techniques for obtaining the roots of

equation i4-3). in the first approach, (4-3) is solved di-

rectiv. -hi s rocz searc:ing methods which util-
function iteration since the explicit coefficients of the

characteristic equation are not known. Muller's method [221

represents a logical method for solution and is discussed in

Section 4.2.1. An alternate method for obtaining these

roots is to use the complex contour integration method of

* Singaraju, Giri, and Baum [IS!. This technique is presented

in Secticn 4.2.2. The third approach is to exploit polyno-

mial matrix reduction methods [231 whereby the polyncmia!

0 matrix (4-4) is iterativel-, reduced into a triangular polyn-

omial marix. The exmi"c. t -haracteristic euation is --hen

t.-e product of the diagonal polynomials. A wide selection

0
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of efficient polynomial zero searching methods may then be

used to find the roots. A polynomial matrix reduction meth-

od is discussed in Section 4.2.3.

An application of Laguerre's method is presented in Sec-

tion 4.2.4. Since this technique does not utilize either

form (4-3) or (4-4) we consider it to be independent of the

methods previously mentioned. However, since the method is

a zero searching method it logically belongs within Section

4.2.

4.2.1 Muller's Method

The following is a brief summary of the work due to Mull-

We are interested in determin-ng the values of X which

satisfy f(X)=O, for some function f. One begins the process

with the values klh f(Xi) ' fki-I) and f(X i_2)

where 'A, hi, and k. are some judicious initial guesses, and
j..

I is an iterative index; ki+1 is then determined by the for-

mula

k f A if 2

whi er e-

where
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-- 1 + kip (4-5a)

and

2_ = ~i2kif(Il )S 2+-f( i)(ki+6i (4-5b)
2 2 -

Then

xiil ii + hi+l (4-5c)

hi+ +I hi ,(4-5d)

and

f( . ) (4-5e)

are computed. The sign of the square root in the formula

for k,+, is chosen to make the denominator have the greater

modulus. The formulas are derived by fitting a quadratic of

-he form, b3X 2+bXkb z , through the following three points

(X.,f(Xi )) (- 1 f(X )) - f(\i-2) )  The coeffi-
-9 ' ' i-2)

cients bl, b1 , ba satisfy

b 02x + b Ii + b2 = f( i)

b \ + +
0 i-i 1i-I . i-2

bo i-2. b- 5. i -2- + b-= f(i- 2) (4 f
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The process iteratively continues until some specified

criterion for acceptance of the root estimate is satisfied

or an upper limit on the number of allowed iterations has

been reached.

It is interesting to note that the convergence properties

of Muller's method have never been proven for polynomials

with orders greater than two. Nevertheless it is commonly

used on relatively large polynomials with excellent results.

For our purpose, equation (4-3) denotes the function f

4 discussed above. In general, only one determinant evalua-

tion is required for each estimate at Xi. Excellent results

(eight to ten digit agreement with known solutions) were ob-

tained using .:is techn e f ror svszems whi -=h =ossessed ap-

proximately 110 roots. For higher order systems, however,

fewer and fewer of the predicted roots had any relation to

the actual roots. in particular, for a system which was

known to have 125 roots, only 4 of the predicted roots had

any relation to the actual roots. This breakdown is at.--

buted to decreased separation in the roots of large systems

(since by stability, all the eigenvalues must fall within

the unit circle in the complex plane), coupled with the num-

erical roundoff errors associated with evaluating equation

(4-3).

I
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4.2.2 Contour integration

The following brief summary is based on the work of Sn-

garaju, Girl, and Baum [15].

If a function f(X) is meromorphicz in a simply-connected

domain D containing a Jordan contour C, and g(X) is some

analytic function within D, we may write using the residue

g theorem
No

1- f ())dg = 0g( ) (4-6)2.Ti j c TM 0i=l

where Xoiis the i-th zero of f(X) in C, N is the total

number of zero's within C, and the prime denotes differenti-

a:ion.

SInce g(k) is an arbitrary anayizc funcion, we let

g(X) X , k=O,...... Nc. The zero's of f(X) in C may then be

obtained from the non-linear system

k0! + ;,. ......... +£, 7= -: -

2
+ .. =

0 0, . 020-
o (4-7)

'NO + NO =
N 0

2 A mercmcrphic function is a function which may be repre-
sented as the cr-otient of two entire :unctions and which
Mossesses moles only in the finite complex Doane.

-
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where

SC f(k ) dX k = 0,1,2 ... ,N (4-8)

This rather unique technique has been shown to be quite

effective for obtaining the natural frequencies from the

space-frequency formulation of the linear, thin-wire prob-

lem. in this formulation, the function f(X) mentioned above

corresponds to det[Z(s )], where s denotes the natural 46-

quencies, and Z(.) denotes the moment mvrhod impedance ma-

tr4x. If, for example, twenty unknowns are used for the

discretization, then the evaluation of this determinate is

basically equivalent to the evaluation of a twentieth degree

polynomial. Numerically, this evaluation should not present

many complications; whence, the evaluation of the contour

integral (4-8) and the subsequent solution of the non-linear

system (4-7) should be numerically quite stable.

The situation is a bit more complicated for the TD-SEM

formulation of this problem. The determinate of equation

(4-4) now denotes the function f( ) above. For a similar

twenty unknown discretization, f(\) now corresponds to the

evaluation of approximately a four hundredth degree polyno-

mial. This represents a serious accuracy problem numerical-

y. it was feared complicazicns similar to those observed



47

with Muller's method would develcp with this method when the

determinate of equation (4-4) was evaluated prior to the

integration, and therefore the method was not further nur-

sued in this context. By interchanging the determinate and

integral operations, however, it may be possible to avoid

the numerical errors associated with the determinate evalua-

tion. The interchange may effectively result in a 'numeri-

cal smoothing' which will give meaning to the evaluation of

the determinate even for large scale problems. Confirmation

of this conjecture is delayed to a future study.

4.2.3 Polynomial Matrix Reduction

A matrix of polynomials may be zriangularized by using

similar elimination methods to those associated with the re-

duction of standard matrices [23]. A simple example is the

most efficient way to describe the method.

Example 4.1

* We consider the matrix

2.02  l 11 1 'i012 il2C9

C -C C - o0 21 -21 02 111°

where

I



C C C C

0 0 1l 1
Co 11 1 C1  1- (4-9a)

C02. C22! C2 C22

L

By performing elementary operations, this matrix may be re-

duced to triangular form to yield the explicit characteris-

tic ec'.ation

4 _ 3 2- (c 0+Q) -X c i- -'c cc c a)
22 11 122 c 012021 il 22

+ X (C 0 C C 0  - Co C - ClC ) + (C C- C C )
0 '' C 1 1 1 1

11~2 -221 12 21 12 21j 22 11 12 21

(4-10)

Any of a wide variety of' olynomial zeo searching methods

may now be used to determine the roots.

This example establishes the basic technique. 'n theory

it may be applied to a matrix of arbitrary size. Unfortu-

nately, in practice the method numerically breaks down due

to piling of the coefficients -f the eliminated Polynomials

on the diagonal polynomials. This results in a wide dynamic

range in the diagonal coefficients which causes simultaneous

overspill and underspil. This was observed for systems

with only 56 roots. A sophlsticated machine based scalingI
system [24] could have par:ialy controlled th:s dynamic

range difficulty; however, it was feared it would s:mply

6
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postpone the breakdown to a slightly larger system and was

therefore not pursued.

4.2.4 Lagnerre's Method

An application of Laguerre's method suitable to the ei-

genvalue problem has been developed by Parlett [20]. The

I following brief summary is based on his work.

Let X be an approximation to a root of the polynomial

p(X), where p(X) is of degree n. Laguerre's method requires

A p(X), p'(X), and p''(X) (prime denotes a derivative with re-

spect to the argument) to obtain a better approximation. By

defining

1'(X) and s, (x) = (P'(M)T p(X)'' () (4-l!)PI i , ( ) -(p(M))2

?arlett derives

In
A ' i+i kl _ (4-12)

Ss.+((n-1)(s S 1/Si- (ns2-sl))
I/2 (-2

where the scuare =-ooz which maximizes the absolute value of

the denominator is chosen and n denotes the degree of the

polynomial p(\) (for the details of this expression cne

should refer to Par'ett [111).

It
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Several convergence properties have been proven for La-

guerre's method. A listing may be found in Kelly [25].

Although the formulas given seem applicable cnly for po-

lynomials, they may be used on a matrix in Hesserurg form

by using Hyman's method [20] to recursively yield the re-

auired derivatives directly from this matrix. Unfortunate-

U ly, I is in block upper Hessenburg form and not standard up-

per Hessenburg form. To use Hyman's method a transformation

to standard upper Hessenburg form (Section 4.3.1) would be

* recuired. Such a transformation generally destroys the

sparse properties of a matrix, thereby making use of Laguer-

re's method in this context unfeasible for determining the

feu red eienvaes.

In summary, the direct root searching methods tested

wcn exploit thlie form of equation (4-3) (i.e., Muller's

method, and the polynomial matrix method) were found to be

useful only for relatively small systems due to root crowd-

ing and errors associated with the numerical process (in

-O particular, the determinant evaluation). The contour inte-

gration technicue may prove useful for large systems if the

:ntegration can numerically smooth the reraired determinate;

* the feasiblity of this requires further consideration. ?ar-

Lett's application of Laguerre's method is an excellent one

for solving large sparse matrices in Hessenburg form. To

SI
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use this method on the transition matrix a transformation

would be required. More powerful methods exist when such a

transformation must be made.

4.3 MATRIX EIGENVALUE METHODS

Matrix eigenvalue methods typically fall in either of two

I catagories: similarity transform methods or vector itera-

tive methods. Although only the latter explicitly classi-

fies the methods as iterative, similarity transform methods

are iterative as well. Indeed, by Galois theory [26], the

roots of any polynomial whose order is greater than four

must necessarily be found iteratively. We will init.-ially

consider sim4ar tv trarsform methods and then conclude w:-4

vector iterative, or power, methods.

4.3.1 Similarity Transform Methods

Let P be a general matrix of order n. A similarity

transformation (to create a similar matrix P,)

I

I - PQ (4-13)

where Q is any non-singular matrix of the same order as P,

preserves the eigenvalues of the matrix P. A judicious

choice of Q enables one to change the form of P so that its

eigenvalues may be readily found, i.e., triangularize P.
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Typically, the triangularization process reuares several

steps since only a few elements of P are operated on with

each similarity transformation.

The most common triangularization routines available are

the LR [27] and QR [28] algorithms. Both of these methods

are relatively inefficient for fully populated, or dense ma-

U trices (few zero elements). However, when a matrix exhibits

a certain pattern of zero's they become quite efficient.

The desirable pattern of zero elements for general matrices

I is that which is associated with an upper Hessenburg matrix.

To effectively use the QR or LR algorithLms, then, one must

initially transform the general matrix of interest to upper

essenbur; frm Thi-s rdu.Cz-tion Is acz ished by using

either orthogonal transformations which recuire approximate-

ly 5n3 /3 multiplications, or elementary stabilized transfor-

mations which recuire approximately 5n3/6 multiplications

L29].

A 4.3.1.1 The LR Transformation

Let ?k be the matrix obtained from the (k-l)-th transfor-

mation. Pk may be factored, or decomposed, as

p= L. (a-l4)

I

L-
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where , is a lower triangular matrix with unim diagonal

elements and Rk is an upper triangular matrix. The updated

iterate is then obtained by forming (k=1,2,...)

Pk+l = R Lk" (4-15)

Combining (4-14) and (4-15) yields

P Pk+1 Li Pk Lk (4-16)

which establishes the similarity transform form and hence

* the preservation of the eigenvalues at each iteration. The

(k+!)-th transformation may be stepped back to the original

matrix P by writing

l -1 -l
Sl_ I i T' 1 P L LI (4-17)

it can be proven that the eigenvalues of smallest moduli

tend to converge first and that the rate of convergence is

dependent on the ratio of the moduli of neighboring eigenva-

0 lues [27]. 3y introducing origin shifts the convergence rate

can be improved [191.

Approximately 2 to 3 LR transformaticns are required per

e;genva.ue. As eiaenvalues are found, the amount of re-

qritred computation steadily decreases due to smaller matric-

es which must be operated on. Approximately nz -ultizlica-



tcions are required for the first few transformations, but

only 3n 3 to 4n 3 multiplications (including tne upper Hessen-

burg transformation) are reguired to obtain a full set of n

eigenvalues.

A thorough theoretical discussion of the LR algorithm may

be found in [191; computational aspects may be found in

I o301.

The use of an orthogonal factorization introduces favora-

ble stability and accuracy properties throughout the entire

triangularization process [19]. Such a decomposition leads

to the QR transformation.

4.3.:.2 The R Transformatin

When the lower triangular matrix used in the LR algorithm

is replaced by an orthogonal matrix we obtain the most basic

form of the QR algorithm. Letting Qk be the k-th iterate

orthogonal matrix we may write the basic steps as

Pic , (4-13)

and

' = qk = q P k
* 1 = - q = 0 . (A-19)

S+.. "-"



The convergence properties of the QR method are similar

to the LR in that convergence is toward the eigenvalues of

least moduli, and approximately I to 2 double QR transforma-

tions [191 are required per eigenvalue. The orthogonal de-

composition does require more computation, however. Approx-

4mately 5nz multiplications are reqaired for the first few

q double transformations; the entire process requires approxi-

mately 4n3 multiplications (including the upper Hessenburg

transformation).

-Although slightly more computation is required, the QR

method is preferred over the LR due to its superior stabili-

ty and accuracy properties for obtaining both single and

mult-le r... and ccmp ex .eienvalues. TIs is t..-e case

when the original matrix is real. A version of both of

these algorithms exists for complex matrices [19,30]. In

practice, the complex LR algorithm has been preferred to the

complex QR since it is somewhat simplier in content but com-

parable in stability and accuracy.

The LR and QR algorithms represent the most accurate and

efficient methods available for cbtaining a full set of ei-

genvalues from a dense matrix which has been transformed to

upper HesseD-urg form. A full set of corresponding eigen-

vectors may be obtained by accumulating the transformations

used in the LR or QR reductions (this increases the number
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of required multiplications by approximately a factor of

two); a partial set may be obtained by using an inverse it-

eration method (19]. To use the LR or QR methods, however,

matrices must generally be stored in full storage mode since

similarity transformations typically destroy any sparse

properties. Hence, these methods are only useful on matric-

Ues with orders less than a few hundred. The size of the

transition matrix generated by TD-SEM can easily be on the

order of thousands and therefore excludes itself from ful

eigensolution by these techniques. Only partial eigensolu-

tion by iterative eigenvector methods remain.

4.3.2 1zerative iaenvector Methods

"terative eigenvector, or power, methods may be used to

find either a full, or more commonly, a partial set of ei-

genvalues and eigenvectors. Since only matrix multiplica-

tions, in general, are required by these methods any sparse

properties of the original matrix may be taken advantage of.

6@ Iterative eigenvector methods may be divided into two class-

es: single vector and multiple vector methods. Both methods

beg-n with an initial estimate or guess at an eigenvector

* which, hopefully, will iteratively converge to an actual ei-

genvector of the system. The corresponding eigenvalue is

ccnsequently found.

6

6
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4.3.2.1 Single Vector Power Methods

The standard and inverse power methods represent the two

single vector methods commonly used in practice. We will

initially consider the standard method.

Let P be an unsymmetric matrix of order n with n indepen-

dent eigenvectors. An arbitrary vector U101 (where (o) de-

notes the iteration number) may be expressed as a linear

combination of these vectors, i.e.,

Cq (0) C1 qI+C 2q2 + .... Cnq (4-20)

where q, c i=1,2 ......,n, denote the eigenvectors and ar-

bitrary coefficients respectively. Postmultipling P by U(O)

yields

n0 nS( C) PC u (" .- (4-21)
. . "q . ' i\.Gqi

where Xi denotes the eigenvalue corresponding to q. if the

eigenvalues can be ordered as n 1 \ then

u(1  should represent an approximation to the eigenvector gi

corresponding to the dominant eigenvalue k. This approxi-

mation will iteratively improve by forming

-(k) k (0) + C q (4-22)

u- kl P ( 2)kqo _. nn4

n
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p since for a large enough k, Jl Pk> zk.The ratio X1%I/IX 2 1

determines how cpickly the scheme will converge to some spe-

cified degree of accuracy. Convergence will be quite rapid

if there exists good separation between these eigenvalues.

Convergence will be very slow if this ratio is close to uni-

ty. A variety of modifications exist to speed convergence

I under various circumstances [19].

T.he inverse power method rea'uires more computation than

the standard power method, but allows one to approximate ei-

• genvalues and eigenvectors other than the dominant ones. We

begin the method with some scalar a, and some initial vector

(O) and consider the iterative system (k=0,1,2 ....)

- (k+l) = 1-(k)
( (P - CI)-1 u (4-23)

where ! is an identity matrix. Note that this is the stan-

dard power method applied to the matrix (P-alI)- which pos-

esses the eigenvalues, !/(X i-), i=1,2,...,n. The method

converges to 1/(X.-a), where X. is the eigenvalue closest to
* c

From the convergence properties of the standard power

method, we note the following properties of the inverse

method. When = is zero, convergence is toward the least do-

minant eigenvalue of ?. When he value of a is cl-se -c an

eigenvalue, convergence will_  be quite rapid, but when a is a

poor eigenvalue estimate, convergence may be quite slow.

SJ
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In practice, the inverse observed in eqation (4-23) is

rarely explicitly determined. A decomposition or Gaussian

elimination is used on the matrix (P-al) which requires ap-

proximately n3 /3 multiplications. Another nz multiplica-

tions are required to determine each new u(k) (eigenvector

iterate). The standard power method does not necessitate a

decomposition and is therefore more efficient than the in-

verse method for the same number of iterations. The number

of iterations re cuired for the inverse method, however, will

be significantly smaller when a good guess at an eigenvalue

is known. Typically, the two methods are used in conjunc-

tion with one another. The standard method determines a

g o oc :tial guess whicn Is then refined by the inverse

method.

Once a single eigenvalue and eigenvector is known it may

be filtered out of the original matrix by either purifica-

tion or deflation [29]. The power methods above may then be

used on this filtered matrix to find another eigenvalue and

.l eigenvector. These may then be filtered out, and so on.

The state transition matrix is not only very sparse, but

Possesses a full set of eigenvalues whose moduli are less

Sthan unity. These two properties exclude the use of single

vector power methods for the following two reasons: first,

the purification or deflation processes which are required
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to find several eigenvalues possess the unfortunate property

that they destroy sparsity in general; second, the ratio of

the moduli of neighboring eigenvalues is generally so close

to unity that convergence is impractical in a reasonable am-

ount of time. Experimental verification of these two com-

plications has established that single vector power methods

U do not constitute a feasible method of solution for the

large scale state transition matrix.

4.3.2.2 Multiple Vector Power Methods

Multiple vector methods are power methods which iterate

with several vectors simultaneously. The name simultaneous

itrat:n (S.!.) has been given ,z these methods.

Bauer [31] introduced the first S.I. concept, called

'Bi-Iteration'. This method solved the algebraic eigenvalue

problem ?u=Xu for an arbitrary matrix P of order n. The

idea of the method was to iterate with two sets of vectors,

U.'.2.....,us and ,q,2 . . . . . . .. q (s5n) applied to P and p

S(H denotes Hermitian transpose) respectively. By maintain-

-H =wee6 isteKoing u. and qj biorthonormal (uiqj=6i, where &.. is the Kro-

necker delta), it can be shown (31] that under certain con-

ditions the u converge to the right eigenvectors, and the a.

converge to the left eiaenvectors corresponding to the e.-

genvalues X., \..J

6
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'Since the initial development of be.-ieration, emphasis

has been placed on developing simplified versions with im-

proved convergence properties. Rutishauser [32] developed

an efficient computer implemenzable version for symmetric

and positive definite matrices; an ALGOL listing may be

found in Wilkinson [301. Clint and Jennings [33] introduced

a modification for unsymmetric matrices which improved con-

vergence by using an 'interaction analysis'. An unsymmetric

method which utilized an interaction analysis and required

only one set of iteration vectors was subsequently developed

by Jennings and Stewart [34]. The following discussion is

an extension of -he latter contribution.

7ennings and Stewar- r---Z- e af n4 rh zera-

tion vectors to only the right set. For this set, the fol-

!owing iteration sequence is appropriate (k=,2 ......

N-T T'
H i) k  = k_1L

k ki U"

qH iii) H U.
k

iv) G D =

v) D .

vi ~ V. A.

vii) U is W. normalized. (4-24)
KC C
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We introduce the following geometrical arcument to

justify this secuence of operations. Let

Vi = P U k- (4-25)

where Uk-i contains an approximation to a subset of the ei-

g genvectors of P. V. may be decomposed into the sum of a

proiected matrix and an orthogonal matrix,

Vk = ~proj. +Vortho.
kk k

V D v )• + vortho.
= (Uk D1 ) +k

ortho.
= E..T.D. + V.(- ' h °

where E., Tk, and Dk are to be determined. Combining (4-25)

and (4-26) yields

?U_= ET D Vrth°

- kkk k

- A, T + Vortho. L-)

:f and only If

e. T. = (.'-2 )

or

D< -- i9 (-:9)
D. A

K
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where A k--l Equation (4-29) defines an eigenvalue .problem

for 0k; the eigenvalues of Dk are given by the matrix 8k ,

while the eigenvectors of Dk are given by the matrix Ak. Dk

is found by solving the linear system

V = - Uk-i) Dk (4-30)

The updated iterate is then

' Wk = Vk k = Uk_ (Dk Ak) + -krtho(

where Uk is a normalized Wk. Note that in the iteration cy-
cle an approximation which ignores the contribution of the

s c r.term on the right of equation (4-31) is made. This

approximation is reasonable since the second term tends to

zero as the number of iterations becomes large (due to Ak

approaching a span of the projection space).

This seauence of steps is appropriate for a right eigen-

vector or Vk projection scheme. A similar sequence may be

O developed for a Uk-1 projection scheme. in the latter case

convergence is toward the reciprocal eigenvalues.

A few comments are in order about the sequence of steps

4n the iteration cycle. UO represents the initial guess to

a dominant block of eigenvectors which may be with real num-

bers. The entire process proceeds in real arithmetic unzil

* the :Interaction matrix', Dk possesses complex -igenvalues;
k'
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the process then becomes complex. When this transition -s

made, Gk becomes a positive definite Hermitian matrix for

which a modified Cholesky decomposition has been developed

to minimize the operations required for the solution of step

iv.

If Uk contains s approximations to s eigenvectors (s!n,

U where n again is the order of the original matrix P), then

the matrix ek contains s approximations to s eigenvalues.

It can be shown [34] that the rate of convergence of the

-. above sequence is dependent on the ratio IXiI/Xs+iI and not

on the ratio III/IX2 I which governs the single vector meth-

ods. Convergence is toward the dominant eigenvalues.

7or certain geometries (Section 5.3. 2. t._ ei~enval'e.

associated with the state transition matrix exibit a well

defined series of annular rings. Within each of these rings

the eigenvalues are of comparable moduli. Between rings

there is a significant lump in moduli. Since the conver-

gence rate of the simultaneous iteration scheme above is de-

.* pendent on the ratio of neighboring blocks of eigenvalues

instead of the ratio of neighboring eigenvalues, and since

the scheme requires only matrix multiplicatons which pre-

* serve sparsity, simultaneous iteration represents a reason-

able method for obtaining a partial set of eigenvalues and

eigenvectors for M. Theoretically, rings may be found one

* by one until a desired set is collected.

-



A complication with this method is the number of

multiplications required per iteration. For a real arith-

metic cycle approximately [29]

5 2 31 3
ncs + f ns + - s (4-32)

Umultiplications are required. Here, c denotes the average

number of nonzero elements in each row of the matrix whose

eigensolution is sought, n denotes the order of this matrix,

and s denotes the number of eigenvalues desired. For a com-

plex cycle this number increases approximately by a factor

of four.

As the order of the matrix whose eigenvalues are scuaht

increases, the separation between neighboring blocks of ei-

genvalues typically decreases, and therefore, more itera-

tions are reuired to obtain a specified degree of accuracy.

It can be shown that the approximate number of req'uired it-

erations (k) to obtain a certain degree of accuracy is

0 k = lnE/inik 1/ s+1 1 (4-3)

wnere s denotes the block size, and £ denotes the accuracy

* desired,.i.e., O.CCOI,0.001, etc.. Figure 5.9 (Section

5.3.2) illustrates size of the state transition matrix vs.

execution time reaired on an IBM 3032 commuter for a parti-
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9cular subset of eigenvalues. Figure 5.10 illustrates sto-

rage requirements for both the QR and S.I. methods.

A significant reduction in the number of multiplications

required per iteration may be accomplished by taking advan-

tage of the form of the eigenvectors associated with the

transition matrix. For simplicity, equation (3-32) is re-

peated here as

-T NT-T NT-T -T
A = V a  , z a V (4-34)

where z. denotes a particular eigenvalue, and v denotes a

vector spatially describing the natural mode. Since the en-

tire state vector k can be constructed once these two mar-

ameters are known, it should be possible to carry out the

simultaneous iteration cycle with only a subset of the state

vector. Under certain conditions this is possible and has

been given the name 'sub' iteration.

The sub iteration modification may only be used after the

proper form of the entire state vector has appeared. This

can typically take several iterations since the vectors are

constructed from the top down. A sophisticated computer

program which incorporates this idea has shown that the de-

sired form cannot be forced in general, it must appear na-

turally. Once the form appears, however, the use of sub it-

eration for the remaining iterations will drastically reduce

I
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( the execution time. A listing of this routine (which was

designed for the solution of the thin-wire problem (Chapter

5)) may be found in Appendix A. Random sparse storage tech-

niques [29] were used in this algorithm to store the state

transition matrix.

Of all methods tested, simultaneous iteration with the

I sub iteration modification represents the only feasible

method for the partial eigensolution of the large scale

state transition matrix. The amount of computation time re-

1 uired using this scheme can admittedly become excessive as

the system size becomes very great. However, it should be

realized that even if it were possible to place these large

ma:rices in the high speed store of the largest computers so

that the efficient QR or LR algorithms could be used to find

both the eigenvalues and eigenvectors, the amount of compu-

tation time would be at least as great if not greater than

the time required by S.I.. This may be established simply

by considering the total number of operations each scheme

'4 requires. The time required by the QR and LR methods would

be for a full set of eigenparameters as opposed to the par-

tial set given by S.I., however.

II



Chapter V

WIRE-STRUCTURE ANALYSIS

5.1 INTRODUCTION

Wire structures may be analyzed either as scatterers or

antennas. When an incident wave propagating in space ex-

U cites a response on the wire, we consider the structure to

be a scatterer. When the wire is excited from small regions

on the structure itself, it is considered an antenna.

In this chapter, we will consider both frequency- and

time- domain numerical solution techniques. The discussions

will be restricted to thin, perfect conducting wires situat-

ed in one-dimensional or linear geometries. Frequency-domain

methods are presented in Section 5.2. By applying the

widely used moment method (14] to the EFIE for thin, perfect

conducting surfaces, the current and electric field distri-

butions along the antenna are obtained. A discussion of ex-

citation models is presented in Section 5.2.1; and a discus-

sion of the applicability of the thin-wire kernel

approximation is presented in Section 5.2.2. in Section

5.3, time-domain techniques are discussed. By using finite

difference approximations, we obtain the transient current

distribution associated with the antenna mode of operation;

and by applying the TID-SEM method, we present the SEM pole

8
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distribution associated with the scattering mode. The ef-

fect of varying the time-sampling distance used in the fi-

nite difference approximation on the pole locations is pre-

sented in Section 5.3.2.1. In Section 5.3.3 , the effect of

segment to segment (unknown to unknown) coupling through the

kernel of the EFIE on the pole locations is discussed.

Extensive studies on approximate analytic solution tech-

- • nicues of linear wire structures have been given by King

[35]. Numerical solution techniques have been given by Har-

9O rington (141, Poggio and Mayes [36], Thiele [37], and Mittra

[381. These provide excellent discussions of methods for

obtaining most any desired antenna or scattering parameter

o.ther han - n ocle struc:ure. A ccnrlete discussion and

several references for obtaining the natural responses of

objects in both the frequency- and time-domains may be found

in Chapter 3.

5.2 SPACE-FREQUENCY TEC:HNIQUES

O The appropriate expression which describes thin, perfect

conducting structures is (2-11a). For one-dimensional prcb-

lems with geometries similar to the geometry depiated in

SFigure 5.1, this expression mav be written in terms of an

unknown current, I.., and magnetic vector potential, A,, as

-E az,~ ~---14 A (a,z)(-)
unknown

S -i ! -
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Figure 5.1: Wire geometry.
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where

H 27.- Az(a,z,i)- W-21, J Iz~ z ) -  d 'dz' (5-1a)

-H 0

with

I R ( (z-z') 2 +2a 2 -2aCos 1 1/2 (5-lb)

Expression (5-1) was originally presented by Pocklington

in 1897. Various alternate forms of the expression are pos-

sible by manipulating the position of the operator,

S[ka+aa/ za]. For numerical work, this operator is often

preferred outside the integral so that integration of a more

highly singular kernel is avoided. We will only consider

the Pocklington form in this chapter.

The vector potential A may be written in terms of a

Green's function, G, as

H
-O A (a,z;w)= :G(z,z';w)I z(W')dz' (5-2)z z

-H

* where

- 1 -- e- kR
G(z,z';j)- _ 77R (5-3)

0

4~R
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is commonly known as the exact kernel for the thin-wire

problem. A computationally simpler kernel may be used under

certain conditions. This kernel is defined to be the ap-

proximate thin-wire kernel, Ga(z,z'), and is given by

e-jkRa
G a(ZZ') = 1e Ra (5-4)a 4= R

a

where

1/2
R = [(z-z')+a 21 (5-4a)a

A

King [39] has noted that the results obtained for a tubular

antenna are nearly identical for either this kernel or the

exact zne. shculd be noi.ned cut, howe-ier, .az i-: :

possible to obtain numerically unstable results using the

approximate kernel (Section 5.2.2).

K:ng [351 has analytically shown that the current distri-

bution on a linear antenna is sinusoidal in form. There-

fore, the use of the method of moments (MoM) [141 with a

subsectional basis set of piecew4se sinusoids is a sensible

approach for obtaining numerical solutions for expression

(5-i). A brief outline of how the choice of this basis set

in conjunction w-:h the MoM may be used ior the discreciza-

tion follows.
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We let "-he structure of interest be un4LformlIy divided

into (N+1) pieces each of" length A. The current distribu-

tion may then be approximated as

I'(Z') 7 1 IS (5-5)
n= 1

where

S = i~(-z-n) Iz'-z <.(5-5a)

0 otherwise

denotes the piecewise sinusoids, and the constants Inare to

be determined. By substituting this approximation into

equa-_:on (5-2), we may wr::ze a discraze version of expzres-

sion (5-1), after several straightforward manipulations, as

-E = I nL o(5) (5-6)

where the op~erator L0 (S) is given by

1,; sink-AL ( s)+ z-( n- ) - o~ _) z- n)( -a

H ~ere, the arguments of the func-.ion 07 replace (z-z' )in

e--ther ecruazion (5-1b) or (5-4a) depending on whether --he

exact or anoroximate kerne. is used.
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Following the MoM formalism, we introduce a pulse test-ing

function, wm, such that

wm = p A(z-z ) (3-7)

where

p (Z-z= . z-z I<A/2 (5-7a)
(0 otherwise.

Equation (5-6) may now be written as

IN
S<w, -Einc> 7 1 <w Loo(Sn)> (m =1,2, ....,N) (5-8)

m, z n n m,ov n

where

<w mL op(S n)>=

mr+A / 2
k r
sin(k) J[G(z-(z +1))-W-(z-(z -X))-2 cos(k-) G (z-z )dz (5-8a)

0o n n

ainc
and <win ,- > is similarly defined. Equation (5-8) has theS z

matrix representation



I

/S

Lo (S )> . . . . . .. . <W L (S )> - -<

1lo OP 1 , P

(5-9)

<w Lop (Sl)> . ... . (S)> IN <WN N E, c>z

-| The matrix with components <wm,L (S )> is known as an impe-

linc
dance matrix Z, and the vector with components <w , -,

known as a voltage vector V. Using this notation, the cur-

rent c,-efficients --n tay be found by forming

I n= z (5-10)

assuming a non-singular impedance matrix.

All frequency-domain results in this chapter will be

based on this model.

5.2.1 Excitation Models

The impedance matrix is invariant to hne form of excita-

tion; only the voltage vector reflects : .. In the antenna

mode, the excitation may be modeled in a varie" , o- - ys

The simplest is the delta function [37] gener, -

I . . "I I . . . . .. ..
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which introduces a single entry of unity into the voltage

vector; its position in the vector corresponds to the posi-

tion of the excitation on the antenna. An alternate, and

more rigorous, method of excitation modeling is the use of

equivalent magnetic sources. This leads to magnetic frill

[37] generators and belt [40] generators. The voltage vec-

tor reflects this form of excitation in the form of a dis-

tribution with unit area. Results induced by these diffe-

rent models are nearly identical everywhere over the

structure except directly at the point where the excitation

is originating. This point is somewhat critical to the over-

all analysis; however, since impedence and admittance char-

acteristics are dependent on the magnitude of the current at

this point. it has been found [401 that the magnetic source

generator models yield impedance and admittance values in

better agreement with experimental measurements than delta

generator models. Figure 5.2 compares a delta generator

with a magnetic belt generator for a half-wavelength antenna

using the exact kernel. Numerically, the results differ

only at and near the feed point; graphically the difference

is indistinTuishable.
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5.2.2 Thin-Wire Kernel Annroximation

Eguation (5-4) denotes the thin-wire kernel approximation

which is analytically valid for wires that are only a small

fraction of a wavelength in diameter. A numerilcal complica-

tion can arise using this kernel even when the wire is elec-

trically and hence the approximation analytically valid.

. When the sampling distance between unknowns is on the order

of the radius of the structure, non-physical current oscil-

lations may appear both at the end points and the feed

0 point. Use of the exact kernel in such cases avoids this

complication. Figure 5.3 compares the effect of the exact

and approximate kernels on the current distribution of a 1

meter ante.na. A bet aenerator was used for zhe excita-

tion.

5.2.3 Electric Field Distribution

Once the current coefficients are obtained from ecuation

(5-10), the scattered tangential electric field distribution

6 may be found by evaluating

N
(a, z;w) -j i[e-JkR kR- I 2cos( ) e-j 3] (5-11)
s in(kZ) n=. RR3

where

R = [(z-(z +a (5-11a)

In
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R2  = [(-(( 2 2 1/2(_- 2 -= +a (5-11b)
-TI

R3 = [(z-z)+a 1/2. (5-ic)

Note that the approximate thin-wire kernel has been used.

Figure 5.4 shows ES(z) for a 1 meter antenna. A delta gen-z

erator at the origin was used for the excitation.

-I
5.3 SPACE-TIME TECIDIlQUES

For one-dimensional structures corresponding to Figure

5.1, expression (2-12a) may be written 
as

II

4.n 1 1 2 2 1 (!Z';-''/z)
in c ) --I -2 ] - R- dz' (3-12).

-H

where the approximate thin-wire kernel (equation (5-4)) has

been used, and the current density appearing in expression

(2-12a) has been replaced by the total current.

The discretization of this expression will follow the

technique developed in Section 3.3.1. We assume (from ex-

pansion (3-17)) that the current distribution may be approx-

imated as

N

t'(z'; ) T - P.' (c-p '!t) P (z'-ni) (5-13)
n';
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where N denotes the number of unknowns used in the discreti-

zation. With this expansion, the discrete vector potential

is given by

A (nA;pt)z (Inn '+ /)

(5-14)
Nd

P' P~ (c(p~t)-p (c t - n- IL ______ 'f n '= p'=- 4(a2+z2

In-n' 1-i/2) _

Note that the time pulse has been pulled out of the integ-

ral. This is valid only for very thin, linear structures.

By letting G. denote the integral appearing in (5-14),

and picking p'=p-.n-n'. (note that this assumes the choice

cAt=A), we may write the vector potential as

N

A (nil;;pAt) I G, (5-15)Sz n p ,_n 1 i-n'

where

G - In (a+1/2)! + ((a+2) 2 2 1 a2/2 (5-15a)4 -(a-/2) . + ((a-l/2) 2A + a2)1/2

* By transforming the continuous differential operators ap-

pearing in expression (5-12) to central finite difference

operators, we obtain the following expiicit scheme for the

unknown current coefficients:
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S Einc (z;t)+ - +
n,p+1 G" L--t z In+1, p n-1,p n,p-1

N+I

+G 0 2. GIn-n'l n'+lp-In-n'j + 'n'-1,p-in-n'! - In',p+l-In-n'j

n' #n

n 1, 2,n p- . I--r 1 1 , 2 j

where G0 is the self patch kernel, and II, '4I 'N+2

are defined to be 
zero.

We now consider the choice cAt=A by performing a Fourier

I stability analysis (Section 3.3.1) on the homogeneous dif-

ferential ecuation for the vector potential. The vector po-

tential is analyzed for simplicity; the stability require-

ment for the current equaion is ant4icpated zo be similar

due to integral relation between the two. The following

discussion outlines the technique.

We begin with the one-dimensional wave equation for the

vector potential

9 9

2 3t 2 z 2-6 (5-17)

which in explicit differenced form becomes

A r A +A -2AZ Z

n,p+i 'n+!,D n-l,p n,pn

n2= , 2, ..., N ,

2 A -A (5-18)
Zn,p Zn, p 1, .......



34,

where r2=(cAt/A) 2 , and Az  =Az(na;p~t). Discrete separa-
n,p

tion of variable techniques then leads us to a solution ot

the form

A = WP exp (pn) (5-19)z
n,p

where w=exp~sAt} (s is arbitrary and may be complex), and m

4s an arbitrary real number. Clearly, for this solution to

remain bounded for all p, the magnitude of w must be bounded

above by unity. By substituting this general solution into

the basic equation (5-18), we obtain the following quadratic

equation in w:

(
" - 2 "1-2r2sin2 ( a/2))W + 1 = 0 (5-20)

From this equation, the magnitude of w is less or equal to

unity for r~l. Therefore, the choice cAt=A may yield a sta-

ble solution for the current coefficient difference equation

(equation (5-16)). Certainty cannot be ascertained for the

following two reasons: first, any appropriate boundary con-

ditions have not been included in the analysis; and second,

a difference euation for the vector potential has been con-

sidered rather than a difference euation for the current

coefficients. The matrix stability method (Section 3.3.1)

must be applied to the current difference scheme for this

criterion to be numerically rigorous.

I

I
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p 5.3.1 Transient Current Response

Figure 5.5 depicts the transient current response ob-

tained from equation (5-16) on one of two feed segments for

a 1 meter dipole antenna. The mathematical representation

of the excitation used on each of these segements is given

by

M E 2 ma) (5-21)
- exp (-g (t-t

where E0 is the free-space impedance 120n, t is the time

when the magnitude of the pulse peaks, and g is the compres-

sion factor of the pulse. The parameter tmax was chosen to

be 0.5 light meters (LIM), and g was chosen so that the mag-
nitude of the pulse at -- an t1 LM was 0.000!/ (607)

volts/meter.

5.3.2 TD-SEM Pole Distribution

The TD-SEM technique developed in Section 3.3.1 may be

applied to the difference scheme of equation (5-16). The

eigenvalues of the state transition matrix I may be found by

the methods given in Chapter 4. The order of i for this

problem is N(N+ ), where N represents the number of unk-

* nowns. For N18 full eigensolution by the QR transformation

(Section 4.3.1.2) is recommended. For larger values of N,

partial eigensolution by simultaneous iteration (Section

6 4.3.2.2) is recommended. Figure 5.6 shows the pole distri-
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bution obtained by TD-SEM (QR solution) for a 1 meter scat-

terer with a radius of 0.005 meters discretized with 18 unk-

nowns such that A=1/(N+1)=1/19. The results have been sca-

led by I/(nc), and a comparison with the frequency-domain

results of Singaraju, Girl and Baum [151 has been made. The

results shown reflect only the second quadrant of poles

q since the complex conjugates may be obtained by symmetry.

A few remarks on the structure of the eigenvalues associ-

ated with this problem for the choice cAt=A should be made.

AFrom stability, all eigenvalues must fall within the unit

circle in the complex plane. Complex eigenvalues appear in

groups of four which graphically define a square. Several

roups of: nearly identical modu*i form annular rings. Real

or purely imagina-' eigenvalues appear in pairs of equal. mo-

duli but differing sign. The eigenvalues of interest are

those with positive real components. Those with negative

real components are conjectured to correspond to false poles

which have no true physical meaning (this conjecture is dis-

A cussed in Section 5.3.2.1). The layering structure of the

poles corresponds to the annular ring structure of the ei-

genvalues. For an even number of unknowns, 2N of the eigen-

values in the outermost annular ring correspond to the sig-

nificant poles contained within the first layer, while 2N-2

eigenvalues correspond to the poles of the second layer.
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Further layers which are well defined have successively 4

fewer eigenvalues than the preceeding layer. For an odd

number of unknowns a factor of 2 must be added to the num-

bers above. Figure 5.7 depicts the eigenvalue structure for

- 18 unknowns. The quadrant which is blocked off denotes the

eigenvalues of interest.

Figure 5.8 shows the first layer pole distribution for 32

unknowns as found by simultaneous iteration techniques with

the sub iteration modification. It should be noted that. a.

simultaneous iteration algorithm may be

used to find more layers than just the first. Additional

layers may be found on a single computer execution or multi-

pl-e, independent executions.

Figure 5.9 compares execution time requirements (on an

IBM 3032 computer using FORTRAN H EXTENDED (OPT=2)) with the

order of the state transition matrix for: full eigensolution

by the QR algorithm (eigerivalues only), QR algorithm (both

eigenvalues and eigenvectors), and first layer eigenvalues

and eigenvectors by simultaneous iteration (assuming complex

iteration cycles) with and without the sub iteration modifi-

cation. IBM double precision was found to be necessary when

the QR algorithm was used; IBM single precision was suffi-

cient for the simultaneous iteration method. The curves in

Figure 5.9 reflect these precision requirements.

-I
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Figure 5.8: First layer pole distribution found by S.I.
for 32 unknowns. The scatterer was I meter in
length, and t~he radius was 0.005 meters.
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Figure 5.10 compares storage requirements with the tran-

sition matrix order for the cases above. The IBM douple

precision storage requirement for the QR algorithm, eigenva-

lues only, is 8n2 (where n denotes the order of f). This

requirement becomes 89+169 when both the eigenvalues and

all eigenvectors are desired. The single precision storage

requirement of simultaneous iteration is 4(4kz+(3+2N)k

+2nk+3((2N-1)N)), where k denotes the number of eigenvectors

sought, and N denotes the number of unknowns (for Figure

5.10, k=2N was chosen; this defines the first layer).

5.3.2.1 Effect of Varying the Time Sampling Distance

The pole structure presented in Figures 5.6 and 5.7 is

for the choice cAt=&. When cAt is chosen to be less than A,

complications arise. Since each time step is smaller, more

time steps are required for a wave to travel the length of

the structure. This causes the size of the state transition

matrix to increase, and thereby possess a larger number of

eigenvalues. The relation of these extra eigenvalues to the

true poles of the system is of interest. It has been found

that the additional eigenvalues add additional 'poles' which

may be divided into two types. The first type are complex

poles with imaginary components which are conjectured to be

of greater magnitude than the 'true system poles'; the sec-

6

I
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ond type are purely real poles which are conjectured to ex-

tend further down the real axis than the true poles. Both

of these conjectures and an elimination technique for the

spurious' poles are discussed in the following paragraphs.

The angle associated with the polar representation of ei-

genvalues which possess positive real and imaginary compo-

nents is at most n/2 radians (by symmetry, we may similarly

consider the conjugate of these eigenvalues). The imaginary

component of the poles corresponding to these eigenvalues,

then, have a magnitude which is at most 1/(2cAt) radians

(recalling that the poles are scaled by 1/(irc)). When the

stability condition cAt=A is valid, this maximum becomes

!/(24) radIans. Since all thin-wire pole distributions ob-

tained by frequency-domain techniques are bounded by 1/(2A)

radians, it is sensible to bound time-domain methods by that

value as well. Hence, we conjecture that the true system

poles obtained by TD-SEM are bounded on the imaginary axis

by 1/(2A) for arbitrary choice of cAt (note that this res-

triction eliminates the poles corresponding to eigenvalues

with negative real components). This technique generates a

simple criterion from which spurious poles off the real axis

may be eliminated. We consider, next, the spurious poles

which are situated on the real axis.

. .
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The second type of additional poles are not as simple to

remove. No well defined method has been developed. These

poles do not disturb the well defined layering structure

since they appear past it. TD-SEM generates true poles past

the layering structure (Figure 5.6) however, and therefore

an ambiguity exists. One possible restriction would be to

retain only those poles within the range 0 to approximately

-1/(2A) on the real axis. Although this criterion is admit-

tedly strict, it may be effectively used for arbitrary

choices of cat.

To conclude this section, it should be noted that the

left half plane pole structure obtained from an unstable al-

goritIm has very lizzla smil-arity with the pole structure

obtained from a stable algorithm. Hence, one should be cer-

tain that a particular scheme is stable if the results ob-

tained are to be considered meaningful and accurate.

5.3.3 Pole Shift by Kernel Decoupling

It was suspected a priori that a relation may exist between

the sub- matrices of the transition matrix and the par-

ticular layering structure of the poles. In other words,

the first few sub-matrices may contribute the poles of the

first layer, the next few the poles of the second layer, and

so on. To test this conjucture, the effect of zeroing the
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kernel G of equation (5-16) for various values of the
n-n'I

difference In-n'l was considered. This effectively removes

element to element coupling and thereby zeros sub-matrices.

Figure 5.11 depicts the movement of the pole distribution

for a 1 meter antenna with a radius of 0.005 meters discre-

tized with 10 unknowns (N=10). All layers tend to shift to-

ward the imaginary axis (approaching a transmission line) as

elements are zeroed from the extreme outer sub-matrices in-

ward. Unfortunately, no relation between the block sub-ma-

trices and particular layers can be inferred from this form

of movement. Specifically, the results shown in Figure 5.11

may be interpreted as follows: full set denotes no decou-

pling, the level 1 set has the kernel evaluated at

In-n'j=N+l set equal to zero, the level 2 set has the evalu-

ation at In-n' =N~l and N equal to zero, the level 3 set has

the evaluation at In-n' =N+1, N, and N-1 equal to zero, and

the level 7 set is similarly defined.

'.,
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Chapter VI

TRANSIENT ANALYSIS OF THIN, PERFECT CONDUCTING
RECTANGULAR PLATES

6.1 INTRODUCTION

The rectangular plate falls within the class of struc-

tures known as open structures with edges. Structure .Ith

edges, and in particular corners, are difficult to ani ze

due to the singular behavior of the current component . l-

lel to an edge, and the ambiguity of the current magni..le

in a corner. These complications have generally restricted

exact analytic solutions to infinite half-plane problems.

In particular, we cite an exact, frequency-dcmain solution

for the current density generated on an infinite half-plane

by an edge on incident plane wave which may be found in Born

and Wolf [411; the transformed, time-domain result, may sub-

sequently be found in Davis, et al [42].

Since the realm of problems which are solvable by analyt-

ic methods is quite narrow, interest has turned-toward the

numerical analysis of finite open struc6ures. The advent of

the method of mcments [14] stimulated the frequency-domain

study of these structures; while recent interest in tran-

sient methods was primarily stimulated by a study due to

Bennett, et a! [43]. In Bennett's study, both transient

99

.



100

numerical and experimental results for several canonic open

structures were presented. Some of the techniques developed

in this chapter are based on the latter contribution.

The study of the SEM parameters for open structures has

been limited to rectangular geometries. A treatise on ob-

taining these parameters for rectangular apertures and

structures using frequency-domain techniques has been pre-

sented by Pearson [44].

In this chapter, the transient numerical solution of the

thin, perfect conducting rectangular plate problem is stu-

died. in Section 6.2, the basic mathematical formulation of

the problem using finite difference techniques is presented.

"e basz dlffe - fzrmiu a ion is then applied -: a 'szan-

dard' gridding scheme in Section 6.3, and a 'shifted' grid-

ding scheme in Section 6.4. The shifted, or offset, scheme

was initially introduced for the soluticn of rectangular

problems in the frequency-domain by Glisson and Wilton [45].

Stability analysis and current distributions for each of

these schemes are presented in the appropriate sections. in

Section 6.5, the TD-SEM pole distribution for the square

plate is introduced.
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6.2 MATHEMATICAL FCRMALISM

The electric field integral expression (2-12a) is the ap-

propriate expression for describing thin, perfect conducting

structures. For the geometry shown in Figure 6.1, this ex-

pression may be written, in vector potential notation, as

the following coupled set:

Sinc 2 22
E M 1 2 A - ( Ax + AY)o at X t X 3Xay

(6-1)

inc inc inc Einc

T.he f6ollowing representation of z w-~l be used for all!

results presented in this chapter:

S(r; t) B E0 exp (-g ((t-)max + k.-r/c) 2) (6-2)

where

S x cosacos6 + y cosesino - z sine, (6-2a)

k- x sin6coso + v sin6sin( + z cos6, (6-2b)

r-X + y' + z^. (6-2c)
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Figure 6.1: Plate geometry.
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The value of E0 was chosen to be the free space impedance,

1201, tmax was chosen to be 2.45 light meters (LM), and g

was chosen so that the magnitude of finc at t=O and t=4.9 LM

would be 0.0001 volts/meter.

From expansion (3-17), the x and y components of the vec-

tor potential may be explicitly represented as

M
Ax'Y = T J , Glm- d)."im,n,p d -1i n;-1 p6- dnd 63

where

(+4 ) A ( 4l)A P (8_(u 2 +v2) 2/C)

G J2 2 dudv (6-3a)

(a- A (~ )A 41T(u +V )1/2

and =' A 'y (mA, nA; pAt).an m,n,p

Unfortunately, the integral which appears may not be

evaluated exactly due to the presence of the time pulse.

Numerical integration or linear interpolation represent the

possible methods of evaluation. In Figure 6.2, the physical

interpretation of how the time pulse activates various annu-

lar regions which contribute to the integral is shown (cau-

sality allows us to only consider zero or positive values of

the time difference p-p'). From this figure, the following

linear interpolation formula may be derived:



I- l- - .. . .. .

104

p-p,'-0

M-0u 0 n 1 2 n-% 4__

m-2=

p-p p-/5
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G ,a,6 =[PA[(6-Int(D))At] + (PA[( 6-I-Int(D))At]

- P [(6-Int(D))At])(D-Int(D))] G' (6-4)
A CI

where

D - 2 + 82 )/2/(cAt) , (6-4a)

Int(D) denotes 'integer part of', and

G 1 dudv (6-5)
41r(u9+v) 1/2

By letting a=(m-l/2), b=(a-i/2), c=(5+1/2), and d=(5-!/2),

we may evaluate this integral as

c +(d2+a 2) 1/2 2 1/2

a, 4r " a 2 c+(c2+b2)-/2
d+d~ 1/2)

2 2/2 221/2
bAi [c+(c 2+2)i/2 b+(d 2+b2-----)/2) ]+( 2 +a6-5a)d b

a(c2+a 2)/ b+(d 2+b2) /
+ SA in )2 )( 21/,]6-aa+(d2+a2) /2 b+(c2+b2 )

Over the self patch region (mm',n=n') the anti-derivative

reduces to

G1 A in (1 + v-) (6-3b)

* ',.a
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A simple rectangular rule approximation may alternatively

be used to evaluate integral (6-5) over all patches other

than the self patch without introducing considerable error,

i.e.,

42
2 2 2)/2 , O

G' 2 (6-6)aa

A in ( i+V-2 ) a -8 -0

Use of linear interpolation and approximation (6-6) is

the recommended means for the evaluation of equation (6-3a).

Numerical integration or use of equation (6-5a) have been

found to introduce only slight amplitude shifts in the final

results, and therefore their use is unjustified unless pre-

cise results are sought. The interpretation of precise is

ambiguous, however, due to the vast number of models which

may be applied to a particular problem, and hence the vast

number of slightly different results which may be obtained.

.I

.1

lI'
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6.3 STANDARD GRIDDING SCHEME

Figure 6.3 depicts a standard gridding scheme for a rec-

tangular plate. The patches as shown are square due to the

choice of a uniform sampling distance in both the x and y

directions; this is typically, but not necessarily, done.

Two complications are associated with this simple, commonly

used, model. First, since the two current density compo-

nents lie directly on top of one another, a smooth transi-

tion between components is not possible; and second, boun-

dary conditions on the current density must be explicitly

enforced.

For the standard grid, the following explicit finite dif-

ference scheme for the x component of the vector potential

is appropriate:

Am Xnr2 Ax + Ax2AX
M'np+l m+l,n,p m-l,n,p M ,np

+ 2 IAy + Ay  _ AA y

+ (A m+l,n+l,p M-1 n-lip m+l,n+!,p M- ,n+,p )

r2  1 Ein c m= , . ,
Ax  - 2Ax + (r E E i xmnn,p-I a t 'n0-ato X p=1,2 ...

(6-7)

where r=(cAt/A)z. Ay may be similarly defined. An expli-

cit difference scheme for the current density is obtained by

substituting expansion (6-3) into the above difference equa-

tion and manipulating the indices of the summations.
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evaluation points

r- n, -2 n-3 n-4
rn-O*.

m-2-

m-3-

I m-4 .

Jy .d

Figure 6.3: Standard gridding scheme.
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An approximate stability criterion for the vector poten-

tial scheme may be obtained by the Fourier stability method

(Sections 3.3.1, 5.3). Let

F A1
where ax, a are arbitrary coefficients, w=exp{sAt} (s is

arbitrary and generally complex), and a, 3 are arbitrary

real constants. By substituting the expression for A into

equation (6-7) and the expression for Ay into a similar

equation, we obtain

-2 2 2a 4 r sin ( a A/2) r sin(a)sin(S)j rax

2 " r2 s )2 2

a sir z c. ,)sin( ,QL ' sin'((-( /2) i aV YYL

--1 0] a,
+ Fl 0 Fa](6-9)

0 -1 ay "

This matrix equation may be reduced to the following quartic

equation in w:

4+ (EC)w3 + (EC-BD+2)w 2 + (E+C)w + 1 - 0 (6-10)

where

E 4r 2 sin2 (a/2) - 2 (6-10a)

B r'sin(a)sin(A) (6-10b)
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C- 4r2 sin (/2) (6-10c)

D - r 2sin()sin(aA) . (6-10d)

For any choice of real a, 0, IwIl1 for r~l. Therefore, the

choice cAt=a may lead to a stable solution. Certainty can-

not be obtained since boundary conditions cannot be included

in the analysis. The matrix stability method must be used

to verify this criterion for the current density coefficient

difference formulation with arbitrary boundary conditions.

The enforcement of boundary conditions is an integral

part of using the standard gridding scheme effectively.

Figure 6.4 shows the current density component corresponding

to the direction of polarization of the incident wave on the

center patch of a one meter square plate discretized-with

four unknowns in each direction when no boundary conditions

are enforced and choosing c~t=0.74. The result is highly

oscillatory yet stable. Figure 6.5 depicts the effect of

enforcing components of the current perpendicular to the

edges to be zero. In Figure 6.6 an attempt has been made to

enforce the form of the singular behavior of the current
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components parallel to an edge. This was accomplished by

assuming a reciprocal square root of distance singularity as

the edge is approached [42]. Hence, the value V3 was chosen

as the extrapolation constant for the parallel current com-

ponents 3A/2 from the edge, i.e., the parallel component at

position A/2 from the edge is V3 times the parallel current

component evaluated at 3A/2 from the edge.

In Figure 6.6 a comparison has been made with a current

density distribution obtained from the theoretical model

used by Bennett [43]. Bennett's model and the model used

here differ only in the extrapolation constant used for the

current density component parallel to an edge. In the model

used by 3ennett, an extrapolation constant of 3 was used in-

stead of V3. The factor of 3 was found to occasionally

yield unstable results, whb:eas V3 was found to always yield

stable results. Hence, the latter was preferred. The two

curves agree quite closely within the twelve light meter

frame which is shown. In should be noted that Bennett's mo-

del has been shown [43] to yield results quite similar to

experimental measurements.

The use of either 3 or V3 as an extrapolation technique

is somewhat unsatisfying since it does not permit a time

fluctuation of the particular form which is being forced.

The half plane problem which can be solved analytically
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yields a reciprocal square root behavior for the current

density which includes both a spatial and a time dependence

under the root [421. We would anticipate a similar depen-

dence for the plate, and hence any extrapolation should re-

flect this. Further study is required.

Although theoretical results similar to experimental mea-

surements may be obtained from a standard gridding scheme,

it is difficult to know a priori when satisfactory results

have been obtained due to the modifications which are re-

quired. In an effort to avoid these modifications (i.e.,

create a more natural model), we consider an offset or

shifted gridding scheme.

6.4 SHIFTED GRIDDING SCHEME

Figure 6.7 depicts a shifted gridding scheme. Three de-

sirable properties about this formulation are as follows:

current is allowed to make a smooth transition between com-

ponents, zero boundary ccnditions on the current are impli-

citly enforced, and it is not necessary to step off the

structure for any finite difference evaluations.

The explicit difference representation of the x component

of the vector potential is given by
.

6
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2 x Ax

~ -r 2 (AX, 1  + AX 2AX
AX~n_ ,-1,n- (ApM mI + I1, ,n-11, p' m-,n- , p 2M n- , p)

+ r2 (AY + Ay  -A y  Ay
m+ ,n,p m- ,n-l,p mr+ ,n-l,p m- ,n,p

A_ ~x i [.-o ,l. 1
+ + , +1

M n- -,p-l - m, n- ,p 0 t x Lp,.

(6-11)

A similar equation may be developed for Ay . An explicit

scheme for the current density coefficients may be obtained

by substituting equation (6-3) into the above equation and

manipulating the indices of the summations.

A preliminary stability criterion for the vector poten-

tial scheme may be found by the Fourier stability method.

By letting

tAA L w P exp {j(am + (nA)}l (6-12)
-x

LAY Laywp exp (a m- ) A + 5nA)

and substituting into the difference scheme (6-i1), we ob-

tain the following quartic ecquation in w (similar to the un-

shifted development):
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4 3 2
w + (E+C)w + (EC-BD+2)w + (E+C)w + 1 - 0 (6-13)

where

E - 4r2 sin 2 (iA/2) - 2

B - r2(l+e-JaceJ 'A-e-jaA-ej a&)

(6-13a)

C - 4r2sin2(aA/2) - 2

2 -jBA jai jA jai
D r (l+e-  e -e A-e

For any choice of real a, 0, IwI:l for r2:(1/2) or

cAts(V2/2)A. This result may be established analyically by

assuming four solutions of the form exp[±jejj, exp[±jea) and

noting that the product of all the roots must be unity, or

it may be established numerically.

The basic result may be extended to accommodate three-

dimensional problems with different spatial sampling distances

in each of the three spatial directions, i.e., we have Ax,

Ay, AZ instead of simply A. The stability requirement for

shifted schemes, in general, is then

1 >1 1 1
(ct)2 -(j) +'2 +  + - T z2 (6-14)

The validity of these expressions for the analogous cur-

rent density difference formulation must be confirmed by the

matrix stability method.

"6



Figure 6.8 shows the unstable result obtained by choosing

cAt=A. By choosing cAt:(V2/2)A, however, we obtain the sta-

ble curves shown in Figure 6.9. A comparision of these

curves with the curve generated by the standard gridding

scheme has been made. Note that the amplitude of the curves

obtained from the two schemes differ slightly. This is pri-

marily due to the different techniques used to enforce the

zero boundary condition in each scheme.

6.5 TD-SEM POLE DISTRIBUTION

In this section, we present pole distributions obtained

by TD-SEM (Section 3.3.1) using the shifted gridding scheme

;n a one meter sc'are plate. Figure 6.10 shows the distri-

bution for a total of 2 unknowns (6=1/2) for each current

component, Figure 6.11 shows the distribution for a total of

6 unknowns (A=1/3), and Figure 6.12 shows the distribution

for a total of 12 unknowns (4=1/4). The choice cAt=0.74 was

made throughout.

As was discussed in Section 5.3.2.1, an ambiguity exists

in the validity of all the 'poles' TD-SEM yields when cAt is

chosen less than A due to an increase in the order of the

transition matrix. A filtering scheme to remove poles which

were conjectured to be a consequence of the numerical pro-

ceedure was discussed in that section. For Figures 6.10-12

I,

II
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with a shifted gridding scheme. The total
number of patches for each component of the
current density was 2, and the choice cAt=0.7A
was made.
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a similar, but slightly different, filtering scheme was

used. The scaled poles corresponding to the eigenvalues

with positive real components were restricted to a maximum

magnitude on the imaginary axis of 1/(2A) radians; the sca-

led poles corresponding to the eigenvalues with negative

real components were restricted to the range 1/(2A) to 1/A

radians. A line has been drawn on these figures to separate

the two regions since the true physical meaning of the poles

corresponding to eigenvalues with negative real components

is not clear for rectangular geometries (although it was

conjectured that these poles have no meaning for the wire

problem). A sensible method to test the validity of the

=oles n.- both regions is to reduce the value of cA- below

the initial choice of 0.7A and note shifts in the pole posi-

tions. For true poles, we suspect very little shift. It

was experimentally observed that the lower set shifted only

slightly, but the upper set experienced a considerable

shift. Hence from this argument, we conjecture that only

the lower set represents true system poles.

The lower pole cluster agrees reasonably well with the

frequency-domain results. The lowest order pole from Figure

6.12 (12 unknowns) is explicitly -0.284j0.715; this pole

was found by frequency-domain methods to be -0.272-jO.675.

The time-domain result should approach this (up to the simi-

larity of the models used in each domain) as the number of

kL
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unknowns is increased. Figure 6.13 compares selected

- time-domain poles with available frequency-domain poles.

It is interesting to note that double poles were observed

for the square plate, and a fill in of poles occured as the

number of unknowns increased. Both of these can be justi-

fied by considering the poles of an infinite rectangular

waveguide.

The simultaneous iteration method presented in Chapter 4

may be used to obtain the natural frequencies and modes for

the rectangular plate. Care is required in its implementa-

tion, however, due to the absence of the well defined layer-

ing structure which appeared with the wire problem.

'p

S"
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Chapter VII

CONCLUSIONS

In this thesis, the fundamental integral equations of

electromagnetic theory and the theoretical foundations of

both the frequency-domain SEM and the time-domain SEM method

of Cordaro and Davis were developed. It was observed from

the development of TD-SEM that special sparse eigensolution

routines were required to determine the eigenvalues of the

transition matrix due to the excessive high speed storage

requirements associated with certain problems. A modified

simultaneous iteration algorithm was developed to satisfy

this eigensolution requirement. The algorithm may be used

to obtain partial pole solutions for a variety of geome-

tries, and was explicitly shown to be effective on the

-thin-wire problem for an arbitrary number of unknowns.

Root searching methods which take advantage of the com-

panion form of the transition matrix, such as Muller's meth-

*od and the polynomial matrix reduction method of Woolivich,

were found to be effective methods for obtaining the natural

frequencies only for linear geometries discretized with re-

latively few unknowns. The contour integration technique of

Singaraju, Gir, and Baum, which also takes advantage of

this companion form, was not explicitly tested in this stu-
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dy; however, the method may prove to be effective for prob-

lems discretized with a large number of unknowns provided

the required integration operation can benefically be used

to numerically smooth the determinate evaluation. Further

study is required to establish the utility of this method.

Time-domain techniques which provide convenient matrix

methods for obtaining the SEM coupling coefficients have

been developed. The time-domain form of these coefficients

is much simpler than the equivalent frequency-domain form.

The effect of altering the sub-sectional coupling between

unknowns in the numerical formulation of the thin-wire prob-

lem was also investigated. No relation between the specific

:ayerinq structure of the poles and sub-matrices of the

transition matrix was observed. This was unfortunate since

it was hoped that if only a particular subset of the pole

distribution was desired, then sub-matrices which did not

influence this subset could be removed from the transition

matrix and thereby yield a lower order problem.

A shifted gridding scheme was applied to the rectangular

plate problem to obtain transient solutions. This scheme

was found to represent a more natural discretization for the

problem than the unshifted or standard gridding scheme which

is typically used. The shifted scheme was then used in con-

junction with TD-SEM to obtain pole distributions for the
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square, perfect conducting plate. The results obtained were

found to be quite similar to available frequency-domain re-

suits.

Fourier and matrix stability methods were applied to the

finite difference representations of electromagnetic equa-

tions. These methods were found to provide accurate insight

into the required relation between the time and spatial sam-

pling distances that will yield a numerically stable solu-

i* tion for an arbitrary difference formulation.

The physical significance of the additional poles gener-

ated by choosing the time sampling distance smaller than the

spatial sampling distance or the spatial sampling distance

to be different in different directions remains an open

question. These additional poles are conjectured to be

false poles for which an elimination procedure has been pre-

sented.
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