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Chapter I

INTRODUCTICN

The calculation of natural freguenci

({4

s (poles) and natur-
2l modes (free cscillations) of structures is a fundamental

N

proktlem of many disciplines. Until recently, the mathe

3
W
ct
-+
i

cal study of these parameters has unfortunately been limited

of

0 canonic geometries which lend themselves to esigenscluticn

[¢]

by separation of wvariable technigues. The singularity ex-

vansion method (SEM) removas this geometrical restriction bv

enabling on2 to ob*tain the natural fracuencies and natural

modes ¢f an arbkitrary cbiect. The SEM also enables cne to

detsrmine the respense 2f the shiszctT o an arpizrary forzing
.

finction directly from an appropriate expansion of the modal

The basic ztheorstical foundations of the SEM were in

tially presented using freguencv-dcmain technigues zapriied
to electromagnetic equations Sy Baum (1]. 3aum's develcop-
ment was subsequently extended by Marian and Latham {2]; and

rigorcus mathematical iustification of scme 2rf the »basic

[ P - P SR -~ . N ol S
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fect conducting cylindrical surfaces were initially preser:-

l.

>

ed by Tesche |
Interest in time-domain technigues in the SEIM has noz
peen as widespresad as frequency-domain methods; however,
several varied contributions have recentiy been made toward
establishing the versatility of time-dcmain methods. A time-
domain method analogous to the original frequency-domain
method may be found in Baum [5]. The applicability of
this method, nowever, has peen scmewhat limited due to the
ievel of difficulty of the describing egquaticns. Van 3lari-
cum and Mistra (9] developed a rather unigue methcd whereby
the natural rssponses may be obtained using Prcny's methed

A~y -7 -t J - L oletel ~E = ~m -
crnce Tne TIrAanslzaIntT recrerns2 CI T2 ol

1]

=% is xnown. An

obvicus complication with this methed is that the detarmina-

An za2lternate time-dcmain methcd which sidesters %I

caticns oI the above methods has peen introsduced by Ceriaro

nd Davis 8. This method , xnow:n as time-domain S=ZM

o
—aia

(TD=-S2M), erzbles one to find %the natural responses directly

»

from the finiterdifference representaticn 2f£ the govarning
integral eguations cast in a ma%rix =2igenvalue form. Unfor-
Tunately, the matrices generatad tend To pe guite large, and

3 T memd e * - e - -~
L re_atively IeW UdnAncwns. e
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results which have keen obtained, however, indica%te that +he

Cordaro-Davis method is capable of producing a great deal cf
information gquite efficiently. The intent of this study is
to extend the applicability cf TD-SEM, and extend numerical
time-domain technigues in general.

Toward establishing this intent, the following (prin-~ -
pal) set of tasks are defined: (1) determine stabilistv
criteria for varicus finite difference representations
electrcmagnetic eguaticns, (2) develop simple time-doma
expressicns for determining the SEM coupling coefficients

(these are parameters which couple the natural frequencies

and mecdes te the incident forcing functien), (3) develcp an

aigensoluticrn algorithm which will sclve the large scale ma-
trices generated by TD-SZM, (4) obtain a pole distribution

for the linear scatterer discretized with a large number of
unkncwns, (5) apply TD-SEM o the two-dimensional resctangu-

lar plate proplem. The outline for establishing these tasks

The Zfundamental governing eguaticns of electromagnetics
are developed in integral form in Chapter 2 using dvadic
Green s functicon theory. The eguations are initially devel-

oped in general, and ars then specialized to descrike thin,

‘)

- el " e Y T L™ T w v W e v
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Chapter 11

FUNDAMEINTAL INTIGRAL ZQUATICNS CF
ELECTROMAGNETICS

9]
[

INTRCDUCTION
Singular integral equations (or singular integro-differ-
ential eguations) represent a powerful and widely used ap-
vroach to the solution of both antenna and electromagnetic
scattering problems. A variety of methods mav be used to

cbtain these eguations. Poggio and Millier (3] rigorously

rem [10]. In this Zformalism, the concept of incident and
scatterad fi21ds in conjuncticsn with equivalent scurces de-
velcps 1n a natural way. 1In this chapter, the freguency-do-

3

main equations are cdeveloped f£rom linear system fcundations.

Although, perhaps, this approach is less rigorcus than the

demain representations of these equations are then obtained

by inverse Fourisr transfcrm technigues. These general ire-




2.2 MATHEMATICAL ZCRMALISM

The mathematical formulation of electromagnetic rhencmena
is fundamentallv dependent on a concise set of equations
known as Maxwell's egquations. The complexity of these esgqua-
tions is nighly depencdent cn the host medium. We will res-
trict our discussicn throughout to a homogeneous, linear,
and isctropic medium. For such a medium, Maxwell's equa-
tions may be written in differential form in the fregquency-

domain as (a vector will ke denoted by a single bar; a fre-

guency-domain gquantity will be denoted by a tilde)

1]

7 x EF (Tyw) = -jwuoﬁ“ (r3w) - ¥ (rw)
=t = . =t - z =
7 x d3 (r3w) = jwe ET (riw) +J (rw)
° (2-1)

. =t = ~T =,
¢ & (xr,w) 27 (ryw)ie

o
- st = ~T
7 v BT (zyw) =t r;u)/uo

Note trat the time dependence, exp{jwt}, has been sup-

pressed. The total electric and magnetic field intensitiss

; L =t - =t - ‘ .

are denoted by E (r;u) and H (r;w), the total electric and
. : =t

magnetic current densities are denoted dv J (r;w) and

L= .t = .t =

M (r;w), and the parameters 2 (r;w), m (r;w), €, Uy, w, and

densities, elec=ric permittivity, magnetic permeabilicy,
£raguency, and ckserwvaticn gesition
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in the case of scattering by arn obstacle,

rpose the total fields and sources as

(e 1]

Ef (Fiw) = EMPC (Fyw) + B (Fiw)

"

t

= - ziac = 2

A7 (rpw) = B (rjw) + 8 (riw)

=t - s 2 -

J- (rw) = J° (rsw) + 35 (r;w)

:t - =3 = -

M7 (ryw) =M (riw) + M (riw)

Lt -S -

3 ri;w) = 37 (ryw) + 3 (r;w)

.S ,= ~ =
2~ (rjw) = (r;w) +m (r;w)
=inc = inc . . . o

where = , B denote the incident fields
.5 ~5 . . =g s .
6%, and m  give rise to, and E, E are the

due to the sources J, M, 5, and m induced on

fields £, E obey, then, the vector Helmholtz equaticns
- - zs3 2z5 - . = = - . Tiw)
7 x 7 x E (riw) - KTET (riw) = =juug J (riw) = 7 x M (ruw
(2-3a)
and
=3 o) xg - ~ P -
Tx 7T xa (ryw) - %k H (rw) = -jmso M (ziw) + 7 xJ (rjw)
{2-3b)
where Kk i3 the wavenumber, wiz u;).
The Zields which satisfv (2-3) may e Zound by convolwin
The Impulse respense ¢ (Z2-3) with the forzing Iuncticns

we may decom-

(2-2a)

. =S
which J , M ,
scattered fields
the scatterer

-

. The scattered
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present. The impulse respcnse is cbtained by determining

'

dvadic Green's function,

—a il
—
g1
~
"

&
®

'";w) (a double bar will

denota a dyadic), which satisfies

3
-1l

—He

(r,r;2) = 3 (r,D) (2-4)

Hers, I denotes a unit dyadic, r'

denotes the source posi-
tien, and §(r,r') denctes a three-dimensional Dirac delta

distridution. The sclution of eguation (2-4) is given by

[11]

5-3 i,l_._*—: =

C(r,he) = (I + = 79) G (r,Thw) (2-3)
2

where G(r,r';:w) is the free-space Sreen's funczion
-jkir - ¢';
eJ' T 2.6
_-—*. -
QTTKr-:'; (‘-)

-

nm

r;w) an

s .z POE oo ooy 3 Sy 7 a_n
ES (rjw) = o T (r,r ;d)'[-J&ho J (Pie) - YuoM (W] dr' (2-Ta)
I'\H
and
= - —_:-. - - =z - = . . Be] fa T
- (Tiw) =, O (r,r',;)-L—Jheo Mo(Yie) = T O (dyui dr (2=7b)
nrt
v
whara V' denotes the *clume occupiad by <he scazzarar
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(7'G)eV' xM=-V'e(7'GxM), and the relation VG(:,r';w)=

;w), we obtain the following srace-freguency repre-

3 sentations for the total electric and magnetic fields:
2t = zinc = 1 28 ) 3 TaNA(T SH. NaT
5w = B (Fw) <+ L k*T+97) - J(F)G(E, T jw)dr!

jwe |
Jueg L

[ = - .- = - -
+ M(r') % 7'G{r,r';w)dr' } r ¢ V' (2-8a)
/ .
,
V /
and
* Zto< ziac = S e TR -
B (rjw) =8 (r;u) + Ton | LE I+7V] -N(r')G(zr,r jw)dr'
W
le] /

1= i T e~ e -
+~3L TRTI+TT) 1 f n txJ(r')G(r,r';w)ds'
; J
£ s
Ay
+ 0 J(E') x T'G(E,rhw)dT' > T £ V' (2-8b)

sver the surface pounding the volume V',

& . - ~ - - o] o -
“he freguancy <dependence fcund in exprassicns (Z-Za) and
o 1 ~ . -
(2-2b) 19| They are given bv
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. u . r = 2 -, -

3 o=t,= 5 =inc,= 1 -1 3 ——y J(='iT) =
= -— E r:t = g - E ret — — —— /—1.—— dr'
03 (r3t) o it (r30) + 35 ),,[ 2.2 o R

V [ ]

t=t-R/c
.
and
=t = 2
i i, - 3 =inc,=- 1 ( -1 3 - M(r';T
o = (rje) =u_ T HT O (rjn) + o= L":)“J_""]’(n’)d'
3t o5t am ot 2, R
Y c 3t
;
= 2 -, =
U SR L S R -_1.[f 3 o 2ELD L
s=z 1 L™= 72 'L Toud” 3 =
2 /X SRR 4 3

t=t=-R/c

where R=!7-r'!, ¢ denotes the speed of light in vacuum, and

(r
3
1]
‘g
]

rameter t denotes the time delay associated with a

and magnezic field in%tecgral 2xpressions (ZIFIT, MFIZ): wher-
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The representaticns presentad are gene

}]

expressions

[

a
which are valid for an arbitrary scatterer positioned in the
previously assumed medium for all T such that £=f'. At the
offerding point r=r', the expressions become singular and
hence must be evaluated by considering the limit as r ap-
proaches r' [9,12]. The Cauchy or EHadamard principal value
{13] is typically used for the description of these integ-
rals. The frequency-domain representations of the electric
and magnetic fields become in the Cauchy principal value
sense (a single bar %through the integral will dencte a

Cauchy integral)

ES(Tiw) = 2E"7C(Fiu) + — FPJ (2T+97] - F(E)E(F,F' s0) dE"
*“o A
2 2071, . < H(Z")C(Z. 7 '
-3 [k 77 ) J,. out™ (r")G(r,r;w)ds
p3 . /8
\ 3
{ - - ! -
- - 5@ x 7 GG, TwdE b T v (2-10a)
Jyt y
J
and
= - =inc, - . 2 r/ = Z - o - -
Ic(r;u) = 2HIPC(I;J) 4 o=— FP ! [“21+7V]-}(r')G(r,r';»)dr'
Ju)uo '|V'
/
h = } = - Y - -
+ = [RTISTT) out™ J(r")G(r,r';x)ds’
" s
~ = T ox 7 &(r,ryuydr - T v (2-10b)
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Note that an interchange of primed to unprimed coordinates
has been made. Similar factors of two aprear in the time-
domain representations, and F? denotes 'the finite part of'.
These results may be specialized to describe thin, per-
fect conducting surfaces [12]. ©On such a surface, the ap-
propriate boundary conditions {10] are that the tangential
total electric field is zero, i.e., ﬁ.§t=0 (ﬁ defined to be
the outward normal unit vector on S), and that the tangen-

tial total magnetic field is egual to an equivalent surface

current source, JS, i.e., nxH =Jg. With these boundary con-

ditions, we may immediately write the space-freguency repre-

sentations for the electric and magnetic fields on the sur-

face § s1s

. zinc - fixFp [ | 23 - - - -
-1 X & ; = = ! I+ 791.0 'y T, '
i x (r;w) Juz, )s[ 7%] S(r w) G (r,r';w) dr (2-11a)
and

35(2;J> = 20 x BPC(Tw) - 2ax~ 3 _(Z;u) x TG(T,r';u)ds' (2-1lk)
o

- ~
. . - - CINRoS N
3 _-iac , a =1 —uT' -,
-z dx=<T-C r;e) = o— w2 | —=—— = 77} — dr
3t v 2.2 R
°S (SR o
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Eh\ and

. . ( -

) - =, = o o gine = o ! =y . fr-th

: Js(r,t) 2nxH (r;e) + 77 X Js [Js(r ;T) X R3
- - Fop!

m 23 G x EED e (2-12b)

] 3T s cR2 l

t=t-R/c

Note that the esguivalent magnetic surface current, M_, does
>
not appear in these expressions. ﬁs is related to the total

electric fieid by

(1]

t (2-13)

e
[}
]
o
W
s

which vanishes for perfect conducting surfaces. Note, also,

that for good conductors the effectiwve current source J may

nOUCTIVITY O T2 Sesta-

O

. - - =S . .
Le IT22.3acsld 0y ca \J Cengtes Tone C
cle), and therefore terms involving nxJ also tend to zero.

: 5 . - ~ Zinc
As a final remark, we note that the term 2nxH appear-

o

ing in expression (2-12b) is commenly kncwn as the physical

ortics apprcximation fer the current density vg - This ap-
proximation is useful for testing the vaiidity of results
obtained from expressions (2-12Za,b) when no results f£cr ccm-

pariscn exist.
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Chapter I[II
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EUNDAMENTAL CONCEPTS OF THE SINGULARITY
EXPANSICN METHCD

ALl dat Al

3.1 INTRCDUCTICN

The motivation for the singularity expansion method (SIM)
is essentially based on experimental observations which have
established that the transient surxface currents generated on

structures (scatterers) by arbitrary excitation are primari-

§—

n the fcrm of damped sinusoids; the particular shape ke-

$

Y

ing derendent on the form of excitation and the specific

()

geometry of the structure under consideration. By assuming

-

that a scatterer can be uniquely srecified mathematicalliv by

an asscciated modal and pole struczture, and that the form of

h

the excitation is known, the SZM enables one %¢ determire

the surface currents directly from an apprcpriate exransicn

of these parameters. Specifically, the expansion was found
<0 reguire knowledge of four parametsrs [I1]: the natural

freguencies and correspcnding natural mcdes, the structurs
of the incident wave, and scalar ccefficients that couple

the natural resonances o the incident wave (coupling ccef-

Zicisnts). Since =zh=2 Zorm 2f the excization 13 assumed =c
e Xnown, th2 natural Ireguarncias, natural modes, and cou-

P . - . : s <. SR
Zicients need <o e determined in sxdery <o =2s5tap-
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(V1]

Mathematically, the expansion for the sprace-freguency
surface currents induced by delta function excitation on £fi-

nite, periect conducting objects in £free space is given by

~ -m ~ -
Ay v (r)(s -s, ) g W(r;s) (3-1a)

oin
~
i)
(7]
S’
[}
Q-3

In the time-domain, this representation becomes

U(r;e) = + W(T;t) (3~1b)

< [~
ps 1}
<
~~
)
N

Iin these equations, s is a complex variable which is related

£5 the frequency, w, bv Im{s}=w, U(r;s), U(%;%) denote the

space-£freguency and smace-time surface currents, n denctes
the coupling coeificient associated with the pole s, v_(r),

b QG
v,(r) denote the natural mode vectors associated with S,
W(r;s) denotes an entire function and W(r-t) denotes the

corraesponding time-transformed function, m, denctes the mul-

[
p—

tipilicity cf the pole s ,, and the summations are over a
poles. In Secticn 3.2.1, we consider space-£freguencyv teaech-
& & ~ -
nigques for cbtaining the natural £reguencies, and natural

nmedes. In Section 2.2.2, we present sp

[

ce-frecuency %techni-

Jues fcor cbtaining the ccupling cocefiicients, and briefly
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Available technigues fcor analyzing the stability of various
finite diffarence aprroximation scrhemes are also discussed
in that secticn. And in Secticn 3.3.2, we present transiant

matrix methods for determining the couprling coefiiciernts.

3.2 S2ACE-FREQUENCY TECENIQUES

3.2.1 Natural Frecuencies and Mcdes

An arbitrary Fredholm integral equation of the first kind
(e.g., expression (2-1la)) may be cast in the general form

’
|

J ?(;,;';s)-ﬁ(;’;s)d;'= E(;;s) (3-2)
R3

¥
a3
o
"
o
(& 1]

r,F';s) cdenctes a dvadic kernel, U(Z';s) denctes <he

i

22sired unincown, and

Tor simplicity, we will write these in<egral eguations

using the inner product notation (1]

=1l

<(z,r';s): ﬁ(;';s)> = %(;;s) (3-2a)

where the aproropriate operation between the Xernel and unxk-

e

nown will be given abcve the comma separating these parame-

tars, and =h

(]

integration is with respect %o the commcn spa-

tial variakie.
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A natural mede, v_(r), satisfiies eguation (3-Za) in the

~
-~

absence of a forcing function. We may write

(F,7'35,); 1 (> =0 (3-3)

. where s, denotes the corresponding complex natural f{reguen-

cy.

The parameters s, and v,(r) may be found by discretizing
equation (3-3) using a method of moments [14] formalism. We

cctain

-

1Y

(s)) + G, = @) (3-4)

=]
=]
2
3
=2
s}

———

. i < ™ - ) b
vyhere n, m are pesitive integers (11 :(:N)) denowes an o v
o, b

[ m matrix, (;n)l derotes the unknown mode vector of length n,
; and (5n) is a zero vector of length n. The magnitude of
.!n both n and m is dependent on how refined the discretization
is.

d Equation (3-4) represents a hcmogenecus system of egua-
tions. Such a system has a sclution if and only iZ the ma-
trix (?n'm(sa)) is singular. Hence, the natural freguen-

cies, s,, may be found bv solving

LG an an sk an s o e o

[
* ke

h 4

det [

,0

P




The natural modes may now ze found from equation (2-4) using
the results ¢f eguation (3-3).

Tguation (3-5) is, in general, extremely complicated to

-

sclve. Numerical solution tachnigques typically use either a
function iteration root searching technigue (Section 4.2.1)
or a contour integration [15] (Section 4.2.2) method. The
use of contocur inteqrétion allows one to locate desired

rcots by partitioning the complex plane.

3.2.2 Ccupling Coefficiants and Entire Functicons

The £following derivation for obtaining the SEM coupling

'

coefficients patterns a develcpment cue to Baum [5].

Associated with the ccupling coefficient, n_, i3z a cou-
pling vector, u_(r). The ccupling vector is defined to ke

the ccnjugate adjoint of the natural mcde, }u(r), and hence

satisfias

gl

T (T'): .z = -
<U1(")’ T(r,r ’51)> 0. (3-6)

3y applying the method of mcments, we have

R
s sl

(s )] = (Gn) . (3-7)

3
$2

The kernel iz now expanded in a Tavlor series apous

s=s_ as
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T(r,r'ys) = (s-sa) :L’a(.,r ) (3-8a)
220

BTy =22 ?(E,E';s); (3-8b)

(s-s )" 1, L @ (3-9)

A4
- 3 =, 1
Il,u(r) TR I(r’S)E'
3s Is=s

Assuming only a first order pole, we may write the res-

(1]
|
4=

(el
p=
il
[0))
—~
(W8]

[}
r
<
p—

(Fis) = 3,v (T)(s-s )~ =

By substituting (3-9), (3-10) and (3-11) into the basic

kY

equation (3-2a) and matching powers c¢f (s-s,) , we cbtain

(z,r'); A% (1)> =0 (3-1la)

N
(a1
"

N

-

3
P
re
n

~
Vv

[}

(a4

—~
AR

(Z=-115)
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< ()

i
e

< G'(r';s) =0 (3-13)

. < (@) I (k)

W
x

M Ame a4

by egquaticen (3-8). Thereicre,

o

-~ o) o,
A= — — - (3-14)
T < (p): T r,r'); (z)>
L 1, R
is the expression for the coupling ccefficient at s=s

4
The coupling coefiicien%s relate the inciden% wavaform to
the modal structure of an cbject. Thev indicate which modes
are axcited and the extent to which they are excited. Baum
[3] nas discussed =wo differsnt, but ulztimately =2qQuivalent,
types of these coupling coefficients in order to <reat two

different philoscphical interprezations as to how mcedes are

aczivated. In one interpreta<ion, all modes are excotad

simulzanecusly across an obiact no matIer wWher

W
[¢]
o]
ct
[$3
1]
0O
U
1

- - . - . . - - -
J2CT The 2XclTatlonl origilnatad. onLoTae Slner

-aa -




Ticon, mcdes in various regions cannot be excited until the
incident wave has reached those regions. We will not pursue
these types further here.

The entire Zunction, %, asscciated with the pole, S, is

necessary for equation (3-la) to be mathematically valid.

Its form and use are not well understoccd, however. Typical-

—

Y, the entire function is omitted by the empiric justifica-

o
'

ion of obtaining current distributions directly £from a set

o

£ poles which are in gocd agreement with the distributions
obtained by standard methods {5,16]. The physical signifi-
cance of the inclusion or omission of the entire functic

requires further consideration.

3.3 S2PACE-TIME TZCENIQU

O]

S

3.3.1 Natural Frecuencies, Natural Modes, and Stability
Considerations

In the time-domain, electromagnetic integral egquations cf

the first kind may be written in generzl form as

’ I3

) | T, T ie-t') s T(E'ie)de'dr' = I(r;e) (3-13)
J
;
R3 R”
where f(r,r';t-t’) denotes a retarded dyadic Green's Zunc-

, U(r';%t) denotes the cdesired unknown, and I(z;%)

-

b
-

tion |

denotes an arbitrary Zorcing Zunction.
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Tor illustrative purposes, we will restrict the discus-
sicn in this secticn to thin, perfect conducting surfaces
for which integral expression (2-12a) is appropriate. The

discussicn wi

14
[

l also e limited <o rectangular (x,v,z) coor-
dinate systems. A similar development arplies to other ex-
vressions which may be cast in the form of eguation (3-13),
and other coordinate systems.

Since the spatial differential coperators appearing in ex-
pression (2-12Za) are with respect to the unprimed coordi-

nazes, t

o3
(]
",
[e)
-
'
O
£
'J
3
Q
<
o
3]
H
f
«t
.J
o]
3

0of this expression is wvalid:

) — = L2 - - J (r'; t-R/c)
R Y- TREVU B S R S o5
ik e T el =14 ' 2 :t° é : R N
- - 3
kJ-LO)

Yere, n is the outward normal on some artitrary surface S.

(RN

. e .
12 1ntagras over this sur

ace is commonly Xnown as the mag-

netic 7ector potential. By letting A(r;t) dencte this po-

tential, we may write (3-18) as

- , -
N . z 4
- > =1ilac ,- i 2 — 2R 22T A
tg g B (mie) =a e S w0 A(rye). (3-162)
J - -
c 5t _
-~ - - . = - - -~ - e -4 P
The current densi<y, J_(r;=-R/2), aprearing in (3-13) =is
>
- - T Y. Y 1 RN - ] - < - & - -
t/eically <nhe unknown which is5 desired. Hcwever, fcr nczta-
- M . -~ - " s - - — - -
Ti1onal purpcses, and staglllity 2nalysis, axpressicn (3-l£2a)
- -~ 1T =~ < - - ~ - tge -
s alsc S interest Thi1s Wwill zTecome 2apparant as we grc-
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In general, when a desired unkncwn arrears buried wi

(t
)
3
s
.
*

D SR S G
S |

1]
ct
(]

the integrand of an integral eguaticn it is not possikl

determine it analytically. To obtain a numerical solution,

MR A5A Ju sem 4
} o

one generally begins ry expanding this unknown in some sui-
table set of basis functions. If£ <the function to be expand-

ed is at least piecewise continuous cver the region of in-

PP

' terest, a sultable basis set would be a pulse expansion for
the spatial variables. If the functicn is alsc reasocnacly
well behaved through time, the temporal derendence may also

*1 pe expanded as pulses. The function 3s(§;t-R/c) generalily

satisfies these requirements, and hence a pulse expansion in

g poth space and time is approzriate. It should be noted,
Zcwever, that t=his arrroximaticn can tecome guits Tcer at

surface edges due %c¢ the singular behavior of the curre
compenent parallel to the edge. Special care is reguired
for such structures (Chaptar 58).

The expansion of the current density may be written as

N £
J (F;e=R/e) = 7 ¥ T, P, (t-pat-R/c)S_(r) (3=17)
s l;l p=-—co 12 =< 1

Wwnere
f 1, for t in the time interval centered at p.t*}/c
. 1
? (z=pit=R/c) = <
T . 0, elsewhere

rid

i, for r in the space segment centared at il

w
(o ¥ ]

N
W

e

1 0, alsewhere .




-
p
!
9
;, -
L\ Here, Ji 5 denotes the current amplitude coefficients; I
b}
{ denotes a general spatial index, i.e, I may rerresent one,
b
g TWO or three integer variables depending on the geometry of
o

- o

the rroblem; N denctes a general upper bcund for the summa-
tions corresponding to =cach of integer variables wnich i

represents; and Ar denctes a general spatial sampling dis-

tance, i.e., AT= (4x,Ay,Az).

Expansion (3-17) enables cne to write the vector pcten-

Nm Sn Nk » )
A(mA,n'.\,k.ﬁ;pA:) = _": ;. z 2, a2'.n'.k' pv
m|=l n'=l k'=l ?'=—m ’ ’ k]
R , a-n' , k=k'.,(2-p") (2-1%)
where
+1/2)8 (3+1/2 2 Poo02,.2,2.1/2
(x+1/2) (°+}’ )3 +%/2)A P, (n=(u ) / /e)
= ‘ ! =t dudvdw ,
iy 3,3,n | 172 u

i ; ’ 2 2 2
(a=1/2)2 (3-1/2)a (3-1/2)2 4TV
m, n, and Xk being positive integers which ars bounded by Ny,
Nn, and N raspectively, and p is an unbounced integer (by
causality, p may pe restricted to positive integers). Note
that in this expansion we have tacitly assumed that t
ial sampling distance is uniformly eqQual To scme constant

4, sc =hat <he c¢cntinuous variables, (x,y,z2), corrasrond

Py — P e alutndbbtadeniesnioned: ‘-i---i-i--i--li
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the discrete variables, (mA,nd,kA). This is typically, tu=z
not necessarily, done.

The current ccefficients appearing in (3-18) are tne de-
sired parameters. They may be extracted by approximating
the continuous differential operators appearing in (3-16a)
by central finite difference operators. A thorough discus-
sion of finite difference approximaticn (FLA) technigques may
re found in Ames [17].

In passing, it is worthwhile to note that it is possible
to establisn an analytic equivalence ketween the finite &if-
ference formulation of a time-domain proklem and the basis
set formulation of the equivalent fregquency-domain prorlem

ZY Using rnverse cTransiorn Technigues. Thnis ecuivalancs 3

14
1]

satisfying since it estaklishes that finite difference tech-
nigues are not simply convenient mathematical %tocls for the
soluticn of time-dcmain problems, but are apprcpriata, phy-
sically meaningful, methods of solutien.

2y using finite differences, the time derivative 2f th

vector potential may be written as

2
137 - - 1 <= VTP
= : 5 A(r;t) = 5 [A(T; (p+1)ae) + A(ri(p-1)ie)
27 T (cie)
- 2 A(rpat)] + ol ey {(2=13)

wnere O((A%)?) denotes the order ¢f <he truncation arrsr in-

troduced in the FDA. The spatial cperators may e similarly
differenced (Sec=ion 5.3, and Sec%icns €.3, &.4).

»
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ZXpression (3-1%a) may ncw e written as (p=1,2,...)

- - 2 - - .
n x A(r; (p+rl)et) = (c2e)” [A x 7(7.A(r;pat))]

-0 x A(T;(p-1)at) + 24 x A(r;pat) +

E10C (Fipae) + (0(2e)?) (3-20)

This formulation establishes an explicit or time-marching
£inite time-difZferenced scheme £fcr the vector potential. Aan
explicit scheme allcws ocne tco find future values in terms of
previous results withcut the need for a matrix inversion.

Note that the values of the vector potential at two previous

«F
!o
:3
1Y
0]
i
LA
o
"

equired.
3y suzstizTuting s2Xprassion (3-13) Inte the difference
equation for the vector potential and manipulating the sum-

maticns, we may obtain an explicit expression for the cur-

"

ent density ccefficients, Ji 5 (general svatial index i).
?

An explicit expression for these coefficients Zcr th

lnear

§-+

o

‘

thin-wire prcblem may be found in Secticn 5.3. In this sec-
~ion, we consider a general expression for these coefii-
cients which Is suitakle for an artitrary geometry. The
formulaction will naturally lead intc a discussion 2f stabil-
ity mezhods Zcor finite difference schemes.

3v translating <he continuous temporal and spatial cpera-
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ference operatcrs, and by using exrzansion (3-13) to repre-
sent the vectcr potential, the following general representa-

tion for the current density coefficients is obtained (note
that the notation, T,.; , used to represent all discrete

functions is interpreted as T(ma,nd,XK4a, (p+l)at)):

NyT ] )
0= B ! + F
p'a-yl P Jp-p' p*l
or
r Y -
3+ oo=8ti 7 g 3 +5 | 3-21
p+l -1 & p' Tp-p' rp+li (3-21)
_p'=0 4

different times (3_, 1is a diagonal matrix corresponding =o

'

Cay

ot+1) Eb+l denotes the forcing function at the (p+l)-th
time step; and Ny denotes an integer which is one fewer than
the numter of time steps required for a wave to propagate

acress the maximum distance of the structure; in other

13}

words, 1f, fecr example, six time steps are required for a
wave to travel this maximum distance, Np would ke five since
the summation tegins at zero. The prime, 3'?ﬂj indicates a
vector of the currant densitv coefficients of everv spazial
point of interest on the structure. And as a final remark,

we note that the rank of the 3 matrices is dependent on the

particular gecmetry c¢f the problem being studied. FTor con-
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venience, we define the rank ©of these matrices to be scme
integer, N.

To obtain the natural frequencies and natural modes, we
are interested in ecuation (3-21) in the absence of a forc-

ing function, i.e.,
' (3-22)

-1 . - , .
where CD,=(B_1) B ,. The sclutiocn o this difference egua-

pl
tion may be obtained by z transform technigues. For simple

poles, the soclution is given by

T = Zp+1 ‘;

o+l \ N (3-23)

-t

where zl=exp{52At} denotes the transient representaticn ¢

the pole, s , and v, denotes a vector spatially describing

the natural mode. For poles of aultipiicity m,,m,zl, the

solution is given by

O m _
(3-,'»+1) Y= (p1) Z?J"‘ v (3=24)

whezre v a denotes the natural mode vector corresponding to

a pole oL multiplicity m,. Note that entire functicns do

not arrpear in this develcrment; a pole structura only is the

]

basis f£cr this methicd. 2ZPole clusters may attampit =c medel

L . . . - »

- an entire function however, and therefore entirsa Zuncticns

1

&

p

]

|

i

-

b

L .
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F( may still be significant although they are not explicitly
represented in the formalism.
- By substituting equation (3-23) (assuming £first order

poles) into (3-22), we obtain

p' Ta a

~ N,r -
t 1- § c,® 5 Lo, (3-25)
_ o |

This is a homogeneocus system of ecuaticns. The poles may be

Tk y
1
-(p'+
¥ det II - 7 c., za(p 1)" 0. (3-26)
| [ P,=0 P _
b The modes may now be found from (3-235).
There is an alternactive To this z transfigrm scluticn

technique. Any finite difference scheme in the Iorm of

equation (3-22) may be condensed into an equivalent two-lev-

el matrix form [17] by introducing a state vector, KD for
the p~th time step, such that (T denotes transpose)
— -
=T l=yT =,T =T -
RKo= 17 J! ceeey J! ! 3=27
p ‘J? ’ p"l’ b p_N }’ ( )
L B

a s<wate transiticn matrix, %, such that

Lt
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[= B4

, (3-28)

and forming

. (3-29)

A discussion of error prcpagation, or a stability analy-

sis of finite difference schemes 1s appropriate at this

oy

- . - L - - - PPy - - - - -
-ale. & Ziscr=ate inite difference ragresa2ntation I a Con-

tinuous problem may yield an unstable (unbecunded) soluticn
when certain relationships between the sampling distances

: Py

used f2r different variab

[

es ar2 not satisfied. TFor hyper-
bolic equaticns (wave equations, e.g., egquation (3-16)) the
relaticn between the time sampling (At) and spatial sampling
(4, assuming a uniform sampling distance in all directions)
distances are ¢f interest. 1% has been shcwn by Courant,
iedrichs and Lewy (CFL) [(17] that the time sampling dis-
tance Icr these equations can e az most equal ¢ the spa-
cial distance, i1.e., Aft=A. This is the mcst lax restric<ticn

possible, it can <ighten considerably derending <on now the

- A e . e S A TR T TR T W v T w v
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discretization is implemented. Two methods are availadble <o

kS

analyze the stability of finite difference schemes for 1li-
near ecguations. We consider these now.

The state transition matrix aprearing in equation (3-29)
centains all the information of the finite difference ap-
proximation (including boundary conditions). A stability
analysis of the difference scheme may be done by examining
the magnitude of the eigenvalues of this matrix. If all the
eigenvalues are less or egqual to ore in magnitude, errors
will not grow through time and hence the solution will be
bounded. This technique is known as matrix stability analy-

sis. The matrix stability method is useful Zor testing if a

.. —

.. - s - a % - T o
Ancown CFL conditicn yiesld

Tt does not

”:
i
n
t
14
5]
=
11
(1}
(o}
N
(94
ct
. r]
O
3
)

oredict, in general, the specific numerical value regquired
for stability. An alternate method may be used to deter-
mine, or at least approximate, this value.

A simpl2 methed known as Fourier stability analysis may
pe used <o determine the stability criterion for an uncem-
pressec difference scheme (e.g., sguation (3-20) or (3-22)
instead of ecuation (3-29)). The method analyzes only <the
specific difference egquation and hence ignores the influence
o boundary ccnditions. Since kcocundarv conditicns can in-
fluence the stability of a scheme, the Touriar mezhed iz nots

considered as thcroucgh as the matrix methed. Hcwever, since
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a specific number, whether sxact c¢r approximate, f£or the CTL
condition is readily produced, this method provides useful a
priori infcrmaticn about a particular difference formula-
tion. The matrix methed may always be used %o cenfirm the
stability critericn given.

In brief, the Fourier method examines the propagating ef-
fect of a single row of errors alceng some arbitrary line of
the TDA. This is accomplished »y determining an exponential
sclution for the difference scheme from discrete separation
cf wvariable technigues. For a stable solution, restrictions
on the exponential solution must be enforzed. A one-dimen-

sional example may be found in Section 5.3. Two-dimensiornal

()

zamples may ze ZIound in Secticns £.3, 5.4.

w
ct

ability alcne does not imply convergence of the FDA to
the true soluticon. For a thorough discussicn on matrix and
Fourier starility methods and convergence regquirements one
should refer to Ames [17].

The stapbility of physical proklems is mathematically de-
scribed by the location of poles in the complex plane. The
stapility cf the finite difference representaticn of elec-
smagnetic expressions 1s dependent on the magnitude of :the
eigenvalues 2f the state transiticn matrix. =Hence, we anti-

cirate scme relation to exist petween these eigenvalues and

. .
tha true poles.
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The relaticn folliows simply by consicdering the scluticn

0f the difference esquaticn, equation (3-24), applied to the

state transition formulatien. For first order poles, we may
write
+1 = Pz
P =3 2° X (3-30)
3 o ad 2
1
or
2 i(- = i . (3-31)
a aQ X

This represents an algebraic sigenvalue problem £for the ei-

genvalue, z , and the eigenvector, K_. t can be shown that
<he natural ncde, 31, and ¥ are related to ons another by
&%
=N N.-1 =
=T P T =T T - T ~T
KW=z " v, 2 ey o (3-32)
o 2 a o a !
—_ —
The polies, s,, may be found by solving
s = 1ln(z )/ac . (3-33)
o) a

3.3.2 Counling Coefficients

A method has been presented which determines the natural
frecquencies and natural modes. To complete the SEM fcrm o

solution we need %o determine the coefficients that couple
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b oy The natural Irecuencies and modes to the incident forcing

Tw0o Cifferent fcormulations o

[

these coupling

'y
§
3]
O
ot
‘ 2
0
o ]

f (Z£irst order poles) is known. This is accomplished by usin

;q eilgenvector deccmposition techniques. The basic method may

] be extended to obtain an approximation to the coefficients
whnen only a partial set of distinct eigenparameters is

Xnown. An alternate formulation Zor a parzial set c¢f poles

is a time-dcmain analog of the fregquency-dcmain technigue

Cefine a state vector, YJ,;, To represent a normal incident

Icrzing funcztizcn at the p-th time stsp as
=T rE .7 oy
Co= (F .0, oo, O} . (3-34)
2 2

Zere, T and C are 2N row vectors.

N g T Tty e Ty e ey W WL T W e v e T
- ladRaih N SEndl il Saadh gl g S
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B, =G
o 1 0
. '2=:"O+Ul

:

m=-1

a-i-1 >
Z ? U
i=0
where m is some arbitrary time step. 3Bv assuming a full set

e o s
[}

(3=35)

[N

m

LR SN 2= UL A G

of distinct eigenvalues, A, and corresronding eigenvectors,

I, we may cecompose ¢ as
2 = TAT ~ . (3-36)
Zguaticn (3-35) may now be writtan as

B =1 ] amiloly (3-37)

< -
-

thy
H

a4 < 1 =7 =+ 1\l - ~ - ;
- SInCe Snily =g ST N Cconmpnencts ° e 21

correspond to the natural modes, we introduce a vector, T
To spatially describe conly the £first N components of th

state current vector KP (the first N components define J)).

We may write (assuming an impulse excitaticn)

T o=[1.0, ..., 0102t h s (3-38)

Here, I and C denote NxN identity and zerc matrices.

Next, we Let M ze defined to be the unnormalized nazural

re defined tc be the unnormalized vectsr

O

mede matrix ancé

cf coupling coelficients. Thev are giwven respectively bv

M= 01,0, ..., 01, (2=39)

" P i o - " . S e
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2e
E=r 4, . (3-40)
Combining these results yieids
T, - Wt Pl (3-41)
or ecquivalently
T - g 2270 T (3-42)

where the pole s, is related to z, bv egquation (3-33), n,
denotes the coupling coefficients, and ;a derotes the ccr-
respending natural modes. Egquation (3-42) is the desired
SZM representation.

When only a partial set of sigenvalues is known, the de-
composition of ¢ as given by equation (3-36) is not possible
exactly since the inverse which appears only exists in a
generalized or pseudc inverse sense. Therefore, only a

ieast sguares approximation to the coupling coefficients is

24

possible in this case.
This complication may ke avoided by developing a time-do-
main Zformulaticn for the coupling coefficients analogous to

the Iresguency- domain methed (Secticn 3.2.2). We begin zv

replacing T7(r,r';s) oy a matrix funczsicn T(z) defined =

No+1 U7 (No-1)

'Y - N

T(z) = 'z I- . C,z . {(3=al)
_ =0~ -

a . s PO D Y . e ancdh e b

Sk ek
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3y following similar power serie
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; , with T T Y =
*l,a(za) in analogy with %”1 (r,r') to be

’

Yl

!

- . S 1
b r N1 (N.I.\l) (N=i-1)]
i

! o ’
T, ,(z) = ez T - T (3-44)

We define, next, the coupling vector, 53(;), to be the first
'g block of N elements of the left eigenvector! corresponding
to the e-th eigenvalue of the state transition matrix.

By replacing the frequency-decmain inner product opera-
N | tions by matrix multiplications, we mav write the coupling
coefiicient at z=z_ =exp{s,4t] as

-T =
vt I(z )

.-
-7 -
~

pi

where I(zl) is the forcing {unction vector evaluated at z..

It should be noted that when =2ach of the sub-matrices of

th

T irst N rows

the state transition matrix are symmetric, the
of the left and right eigenvectors are idenztical %o a nor-
malizaticn Zactor. This is not true for the remaining ror-

tion of these wveactors, howaver, since i%t can be shown zha=

2o

_et p» e the rizht eigenvector of the <transpose ¢ some
matrix_aA corresponding to the_eigenvalugs X Then D satis-
f£ies A*p=ip. Now ccnsider (A-D) =p-A=p-\. In this3 case,
D 1s Rnown as sthe left eigenvec<or 2f the matrix A.

Hence, p is either the right =2igenvector associazed wizh
“he matrix A* c¢cr the lef<s eigenwectsr associated with the
matrixk A corresponding to the eilgenvalue \
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the lefit eigenvectors have a much mcre ccmplica<te

[0
n
ct
a1
[
Q
ot
[
"
1]

than the right eigenvectors.

The matrix decomposition formulation is recommended when
a £full set of distinct eigenparameters is known; the left-
right eigenvector formulation is recommended when a partial
set is known.

In conclusion, we note that although the TD-SEM formula-
ticon for obtaining the natural frequencies and ..atural modes
is relatively straightforward, a fundamental complication
does underlie the method. Since the size 9f the transition
matrix is highly dependent on the geometry and the level cof
discretization of a particular problem, it is possible, even

s s
ICn matriXx waLcn

1y

SYX Slmo.e JeomeTrles, TOo g=2nerase a ITrancss

ot

surpasses the high speed storage capabilities c¢f the largest
computers. A variety of technigues which attempt to handle
this complication by taking advantage ¢f the form of this

matrix are presented in Chapter 4.
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Chapter IV

EIGENSOLUTION METEODS FOR THE TRANSITION MATRIX

4.1 INTRCDUCTICN

The TD-SEM model is a straightforward and efficient meth-
od fcr determining the SEM parameters for simple geometries
discretized with relatively few unknowns. This is accom-
plished by transforming the pole searching problem into an
algebraic eigenvalue problem (Section 3.3.1). As the number
of unknowns increase, however, the matrix which TD-SEM gen-
erates becomes unmanagably large, thereby making the search
for eigenvalues difficult and comzplicated.

The matrix ¢, whose eigensoluticn is sought, is given by
ecquation (3-28). Some comments are in order about the forﬂ
and preperties of this matrix.

$ is known as a sparse matrix since it contains a large
number of zeroc elements. It is in block uprer Hessenkurg,

or more specifically, block Frobenius form [19]. A matrix

.—l.
(2]

n

8]

rokenius form possesses no symmetry properties, and

o

heref

[(¢)

re, % unfortunately falls into the class o unsymme-

4]

matrices. This is in-

14
[}
p=

ric real matrices, or general r
deed a ccmplication since the £ia2ld 0of eigensocluticn methcds
is both narrcwed and ccmpliicated for unsymmetric nmatrices
due to the possibility of c¢cptaining complax 2igenvalues and

gererallzed elgenvectors.

33
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A matrix in Frobenius form possesses the property that it
is its own comparion matrix. In other words, %the prcblem of
determining the eigenvalues, )\, of ¢ may be dcne in either
of two possibkle forms. First, we may consider the full ma-

trix and solve

det [ - AI] =0 (4-1)

where I is the identity matrix; alternatively, we may solve

Nptl o Np
det [x I-X C = .eeeum Gy ] =0. (4=2)
°T
where CO,C]_,...,C\I denote the sub-matrices of the top row
T
cf the transiticn matriz. The fcrmer scheme ganerally l=2zads

to eigensolution methods, whereas the latter generally leads
o root searching methods. An excepticn is an application
of Laguerre's root searching method to a matrix in Hessen-
burg form {20].

Laguerre's methcd and various cocther root searching mech-
0ods are discussed in Section 4.2. Eigensclution metheds for
unsymmetric matrices are presented in Secticn 4.3. A survey
of eigensolution methods for symmetric matricaes may pe found

in [21

(=

1
1




4.2 RCCT SEARCHING METHODS

We are required to find ki, i=l,2,.....N_(NT+1), such
i
that
det [Bi] =0 (6=3
where
N+l N
T . T
B, = [3,” I- A{7C) meens CNT] (4=4)

is an N xN polynomial matri

We ccnsider three technigues for cbtaining the roots of
equation (4-3). In the firs%t aprroach, (4-3) is solved di-
rectly. This raguiresz recot searching metheds which utilize
function i%teration since the explicit coefficients of the
characteristic egquation are not known. Muller's method {22]
represents a logical method for solution and is discussed in
Section 4.2.1. An alternate methcd for obtaining these
roots is t> use the ccmplex ccntour integration methed of
Singaraju, Giri, and Baum [13!. This technigue is presented
in Secticn 4.2.2. The third approach is to exploit polyno-
mial mactrix reduction methods (23] whereby the polyncmial
matrix {(4-4) is iteratively reduced into a triangular polyn-

cmial matrix. The explicit characteristic eguation is then
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of efficient polynomial zero searching methods may then e
used to find the roots. A polynomial matrix reduction meth-
od is discussed in Section 4.2.3.

An application ¢f Laguerre's method is presented in Sec-
tion 4.2.4. Since this technigque does not utilize either
form (4-3) or (4-4) we consider it to be independent of the
methods previously mentioned. Fowever, since the method is
a zero searching method it logically belongs within Section

4.2.

4,2.1 Muller's Method

The following is a brief summary of the work due to Mull-

o v

22
JEON

o

We are interested in determining the values of )\ which
satisiy £(1)=0, for some Zfuncticn f£. One begins the process

w1 -1 wr N : N < £
with the wvalues Xi, A, kg, _(ki), “Xi-l)’ and f(xi_z),

where ki, a.

i and ki are some judicicus initial Jguesses, and

-

1 is an iterative index; kiél is then determined by the for-

mula

where

-
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5§, =1+k,, (4=5a)
1 1
and
2. = E(h, JKZ-E(h, ) E2HE(N,) (K, +5.) (4-5b)
i 1-27 %3 TE g/ 0 TR IRy Ty
Then
Ap1 T Py TRy o (4-5¢)
i+l © Sqe1 Uy (4-5d)
and
f(ki+l) (4=5e)

are computad. The sign of the sguare root in the formula

1

L is cheosen to make the cdenominator have the greater

11,

or
modulus. The formulas are derived by fitting a gquadratic ¢f

the form, byi2+b;\+b,, through the following three points

p € £ oy £F4 -
(A £ ) (ﬁfl ,~(xi_l)), (Nj_p . £(A;_,)). The coeffi
cients by, by, by satisfy
b A2 +b. A+ = f(1,)
o "1 7T PL Mg TR T MY
bo \Z-—l + bl Ki-l -+ bz = f(\l—l)
5y Mioa T B N, F b, = E( L) (5=3£)
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The process iteratively continues until some specified
ritericn for acceptance of the rcot estimate is satisfied
or an upper limit on the number of allowed iterations has
been reached.

It is interesting to note that the convergence properties
of Muller's method have never been proven £or pclynomials
with orders greater than two. Nevertheless it is commonly
used on relatively large polynomials with excellent results.

For our purpose, egquation (4-3) denotes the function £
discussed above. 1In general, only one determinant evalua-
tion is required for each estimate at ;. Excellent results

(eight to ten digit agreement with known solutions) were ob-
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o-
proximately 110 roots. For nigher order systems, however,
fewer and fewer of the predicted roots had any relation to
the actual roots. In particular, for a system which was
known to have 225 roots, only & of the predicted roots had
any relation to the actual rcots. This breakdown is attri-
buted to decreased separation in the roots ¢f large systems
(since by stakility, all the eigenvalues must fall within
che unit circle in the complex plare), courled with <he num-
earical rouncdecff errcors asscciatad with evaluating =2quation

(&=-3).
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&.2.2 Contsur Integraticn

The following brief summary is based on the work of Sin-
garaju, Giri, and Baum [15].

If a function £(\) is meromorphic? in a simply-connectad
domain D containing a Jordan contour C, and g(i) is some
analvtic function within D, we may write using the residue

theorem

N
LG v 2T ,
271 Jc £(0) g(1)dA —iél g(“"oi) (4-6)

where xoiis the i-~th zexo of £()\) in C, No is the %total

aumber of zere's within C, and the prime denotes differenti-

- . . s o . . . - .
Since g(i) is an arpitrary analytic functicn, we let
-

g(\)EX , k=0,1,....,Ny. The zero's of £(\) in C may then be

cetained from the non-linear system

T VR S S S o T =71 7
o, T Yo, Ao\I I S
% - o | !
i i
) 2 2 ! :
S S PO B T S
0, ~ o, o, 2
: "< "o | (4=7)
L ,
N . . . 1 . !
! ‘§°+ \30-‘- ......-j—}go P o= ! < !
! . i ! ‘N '
! 1 2 NO l i o

2 A mercmcrphnic function is a funct
sented as the quotient 2f two ent
possesses poles only in the finit

on which may ze repr
re Zuncticns and whi
c

cmplex plane.
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where
1 k £'(}) ,
T =2 e ) — d) k = yo e N 4=8
L =30 Jc A ) dx k=0,1,2 Ny (4-38)

This rather unique technique has been shown £to be gquite

effective for obtaining the natural fregquencies from the

-

space-frequency formulation of the linear, thin-wire prob-
lem. In this formulaticon, the function £()\) menticned above
correspends to det[Z(sa)], where S, denotes the natural fre-
quencies, and Z(¢) denotes the moment method impedance ma-
trix. I£, for example, twenty unknowns are used fcr the
discretization, then the evaluation of this determinate is

tasically equiwvalent to the evaluation of a twentieth degrze

[11]

polynomial. Numerically, this evaluation should nct present
many ccmplications; whence, the evaluation of the ccntocur
integral (4-8) and the subsequent solution of the non-linear

system (4-7) should be numerically guite stable.

The situation is a pit more complicated for the TD-S=ZM
formulation of this problem. The determinate of egquaticn
(4-4) now denctes the functicn £(i) akove. For a similar
Twenty unknown discretization, £(\) now correspcnds %o the

evaluation of appreximately a fcur hundredth degree polyno-

-

mial. This represents a serious accuracy probiem numerical-
ly. It was feared ccocmplicaticns similar to those obksarved
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with Muller's method would develcp with this method when the
determinate of equation (4-4) was evaluated prior to the
integratiorn, and therefore the method was not further pur-
sued in this context. By interchanging the determinate and
integral operatiocns, however, it may be possible to avoid
the numerical errors associated with the determinate evalua-
ticn. The interchange may effectively result in a 'numeri-
cal smoothing' which will give meaning to the evaluation of
the determinate even for large scale prcblems. Confirmation

of this conjecture is delaved to a future study.

4.2.3 Polvnomial Matrix Reduction

A matrix of polynomials mav be Triangularized by using
similar elimination methcds to those associated with the re-
duction of standard matrices [23]). A simple example is the

most efficient way to describe the method.

Example 4.1

We consider the matrix

% g -c -, -

L2, . o 11 11 12 “12 ,
ATI-:C -Cy | ; | (4-9)
L -ac, -C A2 - A, -

| %1 "oz 020 Lo

where
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0 71 1

15 |
c = 11 12 c, = 11 12 ) (4-9a)

¢ C C ! 1 C C L
| 021 O22 | E 1 1
’ L

21 22
|

‘..
L

3y perficrming elementary operations, this matrix may be re-
duced to triangular form to yield the explicit characteris-

tic eguation

A3 2
AT = A7 (C. +C. ) - A% (C, +C. +C. C. -C. C. )
050 0y log 133 0150y 0,505
+% (Cn C. +C. C. -C. C. -C. C. )+ (C. C. =-cC. C. )
017 100 0pp72ys 0551y 13505 lool;p Lol
(4=-10)

Ahy of a wide variety ¢f polynomial zero searzhing metheds
may now pe used to determine the rocts.

This example establishes the basic technigque. In theory
it may be applied to a matrix of arbitrarv size. Unfortu-
nately, in practice the method numerically breaks down due
to piling of the coefficients of the eliminated polvynomials
on the diagonal rolyncmials. This results in a wide dynamic
range in the diagonal ccefficients which causes simultaneous
overspill and undersrill. This was observed for svstems

with only 58 roots. A sorhisticated machine based scaling

system [24] could have par<ially controlled th:is dynamic
range difficul=y; howewver, it was feared it would simply
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postpone the breakdown to a siightly larger system and was

therefore not pursued.

4.2.4 Laguerre's Method

An application of Laguerre's methcd suitable to the ei-
genvalue problem has been developed ty Parlett [20]. The
following brief summary is based on his work.

Let X\ be an approximation to a root of the pclynomial
2(\), where p()) is of degree n. Laguerre's method requires

p(X), p'(\), and p''()\) (prime denotes a derivative with re-

spect to the argument) to obtain a better approximation. 3y

defining
5" (M) ('O = 0P (Y
S, h) - and s, (1) = ~ (4=11)
1 (r) 2 2
(p(M))
Parlett derives
Aiep = A - = (4=12)

s +((a-1) (ns,=s2)) /2

where the scuare oot wnhnich maximizes the absolute wvalue of

the denomina<zor is chosen and n denctes the degree cf the

fL

polvnemial z(\) (for the

tn

etails of this expression cne

should refer to Parlext [201]).
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’ Several convergence properties have been proven for La-

guerre's method. A listing may be found in Kelly [25].
Although the'formulas given seem applicable cnly for po-

lyncmials, they may be used on a matrix in Hessernburg Iorm

by using Hyman's method [20] to recursively vield the re-

Quired derivatives directly from this matrix. Unfortunate-
ly, ¢ is in block upper Hessenburg form and not standard up-
per Hessenburg form. To use Hyman's method a transformation
to standard upper Hessenburg form (Section 4.3.1) would be
recuired. Such a transformation generally destroys the
sparse properties of a matrix, thereby making use of Laguer-

re's method in this context unfeasible for determining the

In summary, the direct root searching methods <ested
which exploit the form of equation (4-3) (i.e., Muller's
method, and the polyncmial matrix method) were found to be
useful only for relatively small svstems due to root crowd-
ing and errors associated with the numerical grocess (in
particular, the determinant evaluation). The contour inte-
gration technicue may prove useful for large svstems if the

i1ntagration can numerically smecoth the re

4

ired determinate;

the feasizlity 0f this reguires further censideratio
~

o}
V]
w
5]
!

lats!

s application of Laguerre's methed is an excellent cne
i 8+

£or solving large sparse matrices in EHessenburyg fcrm. To




}C use this method on the transition matrix a transformation
would be required. More powerful methods exist when such a

transformation must be made.

4.3 MATRIX EIGENVALUE METHODS

P . . . . .

Y Matrix eigenvalue methods typically fall in either of two
r . . - . .

' catagories: similarity transform methods or vector itera-
tive methods. Although only the latter explicitly classi-

f£ies the metheds as iterative, similarity transform methods

are iterative as well. Indeed, by Galois theory [(26], the
roots of any polynomial whose order is greater than four
must necessarily be found iteratively. We will initially

~mvm ot g mE wms ]
Sonsiger sinld

rity transiorm methods and then conciude wich

W

vector iterative, or power, methods.

4.3.1 Similarity Transform Methods

Let P e a general matrix of order n. A similarity

transiormation {toc create a similar matrix 2;)

Pl =Q 7 PQ (4-13)

where Q is any non-singular matrix of the same order as P,
preserves the eigenvalues of the ma%rix 2. A judicious
choice cf ¢ enables one to change the form of P so that its

eigenvaiues may be readilv found, i.e., triangularize P.




Typically, the triangularization process reguires several

steps since only a few elements of P ar

o

orerated on with
each similaricy transformation.

The most common triangularization routines available are
the LR [27] and QR [28] algorithms. Both ¢f these methods
are relativaly inefficient for fully poprulated, or dense ma-
trices (few zero elements). However, when a matrix exhibits
a certain pattern of zero's they become gquite efficient.

The desirsble pattern of zero elements for general matrices
is that which is associated with an uprer Hessencurg matrix.
To effectively use the QR or LR algorithms, +then, one must

initially transform the general matrix of interest %c upper

Tam= Y~ = hal o 3Inn ; ] =
nésserncurg IoUn. -2 3 IT2QUuCTlsn s zCccCe

3
Ko
e
| ]
0]
5
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either orthogonal transiormations which require approximate-
ly 35n3/3 multiplicazticns, or elementary stabilized transfor-

mations which regquire approximately 3n3/6 multiplications

[N}
V4]

£.3.1.1 The LR Transiorma%tion
Let Pk be the matrix obtained from the (k-l)-th transfor-

maticn. P, may be f{actored, or decompocsed, as

2, = L Rk (4-14)
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whers e is a lower triangular matrix with unit diagonal
elements and Ry is an upper triangular matrix. The ugpdated

iterate is then obtained by forming (k=1l,2,...)

Perl T B B (4-15)

Combining (4-14) and (4-15) vields

Prer = L P Ly (4-16)

which estakblishes the similarity <transform form and hence
the preservation of the eigenvalues at each iteration. The
(k+1)-th transformation may ke stepped back to the original

matrix P by writing

-1 -1 -1
o} = - T e L1
Prerr T M Lty cm R Ply e Ly Ly (4-17)

It can be proven that the eigenvalues of smallest moduli
tend to converge first and that the rate of ccnvergence is
dependent on the ratic of the moduli of neighboring eigenva-
lues [27]. 3y introducing origin shif+ts “he convergence rate
can e improved [19].

Approximately 2 o 3 LR transfcrmaticns are reguirsd per
eigenvalue. As elgenvalues are found, the amcunt of re-
quired computation steadily decreases due <o smallexr matric-

es Which must be cperated on. Apprcximataly n® mul<tiplica-
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tions are required Zor +<he first Zew <ransformations, but
. only 3n? to 4n® multiplications (including tne upper Hessen-

burg transformation) are reguirad %o obtazin a full set of n

eigenvalues,

A thorough theoretical discussion of the LR algorithm may
be found in [19]; computational aspeczts may be fcund in
(30]. |

The use of an orthogonal factorization introduces £favora-
ble stability and accuracy properties throughcut the entire
triangularizaticn process [19]. Such a decomposition leads

to the QR transformation.

W=

.3.1.2 The LR Transicrmaticn

When the lower triangular matrix used in the LR algecrithm

[N

s replaced by an crthogonal matrix we ¢btain the most basic

T
.

orm of the QR algorithm. Letzting Qk ve the k-th iterate

orthogonal matrix we may write the kasic steps as

P, =Q R (4-18)
X "k Ok ’
and
-1 T
°. .1 =R Q = =9 220,. 4-19)
el TN BT R B T % A (e-19)
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The convergence properties of the QR method are similar
to the LR in that convergence is toward the eigenvalues of
least moduli, and apprcximately 1 to 2 double QR transforma-
tions [19] are required per eigenvalue. The orthogonal de-
cemposition does require more computation, however. Approx-
imately 5n? multiplications are regquired for the first few
double transformations; the entire process requires approxi-
mately 4n3 multiplications (including the upper Hessenburg
transformation).

Although slightly more computation is required, the QR
method is preferrecd over the LR due to its superior stabili-
ty and accuracy preperties f£or obtaining both single and

-
oqulTlole r

~

al and ccmpisx eigenwvalues. This Is the case

(&
]

when the original matrix is real. A version of both of
these algorithms exists for complex matrices [19,3C]. 1In
practice, the complex LR algorithm has been praferred to the
complex QR since it is somewhat simplier in content ku%t ccm-
parapble in stability and accuracy.

The LR and QR algorithms represent the most accurate and

1]

fficient methods available £or cbtaining a full set of ei-
genvalues from a dense matrix which has been transformed to
upper Hessenburg Zorm. A full set of corresponding eigen-

acicns

7ectors may be cbtained by accumulating the transicr

E)

used in the LR or QR reductions (this increases the number
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3

of required multiplications by approximately a factor of
< Y

two); a partial s2t may be obtained by using an inverse it-

Trrernry

o v‘"
8

erztion method [19]. To use the LR or CR methods, however,
matrices must generally be stored in full storage mode since
similarity transformations typicaliy destrcy any sparse
properties. Hence, these methods are only useful on matric-
{. es with orders less than a few hundred. The size of the
transition matrix generated by TD-SEM can easily be on the

& order of thousands and therefore excludes itself from full
#‘ eigensolution by these technigues. Only partial eigensolu-

tion by iterative eigenvector methods remain.

E 4.2.2 ItTera=zive Ticenvectaor Metheds

Iterative eigenvector, cr power, methods may be used to

find either a full, or more commonly, a partial set of ei-
genvalues and eigenvectors. Since cnly matrix multiplica-
tions, in general, are required by these methods any sparse
properties of the coriginal matrix may be taken advantage of.
Iterative eigenvector methods may be divided into two class-
es: single vector and multiple vector methcds. Both methods
begin with an initial estimate or guess at an eigenvecter

iteratively converge %o an ac=tual ei-

).

which, hopefully, wil

Q
)
3
¢
®
0
ot
0
"
!
ih

the system. The corresponding eigenvalus is

ccnsequently found.
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£.3.2.1 Single Vector Power Methods

The standard and inverse power methods represent the two
single vector methods commonly used in practice. We will
initially consider the standard method.

Let P be an unsymmetric matrix of order n with n indepen-
dent eigenvectors. An arbitrary vector u‘’’ (where (o) de-
notes the iteration number) may be expressed as a linear

combination of these vectors, i.e.,

=(0) = = =
u = C + C + ..+ C 4=20
19 T M2 nln (4-20)
where &l, c;, i=1,2,....,n, denote the eigenvectors and ar-
Bitrary coefficients respectively. Pos*multipling ? by u‘®’
yields
n n
- -(0 = . -
dW=239 27 ¢ opg. =T ac.q (4-21
- - 1 1°1
i=1 i=1
where ki denotes the eigenvalue correspending to &i' If the
eigenvalues can e crdered as |x1|>|k°!2'--0002|\n|, then

u‘!’ should represent an approximation to the eigenvector q,
corresponcding to the dominant eigenvalue i;. This approxi-

mation will iteratively Iimprove by Zorming

3l o pe 3O x?c
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. . k .
since for a large enough X, |A1|“>>|\2] .The ratio [X\{]|/1X2]
determines how quickly the scheme will converge o some spe-

cified degree of accuracy. Convergence will be guite rapid

i£ there exists good separation between these eigenvalues.
Convergence will be very slow if this ratio is close to uni-

Ty. A wvariety of medificaticons exist to speed convergence

under varicus circumstances {19].

_The inverse power method requires more computation than
the standard power method, but alliows one to approximate ei-
genvalues and eigenvectors other than the dominant ones. We

begin the method with some scalar ¢, and scme initial vector

u‘®’, and consider the iterative system (k=0,1,2,...)
D L op Lt g (4-23)

where I is an identity matrix. Note that this is the stan-
dard power methed arplied to the matrix (P-al)”! which pos-
esses the eigenvalues, l/(ki-u), i=1,2,...,n. The method

convarges o l/(kj-a), where Xj is the eigenvalue closest %o

Trom the convergence prorerties of the standard rpower
method, we note the following properties o the inverse
method. When ¢ is zerc, convergence is toward the least do-
minant eigenvalue of 2. When the value 0f ¢ is clcse ¢ an

eigenvalue, convergence will be guite rapid, out when a is a

gccr 2igenvaiue estimate, ccocnvergence nay kte quita sliow.

iaseniintningboly "‘i-——-d-h----n-a-J
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In practice, the inverse observed in sguation (4-23) is
rarely explicitly determined. A decompecsition or Gaussian
eflimiration is used on the matrix (P-c¢l) which reguires ap-
proximately n3/3 multiplications. Another n? multiplica-

.. . . -(k
tions are required to determine each new u()

(eigenvector
iterate). The standard power method does not necessitate a
decomposition and is therefore more efficient than the in-
verse method for the same number of iterations. The number
of iterations reguired for the inverse method, however, will
be significantly smaller when a good guess at an eigenvalue
is kanown. Typically, the two methods are used in conjunc-
tion with one another. The standard methed determines a

- - -
e\ ad ‘S

goocd initial guess

t

£
o

hen refined by the inverse
method.

Once a single eigenvalue and eigenvector is known it may
be filtered out cf the original matrix by either purifica-
tion or deflation {29]. The power methods above may then be
used on this filtered matrix to £ind ancother eigenvalue and
eigenvector. These may then be filtered out, and so on.

The state transition matrix is nct only very sparse, but
coszesses a full set of eigenvalues whose mcdull are less

2
-

4]
"l

than unity. These two properties exclude the use of sing

vectsr zower methods for the following twc reascns: £

ry

st,

[

the purification or deflation processes which are requi

3]

Q.

=
-
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to find several eigenvalues possess the unfortunate property
that they destroy sparsity in general; second, the ratic of
the moduli of neighboring eigenvalues is generally so close
To unity that convergence is impractical in a reascnable am-
ount of time. Experimental verification of these two com-
plications has established that single vector power methods
do not constitute a feasible method of solution for the

large scale state transition matrix.

4.3.2.2 Multiple Vector Power Methods
Multiple vector methods are power methods which iterate
with several vectors simultanecusly. The name simultaneous

iT2ratcn (3.1.) =&

(]

S been given <o thass methods.

Bauer [31] introduced the first S.I. concept, called
'Bi~Iteration'. This method solved the algebraic eigenvalue
problem Pu=\l for an arbitrary matrix P of order n. The
idea of the methcd was to itarate with two sets of vectors,
d,8,,....,0;, and G, Qg -----. ,&s (ssn) applied o P and P
(% denotas Hermitian transpose) respectively. By maintain-

3 pu ; +3 cH= 3 4 O
ing u; and qj biorthonormal (uiqj—éij, where 6ij is the Xro-

necker delta), it can be shown [(31] that under cer<tain con-
ditions the u, ccnverge to the right sigenvectors, and the Q.

csnverge Lo the la2ft eigenvectcors corresponding to the 2i-

e - -

genvalues A, kj.




m - - -~ —_— N —
]

(2]
'

T
ldn |

Since the initial develcpment of bi-iteration, emrhasis

has been placad on developing simplified versions with im-

TV

proved convergence properties. Rutishauser [32] develored
k‘ an efficient computer implementable version for symmetric

and positive definite matrices; an ALGCL listing may be

fcund in Wilkinson [3C]. Clint and Jennings [33] introduced
' a modification for unsymmetric matrices which improved ccn-
E vergence by using an 'interaction analysis'. An unsymmetric
method which utilized an interaction analysis and required
- ¢ ornly cne set of iteration vectors was sukseguently develcped
t by Jennings and Stewart [34]. The following discussicon is
: an extension of the latter ccntribution.
. Jennings and Stawart restrict the L2t and right itera-
tion vectors to only the right set. For this set, the fol-

lewing iteration seguence is aprropriate (k=1,2,.....):

<N YJ - ? U

Yk k-1
H

i G, =U_ .U
i) % bk—L Uk
iii) H, = U.H v
= <=1 'k

iv) Gka = hk

vi) W, = V. A

| vii) U, is Wk normalized. (4=24

Y B

.

v
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L
b~ We intrcduce the following gecmetrical argument to
!
{ justify this segquence of operations. Let
V, = P U 4=25
K k-1 ( )

Cumn a e e

where Uk-l contains an approxXimation to a subset cf the ei-

genvectors of P. { may be decomposed into the sum of a

——
[ |

- proiected matrix and an orthogonal matrix,

) i . ortho.
_ v, = V?rOJ 4+ yortho
I3 K k
ortho.
= (U D,) + ¥
oy D) Y
..ortho,
= E D. + ¥ s
R (1-26)
where E, , Tk, and Dk are TC be determined. Combining (4-Z5)
o
and (4-25) vields
ortho.
20, =ETD +V
V-1 kK kk k
N ortho. , -
= E_ C‘,_T‘_ V‘_ t \-’*-21
L & K RS
£ and cnly =f
3,T. = 7,D 4=28)
K% k'k (
or
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where Ak=1( . Egquation (4-29) defines an eigenvalue problem

&

for Dk’ the eigenvalues c¢£f D, are given by the matrix O/

while the eigenvectcrs of D, are given by the matrix A, Dy

is found by solving the linear system

IR

o1 Vi = Uy U O (4-30)

The updated iterate is then

ortho,
¥ = =0 + A -
Ve = Ve A T Uy (O &) + Yy " (4=31)
where U is a normalized W,. Note that in the iteration cy-
cle an approximation which ignores the con<ribution of the

s )

seccnd term on the right of eguation (4-31) is made. Thi

n

approximaticn is reasonatle since the seccnd term tends %o
zero as the number of iterations becomes large (due to Ay
approaching a span of the projection space).

This seguence of steps is appropriate for a right eigen-
vector or V, projection scheme. A similar sequence may be
develored for a Uk—l projection scheme. In the latter case
convergence is toward the reciprocal eigenwalues.

A few comments are in order about the seguence of steps
in the iteration cycle. U, represents the ini<ial guess %o
a dominant block 2f eigenvectors which may be with real num-
rcers. The entire process proceeds in real arithmetic until

the ‘interaction matrix', Dk’ possesses comp

H
®
P
®
"
@
®
3
<
Y]
oo
e
®
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the rrocess then becomes complex. When this transition is
made, G, becomes a positive definite Hermitian matrix for
which a modified Cholesky decomposition has been develcoped
to minimize the operations required for the solution of s:tep
iv.

If Uk contains s approximations to s eigenvectors (s<n,
where n again is the crder of the originai matrix P), then
the matrix ek contains s approximations to s eigenvalues.

It can be shown [34] that the rate of convergence of the
above sequence is dependent on the ratio :xl|/1x5+1j and not
en the ratio |[A;]|/]|Xz] which governs the single vector meth-
ods. Convergence is toward the dominant eigenvalues.

-

or gcertain gecmetries (Secticn $.2.2) %the eigenvalues

ny

associated with the state transition matrix exibit a well
defined series of annular rings. Within each of these rings
the eigenvalues are of comrarable mcduli. Between rings
there is a significant jump in moduli. Since the conver-
gence rate ¢f the simultaneous iteration scheme above is de-

pendent on the ratio of neighboring blccks of eigenvalues

tn

instead of the ratio of neighboring eigenvalues, and since
the scheme requires only matrix multiplicat:ions which pre-
serve sparsity, simultaneous iteraticn represents a reascn-
able methed for obtaining a partial set oI eigenvalues and

eigenvecters for . Theoretically, rings may be found one

by one until a desired set is collected.

Tt . R N S Y P STy
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A complication with this method is the number of
multiplications regquired per iteration. For a real arith-

metic cycle approximately (29]

ncs + % ns2 + %]; 53 (4=32)
multiplications are required. Here, ¢ denotes the average
number of nonzeroc elements in each row of the matrix whose
eigensolution is sought, n denotes the order of this matrix,
and s denptes the number of eigenvalues desired. FfFor a com-
plex cycle this number increases approximately by a factor
of four.

As the order of the matrix whose eigenvalues are scucht
increases, the separation between neighboring blocks of ei-
genvalues typically decreases, and therefore, more itera-
tTions are regquired to obtain a specified degree of accuracy.
It can be shown that the approximate number of reguired it-

erations (X) to obtain a certain degree o accuracy is

< = lne/lnjx /A i 4=33
/1nj l/ s+1! ( )
where s denctes the block size, and ¢ denctes the accuracy
desired,.i.e., 0.0C01,0.001, etz.. Figure 5.9 (Secticn
$.3.2) illustrates size of the state transitiocn matrix vs.

executicn time required on an IBM 3032 computer for a parti-

L.
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cular subset of eigenvalues. Figure 5.10 illustrates sto-
rage recuirements for both the QR and S.I. methods.

A significant reduction in the number of multiplications
required per iteration may be accomplished by taking advan-
tage of the form of the eigenvectors associated with the
transition matrix. For simplicity, equation (3-32) is re-
reated here as

T o NI-T Np=lp

-T
o [za o Zg Vg eeee s V] (4=34)

where z, denotes a particular eigenvalue, and Ca denotes a
vectcer spatially describing the natural mode. Since the en-

tire state vector 31 can be constructed cnce these two par-
ameters are Known, it should be possikle to carry out the
simultaneous iteration cycle with only a subset of the state
vector. Under certain conditions this is possible and has
pean given the name 'sub' iteration.

The sub iteration modification may only be used after the
proper form of the entire state vector has appearad. This
can typically take several iteratiocns since the vectors ara
constructed frem the top down. A sophisticated computer
program which incorporates this idea has shown that the de-
sired form cannot be forced in general, it mus%t appear na-

turally. Once the form appears, however, the use of sub it-

1l drastically reduce

eration for the remaining iterations wi
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the execution time. A listing of this routine (which was
designed for the solution of the thin-wire problem (Chapter
S)) may be found in Appendix A. Random sparse storage tech-
niques [29] were used in this algorithm to store the state
transition matrix.

Of all methods tested, simultaneous iteration with the
sub iteration modification represents the only feasible
method for the partial eigensoclution of the large scale
state transition matrix. The amount of computation time re-
quired using this scheme can admittedly become excessive as
the system size becomes very great. However, it should be
realized that even if it were possible to place these large
matrices in the high speed stcre o the larges+t computars so
that the efficient QR or LR algorithms could be used to find
both the eigenvalues and eigenvectors, the amcunt of compu-
tation time would be at least as great if not greater than
the time required by S.I.. This may be established simply
by ceonsidering the total number of operations each scheme
requires. The time required by the QR and LR methods would
be for a full set of eigenparametars as cpposed to the par-

tial set given by S.I., however.

....J




Chapter V

WIRE-STRUCTURZ ANALYSIS

5.1 INTRODUCTION

Wire structures may be analyzed either as scatterers or
antennas. When an incident wave propagating in space ex-
cites a response on the wire, we consider the structure to
re a scatterer. When the wire is excited from small regions
cn the structure itself, it is considered an antenna.

In this chapter, we will consider both frequency- and
time- domain numerical solution techniques. The discussions
Wwill be restricted to thin, perfect conducting wires situat-
ed in one-dimensional or linear geometries. Fregquency-domain
methods are presented in Section 5.2. By applying the
widely used moment method [14] to the EFIE for thin, perfect
conducting surfaces, the current and electric field distri-
zutions along the antenna are obtained. A discussion of ex-
citation models is presented in Section 5.2.1; and & discus-
sion of the applicability of the thin-wire kernel
approximation is presented in Section 5.2.2. In Section
5.3, time-domain technicues are discussed. By using finite
difference approximations, we obtain the transient current
distribution associated with the antenna mode 0f operation;

and by applying the TD-SEM method, we present the SEM pole

€8
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distribution associated with the scattering mode. The

o

fect of varying the time-sampling distance used in the £i-
nite difference approximation on the pole locations is pre-
sented in Secticn 5.3.2.1. In Sectien 5.3.3 , the effect of
segment to segment (unknown to unknown) coupling through the
kernel of the EFIZ on the pole locations is discussed. ‘
Extensive studies on approximate analytic solution tech-
nigues of linear wire structures have been given by King
(35]. DNumerical solution technigues have been given by Har-
rington {14], Poggio and Maves [36], Thiele [37], and Mittra
(38}. These provide excellent discussions of methods for

obtaining mest any desired antenrna or scattering parameter

- ! -
eTiner ITnhan whe Dol

n

Tructure. A ccmplete discussion and
several references for obtaining the natural responsas of
cbjects in both the frequency- and time-domains may be found

in Chapter 3.

5.2 SPACZ-FRZQUENCY TECINICUZS

The appropriate expression which describes thin, rperfect

csnducting structures is (2-lla). For one-dimensional prcb-

lems with geometries simi.ar to the geometry depicted in

7]

[

Tigure 5.1, this expression mav be written in terms of an
unknown curraast, I, and magnetic -secTor potential, A ,, as
e o “:_\: -
—Ez (a,z,u)= — |A — Xz(a,z;.)) (3-1)
> 327!
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Wire geometry.
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Figure 5.1:
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where
H 27
- 1 [ i (zne IR
Az(a,z,w)s Ly z ds 'dz (5-1a)
H 0 4mR
with
1/2
2
R = ((z-2")242a%-2a%0s4") (5-1b)

Expression (3-1) was originally presented by Pocklington
in 1897. Various alternate forms of the expression are pos-
sible by manipulating the position of the operator,
(k2+32/3z%). For numerical work, this operator is often
prerferred outside the integral so that integration of a more
nighly singular kernel is avoided. We will only consider
the Pocklington form in this chapter.

The vector potential Az may be written in terms of a
Green's function, G, as

d
A (a,z50)= jé(z,z';w)iz(z')dz' (5-2)
-H

where
2=
- TaTikR
Glz,z2'j0)= 5= R ds' (3=3)
0




Aadit

is commenly known as the exact Xernel for the thin-wire
problem. A computatiocnally simpler kernel may be used under
certain conditions. This kernel is defined to be the ap-

proximate thin-wire kernel, Gh(z,z'), and is given by

i 1 gdkRa
Ga(z,z') =R (5-4)
' “a
where
2 g 1/2
Ra = [(z-2')"+a“] (5~4a)

Xing [(39] has noted that the results cbtained for a tubular
antenna are nearly identical for either this kernel or the

2XacT cne. IT sheuld be pointed cut, acwever, That

zossible to obtain numerically unstable results using the
approximate Xernel (Section 5.2.2).

Xing [38] has analytically shown that the current distri-

43

uticn on a linear antenna is sinusoidal in form. There-

ty

ore, the use of the method of mcments (MoM) [14] with a
subsectional basis set of piecewise sinuscids is a sensible
rproach fcr obtaining numerical solutions for expression
(5-1). A brief outline of now the chcice ¢< this basis set
in conjuncticon with the MoM may ze used for the discretiza-

tion <ollows.




=
w

We let *he structure of interest be uniformly divided
into (N+l1) pieces each of length A. The current distribu-

tion may then be approximated as

- N .
I'(z") = [ IS (-3
=1 B D
where
(
i
sin(k(A—{z'—zn})) ' | -
sn { EET !z —zn!<A (5 Sa)
L 0 _ otherwise

denotes the piecewise sinusoids, and the constants I, are ©o

be determined. By substituting this approximation into
aguaticn (5-2), we may write a discrete version of excres-

sion (5-1), after several straightforward manipulations, as

/

- N oL
£ = 7 1L (s) (5-6)
2 nop n
n=1 i

where the orerator LOP(Sn) is given &y
K (3(z-(z_*2))+C(z~(z_-2))=2cos(k )G (z- 5-6a)
j;sosinkALb(z (zn N+G(z (zn ) =2cos(k)G(z zn)]. ( J

e -

ere, the arguments of the function G replace (z-z') in

»

either eguation (5-1b) or (5-%a) depending on whether zhe

axact or apprcximate kKernel is used.
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Following the McM formalism, we introduce a pulse testing

function, w such that

"
B .

ml
w, = Py(z-2) (5-7)
where
r ! eA/
L. P (z-z) = {l lz—sz a2 (5-7a)
! A m !
- {0 otherwise.

Equation (5-86) may now be written as

. ¥ . -
inc J _ \ s
Sy -E5> = ) ISy L,(8)> (@=1,2,...,0) (5-3)
n=1 “
where
<wm’Lop(Sn)> =
ma+a /2
k P . -
jue sin(kl) J[G(z—(zﬂ+A))+G(z—(zq—A))-2 cos(kl) G (z—zn)]dz (5-8a)
ah-2/2

and <wm,-:.z > is similarly defined. Egquation (5-8) has the
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r TG L (80> . L (5> | i <, -EEST
v . . - - . . - . w i , i -F
b~ | 1,7op "1 1, op "N 1 i1, T T '
! . . '. , | . |
; . . - ! . i
| . . . | ! . !
| . . . | . :
! . . . = . § (5_9)
s . . . . |
] ! ?
4 i . . . . i
X ; . . - . '
| . . . . ;
: . . . . ,
b ¢ ~ - ~ ~4 |
Sw, L (S)> - v v v e e v & L (s> 1T < -ETTS
' ! N, op 1 N, op( N) N N, z |
o
-
! -
- The matrix with components <w_,L (S )> is known as an inpe-
4 m’“op'Tn -
b . . , . =inc .
s dance matrix 2, and the vector with components w ,<E " > 1s
;
r - = I3 - P -
S knownn as a voltage vector V. Using this notation, the cur-
¢
rent crefficients I mav be Zcund by Ifcrming
I =27 % 5.
a Z v (5~10)
assuming a non-singular impedance matrix.
All frequency~domain results in this chapter will ke
based on this mcdel.
4
5.2.1 Excitation Mcdels
The impedance matrix is invariant to tnre fZorm of excizta-
¢ tion; oniv the voltage wvector reflects th... In the antanna

mode, the excitation may be modeled in a varie: s . - ays

The simplest is the delta function {37] gzener. el




which introduces a single entrxy of unity into the voltage
vector; its position in the vector corresponds to the posi-
ticn of the excitation on the antenna. An alternate, and
more rigorocus, method of excitation modeling is the use of
equivalent magnetic scurces. This leads to magnetic frill
(37] generators and belt [40]! generatcrs. The voltage vec-
2or reflects this form of excitation in the form of a dis-
tribution with unit area. Results induced by these diffe-~
rent models are nearly identical everywhere over the
structure except directly at the point where the excitation
is originating. This point is somewhat critical to the over-
all analysis; however, since impedence and admittance char-

- : .
aclTeristic

1]

are derendent on the magnitude cI the currsnt at
this pcint. It has been found [40] that the magnetic scurce
gererator models yield impedance and admittance wvalues in
better agreement with experimental measurements than del<ta
generator models. Figure 5.2 compares a delta generator
with a magnetic belt gensrator for a half-wavelength antenna
using the exact kernel. Numerically, the results diffsr
only at and near the feed point; graphically the difference

is indistinguishable.
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5.2.2 Thin-Wire Xernel Approximation

Equation (5-4) denotes the thin-wire kernel approximation
which is analytically valid for wires that are only a small

fraction of a wavelength in diameter. A numerical complica-

tion can arise using this kernel even when the wire is elec-

trically and hence the approximation analytically valid.

When the sampling distance between unknowns is on the order

of the radius of the struczture, non-physical current oscil-

lations may appear both at the end points and the feed

point. Use of the exact kernel in such cases avoids this

complication. TFigure 5.3 compares the effect of the exact

and approximate kernels on the current distribution cf a 1l

Aeter or Tle

th

was used

o
ot
i
[0
8]
4]
Y
pt
9]
@
4

9]

anerator excita-

tien.
§.2.3 Electric Field Distribution

Cnce the current coefficients are cbtained from egquation
(5-10), the scattered tangential electric field distributicn

may be found by evaluating

. N . . s
E2(a,ziw=_30__ 1 1 [+ o L gcost) &3] o)
z 3 Y o T
sin(k:) n Rl R: R3
where
2 2.1/2
R, = [(z-G_+2)) +a’]}/? (5-11a)
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r' pansion (3-17)) that the current distribution may be approx-
p
' imated as
b
b
b

N e

- - A} . -
[ | I'(z';0)= v I, , P, (ct-p 2t) P, (z2'-n'Y) (3-13)
1 . - n ,D Lt -
b n =1 p’=—a:
[
4
b
L
H
¢

- e -4‘..;;___; PP WP WG S SR W W '-1

"
2]}/ﬁ

Id 2
R, = [az—(zn-a)) +a

R3 = [(z--zn)2+a2 1/2. (5-1ic)

P4

ote that the approximate thin-wire kernel has been used.

igure 5.4 shows Ei(z) for a 1 meter antenna. A del%ta gen-

erator at the origin was used for the excitation.

5.3 SPACE-TIME T=CENIQUES

For one-dimensional structures corresponding to Figure

(V)]

.1, expression (2-12a) may be written as

Iz(zwt-?z-z’flc)

y dz'  (3-12)

A ———

where the approximate thin-wire kernel (equation (5-4)) has
been usad, and the current density apprearing in expression
{(2-12a) has been replaced bv the total current.

The discretization of this expression will follow the

technicue developed in Section 3.3.1. We assume (frcm ex-
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where N cdenctes the number of unknowns used in the discreti-
zation. With this expansion, the discrete vector potential
is given by

A (nA;pat) = ,
z (in-n' |+1/2)2

4
(

' L]

I I.v P, (e(pat)-p (cAt)-|n-n’la) —dz
1p'= i J 4m{a"+z

)
(in-n'|-1/2)2

Note that the time pulse has been pulled out of the integ-
ral. This is valid only for very thin, linear structures.
By letting G, denote the integral appearing in (5-14),

and picking p'=p-|n-n'| (note that this assumes the chcice
CAT=A), we may write the vector potan+tial as

N
)
'3

Az(nA;pAt)=

' G| '! (5-15)
n i

1 n',p=ln-r'| “la-n

where

f——

i 2d
G =11n (a+1/2)8 + ((a+1/2)2A' + az)l/“ (5-15a)
(v .
: 2.2 2,1/2
—(a~1/2)3 + ((a=1/2)727 + 2a7) -_

|

4=

By transforming the continuous differential operators ap-
pearing in expressiocn (5-12) to central finite difference
cperators, we obtain the following expliicit scheme for the

unknown current coefficients:

e uinunstumndeifiiiibuatd sl aselbdnclh '-“_n—-w-hni



,,vvv'—rrrrrrv“-v e aus g Jma
. ” .
- . PN

! -
+'56 n?;o ln-n'[ n'+l,p-[n—n'| + In'—l,p—ln—n'! - In',p+l—}n—n'!
n'#n -
"] (n = 1, 2, ..., N
- ! o lelpent! (5-16)
n,Pllnnl p=1,2, «eovvu J

where Gy is the self patch kermel, and I, , Ly, , Iyn. I
are defined to ke zero.

We now consider the choice cAt=A by performing a Fourier
stability analysis (Section 3.3.1) on the homogeneous dif-
ferential equation for the vec<tor potential. The wvector po-
tential is analyzed for simplicity; the stability require-
ment for the current egquation 15 anticipatad to ze similar
due to integral relation between the two. The followin
discussion outlines the technigue.

We begin with the one-dimensicnal wave equa%tion for the

vector potential

1 3 3 . 4
= =3 A — Ak (5-17)
c ot 3z
which in explicit diffesrenced form beccmes
2 f 3
A =r” A + A - 24 i
z - z z
n,p+1i i “n+l,p n-1,p n,D;
in=1,2, ..., XN }
-2 A - A i (5-18)
A Z . ;
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where ré=(cat/4)2, and A, =A,(na;pat). Discrete separa-
n,p

tion of variable technigues then leads us t0o a solution ot

the form

Az =0 exp (jand) (5~19)
n,p

where w=exp{sdt} (s is arbitrary and may ke complex), and a

is an arbitrary real number. Clearly, for this solution to

remain bounded fcr all p, the magnitude ¢f w must be bounded
above by unity. By substituting this general solution into

the basic equation (5-18), we obtain the following gquadratic
equation in w:

2 14

2
w® = 2 (1-2rsin®(aa/2))w + 1 = 0 (5-20)

From this equation, the magnitude of w is less cr egual to
unity for rsl. Therefore, the choice cAt=4 may yield a sta-
ble solution for the current coefficient difference egquation
(equation (S5-16)). Certainty cannot be ascertained for the
following two reasons: £irst, any appropriate boundéry ccn-
ditions have not been included in the analysis; and second,
a difference eguation for the vector potential has been con-
sidered rather than a differsnce equation for the current
coefficients. The matrix stability method (Section 3.3.1)
must be applied to the current difference scheme for this

criterion to be numerically rigorous.
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5.3.1 Transient Current Response

Figure 5.5 depicts the transient current respcnse ob-
tained from equatien (5-16) on one of two feed segments for
a 1 meter dipole antenna. The mathematical representation
of the excitation used on each of these segements is given
by

E
0 2, _ 2 _
> exp[-g (t tmax) ] (5-21)

where Ey is the free-space impedance 120m, tmax is the time
when the magnitude of the pulse peaks, and g is the compres-
sion factor of the pulse. The parameter t ., was chosen to

be 0.5 light meters (LM), and g was chosen so that the mag-

Rt STe]
nituce ©

th

the pulse at ©t=0 and t=1 LM was C.CCClL/(60Tm)

volts/meter.

§.3.2 TD-SEM Pole Distribution

The TD-SEM technique developed in Section 3.3.1 may be
applied to the difference scheme of equation (5-16). The
eigenvalues of the state transition matrix & may be found by
the methods given in Chapter 4. The order of ¢ for this
problem is N(N+l1), where N represents the number of unk-
nowns. For Ngl18 full eigensolution by the QR transfcrmation
(Section 4.3.1.2) is recommerded. ©for larger values of N,
partial eigensolution by simultaneous iteration (Section

4.3.2.2) is recommended. Figure 5.6 shows the pole distri-

]
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bution cbtained by TD-SEM (QR solution) for a 1 meter scat-
terer with a.radius of 0.005 meters discretized with 18 unk-
nowns such that A=1/(N+1)=1/19. The results have been sca-
led by 1/(nc), and a comparison with the frequency-domain
results of Singaraju, Giri and Baum [15] has been made. The
results shown reflect only the second quadrant of poles
since the ccmplex conjugates may be obtained by symmetry.

A few remarks on the structure of the eigenvalues associ-
ated with this problem for the choice cAt=A should be made.
From stability, all eigenvalues must fall within the unit
circle in the complex plane. Complex 2igenvalues appear in
groups of four which graphically define a sgquare. Several
groups of nearly Zdentical modull form annular rings. Real
or purely imagina ' eigenvalues appear in pairs ¢f egual mo-
duli but differing sign. The eigenvalues of interest are
those with positive real components. Those with negative
real components are conjectured to correspond to false poles
which have no true physical meaning (this conjecture is dis-
cussed in Secticn 5.3.2.1). The layering structure of the
poles corresponds te the annular ring structure of the ei-
genvalues. ZIor an =2ven number of unknowns, 2N cf the eigen-
values in the outermost annular ring correspcnd to the sig-
nificant poles ccntained within the first layesr, while 2N-2

eigenvaluas correspond to the poles of the second layer.
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Figure 5.6: Pole distribution for 18 unkncwns. The length

of the scat<erer was .1 meter, and the radius
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Further layers which are well defined have successively 4
fewer eigenvalues than the preceeding layer. For an odd
number of unknowns a factor of 2 must be added to the num-
bers above. Figure 5.7 depicts the eigenvalue structure for
18 unknowns. The quadrant which is blocked off denotes the
eigenvalues of interest,.

Figure 5.8 shows the first layer pole distribution for 32
unknowns as found by simultanecus iteration technigques with
the sub iteration modification. It should be noted that a.
simultaneous iteration algorithm may be
used to find more layers than just the first. Additional
layers may be found on a single computer execution or multi-
ple, independent executions.

Figure 5.9 compares execution time requirements (on an
IBM 3032 computer using FORTRAN H EXTENDED (CET=2)) with the
order of the state transition matrix for: full eigensclution
by the QR algorithm (eigenvalues only), QR algorithm (both
eigenvalues and eigenvectors), and first layer eigenvalues
and eigenvectors by simultaneous iteration (assuming complex
iteration cycles) with and without the sub iteration modifi-
cation. 1IBM double precision was found to be necessary when
the QR algorithm was used; IBM single precision was suffi-
cient for the simultaneocus iteration methecd. The curves in

Figure 5.9 reflect these precision requirements.
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b . Figure 5.8: First layer pole distribution found by S.I.

o for 32 unknowns. The scatterer was 1 meter in
f- length, and the radius was 0.00S5 meters.
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Figure 5.10 compares storage reguirements with the tran-
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sition matrix orcder for the cases above. The IBM douple

precision storage requirement for the QR algorithm, eigenva-

ol

lues only, is 812 (where n denotes the order of §). This
requirement becomes 8n2+16n2 when both the eigenvalues and
all eigenvectors are desired. The single precision storage
requirement of simultaneous iteration is 4(4k2+(3+2N)k

+2n1k+3((2N-1)N)), where k denotes the number of eigenvectors

3
k
g
p
-
‘d
:1
R

sought, and N denotes the number of unknowns (for Figure

5.10, k=2N was chosen; this defines the first layer).

5.3.2.1 Effect of Varying the Time Sampling Distance

The pole struckture presented in Figures 5.8 and 3.7 is
fcr the choice cAt=A. When cAt is chosen to be less than A4,
complications arise. Since each time step is smaller, more
time steps are required for a wave to travel the length of
the structure. This causes the size of the state transition
matrix to increase, and thereby possess a larger number of
eigenvalues. The relation of these extra eigenvalues to the
true poles of the system is of interest. It has been found
that the additional eigenvalues add additional 'poles' which
may be divided into two types. The first type are complex
poles with imaginary components which are conjectured to be

of greater magnitude than the 'true system poles'; the sec-
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ond type are purely real poles which are conjectured to ex-
tend further down the real axis than the true poles. Both
of these conjectures and an elimination technigue for the
'spurious' poles are discussed in the following paragraphs.
The angle associated with the polar representation of ei-
genvalues which possess positive real and imaginary compo-

nents is at most /2 radians (by symmetry, we may similarly

R+ " § SV sl

consider the conjugate of these eigenvalues). The imaginary

component of the poles corresponding to these eigenvalues,

then, have a magnitude which is at most 1/(2caAt) radians
(recalling that the poles are scaled by 1l/(wc)). When the
stability condition cAt=4 is wvalid, this maximum becomes
1/(24) radiarns. Since all thin-wire pole cdistributions ob-
tained by frequency-domain techniques are bounded by 1/(23)
radians, it is sensible to bound time-domain methods by that
value as well. Hence, we conjecture that the true system
poles obtained by TD-SEM are bounded on the imaginary axis
by 1/(2A) for arbitrary choice of cat (note that this res-

triction eliminates the poles corresponding to eigenvalues

with negative real components). This téchnique generates a
simple criterion from which spurious pcles off the real axis
may be eliminrated. We consider, next, the spurious poles

wnich are situated on the real axis.
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The second type of additional poles are not as simple to
remove. No well defined method has been developed. These
pecles do not disturb the well defined layering structure
since they appear past it. TD-SEM generates true poles past
the layering structure (Figure 5.6) however, and therefore
an ambiguity exists. One possible restriction would be to
retain only those poles within the range 0 to approximately
-1/{2A) on the real axis. Although this criterion is admit-
tedly strict, it may be effectively used for arbitrary
choices of cAt.

To ccnclude this section, it should be noted that the
left half plane pole structure obtained from an unstable al-
gorithm has very little similarity with the pole structure
obtained from a stable algorithm. Hence, one should be cer-
tain that a particular scheme is stable if the results ob-

tained are to be considered meaningful and accurate.

5.3.3 Pole Shift by Kernel Decoupling

t was suspected a priori that a relation may exist between
the sub- matrices of the transition matrix and the par-
ticular layering structure <f the poles. In other wcrds,
the first few sub-matrices may contribute the poles of *the
first layer, the next few the poles of the second layer, and

so on. To test this conjucture, the effect of zeroing the
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kernel G ' of equation (5-16) for various values of the

|n-n
difference |n-n'| was considered. This effectively removes
element to element coupling and thereby zeros sub-matrices.
Figure 5.11 depicts the movement of the pole distribution
for a 1 meter antenna with a radius of 0.005 meters discre-
tized with 10 unknowns (N=10). All layers tend to shift to-
ward the imaginary axis (approaching a transmission line) as
2lements are zeroced from the extreme outer sub-matrices in-
ward. Unfortunately, no relation between the block sub-ma-
trices and particular layers can be inferred from this form
cf movement. Specifically, the results shown in Figure S5.11
may be interpreted as follows: £full set denotes no decou-
pling, the level 1 set has the Kkernel evaluated =zt
In-n'|=N+1 set equal to zero, the level 2 set has the evalu-
ation at |n-na'|=N+1 and N equal to zero, the level 3 set has
the evaluation at |n-n'|=N+1, N, and N-1 equal to zero, and

the level 7 set is similarly defined.
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Pole movement due to kernel decoupling. The
scatterer was 1 meter in length with a radius

of 0.0CS5 meters. The number of unknowns was 10.

rh - bl N il . Ve w by . v > S - v e T T LW W W W -, TR W LW N W TN WUy . el el L Ll ¥ L2 A T e
T

o

-

.

Py

Bldid Bkl BB

Al e o o



.................

g s We T
NP
f‘lft{!l-l. L .

A

Chapter VI

TRANSIENT ANALYSIS OF THIN, PERFECT CONDUCTING
RECTANGULAR PLATES

.1 INTRODUCTION

[+

The rectangular plate falls within the class of struc-
tures known as open structures with edges. Structure: .. th
edges, and in particular corners, are difficult to an: ze
due tc the singular behavior of the current component . ~al-
lel to an edge, and the ambiguity of the current magni..ie
in a corner. These complications have generally restricted
exact analytic sclutions to infinite half-plane problems.

In particular, we cite an exact, frequency-dcmain soluticn
for the current density generated on an infinite half-plane
by an edge on incident plane wave which may be found in Born
and Wolf [41]; the transformed, time-domain result, may sub-
sequently be found in Davis, et al [42].

Since the realm of problems which are solvable by analyt-
ic methods is quite narrow, interest has turned toward the
numerical analysis of finite open structures. The advent of
the method cof mcments [14] stimulated the freguency-dcmain
study of these structures; while recent interest in tran-
sient metheds was primarily stimulated by a study due to

Bennett, et al {43]. In Benrnett's study, both transient
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i Se fon 2 o s

A A &




T T W TR T W WT T T WY YR T

Lj'
E:_ 100

?! numerical arnd experimental results Zor several canonic cpen
tj: Tructures were presented. Some of the technigques developed

- in this chapter are based on the latter contribution.
The study of the SEM parameters for open structures has

been limited to rectangular gecmetries. A treatise on ob-

P il
PR

taining these parameters for rectangular apertures and
structures using frequency-domain techniques has been pre-
sented by Pearson [44].

In this chapter, the transient numerical solution of the

ct

hin, perfect conducting rectangular plate problem is stu-
died. In Section 6.2, the basic mathematical formulation of
the problem using finite difference technigques is presented.

Y - - - - P~ e 3 = - 1 < < - - -
The pasic diffarencse fcormulaticon is then applizd Ttz a 'stan-

[
R

dard' gridding scheme in Section 6.3, and a 'shi“ted' grid-
ding scheme in Section 6.4. The shifted, or offset, scheme
was initially intfoduced for the soluticn of rectangular
problems in the frequency-domain by Glisson and Wilton [45].
Stability analysis and current distributions for each of

these schemes are presented in the appropriate sections.

=
]

Section 6.5, the TD-SEM pole distribution for the sguare

plate is Introduced.
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6.2 MATHEMATICAL rCRMALISM

The electric field integral expression (2-12a) is the ap-
propriate expression for describing thin, perfect conducting
structures. For the geometry shown in Figure 6.1, this ex-
pression may be written, in vector potential notation, as

the following coupled set:

2 2 2
3 .inc 1 2 X 3 X ) y
e =—E -—__A_( A+~ )
0 3t x c2 atz axz X3y
(6-1)
2 .2 "2
e, ;l Einc - z 32 Ay - ( 02 A o+ “oax Ax)
y c® 3t 3y °y

= =inc inc inc i
where A=(A°,A7,0), and B =(E.™ =7 %),
The following representation of T will be used for all

results presented in this chapter:

Einc (t3t) = 8 E exp (-gz((t-t ) + E-E/c)z) (6=2)

’ o max

where

§ = x cosdcosé + y cos@sing - z sin8g, (6-2a)

k = x sindcos¢ + 7 sinBsine + z coss, (6-2b)

I =XxxX + yy + zz. (6=2c)




Plate geometry.

Figure 6.1:
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The value of E, was chosen to be the free space impedance,
120w, Thax Was chosen to be 2.45 light meters (LM), and ¢
was chosen so that the magnitude of Einc at t=0 and t=4.9 LM
would be 0.0001 volts/meter.

From expansion (3-17), the x and y components of the vec-

tor potential may be explicitly represented as

M N o
X,y =X,y
m,n,p ) m’z=l n‘=z=l paw Jﬂf,d,l-"' Glm'd[vln"d! s (p-p") (6-3)
where
2.z 1/2
(Ci"'r‘;i)A (B*fi)ﬁ PA (5-(u“+v*) /e)
| t
G

= dudv (6-3a)
22,6 = | J 7. 2.1,
(a=9)8  (3-%)a bmudv) 2

and d:ihp =a7 (mad,na;pat).
Unfortunately, the integral which appears may not be
evaluataed exactly due to the presence of the time pulse.
Numerical integration or linear interpolation represent the
possible methods of evaluation. 1In Figure 6.2, the physical
interpretation ¢f how the time pulse activates various annu-
lar regions which contribute to the integral is shown (cau-
sality allows us to only consider zerc or positive values of
the time difference p-p'). From this figure, the following

linear interpolation formula may be derived:

I
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Figure 6.2: Annular propagation of active regions due <o ]
the time difference (g-p'). ]
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Ga,B,G = [PA[(S-Int(D))At] + (PA[(G-l-Int(D))At]
- PA[(G-Int(D))At])(D-Int(D))] G'a,B, (6-4)
where
\ D= (o2 + 852/ cary (6-4a)

Int(D) denotes 'integer part of', and

(ats)a  (BH9)A
dudv

G' = —_—, (6-5)
a8 sr(uiw?yt2
(a-¥)a (B-d9)4

By letting a=(a+1/2), b=(a=-1/2), c=(8+1/2), and &=(3-1/2),
we may evaluate this integral as

1 1

c+(c2+az) /2)(d*(d +b2)

d+(@2+a2) 2" er(eZen?y”

/2

G -——[aAl (¢ 1/,)]

a,B

2 1
-y-—l [(a+(c +a2 )(+(d +a”)

1/,)( 8) € )]
b+(c24b2) Y2 Dy 12 ardirady 2 (e 2
2. 2.1/2 2.1/
£ 8A 1n [(a+(c +a ) 1 b+(d +b )l/ ) . (6-5a)
a+(d +a ) 2 b+ (c +b ) P

Over the self patch region (m=m',n=n') the anti-derivative

reduces to

¢' =L+ . (6-5t)
a,B T
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A simple rectangular rule approximation may alternatively
be used to evaluate integral (6-5) over all patches other

than the self patch without introducing considerable error,

i.e.,
( a2
PR Y, @ 840
4r(a“+8c) 2
G'Q,B -~ 1 (6-6)
% In(1+/7) a=gaQ .

Use of linear interpolation and approximation (6-6) is
the recommended means for the evaluation of equation (6-3a).
Numerical integration or use of equation (6-5a) have been
found to introduce only slight amplitude shifts in the final
results, and therefore their use is unjustified unless pre-
cise results are sought. The interpretation of precise is
ambiguous, however, due to the vast number of models which
may be applied to a particular problem, and hence the vast

number of slightly different results which may be obtained.
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6.3 STANDARD GRIDDING SCHEME

Figure 6.3 depicts a standard gridding scheme for a rec-
tangular plate. The patches as shown are square due to the
choice of a uniform sampling distance in both the x and y
directions; this is typically, but not necessarily, done.
Two complications are associated with this simple, commonly
used, model. First, since the two current density compo-
nents lie directly on top of one another, a smooth transi-
tion between ccmponents is not possible; and second, boun-
dary conditions on the current density must be explicitly
enforced.

For the standard grid, the following explicit finite dif-
ferance scheme fcr the X component of the vector pctential

is appropriate:

X - rZ(Ax e " X

A + -
m,n,p+l n+l,n,p Am-l,n,p 'Am,n.p
£? .y y y y
+ - (A + A - -
4 ( n+l,n+l,p m-1l,n-1l,p Am+l,n+l,p Am-l,n+l,p)
(m=0,1,...,4
X X 2 3 inc ; *» i
+ A -2 —_— ‘n= oo ey N
m,n,p-1 Am,n,p + (r eo) 3t Ex tn 0,1 s N
p=1,2,...

(6=7)

where r2=(cAt/A)2. aY may be similarly defined. An expli-
cit difference scheme for the current density is obtained by
substituting expansion (6-3) into the above difference equa-

tion and manipulating the indices of the summations.
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evaluation points

n=1 //// =2 n=3 n=4

| 4|+ +
| 4+ |+ +

Figure 6.3:

Standard gridding scheme.
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An approximate stability criterion for the vector poten-
tial scheme may be obtained by the Fourier stability method

(Sections 3.3.1, 5.3). Let

x -
I—A ax P
= W exp {j(amA + BnA)} (6-8)
3 | s a

- L y

a where a, ay are arbitrary coefficients, w=exp{sAt} (s is

u! arbitrary and generally complex), and a«, f are arbitrary

real constants. By substituting the expression for A into

_? equation (6-7) and the expression for A into a similar
%’ equation, we obtain
= - - S T 2 . - ra T
| 3 | ’_Z-AI sin"(ad/2) rsin(ad)sin(8a) | | a
S !
! | wz =w o, 2 ! ;
( ‘ ;.ay_i "_r sin{ad)sin{as) 2-4r©sin”(34/2) | }_ay_};
| -1 o‘l ’ ax‘]
* | L . (6-9)
0 -1 a
L J Yy
i This matrix equation may be reduced to the following gquartic
" equaticn in wu:
4 3 . 2
w + (E+C)w” + (EC-BDH+2)w” 4+ (E+C)w + 1 = 0 (6-10)
_! where
2,2, .
- E = 4r"sin“(ad/2) - 2 (6-10a)
. )
e B = r sin(ad)sin(34) (6=-10b)
L




L s 2l et gl e i et A & g Ml Renth Aot st ek el bAndi madh ad Madit e
..... - At v e R R R e
St et At . Co_e e -

110
2 .2
C = 4r"sin”(BA/2) (6-10¢)
D= rzsin(BA)sin(aA) . (6-104)

For any chocice of real «, 8, |w|Sl for rsl. Therefore, the
choice cAt=4 may lead to a stable soluticn. Certainty can-
not be obtained since boundary conditions cannot be included
in the analysis. The matrix stability method must be used
to verify this criterion for the current density coefficient
difference formulation with arbitrary boundary conditions.
The enforcement of bouncdary cenditions is an integral
part of using the standard gridding scheme effectively.
Figure 6.4 shows the current density component corresponding
to the direction of polarization of the incident wave on the
center patch of a one meter square plate discretized.with
four unknowns in each direction when no boundary conditions
are enfcrced and choosing c4t=0.7A. The result is highly
oscillatory vet stable. Figure 6.5 depicts the effect of
enforcing components of the current perpendicular to the
edges to be zero. In Figure 6.6 an attempt has been made to

enforce the form of the singular behavior of the current

@ T e T e TR T
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components parallel to an edge. This was accomplished by
assuming a reciprocal sguare root of distance singularity as
the edge is approached {42]. Hence, the value v¥3 was chosen
as the extrapoclation constant for the parallel current com-
ponents 34/2 from the edge, i.e., the parallel component at
position A/2 from the edge is v3 times the parallel current
component evaluated at 34A/Z2 from the edge.

In Figure 6.6 a comparison has been made with a current
density distribution obtained from the theoretical model
used by Bennett [43]. Bennett's model and the model used
here differ only in the extrapolation constant used for the
current density component parallel to an edge. In the model
used by Bennett, an extrarolation constant of 3 was used in=-
stead of ¥3. The factor of 3 was found to occasionally
yield unstable results, whecseas ¥3 was found to always vield
stable results. Hence, the latter was preferred. The two
curves agree quite closely within the twelve light meter
frame which is shown. In should be noted that Bennett's mo-
del has been shown (43] to yield results quite similar to
experimental measurements.

The use of either 3 cr v3 as an extrapolation technique
is somewhat unsatisfying since it doces not permit a time
fluctuation of the particular form which is being forced.

The half plane problem which can be solved analytically
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yields a reciprocal square root behavior for the current
density which includes both a spatial and a time dependence
under the root [42]. We would anticipate a similar depen-
dence for the plate, and hence any extrapolation should re-
flect this. Further study is required.

Although theoretical results similar to experimental mea-
surements may be obtained from a standard gridding scheme,
it is difficult to know a priori when satisfactory results
have been obtained due to the modificaﬁions which are re-
quired. In an effort to avoid these mecdificaticns (i.e.,
create a more natural model), we consider an offset or

shifted gridding scheme.

6.4 SHIFTED GRIDDING SCHEME

Figure 6.7 depicts a shifted gridding scheme. Three de-
sirable properties akout this formulation are as follows:
current is allowed to make a smooth transition between ccm-
ponents, zero boundary ccnditions on the current are impli-
citly enforced, and it is not necessary to step off the
structure for any finite difference evaluations.

The explicit difference representation of the x component

of the vector potential is given by
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Figure 6.7: Shifted gridded scheme.
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Am,n-sz,p+l t (Am-'rl,n-ls,p m-1,n-%,p Am,n-*s,p)
-
' 2.,y y y y
+ + A - A - A
r (Am+%,u,p m-%,n-1,p mHs,n~-1,p m-&,n,p)

» X b3 2 3 inc m=0,1,...M |
- + A - 2A + (r°c ) =—E n=0,1,...,N+1| .
b m,n-%,p~1 m,n-%,p o’ 3t x p=1.2

(6-11)

j: A similar equation may be develcped for A’ . An explicit

— scheme for the current density coefficients may be cbtained
by substituting equation (6-3) into the above equation and

AT manipulating the indices of the summations.

: A preliminary stability cricericn for the vector pcten-

tial scheme may be found by the Fourier stability method.

:{ By letting

-

5‘:.: | A%

- K

and substituting into the difference scheme (6-1l1l), we ob-

X

(6=12)

| N |

a oP exp {j(amd + 8(n-bg)a)} 1
|
J

|
|
L aywp exp +j(a(m=)A + Bnd)}

® tain the following quartic equation in w (similar to the un-

shifted development):
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o + (B+C)w> + (EC-BD+2)w? + (E+C)w + 1 = 0 (6-13)
where
E = 4r2sin2(aA/2) -2
B = r2(1re~d38 I88_-jad_ 384,

(6-13a)
2 2
4r°sin”(BA/2) - 2

(@}
[]

r2(1+e-JBAeJaA_e‘JBA_eJGA).

o
[]

For any choice of real o, B, |w|€l for r?g(1l/2) or
cAts(v2/2)A. This result may be éstablished analyically by
assuming four solutions of the form exp{*j8,}, exp{£j8,} and
noting that the product of all the roots must be unity, or
it may be established numerically.

The basic result may be extended to accommodate three-
dimensional problems with different spatial sampling distances
in each of the three spatial direcﬁions, i.e., we ha&e Ax,
Ay, Az instead of simply A. The stability regquirement for

shifted schemes, in general, is then

l l l l ~ ’
(cat)2 :-(Ax)z + (ay)2 + (0z)2 °* (6-14)

The wvalidity of these expressions for the analcgous cur-
rent density difference formulation must be confirmed by the

matrix stability method.
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Figure 6.8 shows the unstable result obtained by choosing
cAt=A. By choosing cAts(v2/2)A, however, we obtain the sta-
ble curves shown in Figure 6.9. A comparision of these
curves with the curve generated by the standard gridding

scheme has been made. Note that the amplitude of the curves

obtained from the two schemes differ slightly. This is pri-
marily due to the different techniques used to enforce the a

zero boundary condition in each scheme.

6.5 TD-SEM POLE DISTRIBUTICN i

In this section, we present pole distributions obtained k
by TD-SEM (Section 3.3.1) using the shifted gridding scheme ;
Jn 2 one meter sguare plate. Figure 6.10 shows the distri- i
buticn for a total of 2 unknowns (A=1/2) for each current

component, Figure 6.11 shows the distribution for a total of ]

6 unknowns (A=1/3), and Figure 6.12 shows the distribution
for a total of 12 unknowns (4=1/4). The choice cAt=0.7A was

made throughout.

As was discussed in Section 5.3.2.1, an ambiguity exists

in the validity of all the 'poies' TD-SEM yields when cAt is

chosen less than A due to an increase in the order of the

Y
1
1
1
4

transition matrix. A filtering scheme to remove poles which

g~

were conjectured to be a consequence of the numerical pro-

et

ceedure was discussed in that section. For Figures 6.10-12
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Figure 6.11: Poles for a 1 meter square plate discretized
with a shifted gridding scheme. The total
numter of patches for each component of the
current density was 6, and the choice cAt=0.74
was made.
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current density was 12, and the choice cAt=0.74
was made.
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a similar, but slightly different, filtering scheme was
used. The scaled poles corresponding to the eigenvalues
with positive real components were restricted to a maximum
magnitude on the imaginary axis of 1/(2A) radians; the sca-
led poles corresponding to the eigenvalues with negative
real components were restricted to the range 1/(24A) to 1l/A
radians. A line has been drawn on these figures to separate
the two regions since the true physical meaning of the poles
;orresponding to eigenvalues with negative real components
is not clear for rectangular geometries (although it was
conjectured that these poles have no meaning for the wire

problem). A sensible method to test the validity of the

0

les in koth regions is to reduce the value 0f cAt below

'

e initial choice of 0.7A and note shifts in the pole posi-

f

+
'3

tions. For true poles, we suspect very little shift. It
was experimentally observed that the lower set shifted only
slightly, but the upver set experienced a considerable
shnift. Hence from this argument, we conjecture that only
the lower set represents true system poles.

The lower pole cluster agrees reasonably well with the
frequency-domain results. The lowest order pole freom Figure
6.12 (12 unknowns) is explicitly -0.284+3j0.715; this pole
was found by Zrequency-domain methods to be -0.272-+j0.675.
The time-domain result should apprcach this (up to the simi-

larity of the models used in each domain) as the number of
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unknowns is increased. Figure 6.13 compares selected
time-domain poles with available frequency-domain poles.

It is interesting to note that double poles were observed
for the square plate, and a fill in of poles occured as the
number of unknowns increased. Both of these can be justi-
fied by considering the poles of an infinite rectangular
waveguide.

The simultaneous iteration method presented in Chapter &
may be used to cbtain the natural fregquencies and modes for
the rectangular plate. Care is required in its implementa-
tion, however, due to the absence of the well defined layer-

ing structure which appeared with the wire problem.
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Chapter VII

CONCLUSICNS

In this thesis, the fundamental integral equations of
electromagnetic theory and the theoretical foundations of

both the frequencyv-domain SEM and the time-domain SEM method

of Cordaro and Davis were developed. It was cbserved from
the development of TD-SEM that special sparse eigensolution
routines were required to determine the eigenvalues of the
transition matrix due to the excessive high speed storage
requirements associated with certain problems. A modified
simultanecus iteration algorithm was developed to satisfy
this eigensolution requirement. The algecrithm may be used
tc obtain partial pole solutions for a variety of geome-
tries, and was explicitly shown to be effective on the
thin-wire problem for an arbitrary number of unknowns.

Root searching methods which take advantage of the ccm-
panion form of the transition matrix, such as Muller's meth-

od and the polynomial matrix reduction method of Wooliwvich,

were found to be effective methods for obtaining the natural
frequencies only for linear geometries discretized with re-
latively few unknowns. The ccntour integration technigque of

Singaraju, Giri, and Baum, which also takes advantage of

q
N
R
3

this companion form, was not explicitly tested in this stu-
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dy; however, the methed may prcecve to be effective for prob-
lems discretized with a large number of unknowns provided
the required integration operation can benefically be used

to numerically smooth the determinate evaluation. Further

study is required to establish the utility of this method.

Time-cdomain technigques which pr:vide convenient matrix -

methods for obtaining the SEM coupling coefficients have !
been developed. The time-domzin form of these coefficients S

“
is much simpler than the eguivalent frequency-domain form. K

The efifect ¢f altering the sub-sectional coupling between

unknowns in the numerical formulation of the thin-wire prob- i
lem was also investigated. No relation between the specific ;
lavering structure of the poles and sub-matrices of <the i
transition matrix was observed. This was unfortunate since f
it was hoped that if only a particular subset of the pole

distrikution was desired, then sub-matrices which did not

influence this subset could be removed f£rom the transition
matrix and thereby yield a lower order problem.
A shifted gridding scheme was apprlied to the rectangular

plate prcblem to cobtain transient solutions. This scheme

was found to represent a more natural discretization fcr the
preblem than the unshifted or standard gridding scheme which

- is typiczlly used. The shifted scheme was then used in con-

junction with TD-SEM to obtain pole distributions for the
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square, perfect conducting plate. The results obtained were
found to be quite similar to available frequency-dcmain re-
sults.

Fourier and matrix stability methods were applied to the
finite difference representations of electromagnetic equa-
tions. These methods were found to provide accurate insight
into the reguired relation between the time and spatial sam-
pling distances that will yield a numerically stable solu-
tion for an arbitrary difference formulation.

The physical significance of the additional poles gener-
ated by choosing the time sampling distance smaller than the
spatial sampling distance or the spatial sampling distance
to be different in different directions remains an open
guesticn. These additional poles are conjecctured to be
false poles for which an elimination procedure has been pre-

sented.
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