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FOREWORD

-- This report describes the finite element solution program

MAGNA, developed at the University of Dayton Research Institute,

Dayton, Ohio. Development of the program was performed between

January, 1978 and December, 1982, by the Analytical Mechanics

Group (Dr. F. K. Bogner, Leader) within the Aerospace Mechanics

Division (D. H. Whitford, Supervisor) of the Research Institute.

This work effort was accomplished under Project 2402,

"Vehicle Equipment Technology," Task 240203, "Aerospace Vehicle

Recovery and Escape Subsystems," Work Unit 24020332, "Computer

Aided Design of Bird-Resistant Transparencies for USAF Aircraft."

The present report provides final documentation of the

developments performed on Air Force Contract F33615-80-C-3403

between March, 1980 and December, 1982 for the Flight Dynamics

Laboratory, Air Force Wright Aeronautical Laboratories, Wright-

. Patterson Air Force Base, Ohio. The project manager for this

effort was Dr. Fred K. Bogner, and the Principal Investigator was

Dr. Robert A. Brockman. Technical direction and support was

provided by Mr. Robert E. McCarty (AFWAL/FIER) as the Air Force

Project Engineer. The work described herein represents a continu-

ation of previous developments performed in-house at the University

of Dayton Research Institute, and on Air Force Contract

F33615-76-C-3103.

The author wishes to express his appreciation for the

contributions of several individuals and organizations whose efforts,

support, and suggestions have resulted in significant improvements

to the MAGNA program. Continuing support and many useful discussions

have been provided by Dr. Fred K. Bogner; numerous improvements to

both the program and its documentation have been suggested by

Mr. Robert E. McCarty. The analytical development performed by

Dr. H. C. Rhee and Dr. Mohan L. Soni, and the computer graphics

support provided by Messrs. T. S. Bruner, C. S. King, M. P. Bouchard,

M. J. Hecht, Ms. M. A. Dominic, and Ms. M. E. Wright are also
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gratefully acknowledged. Mr. Thomas W. Held performed the

conversion of MAGNA to the VAX 11/780. Computer resources and

assistance in adapting the program to the CRAY-I computer were

provided by United Information Services; special thanks are due

to Mr. Kent Griffith of UIS, who developed the necessary direct

access file utilities. Finally, the efforts of Ms. Kathy Reineke

in typing the manuscript of this manual are deeply appreciated.

This report (Parts I, II, III, and IV) supersedes

AFWAL-TR-80-3152, AD A099454 dated January 1981; AFWAL-TR-80-

3151, AD A099530 dated January 1981; AFWAL-TR-81-3180,
AD A117544 dated February 1982; and AFWAL-TR-81-3181,

AD A116541 dated February 1982.
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CHAPTER 1

INTRODUCTION

The finite element method has emerged as a valuable tool

for the design and performance qualification of complex

engineering structures involving arbitrary geometry, boundary

conditions, and applied loads. The mathematics of most types

of linear finite element formulations are well understood, and

effective numerical methods have been developed for the

computation of linear solutions to large structural analysis

problems.

* The consideration of nonlinear effects (large

* displacements, finite strains, plasticity) in finite element

structural analysis is often desirable for studying stability,

crashworthiness, or collapse behavior. However, present

capabilities for modeling nonlinear behavior in structures of

practical size are largely limited to one- and two-dimensional

-* (including axisymmetric) components. Although it is possible
V vin principle to predict the nonlinear response of complex,

three-dimensional bodies, the volume of calculation required

to evaluate nonlinear effects on the elemental level often

makes the required analysis prohibitively expensive.

This report describes the finite element program MAGNA

(Materially And Geometrically Nonlinear Analysis). MAGNA has

been developed to perform nonlinear response solutions for

general structures of practical size and complexity. In

contrast to most existing nonlinear finite element systems, the

code is oriented primarily toward the nonlinear analysis of

three-dimensional structures, including solids, shells, and

[* layered constructions. The emphasis on three-dimensional

analysis is reflected in the history of the development of

MAGNA: the three-dimensional continuum elements were developed

and implemented first in the program, and the programming

0 techniques used have been designed to function most efficiently

for elements having many degrees of freedom and relatively

1.0.1
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large bandwidth. The program also operates largely out of core,

to remove most restrictions on the number of elements, number

of degrees of freedom, and model topology. Elements are, of

course, included in the program for the analysis of one- and

two-dimensional problems; however, the major strengths of

MAGNA lie in its three-dimensional nonlinear solution

capabilities. It is hoped that in this respect the program

will help to fill an important need in the current state of

nonlinear analysis methodology.
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1.1 OVERVIEW

MAGNA (Materially And Geometrically Nonlinear Analysis)

is a large-scale computer program for the static and dynamic

analysis of complex, three-dimensional engineering structures.

The program is based upon the finite element method of analysis

to permit the simulation of practical structures composed of

many different types of elements. MAGNA combines effective

isoparametric modeling techniques with state-of-the-art

numerical analysis and programming methods to provide accurate

and efficient solutions for large problems involving highly

nonlinear response.

The modeling capabilities of MAGNA include structural elements

for truss members, plane stress and plane strain sections, "shear

panels," axisymmetric solids, general three-dimensional solids,

thin plates and shells, and beam/frame members. All finite

elements are arbitrarily oriented and are fully compatible in

three-dimensional space. Degrees of freedom can be coupled to

represent skewed boundary conditions, rigid regions, and complex

structural joints. Nonlinear boundary conditions due to surface

contacts, including sliding, can also be considered. Uniform

mass damping, as well as structural damping based upon the

instantaneous stiffness, can be applied in the solution. Time

history solutions are performed in MAGNA using an implicit

scheme for direct integration of the equations of motion. Applied

loading may consist of concentrated nodal forces, distributed

surface pressures, body forces in line loads; "live" pressures

such as fluid loading may be considered, as well as other

deformation-dependent forces defined in user-written subroutines.

Each of the finite elements in MAGNA includes the effects of

* full geometrical nonlinearities (large displacements, large

strains), using a Lagrangian (fixed reference) description of

* motion. In shell and beam analysis, arbitrarily large rotations

can also be treated. Material nonlinearities, in the form of

elastic-plastic behavior, are analyzed using a subincremental

1.1.1
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solution strategy which minimizes the error in following the

material stress-strain curve. Isotropic, kinematic, and combined J
strain-hardening rules are available for use in plastic analysis

with MAGNA.

The MAGNA program includes numerous user convenience

features to aid in the generation of finite element modeling

data. Geometry data may be input in Cartesian, cylindrical,

and spherical coordinates, or in arbitrary, user-defined systems.

Incremental generation of nodal coordinates and element

connections is also available to exploit repetitive patterns in
Ithe structural model. User-written subroutines, which provide

for user intervention or specification of data at several stages

of the analysis, can be supplied for defining mesh geometry,

coordinate systems, initial conditions, and incremental applied

loading.

Interactive plotting utilities are also available for use

in checking data, and for interpreting analysis results obtained

from MAGNA. Geometry plotting, including exploded views, is

available for all finite elements. Postprocessing functions

include stress and strain contours and stress relief plots.

Scaled and exploded views or close-up plots of the deformed

structural model can be generated, with the undeformed geometry

optionally superimposed in the display.

A number of data generation and model editing facilities

have also been developed for use with the MAGNA finite element

code. These preprocessing utilities are described briefly in

this report. Interfaces to existing pre- and postprocessing

systems have been developed as well, to permit users of MAGNA

to take full advantage of the many geometric modeling and
graphical output packages currently used to support finite

element structural analysis.

To facilitate the solution of complex nonlinear problems

and to make effective use of computer resources, a restart

capability is provided in MAGNA for all nonlinear and transient

1.1.2



analysis options. Restarts may be performed at any point during

the solution, to perform dynamic analysis with a nonlinear

equilibrium state as the initial condition, to modify solution

parameters or strategy, or to continue an abnormally

terminated run.

1
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1.2 MANUAL ORGANIZATION

This report summarizes the theoretical basis of the

- . MAGNA finite element program, the numerical procedures used,

and information required for execution of the program. The

documentation is divided into four parts:

- theoretical development (Chapter 2),

- finite element library, program options, and
special features (Chapters 3, 4, and 5),

- demonstration problems (Chapter 6), and

- user information (Chapters 7-12).

- - Although the input data and control language described

in Chapters 7 and 8 are sufficient to permit the definitionH and execution of many types of structural analysis problems,

efficient usage of the program often requires a more thorough

familiarity with the theoretical and numerical procedures

used in MAGNA. The user is therefore encouraged to review
7* the documentation as thoroughly as possible, particularly

when large nonlinear applications are to be performed.

1. .

0
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CHAPTER 2

THEORETICAL DEVELOPMENT

Theoretical aspects of the finite element analysis

performed in MAGNA are outlined in the following sections.

Governing equations, in both continuous and semidiscretized

form, are developed for a general, three-dimensional body

which undergoes large displacements, large strains, and

nonlinear material behavior. The various analysis options

and finite element types included in the program are all

obtained from this mathematical basis, either directly or

as special cases. The material constitutive laws included

in MAGNA are also described in detail.

-.
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2.1 CONTINUUM EQUATIONP OF MOTION

The principle of virtual work is used in the following to

obtain the governing incremental equations for a three-dimensional

structure undergoing large elastic-plastic deformations. A

Lagrangian description of motion, in which all kinematic

quantities are referred to the initial configuration of the

structure, is employed. The development, which is similar to

that presented in References 1 and 2, accounts for the effects of

materially nonlinear behavior as well as geometrical nonlinearities

due to large displacements and large strains.

2.1.1 Principle of Virtual Work

Consider a body whose initial position and state

are denoted by C0 , and in which Cartesian coordinates X. are

assigned to a generic point P as shown in Figure 2.1.1. At an

arbitrary time during the subsequent deformation of the body,

denote the current configuration by C1 and the position of P by
11

x..* The principle of virtual work 3in state C 1 is written as

I (lij lij 0P1Ui 6ui)dV =

V0

6ui dV + it 6u i dA, (2.1.1)
ovo v

0 0 a

in which a left subscript denotes the configuration, and all

kinematic variables are referred to the geometry in state C0
The integrals extend over the original material volume V , and

its traction boundary 0 W. Differentiation with respect to time

is indicated by an overdot. Inertial effects have been

4I introduced in Equation 2.1.1 as body forces in the D'Alembert

sense.

Some discussion of the force and deformation quanti-

ties in Equation 2.1.1 is in order, to identify the appropriate

2.1.1

!



- CY-

I4

0

04.0

0

0

0-0

--4-
ax

o2.1.



measures for a Lagrangian description of motion. Displacements

Su are resolved in the directions of and the corresponding

strains are given by the Green-Saint Venant tensor,

= j (u. + u. + u , (2.1.2)
S1i,j I j,i I k,i lUk,j)

where differentiation is performed with respect to Xi -

The stress measures laij are Cartesian components of the
4

pseudo-stresses defined by

a~i Y1 (2.1.3)1 ij 1 ij

in which 1. are the second (symmetric) Piola-Kirchhoff
51 i3

stresses , and /G is the determinant of Green's deformation

tensor, in state C1 :

G 2 (2.1.4)ax.II
The l ij are interpreted as forces per unit of undeformed area,

rotated by the local deformation, which occur in the deformed

state. The foregoing stress and strain quantities are

conjugate variables in the sense that the tensor product

lij icij is a true measure of the internal work per unit of

volume in the reference state4 . The prescribed body forces

f and surface tractions ti represent the applied forces

acting in state C1 per unit initial volume and area,

respectively.

Equation 2.1.1 can be recast in a more convenient

O form using the deformation gradients 3xi/aX j , as

(a.. a 6u + PU6 dJ ii Xki k,j oli 5u.)dV =b , 1

V
0

--
6 u~ dV + f1i 6u~ dA. (2.1.5)

0V  0W
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2.1.2 Incremental Principle of Virtual Work

For the purpose of obtaining an incremental form

of the virtual work equality, it is necessary to compare two

adjacent states of equilibrium whose difference corresponds

to a small increment of time or loading. Consider a

neighboring configuration C2 , in which the virtual work

expression is

Zki 6 Uk, + pi~ui)dV=(2 ij Zk,i 6uk j +oP2 Ui6 d

0 V

2f i 6ui dV + f2 6ui dA, (2.1.6)

0 V0 a

and z. are the new coordinates of the point P. As before, all

quantities are referred to the initial state.

The increment of deformation between states C1

and C2 is characterized by the displacements

ui = 2ui - lui . (2.1.7)

Similarly, the incremental strains and stresses are denoted by

Cij and aij respectively; the internal virtual work per unit
volume in state C2 can therefore be restated as

2 aij Zk,i 6u = (laij+ij)(xk,i +u k,i) 6Uk,j (2.1.8)

and Equation 2.1.6 becomes

E

f [(laij+ij )(xk ,i + uk ,i )
6 uk ,

j + opi(lii +Ui)6u
i]dV

V
0

= 2~. 6ui dV + 2ti 6u dA. (2.1.9)
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Li

The incremental accelerations ii. have been obtained from the

relations

1 1 = x. + i = u ii . . (2.1.10)

Subtracting the virtual work equalities for the two neighboring

configurations (Equations 2.1.5 and 2.1.9) yields

J {lo. k.+ ~.(xkl+uk) 6uk PU ii6u} dV
f [l ij Uk,i + 'ij (k,i+Uk,i) ] Uk,j + oP i U } d

0

f 6 u. dV + t.6u. dA ,(..1

V a
0 0

where

i 2i li

ti 2 - i 1ti (2.1.12)

are increments of body force per unit reference volume and

surface traction per unit reference area, respectively. Using

the identity

1
a ij x~ Ukj -2 -i 6(u. .4-u. i

2 ij 1lk,i Uk,j 1k,jUk,1

which is true whenever the tensor aij is symmetric, the

incremental virtual work equality (Equation 2.1.11) is

rearranged as follows:
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J' t5ukikj)+ a 1 6(uij j+ukiuk ]
21l ij 6k,iUk,j) 2 °i3  ij j,i+Uk,i k,j )  -

cv

1+ 2 (Uk,i kj+lUk,j ki +o Ui

f 6u dv + fti 6u . dA. (..'

v av
o 0

The displacement terms occurring in the volume integral of

Equation 2.1.14 can be identified as contributions to the

incremental strains, E... Defining the total increment of
13

strain between configurations C1 and C2 as

Cij Ei ij = eij + iij (2.1.15)

with eij linear, and n nonlinear, in the increments of

displacement leads to the definitions6

e =-(u .+uj+ +
eij 2 (Uij j,i+ 1 Uk,i Uk,j +1 Uk,j Uk,i

! 1
nUkiU (2.1.16)

Equation 2.1.14 is then simplified to

f ij 66ij + loij 6nij + opii.6ui) dV

V
0

Jf. 6u.i dV + t. 6u dA. (2.1.17)

peetThe cosiuierlaincniee in the

presnt eveopmnt ssues hat atanyinstant, a linear

2.1.
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relationship exists between the increments of Lagrangian

stresses and strains,

ij= Dijkl(Ck£ - ak£ T) . (2.1.18)

Here ak represents the thermal expansion tensor, and T is the

temperature change from the previous configuration. In general,

the constitutive tensor D ijk£ depends upon the history of

deformation and the temperature at a point. Specific forms

of Equation 2.1.18 are considered in Section 2.3.

Introduction of the incremental constitutive

equation, Equation 2.1.18, into the incremental principle of

virtual work yields the incremental equations expressed solely

in terms of displacement variables,

J [Dijk9, (k-akXT) 6E ij + lij6qij + opui6ui] dV =

0V

f. 6ui dV + f 6u. dA, (2.1.19)

0 90

in which e.i and n. are defined by Equations 2.1.15 and 2.1.16.

2.1.3 Linearization of Equations of Motion

The numerical solution of Equation 2.1.19 is

complicated by the appearance of quadratic and cubic terms in

the incremental displacements u.. To obtain an efficient

solution procedure for the incremental motion, it is useful to

linearize the incremental virtual work equality. Linearization

of Equation 2.1.19 involves the following considerations:

e expressions of higher order than linear

in ui are neglected; the nonlinear strains

-ij in Equation 2.1.19 are therefore

approximated by ei. (Equation 2.1.16),
1J
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" the constitutive tensor D. is assumedijktto be constant for the increment,

" dependence of the body forces and surface

tractions upon the incremental deformations

for a single time or loading step is

assumed to be negligible.

Under these assumptions, the linearized equation

of virtual work becomes

f[Dijkk£(ekk-QkT) 6eij + 1 aijaij + oPi6ui] dV =

0 V

J u dV + 6ui dA (2.1.20)

o 3o0 0a

.2.1.4 Equilibrium Corrections and ITeration

Using the linearized virtual work equality

(Equation 2.1.20), a nonlinear solution can be performed as

a sequence of linear subproblems; however, if no control is

exercised over the accumulated truncation errors, the computed

solution tends to drift rather quickly away from the true

nonlinear solution. Consider, for example, a piecewise linear

solution in which an approximate result has been obtained for

an intermediate state C From Equation 2.1.1, the imbalance

in virtual work in C1 is simply

61R= fi i dV + i udA

0V  0 aV

• -I(Iij 1£i + ~lU 6ui dV . (2.1.21)

0v
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Since 6 R = 0 in an exact mathematical sense, Equation 2.1.21
* 1

provides a measure of error in the computed solution in

configuration CI . As such, the residual 61R can be employed as

a means of a posteriori correction for the effects of

linearization in the numerical analysis. To this end, the

error 61 R (Equation 2.1.21) is appended to the linearized

virtual work expression (Equation 2.1.20), as follows:

Dijk (e -a T)6ei + ai j ij + 0oPiui dV =

V
0

{2i6u. dv +ofE 6u~ cA
0 0

-((l.ij~~C j + OP i 6ui) dV . (2.1.22)

1 Jll jl pi 1

0 V0

The correction included in this augmented equation of virtual

work may be viewed as an application of reactions to the

out-of-balance forces observed in state C1 , which tends to

return the computed solution to the true conditions of

nonlinear force equilibrium. By repeating this correction

at a fixed value of time or loading, errors in the computed

solution can be corrected to within a predetermined tolerance.

This procedure, called equilibrium iteration, is discussed in

detail in Section 4.3.

2.1.9
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2.2 DISCRETE EQUATIONS OF MOTION

The incremental principle of virtual work as given by

- Equation 2.1.22 describes the static or transient behavior

* "of a general, three-dimensional continuum experiencing

both geometric and material nonlinearities. In the following,

the construction of a finite element discretization of the

* "virtual work equality, and the assembly of finite elements

to form a complete structural model, are discussed.

2.2.1 Element-Based Virtual Work Equations

To obtain the appropriate continuum equations for

a single finite element, the integrals in Equation 2.1.22 are

expressed in terms of contributions from individual elements,

as

f J[Dijk (ek-'k£T'seij + iij 6ij + oPUi6u]dV=

oe

pro e e
f2?i6u.i dV + f uid

oe o e

L e (laij61 Cij + op1 i. 6ui) dV (2.2.1)
eV
o e

Such a decomposition into element contributions is valid,

Rprovided the displacement fields in adjoining elements are

at least continuous1 . The interpretation of boundary integrals

in Equation 2.2.1 is consistent with that of the global

equation of virtual work (Equation 2.1.22). That is, the

* surface tractions t are understood to include prescribed2 i
external forces only, and the integrals on o3 Ve are therefore

nonzero only on the true external boundaries of the structure.

2
o i 2.2.1
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2.2.2 Finite Element Discretization

The discrete governing equations corresponding to

Equations 2.2.1 are obtained by the assumption of an

:" approximate state of displacement within each individual

finite element. The displacement state for a single element

has the form

Tu(Xi,t) = NT(xi) U(t) , (2.2.2)

T
in which N (Xi) represents a matrix of interpolation functions,

and U(t) is the vector of nodal displacement parameters. In a

particular state k, the total nodal displacement vector is

denoted by kU' so that the increment in nodal displacements

between states k and k+l is

U (k+l)- kU  (2.2.3)

Strain-displacement equations can be written

directly in matrix form for the linear part of the incremental

strains (eij in Equation 2.1.16),

e kB A (2.2.4)

Here kB is a function of the deformation gradients in state k,

and A is a vector containing the incremental displacement

gradients. To fix ideas, consider the special case of plane

deformation, for which

Te = [ e e 2e ] , (2.2.5)4- y xy

B 0 kuuy 0 (l+ V,

L k0U, (l+kU, x )  (+kV,y k V, x (2.2.6)
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*and

AT = U,x U,y v,x V, J (2.2.7)

By virtue of Equation 2.2.2, the displacement

gradients can be written as

A = cTNTu (2.2.8)

Tin which C is a matrix of linear, differential operators,

and therefore

e cTTu (2.2.9)

for the increment from state k to state (k+l).

Although the nonlinear contributions to the

incremental strain tensor (nij in Equations 2.1.15 and 2.1.16)

cannot be written explicitly in matrix form, the quadratic

form kaij nij appearing in the incremental virtual work equality

is easily rewritten in a convenient matrix notation. Let kS

*" denote the matrix of stresses in configuration k,

k F11 k0 1 k a13-

= a12 ka22 ka23

L k 13 k 23 k 33 (2.2.10)

and define

[: 0 0

Sk S

2.2.3
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Then,

2kijij AS* A (2.2.12)

• .. or, using Equation 2.2.8,

T TNT
2 ij ij N C k _ N N U. (2.2.13)

With the foregoing definitions, the evaluation of

the required element matrices and load vectors is straightforward.

Corresponding to the terms in Equation 2.2.1, one can identify

the tangent stiffness matrix,

Ke 3N T D T NT ) dV, (2.2.14)O=T (- = -- = -
V

o e

and thermal load vector, .

-ek B kPTD kT) dV , (2.2.15)

V
o e

the geometric stiffness matrix,

Ke = C NT) dV , (2.2.16)

Vo e

and the element mass matrix

Me = fyPN NT) dV (2.2.17)

o e
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The consistent loads due to prescribed body forces and surface

- tractions are given by

°eeFe dV (2.2.18)

o Ve

and

kT  = (N dA . (2.2.19)
. 9Ve

o e

Equilibrium correction terms due to the internal forces become

• ~ = ( CE=B S) MeU
- = = k- (2.2.20)

,V
o e

2.2.3 Assembly of Finite Elements

Using Equations 2.2.14 through 2.2.20, the

incremental principle of virtual work (Equation 2.2.1) can be

written in discrete form as

" 6uT (Ke + Ke)U + SUT Me =

e

S UT (Fe + Te + 8e - Ie) , (2.2.21)
e

where all terms are understood to be evaluated at the state k.

The summation over the elements indicated in Equation 2.2.21

implies the enforcement of displacement compatibility on all

interelement boundaries, as noted in Section 2.2.1. In

* practice, the enforcement of these conditions takes the form

of an assembly of the element matrices, with the element

2.2.5



stiffness and loading terms at coincident nodes being summed

in a consistent manner.

The nodal degrees of freedom U for an element are

related to the global vector of unknowns X by

U = X , (2.2.22)

in which A is a Boolean matrix determined by the topology of

the finite element model. Assembly of the individual finite

elements to form the global discrete model is therefore

represented formally by the equations

[ 6uT (K +K )U=6XT 'K + KG ) (2.2.23)

eU Me)XX
6u eU 6 TMX (2.2.24)

e

and

6uT (F + Te + e _ Ie) = XT (F + T + 0 1 I) , (2.2.25)
e

in which

T e
T =T (2.2.26)~e

and so on.*

The matrix equations of motion for the assembled

finite element model are obtained from0

*Note that the relationship stated in Equation 2.2.26 is

only symbolic; the actual assembly of elements is performed
using certain tables within the program, which accomplish

* this procedure much more efficiently.

2.2.6
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6 xT T + KG)X + M X - F -T - 0 + 1 0 . (2.2.27)

In view of the fact that the discrete virtual displacements
6T are arbitrary and independent, their coefficients must

vanish; the semidiscrete equations of motion are therefore

+ K + M X = F + T + 6 - I (2.2.28)

The discretization of Equation 2.2.28 in the time domain, as

well as procedures for numerical solution of the equations

for several classes of problems, are addressed in Chapter 4.
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2.3 MATERIAL CONSTITUTIVE DESCRIPTIONS

The material stress-strain relationships used in MAGNA

are incremental in nature, in keeping with the nonlinear

analysis procedures described in Chapter 4. The constitutive

descriptions are therefore of the hypoelastic type1 , in which

increments of stress are linearly related to increments of

strain,

(Yij3 kDijmn Emn (2.3.1)

where k denotes the current state. Stress-strain laws for

"* specific classes of materials are discussed in the following

sections.

2.3.1 Isotropic Elastic Material

For an ideally elastic material, the

relationship between stress and strain is given by Hooke's
aLaw2,

kij oD m . (2.3.2)

k oj0ijmn kmn

That is, the stress-strain law of Equation 2.3.1 may be

interpreted either as a total or incremental equation, and

the constitutive tensor oDijmn is unaffected by the history

of deformation.

When the material is isotropic (does not exhibit

direction-dependent behavior), the number of independent

parameters which determine D reduces to two: the

4 extensional modulus, E, and the Poisson's ratio, v. In three

dimensions, the isotropic elastic material law can be

represented in matrix form by

a D , (2.3.3)

2.3.1
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in which 14

a = [011 022 033 o23 a13 G121 (2.3.4)

[1 £22 33 23 2£13 2£12] (2.3.5)

and

(l-v) v v 0 0 0 7
v (1-v) v 0 0 0

D=-E v V (l-v) 0 (23 6)
= (1+v) (1-2v) 1-2v".0 0 0 2,-- - 0 0

(1-2v. 0
o 0 0 0 2

0 0 0 0 0 -2v-

In the case of plane deformation, the number of

stresses and strains which are independent is reduced to

three,

OT = (aii 022 0121 (2.3.7)

T
C E [11 £ 22 2 E121 .(2.3.8)

For the plane strain problem, the conditions l = £23 = £33 =0

are imposed, yielding the stress-strain matrix

I(l-v) v

E
D ( (1-V) 0(1+v)(l-2-.

L (1-2-)J (2.3.9)

2.3.2
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---- -- a.*

In addition, the normal stress is determined by the condition

33 0,

a3 v(O 1 1 + a22) . (2.3.10)

In plane stress analysis, the restrictions are1 = a23 = a33 0,

and

•1 V 0

D E 1 0

D=1"2  0 0 (- ) (2.3.11)

2.3.2 Initially Isotropic, Elastic-Plastic Material

For most metals and a number of other homogeneous

materials, nonlinear constitutive behavior (in the form of

strain-hardening plastic deformation) can be described using

WT a hypoelastic stress-strain relationship having the form of

Equation 2.3.1. The elastic-plastic material law implemented

in MAGNA is based upon an isothermal, time-independent theory

of plasticity, using the von Mises yield criterion and its

associated flow rule. Strain hardening is considered usin-

isotropic, kinematic, and combined hardening rules.

To improve the computational efficiency of the

elastic-plastic analysis, the formulation is based upon

assumptions which are appropriate for large displacement,

large rotation, and small strain problems . In particular,

the constitutive equations are written directly in terms of

the second Piola-Kirchhoff stress and Green-St. Venant strain

tensors, and an additive decomposition of the elastic and

plastic Green's strains is assumed.

The general form of a yield criterion in which the
4

yield locus is permitted to expand, contract, or translate is

2.3.3
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F(a. -a .. ) k = 0 . (2.3.12)

Here a is the stress tensor* a.. describes the center of the13 13

* yield surface in stress space, and k is a measure of the

diameter of the yield surface. In general, both a.. and k are

dependent upon the history of inelastic deformation at a material

point. The von Mises yield function is used in the present

development, so that
5

3
F (a! - a! )(o". - ) . (2.3.13)2oi. i- ii3 j ij

The notation ( ) indicates deviatoric quantities, for example,

Gij = j3akk (2.3.14)OI  Oij 13 kkij

where 6.. is the Kronecker delta. It is useful to note that,

due to the form of Equation 2.3.13,

_F F (2.3.15)

iJ iJ

.from which the differential of F can be written as

dF = F (do - d. ) (2.3.16)dF .(di~j ij""
13

The derivatives 3F/a .. are given by

For clarity, left subscripts indicating the

current state are omitted throughout this section, and
differential stresses and strains are simply denoted by
da. and de.
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=3(o - '.) a (2.3.17)

13

The associated plastic flow rule corresponding to

Equation 2.3.12 is

d(2.3.18)

in which dA is as yet undetermined. Components of the
incremental plastic strain are represented by deij.

Consistent with Equation 2.3.18, the projection

of a stress increment do.. onto the yield surface normal is

proportional to the projection of the corresponding increment
P 4of plastic strain, dE.. Therefore13

do. i H d.
i ' i " ij (2.3.19)

where H is a strain-hardening parameter determined from

uniaxial stress-strain data. In particular, specialization

of Equation 2.3.19 to the one-dimensional case gives

2 do EEt
H =--- = t

3 P (E-E (2.3.20)

where Et is the instantaneous slope of the uniaxial stress-

strain curve.

The increment of stress can be related to

* increments of strain by assuming the additive decomposition of

elastic and plastic strain increments depicted in Figure 2.3.1;

thus,

* doij = Ei (de - dE ) , (2.3.21)
ij ijn n mn
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da

E delastic

d plastic

.p

IE

• Figure 2.3.1 Decomposition of Incremental Strains into
Elastic and Plastic Components.
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where Eijmn is the elastic constitutive tensor. With this

assumption, it is now possible to determine the constant of

proportionality dX in Equation 2.3.18. By multiplying Equation

2.3.21 by OF/kij, using Equation 2.3.19 to substitute for

.3 i F/aci and eliminating dE . by means of Equation 2.3.18,

the final result is

E.. dcijmn mn 3a..

= 13 , (2.3.22)

(Ei F + H -F F
ijmn ac ao Cy a Cy

mn ..

Equations 2.3.18 and 2.3.22 are next used to eliminate the

plastic strains, de n, in Equation 2.3.21, yielding the

required relationship between incremental stresses and strains,

do.. = D. . de , (2.3.23)ij ijmn mn

in which

E.. F 3FEijk£k£ p Eapqmn ( 4

Z D..pq (2.3.24)
ljnn ijmn aF 3____F + F DF

aakl klpq Da3y ak1 pq +  Okl aOkl

' 6
Equation 2.3.24 can be written in a more convenient form, 

as

D. =E. - a(cG! a -c~)No -cO) ,(2.3.25)
ijmn ijmn 1) ij n m

where 8 is defined by

S8 3G(2.3.26)
(1 + H/2G)k

Note that, in the notation of the present section, this
is the form corresponding to Equation 2.3.1.
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for inelastic response (=0 if the material behaves elastically).

%" Here G is the elastic shear modulus, and H is the strain-

hardening slope defined in Equation 2.3.20.

Equation 2.3.25 and 2.3.26 define the instantaneous

material law corresponding to Equation 2.3.1. However, the

parameters k, H, and aij' which describe the strain-hardening

response of the material, must be determined separately in some

manner. The hardening slope (H) is obtained from uniaxial test

data, as indicated in Equation 2.3.20. In the present development

the yield surface size (k) and components of translation (ai)

are determined by one of three hardening rules:

- isotropic hardening (uniform expansion of the
yield surface),

- kinematic hardening (arbitrary translation
of the yield surface), and

- combined hardening (both expansion and
translation of the yield surface).

The isotropic and kinematic rules are shown in Figure 2.3.2,

in a two-dimensional stress space. The above three descriptions

of material strain hardening are equivalent when all components

of stress are increased proportionally and monotonically, but

*produce quite different effects for problems involving

non-proportional or reversed loading. A graphical comparison

* - of the methods is shown in Figure 2.3.3, for the case of

reversed loading in the plastic range.

The kinematic hardening law is obtained from
7 8.* Ziegler's modification of Prager's kinematic rule , in which

the incremental components of yield surface translation are

dai = dp (aij - ij ). (2.3.27)
* iJ

Noting that, since k = constant (no expansion of the yield

surface), the condition that the stress state remain exactly

on the yield surface becomes

2.3.8
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ISOTROPIC HARDENING

S2S

00

KINEM'ATIC HARDENING

Figure 2.3.2 Isotropic and Kinematic Hardening Rules
in a Two-Dimensional Stress Space.
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(doij - daij) i 0 . (2.3.28)-ij

Combining these two equations, dp is obtained

from

dij o.

d (. 13 F (2.3.29)-- ( ij-aij) 30i j

For purely isotropic hardening (aij=0) , the

condition that the stress state lie on the yield surface becomes

DF da.. 2k dk (2.3.30)acoij 13'" "

and the uniform yield surface expansion is therefore

dk 1 DFda (2.3.31)
1)

A combined isotropic/kinematic hardening rule, as

suggested by Tanaka9 , is also used for elastic-plastic analysis.

With this method, both translation and expansion of the yield

surface is permitted. The relative magnitudes of the translation

and expansion are determined by a parameter y, such that y=O

corresponds to ideal kinematic hardening, and y=1 to fully

isotropic hardening. In this case, the yield surface expansion

is given by

.0 dk -d (2.3.32)2k Do ij 13

and the translation is obtained from Equation 2.3.27, with
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d2 ( _F d .. (2.3.33)
i 13

Negative values of y can also be used in the combined hardening

law, to model the yield surface as simultaneously translating

and contracting.

H During an incremental analysis, yielding of a

I. material point may occur in the middle of an increment of loading.
K It is therefore desirable to account for the rapid change in

constitutive behavior by analyzing the elastic and elastic-

plastic portions of the increment separately. To accomplish

this, it is necessary to adopt a scaling algorithm which

determines that fraction of the current increment which is

sufficient to cause initial yielding at a point. The procedure

suggested by Yamada 6 is used here, and is outlined briefly

below.

Consider a single increment of loading, for which

the initial elastic stress state at a point is denoted by P. O4'

The state at first yielding is represented by Q, and the final

stress state by R, as shown in Figure 2.3.4. The equivalent

stress at P, a, is assumed to be known. Consider next a point

S, which falls on the radial path OP, and lies on the same yield

locus as point R. Then, the equivalent stresses at R and S are

equal, and given by

a + do=j (01 + do! (o! + do! (2.3.34)
2 i

The stress increment required to cause yielding is represented

by PQ, letting

I-61= r 
(2.3.35)
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INITIAL YIELD SURFACE

SUBSEQUENT YIELD SURFACE

,I

STRESS PATH

Figure 2.3.4 Scaling of Stress Increments to the
I4 Yield Surface.
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0

the associated components of stress are simply (a. + rdo. ).

• :The value of r to cause initial yielding can therefore be

determined by solving

2 3

k (j + rdol)(W. + rdcr!.) (2.3.36)
2 1] 1j i

for r on the interval [0,11.

The above formulation of initially isotropic,

elastic-plastic material behavior is implemented in MAGNA using~4,10
a subincremental method, which permits a very accurate

determination of the material behavior even for large increments

of loading. Each load increment is divided into a number of

smaller intervals for treating the calculation of material

nonlinearities, with this interval size chosen so that a

specified increment of strain is never exceeded. Since the

subincrement sizes are chosen independently at each integration

. point of the finite element model, regions of rapidly increasing

strain are automatically treated in finer detail in the

analysis.

2.3.3 Orthotropic Elastic Material

The elastic constitutive properties of an

orthotropic material are completely specified by nine

*.•.independent constants:

- Young's moduli El, E2 , E 3 ,

- shear moduli G1 2, G1 3, G2 3 , and

- Poisson's ratios v1 2 ' V 1 3 ' V2 3

These properties are defined with respect to the preferential

axes of the material (denoted 1,2,3), which in general do not

coincide with the reference coordinate axes of the structure

under consideration (referred to here as x,y,z). The notation

for the basic orthotropic properties used above follows that

* of Jones that is, Ei refers to the extensional stiffness
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along direction i, G describes the engineering measure of

shear stiffness in the plane (i,j), and vi, is the lateral

contraction in direction j due to a unit longitudinal extension

in direction i.

Conditions upon the orthotropic material

constants, which are useful in verifying that material

properties have been specified correctly, can be summarized

as follows. From the symmetry of the compliance matrix

(inverse of stiffness), it is required that

V.. V..

E. E. i,j = 1,2,3. (2.3.37)

The positive definiteness of the stiffness and compliance

matrices leads to the conditions

E. > 0 ;i 1,2,31

GijG > 0 ; i,j = 1,2,3 (2.3.38)

and

1-v ijvji) > 0 ; i,j = 1,2,3

S= 1 - - - V - 2v 2 1v3 2v1 3 > 0. (2.3.39)

The complete stress-strain relation of an

orthotropic material can be written with respect to the

principal axes of the material as

--

.4
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0 ..

oI  D11  D1 2  D13 0 0 0

G2  DI2 D22 D23 0 0 0 E 2

D D D 0 0 0 (2.3.40)
3 13 23 33 3

T 23 0 0 0 D44 0 0 Y23

T1 3  0 0 0 0 D55 0 Y13

12 0 0 0 0 0 D66  Y1 2

The constants D.. are defined by13

D 11= (1 - 32)El/A

D12 = (V1 2 + V32VI3)E2/A

D13 = (V1 3 + VI2V23)E3/A

D 22= (1 - I331)E2/A

D = (V2 3 + V2 1 V1 3 )E3/A (2.3.41)

D3 (1 -V

D44 G 23

D55 G 13

D66 G 12

and A is as defined previously.

The above stress-strain relation is used in linear and

geometrically nonlinear analysis with MAGNA. In nonlinear analysis,

the given constitutive equation is presumed to hold between the

second Piola-Kirchhoff stress and the Green-St. Venant strains

*, in Cartesian coordinates. This description is consistent for

small strain situations, in which the Piola-Kirchhoff stress

corresponds closely to the nominal (engineering) stress.

In general, the principal axes of an orthotropic

material do not coincide with the reference axes defined for

the total structure under consideration. Thus, it is necessary
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to transform the orthotropic stress-strain relation to the

analysis reference coordinates prior to assembly of the finite

element approximation.V Consider a material having principal axes xi ,

oriented arbitrarily with respect to reference coordinates

X. Let the relationship between these two sets of coordinate

axes be

x. = a. .X. . (2.3.42)

That is, a.. are the direction cosines of the direction x. with

respect to X.. The tensorial values of stress and strain in
3

the two systems are therefore related by

Sij aikajk

C i a i aijt. kk (2.3.43)

where primed quantities refer to the principal material

directions. These can be expressed in matrix form as

a =T a'

E =T c' (2.3.44)

Since the stress and strain vectors used for computational

purposes include the shear terms only once each, the right half

of matrix T is modified to provide the correct transformationi

of the shear stress and strain quantities.

Write the stress-strain relation of Equation

2.3.40 as

a =DY (2.3.45)
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where y' refers to the engineering strains. Note that the

engineering strains are related to the tensorial strains by

. = .8 ~ (2.3.46)

in which

= •21 (2.3.47)

Thus the stress-strain relation may be written in terms of

the tensors a', c as

o = D 0 E - (2.3.48)

Transforming the stress-strain vectors to global coordinates

gives

-2 -1
T =D'0 T s(2.3.49)

or

a T D' T-1  - = D y - (2.3.50)

Therefore, the engineering stress-strain coefficients must be

transformed by

-1 -1D = T D' T . (2.3.51)

However, it is straightforward to show that
11

1 T - = Tt (2.3.52)

so that the transformation of D to the analysis coordinates

0 has the simple form

D = T D' Tt (2.3.53)
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2.4 SURFACE CONTACT ANALYSIS

In many structural analyses, support conditions and applied

loading distributions can be specified a priori with sufficient

accuracy for engineering purposes. However, in some cases

boundary conditions may involve appreciable relative motion

between the structure and supports, or a loading distribution

may be the result of mechanical contact between objects. Still

other situations may involve constraints which are applied only

after a certain (finite) displacement has occurred. For each of

these situations, the details of the support conditions and/or

the loading involve nonlinearities, which are best taken into

account as a part of the finite element solution.

Such situations can be considered with MAGNA using the

surface contact analysis option, which includes the nonlinear

effects arising from mechanical contact between two or more

portions of a finite element mesh. By defining one of the

contacting bodies as a rigid surface, a variety of other nonlinear

support situations can likewise be included in the numerical

- e bolution.

2.4.1 General Description of Contact Solution

Consider two bodies which, in their current

configurations, occupy the regions V1 and V2; the corresponding

boundaries are denoted by 9V1 and aV2 (Figure 2.4.1). If the

two bodies are in contact with one another, their common

boundary is

r = Vn V2. (2.4.1)

When r = 0, the usual displacement and stress boundary

4 conditions apply. If frictionless contact occurs, however, the

displacements and tractions on the surfaces of the two bodies

are related by

"T' 1n= T2 *n 2 < 0 on r (2.4.2)

[ . ' 2"2 = 0 on F (2.4.3)
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Figure 2.4.1. Contact between Three-Dimensional Bodies.
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Here T. represents the Cauchy surface traction vector on 3Vi, u.

the corresponding displacement, and n. the outward unit normal~1

-- - to surface i.

In the numerical solution, the region of contact r

is not determined explicitly; only the condition

(V1 - VI )  V = 0 (2.4.4)

which states that interpenetration of the two bodies is not

permitted, is used in the analysis. Relevant portions of the

surfaces aV1 and 3V2 (and others as necessary) are represented

in a piecewise, isoparametric form, and the regions V i are

defined implicitly by these surface definitions. Note that,

since V. is defined in a piecewise fashion, situations in which

two portions of a singly-connected body come into contact can

also be considered.

Since the analysis is performed using a displacement

formulation of the finite element method, the essential constraints

for the contact problem are those of Equation (2.4.3), and only

these conditions are imposed directly. The force equilibrium

condition on common surfaces, Equation (2.4.2), is to be sat4 fied

as a consequence of the iterative solution method in which ail

unbalanced forces are systematically eliminated. Equation (2.4.2)

is considered explicitly only as a condition for releasing

contact constraints when load reversal or rebounding occur in

the solution.

The essential elements of the numerical analysis

of contact used in MAGNA are as follows. First, surface regions

which represent potential areas of contact are defined. At

each iteration cycle, each possible combination of surface

*O segments is screened using simple, conservative tests to

eliminate those pairs which are obviously not in contact. For

remaining pairs of surface segments, a more precise determination

of the relative positions is then made. Finally, when a contact

2.4.3
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"" condition is detected, constraint equations are formulated which

suppress all relative motions normal to the contact surface, or

restore the displacement condition of Equation (2.4.3) in the

event penetration has already occurred. Each of these steps is

discussed in detail below.

2.4.2 Definition of Potential Contacting Surfaces

The first step in the contact analysis is the

identification of those surfaces between which contact might

occur during the course of the numerical solution. Each such

*surface is defined by a grid of special surface elements, which

for the boundaries of flexible bodies simply correspond to

external faces of three dimensional structural elements (Figure

2.4.2). A completely rigid surface is represented by surface

elements alone, connected to node points whose motions are

suppressed or otherwise prescribed.

A typical surface element configuration is shown

* .in Figure 2.4.3. The element may have from four to nine connected

nodes, depending upon the type of structural element to which

it is connected. For rigid boundaries, the number of nodes

depends upon the geometry of the surface to be defined. A rigid

half-space, for instance, can always be defined using a single

surface element having four nodal points.

Once the surface element geometry has been defined,

*surface element sets are defined, each of which consists of a

specified range of elements. Combinations of surface element

sets which represent potential pairs of contacting surfaces are

identified in an interaction table. All possible combinations

of nodes and elements corresponding to nonzero entries in the

interaction table are to be examined for possible contact at

each iteration cycle of the solution. As an example, consider

the drawing problem shown in Figure 2.4.4. Four sets of surface

elements are defined, and the interaction table is defined as in

Table 2.4.1. By convention, the higher-numbered surface of a

pair is always considered the master surface, while node points

2.4.4
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Figure 2.4.2. Typical Surface Contact Element.
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Figure 2.4.3. Nodal Pattern of General Surface Contact Element.
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0=surface elemient set

Figure 2.4.4. Definition of Surface Element Sets for a Drawing
Problem.
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TABLE 2.4.1

pINTERACTION TABLE FOR DRAWING EXAMPLE

" Master Surface

1 2 3 4

-.' 1 - 0 1 0

2 - - 0 1
U4

w) 3-- 01>I

- = Entry Not Possible

0 = No Contact Considered

1 = Potential Contacting Surface Pair

2.4.8
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in the lower-numbered set are considered slave nodes in the

formulation of displacement constraints. Generally, the boundary

of the stiffer of two bodies is defined as a master surface,

although this is not essential. Note also that a given surface

- .may represent a master surface in one interaction table entry,

and a slave node surface in another.

2.4.3 Screening of Possible Contact Conditions

The effectiveness of the contact analysis depends,

at least in part, upon the ability to eliminate all but a few

possible combinations of nodes and elements from consideration

with a relatively small amount of computation. In practical

analyses, it may be necessary to examine hundreds of potential

contact conditions before isolating the few which are truly

active. For this reason, an approximate screening procedure is

used to eliminate those node/element combinations which obviously

need not be considered in detail. When this procedure fails,

a more accurate determination of the relative positions of the

surfaces in question is undertaken.

In each iteration cycle, all possible slave node/

master surface element combinations, as defined in the interaction

table, are examined for contact. In each master element, a local

rectangular coordinate system x is constructed which is

approximately aligned with the natural coordinates (r,s,t) of

the element shown in Figure 2.4.3. The current position of each

node of the element is determined in this system, as well as the

maximum and minimum values of xi; i=1,2,3. The current location

of each slave node, denoted by Xi, is also computed in the local

coordinates. As an initial check, any master/slave pair for

which one of

4p

XP > max(xi) + -[max(x min(xi)]; i=1,2,3 (2.4.5)

X < min(x) - [max(x - min(xi)]; i=1,2 (2.4.6)
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is satisfied is rejected unconditionally. Typically, cl 0.1.

This simple test eliminates most of the potential slave nodes

which are obviously out of range of the master element. If

neither of Equations 2.4.5 or 2.4.6 are satisfied, the coordinate

* "values in the local coordinate system are used to estimate the

natural coordinate values (r,s) at which the normal to the

surface passes through the slave node in question.

Using the initial estimate so obtained, a Newton-

Raphson solution is performed to determine the position R(r,s)

whose surface normal vector

aR aR / a
n = X (2.4.7)

intersects the given slave point. The condition to be satisfied

is

R = R(r,s) + dn (2.4.8)

in which r and s are to be determined. Figure 2.4.5 shows the

geometry of Equation 2.4.8 for the simple case of a planar

master surface and an initial trial point r=0, s=0.

From the solution of Equation 2.4.8, the orientation

of a potential slave point with respect to the master surface

- element is known precisely. The slave point is rejected on the

* 'basis of this solution if the inequality

max [Irl-l, IsI-l] > e2 (2.4.9)

is satisfied, in which c 0.001. Points for which r,s are

4 very slightly beyond the boundaries of the master element are

retained, since discontinuities in the slope of adjacent elements

*might otherwise permit a node to penetrate the master surface

without beinq detected.

2
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Figure 2.4.5. Solution for Relative Position of a Point and a
,S Surface.
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The remaining checks for determining whether or not

contact occurs are straightforward, since Equations 2.4.2 and

2.4.4 may be applied directly. In particular, if d < 0 in

Equation 2.4.8, interpenetration occurs and the appropriate

contact constraints must be applied. During iteration, previously

active constraints for which d becomes slightly positive are also

retained if the corresponding normal forces are compressive in

order to suppress artificial oscillations in the solution. For

similar reasons, previously active constraints for which d < 0

and the normal forces are very small and positive are also

permitted to remain active. Small fractions of the existing

element internal forces and of the current surface element size

are used to provide a measure of scale for force and displacement

quantities.

2.4.4 Application of Constraints

Consider next the case in which a slave/master

element combination has been found for which contact occurs.

Let d be the distance of the slave point from the surface

element along its normal at the point (r,s) as in Equation 2.4.8.

For the constraint equation, a generalization of Equation 2.4.3

is used which returns the slave node to the master surface in

the event that d < 0:

[u - u(r,s)]n + d = 0 (2.4.10)

In Equation 2.4.10, u is the incremental displacement vector of
p

the slave point, and u(r,s) is the incremental displacement of

the element at the position (r,s)

9
u(r,s) = Z Ni(r,s)ui (2.4.11)

•i=l 1(..1

4

where Ni (r,s) are the surface element shape functions. In the

present development, the above constraint is introduced into

the system-level equations via the penalty function

2.4.12



S[up.n u(rs).nl K d2  - u(r,s)].n (2.4.12).. .-2 ~ ~ ~= -[P

The left side of Equation 2.4.12 is quadratic in the incremental
nodal displacements u and u. and therefore represents a

-p -i
contribution to the stiffness matrix. he remaininq terms are

linear in u and u. and enter the incremental equilibrium
-p -

equations as additional "incremental force" terms. The penalty

factor K is made sufficiently large to enforce the required

constraint, while maintaining reasonably good conditioning of

the system of equations. In the current implementation of the

procedure, the value

K = 100 max(Kii) ; i=1,2,...,N (2.4.13)

is used, in which K is the most recently computed tangent

stiffness matrix and N is the number of degrees of freedom in

- the finite element model.

OT
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CHAPTER 3

FINITE ELEMENT LIBRARY

The MAGNA program contains a variety of finite element

types to permit the effective modeling of complex structures.

The element library currently consists of twelve element types,

which are summarized in Table 3.0.1. These elements are fully

compatible with one another, and can have arbitrary orientation

in three-dimensional space.* Thus, any two elements having

similar nodal patterns may be joined directly, with the

compatibility of displacements on common boundaries being

enforced automatically. Layered or sandwich structures, as

well as tangential joints between shells and solids, can

therefore be considered without the use of constraints or other

special joining techniques.

Each element in the MAGNA finite element library is

" available for both linear and nonlinear analysis. A summary

° - of the major analysis options available with each element type

appears in Table 3.0.2. Since the computations for nonlinear

elements are considerably more involved than for linearized

elements, MAGNA contains separately-programmed linear and

nonlinear versions of each element type. Therefore, no penalty

is paid when using the program for linear analysis.

The finite element library is discussed in the following

sections. Particular attention is devoted to the specific

strong points and/or limitations of each element type, and to

the proper selection of numerical integration rules.

The single exception is the axisymmetric solid element
KQ (Type 10), which is required to lie in the global X-Y coordinate

-plane.

3.0.1



TABLE 3.0.1

MAGNA FINITE ELEMENT LIBRARY

ELEMENT NUMBER OF DEGREES OF
TYPE DESCRIPTION NODES FREEDOM

1 3-D Solid 8-27 24-81

2 3-D Solid 8 24

Plane Stress/ 42
Shear Panel

4 Truss 2 6

Thin Plate 24
or Shell

6 3-D Solid 20 60

7 3-D Solid 8-20 24-60

8 3-D Solid/ 16 48Thick Shell

9 Plane Stress 4-9 12-27

Axisymmetric1- 0 4-9 12-27
10 Solid

11 Layered Plate 16 48
"4 or Shell

12 3-D Curved 2-3 12-18
Beam

3.0.2
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3.1 ONE-DIMENSIONAL CONTINUUM ELEMENTS

The one-dimensional bar or truss element (Element Type 4)

is a prismatic, axial-force member with arbitrary orientation

in space. Figure 3.1.1 shows the truss element, which is defined

- by the two connected nodes at its end points.

Both the geometry and the displacements of the bar are

represented by linear interpolation between the two nodes of

the element. Consequently, the axial strain and stress are

constant within an element, and all integrations of the element

properties (stiffness, mass, residual forces) are evaluated

exactly.

The truss element formulation includes full geometrical

and material nonlinearities, using the original configuration

as a reference state. Three-dimensional inertial effects are

included in the mass matrix formulation, to ensure correct

results in dynamic analysis with arbitrary orientations. A

lumped mass matrix is used in all dynamics problems with the

bar element.

Typical applications of the truss element include the

following:

- one-dimensional problems,

- cable structures,

- pin-jointed plane or space trusses, and

- modeling of spar/rib caps and posts in wing-like
aerospace structures.

3.1.1
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Figure 3.1.1 Three-Dimensional Truss Element.
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3.2 TWO-DIMENSIONAL AND AXISYMMETRIC CONTINUUM ELEMENTS

Two-dimensional elements contained in MAGNA include

Element Type 3 (four node, plane stress, plane strain or shear

panel element), Element Type 9 (variable-node plane stress

element), and Element Type 10 (variable-node axisymmetric solidMelement). These elements are planar (i.e., not warped) but may

assume an arbitrary orientation in space. Axisymmetric elements

must lie in the x-y plane, with x being the radial coordinate.

Geometrical (large-displacement) nonlinearities, including

warping and other out-of-plane deformations, are included, as

well as material nonlinearities (plasticity). Elements 3, 9,

and 10 may be used with either a lumped or consistent mass

formulation. Out-of-plane inertial effects are included in

Element Types 3 and 9.

The three/four node plane element (Type 3) is shown in

Figure 3.2.1. Its geometry and displacement field are approxi-

mated by linear polynomials in each natural coordinate direction.

Since certain components of stress or strain in the direction

transverse to the element are assumed to vanish, an auxiliary

local coordinate system (XL, YL in the figure) is used to

describe the element properties; all output is given in this

system of coordinates to facilitate the interpretation of

results. The XL axis is directed from node 1 to node 2, and

the YL axis is perpendicular to XL and in the plane determined

by nodes 1, 2, and 3. The fourth node is optional; however, the

three-node element is suggested only when mesh geometry dictates

that it be used.

Element Type 3 can be used for plane stress analysis, plane

strain analysis, and in specialized application as a shear

. panel element. The primary difference in these three element

subtypes is in the material stress-strain law employed.

Constitutive equations for the plane stress and plane strain

forms of the element are given in Section 2.3; for the shear

3.2.1
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panel (usually used to model vertical rib and spar spections

*in aerospace structures), the element is assumed to carry only

shear stresses, T = Gxy. Consistent formulations of the

elastic-plastic stress-strain law are provided for the plane

stress and shear panel element. At present, the plane strain

formulation uses the relation

Oz= v( + a• . zx y

which is only approximate when plastic deformations occur.

Numerical integration of the four-node planar element may

be performed using 1, 2, or 3 point Gaussian quadrature (1, 4, or

9 integration stations), or by a selective integration technique.

A 2-point integration is sufficient for virtually all applications.

The triangular version of the element is integrated using

one-point integration in all cases. The one-point integration and

selective (2x2 rule with one-point shear integral) integration

options are provided for use in the analysis of planar beams and

other situations involving large element length-to-thickness

ratios. The performance of the four node element in representing

in-plane bending is poor unless an extremely fine mesh is used;

the reduced and selective integration options help to relieve

this deficiency.

The most common application of the Type 3 element is in

the analysis of airplane wings and similar box-type structures,

using the plane stress formulation for skin elements, the shear

web element for spar/rib sections, and bars (Element Type 4) as

caps and posts. Another specialized application is in the

analysis of crack-tip stresses in perfectly plastic materials;

here one edge of the elements at the crack tip can be degenerated

to zero length to provide the needed 1/r - type singularity in

the shear strains. Notice that in such applications, either edge

3-4 or edge 4-1 must be degenerated, since the first three nodes

must be non-collinear. In most plane stress applications,

Element Type 9 is considerably more effective.
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Element Type 9 (Figure 3.2.2) is a plane stress element

which can possess from three to nine nodes per element. The

first three (corner) nodes are always required, but each of

nodes 4 through 9 are optional. The absence or presence of each

optional node is automatically taken into account by the program.

Node 4 must be present whenever any of the midside nodes are used.

Thus, Element 9 may be used as a nine-node Lagrangian element,

as the popular eight-node serendipity element (node 9 omitted),

or as a transition from lower-order to higher-order elements.

The eight-node and nine-node forms are particularly effective

for general plane stress analysis, but lower-order versions

of the element can often be used to advantage. For example,

in analyzing planar beam structures, a six-node element (with

linear interpolation through the thickness) is often effective.

The variable-node plane stress element can be integrated

with 1, 2, or 3 point Gaussian quadrature in each direction.

One-point integration is provided for use when only three or

four nodes per element are specified; in such cases, the use of

Element Type 3 will be slightly more efficient. The higher-order

versions of the element generally require the use of 3x3

quadrature (nine integration stations) for exact evaluation,

particularly when all nine nodes are present. In bending

problems, the six and eight-node elements can sometimes be

integrated with a 2x2 rule to improve element flexibility,

provided the number of boundary conditions is sufficient to

eliminate all singularities in the assembled mesh.

Although the Type 9 element may have a general orientation

in space, the primary use of this element is in plane stress

analysis. Therefore, element properties are computed in global

4I coordinates if possible, and output is referred to the global

(x,y) axes for all elements which are oriented parallel to the

(x,y) plane. When a more general orientation is specified,

output is given with respect to local axis directions defined

in the same manner as for Element Type 3.

3.2.4
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Figure 3.2.2 Variable-Number-of-Nodes Plane Stress Element.
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The usual applications of the variable-node plane stress

element are in general plane stress analysis and in the analysis 2PAof planar beam or frame structures. Another more specialized

application is the analysis of crack problems in two dimensions.

The simple device of positioning midside nodes (and the

* centroidal node) at the 1/4-points in elements located at the

tip of a crack yields the 1//F singularity in strains predicted

by linear fracture mechanics, permitting such problems to be

Vmodeled using relatively few elements. This technique is

illustrated in Figure 3.2.3.

The axisymmetric solid element (Type 10) in MAGNA is a

the same as the 3-9 node plane stress element (Figure 3.2.2).

The first three vertex nodes (nodes 1-3) are always required.

For quadrilateral elements (nodes 1-4 present), each of the

remaining five nodes may be included or omitted as appropriate.

* The eight- and nine-node configurations are particularly

effective for general axisymmetric stress analysis, although

a linear interpolation in the thickness direction is often -1

acceptable for axisymmetric plate and shell analysis.

Axisymmetric solid elements are assumed to be situated

in the global x-y coordinate plane. The x-direction corresponds

to the radial coordinate, and y is parallel to the axis of

revolution of the model.

One, two, or three Gaussian integration points may be used

in each element coordinate direction to evaluate the element

stiffness and mass properties. While the choice of integration

rules follows the same reasoning as the Type 9 plane stress

element, the use of a 3x3 integration is advisable in most

*Q applications.

Either a consistent or lumped mass formulation may be

chosen for inertial properties of the axisymmetric element; the

use of consistent masses for the Type 10 element is recommended.

* Thermal stress analysis is currently not available with the -

axisymmetric solid element.

3.2.6
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3.3 THREE--DIMENSIONAL CONTINUIM ELEMENTS

MAGNA contains a number of three-dimensional solid

elements for linear and nonlinear analysis:

Element Type 1 - 8-27 Variable-Node Solid

Element Type 2 - Eight-Node Brick

Element Type 6 - Twenty-Node Brick

Element Type 7 - 8-20 Variable Node Solid

Element Type 8 - Sixteen-Node Solid or Thick Shell.

All of the above elements contain full geometrical nonlinearities

(large displacements and finite strains) and material

nonlinearities (metal plasticity), and may be used either

in static or dynamic analysis. Orthotropic materials can be

considered for elastic analysis, whether linear or nonlinear.

Elastic-plastic materials must be initially isotropic.

The 8-27 node solid (Element Type 1) is shown in

Figure 3.3.1. The remaining solid elements (Types 2, 6, 7 and 8)

6have similar nodal patterns, with node points numbered higher

than the maximum for a specific element type simply being

omitted. Element Types 1 and 7 are variable-number-of-nodes

elements; with each of these types, nodes 1 through 8 are

always required, but each of the remaining nodes is optional

and may simply be omitted if not needed. The absence or presence

of each optional node is accounted for automatically in the

program. The variable-node elements are particularly useful in

transitioning between coarse and fine regions within the mesh

(Figure 3.3.2), and for blending regions modeled using Element

Types 2, 6 and 8. Alternatively, the variable-number-of-nodes

elements can be used to construct standard element types not

4 included explicitly in the program (e.g., eiqhteen-node thick

shell elements with nine nodes per surface).

This variety of solid elements is included in MAGNA

primarily for reasons of efficiency. In nonlinear analysis the

3 ..
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computing time per element for a single increment will vary

approximately as the square of the maximum number of nodes for

that Element Type. Therefore, Element Type 8 requries about

35 percent as much CPU time per element as Element Type 1, since
2(16/27) = 0.351. In general, then, it is advisable to select

the Element Type with the least "excess" nodes for a specific

application.

Numerical integration of the higher-order solid elements

(Types 1, 6, 7 and 8) can be performed using 2 or 3 point Gaussian

quadrature in each coordinate direction(i.e., 8 or 27 integration

stations). Also available is the 14-point integration rule

introduced by Irons 1 . For general application, the 14-point

rule is recommended; this rule possesses similar accuracy to

the 3x3x3 Gaussian integration, does not permit artificial "zero-

energy" modes in most solid elements and involves only half as

many sampling points as the Gaussian rule. The moderate increase

in element flexibility using the 14-point rule leads to improved

results with coarse meshes, while the reduction in number of

integration stations over 3x3x3 integration reduces computing

times considerably. For elements with 20 nodes or less (no

mid-face or centroid nodes), a 2x2x2 Gaussian rule can often

be used, provided the boundary conditions are sufficient to

remove all singularities from the final system of equations.

This integration scheme is particularly useful in problems of

moderately thin plates or shells. For the sixteen-node element

(Type 8), which is commonly used for such applications, the

2x2x2 integration rule is generally reliable.

The effect of the choice of integration rule for various

three-dimensional solid elements is illustrated in Table 3.3.1.

For each combination of element nodal pattern and integration

4 scheme, the Table gives the number of zero-frequency modes

present in the linear element stiffness matrix (less the normal

six rigid body modes). Thus, a zero entry indicates that the

element is fully integrated and, therefore, completely reliable.

For the reduced integration orders shown, the application of

3.3.4
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boundary conditions is often sufficient to eliminate the

unwanted zero-energy modes. For models involving high aspect

ratios, very light constraints or large disparities in material

modulus, however, the use of fully-integrated elements is always

indicated.

Element Type 2 (eight-node brick) can be numerically

integrated using 1, 2 or 3 point Guassian quadrature (1, 8 or

27 integration stations). A non-Gaussian, 6-point rule is also

provided; this integration rule gives similar performance to

2x2x2 Gauss integration, at a slightly lower cost. A special

selective integration option, which uses nine integrating

points, is also available. The 2x2x2 and the 6-point rules are

generally sufficient, and the use of a larger number of elements

* is generally preferred over an increase in integration order.

The nine-point, selective rule is appropriate for use when the

eight-node brick must be used to represent bending-type response.

An example of an application of this type is the sandwich

-- construction pictured in Figure 3.3.3. Here the core layers are

represented by Type 2 elements with nine-point integration, and

Type 5 shell elements are used in the face sheet layers. For

the analysis of general continua, the quadratic solid elements

are usually more effective than the eight-node brick. In

particular, the use of the eight-node brick in problems

involving bending-type response is not advisable, except with

- * the use of the selective integration option.

Three-dimensional nonlinear analyses can involve a great

* - deal of computing effort, in spite of the fact that highly

nonlinear effects may be concentrated in relatively small

portions of the finite element model. In view of this, a

number of stiffness formulation options are provided in MAGNA

0 for the quadratic solid elements (Types 1, 6, 7 and 8). Normally

all elements are formulated using the "tangent" stiffness method,

in which the element stiffness matrices are recomputed exactly

at user-controlled intervals within an analysis. However, a

3.3.6
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"pseudo-force" formulation may also be specified for selected

elements, causing the original (linear elastic) stiffness matrix

-to be used in these elements throughout the analysis. This

option, which merely accounts for nonlinear effects in a

different manner from the tangent stiffness approach, is suitable

for use in elements for which nonlinearities are expected to be

rather mild. Alternatively, the analyst may specify a special

"averaged" stiffness formulation for selected elements, in which

the element tangent stiffness is computed in an approximate

- manner by averaging nonlinear effects in an individual element.
K: Nonlinearities are still represented with full accuracy in

the averaged stiffness method, since the element residuals

(i.e., out-of-balance forces) are always computed exactly.

Both the averaged stiffness and constant stiffness formulations

can dastically reduce computing times in nonlinear analysis,

but shouZd always be used with equilibrium iterations to

maintain stability of the solution. In highly nonlinear

portions of a model, the use of the standard tangent stiffness

formulation is generally superior because of its improved

numerical stability characteristics.

3
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3.4 THREE-DIMENSIONAL PLATE AND SHELL ELEMENTS

MAGNA contains two types of shell elements: a monolithic,

linear-displacement thin shell (Element Type 5) and a layered,

quadratic-displacement shell element (Element Type 11). Both

of these element types are described briefly below.

The eight-node thin plate or shell element (Element Type 5)

is an isoparametric finite element, based upon a penalty function

formulation. Full geometrical nonlinearities can be considered,

including both large displacements and arbitrary rotations.

Materially nonlinear analysis is currently not available with

the Type 5 shell element. Both static and dynamic formulations

of the element are included in the program.

Element geometry and local node numbering for the

eight-node shell are shown in Figure 3.4.1. Note that the

element has nodes at the upper and lower surfaces, not at the

shell midsurface. Each node point is permitted three translational

degrees of freedom, in the global coordinate directions

(rotational degrees of freedom are not used). With this choice

of nodal locations and degrees of freedom, the shell element is

fully compatible on all exterior surfaces with other shells and

with conventional solid isoparametric elements. Layered shells,

sandwich constructions, transitions between shells and solids,

or joined shells are thus easily modeled without special

constraints (Figure 3.4.2). The shell element can be of variable

thickness, and the lateral boundaries of the element need not

lie along the normal to the shell midsurface.

The nonlinear capabilities of the Type 5 shell element

include the analysis of arbitrarily large displacements and

rotations. Full coupling between the bending and extensional

strains is retained, and nonlinearities are included in the

stretching strains as well. Details of the theoretical

formulation of the shell element can be found in Reference 1.
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Figure 3.4.1 Three-Dimensional, Eight-Node Thin Shell
Element.
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Figure 3.4.2 Modeling Capabilities of the Thin Shell FiniteK'Element.
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Element Type 11 is a specialized element intended for use

in analyzing multilayered, moderately thin shell structures.

Like the Type 5 element, Element Type 11 contains full

nonlinearities and may be joined to isoparametric solid elements

without the use of special constraints. However, the Type 11

shell element may be composed of multiple layers of different

materials, each of which may have variable thickness within an

element.

The element geometry and local node numbering for the

sixteen-node layered shell (Type 11) are shown in Figure 3.4.3.

This element is identical in appearance to Element Type 8

(16-node solid/thick shell), and uses the same quadratic

* displacement approximation. Each node possesses three translational

degrees of freedom in the global coordinate directions. The

element may have a variable total thickness (defined by the nodal

positions), and lateral boundaries of the element need not be

normal to the shell midsurface.

The composition of the Type 11 shell element through its

thickness is defined by laminate cross-section definitions, each

one referring to a different combination of layer materials and

relative thicknesses. Materials may be of two types, initially-

isotropic, elastic-plastic material, with bilinear stress-strain

curve, or orthotropic, elastic material. These may be combined

arbitrarily within the shell cross-section. Individual layers

of the cross-section may be classified as variable-thickness

layers or as constant-thickness layers. This type of classification

is useful in modeling layered constructions such as the one shown

* in Figure 3.4.4. Constant-thickness layers are defined by

*specifying the material and the actual thickness of the layer;

variable thickness layers are defined by specifying the material

and a thickness fraction fT" At any point within an element, the

thickness of a variable-thickness layer is simply

tlayer fT ttotal (constant thickness)]

3.4.4



3

8

r ".

0 -

35

3



* Figure 3.4.4. Layered Construction Using a Combination

of Constant- and Variable-Thickness Layers.
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At least one layer of each laminate cross-section must have

variable thickness, to avoid ambiguous geometry for the element.

The total number of layers in any Type 11 shell element may be

between two and eleven.

Either 2x2 or 3x3 Gaussian integration may be used in the

Type 11 shell element; the 2x2 integration rule is advisable in

most situations for good element performance. The thickness

integration for Element Type 11 is performed analytically,

using two integration points per layer. Note that in materially

nonlinear situations, resolution of yielded zones through the

element thickness may be increased by simply defining more layers

in the element cross-section.

3
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3.5 THREE-DIMENSIONAL BEAM ELEMENTS
The three-dimensional beam element (Element Type 12) in

MAGNA is a curved, quadratic-displacement element which may be

used in static or dynamic analysis. Nonlinear effects included

in the beam element formulation include large displacements,

large rotations, and plasticity, the only restriction being that

of small strains.

Element geometry and node numbering for the Type 12 beam

element are shown in Figure 3.5.1. Nodes 1-3 define the reference

I axis of the element, and each possess six degrees of freedom:

* three nodal translations and three rotations, all referred to

-iglobal coordinate directions. Node 3 (the mid-length node) may
- - be omitted if desired; however, element performance will be

improved substantially in most problems if all three of these

nodes are retained. Node 4 is an auxiliary node, which may be

. used optionally for the definition of local coordinate directions

* -within the beam cross-section.

The cross-section of a beam element is defined using from

one to four rectangular "segments." Each segment is defined by

its dimensions in the two local coordinate directions, and by

the offset distances from the reference axis of the element.

*Examples of cross-section definitions are shown in Figure 3.5.2.

An important consideration is the use of beam elements as

stiffening members on shell or solid finite elements. The Type 12

beam element is based upon the independent approximation of

displacements and rotations, so that compatibility of displacements

between the beam and other elements is easily accomplished by

-. correct specification of the beam offset parameters (Figure 3.5.3).

When stiffener torsion is important, linear constraints can be

0O used to relate the axial rotation of the beam to the appropriate

displacements in neighboring elements.
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Integration of the beam element is always performed using a

three-point Gaussian quadrature along the element length. In linear

analysis, integration over the beam cross-section is performed

analytically. For nonlinear problems, cross-section integration is

performed by separate, three-point Newton-Cotes integrations

(Simpson's rule) over each of the segments comprising the beam

cross-section.
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CHAPTER 4

NUMERICAL SOLUTION OPTIONS

Analysis procedures which are currently available in

the MAGNA computer program include linear and nonlinear, static

and transient dynamic solutions, natural frequency/normal mode

mode analysis, and steady-state forced vibration analysis. The

nonlinear analysis options include all effects due to geometric

and material nonlinearities, as well as error control measures

to prevent drifting during the incremental solution. Specially-

programmed linear versions of each element type are provided to

eliminate unneeded calculations wherever possible; in this way,

no penalty is paid in computation time when performing linear

analysis with a program which is primarily designed for

nonlinear analysis.

In this chapter, specialization of the discrete governing

equations of Section 2.2 to each of the possible analysis

options is discussed, and the numerical algorithms used in the

solutions are presented. Special features available for use

with a particular solution option are noted where appropriate.

4.0.1
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4.1 LINEAR STATIC ANALYSIS

In a linear static analysis, all loadings are assumed

to be carefully applied, so that inertial effects may be

neglected. Further, the resulting displacements are taken to

be small enough that nonlinearities in the strain displacement

equations are negligibly small. Material nonlinearities are

not considered.

With these assumptions, the discrete equations governing

response of the finite element model are

K X F+T+_ , (4.1.1)

=E-

in which

K = linear stiffness matrix=E

X = nodal displacement vector

F = body force vector

T = external loads vector

e = thermal force vector.

* A solution is obtained by the following steps:

Decomposition: K = L D LT (4.1.2)

Forward Substitution: L Z =F + T + ( (4.1.3)

.cdling: b Y Z (4.1.4)

Back Substitution: L X = Y . (4.1.5)

Nodal loads are specified directly in the program by

input of a load case number, node, component (direction), and

load magnitude. The number of static load cases which can be
solved in a single analysis is limited only by the available
storage. Nonzero, imposed values of displacements can also be

analyzed as a separate loading case.

4.1.1
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-- 4.2 LINEAR DYNAMIC ANALYSISK" "In the linear dynamic analysis, inertial effects are

included, but displacements and strains are assumed to be

sufficiently small that neither geometric nor material
nonlinearities are significant. It should be noted that,

although the structural response is assumed to be linear,

certain types of nonlinearities can be considered in such an

analysis; an example is the presence of external loads which

depend upon velocity or displacement (follower forces, etc.).

The semidiscrete equations of motion for a linear,

dynamic problem are

SX+M X F' + T + _ (4.2.1)

where

K = linear stiffness matrix

M = consistent mass matrix

X = nodal displacement vector

F' = body force vector

T = traction vector

8 = thermal force vector,

and () denotes the differentiation with respect to time. In

the general case, the body force F' may be considered to include

dissipative forces due to damping, which are assumed to be

" -of the form

0F' = F + F (4.2.2)

. D = -(8E + yM) = -c* , (4.2.3)

ED C
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where 8,y are arbitrary constants. Selection of 8 and y

typically depends upon known or estimated values of modal or

structural damping for the particular structure to be analyzed.

Substitution of Equation 4.2.3 into Equation 4.2.1 gives

K X + C X + M X F + T + e (4.2.4)
-E = - = - - - -

In a linear dynamic analysis, implicit integration of
1,2Equation 4.2.4 in time uses Newmark's generalized operator

which is based upon the following finite difference

approximations in time:

-2 = l + ['1-6' l + -2] At (4.2.5)

X =X + At + (-ai X1(t 2
.(4.2.6)--2 =-i -l L 2 - +-2j

Here subscripts 1, 2 denote the state; that is,

i= X (t.) (4.2.7)

= i+ 1  t i + At . (4.2.8)
1

The parameters a, 6 are free parameters which can be chosen

in such a way as to obtain desirable numerical properties

with the algorithm. In particular, it can be shown that the

conditions

6 > 1/2 (4.2.9)

"< 2
a > (6 + 1/2) /4 (4.2.10)

are sufficient to ensure unconditional stability of the

numerical integration for linear problems. The values

4.2.2
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6=1/2 and a=1/4 yield the so-called "constant average
acceleration" operator, a commonly used form of the Newmark

-- algorithm.

Combining Equations 4.2.4 through 4.2.6, the current

velocity and acceleration are eliminated as unknowns in the

integration; the result is

r,1 +
L E 77= -a- i = X2  E2 + 2  22

aftt

+ C El x + (i -1) i1 + ( -2) i] (4.2.11)

A somewhat simpler form is obtained in terms of incremental

displacement unknowns X = X2-XI. Assuming Equations 4.2.11

to be satisfied at time tI gives the incremental form

aAt

+ C[Ik + At i-2) x](4.2.12)

mat2  a

where

E12 -2 -l (4.2.13)

-2 - -(4.2.14)

2.12 2- 2 - 21 . (4.2.15)

Equation 4.2.12 is written symbolically as

4.2.3



K X = P . (4.2.16)* =e- -ee --
The "effective stiffness" K is constant over any part of the

K solution during which the time step At remains constant; the

V- "effective loads" P at a particular time depend not only upon-e
the increment in external forces, but also upon the velocities

and accelerations computed at the previous increment of time.

Solution of Equation 4.2.16 is obtained using the

Gauss--Doolittle decomposition

K = L D LT (4.2.17)

followed by the forward- and back-substitutions

L Z = P (4.2.18)

D Y = Z (4.2.19)

m|L X = Y (4.2.20) c

to obtain the current displacement increment X. It is

important to note that, when At=constant, K is the same for

any increment; the process of matrix decomposition (Equation

4.2.17) therefore must be performed only once to obtain the

factors L and D. The solution procedure of a typical increment

of time then consists only of

- calculation of effective loads P

- forward/back substitution for X

- updating the solution Xi+=Xi +X.

Calculations for element stresses and strains are performed

only at the particular increments in which output is required,

since this part of the solution is not necessary to advance

-V integration in time.

4.2.4
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4.3 NONLINEAR STATIC ANALYSIS (EQUILIBRIUM ITERATION)

The discrete governing equations for a nonlinear

structure with inertial effects neglected are, from Section 2.2,

(+ !Sc)X =F + T + 0 -I,(4.3.1)

* in which

KT tangent stiffness matrix
K=
K = geometric stiffness

X = nodal displacement increments

F = body force vector

* T = surface traction vector

8 = thermal loads vector

I = vector of internal forces

In the application of Equation 4.3.1, all loadings are

assumed to be gradually applied; the resulting displacements

and strains may be arbitrarily large, and material response

may be nonlinear. If the response is geometrically nonlinear,
K , KG, and I are functions of the solution X by virtue of

the nonlinear relationships existing between strains and

displacements; in the case of material nonlinearity (stress

a nonlinear function of strain), K and I are dependent upon the

displacement increments X.

In view of the nonlinear nature of Equation 4.3.1,

.- the numerical solution must either permit the use of

iteration to any desired accuracy, or provide a means of

correction for errors due to linearization. In practice,

nonlinearities are accounted for in the solution by four

different methods: equilibrium correction, "constant stiffness"

equilibrium iteration, full Newton-Raphson iterations, and

a combined strategy using Newton iterations followed by constant

stiffness iterations.

4.3.1



The contents of I, as defined in Sections 2.1 and 2.2,

provide a step-by-step correction to the solution of Equation

4.3.1 in an incremental form; that is, within the increment

from state C. to state C imbalances in virtual work

observed in the state C. are automatically corrected in an

approximate way. This procedure, called "equilibrium

correction," tends to prevent the incremental solution from

drifting from the true solution, provided the displacement

steps are sufficiently small. Equilibrium correction is an

intrinsic part of the numerical solution, and is applied

automatically whether or not equilibrium iterations are used.

The use of such a correction leads to substantial improvement

over direct step-by-step integration.

Equilibrium iteration by the constant stiffness method

involves repeated application of Equation 4.3.1 at a single

increment of loading. However, the expensive operations of

element stiffness computation and matrix decomposition are not

repeated at each iteration. At a particular loading level, the

tangent stiffness matrices are formed, and an initial solution

is performed. Using the initial tangent stiffness, iterations

are then performed, consisting of the following steps:

(a) compute out-of-balance forces, (F + T + e - I)

(b) test for convergence or divergence, and exit
the cycle if either occurs

(c) using the original tangent stiffness, solve
for a new estimate of the displacements X

(d) compute element strains and stresses

(e) return to step (a).

Note that errors incurred in this procedure due to use of the

* initial tangent stiffness at all iterations are compensated by

the continual updating of the vector I, which accounts for

imbalance in internal and external forces. That is, as the

internal forces in the element assemblage approach true

• equilibrium with the applied forces,

4.3.2



(F + T + e - I) 0 (4.3.2)

regardless of the coefficient matrix used. The constant

stiffness form of iteration corresponds exactly to the modified
1Newton iteration for solution of nonlinear systems

Full Newton-Raphson iterations at a given loading level

proceed in the same manner as the constant stiffness iteration

described above; however, the coefficient matrix (K + K ) is=T = G
continually updated using the latest estimates of the true

solution. The advantage of the full Newton iteration is

Ufaster convergence at the expense of increased computational

effort per iteration. Computation of new element stiffness,

as well as reassembly and complete resolution, are required at

every iteration.

The nonlinear static analysis performed in MAGNA permits

a variety of types of solutions to be carried out:

(a) solution with equilibrium corrections only,

without iteration (one-step Newton method),

(b) solution with cnnstant stiffness (modified
Newton) iteratioiis, using the tangent stiffness
from the beginning of the step,

(c) solution with continuously-updated stiffness
during iteration (Newton-Raphson iteration),
and

(d) solution with a combined iteration strategy, in
which the tangent stiffness is updated in the
first two iterations of a step, and then held
constant.

Convergence of an iterative solution is determined in terms of

the unbalanced forces and the differences in successive

estimates of the nodal displacement vector, with user-defined

0 tolerances placed upon both of these quantities. It is also

possible to direct the program to use the same stiffness matrix

for several loading increments in succession; with this option,

a mildly nonlinear problem may be solved with stiffness matrices

4.3.3
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being recomputed ii:, resolved only a few times during the

analysis. Alternativel,, a "pseudo-force" solution can be

performed using the original linear stiffness for the entire -

analysis, with nonlinearities accounted for by equilibrium

corrections and iterations exclusively.

With the higher-order solid elements in MAGNA (types 1, 6,

7 and 8), still further flexibility is possible in a nonlinear

analysis. Each element independently is assigned a stiffness

formulation parameter, causing it to be treated as a constant

stiffness element, a tangent stiffness element, or an "averaaed

stiffness" element. With the averaged stiffness formulation,

nonlinear effects are averaged over the element before forming

the stiffness matrix, thus saving considerable computing time.

Unbalanced forces are alwazis computed exactly, however, to ensure

correct results with iteration. If only a few elements of the

finite element model experience significant nonlinearity, these

can be analyzed with the tangent stiffness approach while the

remainder employ either constant or averaged stiffness matrices.
i The finite element solution of Equation 4.3.1 is applicable

to geometrical nonlinearities, in the form of large displacements,
i- large rotations and finite strains. Material nonlinearities,

in the form of elastic-plastic, strain-hardening material

behavior, are analyzed by a subincremental method to follow the

material stress-strain curve as closely as possible. Each

increment of loading is divided into several (up to 500) strain

subincrements, whose size is user controlled. Elastic-plastic

constitutive matrices, strain-hardening slopes, and states of
stress are updated at each subincrement in an attempt to

minimize the accumulated error. The number of subincrements is

F controlled by the size of the total strain increment at a point,

0Q so that points experiencing the most rapidly increasing strains

are automatically treated in the greatest detail. The states of

strain and stress within an element are permanently updated

.only after all iterations are converged, to prevent artificial

4.3.4



oscillations (e.g., unloading and reyielding) from occurring

during equilibrium iterations.

External loads are specified for nonlinear analysis in the

form of piecewise linear data curves, which define the

magnitude of a force versus an arbitrary independent variable.

Several such curves may be input to describe non-proportional

loading systems. Both concentrated nodal forces and distributed

surface pressure loads may be specified in this fashion.

Pressure loads may be "dead loads," which act in a constant

direction, or "live loads," which act in the direction normal

to deformed element surfaces. Applied forces can alternatively

be defined in user-written subroutines which are accessed at

each increment of the nonlinear solution. This option is

useful in defining deformation-dependent loads (or velocity-

dependent loads in dynamic analysis) which cannot be estimated

prior to performing the nonlinear analysis. The use of user-

written routines for the specification of loading in nonlinear

problems is described in Section 9.3.
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4.4 NONLINEAR DYNAMIC ANALYSIS (IMPLICIT INTEGRATION)

"..f-1 In a nonlinear dynamic analysis, the response is governed

by the semidiscrete equations of motion

( + )X + M X = F" + T + 8 - I , (4.4.1)L.

in which

KT = tangent stiffness matrix

K!SG = geometric stiffness

M = consistent mass matrix

X = nodal displacement increments

F' = body force vector

T = surface traction vector

e = thermal loads vector

I = vector of internal forces

and an overdot denotes the temporal derivative. Equation 4.4.1

is appropriate for large displacement and large strain response;

material behavior may be nonlinear as well. As in the linear

dynamic analysis (Section 4.2), the body force F' is considered

to include dissipative forces of the general form

F' = F + FD , (4.4.2)

ED(!§ST + S) + yL4] -C (4.4.3)

where 8 and y are arbitrarily selected constants. With these

definitions, Equation 4.4.1 can be rewritten as

(K_ + )X +C + MX F + T + e-I. (4.4.4)

Implicit integration of Equation 4.4.4 with respect to

time i6 performed using Newmark's generalized operator (see

4.4.1
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Section 4.2). For a nonlinear analysis, general conditions of

numerical stability of the integration operator cannot be provedr

choice of time increments for the dynamic solution will, however,

gene-ally be made on the basis of accuracy (rather than

stability) considerations.

Use of the finite difference formulasI
- ](4.4.5)

X = At + ) + aX2  (At) (4.4.6)

in Equation 4.4.4 yields the discrete system

K X= P , (4.4.7)=e - -e""

in which the "effective" stiffness and loads are

K + ~l+y6AtM (4.8
aAt

and

P =F+T+O-I

+ !~~jK)E + at(d.= -1) X] 4

+M ___6A + _ __ _-yt-a

The incremental solution of Equation 4.4.7 is performed

in the same manner as a nonlinear static analysis (Section 4.3),

since the dependence of K upon both geometric and material

nonlinearities dictates that the effective stiffness matrix be

reformulated and solved at frequent intervals in the solution.

Full, modified or combined Newton-Raphson iterations can be

4.4.2



performed at a fixed value of time in the nonlinear dynamic

analysis, with convergence measured in terms of tolerances upon

both the unbalanced residual forces and the displacement

corrections at any iteration. A more complete description of

the equilibrium iteration options is given in Section 4.3.

Nonlinear dynamic solutions obtained with the program

are valid for large displacements and large strains. Nonlinear

material response under dynamic loading is analyzed by a

subincremental strategy (see Sections 2.3 and 4.3), which

automatically treats regions of rapidly increasing strains in

the greatest detail.

Incremental loads which are known a priori in the dynamic

analysis are specified in load versus time curves, and may

include suddenly-applied forces, live or dead distributed loads,

and nonproportional or cyclic loading. User-written subroutine

interfaces are also supplied to permit the calculation of

concentrated loads whose magnitude and direction are functions

of the displacements or velocities.

4.4.3
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4.5 NATURAL FREQUENCY AND NORMAL MODE ANALYSIS

For the natural frequency analysis in MAGNA, linear
behavior (small displacements and linear elastic material

response) is assumed, and external forces are not considered.

For harmonic motions, then, the nodal displacement vector is

X = Usinwt (4.5.1)

and the equation of motion becomes

K WM U 0 . (4.5.2)

Here

= linear stiffness matrix

M = consistent mass matrix

U = vector of relative nodal displacements

w = circular frequency of vibration.

Optionally, nonlinear effects such as membrane stiffening can be

considered in the equation of motion, in which case 1% is replaced

by (E + KG)' KG being the geometric stiffness matrix. Equation

4.5.2 is an eigenvalue problem of standard form, in which both

and U are unknowns. If the order of KE and M is n, there are

n solutions wi, Uk; i=1,2,...,n.

Generally, the order of the finite element system is large,

which only a relative few of the natural frequencies (w) and

normal mode shapes (U) are of interest. Therefore, the free

vibration solution is based upon a vector iteration method which

permits a specified number of the lowest (or highest) frequencies

to be solved, along with their corresponding mode shapes. The

particular method employed is the simultaneous iteration algorithm

* of Jennings and Rutishauser 2; further details and a sample

implementation of the method can be found in Reference 3.

Beginning with Equation 4.5.2, a Choleski factorization

of K is carried out,

K LL T (4.5.3)
=E 4.5.
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giving
T 2

LL T U =W M U. (4.5.4)

* Defining

P LT U , (4.5.5)

and premultiplying Equation (4.5.4) by the inverse of L yields

-1 -T 1
(L M L-)P = - P (4.5.6)

or

1
A P P (4.5.7)

Equation 4.5.7 is the form of the eigenvalue problem on which

* the simultaneous iteration is based, although matrix A is never

" computed explicity. Instead, multiplication of a vector by A

(the major computational step in the iteration) is accomplished

by backsubstitution using T, multiplication by M, and then

" forward substitution using L. Thus, sparsity of both L and M

* can be used to advantage both to reduce storage requirements

and to eliminate unnecessary operations.

* *The actual iteration is carried out using m trial vectors,

* where m<<n. If r represents the number of frequencies and mode

shapes to be extracted, m is usually slightly larger than r;

m = min (2r, r + 5) (4.5.8)

has been found to provide a suitable balance between rate of

convergence and storage requirements. The matrix whose columns

consist of the trial vectors, P.; i=1,2 ..... ,m is denoted by ,

[P P .. ,P] " (4.5.9)
-1, -2 -
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The first step in the iteration is an interaction analysis, in

which the mxm interaction matrix

TB = 4T A $ (4.5.10)

is formed. If the columns of are indeed eigenvectors, B should

be a diagonal matrix. If the trial vectors are suitably

normalized, the diagonal entries of B are estimates of the

eigenvalues,

b. 2 (no sum) (4.5.11)Ii 1

Since B is in general not diagonal, an approximate solution for

the eigenvectors of B is next used to uncouple the trial vectors.

Define the mxm matrix T by

-1 i=j
.'-'. -2 ij::t.. = _ _ _ _ _ _ _ _ _ _ _ _

"ri . + sign(ri .) 1r2 +1i (4.5.12)
1) 1) (45.2

in which

rij bi - b.. . (no sum) (4.5.13)

A set of decoupled trial vectors W is then constructed from

W =A T , (4.5.14)

in which

w4- = [w 1 , w2 ,...,W] (4.5.15)

Finally, Schmidt orthogonalization is used to obtain a new set

of trial vectors,
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K' i-i

P.= w. - x..w. , (4.5.16)-- J - j =1-3

in which

T
a.. = w.w. . (4.5.17)31 -3-1

The above sequence of calculations is repeated until the

norm of the change in the first r eigenvectors is less than a

specified tolerance. Generally the convergence of the

eigenvalues (frequencies) is much quicker than that of the

eigenvectors, and the entire procedure typically converges in

very few iterations. Since only a single factorization of KE

is performed, the simultaneous iteration solution is quite

economical, and its effectiveness relative to other solution

techniques tends to increase with the size of the problem

under consideration.

Generalized mass and stiffness information is also generated

by MAGNA upon completion of the natural frequency solution. The 9

* generalized mass associated with vibration mode "k" is defined by

Mk TM k (4.5.18)

Where the mode shapes U are orthononmalized, such that

T

K = 6.. (4.5.19)

the corresponding generalized stiffness is

T 2Kk - K k k M (4.5.20)

4.5.4
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4.6 STEADY-STATE HARMONIC ANALYSIS

The steady-state, harmonic response solution is a specialized

- case of linear dynamic analysis (Section 4.2). When the external

forces are sinusoidal functions of time with given frequency W,

the linear solution for the system displacements is sinusoidal at the

same frequency, provided sufficient time has elapsed for transient

motions (due to initial conditions) to have "died out."

If the amplitude of the nodal forces is P, the applied loading

is

F(t) Re[P e i t ] (4.6.1)

The corresponding steady-state displacements are of the form

X(t) = U ei t  (4.6.2)

in which U is the vector of nodal displacement amplitudes. If the

motion is undamped, U is real-valued since the response is exactly

in phase with the harmonic forcing function. When dissipative

effects are present U may be complex-valued, reflecting the phase

differences between input (forces) and output (displacements).

In the steady-state solution, material structural damping

may be included by means of the "complex modulus" description.

That is, the modulus of any material may be expressed as

E* = E(I + in) (4.6.3)

in which E is the elastic modulus and n is the material loss factor.

Loss factors may be different for each material in the model.

*I The stiffness matrix used for steady-state vibration analysis

is, in general, complex-valued,

== R +  i I (4.6.4)

4.6.1
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The complete equation of motion for the unknown displacement

amplitudes is then

+ i - 2 M)U = P (4.6.5)

which is a set of simultaneous equations with complex-valued

coefficients.

Solution of Equation 4.6.5 is accomplished in much the

same way as for linear static analysis (Section 4.1), except that

the equation-solving process invloves complex variables. Note also

that a separate solution is required for each forcing frequency (w)

to be considered; many such solutions may be performed within a single

* analysis run, to provide amplitude-versus-frequency data for each

of the nodal displacements in the model.

Many commonly-used materials exhibit elastic and damping
*properties which vary strongly with frequency and/or temperature.

The user-supplied subroutine UDAMP (Section 9.10), which is required

for the specification of material damping properties in the steady-

state solution, can also be used to define these properties as

arbitrary functions of forcing frequency and temperature. When

frequency dependent properties are used, the damping matrix K is

reformulated at each new forcing frequency based upon the material

properties specified in UDAMP.
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CHAPTER 5

SPECIAL PROGRAM FEATURES

The MAGNA finite element program contains several

special analysis features designed to improve analysis

flexibility and ease of use for a wide variety of problems.

These features include capabilities for incremental generation

of analysis data, creation of data files for postprocessing

functions, analysis restart options, and provisions for

intervention by user-written subroutines at appropriate

stages of an analysis. Additional program features which are

"- not described elsewhere in the manual are also introduced in

.- --. this chapter.

5.0.1

S.



qi

5.1 CURVILINEAR COORDINATES

- In many applications, it is convenient to define all

or part of a finite element model in terms of coordinates

other than the global Cartesian system. Geometry data for

the program may be entered in any desired coordinate

system(s), and transformed internally to the global axis

system. Coordinate transformations for circular cylindrical

and spherical systems are available in the code, and

additional transformations can be defined in a user subroutine

CTYPE (see Section 9.2). The built-in coordinate systems

(cylindrical and spherical) are shown in Figures 5.1.1 and

5.1.2.

5
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Figure 5.1.1 Cylindrical Coordinate System Definition.
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Figure 5.1.2 Spherical Coordinate System Definition.
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5.2 COORDINATE DATA GENERATION

- The MAGNA program contains utilities for incremental

coordinate generation which are useful in describing

geometrically regular portions of the finite element nodal

mesh. Given two node positions, the program will generate

equally spaced nodal points with specified numbering

increment on a straight line between the given points, as

shown in Figure 5.2.1. Nodes 23 and 35 in the figure are

defined explicitly, and the increment specified for generation

is INCR=3; node points 26, 29, and 32 are then defined

automatically within the program. The node numbering increment

must be positive, and generation of node points is performed

in the global Cartesian coordinate system.

Coordinate data generation can also be performed in

a user-written subroutine MtSHG, described in Section 9.1.

Such a routine can be created to automatically generate all

nodal data, or to read coordinate input in non-standard card

formats.

I

--
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Figure 5.2.1 Incremental Node Point Coordinate Gelic..ation.
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5.3 ELEMENT GENERATION

i -Element connectivity data, which describes the connection

of individual elements to nodal points of the finite element

model, can be generated incrementally within the program in

many cases. Sequences of elements whose connectivities are

different by a constant are defined simply by inputting the

first element of the sequence, the ending element number, and

F- a node generation parameter (KGEN). This utility is available

for all element types; for the variable-node elements, in

which some connected nodes may be absent (i.e., zero),

generation is performed only on nonzero node numbers, so

that all elements in a generator sequence have an identical

number of nodes. Finite elements generated in a given sequence

are assigned the same material propertiee, but need not have

similar geometries. The node generation parameter KGEN, which

specifies the difference in connected node numbers between

successive elements, must be a postive integer value.

5.3.1
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5.4 INCREMENTAL LOADS

* '- Nonlinear and dynamic solutions are performed in MAGNA by

considering a number of successive increments of time or

loading. In dynamic analysis, external loads applied to a

finite element model are defined directly in terms of time.

For nonlinear static analysis, where inertial effects are

neglected, loadings are also defined as functions of time;

however, in the static case, "time" is simply used as a loading

parameter (i.e., independent variable) which increases

continually throughout the solution.

Applied forces whose magnitude is known in advance are

specified by defining loading curves which describe the forces

as functions of time (or loading parameter). External forces

defined in this manner may include nodal forces in a given

direction, or distributed surface pressures. In the case of

pressure loading, surface pressures can be~specified to act

in the direction normal to the element in its initial state

("dead" load), or to act along the current (deformed) surface

of an element ("live" load, e.g., fluid pressure). Concentrated

nodal follower forces, and concentrated or pressure loads whose

magnitude depends upon the structural response, can be defined

in the user-written subroutines ULOAD and USRLOD (see Section

9.3) which are called during each time or load increment of

the solution.
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5.5 NONLINEAR MATERIAL STRESS-STRAIN DATA

The analysis of elastic-plastic, strain hardening

materials in MAGNA is performed using a "subincremental"

method, which allows the stress state at integrating points

in the finite element model to follow the material stress-strain

curve as closely as possible (see Section 2.3). Determination

of the work hardening behavior of the material uses known,

uniaxial stress-strain data, from which the instantaneous

hardening slopes (i.e., tangent moduli) are found. These

uniaxial data are supplied to the program in the form of

piecewise linear data curves which define stress as a function

of plastic strain in the Lagrangian description.

Typically, material stress-strain data are ebtained in

the form of total stress versus total strain, where the stresses

and strains recorded are either "true" or "engineering" values.

Reduction of the data to the form required by the program

n ., therefore consists of two steps:

(1) Conversion of total stress/strain values to the

appropriate measures for a Lagrangian description (namely,

Piola-Kirchhoff stresses and Green-St. Venant strains), and

(2) Reduction of the data to give total stress in

terms of plastic strains.

For raw data given in terms of engineering values EP E'

applied force P
E original area - (5.5.1)0

elongation uE original length - (5.5.2)

The Lagrangian measures of stress and strain (aL,eL) can be

obtained from

I5
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E

"-L (l+- E )  (5.5.3) . -

SL E " (5.5.4)

True stress and true strain values aT, 5T are defined by

U~applied force _Pa T current area A (5.5.5)

and

L

T = in rcurrent length 7 dL
Loriginal lengthI TL L (5.5.6)

0

and can be converted to the Lagrangian values (aL -L) using

T A
L exp(ET) A (5.5.7)

1

EL = (exp(25T) -1] . (5.5.8)

The ratio of current to original areas in Equation 5.5.7 is

normally not available as part of the data for a material,

but can be estimated from the following:

0 E (Elastic Range) (5.5.9)A 1 + (-2v) E

ESA 0 1 + E
A (Plastic Range) (5.5.10)

A 1+ (1-2v)c E

in which EE is the engineering strain

5.5.2
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E = exp(CT) - 1 , (5.5.11)

"y denotes the engineering strain at first yielding, and v is
E

the Poisson's ratio of the material. Equations 5.5.9 and

5.5.10 are valid provided

(1) the elastic strains at first yield are small

(much less than unity)

(2) the material is incompressible during plastic

deformation

(3) necking instability of the specimen has not

occurred.

The final step in preparing the stress-strain data is the

reduction to the form of stress versus plastic strain. The

required plastic strains are obtained from

P =
L L E- (5.5.12)

As an example, consider a material whose engineering

stress-strain behavior is defined by the table of values below:

- EE  E

0. 0.

0.0030 30000.

0.0045 35000.

0.0060 37500.

0.0090 40000.

0.0150 41000.

0.1000 45000.

From Equations 5.5.3 and 5.5.4, the Lagrangian measures of

- -stress and strain are found to be

5.5.3
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EL 0 L

0. 0.

0.003005 29910.3

0.004510 34843.2

0.006018 37276.3

0.009041 39643.2

0.015113 40394.1

0.105000 40909.1

Next, Equation 5.5.12 is used to obtain stress as a function of

the plastic strain

P
EL 

L

0. 29910.3

0.001026 34843.2

0.002290 37276.3

0.005077 39643.2

0.011074 40394.1

0.100909 40909.1

The original (engineering) data and the stress-versus-plastic

strain input data are shown in Figure 5.5.1.

5
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5.6 LINEAR MULTIVARIABLE CONSTRAINTS

Linear constraints are a special type of boundary condition

- which may be used in MAGNA to represent fixed relationships between

a number of degrees of freedom of a finite element model. Examples

* - include nodal constraints (due to fixity or symmetry) in skewed

coordinate directions, and rigid links between nodes of a model.

A single linear constraint equation has the form

n (d.)n C . U (d = 0 (5 6 .1)
U(n.)i=l 1 i

in which n is the number of individual terms in the constraint.

Each term is defined by a coefficient (C.), a node number (n.) and

a direction (d.); the node number and direction together define a

single unique degree-of-freedom of the model. A simple example is

shown in Figure 5.6.1, in which a node is contrained to move along

an inclined surface in the (X,Y) plane. If e is the angle between
the surface and the X-axis, displacements perpendicular to it may

be suppressed using the linear constraint

(-sine)u + (cosO)v = 0. (5.6.2)

Here n = 2, and

C = -sinO C = cose

d = 1d 2  2

n= (node number) n = (node number)

Equations of linear constraint are introduced into the global

*O equations of the finite element model using a penalty function

technique. Expressing a single constraint in the form

C x = 0, (5.6.3)

5 6
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the penalty function is constructed by squaring the constraint and

. assigning an associated penalty factor a,

TCCT X = 0 (5.6.4)

The left-hand side of Equation 5.6.4 may be interpreted as a "strain

energy penalty" associated with the violation of the original

constraint. When Equation 5.6.4 is added to the strain energy of

the finite element model, this error may be forced to arbitrarily

small values as the penalty factor (a) takes on a very large value.

In practice, the magnitude of a is based upon the magnitude of

*existing coefficients in the stiffness matrix, so that constraints

* are enforced properly while the system of equations remains

-. well-conditioned.

In non-linear and dynamic analysis, repeated solution of the

system may lead to accumulated errors in the satisfaction of the

linear constraint equations. To avoid this potential source of

error, each linear constraint is evaluated at each iteration or

time step in the solution to obtain the error

cTx(i) = E (5.6.5)

During the next time step (or iteration), a corrected constraint

is applied, requiring

cTx(i+l) CTAX + C = 0 (5.6.6)

The error in satisfying the linear constraints is, therefore,

limited to very small values by the displacement convergence

tolerance normally used within MAGNA.

5.6.
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k Figure 5.6.1 Enforcement of Displacement Constraint on a
K Skewed Boundary.
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5.7 POSTPROCESSING INTERFACE

Interpretation of the results of a finite element solutior

can be greatly facilitated by the use of postprocessing programs

which provide tabular and/or graphical display of the computed

response. In addition to printed output, MAGNA optionally

produces a summary of analysis results which is suitable for use

as input to special-purpose postprocessing programs. The analysis

summary is output from the program in the form of a formatted

file on disc or magnetic tape, with the local (temporary) file

name MPOST. The MAGNA geometry plotter (GPLOT, see Chapter 11)

accepts the MPOST file as input for the preparation of deformed

mesh plots in an interactive mode. Contents of the MPOST file

include the following:

1. Nodal coordinate (input and generated values)

2. Element connectivities (input and generated)

3. Nodal displacements for each solution increment

4. Element strains, stresses, and equivalent stress

levels at integration points for each increment.

Logical blocks of data are separated by formatted header

records; the contents of the data headers are indicated in

Table 5.7.1. A description of individual data records, in

their approximate order of appearance on the file*, is given

in Table 5.7.2. The maximum record length on file MPOST is

130 characters, so that the file can be copied to a high-

speed printer to provide a concise printed summary of the

*Q analysis if required.

An additional postprocessing file is produced by the

stress extrapolation and smoothing program STRAVG (Section 10.11),

which is normally executed as part of a MAGNA batch analysis

run. STRAVG, which generates smoothed nodal stress values

*The exact ordering of the postprocessor file data is

dependent upon the type of analysis being performed.

5.7.1
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TABLE 5.7.1

HEADER RECORDS FOR POSTPROCESSOR FILE MPOST

Data
Item Type Format

COOR Keyword for Nodal Coordinates Data A A4,llX

Ii Number of Node Points I 15

CONN Keyword for Element Connectivity Data A A4,1X

Ii Element Type I 15

12 Maximum Number of Nodes per Element I 15

13 Number of Elements of this Type I 15

ENDD Keyword for End of Data A A4

DISP Keyword for Nodal Displacement Data A A4,1X

Ii Increment or Load Case Number I 15

12 Number of Nodes 1 15
"R1 Time (or Load Parameter) Value R E15.8

ELSS Keyword for Element Stress/Strain Data A A4,1X

Il Number of Element Types Used I I5

Ii Increment or Load Case Number 1 15

R1 Time (or Load Parameter) Value R E15.8

ETYP Element Type Header for Stress/Strain Data A A4,1X

Il Element Type I 15

12 Element Dimensionality I 15

13 Interpolation Type Code 1 15

14 Number of Elements of this Type 1I5

ELEM Element Header for Stress/Strain Data A A4,1X

Ii Element Number 1 15

12 Maximum Number of Nodes per Element 1 15

13 Number of Numerical Integration Points I I5

ENDP End-of-Problem Trailer A A4

5.7.2
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TABLE 5.7.2

DATA RECORDS FOR POSTPROCESSOR FILE MPOST

DATA TYPE DATA DESCRIPTION FORMAT

COOR Header (1) A4,1iX, I5

Coordinates 1. Node Number
2. Coordinates X,Y,Z 15,5X,3El0.3
(one record per node point)

CONN Header (2) (1) A4,lX, 315

Connectivity (2) 1. Element Number
2. Connected Nodes 2814
(one record per element)

ENDD Trailer (1) A4

DISP Header (3 (1) A4,1X,215,EI5.8

Displacements (3) 1. Node Number
2. Displacement Components 15,5X,3El0.3

(one record per node point)

ELSS Header (3) (i) A4,lX,215,EI5.8

ETYP Header (4) (1) A4,1X,415

ELEM Header (5) (1) A4,lX,315

4 Element Strain 1. Strain Components (6)
and Stress (6) 2. Stress Components (6) 13E10.3

3. Equivalent Stress

ENDP Trailer (1) A4

Notes:

(1) See Table 5.7.1 for header and trailer record descriptions
(2) Repeated for each element type used
(3) Repeated for each solution time step or loadinq case
(4) Repeated for each element type at each time step or loading case
(5) Repeated for each element at each time step or loading case
(6) Repeated for each integration point at each time step or

loading case; for Element Type 11 (layered shell), integration point
values are output for each layer of an element.
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(and individual layer stresses for Element Type 11) as printed

Soutput, also creates an "averaged-stress" postprocessor file

(APOST) which is used as input to contour plotters and other

special purpose data presentation programs. The contour/relief

plotter CPLOT (Chapter 11) developed for use with MAGNA accepts

the APOST file as input to generate a variety of stress, strain,

and displacement plots under interactive control.

The header information and data contained on the APOST

postprocessing file is summarized in Table 5.7.3. This data

is always arranged in the exact order shown in the Table. It

should be noted that the individual increments (or loading

conditions, or mode numbers) appearing on the APOST file are

the same as those contained in the MPOST file.

*[ Normally, no input is required for execution of STRAVG.

However, input can be supplied to control the amount of printed

output, and/or the increment numbers to be processed. When input
~is supplied to STRAVG, the first input line contains a printing

specification

PRINT=YES (normal printed output)or

PRINT=NO (minimal printed output)

beginning in column 1, with no embedded blanks. Additional input

lines should contain numbers or ranges of increments to be processed

by STRAVG; increment ranges are distinguished by a negative sign

on the second number of a pair. The increment number data are

read in 1615 format, on as many lines as necessary, with blank

fields being ignored.
The following example of STRAVG input requests minimal

printing, with increments 5, 7, and 10 through 14 to be processed:

PRINT=NO

^^^^5^AA
4

57.-14
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Requested increments which do not appear on the input MPOST file

are simply ignored. For example, if the MPOST file contained

increments 6 through 12, the above input stream would cause

increments 7, 10, 11, and 12 to be processed and written to the

APOST postprocessing file.

5.7.
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TABLE 5.7.3

MAGNA POSTPROCESSOR FILE 'APOST' - GENERAL DESCRIPTION AND FORMAT

Record Columns Format Description

1 1-80 20A4 Problem Title (Line 1 of 3)
2 1-80 20A4 Problem Title (Line 2 of 3)I ,. 2 -80 204 PolmTte(Line 3 of 3)
3 1-80 20A4 Problem Title (Line 3 of 3)

4 1-4 A4 'INCS' - Increment List Header
5 iX (Blank)

6-10 15 Number of Solution Increments, Modes
or Loading Conditions to appear on
file

5 1-100 2015 List of Increments in ascending order.
(Additional records are used as
needed)

6 1-10 loil Flags for Element Types Appearing
in the Model.

7 1-4 A4 'LIMC' - Coordinate Limits Header
5 ix (Blank)

5-20 E15.8 X - Maximum Value t
21-35 E15.8 Y - Maximum Value
36-50 E15.8 Z - Maximum Value
51-65 E15.8 X - Minimum Value
65-80 E15.8 Y - Minimum Value
81-95 E15.8 Z - Minimum Value

<<<<< Records 8-17 (described on the next page) each >>>>>
<<<<< include data computed at each increment of the >>>>>
<<<<< finite element solution. Each of these records >>>>>
<<<<< is repeated (in the same order) for each solu- >>>>>
<<<<< tion increment, mode shape or loading case >>>>>
«<< listed in Record 5. >>>>>

5
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TABLE 5.7.3 (continued)

Record Columns Format Description

8 1-4 A4 'INCT' - Increment Header.
V 5 iX (Blank)

6-10 15 Increment Number
11-15 15 Total Number of Elements
16-30 E15.8 Time Value at this Increment

9 1-4 A4 'LIMC' - Displacement Limits
Header

5 iX (Blank)
6-2) E15.8 X - Maximum Displacement

21-35 E15.8 Y - Maximum Displacement
36-50 E15.8 Z - Maximum Displacement

K 51-65 E15.8 X - Minimum Displacement
66-80 E15.8 Y - Minimum Displacement
81-05 E15.8 Z - Minimum Displacement

10 1-4 A4 'ELMT' - Element Header
5 IX (Blank)

" 6-10 15 Part Number (A 'part' is any
distinct combination of element
type and material property code;
elements appearing in the file
are sorted by parts).

11-15 15 Global Element Sequence Number
(numbers are secondary sort key)

16-20 15 Element Type (as defined in MAGNA)
21-25 15 Element Sequence Number (within type)
26-30 I5 Material Property Code
31-35 I5 Maximum Number of Nodes
36-40 15 Length of Coordinate Records

(3*Nodes)
41-45 15 Number of Layers (Element Type 11 only)

11 1-108 2714 List of Connected Nodes (up to 27)

12 1-120 1OE12.5 (Xcoor(i),i=l,maxnodes),
(Ycoor(i) ,i=l,maxnodes),
(Zcoor(i) ,i=l,maxnodes).
Nodal coordinates are written up to
10 entries per line, over as many
lines as needed (up to 9, for
27-node elements).

13 1-120 1OE12.5 (Xdisp(i),i=l,maxnodes),
(Ydisp(i) ,i=l,maxnodes),

* (Zdisp(i) ,i=l,maxnodes).
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TABLE 5.7.3 (concluded)

Record Columns Format Description

14 1-10 E10.3 XX - Strain at Local Node #1
11-20 E10.3 YY - Strain at Local Node #1
21-30 E10.3 ZZ - Strain at Local Node #1
31-40 E10.3 YZ - Strain at Local Node #1
41-50 E10.3 XZ - Strain at Local Node #1
51-60 E10.3 XY - Strain at Local Node #1
61-70 E10.3 XX - Stress at Local Node #i
71-80 E10.3 YY - Stress at Local Node #1
81-90 El0.3 ZY - Stress at Local Node #1
91-100 E10.3 YZ - Stress at Local Node #1

101-110 E10.3 XZ - Stress at Local Node #1
111-120 E10.3 XY - Stress at Local Node #1
121-130 El0.3 Von Mises Stress for Node #1

<<<<< Record 14 is repeated for each node point >>>>>
<<<<< connected to the element. Omitted points >>>>>
<<<<< in variable-node elements assigned zeros. >>>>>
<<<<< For the layered shell element (Type 11), >>>>>
<<<<< a complete set of nodal values is output >>>>>
<<<<< for each layer of the element. >>>>>

15 1-4 A4 'LIMS' - Stress/Strain Limits
Header

16 1-10 E10.3 Maximum XX - Strain for this Increment
11-20 El0.3 Maximum YY - Strain for this Increment
21-30 E10.3 Maximum ZZ - Strain for this Increment
31-40 El0.3 Maximum YZ - Strain for this Increment
41-50 E10.3 Maximum XZ - Strain for this Increment
51-60 E10.3 Maximum XY - Strain for this Increment
61-70 E10.3 Maximum XX - Stress for this Increment
71-80 E10.3 Maximum YY - Stress for this Increment
81-90 E10.3 Maximum ZZ - Stress for this Increment
91-100 E10.3 Maximum YZ - Stress for this Increment

101-110 El0.3 Maximum XZ - Stress for this Increment
111-120 E10.3 Maximum XY - Stress for this Increment
121-130 El0.3 Maximum von Mises Stress for Increment

17 1-10 El0.3 Minimum XX - Strain for this Increment
11-20 E10.3 Minimum YY - Strain for this Increment
21-30 E10.3 Minimum ZZ - Strain for this Increment
31-40 El0.3 Minimum YZ - Strain for this Increment
41-50 E10.3 Minimum XZ - Strain for this Increment
51-60 E10.3 Minimum XY - Strain for this Increment
61-70 E10.3 Minimum XX - Stress for this Increment
71-80 El0.3 Minimum YY - Stress for this Increment
81-90 E10.3 Minimum ZZ - Stress for this Increment
91-100 E10.3 Minimum YZ - Stress for this Increment

101-110 E10.3 Minimum XZ - Stress for this Increment
111-120 E10.3 Minimum XY - Stress for this Increment
121-130 E10.3 Minimum von Mises Stress for Increment

5.7.8



5.8 ANALYSIS RESTART UTILITIES

In practical situations, very little may be known about the

characteristics of the solution prior to performing an analysis.

When a large nonlinear or dynamic analysis is to be performed, it

is therfore desirable in many instances for the analyst to intervene

at certain points within the solution to monitor progress and to

make decisions concerning solution strategy, analysis options or

modifications to the input data. In other cases, it may be con-

venient to perform the solution in several steps to safeguard

against job failure or to improve turnaround time.

MAGNA provides utilities to permit the interruption and

subsequent restarting of any nonlinear analysis, with the

frequency of checkpointing and the point of restart controlled by

the user. The same restart facilities may be used in linear,

transient dynamic solutions. Input or output restart files, or

both, may be used, depending upon whether a new analysis, an

* intermediate analysis, or a run to completion is being made. Job

control procedures necessary for using the restart facilities are

0 described in Chapter 7.

During a restart analysis, a number of options and data

items may be changed from those specified in the original

solution. Examples of data which may be redefined freely during

a restart include:

e analysis type (static or transient),

e output options, including postprocessing files,

e time or load increments, integration parameters or

system damping coefficients,

* iteration parameters,

o stiffness formulation options or recompute frequencies,
and

* nodal/element loads and corresponding time functions.

5.8.1
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During a restart job, a complete input deck (Chapter 8) is

supplied to the program. It should be noted that nonlinear analyses

may only be restarted as nonlinear, and linear dynamic analyses

* must be restarted as linear. In nonlinear analysis, however, the

solution type (static, transient) may be changed when restarting.

*The following data should not be modified in a restart analysis:

o nodal coordinates,

o material properties and axis definitions,

e element connectivities (.connected nodes),

I * element integration order, and

e homogeneous boundary conditions.

Furthermore, those nonlinear elements using constant (linear)

stiffness matrices (ISUP=l for Element Types 1, 6, 7, and 8)

should generally remain unchanged from the original analysis; all
other stiffness computation options and frequencies of

reformulation may, however, be modified as desired. If elements

using the constant stiffness option (ISUP=l) are modified to

use the averaged or tangent stiffness formulation (ISUP=-l or 0),

all such elements must be changed to one of the non-constant

stiffness options. Such a change in stiffness formulation method

*is usual following non-convergence using the constant stiffness

approach in nonlinear analysis.

Input data which defines the actual restart parameters

is described in Section 8.3. Any analysis which creates a

restart tape is identified by a four-character identification

code, and each increment written to the tape is identified

by the number of the increment. When a restart analysis is

performed, both the identification code and the increment value

4 are verified prior to the restart, to detect any inconsistency
which might lead to erroneous results.
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5.9 NATURAL FREQUENCY ANALYSIS WITH PRESTRESS EFFECTS

The tendency of gross structural response to change

markedly in the presence of nonlinear effects is important in

determining both static and dynamic behavior of a structure.

In addition to the modification of static and transient response

to loading, geometrical or material nonlinearities may bring

about changes in the nature of small, superimposed motions (such

as free vibration). A simple example is the increase in

fundamental frequency which accompanies the "stiffening" effect

in a beam experiencing large displacements.

MAGNA contains an option to compute the influence of

nonlinearities upon superimposed free vibrations within the

natural frequency branch of the problem. The solution is a two-

step procedure. First a nonlinear analysis must be performed,

to compute the equilibrium state corresponding to the prestressed

position. Secondly, the stiffness coefficients in the prestressed

state are included in a free vibration analysis, which solves

-it for the superimposed small harmonic motions about this equilibrium

Oposition.

For purposes of plotting, the MPOST postprocessor file

(Section 5.7) from the preliminary nonlinear solution may also

be communicated to the natural frequency analysis. When this

option is exercised, the final geometry in the prestressed state

will be copied to the MPOST file for the frequency solution;

after completion of the entire analysis, geometry plots can be

generated showing the true mode shape(s), superimposed on the

prestressed shape of the model.

The following points should be noted concerning the

eigenvalue solution with prestress:

- the nonlinear portion of the analysis is best performed
with equilibrium iterations;

- strain and stress information generated in the natural
frequency solution is the superimposed strain and stress
state due to small vibration, and is assumed to be

-- elastic; and

L 5 9"
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- the plotting scheme described in the previous paragraph
is optional, and may be omitted without affecting the
solution.
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CHAPTER 6

DEMONSTRATION PROBLEMS

A number of sample analyses are presented in this

chapter to demonstrate the linear and nonlinear solution

capabilities of the MAGNA program. The problems described

include both small structures having well-known or documented

solutions, and larger models corresponding to practical

applications of the program. In some cases, solutions to

two-dimensional or axisymmetric problems are obtained using

three-dimensional finite element models; this reflects the

. emphasis during the early program development stage on

* . efficient three-dimensional analysis techniques, as well as

the scarcity of well-documented benchmark problems for
-nonlinear response in three dimensions. The more practical

applications described in this chapter (many of which are

*. truly three-dimensional) demonstrate the capabilities of

the MAGNA program for performing nonlinear analyses of

structures of practical size and complexity.

6.0.1
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6.1 ELASTIC-PLASTIC ANALYSIS OF A CIRCULAR PLATE

The circular plate shown in Figure 6.1.1 is subjected to

a transverse load applied through a rigid punch. Dimensions

Lof the specimen are given in the Figure. Experimental load-

displacement curves for this plate have been presented by

Winter and Levine (Reference 1, Plate 4A250), together with an

axisymmetric shell solution obtained with the PLANS finite

element code. Analytical results obtained using axisymmetric

solid finite elements are reported by Hunsaker, Haisler and
2

Stricklin

Although this problem is axisymmetric, a MAGNA solution

has been performed using solid twenty-node elements (Element

Type 6) to demonstrate the three-dimensional large displacement

plastic analysis capabilities of the program. The finite

element model of one quarter of the plate, consisting of 14

K solid elements, is shown in Figure 6.1.2. Two elements are used

through the plate thickness, since the specimen is rather thick

(R/t = 9.98) and considerable material nonlinearity can be

expected to occur before large displacement effects become

significant.

Two different sets of integration rules and stiffness

options have been employed in performing nonlinear analysis

of the plate. In the first model, which uses the tangent

stiffness option in all elements, 3x3x3 Gaussian integration

is used for the innermost six elements (R < 0.995) and 2x2x2

quadrature is specified elsewhere. The second model uses a

tangent stiffness option and 14-point numerical integration

for the six elements closest to the center of the plate, while

2x2x2 quadrature and an averaged stiffness option is used for the

remaining eight elements. The averaged stiffness approach is

appropriate due to the relatively simple strain and stress

distributions which are expected near the supported edge.

Model 1 is used without equilibrium iteration, while Model 2 is

solved by combined Newton-Raphson iterations to maintain solution

" .- stability.

6.1.1
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Figure 6.1.2 Finite Element Model of a Circular
* -Plate .
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The stress-strain curve of the material, a strain-hardening

aluminum alloy, are defined by the engineering stress and strain

values listed below.

oE

0. 0.

0.009950 10000. (yield stress)

0.013100 20000.

0.045020 28000.

0.118000 36000.

0.363110 48000.

The MAGNA solution for the central displacement of the

plate versus the total applied load is compared with the

experimental results in Figure 6.1.3. Forty equal increments

of 100 pounds each have been used in the solution. The

particular solution pictured, which is obtained from Model 1,

uses a kinematic strain-hardening description. in fact, the type

of strain-hardening rule selected is rather unimportant for
2the present solution2 . Solution accuracy is quite good for

the entire range of loading, during which the Green's strains

attain maximum values in excess of 30 percent.

Displacement solutions at the center of the plate

corresponding to Models 1 and 2 are compared in Figure 6.1.4.

Model 2 predicts slightly larger displacements throughout the

loading history, but the agreement between the two results is

reasonably good. It should be noted that the most significant

reason for the differences in computed displacements between the

two models is the use of equilibrium iteration in Model 2,

rather than in the use of different integration schemes and

stiffness options.

Figures 6.1.5 and 6.1.6 show selected stress results, in

the form of contour plots, corresponding to an applied load of

6.1.4
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1000 pounds. At this stage yielding is confined to a small

region near the center of the plate, as shown in the yield locus

-plot of Figure 6.1.5. The distribution of von Mises effective

stress is nearly midplane-symmetric (Figure 6.1.6).

Similar contour maps for the 2000 pound loading level are

presented in Figures 6.1.7 and 6.1.8. Figure 6.1.7 shows the

yield locus, which is interpreted as a series of straight lines

due to the 2x2x2 integration rule used in the outermost elements;

* .[only a small region near the boundary and the midsurface remains

elastic. The radial strain distributions of Figure 6.1.8 already

show the influence of geometric nonlinearities, although the

maximum strains are still rather small (6 percent).

.

.
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6.2 SHALLOW SPHERICAL SHELL UNDER CONCENTRATED LOAD

_ ; The large displacement, elastic response of a shallow

spherical cap, subjected to a point force at the apex, is

considered. Figure 6.2.1 shows a cross-section of the

undeformed shell geometry! the included angle of the cap (from

the apex to the boundary) is 10.9 degrees. The shell material

is assumed to be linear and elastic, but nonlinear effects due

to large displacements are considered in the solution. The

static solution of this problem has been studied by several

investigators -3; in Reference 3, Mondkar and Powell also

presented nonlinear dynamic solutions for the case of a

constant, suddenly applied load.

Several three-dimensional finite element models of the

cap are shown in Figures 6.2.2 through 6.2.5. The model of

Figure 6.2.2 consists of fifteen shell elements (Element

Type 5), forming a ten-degree sector of the cap. Since the

response is axisymmetric, displacements normal to the lateral

boundary have been suppressed using linear constraints (see

Section 5.6). In Figures 6.2.3 and 6.2.4, the discretization

consists of three-dimensional solid elements (Element Type 1),

using twenty nodes per element and a 2x2x2 integration rule.

Five and nine elements, respectively, are used to represent

a ninety-degree sector of the shell. The last model (Figure

6.2.5) consists of seven solid elements (Element Type 1) on a

fifteen-degree sector of the cap- linear constraints are again

used to suppress the circumferential displacements on the

skewed boundary. In each case, the outer edge of the shell is

assumed to be completely clamped.

The nonlinear, static behavior of the spherical cap has

0 been studied for the loading range of 0-100 pounds. At low

r load levels, the shell gradually becomes more flexible until the

curvature of the deformed shell begins to generate midsurface

tension stresses, causing a rapidly stiffening response. The

static behavior is highly nonlinear, involving displacements

which are twice the initial rise of the cap.

6.2.1



R -4.7600 in. E 10 x 106 psi

*t 0.01576 in. u 0.30
h * 0.0859 in. p - 2.45 x 10 Ib-sec2hin4

Figure 6.2.1 Cross-section of Shallow Spherical shell

A under concentrated Loading.
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Figure 6.2.3 Five-Element Discretization of Spherical Cap
Using Three-Dimensional, Twenty-Node Elements.
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Figure 6.2.4 Nine-Element Discretization of Spherical Cap
Using Three-Dimensional, Twenty-Node Elements.
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A load-displacement solution obtained with the fifteen

shell element model and two-pound loading increments is given

in Figure 6.2.6. The results reported by Mondkar and Powell
3

using ten axisymmetric quadratic continuum elements, and a

MARC2 solution performed with twenty axisymmetric shell elements,

are shown for comparison. Agreement among the three solutions

is quite good.

Static solutions using the five and seven-element

three-dimensional solid models are plotted in Figure 6.2.7.

The prediction by Mondkar and Powell is again shown for

purposes of comparison. The seven-element model gives

displacement results which are in good qualitative agreement

with the solution of Reference 3; the displacement values at

maximum load are different by approximately four percent.

The five-element result is surprisingly good, and demonstrates

that relatively few solid elements can be used to represent

a fairly complex nonlinear response to within engineering

* . accuracy. It should be emphasized, however, that such a coarse

discretization is generally not sufficient for good stress

accuracy.

The initial nonlinear dynamic response of the cap to a

suddenly applied load of 100 pounds has also been predicted

using MAGNA. In each case, the solution is obtained using

the Newmark constant-average-acceleration operator (6 = 1/2,

d = 1/4; see Section 4.2). Figure 6.2.8 shows the transient

response computed with the shell element model (fifteen

elements), using a time step of two microseconds. Similar

results due to Mondkar and Powell 3 are shown for comparison.

*The solutions show good agreement, while the difference in

superimposed high-frequency oscillations reflects the difference
in the two methods of discretization. Nonlinear dynamic

solutions obtained using the nine-solid-element model (Figure

6.2.4) are given in Figures 6.2.9 and 6.2.10, for solution time

* - steps of two and four microseconds. The solid element results

6.2.7
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-PRESEINT ANALYSIS (100 SECTOR, 15 ELEMENTS)

0.24 0MONOKAR AND POWELL (.AXISYMMETRIC)
10 ELEMENT S

S0.20

S0.16o

a- 0.12

0.04

0.00
0 40 80 120 160 200

TIME (&SEC)

*Figure 6.2.8 Shell Element Solution for Dynamic Response
of Shallow Cap (at =2 usec.).
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0.26 0 MAGNA, 9 SCLIO ELEMENTS
-- At a2 sec.

0.24 0 NONSAP, 10 AXISYMMETRIC ELEMENTS
z at =2,sec.

.0.22 - LINEAR

0.20

0.14

0-

"0.1
4 0.08

"0.06

004-

40.02

0

0 20 40 60 80 100 120 140 160 180 200
S- TIME (,ASEC.) '

Figure 6.2.9 Solid Element Solution for Dynamic Response of
Shallow Cap (At - 2 psec.).
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Figure 6.2.10 Solid Element Solution for Dynamic Response of
Shallow Cap (At - 4 iusec.).
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4
are plotted with a NONSAP solution, which is virtually

identical to the results of Reference 3. For the smaller

increment size, the solution is quite good. At At = 4 usec.,

the maximum displacement is well represented but the period of

*oscillation is overestimated; this error is typical of the

Newmark integration operator at large time steps. A similar

effect can be observed to a lesser degree even in the solution

for At = 2 Psec., as shown in Figure 6.2.11. In this case,

Newton-Raphson iterations have been used at each increment

of the solution for a 4 usec time step, and can be seen to

control the period distortion in the integration quite

effectively. It is worthy of mention that the total cost of

the two solutions shown in Figure 6.2.11 is nearly the same,

since relatively few Newton iteration cycles are required at

each time increment to stabilize the solution.
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6.3 LARGE STRAIN ELASTIC ANALYSIS OF A BAR IN TENSION

The problem of a rectangular, elastic bar under axial

load is considered, to test the large displacement and large

strain analysis in MAGNA. Figure 6.3.1 shows the geometry

of the bar; the material properties used are those of aluminum

(E = 1.0 x 107 psi; v = 0.30). Only axial displacements are

permitted in the solution, so that the only nonzero component

of strain is longitudinal ( xx).

The linear response of the bar has the following three-

dimensional solution:

p
xu = A (A + 21)

0

E" O

Ex = Aop + 0)

yy zz

=x A

0P p
Ga =7 ay Z A (X + 21),0

in which P denotes the total load, A is the initial area of
0

the bar, and X,p are the Lam4 constants of the material. In

the geometrically nonlinear range, the load-deflection curve

can easily be obtained as

P = A (A + 2u) v (1 + v)(1 + v/2)

where v is the end deflection of the bar divided by the original

length.

The three-dimensional finite element discretization of

the bar (Figure 6.3.2) consists of twenty eight-node solid

*" elements (Element Type 2). A large number of elements has

6.3.1
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been used here to provide a check of the uniformity of the

* stress and strain solutions; one element would, in fact,

provide correct results.

T !A linear solution has been performed for the bar, using

the data

A = 0.0625 in.
2

0

L = 10.0 in

= 5.7693 x 106 lb./in.2

v- 3.8462 x 106 lb./in.
2

P = 6,000 lb.

Numerical results for the problem are compared with the

exact solution in Table 6.3.1, computed values of the end

displacement, stresses, and strains agree with the analytical

values to the same accuracy as the data (above).

Load-deflection response obtained from the geometrically

nonlinear solution are compared with the analytical solution

in Figure 6.3.3, and tabulated .-i increments of 40,000 pounds

in Table 6.3.2. The maximum load level considered is 2.4 x

105 lb., corresponding to Green's strains of approximately

25%. Load increments of 10,000 pounds have been used, without

iteration. Table 6.3.2 shows that the error in the numerical

solution actually tends to decrease as the load is increased;

errors in the computed response at all load levels are quite

small.

6
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TABLE 6.3.1

LINEAR SOLUTION FOR AXIALLY LOADED BAR

Quantity Exact Computed Error (%)

End Deflection 0.07131 0.07132 0.01

Strain e 0.007131 0.007131 0.00xx

Strains e , s 0. 0. 0.00

Stress a 96000. 96000. 0.00xx

Stresses a , a 41140. 41143. 0.01
Streses zz

TABLE 6.3.2

NONLINEAR LOAD-DEFLECTION RESULTS FOR RECTANGULAR BAR

Load Displacement Exact Load Error (%)

40000. 0.446839 40152. 0.38

80000. 0.842871 80153. 0.17

120000. 1.202215 120120. 0.10

160000. 1.532662 160111. 0.07

200000. 1.839616 200104. 0.05

240000. 2.127008 240100. 0.04
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Figure 6.3.3 End Displacement Versus Load Solution for
Axially Loaded Bar.
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6.4 ELASTIC DYNAMIC' BUCKLING OF A CIRCULAR ARCH

The dynamic stability of a shallow arch is considered,

to demonstrate the capabilities of the MAGNA program in

performing dynamic solutions involving both large displacements

and large rotations. A circular arch, pinned at each end, is

subjected to a rapid pressure loading, as indicated in

Figure 6.4.1. The geometry and material properties of the

structure are as follows:

R = 67.115 inches

a = 15.0 degrees

h = b = 1.0 inch

6
E = 10.0 x 10 psi

v = 0.20

p = 2.44 x 10 lb.sec2 /in.

The initial height of the arch is H = 2.87 inches.

The pressure loading applied to the arch increases

linearly with time for 331.5 microseconds; after this time, the

distributed load remains constant at P pounds per square inch.o0
At small values of the maximum pressure P , small vibrations are

observed which do not exceed the initial height of the arch.

However, for pressures greater than a certain critical value Pcr

(which is to be determined), the arch snaps through and

oscillates about an inverted position.

The stability of the arch has been studied using analog
1methods by Humphreys , who showed that asymmetric buckling

cannot occur for the particular case under consideration;

symmetry can, therefore, be used in the finite element

4i discretization. A finite element solution of the problem has
2

been presented by Bathe, Ozdemir and Wilson , using six eight-

node plane stress continuum elements to represent one-half of

the arch. In Reference 2, the critical pressure is estimated to

be between 420 and 440 psi.
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Figure 6.4.1 Shallow Arch Geometry and Loading.
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A finite element model of the arch using six trilinear

thin shell elements (Element Type 5) is shown in Figure 6.4.2.

Note that the solution could be performed more economically

using quadratic plane stress elements (Element Type 9); however,

use of the thin shell element is made to demonstrate the

dynamic and large rotation capabilities of the element. Half

of the arch is considered, taking advantage of symmetry, and

displacements normal to the plane of the arch are suppressed.

The dynamic response of the arch is obtained with MAGNA using

Newmark integration, with a constant time increment of 55.25 Usec.

Transverse displacements at the crown of the arch are plotted

versus time in Figure 6.4.3, for several values of the pressure

P For an applied pressure of P = 420 psi, relatively small

oscillations are observed about the initial position of the arch.

At Po = 430 psi, the arch snaps completely through; the critical

pressure is, therefore, in the range 420 < Pcr < 430 psi. This

conclusion is an agreement with the solution of Bathe, Ozdemir

and Wilson.

The solutions shown in Figure 6.4.3 indicate that, for

pressures greater than the critical value, the amplitude of

vibration is insensitive to the exact magnitude of the load; a

subsequent solution for Po = 800 psi has confirmed this fact,

producing maximum displacements of slightly less than eight

inches. While membrane stiffening effects control the

displacement amplitude at large pressures, the influence of

softening behavior is apparent at load levels which are less

than the critical level. For example, the period of oscillation

for Po = 420 psi is considerably larger than that for P0 = 380

psi- this difference is due to the diminishing gross stiffness

of the arch at displacements which approach the flat position.
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Figure 6.4.3 Dynamic Response of Shallow Arch for
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6.5 LARGE DISPLACEMENT RESPONSE OF AN AIRCRAFT WINDSHIELD

The windshield transparency of the F-16 tactical fiahter

iis a monolithic, moderately thick shell made of polycarbonate

material. Static calibration tests of the windshield, performed
K 1

as part of a series of impact studies , have been modeled

K! numerically using MAGNA. This particular example demonstrates

the application of the program to a nonlinear problem of

practical size and complexity.

Figures 6.5.1 and 6.5.2 show two finite element

discretizations used for nonlinear analysis of the canopy.

The fifty-element model of Figure 6.5.1 is composed of

three-dimensional twenty-node solid elements (Element Type 6);

stiffness properties are evaluated using 3x3x3 Gaussian

quadrature and with 14-point integration, in two different

versions of the model. This mesh contains 428 nodes and 1110

active degrees of freedom. The shell (Element Type 5) model of

Figure 6.5.2 contains 100 elements, 242 nodes and 613 degrees

of freedom.

In each case, symmetry is assumed along the fuselage center

line. Adjacent support structure is not considered in the

numerical analysis, since the boundary reaction forces are

rather small for the range of loading considered. Rigid line

supports are assumed instead on the three external boundaries

of the model.

The material properties of the windshield material are

not well defined, as the available data for the elastic modulus

vary between 211000 and 300000 psi. Analyses have been

performed for three values of the elastic modulus (211000,

235000 and 285000 psi) using the solid element model, while for

*g the shell model a single value E = 250000 psi is used.

Poisson's ratio is taken to be v = 0.325.

A concentrated load is applied to the canopy through a

small circular pad, approximately two feet from the forward
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rFigure 6.5.1 Three-Dimensional Solid Element Model of

F-16 Windshield Canopy.
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Figure 6.5.2 Shell Element Model of F-16 Windshield
.SCanopy.
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edge on the windshield center line. Experimental values of the

deflection normal to the canopy at the point of loading have

been measured with deflectometers mounted inside the shell. -I

Experimental and computed values of the canopy

deflections, for the loading range 0-2200 pounds, are compared

in Figures 6.5.3 and 6.5.4 for the solid and shell models,

respectively. In view of the uncertainties in material

properties, boundary conditions and local load distribution,

the agreement between measured and calculated deflections is

* excellent. A plot of the deformed windshield geometry is

shown in Figure 6.5.5. In each analysis, the response has

been computed in ten equal loading steps of 220 pounds. For

the solid element model, best agreement with the experimental

results is obtained using an intermediate value of the elastic

modulus (E = 235000 psi). However, no conclusions should be

drawn from this comparison regarding the true value of the

polycarbonate material modulus. Typical stress results,

S<obtained at the 1100 pound load level, are pictured in the

contour plot of Figure 6.5.6.

Natural frequency calculations have also been performed

-. *for the F-16 windshield, using the fifty element model and a

* finer solid element model which has been prepared for dynamic

stress studies under impact conditions. The finer mesh, shown

in Figure 6.5.7 consists of 189 sixteen-node elements (Element

,* Type 8), 1256 nodes, and 3450 active degrees of freedom.

* Results for the two lowest frequencies using the solid element

models and the associated computing times are compared in

Table 6.5.1. The slightly higher frequencies obtained with the

189-element model are due to a slightly higher value of the

modulus having been used.
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TABLE 6.5.1

SUMMARY OF NATURAL FREQUENCY CALCULATIONS
FOR TACTICAL FIGHTER WINDSHIELD (3-D ELEMENTS)

Model No. 1 2 3

Nodes 428 1256 1256

Degrees of Freedom 1110 3450 3450

* Elements 50 189 189

Integration 3x3x3 14 pt. 2x2x2

i (Hz.) 51.0 55.3 55.2

w 2  (Hz.) 70.4 73.3 73.9

* CPU Sec (CYBER 175) 49. 182. 173.

6. .1

'.*

p.
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6.6 STRESS CONCENTRATION IN A THIN PERFORATED SHEET

A thin plate with a circular hole is subjected to a

uniform axial tension load, as shown in Figure 6.6.1. The

ratio of plate width to hole diameter is 2:1. For small

elastic deformations, the analytical solution for longitudinal

stresses at the hole edge and the outer edge of the plate

are given by Timoshenko:

a = 4.30 S, at point A (edge of hole)

a = 0.75 S, at point B (edge of plate)

where S is the applied average stress.

The finite element discretization, consisting of 56 four-

node plane stress elements (Element Type 3), is indicated in

Figure 6.6.2. Only one quadrant of the plate is modeled,

taking advantage of symmetry. The hole diameter is two inches,

and the total length of the plate is 20 inches. Material

properties typical of aluminum (E = 107 psi, v = 0.30) are used

in the numerical solution.

Longitudinal stresses computed at the centerline AB

(i.e., y = 0.) are plotted in Figure 6.6.3, for an applied

stress S = 50 psi. Linear extrapolation of the integration

point stresses to the inner and outer edges of the sheet yields

a y = 4.19 S at point A

a = 0.75 S at point By

which are in good agreement with the analytical solution.

4

6.6.1

I



6.6.

Y

" AB

-°li

S

- Figure 6.6.1 Thin Sheet with a Circular Hole. -

6.6.2



- 11

-a-

g~3 ha ~Fh

4. .1P4



250

200- -0- FINITE ELEMENT

0 ANALYTICAL

w 150O

Z100-

22
0

-J 50-

0 ---

1.0 1.2 1.4 16 1.8 2.0

COORDINATE X (IN.)

Figure 6.6.3 Longitudinal Stress Distribution in
* Perforated Sheet at Edge of Symmetry.

6.6.4



F i6.7 ELASTIC-PLASTIC, LARGE DISPLACEMENT ANALYSIS OF A
TWO-BAY TRUSS

-- _ The ten member truss shown in Figure 6.7.1 has been

analyzed for its static response due to a single concentrated

load. Both material and geometric nonlinearities are considered

in the solution. The same truss has been analyzed by Mondkar
1 2

and Powell and Goldberg and Richard , using the displacement

method, and by Noor 3 using a mixed force and displacement

* . approximation.

Horizontal members of the truss are assigned areas of

0.25 square inches; the vertical and diagonal elements are

0.20 square inches. The truss material is defined by a Ramberg-

Osgood stress-strain relation of the form

S i+
-- a( _ n

0 00

in which a = 3/7, n = 6, the yield stress a = 40520 psi, and
the corresponding strain is = 0.004052 in./in. Young's

modulus for the material is, therefore, E = 1.0 x 107 psi. In

the numerical solution, the Ramberg-Osgood curve has been

approximated by a piecewise linear stress-strain path with

ten segments, and an isotropic strain hardening law.

The load-deflection curve predicted using MAGNA for a

range of applied loads between 0 and 15,200 pounds is shown

in Figure 6.7.2. A load increment of 400 pounds has been used

in this solution. First yielding in the structure occurs in

element 1 at a load of about 5500 pounds, below which the

response is very nearly linear. Nonlinearities due to large

displacements appear to be minor for the entire range of

loading considered.

• Complete results of the analysis at an applied load of

- 10,000 pounds are presented in Table 6.7.1. Computed values

shown in the table have been obtained using two load incrementation

6.7.1
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schemes: (1) 25 equal increments of 400 pounds each, and (2) a

single 10,000 pound step, followed by Newton-Raphson iterations.

-- Results of the two analyses are in agreement to within less than

one percent. At this point, all elements in the truss have

yielded except for the vertical posts and the two outermost

horizontal members. Individual member forces predicted by MAGNA

are compared with those reported in References 1-3 in Table 6.7.2,

and the corresponding deflection results are given in Table 6.7.3.

The four solutions are in excellent qualitative agreement; most

of the numerical differences noted are attributable to the details

of analyzing material nonlinearities in each analysis. For

example, the solution of Reference 1 simulates the nonlinear

Ramberg-Osgood material curve using a series of elastic,

perfectly plastic parallel material elements, while the present

analysis employs a piecewise linear stress-strain curve and

isotropic strain hardening.
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TABLE 6.7.3

COMPARISON OF MAXIMUM DISPLACEMENTS OF TWO-BAY TRUSS

AT LOAD P = 10000 POUNDS

MAGNA* 1.0388 in.

Mondkar & Powell* 1.0511 in.

Goldberg* 0.923 in.

* Noor** 1.0574 in.

* Displacement Method

** Mixed Force and Displacement Method
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6.8 STRESS DISTRIBUTIONS IN A SINGLE-LAP BONDED JOINT

The elastic, small-displacement response of a single

lap adhesive joint is considered, to determine the shear and

normal stress distributions within the adhesive layer. The
• .particular joint considered, shown in Figure 6.8.1, consists of

0.020 inch aluminum adherends joined by a 0.005 inch layer of

HYSOL EA 9601 adhesive. Material properties are listed in

the figure. This problem has been studied previously by
1 2Dickson , using the special-purpose computer program BONJO

Reference 1 also presents an analytical solution obtained by

the method of Goland and Reissner
3

The solution for the adhesive stresses has been performed

using 144 Type 3 (Plane Stress) elements in MAGNA; each

adherend is modeled with 52 four-node elements, while 40 elements

are used in the adhesive layer. One end of the joint is

completely fixed, while the loaded end is constrained to move

only in the direction parallel to the applied forces. The

finite element grid for the problem is shown in Figure 6.8.2.

Adhesive stress profiles corresponding to an applied

load of 1000 pounds are indicated in Figures 6.8.3 and 6.8.4.

Both the shear and normal stress are nearly constant through

the thickness of the joint, but vary rapidly along the bond

line direction. Agreement between the MAGNA and BONJO analyses

is reasonably good, but the finite element grid is too coarse

to resolve the shear stress distribution at the extreme ends of

the bond line, where a sharp peak is observed before the shear

*, stress vanishes at the free boundary. The MAGNA analysis also

predicts a lower maximum normal stress at the joint edge, and

hence a lower compressive stress near the center of the joint.

o It is interesting to note the sensitivity of the computed

stress distributions to the boundary conditions applied at the

- loaded end of the specimen. When transverse displacements of

the loaded edge are permitted, the peak shear and normal stresses

6.8.1
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become considerably greater, and the largest adhesive stresses

are redistributed toward the opposite end of the bond line,

as shown in Figure 6.8.5. Figure 6.8.6 shows the displaced

geometry of the free-end specimen, with displacements magnified

by a factor of ten. Transverse bending is, in this instance,

the predominant mode of deformation, due to the eccentricity

of the applied loads.
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Figure 6.8.6 Displaced Shape of Free-End Bonded Joint.
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6.9 SANDWICH PLATE UNDER UNIFORM PRESSURE

A square sandwich panel, 50 inches on each side, is

subjected to a uniform lateral pressure loading. The three-

layer plate (Figure 6.9.1) has identical alumtinum face sheets

(E = 10.5 x 106 psi; v = 0.3), 0.015 inches in thickness,

bonded to an aluminum honeycomb core one inch thick. The core

is assumed to be isotropic, with shear modulus G = 50,000 psi.

* iAll lateral boundaries of the sandwich are fully clamped.

Due to the symmetry of the geometry and applied loading,

one quarter of the panel is considered in solution. The finite

element discretization consists of a total of 75 finite elements,

25 in each layer. The two face sheets are modeled using eight-

node, thin shell elements (Element Type 5). Three-dimensional,

eight-node solid elements (Element Type 2), with a single

integration point per element, are used for the sandwich core.

Note that these element types are fully compatible, so that no

special constraints are necessary for joining the shell and

solid layers. The nonlinear solution has been obtained in load

increments of one psi to a total pressure of 20 psi, followed

by two psi increments to 30 psi.

The nonlinear central displacement of the sandwich is

plotted versus load in Figure 6.9.2. Nonlinear finite element

results obtained by Monforton , using sixteen specially

formulated bicubic sandwich elements, are shown for comparison.

Agreement between the two finite element solutions is quite

0good. Figure 6.9.2 also shows the perturbation solution of
Huang2

Kan and Huang given by

3
q = 10.5 2 9 9wc + 

4 .8550wc (6.9.1)

in which q is the applied pressure and wc the transverse

center displacement. The analytical solution of Reference 2

is valid for deflections which are smaller than the core

thickness, and reasonable agreement with the two numerical
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solutions is observed in this region. For larger deflections,

the perturbation analysis requires more terms for acceptable

accuracy; the two-term solution gives results which over-

estimate the influence of membrane stiffening upon the panel

deflection.
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6.10 LARGE DISPLACEMENTS AND ROTATIONS OF A DEEP ARCH

A deep, clamped-hinged arch (Figure 6.10.1) is subjected

to a concentrated vertical load at the crown. Due to the

" asymmetry of the edge conditions, the arch is capable of

executing extremely large, stable deflections prior to the

onset of buckling. This behavior has been studied experimentally

by Deutsch , and an analytical solution based upon Euler's

inextensional theory (the elastica) has been presented by
2DaDeppo and Schmidt The prebuckling displacements, which

can be similar in magnitude to the radius of curvature, are

accompanied by very large rotations; thus, the prediction of

*/ the arch response presents a demanding test of a finite element

solution using thin shell elements.

The particular arch under consideration has radius of

curvature R = 100 inches, thickness t = 1.0 inches, and a

flexural rigidity of EI = 1.0 x 10 lb.-in2 . The included

angle is 215 degrees. For this set of properties, the

analysis of Reference 2 indicates that stable behavior occurs
- up to a load of 897 pounds, at which time the vertical

displacement is 113.7 inches. Only prebuckling displacements

," are considered in the present analysis.

For the MAGNA finite element solution, the entire arch

is represented by 43 thin shell elements (Element Type 5), each

subtending a sector of five degrees. Displacements normal to

*. the plane of the arch are completely suppressed to permit

comparison with the analytical results, which do not account

for finite width of the structure. The range of loading

considered is 0-870 pounds, applied in six equal increments.

Full Newton-Raphson iterations are used to maintain equilibrium,

due to the large loading increments and the relatively large

incremental rotations expected.

The deformed shape of the arch at maximum loading is

shown in Figure 6.10.2. The vertical displacement of the
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Figure 6.10.1 Deep Arch with Asymmetric Boundary Conditions.
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arch crown is slightly larger than the radius, and very large

rotations (in excess of 120 degrees) are observed near the

hinged support. An average of nine Newton iterations per step

is required for convergence, with a tolerance of 0.1 on the

residual force errors. Finite element results for the entire

load--deflection history, obtained using 10-pound increments,

are compared with the solution of DaDeppo and Schmidt in

Figure 6.10.3. Agreement between the two predictions is

quite good. The accuracy of the finite element solution does

not diminish, even when predicting rotations which are

approximately eight times as large as those which can be

considered by the best available shell theories.
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6.11 LARGE DISPLACEMENT, ELASTIC RESPONSE OF A THIN CIRCULAR PLATE

The problem of a circular flat plate under transverse

loading provides an example of purely stiffening behavior for

increasing load levels. In particular, the clamped plate

pictured in Figure 6.11.1, subjected to a concentrated force

at the center, is considered. The plate is five inches in

radius, and the thickness is t = 0.1 inches. Material properties

used in the analysis are roughly characteristic of aluminum

(E = 10.92 x 106 psi, v = 0.30).

Timoshenko has presented a solution for the linear

displacement of the center of the plate as w = Pa 2/167rD,! . c
where a is the radius of the plate, P is the applied force,

3 2
and D is the flexural rigidity, Et /12(l - v). Using twelve

thin shell finite elements (Element Type 5) to model a single

quadrant of the plate (Figure 6.11.2), a central deflection of

0.4923 inches is obtained for P = 1000 pounds. Compared with

the exact value of wc = 0.49736, this displacement is

approximately one percent in error. The principal bending

stresses (which are largest in the circumferential direction)

are computed with a similar degree of accuracy. The exact

solution1 gives for the tangential surface stress

o 3 (1 + v) ln 2vJ, (6.11.1)2t r

in which r is the radial coordinate. The computed stress profile

(Figure 6.11.3) shows a maximum error of about seven percent,

which occurs in the element nearest the center of the plate.

K. It should be noted that the stress distribution is particularly
difficult to resolve in this region, since the moments predicted

by thin plate theory become infinite at the point of loading.

Although the finite element mesh is not refined in the area

near the singularity, the stress accuracy of the MAGNA solution

* - is extremely good.
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Figure 6.11.1 Clamped Circular Plate.
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Figure 6.11.2 Thin Shell Element Model of Circular Plate.

6.11.3



:7.

120

EXACT

100 FINITE ELEMENT

800

80

20

40
b,,--

-20

0 IO 2.0 3.0 4.0 5.0

RADIAL DISTANCE (INCHES)

Figure 6.11.3 Radial Distribution of Circumferential

Surface Stress in Clamped Circular Plate.

6.11.4

-It



The nonlinear solution for the central displacement of

the plate is also given in Reference 1, in the form

c + 0.443 = 0.217 Pa2  (6.11.2)
t 'tE

This solution corresponds to the case in which inplane

displacements at the boundary are prevented, and is valid for

deflections which are similar in magnitude to the plate

thickness. Using the same twelve-element discretization, a

finite element solution has been performed for the range of

loading 0 < P < 3000 pounds. The numerical results are compared

with the analytical solution (Equation 6.11.2) in Figure 6.11.4.

Exceptionally good agreement between the two predictions is

observed up to deflections which are twice the plate thickness.

Beyond this point, Equation 6.11.2 does not apply, and the

finite element solution shows a response which is slightly

more flexible than the analytical result. Figure 6.11.5

shows the distributions of midplane circumferential stress

predicted at selected load levels with the nonlinear finite

element model. -

It is interesting to note the effect of the midplane

tensile stresses in redistributing the internal loading. Surface

stresses for a load of 1000 pounds, obtained from the nonlinear

solution, are plotted in Figure 6.11.3 for comparison with the

linear solution; the relatively small net tension stress in the

plate is sufficient to reduce the computed peak bending

stresses by approximately a factor of two. Since the applied

forces are resisted more efficiently by tensile (rather than

bending) stresses, a significant increase in load-carrying

4g capacity is apparent which is not reflected in the linear

solution.

6.11.5



3000
TIMIOSHENKO

F --- LINEAR (EXACT)
-NONLINEAR (APPROX.)0

2500
FINITE ELEME NT0

03 LINEAR G
0 NONLINEAR

S2000
z
0 0

1500
-LJ

1000

Ile, 500

0 0.1 0.2 0.3 0.4 05

6CENTRAL DISPLACEMENT (INCHES)

* Figure 6.11.4 Load-versus-Deflection Solution for Large
Displacements of a Circular Plate.



60 " "

so P3o '''
~ Pm 3000P

, 40

P2000

_ °-
~20

10

0
0 I 2 3 4 5

RADIAL DISTANCE (INCHES)

Figure 6.11.5 Midsurface Circumferential Stress Profiles
in Clamped Circular Plate.

6.11.7



6.12 COMPRESSIVE BUCKLING OF A SIMPLY-SUPPORTED SANDWICH PLATE

The stability of a plate of sandwich construction is

considered to demonstrate the use of the thin shell element

(Element Type 5) in the same model with standard isoparametric

three-dimensional finite elements (Element Type 2). A square,

three-layer panel (Figure 6.12.1) is subjected to a uniform

compressive load of Nx pounds per inch. The panel is 23.5

inches on each side, and supported at each face of the sandwich

on all four edges (vertical displacements only are prevented).

The outer face sheets of the panel, which are represented

by thin shell finite elements, are each 0.021 inches in thickness,

with isotropic material properties E = 9.5 x 106 psi, v = 0.3.

The core layer, 0.181 inches thick, has a transverse shear

rigidity G = 19000 psi. In the finite element solution, the

sandwich core is modeled using three-dimensional, eight-node

solid elements (Type 2). Each layer of the model contains

sixteen elements of equal planform dimensions. Only one

p3 quadrant of the panel is considered in the numerical solution,

due to symmetry of the geometry and loading. On the lateral

boundaries, the tangential transverse shear strains within the

core are suppressed by making the upper and lower face sheet

displacements equal in the direction parallel to each edqe.

A solution for the buckling load NCR has been obtained

by applying the inplane forces incrementally until a sudden

increase in transverse displacement is observed. Out of plane

deflections are triggered by a small (one pound) transverse

load applied at the center of the plate. Buckling is found to

occur for an applied load of Nx = 305 pounds per inch; this

computed value compares well with previous analytical and

.4 experimental results1 - 5 , as shown in Table 6.12.1. It is noted

that all of the analytical results give estimates of the critical

load which are about nine percent too high; it is likely that

the assumption of zero transverse shear strains at the panel

I6
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Figure 6.12.1 Simply-Supporte~d Sandwich Plate Under
Compression Load.
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boundaries is largely responsible for this error. The

transverse shear constraint has been used in the MAGNA solution

to provide a fair comparison with previous analytical solutions.

6.12.4



6.13 CLAMPED PLATE UNDER UNIFORM PRESSURE LOADING

7 -A moderately thin square plate is analyzed in this example

for geometrically nonlinear response to a uniform pressure

loading. Such a problem has been considered by Pica, Wood and
1Hinton , as part of their evaluation of plate-bending elements.

Physical properties of the particular plate considered

are:

Width a - 508.0 mm (20.0 in.)

Thickness t = 1.27 mm (0.05 in.)

Modulus E = 68.9 GPa (1. x 107 psi)

Poisson's Ratio v 0.30

The boundaries of the plate are fully clamped. A uniform

pressure q is applied to the upper surface of the plate.

Figure 6.13.1 shows a finite element model oi one quadrant
of the plate, using 16 three-dimensional, 16-node thick shell

elements (Element Type 8). Element properties are evaluated

using a 2x2x2 Gaussian integration. Pressure loading is applied

incrementally in increments of AP = 51.2, where P is the

normalized pressure

4 4
P = qa /Et

The maximum normalized pressure considered is P = 512.

A load-versus-displacement history for the nonlinear

solution is shown in Figure 6.13.2. The central displacement

is normalized with respect to the plate thickness. The problem

is only mildly nonlinear, since the maximum displacement is only

about twice the plate thickness. However, the linear and

nonlinear displacement solutions at P = 512 are significantly

0- different (5.520 and 1.992, respectively). Combined Newton-

Raphson iterations have been used in the solution, with an

average of four iterations per load increment being required

to maintain equilibrium.

6.13.10
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Selected strain and stress results for the plate at

maximum loading are given in the form of contour plots in

Figures 6.13.3 through 6.13.7. Figures 6.13.3 and 6.13.4,

which show the strain E on the lower and upper surfaces
xx

(labeled surfaces 3 and 6, respectively), illustrate the

asymmetry caused by geometric nonlinearity. Similarly in

Figures 6.13.5 and 6.13.6, geometric stiffening is evident in

the x-direction stresses; the maximum compression at the upper

surface is about 4000 psi, while the lower (tension) surface

stresses exceed 5000 psi. The upper surface von Mises

equivalent stress is shown in Figure 6.13.7.

The efficiency of the 16-node thick shell (Element Type 8)

in nonlinear analysis is apparent from the computing times for

this solution. On the CYBER 175 computer, an average of
3.75 CPU seconds is required per iteration for a 16-element

mesh.

6
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6.14 POSTBUCKLING RESPONSE OF A SIMPLY-SUPPORTED PLATE

A simply-supported square plate is considered, to

determine its static buckling and postbuckling response under

compressive loading. The plate geometry and properties are

identical to those used in the previous example,

Width a = 508.0 mm (20.0 in.)

Thickness t = 1.27 mm (0.05 in.)
7

Modulus E = 68.9 GPa (1. x 10 psi)

Poisson's Ratio v = 0.30.

In this case, the boundaries of the plate are simply supported,

with inplane motions permitted at all points. A uniform

compressive stress is applied to opposite edges of the plate.

Since the buckling response is known to be doubly

symmetric, one quarter of the plate is modeled. Sixteen solid

elements (Element Type 8) are used in the discretization, with

all integrations performed using the 2x2x2 Gauss rule. To

follow the response past the point of bifurcation, the solution

OT is performed using the nonlinear dynamic option and a larqe time

step (At = 1000. sec.). Equilibrium iteration is used at each

increment, in the form of combined Newton-Raphson iteration.

A solution for the central displacement of the plate as

a function of the compressive edge load is shown in Figure 6.14.1.

The theoretical buckling load1 of acr = 1558 kPa (226 psi) is

predicted with accuracy. In the analysis, a very small

concentrated force is applied at the center point of the panel

to trigger the out-of-plane displacement, and thus a slight

nonzero deflection appears on the plot prior to the actual onset

of buckling.

At the maximum applied loading of 3500 kPa (510 psi), the

predicted central displacement is 3.594 mm (0.1415 in.), and

the average end-shortening over half of the plate is about

0.0044 mm. For the case of uniform end-shortening, the central
1

deflection predicted by Timoshenko using an effective width

6.14.1
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formula is 3.663 mm, so that the postbuckled solutions are in

reasonable aqreement.
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6.15 ELASTIC-PLASTIC ANALYSIS OF A PERFORATED STRIP

The thin metal sheet shown in Figure 6.15.1 is subjected

to a uniform applied tension parallel to its longitudinal axis.

Overall dimensions of the plate are 36 mm by 20 mm, with a hole

diameter of 10 mm. Material properties of the strip are E = 7000I-"gfm2 kfm2

k.f/mm , v = 0.20, and the yield stress is a = 24.3 kgf/mm
y

This particular problem has been considered by Bathe,

Ozdemir and Wilson1 , and experimental results are available
2from the work of Theocaris and Marketos2 . As in the analysis of

Reference 1, plane stress conditions are assumed, and the plate

material is taken to have the strain hardening slope H = 0.032 E.

-. The finite element model of one-quarter of the plate

(Figure 6.15.2) consists of 24 eight-node plane stress elements

(Element Type 9). Stiffness properties are evaluated in all

elements using a 3x3 Gaussian quadrature. The model contains 95

node points and 174 unconstrained degrees of freedom.

Strain results obtained at the point of first yielding

are presented in Figure 6.15.3. The point for which results are

plotted is located nearest the center of the plate, in element 1

(see Figure 6.15.2); the normalized strain is defined by

E /ay. The measure of applied loading is the mean stress
y y

at the root section of the plate. Note that the applied stress

at the ends of the plate are one-half this value, since the hole

diameter is one-half the plate width. The range of loading

considered is 0 < mean < ay. Two solutions are shown in the

Figure; one uses a load increment of 0.125a and combined Newton-y
Raphson iterations at each step, while the other consists of two

increments of 0.4a with full Newton-Raphson iterations used to
y

maintain equilibrium. In this instance, the elastic-plastic

behavior is not highly path dependent, since the two solutions

agree quite well. Longitudinal stresses in the plate at maximum

loading (a n= ay) are shown in Figure 6.15.4 in the form of a
mean y

contour map.

6.15.1
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6.16 NATURAL FREQUENCIES OF AN ORTHOTROPIC PLATE

A simply-supported, one-layer orthotropic plate is considered,

to determine its natural vibration response. The 12-inch square

plate is specially orthotropic; that is, the principal material

axes (1,2,3) are aligned with the reference axes (x,y,z) of the

structure. The specific material properties considered are:

Moduli E1 = 1.0 x 107 psi
b6

E 2 = E3 = 1.0 x 106 psi

G = G = G = 48000. psi

Poisson's Ratio = 0. 0312

V1 3 =V 2 3 =0.0

Thickness t = 0.050 in.

-5 2 4Density p = 7.764 x 10 lb-sec /in

In the finite element solution, 36 twenty-node elements

(Element Type 6) are used to represent the entire plate (Figure

6.16.1). The model contains 315 nodes and 727 unconstrained

degrees of freedom.

The exact and computed frequencies for the first four

vibration modes of the plate are compared in Table 6.16.1. In

the table, m represents the number of waves in the fiber (high-

modulus) direction, and n the wave number for the lower-modulus

direction. Note that the 1,3 mode corresponds to a lower

frequency than the 2,1 mode, due to the strong orthotropy of

the plate. Deformed geometry plots for the first four modes

are pictured in Figure 6.16.2 through 6.16.5.

The eigenvalue solution was performed using six trial

iteration vectors, with four frequencies required to converge

(NREQD = 4). Convergence was obtained in 11 iterations, to a

vector tolerance of 0.001. The entire solution required 39.6

CPU seconds on the CYBER-175 computer.
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TABLE 6.16.1

COMPARISON OF EXACT AND COMPUTED NATURAL FREQUENCIES
FOR SQUARE ORTHOTROPIC PLATE

Mode Number W exact (Hz.) Wcomp. (Hz.)

m = 1, n = 1 59.6 59.9

m = 1, n = 2 92.0 93.1

m = 1, n = 3 171.5 175.3

m = 2, n = 1 225.7 226.9

m number of half-waves in high-modulus direction

n = number of half-waves in low-modulus direction

6.16.3

0



r4)

04

0

$4

4-4
0

%.,")

to

N ON

040

6 -.

4

i

-,4

"" 6,16.

K



p~4-4

a

.I

0

P.4

6.16.5



-)

0

4-)
0

N

0

44

rva

'-4

T4

6.16.6



4J

-41

0

.44

0

4

'-4

6.16.7



6.17 PLASTIC COLLAPSE OF A RECESSED FASTENER

The elastic-plastic failure analysis of a recessed-head

mechanical fastener has been performed, as a part of an evaluation

of the simplified design/analysis method introduced by Venkayya

and Eimermacher. The failure estimates of Reference 1 are based

upon an approximate axisymmetric fastener geometry, as indicated

in Figure 6.17.1, and the assumption of a failure surface

located as shown in the figure. Limited test results on actual

hardware are also available; see, for example, Reference 2.

Since the idealized geometry of the fastener is rotationally

symmetric, a representative one-degree sector has been modeled in

the MAGNA analysis. The finite element grid, shown in Figure

6.17.2, consists of 100 eight-node solid elements (Type 2). The

elements nearest the axis of revolution are triangular prisms,

having two coplanar faces on the rear edge of the model. The

eight-node element is used in this case because the load paths

are relatively simple, no bending deformation is anticipated,

and material nonlinearities are the predominant effect in the

nonlinear response. Normal displacements on the rear face of the

model are prevented using linear constraints, and rigid supports

along the inclined edge of the fastener head are applied in a

similar manner. The applied loading is purely axial, in the form

of a uniform stress over the bottom surface of the part. The

fastener material is high-strength steel, with the properties

E = 30. x 106 psi

v = 0.30

a = 155000. psi
y

ault = 170000. psi

The incremental solution is performed using a single 1000

pound step to the approximate point of first yielding, followed

by 300 pound increments up to the collapse load. The early

progression of yielding, which proceeds along the expected

6.17.1
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Figure 6.17.2 Finite Element Model of Recessed Fastener.
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failure surface, is shown in Figure 6.17.3 for load levels of

2200, 2500 and 2800 pounds In the ficure, the completely

darkened region represents the zone throughout which the

ultimate stress has been attained, while a single contour line

shows the boundary of the plastic region. Figure 6.27.4 presents

similar results at the highest loading levels considered (4000,

4300, 4600 pounds, respectively). As the part nears collapse,

the failure surface gradually shifts upward, away from the base

of the recess; thus, the ultimate collapse made is somewhat

different from that assumed in the simplified analysis. This

effect is also observed in the experimental results. The

collapse load of approximately 4600 pounds predicted by the

analysis is substantially higher than the experimental failure

load of 3732 pounds. This discrepancy is likely the result of

the simplified geometry used in the analysis, which produces

a uniform stress distribution in the circumferential direction,

and the fact that no cracking and/or material removal has been

considered in the numerical solution.

0
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6.18 FREE VIBRATIONS OF A CLAMPED TRIANGULAR PLATE

A cantilevered right-triangular flat plate is analyzed

for its natural vibration response. In this example, a very

coarse finite element mesh is used, both to illustrate the

effectiveness of the thin shell element (Type 5) and to contrast

the behavior of lumped and consistent mass formulations where

relatively crude element divisions are used.

Physical properties of the plate, which is made of

magnesium, are as follows:

Side Length a = 6.0 in.

Thickness t = 0.034 in.

Modulus E = 6.5 x 106 psi

Poisson's Ratio v = 0.3541

-4 2 4
Density p = 1.66 x 10 lb-sec n

The finite element discretization of the plate (Figure

* 6.18.1) consists of three linear-displacement shell elements,

and contains 24 active degrees of freedom. The boundary

containing nodes 2, 4, and 6 is completely fixed. Numerical

solutions have been performed for the first three vibration modes

using both lumped and consistent mass formulations; the frequency

results are given in Table 6.18.1.

The lumped mass calculations are in reasonable agreement

with solutions obtained from the NASTRAN and ANSYS programs

using very fine meshes, and compare quite well with results

obtained from NISA 3 using three quadratic-displacement shell

elements (Table 6.18.2).

The consistent mass results, however, are reasonable

only for the lowest natural frequency, even though the mode

shapes are only slightly different from those predicted using

lumped masses. The source of the difficulty in the consistent

.L mass solution is the coarseness of the finite element mesh,

6.18.1
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TABLE 6.18.1

- NATURAL FREQUENCIES OF TRIANGULAR CANTILEVER PLATE

. Mode Frequency (Lumped Mass) Frequency (Consistent Mass)

1 53.3 59.7

I 2 201.8 324.0

3 248.1 476.7

(All frequencies are given in Hertz)
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TABLE 6.18.2

COMPARISON OF NATURAL FREQUENCY RESULTS FOR
CANTILFVERED TRIANGULAR PLATE

Program NASTRAN ANSYS NISA MAGNA*

No. of Nodes 496 66 16 14

No. of Elements 900 100 3 3

Mode 1 Frequency 55.9 55.9 54.3 53.3

Mode 2 Frequency 210.8 210.9 215.4 201.8

Mode 3 Frequency 292.1 293.5 303.7 248.1

*Lumped Mass Results

6.18.
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which is extremely crude when one recalls that the shell element

(Element Type 5) uses only linear functions for all of the shell

-- displacement.

If one were to perform an analysis of this plate alone,

a finer mesh of elements would normally be employed. However,

in the modeling of more complex structures, the element division

used in this example is rather typical of the degree of

model refinement used in relatively small components of the

total structure. The above problem illustrates the fact that,

when relatively coarse modeling is necessary, the lumped mass

approach is likely to yield results far superior to those

obtained using consistent masses. Naturally, as the model is

progressively refined, the distinction between the two mass

representations tends to become less and less crucial.

6.18.5



6.19 COMPRESSION OF A DISK AGAINST A RIGID SURFACE

" " The analysis of a disk compressed against a rigid plane
Nprovides a simple example of the surface contact feature in

MAGNA. The particular problem considered involves a disk of

unit thickness and radius 4.0 inches, assumed to behave

elastically in plane stress. Material properties of the part

are E = 1000. lb./in 2 , \ = 0.3. The range of loading considered

is 0-150 pounds, distributed over a small area at the top of

the disk.

The undeformed and deformed geometries for a coarse

model of the disk are shown in Figures 6.19.1 and 6.19.2. Here

the rigid surface is constructed using a single contact element,

with all nodes fixed. Figure 6.19.3 shows the geometry of the

master (rigid) surface in three dimensions, with a somewhat

finer finite element model.

Vertical displacements for a series of nodes at successively

larger distances from the rigid surface are plotted versus a

normalized load factor in Figure 6.19.4, for the model of Figure

6.19.3. Since the load is monotonically increasing, nodes along

the circumference of the disk gradually come into contact with

the master surface and are thereafter constrained to move only

in the horizontal direction.

N otice that the displacement accuracy of the contact

solution is determined by the mesh refinement in the region of
contact, since the elements may be quadratic while contact

constraints are imposed only at discrete node points. The

coarse solution of Figure 6.19.2 illustrates this very well.

When two of the three nodes defining an element edge are in

contact, minor amounts of interpenetration can occur, though

the constraints at the nodes are satisfied quite well. Therefore,

the mesh in the contact region is best prepared with an eye

toward the degree of resolution required in defining the contact

area and the associated local stress field. When the contact

analysis is expected only to reproduce overall load transfer

characteristics, a coarse mesh may be appropriate.
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6.20 ELASTIC-PLASTIC ANALYSIS OF A CLAMPED BEAM

A clamped-clamped beam subjected to a central transverse

load is analyzed using the three-node, quadratic beam finite

element (Element Type 12). The elastic, large displacement

solution for such a problem is considered in References 1 and 2.

The following physical data has been used for analysis of

the beam:

Total length - 20.0 inches

Section width - 1.0 inches

Section depth - 0.125 inches

Young's modulus - 1.E7 psi

Poisson's ratio - 0.0

4Half of the beam is modeled in the solution due to symmetry. Ten

beam elements are used, giving a total of 21 node points and

59 degrees of freedom.

Solutions for the static load vs. central deflection

0 -- response of the beam are shown in Figure 6.20.1, for several

values of the material yield stress. In all cases elastic,

perfectly plastic behavior has been assumed. For lower values of

the yield stress, relatively little geometric stiffening occurs

prior to yielding, and yielding occurs initially in bending.

When the yield stress is relative-y high, yielding occurs at

the upper surface due to combined tension and bending, and yield-

ing of the lower surface does not occur until near the point of

collapse.

Figure 6.20.2 shows profiles of direct stress through the

beam cross-section at the integration station nearest the clamped

end at various load levels, for a yield stress value of

* 15,000 psi. For this particular case, the lower surface stress

reaches a minimum value, near compressive yielding, at the

same time that geometric stiffening begins to dominate the state

of stress; thereafter, the lower surface stress increases continu-

ously until yielding (and collapse) occurs in tension over the

entire section.
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6.21 FORCED VIBRATIONS OF A JET ENGINE EXHAUST DUCT

-- The jet engine exhaust duct pictured in Figure 6.21.1 has

been analyzed to determine the effect of damping treatment upon

its forced vibration response. For a preliminary analysis, a

highly idealized model of the cylindrical shroud and vanes is

used, as shown in Figure 6.21.2. The model is constructed from

variable-node solid elements (Element Type 7), and contains 414

degrees of freedom for one-half of the structure.

The vane and shroud are both made of steel. The primary

geometric parameters are listed below.

Shroud Vanes

10.0 in. I.D. 2.50 in. length

0.05 in. thick 0.10 in. thick

3.0 in. wide 1.0 in. wide

The boundary conditions are indicated in Figure 6.22.2; each of

the vane inner ends is fully clamped, as is the rearward edge of

the shroud.

A natural frequency analysis has been performed for the

shroud model, for the undamped case. The first three (symmetric)

mode shapes are shown in Figure 6.21.3.

For forced vibraticn analysis, the exciting force is a

single nodal force applied in the radial direction, at the top

of the free edge of the shroud (see Figure 6.21.2). Although

4multiple-layer damping treatments could be modeled in detail,

the present analysis uses internally damped elements to reduce

* the problem size. Four different cases are considered:

(1) No damping;

* (2) Vane elements damped;

(3) Shroud elements damped;

(4) Vane and shroud elements damped.

In each damped case, a nominal value of five percent damping is

used.
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The variation of steady-state amplitude and phase angle

• versus frequency, at the point of load application, is shown for

each of the four cases in Figure 6.21.4. For each case,

frequency sweeps have been made over 20 forcing frequencies near

- the first undamped natural frequency, a total of 80 separate

solutions. The results include both amplitude and phase angle

* information (similar to that shown in Figure 6.21.4) for each

degree of freedom in the model. Each curve (20 solutions) required

approximately 1.1 minutes of CPU time on the CYBER 175 computer.

6.21.2
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Figure 6.21.1 Engine Exhaust Duct.
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CHAPTER 7

PROGR M OPERATION

The MAGNA finite element program is currently operational

on the following computer systems:

- CDC 6000 and CYBER series, under NOS/BE operating

system;

- CRAY-l/S under COS 1.08; and

- Digital Equipment VAX 11/780 under VAX/VMS operating
system.

Operation of the program on each of these computer systems is

outlined in detail in this Chapter. Information to be used in

estimating execution times for the various analysis options are

also presented for each machine version.

,0r.

.
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7.1 CDC PROGRAM VERSION

The CDC version of MAGNA, excluding pre- and post-processing

utility programs, consists of the following program files:

e MAGNAJCL - CDC Procedure for MAGNA Execution

e MAGNALG0 - Relocatable Object Version of MAGNA

* SEGL0D - Segmentation Loader Directives

e RABDRIVER - Main Program Source, in UPDATE Old Program
Library Format

e MAGNAUPDGEN - Update Input Generator for Storage Capacity
Modification

- STRAVG - CCL Procedure for STRAVG Execution

e STRAVGLG0 - Executable Version of STRAVG

While all of these programs and control procedures may

be accessed during a typical MAGNA run, all but two, MAGNAJCL

and STRAVG, are transparent to the user of the program. The

execution of MAGNA is accomplished by simple commands which

BEGIN execution of stored control language procedures which

reside on these two files; in some instances, where postprocessing

.* or restart files are to be used or saved, the needed files must

be supplied as local (temporary) files before initiating the

control procedures.

In subsequent sections, the use of these stored control

procedures in conjunction with a variety of Program options is

discussed in some detail. Typical execution times on CDC machines

are also tabulated for reference.

7.1.1 Job Control Language

The MAGNA program is normally executed on CDC

machines under the control of the CCL (CYBER Control Language)

procedure XMAGNA. This procedure automatically generates the

command sequences required to attach and modify program files,

compile and insert user-written subroutines, and load and

execute the program.

L
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The general form of the MAGNA job deck is as

follows*:

1. J0B,T500,I0500,CM165000.

2. SET, Rl=MFL.

3. ATTACH,TAPE5,USERDATAFILE.

P 4. ATTACH,USRSUB,USERSUBR0UTINEFILE.

5. REQUEST,MP0ST,*PF.

6. ATTACH,P,MAGNAJCL, ID=BR0CKMAN,MR=l.

7. BEGIN,XMAGNA,P,MAIN,USRSUB,RI+B.

8. CATALOG,MP0ST,P0STPR0CESS0RFILE.

9. ATTACH,STRAVG, ID=BROCKMAN,MR=l.

10. REQUEST,AP0ST,*PF.

11. BEGIN,STRAVG,STRAVG.

12. CATAL0G,AP0ST,AP0STFILE.

13. 7/8/9 (end of record)

14. (STORAGE ALLOCATION card)

15. 7/8/9 (end of record)

16. 6/7/8/9 (end of job)

In the above deck, several options are used which are not always

exercised in a typical analysis:

- user written subroutines

- modifications to storage capacity,

- execution of the stress smoothing utility STRAVG,
and

- cataloging of postprocessor files MP0ST and AP0ST.

*Control statements required for analysis restarts can

take on a number of different forms; for this reason, use of
the restart functions is described separately at the end of
this section.
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For the simplest case, in which the above options are not

needed, the deck setup has the much simpler form:

1. J0B,T500,I0500,CM165000.

2. SET,Rl=MFL.

3. ATTACH,TAPE5 USERDATAFILE.

6. ATTACH,P,MAGNAJCL,ID=BR0CKMAN,MR=l.

7. BEGIN,XMAGNA,P,, ,R1+B.

8. 7/8/9 (end of record)

9. 6/7/8/9 (end of job)

The function of each card in the MAGNA execution deck is

described in detail belc

CARD 1: JOB CONTROL CARD. The job control card

requests system resources and identifies the job to the system.

Estimates of execution times (T and 10 specifications) are

discussed in Section 7.1.4. The default central memory (165000

octal words) is shown in the above examples; if user subroutines

are supplied, or the storage capacity of the program is modified,

the central memory requested should be modified accordingly

(see Section 7.1.2). Note that if the postprocessor file MP0ST

is to be saved on magnetic tape, a single tape drive (i.e., MTI,

NTI, PEl or GEl) must be requested on the job card.

CARD 2: SET COMMAND. This control card places

the amount of central memory requested in a machine register

which is assessed by the procedure XMAGNA. The format of the

SET command is always the same.

CARD 3: ATTACH, TAPE5. This command attaches

the problem data (see Chapter 8) to the job as local file TAPE5.
The data can also be copied directly from the input file (see

the examples at the end of this Section).

7.1.3
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CARD 4: ATTACH, user-written subroutines. This

command is optional, and should be used to attach the source

code of user-written subroutines on a named local file. User

subroutines are then compiled and loaded automatically by

XMAGNA. User-written subroutines can also be copied directly

from the input file (see the examples at the end of this

Section).

CARD 5: REQUEST,MP0ST. If a postprocessor (MP0ST)

file is to be saved following the MAGNA analysis, the file must

be assigned to a permanent storage device prior to the program

execution. The command REQUEST, MPOST,*PF indicates that

MP0ST is to be saved as a permanent file on disc following the

analysis. To record the file MP0ST on magnetic tape, the

request command is of the form REQUEST,MP0ST,VSN=X01234.

CARD 6: ATTACH,P,MAGNAJCL. This command attaches

the control language procedure XMAGNA as local file P. This card

is always required, and its format is always the same. The

required filename (MAGNAJCL,ID=BROCKMAN is used above) may be

installation dependent.

CARD 7: BEGIN command. The BEGIN statement

initiates execution of the MAGNA program. The keyword MAIN

is used only if the program storage capacity is to be modified

(see Section 7.1.2); if this keyword appears in the BEGIN

command, a STORAGE ALLOCATION card (Card 14, below) must be

supplied. The second keyword (USRSUB in the above sample)

is the name of the local file on which user-written subroutines

are stored (this file is defined in Card 4); if user subroutines

are not supplied, the second keyword is simply omitted. The

last argument (Rl+B) of the BEGIN command always has the same

* format.

CARD 8: CATAL0G,MP0ST. If the postprocessor file

*MP0ST is to be saved on disc as a permanent file, the CATALOG

statement is used to accomplish this. When MP0ST is written

*O directly to magnetic tape, the command UNLOAD,MP0ST can be used
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at this point, unless the STRAVG procedure is to be executed.

If the postprocessor file is not to be saved, this command is

simply omitted.

CARD 9: ATTACH,STRAVG. This command accesses

the control procedure for the stress-smoothing utility program

STRAVG. This job step is optional (and in fact may be performed

in a separate background job). If smoothed nodal stress output

is desired, an MPOST file must be created, since STRAVG uses

the MPOST file as input. If no stress smoothing is done, lines

9-12 of the job deck should be omitted.

CARD 10: REQUEST,APOST. A request is issued at

this point to associate the local file APOST (Averaged-stress

POSTprocessor file) with either a permanent file device or a

magnetic tape volume. The REQUEST command is of the same format

as that described under Card 5.

CARD 11: BEGIN,STRAVG. The BEGIN command

initiates execution of the STRAVG processor, described in

VTSection 5.7. STRAVG accepts the MAGNA MPOST file as input, and

generates the output file APOST. During this job step, it is

advisable to have the MPOST file attached as a local disk file

(rather than a tape file). The APOST file is written sequentially

in one pass, and may be written directly to tape if desired.

CARD 12: CATALJG,AP0ST. The CATALOG statement

writes the newly created APOST file to permanent storage on disk.

If APOST has been written directly to tape, the UNLOAD command

can be substituted for CATALOG.

CARD 13: (end of record). This card signifies

the end of the control commands for the job, and is always

required.

CARD 14: STORAGE ALLOCATION card. The STORAGE

ALLOCATION card is required whenever the program storage capacity

is to be modified. The keyword MAIN in the BEGIN statement

(Card 7) causes the card to be read. The format of the

7.1.5
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allocation card is (515); that is, five integer numbers of

five digits each. Contents of the data fields, and the default

and minimum values of each, are described in Section 7.1.2.

CARD 15: (end of record). This end of record

card should be added whenever the STORAGE ALLOCATION card is

present in a MAGNA job deck.

CARD 16: (end of job). The end of job (end of

file) card is always required as the last card of the deck.

Other forms of the MAGNA job deck are possible.

The most common alternate format consists of control cards and

data together in the input stream. In this case, the input

deck is arranged as shown below.

J0B,T500,I0500,CM165000.

SET,Rl=MFL.

C0PYCR, INPUT,TAPE5.

ATTACH,P,MAGNAJCL,ID=BR0CKMAN,MR=l.

BEGIN,XMAGNA,P,,,Rl+B.

7/8/9 (end of record)

input data

7/8/9 (end of record)

6/7/8/9 (end of job)

When the postprocessor file MP0ST is to be saved from the

* analysis, the needed REQUEST and CATALOG (or UNLOAD) commands

are simply inserted before and after the BEGIN statement as

before. The additional input deck sample below illustrates the

-* user of user subroutines, the MP0ST option, the use of STRAVG,

and the STORAGE ALLOCATION card, with all data and user-written

routines supplied in the job deck. The MP0ST file is copied

to seven-track magnetic tape prior to the execution of STRAVG.

SO The APOST file is written directly to disk.

7.1.6
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J0B,T500, 10500 ,CM145000,MT1.

- SET, R1=MFL.

C0PYCR, INPUT, TAPE5.

C0PYCR, INPUT, USRSUB.

REWIND, USRSUB.

ATTACH, P ,MAGNAJCL, ID=BR0CKMAN, MR=1.

BEGIN, XMAGNA, P,MAIN, USRSUB, R1+B.

REQUEST,TEMP,MT, RING,VSN=X012 34.

REWIND, MP0ST, TEMP.

C0PYBF, MP0ST, TEM4P.

RETURN, TEMP.

ATTACH, STRAVG, ID=BR0CKMAN,MR1l.

REQUEST,AP0ST, *PF.

BI, STRAVG, STRAVG.

CATAL0G, APOST ,MYAP0ST.

7/8/9 (end of record)

iput data

7/8/9 (ed of record)

uer-written subroutines

7/8/9 (end of record)

12000.A200

7/8/9 (end of record)

* 6/7/8/9 (end of job)

STORAGE ALLOCATION CARD
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Many nonlinear solutions are best performed in

more than one submission of the program, in order to

- permit monitoring of the progress of the
solution,

- reduce computer resource requests and
safeguard against "time limit" errors, and

- modify the analysis data or solution type

at intervals during the solution.

When requested, MAGNA will create a checkpoint file at the

conclusion of specified increments during the solution, permitting

the analysis to be restarted from any of these points in a

subsequent job. The necessary input data is described in

Sections 5.8 and 8.3. A new restart tape always has the local

(temporary) file name NRSTAP, while old restart tapes (i.e.,

those to be read in to restart the analysis) are expected

to reside on local file TAPE23. Both NRSTAP and TAPE23 can

reside physically on the same tape, as illustrated in the

examples below. Each solution increment which is written to

the restart tape constitutes one system logical record on the ton

tape; this rule is used to position the restart tape correctly

prior to executing MAGNA. Several example cases are given below

to illustrate the use of the nonlinear restart function.

retr ucin
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Case 1: New Analysis, and Creation of Restart Tape

In this case, a new restart tape is to be written

directly to magnetic tape. No input tape is used, since this

is the beginning of a new analysis. Problem data is included

in the job deck, and the program storage area is modified

*using a STORAGE ALLOCATION card.

J0B,T300,10450,CM145000,GEl.

SET,Rl=MFL.

COPYCR, INPUT,TAPE5.

REQUEST,NRSTAP,GE,RING,VSN=X01234.

ATTACH,P, MAGNAJCL,ID=BR0CKMAN,MR=1.

BEGIN,XMAGNA,P,MAIN,,Rl+B.

RETURN, NRSTAP.

7/8/9 (end of record)

input data

7/8/9 (end of record)

12000^A4OO

7/8/9 (end of record)

6/7/8/9 (end of job)

7.1.9
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Case 2: Analysis Restart, with no New Restart Tape

This example illustrates a restart analysis in which

the solution is to be continued from the ninth increment written

to tape (i.e., the old restart tape must be positioned after

the end of the eighth checkpoint file). No new restart tape is

to be written. Also, in this analysis a postprocessing file

(MP0ST) is copied to tape upon completion of the run. Note in

particular that the old restart tape is requested, and then the

needed file is copied to a local file TAPE23. The file TAPE23

need not be rewound prior to execution. This procedure should

always be followed, 'ather than requesting the magnetic tape

directly as TAPE23. Failure to do so will result in an error.

J0B,TI000,I1I500,CM165000,GEI.

SET,Rl=MFL.

C0PYCR, INPUT,TAPE5.

REQUEST,0LDTAP,GE,N0RING,VSN=X01234.

SKIPF,0LDTAP,8,0,B.

C0PYBR, LDTAP,TAPE23.

UNL0AD,0LDTAP.

ATTACH,P,MAGNAJCL,ID=BR0CKMAN,MR=l.

BEGIN,XMAGNA,P,, ,Rl+B.

REWIND,MP0ST.

REQUEST,P0STAP,GE,RING,VSN=XI2345.

C0PYBR,MP0ST,P0STAP.

RETURN, P0STAP.

7/8/9 (end of record)

input data

I
7/8/9 (end of record)

6/7/8/9 (end of job)
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Case 3: Intermediate Analysis, with Both Old and
New Restart Tapes Used

In the job below, a solution is restarted from the

sixth (and last) stored increment of an existing restart tape.

Results of the current analysis are to be added to the end of

the previous restart tape for later use.

J0B,T600,I600,CM165000,GEl.

SET, Rl=MFL.

ATTACH, TAPE5, MYDATA, CY=3.

REQUEST,NRSTAP,GE,RING,VSN=X23456.

SKIPF,NRSTAP,5,0,B.

C0PYBR, NRSTAP, TAPE23.

REWIND,NRSTAP.

SKIPF,NRSTAP,6,0,B.

ATTACH,P,MAGNAJCL, ID=BR0CKMAN,MR=l.

BEGIN,XMAGNA,P,,,Rl+B.

RETURNNRSTAP.

7/8/9 (end of record)

U6/7/8/9 (end of job)

Note that the old and new restart tapes need not be the same; the

use of multiple tapes may be desirable when one analysis is to be

restarted from one (or more) intermediate points. The above case

is modified below to demonstrate the use of different tapes for

the old and new restart files.

J0B,T600,I600,CMI65000,GEI.

SET,Rl=MFL.

ATTACH,TAPE5,MYDATA,CY=3.

REQUEST,0LDTAP,GE,N0RING,VSN=X01234.

SKIPF,0LDTAP,5,O,B.

C0PYBR,0LDTAP,TAPE23.

4 UNL0AD,0LDTAP.

REQUEST,NRSTAP,GE,RING,VSN=X12345.

ATTACH,P,MAGNAJCL,ID=BR0CKMAN,MR=l.

BEGIN,XMAGNA,P,, ,Rl+B.

4 RETURNNRSTAP.

7/8/9 (end of record)

6/7/8/9 (end of job)
7.1.11
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The second type of restart function performed by

MAGNA is the eigenvalue solution with prestress effects (Sections

4.5, 5.9, and 8.3.). With this option, a nonlinear solution is

performed first to determine an equilibrium state, in which

large deflections and plastic deformation may be present. The

* element stiffnesses computed from the nonlinear solution are

p then incorporated into the natural frequency analysis, which

represents a small, superimposed vibratory motion.

The following example demonstrates the use of the

eigenvalue-with-prestress option. In the example, the MPOST

U file from the nonlinear analysis is also used to provide the

reference geometry to the frequency solution; the MOST file

generated in the natural frequency analysis will then contain

(a) the prestressed state geometry as the "undeformed" geometry,

and (b) the superimposed vibration modes as the displacements.

Run No. 1: Nonlinear Analysis for Prestressed State

J0B,T800,I1I000,CM165000.

SET,Rl=MFL.

ATTACH,TAPE5,N0NLINDATA.

ATTACH,P,MAGNAJCL,ID=BR0CKMAN,MR=l.

REQUEST,MP0ST,*PF.

BEGIN,XMAGNA,P, , ,RI+B.

CATALOG,MP0ST,N0NLINMP0ST.

REQUEST,DUMMY,*PF.

REWIND,STIFF,DUMMY.

C0PYBF,STIFF,DUMMY.

CATAL0G,DUMMY,NLSTIFF.

7/8/9 (end of record)

6/7/8/9 (end of job)

*I Run No. 2: Frequency Analysis with Prestress

J0B,T400,I0600,CM165000.

SET,Rl=MFL.

ATTACH,TAPE5,FREQDATA.

*a ATTACH,TAPE22,NLSTIFF.
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ATTACH,TAPE23,N0NLINMP0ST.

- -. ATTACH,P,MAGNAJCL, ID=BR0CKMAN,MR=l.

REQUEST,MP0ST*PF.

BEGIN,XMAGNA,P, , ,Rl+B.

CATALOG, MP0ST, FREQMP0ST.

7/8/9 (end of record)

6/7/8/9 (end of job)

• 7.1.2 Modification of Storage Capacity

The MAGNA finite element program allocates array

storage dynamically for all matrices and internal tables whose

size is problem-dependent. Although analyses of rather large

size can be accomplished using only a small amount of array

space, computational and input-output efficiencies on CDC

computers can be improved dramatically by allocating additional

storage for larger problems. Modification of the program

capacity is quite simple, since only one additional data card

is needed in the input deck (see Section 7.1.1, Card 14, STORAGE

* ALLOCATION card).

Program storage capacity is controlled by the

lengths of five labeled COMMON blocks declared in the main

program:

1. /BLANK/* -major arrays and internal tables,
including assembled stiffness, mass,
or effective stiffness matrix
partitions.

2. /IDENT/ tables describing the envelope of
active nonzero coefficients in the
system matrix.

3. /BLOX/ - tables containing matrix partitioning
data for out-of-core solutions.

*O 4. /BLEQ/ - additional partitioning data for
out-of-core matrix storage.

*Labeled COMMON is used to replace blank COMMON in the
program for compatibility with the CDC segmentation loader.
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5. /INDXK/ - record key tables for random-access
disc files.

This ordering corresponds to the integer data fields appearing

on the STORAGE MODIFICATION card. The minimum and default

lengths of these blocks are summarized in Table 7.1.1.

The COMMON areas /BLANK/ and /IDENT/ determine

the in-core storage capacity of the program, while the remaining

blocks are directly related to limits on out-of-core storage

used in the solution. In general, the most effective use of

the program for large-scale analysis results from increasing

the blocks /BLANK/ and /IDENT/. The default lengths of COMMON

blocks /BLOX/, and /BLEQ/, and /INDXK/ are normally sufficient

for all but the largest three-dimensional problems.

The largest array areas allocated in /BLANK/

correspond to partitions of the system stiffness (or effective

stiffness) matrices. Therefore, the length of this block is

determined largely by the number of unknowns in the model and

the density of the stiffness matrix. For models consisting

primarily of one- and two-dimensional elements, the default

* length of 20000 words in COMMON/BLANK/ is often sufficient for

problems of a few thousand degrees of freedom. In three-

dimensional nonlinear and/or dynamic analysis, input-output

efficiency can be substantially improved by extending /BLANK/

* for discretization involving more than about 2000 degrees of

freedom or very large matrix bandwidth.

The length of COMMON/IDENT/ must be greater than

the total number of unknowns in the final system of equations

to be solved. The total number of unknowns is the sum of the

number of unconstrained nodal degrees of freedom and the number

of linear constraints specified in the problems.

Lengths of the COMMON blocks /BLOX/, /BLEQ/, and

/INDXK/, which determine the out-of-core storage capacity of

MAGNA, can generally remain at their default values for all but

• the largest three-dimensional analyses. A possible exception -

7.1.14
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TABLE 7.1.1

DEFAULT AND MINIMUM COMMON BLOCK LENGTHS
(CDC Program Version)

BLOCK DEFAULT LENGTH MINIMUM LENGTH

/BLANK/ 20000 12000

/IDENT/ 2500 100

/BLOX/ 150 150

/BLEQ/ 150 150

/INDXK/ 170 170

.

r
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is the case of a linear static analysis in which many load

cases are to be solved. For the purpose of increasing problem

*size capacity, increasing the available in-core storage (by

* extending /BLANK/ and /IDENT/) is always preferred.

It should be noted that, when the program storage

capacity is modified, the central memory (CM on the job card,

see Section 7.1.1) requested for the job must be adjusted

accordingly. The default central memory requirement for

execution of MAGNA is approximately 165000 octal (60000 decimal)

words. Table 7.1.2 provides a list of octal-decimal conversions

for use in determining the number of octal words of memory to be

requested when the program storage space is changed.

Additional increases in central memory may be

* "necessary when user-written subroutines (Chapter 9) are supplied

to the program, if lengthy code or large amounts of data are

- involved. For storage of smaller amounts of data which is

defined and used in these subroutines, a reserved COMMON block,

COMMON/USERC/, is provided, with a default length of 20 words.

This area, which is saved and reloaded whenever user subroutines

* are called, is included in the stated values for central memory.

7.1.3 Reserved File Names

Since the MAGNA program is executed through control

language procedures which automatically attach, return, and

create the proper files for use in the analysis, certain local

*[ file names are reserved for use in the CDC control procedure

XMAGNA. The following names are reserved file names, and should

not be in use at the time the BEGIN command is issued.

ABS NEWPL

COMPILE OLDPL

4 ERRORS SEGLOD

MAGNA TEMP

MAIN UPDGEN

MODS UPDIN

NEWB USUB
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TABLE 7.1.2

OCTAL-DECIMAL CONVERSIONS

Decimal Octal Octal Decimal

1000 1750 1000 512

5000 11610 10000 4096

10000 23420 60000 24576

20000 47040 100000 32768

30000 72460 120000 40960

40000 116100 140000 49152

50000 141520 160000 57344

60000 165140 200000 65536

70000 210560 220000 73728

80000 234200 240000 81920

90000 257620 260000 90112

100000 303240 300000 98304
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7.1.4 Typical Execution Times on CDC Computers

Data are presented in this section to aid in the

estimation of computer run times on CDC machines using MAGNA.

The times, formulas, and data given are based upon observed

computer times on the CDC 6600 ccmputer. For the CYBER 74

machine, run times are nearly identical; on the CYBER 170 series

*machines, CPU times should be approximately one-half the CDC

6600 requirement, and I/O times may be slightly less.

In nonlinear analysis, computing times are typically

dominated by the ,i-bibui ,flemerts rather than by the time

to solve the system equations. This observation is particularly

true in three-dimensional problems, due to the computational

* ieffort involved in evaluating nonlinear effects on the element

level. Computing time factors for each of the MAGNA elements

are listed in Table 7.1.3; for most nonlinear solutions, the

CPU time requirement can be estimated conservatively using

the formula:

CPU time = (CPU Time Factor) X (Number of Elements)

X (Number of Integration Points/Element)

X (Number of Increments)

where CPU time factor is read from the table. A small amount

*of overhead (typically 10-15 percent) should be added to this

estimate to account for additional calculations (e.g., solution

of equations). The IO-to-CPU ratios given in the table are

next used to estimate the 10 time requirement. For nonlinear

analyses using equilibrium iteration, each cycle of iteration

should be counted as an "increment" in estimating computing

time requirements. However, since iteration cycles generally

require less time than an incremental step, the resulting

estimates will generally be quite conservative.

Typical solution times for selected linear and

nonlinear analyses are given in Table 7.1.4. As an example of

the estimation of CPU times, consider the F-16 windshield
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analysis using solid isoparametric elements (Type 6), with a

3x3x3 integration rule for each element. From Table 7.1.3, the

-- CPU time factor is 0.11 for nonlinear analysis with Element

Type 6. Thus,

CPU Time (0.11) X (50 elements) X (27 points/element)

X (10 increments),

giving 1485 seconds. Allowing a 10 percent overhead for equation

solving and other calculations gives an estimate of 1630 CPU

seconds (for the CDC 6600). Actual execution time on the CYBER

175 is 673 seconds. The actual 10 time required for the above

example is 1136 seconds, so that the IO/CPU factor of 1.5 gives

a conservative estimate.

Computation time for nonlinear dynamic analysis

are only slightly higher than for nonlinear static analysis,

and the above estimating procedure can be used with confidence.

It should be noted that, in elastic-plastic analysis, the

computing time cannot be predicted quite as accurately, since

ythe amount of calculation per element may vary considerably.

For strongly materially nonlinear analysis, it is suggested

that 30-50 percent overhead be allowed with the estimates

obtained using the table. 10 times are not affected in

materially nonlinear analysis.

For linear analysis with MAGNA, the estimation

of computer resources is much more difficult, since solution

times are dominated by the assembly and equation solving steps.

Values of the CPU time factor given in Table 7.1.3 refer to

element calculations onZy, and are not reliable for estimating

computer times in linear analysis. The IO/CPU time ratios

which appear in the table are fairly accurate, if a reasonable

O value of the CPU time can be predicted. The higher values of

the IO/CPU ratio in Table 7.1.3 are applicable primarily in

linear dynamic analysis, where CPU times are typically very

modest.

.-.
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7.2 CRAY PROGRAM VERSION

The CRAY-i version of MAGNA offers the highest capacity

and computational speed of all the machine versions available.

The usual CRAY batch analysis run consists of executing MAGNA

and the STRAVG utility, as described in the subsequent sections.

Since the CRAY-i computer does not support interactive

operation, job streams and data files will generally be prepared

on a "front-end" computer and then submitted to the CRAY system

through remote batch input utility. For this reason, the exact

procedures to be used in executing the CRAY version of MAGNA

can be highly installation-dependent. Some typical procedures,

which conform to the conventions of the United Computing Systems,

Inc. APEX/SL time sharing service, are outlined in this section.

For information concerning job control language and job submission

at particular installations, users should contact the installation

representative, or look for system information files outlining

the correct procedures to be followed.

7.2.1 Job Control Language

The CRAY computer version of MAGNA is typically

executed using a job stream of the form shown below.

1. J0B,T20

2. ACCOUNT, usernumber, password.

3. GET,FT05=data filename.

4. REWIND,FT05.

5. ASSIGN,DN=FTI0,BS=I0.

6. GET,MAGNA/CRYLBRY.

7. MAGNA.

8. RETURN,FTl0,FTI2,FTI4,FT20,FT98.

9. PUT,FT99=MP0ST/D.

S10. GET,STRAVG/CRYLBRY.

11. STRAVG.

7 2
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12. PUT,FT98=APOST/D.

E0R (end-of-record)-

E0F (end-of-job)

An input file such as the one listed above is submitted to the

CRAY computer using an RJE (Remote Job Entry) command:

RJE,F=filename,D=CRAY,CI=TTY

Here "filename" defines the file on which the job stream resides;

D=CRAY gives the job destination; CI=TTY defines the character

set under which the input file was created (in this case, 6-

or 12-bit characters, 60 bits per word).

The function of each entry in the MAGNA input file

is explained in detail below.

CARD 1: JOB CARD. The JOB card identifies the

start of the job stream and requests system resources for the

run. Note that the central memory (CM) parameter may be

necessary if storage capacity is changed (see Section 7.2.2)

or if user subroutines are used.

CARD 2: ACCOUNT CARD. This entry defines the

user number under which the job is to be executed, and a

password entry which is verified to prevent unauthorized

access.

CARD 3: GET,FT05. This control card accesses

the problem data from permanent disk storage. It should be

noted that the data file must be converted to CRAY ASCII

format, as follows:

GET,TEMP=originaldatafile.

REF0RM, I=TEMP,0=DATA,CI=TTY,C0=CAS.

0g PUT,DATA=datafilename.

CARD 4: REWIND,FT05. The REWIND command

positions the input data file at the beginning of information.

7
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CARD 5: ASSIGN,DN=FTI0. This ASSIGN

command allocates memory buffer space to the main random

- -
- access file used by MAGNA. While the use of this command

is optional, its use is suggested for all moderate to

large size problems to maximize input/output efficiency.

CARD 6: GET,MAGNA. This command is used to

access the MAGNA executable program. The exact filename

may vary with the installation.

CARD 7: MAGNA. This control statement

initiates execution of the MAGNA program.

CARD 8: RETURN. Following execution, several

scratch files created by MAGNA must be RETURNed to the

system before succeeding job steps, to avoid conflicting

usage.

CARD 9: PUT,FT99. This command isused

I. -  immediately following the execution of MAGNA, to save the

MP0ST Dostprocessor file created during the run. The

*" MP0ST file must be saved if deformed geometry plotting is

to be done (see Section 5.7 and Chapter 11). If no

MPOST file is created during the analysis, this and the

*three control statements following should be omitted.

CARD 10: GET,STRAVG. The STRAVG utility

program, which performs element stress extrapolation and

smoothing operations, is accessed in this job step. Note

that the MPOST postprocessor file is needed for execution

of STRAVG (see Section 5.7); if no postprocessor file has

been written, this and the remaining two control statements

should be omitted.

0 72.
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CARD 11: STRAVG. This command initiates

execution of STRAVG.

CARD 12: PUT,FT98. The PUT command is used

*to save (or replace) the AP0ST postprocessing file created

by STRAVG. The AP0ST file is used interactively following

the analysis to generate contour plots and a variety of

variable-versus-variable plots.

Alternatively, MP0ST and AP0ST files may be

archived on magnetic tape using the TAPE0UT control

command. To write the MP0ST file to tape, for example,

Card 10 is replaced by:

TAPE0UT,DN=FT99,VSN=XXXXXX,PE,NT.

It should be noted that the MP0ST and/or AP0ST files, having

been written in CRAY ASCII format, must be converted at

some ooint for use in plotting on the front-end computer.

The needed data conversion may be performed as a part of

the batch analysis run (preceding the corresponding PUT

commands) or at a later time.

The use of user-written subroutines with the

CRAY version of MAGNA is straightforward, although the

program must be accessed in a somewhat different manner

than before. The following example demonstrates the

- required procedure, assuming that the source version of all

.. user subroutines resides on the permanent file USUBS,

*in CRAY ASCII format.

I7..

I
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JOB,T10

ACCOUNT,USERID,PASSWD.

GET,FT05=MYDATA.

REWIND,FT05.

GET,USUBS.

CFT,I=USUBS,E=2,0N=A.

RETURN,USUBS.

REWIND,$BLD.

GET,$0BL-MAG0BJ/CRYLBRY.

BUILD,I=0,N0DIR.

LDR,DN=$NBL.

RETURN,FTIO,FT12,FTI4,FT20,FT98.

GET,STRAVG/CRYLBRY.

STRAVG.

EOR

E0F

The analysis restart facilities in MAGNA are

useful in monitoring the progress of a solution, changing the

solution strategy if necessary, and safeguarding against time

limits or other causes of premature termination. Use of the

restart option is discussed in Sections 5.8 and 8.3, and job

control procedures for restart with the CRAY version of MAGNA

are outlined below.

Due to the rather limited tape processing

F capabilities available on the CRAY-I computer, the restart

facility for the CRAY version of the program works with permanent

disk files. These files can be transferred to and from magnetic

tape at the beginning and end of a job as necessary. During
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execution, MAGNA will access existing restart files directly

from permanent file storage, and will save new restart files

as permanent files automatically during the analysis.

The only additional job control statements which

are needed in using restart are those which retrieve existing

files from tape, or write newly created files to tape. The

following rules should be noted concerning restart files

stored on disk:

- the file label IDOLD input in Section 8.3.3 is
also assumed to be the permanent file name of
an existing restart file;

- if the file IDOLD is not found, the program
will attempt to read restart data from the
local data set FT23;

- new restart files will be written to a permanent
file whose name is defined by IDNEW (Section
8.3.3), with each completed restart checkpoint
replacing the last one; and

- if either of IDOLD, IDNEW are blank strings,

a file name of "REST" is assumed.

The following example shows a typical job control stream in

.- which an input restart file is transferred from tape, and the

-" newly created restart file is copied to tape at the end of the

job. It is assumed that the RESTART card in Section 8.3.3

defines IDOLD=RESl and IDNEW=RES2. The input data file resides

on the permanent disk file NLDATA.

JOB,T40

ACCOUNT,MYID,MYPASS.

GET,FT05=NLDATA.

REWIND,FT05.

TAPEIN,DN=TEMP,VSN=10325,PE,NT.

PUT,TEMP=RESI/D.
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RETURN, TEMP.

ASSIGN,DN=FTI0,BS=I0.

Nr- GET, MAGNA/CRYLBRY.

MAGNA.

UNSAVE, RESI.

GET, RES2.

TAPE0UT,DN=RES2,VSN=12486,PE,NT.

UNSAVE, RES2.

RETURN,FTl0, FT12, FTI4, FT20, FT98.

GET,STRAVG/CRYLBRY.

STRAVG.

PUT,FT98=AP0ST2/D.

E0R

E0F

The use of the eigenvalue-with-prestress restart

function (Sections 4.5, 5.9 and 8.3) requires two job submissions.

First, a nonlinear solution is performed to determine the

prestressed equilibrium state, in which large deflections and

material yielding may occur. The element stiffness file

obtained from the nonlinear analysis is supplied to the natural

frequency analysis to compute the frequencies and mode shapes

associated with small superimposed vibrations. Optionally, the

MP$ST file from the nonlinear solution can also be read into

the eigenvalue analysis. This permits post-plotting to be done

with the computed mode shapes superimposed on the deformed

geometry in the prestressed state.

The following example illustrates the use of

this option, in which both the nonlinear stiffness file and

the MP9ST file are passed from one solution to the other.

Run No. 1: Nonlinear Analysis for Prestressed State

J0B,T20,

ACC0UNT,USERID,PASSWD.KGET, FT05=NLDATA.
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REWIND,FT05.

ASSIGN,DN=FTI0,BS=l0.

GET,MAGNA/CRYLBRY.

MAGNA.

PUT,FTI2=NLSTIF/D.

PUT,FT99=NLP0ST/D.

E0R

E0R

Run No. 2: Frequency Analysis with Prestress

J0B,TI0.

ACC0UNT,USERID,PASSWD.

T"FTO5=EIGDAT.

REWIND,FT05.

GET,FT22=NLSTIF.

GET,FT23=NLP0ST.

ASSIGN,DN=FT1 0 ,BS=1 0 .

GET,MAGNA/CRYLBRY.

MAGNA.

PUT,FT99=MP0ST/D.

E0R

E0F

7.2.2 Modification of Storage Capacity

The CRAY-i version of MAGNA takes advantage of

the large amount of main memory available on the CRAY computer

(typically 1-4 million decimal 64-bit words), and the default

-O storage allocations should generally be sufficient for nonlinear

problems involving several thousand degrees of freedom. For

extremely large problems the program capacity can be modified

using the procedures outlined below.
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The storage capacity of MAGNA is controlled by the

lengths of five labeled COMMON blocks declared in the main

program:

1. /BLANK/ - major arrays and internal tables,
including assembled stiffness, mass,
or effective stiffness matrix
partitions.

2. /IDENT/ tables describing the envelope of
active nonzero coefficients in the
system matrices.

3. /BLOX/ - tables containing matrix partitioning
data for out-of-core solutions.

4. /BLEQ/ - additional partitioning data for
out-of-core matrix storage.

5. /INDXK/ - record key tables for random-access

disc files.

Table 7.2.1 shows both the minimum and the default lengths of

each block.

COMMON areas /BLANK/ and /IDENT/ control the
V Tin-core storage capacity of the program, while the remainining

blocks are related to limits on out-of-core storage available

- during a solution. It is generally most effective to extend

the storage capacity of MAGNA by adjusting the in-core blocks

/BLANK/ and /IDENT/, since input/output operations are relatively

expensive on the "RAY machine. The default lengths of the

remaining three COMMON areas should be sufficient even for large

three-dimensional problems.

Situations in which the main storage block, /BLANK/,

can be profitably increased include larger problems (10000

degrees of freedom or more), models with very large average

* bandwidth, and natural frequency solutions in which a number of

frequencies and modes are to be extracted.

The array area declared in COMMON block /IDENT/

* must be greater than the total number of unknowns in the final

*system of equations (including linear constraint equations).
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TABLE 7.2.1

DEFAULT AND MINIMUM COMMON BLOCK LENGTHS
(CRAY Program Version)

BLOCK DEFAULT LENGTH MINIMUM LENGTH

/BLANK/ 80000 12000

/IDENT/ 15000 100

/BLOX/ 150 150

- /BLEQ/ 150 150

/INDXK/ 170 170

L
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To implement changes in storage capacity on the

CRAY system, it is necessary to edit the main program (MAGNA)

on the front-end computer. For each COMMON block described

above, an associated variable is also defined which gives the

length of the block. The pertinent COMMON and assignment

statements are listed below.

PROGRAM MAGNA

C0MM0N/BLANK/A (n 1)

C01MM0N/IDENT/ID (n 2 )

C0MM0N/BL0X/NSHFT (n 3)
C0MM0N/BLEQ/NEQLIM (n 3 )

C0MM0N/INDXK/INDK (n 4 )

NW0RK n

NID n 2
NNS n

NINDXK n 4

END

Once the main program has been edited, the run

procedure is similar to that used with user-written subroutines

(see Section 7.2.1). The following example illustrates the

necessary control language, assuming that the edited main

program (and any user-written subroutines) are contained on

- the permanent file MYMAIN in CRAY ASCII file format.

J0B,T15

ACCOUNT,MYID,MYPASS.

GET, FT05=MYDATA.
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GET,MYMAIN.

REWIND,MYMAIN.

CFT,I=MYMAIN,E=2,0N=A.

RETURN,MYMAIN.

REWIND, $BLD.

GET,$0BL=MAG0BJ/CRYLBRY.

BUILD,I=0,N0DIR.

LDR,DN=$NBL.

RETURN,FT10,FTl2,FTl4,FT20,FT98.

GET,STRAVG/CRYLBRY.

STRAVG.

PUT,FT98=APOST/D.

EOR

E0F

7.2.3 Execution Times on the CRAY-I Computer

Data collected from observed solution times on

-" the CRAY-i system are summarized briefly in this section, to

" aid in the estimation of computer run times for MAGNA. Although

the CRAY-I computer is a vector processor, near-maximum CPU

speed is attained even for relatively short vector operations;

this virtue permits computing times to be estimated with

* reasonable accuracy, at least for nonlinear problems.

In nonlinear analysis, L omputing times are

typically dominated by the number of elements rather than by

the time to solve the system equations. This observation is

particularly true in three-dimensional problems, due to the

computational effort involved in evaluating nonlinear effects
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on the element level. Computing time factors on the CRAY-i for

each of the MAGNA elements are listed in Table 7.2.2; for most

nonlinear solutions, the CPU time requirement can be estimated

using the formula

CPU time = (CPU Time Factor) X (Number of Elements)

X (Number of Integration Points/Element)

X (Number of Increments)

where the CPU time factor is read from the table. Additional

processing time (typically 15-20 percent) should be added to

this estimate to account for additional calculations (e.g.,

solution of equations). When equilibrium iterations are used

in the nonlinear analysis, each cycle of iteration should be

counted as an "increment" when estimating computer time

requirements. Since iteration cycles consume less time than

a full incremental solution step, the resulting estimates will

be quite conservative in general.

Computation times for nonlinear dynamic analysis

are only slightly higher than for nonlinear static analysis,
Oand the above estimating procedure can be used with confidence.

It should be noted that, in elastic-plastic analysis, the

computing time cannot be predicted quite as accurately, since

the amount of calculation per element may vary considerably.

For materially nonlinear analysis, it is suggested that 30-50

percent overhead be allowed with the estimates obtained using

the table.

For linear analysis with MAGNA, the estimation of

computer resources is much more difficult, since solution times

are dominated by the assembly and equation solving steps.

Values of the CPU time factor given in the Table refer to

element calculations only; typically, the assc ,ly and solution

steps in a linear analysis will require an equal (or slightly

greater) amount of processing time.

I
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TABLE 7.2.2

COMPUTING TIME FACTORS FOR INDIVIDUAL ELEMENT TYPES (CRAY-1)

CPU Second/Integration Point/Increment

Element Type Linear Nonlinear

1 0.002 0.021

2 0.001 0.0C2

3 0.001 0.001

4 0.001 0.001

5 0.002 0.005

6 0.002 0.011

7 0.002 0.011

8 0.002 0.007

9 0.001 0.001

10 0.001 0.001
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7.3 VAX PROGRAM VERSION

The VAX 11/780 minicomputer version of MAGNA, although

slowest in execution of the machine versions available, is by

far the most convenient to use. All necessary job control

procedures are generated interactively in response to simple

prompts, including assignment of data files, modification of

program storage capacity and linking of user-written subroutines.

Several examples are included in this section to indicate the

general procedures involved.

I Generation of the MAGNA batch command sequence is initiated

by executing an interactive procedure from the VAX command mode:

$@[MAGNA.RAB]SETUP*

The SETUP procedure requests the needed information for processing

the analysis run, and writes the completed command file to disk

under the name MBATCH.COM. The MBATCH command file is then

entered for execution using the VAX/VMS SUBMIT command; for

example,

$SUBMIT/AFTER=time MBATCH

An example of the execution of SETUP is shown in Figure

7.3.1, for an analysis which uses no special features of MAGNA

(e.g., user subroutines, restart). Data describing the options

and resources needed for the job are segregated into three data

modules:

(1) User-Written Subroutines

(2) Storage Allocation Modification

(3) Process File Names and Devices

For the example shown, the input is limited to module (3), in
14 which the input data file (MYDATA.DAT) is defined, and the

*Directory and file names may be installation dependent.
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* .

7

MAGNA BATCH INPUT PROCEDURE*

* TERMINAL SESSION : 28-OCT-1981 19:00
K ~------.---.----------------..-------------

* " . MODIFY/CORRECT/ABORT SESSION, TYPE <CTRL...> Y ,Y

1. IJSER SUBROUTINES.

... * ANY USER SUP"PLIED SUBROUTINESI' (Y/N) ..... : r.

END SPECIFICATIONS FOR MODULE

2. STORAGE ALLOCATION MODIFICATION.

..... CHANGE DEFAUILT STORAGE ALLOCATION'?(Y/N) ....

END SPECIFICATIONS FOR MODULE : 2

3. INPUT OF PROCESS FILE NAMES AND DEVICES.

.SHOW DIJECTORYT'(Y/N) .....

TYPE DIRECTORY NAME (DEF=<RET>) ....

Figure 7.3.1. Typical Execution of VAX SETUP Control Procedure.
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A

w E---Directorv _ RAI:MAGNA.TESTJ

AP OS T .D A T ;1 M YDA TA . AT 1

Total of 2 files.

3(A)..E'EFINE INPUT JOB STREAM (UNIT 5 - ALL CASES).

S .. . .TYPE INPUT DATA FILE _NAME .TY PE ..... : m yd ata.dat

3(B)...DEFINE OUTPUT JOB STREAM (UNIT 6 - ALL CASES).

DEFAULT OUTPUT IS TO BATCH PRINTER...O?(Y/N) .....

3(C)...EXEC FILE SPECIFICATION'

" . . *DEFAULT EXE FILE NAME IS EMAGNA.RAB :MAGNA...OK (Y/N)....: v

3(D)... POST-PROCESSOR FILE MANAGEMENT.

- . . W I L L A F'OS T - F R O C E S S O R F I L E B E W R I T T E N.(Y / N ) .. * ..:

. .. P -P F I L E W I L L B E W R I T T E N T O D I S K . .. O K ? ( Y / N ) . .°.. : 

3(E)...RESTART FILE MANAGEMENT.

-* . *INPUT FROM OLD RESTART FILET(Y/N).....: n

* . . .OU TTPUT TO NEW RESTART FILE?(Y/N).....: r

END SPECIFICATIONS FOR MODULE : 3

BATCH INPUT SPECIFICATIONS COMPLETED.

* . * . DISPLAY TABLE OF COMP 'LETED MODU LES .(Y/N) .... : r,

Figure 7.3.1 (continued).
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I' IN I I"]AL OR I'FT F MO.DIIF CAT.r' CNS'I(YIN ) .. ,

W!,*IT' ING COMMAND PROCEDURE..

tk'Ii E:i :UFL WR IT"TEN T.TSF'LAY HERE TO USER. (YIN) .... * .:

ZII:'I. .- -N(OF I... FURS.F ( 1 1o f":. les P]i.'Se,.d for .... LIRAI:i.IA(SNA.TEsI.JM1TiTCH ii~~~:5 F S. 5i II(0 N, T E: f M] IN4A r E D

fIf-NA 1 (N c4 3 fJ RUN F:' ['.. ORE WR TTEN TO FI L E 11141. [ CH .C,( U

d di Y, si z e/a te

D . r e .ctc) t", ...DRA .t I i NA GiN . TES T I

AF.T D A :, 1. 246 i. 5-CCT- 19 81. :1. 4 :3
(-) T @... CON ; 1 6 28 --OCT- .1.98.1. ' :*02

-"l AT A 1D AT :1. -1 1.9 81 4 : 9

o a. o' 3 "r i 1 e s 2 6 3 b. o c k. s

p -,

Figure 7.3.1 (concluded).
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disposition of the output and postprocessing files is declared.

The resulting job procedure MBATCH.COM is listed in Figure 7.3.2.

When the program storage capacity is to be modified for

larger problems (see Section 7.1.2, for example), additional

* input must be entered in module (2). This procedure is

illustrated in Figure 7.3.3; here the default lengths of work

areas /BLANK/ and /IDENT/ are modified from 20000 to 40000 and

from 2500 to 4000 , respectively. Note that, when the storage

capacity is changed, a new executable file must be created.

The name of the new executable file is input as part of the

module (3) data as shown in the Figure.

The executable version of MAGNA which is created when

storage modifications are made is written to disk and may be

reused without repeating the procedure. To reuse the modified

executable version, it is necessary to override the use of the

default executable file, as shown in Figure 7.3.4. For the

case shown, the previously created file MYEXE.EXE (created in

0-,Figure 7.3.3) is reused, with the previous storage allocations

retained.

Restart analyses on the VAX computer require input

regarding the disposition of newly-created checkpoint files

(tape or disk); the necessary file names are input as part cf

the problem data (see Section 8.3). Figure 7.3.5 shows the

necessary input to SETUP for writing a new restart file to

magnetic tape*. Figure 7.3.6 contains a listing of the MBATCH

procedure generated when both the restart option and storage

modifications are used in a single job.

When old restart files are to be read during an analysis,

the present control procedure requires that the old restart

*Tape mounting procedures and device names may vary between

o installations, and therefore minor modifications of the generated
, control procedure may be necessary.

7.3.5
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'?1; [_:.-.L JP&' nb I:)-9 . (Yb h C2 f!1

$ SET UERIFY
$ SET DEE [MNA, TESTJ

! MfGNA BA'CH ININPUT PROCEDURE,
1 USER : EMAGNA .EST]
$, SESSION ; 28-OCT-1981 19:00

AI N ERROR THEN cOTO TERMI NUS
S$--- RUN MAGNA.
I ASSIGN/USER._MOI:ilE IMAGNA .T. ....YDATA [.AT FOR00
I n'.SI GN/USER...MODE SY S$OLJTI'.JT PIpO006
s RUN? L IAGNA.*RuB ]i',AFNA

4 RUN DiRA ; IIEMAGNA. RA8t3 OST
I EL t.AGNEI * Dg Ar ;*

UN FU. .R:II F MAGA • RAB3PPAGER
61 ----- STRESS...AVERAGING AND NODAL..... STRESS OUTPU '

$ RUN DRAl : ErtAGNA. RABJSTRAVG
5 RUN DRAT:I.MAGNA.RABPAGER
I' SET NOVERIFY
V . .. * i l" E R I N -F-- E E.. F T E.
$ I[R := DIR/IATE/UTPUT=SCRATCI- TXT/VERSI (J:1 1.
t IER IMtiAGNA. RAB3MAGNA
$ OPEN/RED SCR SCRATCH, T XT
$ RE ADL SC iR A B3 C
$ PE At SCR ABC I.
r;; E:¢ nrZo ri ;[:;: -J F'.,

$ REAl CR EXEC.FILE
$ C: O S...( E CR
$ DELETE SCRAI CHTXT;O
I COF:'Y SYS$.[NIrUT: SYS$OUTF'UT

- INPUT SPECIFICATIONS USED BY MAGNA BATCH INPUT PROCEDURE .

* USEIR DIRECTORY : FLMAGNAoTEST] *
-----------.....--------------.. .------. -----..------

* PROC F I LE USED : MBATCH.COM; 1. 28-OCT- 1981 19 02 *

$ WRITE SYS$OUTFUT * EXIEC FILE USED : , EXElCFILE, " V
". $ COPY SYS$INPUT: SYS$OUTFUT

.- Figure 7.3.2. Batch Command Procedure MBATCH.COM.

7.3.6
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1 USER SPECIFIED. SUBROUTINES

FORTRAN FILES INPUT
NONE I NFUT

OBJECT F'ILES TPFlT
NONE TNPUT

2. STORAGE AL.L.OCAT':ION MODIFICATIONS

NO NEW MODIFICATIONS. ALLOCATIONS
ARE SET IN NAMED EXECUTABLE FILE.

3. PROCESS. FILE NAMES ,gND DEVTCES :

INPUT DATA FILE (UNIT 5)..: [MAGNA.rESr]MYDATA.DAT
OUTPUT FILE (UN7T 6) ...... : SYS'OUTPJ T
EXEC FI...E (NEW OR OLD) .... : CMAGNA.RABJMAGNA

POST--PROCESSOR FILE. ... WRITE TO DISK
RESTART INPUT FILE. .... t NONE INPUT
RESTART OUTPUT FILES..o: NONE OUTPUT
TAPE LOGICAL NAME. ...... : NONE USED

***************.*******TABLE COMPLETE ** .*,*,**

$ TERMINUS:
$ SET NOVERIFY

LO..GOLUT
$ EX I T

ml $

,-4

-I

Figure 7.3.2. (concluded)
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:2, 1 (JR A GE A I.. L OCA TI ON MOD I "I CAT I ON.

..... (CHANGE DEFAULT STORAGE ALLOCATI(ON?(Y/N) ... :

... .. DEFAUL.T /BLANK/ IFNGT- 20000 . . .0I >(Y/N) . * . . ri

. . . NEW /BLANKi/ LENGTH? ... : 40000

" .,.. .flEFALJ.f /I PENT/ LIENGTI: = 2500 . .. 1 T'("Y/N) ... *

*. .. NEW / IDENT/ LENGTH?...: 4000

-END F' IF I CA T I ONS FOR MODU.L E: 2

. I NPUT OF PROCESS FI...E. NAMES AND DEVICES.

-SHOW P IRECTORY' (Y/N) ..... : n

&:3)A .. DEFINE INPUT JOB STREAM (UNIT 5 - ALL. CASES).

. .. . TYPE INPUT DATA FIIL. NAMETYPE,. ... : ITi:data.odat

3(B) .. *DEFINE OUTPUT JOB STREAM (UNIT 6 - ALL CASES).

* * , * DEFAULT OUTPUT IS 10 BATCH PR I NTER , 4(]!?'C Y/N) .... : ..

3(C) .*. NAME OF EXEC FILE IO BE CREATED:

, . . . TYPE NEW EXEC FILE. NAME . * . * * * : iTeem.e)e.

Figure 7.3.3. Modification of Program Storage Capacity in SETUP.

7.2.8
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3. INPUT OF PROCESS FILE NAMES AND DEVICES*

• . . ,SHOW DIRECTORY?(Y/N)..4..: n

3(A) ... DEFINE INPUT JOB STREAM (UNIT 5 - ALL CASES).

. .. TYPE INPUT DATA FILE..NAME.TYPE ..... : madata.dat

30) ... DEFINE OUTPUT JOB STREAM (UNIT 6 - ALL CASES).

, .... DEFAULT OUTPUT IS TO BATCH PRINTER...OK(Y/N)! .... -

!(C)...EXEC FILE SPECIFICATION:

* .... DEFAULT EXE FILE NAVE IS CMAGNA.RAB]MAGNA...OK'(Y/N) .... : r,

* . * TYPE EXE FILE.NAME....: mve.etexe

Fiaure 7.3.4. Specification of New Executable Version of MAGNA.

7.3.9
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. (D ) .. . FO ST"-FROCESSOR, FILE MANAGEMENT.

.W ...E O I : i... A POSTE-PRO.ESSOR I EBE WRI .T TENT( Y / N) .....

. .. -F' FILE WIIL... BE WRITTEN TO DISl.. o ,OKi' Y/N) .....

3(E) ... RESTART FILE MANAGFMENr.

INPUT FROM OLD RESTART F3:LE''.Y/N) ..*.. n

. . . . [U FTPU Ft O NEW RESTART IL...' (YiN) ... ** .

. R STfART FILE WILL FE WRITTEN fO ISI. .*OK?(Y/N) ..... : r,

EST' A I F .E W II... B E WR I T TEN TO T :E.

3 (F ) .. TAPE OUTFUT [EFI:NITI ONS.

.WHEN MOUNrING TAFE USER MUST DEFINE A
LOGI... C (AL . NA ME FO R THE VOL. UML MOUNTED.

,.. . TY'E LOGICAL. NAME TO BE USED ABr.-,OVE . .. ** : rf

END SPEC: I F I CAT I ONS FOR MODU : 3

,-0

Figure 7.3.5. Request for Restart Tape in SETUP.
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1.. . .. . . . ..- -

$ 1: Ipe bat. tb c hmC(o m
$ SET VERI:FY
$ SET I:rF :MAGNA.TEST]

Ill, $ I

$! MAGNA BATCH INPUT FROCEDURE,
$! USER : IMAGNA.TEST"]
.$ I SES,:ION : 28-OCT- ..981. 19:07

$ ON ERROR THEN GOTO TERMINUS
$! ---- CREATE/RUN ED IT PROCEDURE
$ .---- TO ALTER SfORAGE ALLOCATION.
s COPY DRA1:IMA(6NA.RAB::IMA!CNDUMMY.FOR MAGNDUMMY.FOR
$ OPEN/WRITE ED mAiNErT.COM
$ WRITE ED "$ SET VERIFY"
$ WRITE ED "$ EDIT/EDT -- '
$ WRITE ED " MAGNDUMMY.FOR/OUTPUT=MAINMOD.FOR"
$ WRITE ED S/.*BLANK**/40000/ BEGIN rHRU END"
$ WR:TE ED . S/**I:DENT**/4000/ BEGIN THRU END"
$ WRITE ED " S/*BLOX**/150/ BEGIN THRU END"
$ WRITE ED 0 S/**BLEQ**/15.0/ BEGIN THRU END"
$ WRITE: ED " S/**INDXK**/I.70/ BEGIN THRU END"

07 $ WRITE ED m S/**NNS**/150/ BEGIN FHRU END"
$ WRITE ED 0 EXIT"
$ WRITE E.D '$ SET NOVERIFY"
$ WRI.E ED " .EXIT"
$ CLOSE El
$ @. MAINED•T
$ DELETE MAGNPUMMY.FOR;O
$ D:EL.ETE MAINEDT.COM 0
$ ---- OM:'O:PILE FORTRAN FILES.
$ FORTRAN/NOLIST MAINMOD.•OR
-$! ----.LINK NEW ROUTINES.

$ LINK/NOMAP/EXECUTABLE=EMAGNA, TEST]MYEXE EXE-
MAINMOD,-
[:MAGNA. RAB ] MAGNALIB'/INCLUDE=MAINX,-
E MAGNA . RAB' 1MAGNAL I B/L : BRARY

U

Figure 7.3.6. Control Procedure MBATCH.COM, with Modification

of Storage Capacity.

7
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f---RUN MAGNA,.
$ ASSIGN/IJSER.lOfitE IMAUItA. TES':3MYDATA * DAT FR005
I rSST[3N.USER..MOtE SYS$OUTPUT FORO06
$ ASSIGN/ USER..MODE RF FOR098
$ RUN [MAGNA .TES V]MYEX-., ETXE

.: .... ---- COMPLETEDi RUN.
I RUN VRAl II:MAI.-INA.RAB]iCOST

* " 11 IEl MAiNEiI iArn*
I( [ RAI::MAGB A IFA-ER

1 - -SRESS.AVERA(3ING AND N(:)A'AL..STRESS OUT'Ur
$1 Ri.IN [nRA1 :EMA[NA.RAB-ISTRnVG
S RION [RA 1 : [ MAGNA RAB F'AGI.R
$ SET NOVERIFY
$!--- -DETERMINE EXE..j:ILE.
$ DER := rR/DATE/LUTPUT=SCRATCH TXT/VERSION=:I.
I UIR [MAGNA.TESTMYEXE.EXE
, OF'EN/READ SCR SCRATCH.TXT
" READ SCR ABC

RI EAD SCR ABC

R' hKn SCR EXEC."II... E
CLOSE SCR
DEI...ETE SCRATCH .TXT; 0
C OFY SYS$IN'LIPT SYS$OUTPUT C

IC INPUT SPECIFICATIONS USED BY MAGNA BATCH INPUT PROCELJRE :1-

U USER DIRECTORY : [MAGNA *TEST]
* -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4.

- PROC FILE USED MBATCH .COM; 2 28-OCT-1. 981 1 9 : 10 ,

-------* ... . ----------- -- .-------.-....--------------
$ WRITE SYS$OUTPLUT '* EXEC FILE USED my EXEC].FILE *

$ COPY SYS$INPUT": SYS$OUTF'Ur

Figure 7.3.6. (continued).
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1. USER SPECIFIED SUBROUTINES

FORTRAN FILES INPUT
NONE INPUT

OBJECf FILES INPUT
NONE INPUT

'2. STORAGE ALLOCATION MODIFICATIONS :

/BLANK/ LENGTH = 40000
/IDENT/ LENGTH = 4000
/BLOX/ LENGTH = 150
/BLEQ/ LENGTH = 150
/INDXI/ LENGTH :- 170

3. PROCESS FILE NAMES AND DEVICES

INPUT DATA FILE (UNIT 5)..: EMAGNA.TESTIMYDATA.DAT
OUTPUT FILE (UNIT 6Y...,: SYS$OUTPUT
EXEC FILE (NEW OR OLD) .... I:MAGNATESTIMYEXE.EXE

POST-PROCESSOR FILE,,,.: WRITE TO DISK
RESTART INPUT FILE..... : NONE INPUT
RESTART OUTPUT FILES..,: WRITE TO TAPE
TAPE LOGICAL NAME ... *..: RF

*****"*************** TABLE COMPLETE *. * ** .* *

$ TERMINUS:
$ SET NOVERIFY

LOGOUiT
$ EXIT

4$

Figure 7.3.6. (concluded).
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file reside on disk rather than tape, although a new restart

*file may be written to tape during the same job. A typical

input sequence in SETUP, in which both old and new restart

files are used, is given in Figure 7.3.7.

User subroutines may be supplied to the VAX version of

MAGNA either in FORTRAN source or object (already compiled)

form. FORTRAN source files must have the file type .FOR,

and all user routines should reside on files having the same

name as the user subroutine itself. Thus, the user routine

TEMGEN (see Chapter 9), for example, must reside on file

TEMGEN.FOR or TEMGEN.OBJ. Figure 7.3.8 demonstrates the

declaration of user-written subroutines within the SETUP

procedure. As with storage modification, the introduction

of user subroutines will result in a new executable program,

which can be used repeatedly without reentering the same

user-written routines. Figure 7.3.9 shows the MBATCH procedure

generated from the input of Figure 7.3.8; the new executable

file MODVER.EXE, can be used again by simply overriding the

default executable file name in SETUP (Figure 7.3.4).

At present, there exists only one instance in which the

generated MBATCH procedure must be modified manually. This

exception occurs in the nonlinear run used to obtain the

prestressed state prior to a natural frequency solution with

prestress included. In this situation, the statement

$DEL MAGNEM.DAT;*

must be modified to read

$RENAME MAGNEM.DAT MAGNST.DAT

This modification, together with the appropriate input parameters

for the frequency analysis in Section 8.3, will supply the proper

nonlinear stiffness coefficients to the eigenvalue solution.

If the geometry file from the nonlinear analysis is to be passed

to the frequency solution (for plotting only), the MPOST file

should be renamed prior to the natural frequency run, by entering

$RENAME MAGNPO.DAT MAGNRO.DAT

7.3.14



3(D).. .POST-PROCESSOR FILE MANAGEMENT.

S, , ,WILL A POST-PROCESSOR FILE BE WRTTEN?(Y/N) ..... :

.... FF-P FILE WILL BE WRITTEN TO DiISK.. ,OK?(Y/N) .... : .

3(E)... RESTART FILE MANAGEMENT,

..... INPUT FROM OLD RESTART FILE?(Y/N) ..... : u

, *TYPE OLD RESTART FILE.NAMETYPE (DISK ONLY) ..... :.m "rest" .dat

..... ,O*UTPUT TO NEW RESTART FILE?(Y/N) .....

.RESTART FILE WILL BE WRITTEN TO DISK...OK?(Y/N) ..... : r,

RESTART FILE WILL BE WRITTEN TO TAPE+

30) ... TAPE OUTPUT DEFINITIONS.

WHEN MOUNTING TAPE USER MUST DEFINE A
LOGICAL NAME FOR THE VOLUME MOUNTED.

, *TYPE LOGICAL NAME To BE USED ABOVE.*..,, rf2

END SPECIFICATIONS FOR MODULE : 3

I.b

Figure 7.3.7. SETUP Sequence for Requesting Old and New Restart
Files.

-3.
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ii. . . . >.. .. .. . . . . ,-, ... . -. .. .

"-"$ a n. rab]c;etiP

"--y. MAGNA BATCH INPUT PROCEDLJRE

TERMINAL SIEaSSI(ON : 28-O(CT-.1981 19 21

".-: TO MODrIFY/CORRECr/ABORT SESSION, TYPE .CTRL.> Y . *

. * USER SI.UBROUTINES.

*...ANY USER SJFPLIED SUBROLJTINES?(Y/N) ..... v

":L( :-) F'ILES WITH USER SU!BROUT'INES

YFE NUiMBE': (F USER FORTRAN FILES ....... 2 "',....

... "r'TYP:E FOTRAN FIL.E NAME *OMIT* *FOR) ...... : uout

.... TYPE FORTRAN FILE NAME ( *OMIT* *FOR) .... : vinit

.. FILES ITH USER SUBROUTINES,

, .... TYPE NUMBER OF USER OBJECT FILES.......: 1

.. . ,TYPE OBJECT FILE NAME ..... . ..... . rela ,3.ob~J

-:ND SPECIFICATIONS FOR MODULE : 1

Figure 7.3.8. Introduction of User-Written Subroutines through

SETUP.
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is 'tre rnbatch .cor,

$ SET VERIFY.
$ SET DEF EMAGNA.TEST]

$s! MAGNA BATCH INPUT PROCEDURE.
$ I USER : IMAGNA.TEST.]
i !SESSION : 28-OCT-1981 1.9:21

$ ON ERROR THEN GOTO TERMINUS
s ---- CREATE/RUN E:DIT PROCEDURE
$! ---- TO ALTER STORAGE ALLOCATION.
is COPY DRAI : EMAGNA. RABJMAINDUMMY .FOR MAGNDUMMY*FOR
is.$ OPEN/WRITE ED MAINEDT.COM
$ WRITE ED '$ SET VERIFY"
$ WRITE ED '$ EDIT/EDT -"

$ WRITE ED 0 MAGNDUMMY.FOR/OUTPUT=MAINMOD.FOR'
$ WRITE ED " S/**BLANK**/30000/ BEGIN THRU END'
i WRITE ED ' S/**IDENT**/3200/ BEGIN THRU END
$ WRITE ED ' S/**BLOX**/150/ BEGIN THRU END'
$ WRITE ED ' S/**BLEQ**/150/ BEGIN THRU END'
$ WRITE ED ' $/**INDXK**/170/ BEGIN THRU END'

I $ WRITE ED ' S/**NNS**/150/ BEGIN THRU END'
$ WRITE ED * EXIT''
$ WRITE ETJ '$ SET NOVERIFY'
$ WRITE ED '$ EXIT'
$ CLOSE ED
$ @ MAINEDT
$ DELETE MAGNDUMMY.FOR;O
$ DELETE MAINEDT.COM;O
$! ---- COMPILE FORTRAN FILES.
$ FOR TRAN/NOLIST MAINMOD.T-OR

.- $ FORTRAN/LIST=SYS$OUTPUT -
[MAGNA. TEST]JUOUT,-
EMAGNA.TESTVINIT

$! ---- LINK NEW ROUTINES.
$ LINK/NOMAP/EXECUTABLE=EMAGNA* TESTJMODVER, EXE-

MAINMODY-
EMAGNA.'EST.)UOUT,-
EMAGNAs TEST)VINIT,-

*@ E MAGNA.TESTNELAS3.OBJ,-
EMAGNA.RABJMAGNALIB/INCLUDE=MAINX,-
[MAUNA.RAB]MAGNALIB/IIBRARY

Figure 7.3.9. Generated Control Procedure MBATCH.COM, with
*Q Storage Modifications and User-Written Subroutines.
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45!.....UN MAGNA,
$ AS SI UN/I SFR.MOrE C MAGNA ,TEST] PROE'LEM2.*DAT FOR005
$ ASSI GN/USER..MODE SYS$JUTPUT FORO06
$ RUN [MAGNA.TEST]M()IVER.EXE
$1 ---- COMPLETED RUN.
$ RUN DRAl:I[MAGNA.RABICOST
$ BEL. MAGNEM DAT *
$ RUNtQ DRAI::MAGNA.RAB:PAGER
.51 ---- STRES..AVERAGING AND NOAL.STRESS OUTPUT
$ RUN DRAl:[MAGNA.RABISTRAVG
$ RUN [RA1:[MAGNA.RABJPAGER
$ SET NOVEERIFY
$! - - DETERMINE EXE..FIIE.
$ DIR := DIR/DATE/OJF'IPUT=SCRATCH.TXT/VERSION=I
$ DIR UMAGNA.TESTMODVER *EXE
$ OPEN/REA. SCR SCRATCH.TXT
$ READ SCR ABC
$ READ SCR ABC
$ READ SCR ABC
$ RE AD SCR E XE C.. F I LE:
$ CLOUSE SCR
$ DELETE SCRATCH.TXT;O
$ COPY SYS$INPUT: SYS$O(JTP(UT

* INPUT SPECIFICATIONS USED BY MAGNA BATCH INPUT PROCEDURE t

* USER DIRECTORY : [MAGNA.'TEST] *
* --------------------------------------------------- *

* PROC FILE UJSED: MBATCH .COM;1 28-OCT-'1981 19:28 *

$ WRITE SYS$OUTRUT s * EXEC FILE USED : ", EXEC..FILE U *
$ COPY SYS$INPUT: SYS$OUTPLT

* .4

Figure 7.3.9. (continued).
7 .
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1. USER SPECIFIED SUBROUTINES

FORTR4N FILES INPUT
lUOUT

VI NIT
OBJECT FILES INPUT

NE*LAS3 • OBJ

2. STORAGE ALLOCATION MODIFICATIONS :

/BLANK/ LENGTH = 30000
/IDENT/ LENGTH = 3200
/BLOX/ LENGTH = 150
/BLEQ/ LEF:NGTH = 150
/INDXK/ LENGTH = 170

3. PROCESS FILE NAMES AND DEVICES :

INPUT DATA FILE (UNIT 5).+: [MAGNATESTJPROBLEM2,DAT
OUTPUT FILE (UNIT 6) ...... : SYSqOUTPUT
EXEC FILE (NEW OZ OLD) .. .: CMAONAoTEST]MODVER.EXE

5POST-PROCESSOR FILE....? WRITE TO DISK
RESTART INPUT FILE ..... : NONE INPUT
RESTART OUTPUT FILES ... NONE OUTPUT
TAPE LOGICAL NAME....: NONE USED

*****************TABLE COMPLETE ***********

$ TERMINUS:
$ SET NOVERIFY

LOGOUT
$ EXIT

K$

Figure 7.3.9. (concluded).
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CHAPTER 8

INPUT DATA

The following sections describe the preparation of card

input data for the MAGNA finite element analysis program. Input

is divided into ten sets of data:

1. Problem Identification

2. Solution Options and Control Parameters

3. Iteration and Restart Parameters

4. Nodal Coordinate Data

5. Element Properties and Connectivity

6. Surface Contact Analysis Data

7. Boundary Conditions

8. Linear Constraint Data

9. Data Curves for Nonlinear and/or Dynamic Analysis

10. External Loads.

For each item of input, a corresponding FORTRAN variable name

is listed. Unless otherwise noted, the type of the input

variable corresponds to the standard FORTRAN naming conventions

(names beginning with letters I through N are integer; all

others are floating point numbers). All floating point data

may be input with or without exponents in the data field

provided. Integers and exponents must be right-justified in

the data field.

Default values and other information about each item of

input data are given in the form of notes which appear at the

end of each section in this Chapter. Further examples of the

input data formats can be found in the Appendix to this manual.

I
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8.1 PROBLEM IDENTIFICATION

(Required)

" CARD COL DATA DESCRIPTION NOTES

1-3 1-80 TITLE Alphanumeric Problem Description

I



8.2 SOLUTION OPTIONS AND CONTROL PARAMETERS

(Required)

CARD COL DATA DESCRIPTION NOTES

1 1-4 IOPT(l) Solution Variable Set Code (1)

=1: Displacement U,V,W

=2: Displacements and Rotations

* 5-8 IOPT(2) Analysis Type
=1: Static

=2: Transient Dynamic

=3: Natural Frequencies

=6: Steady-State Harmonic

- 9-12 IOPT(3) Material Nonlinearities Flag (2)

=1: Elastic Analysis

=2: Materially Nonlinear Analysis

* 13-16 IOPT(4) Geometric Nonlinearities Flag

=1: Small Displacement Analysis

=2: Large Displacement Analysis

- 17-20 IOPT(5) Dynamic Solution Option (3)

=1: Newmark Integration (Implicit)

=2: (Inactive)

21-24 IOPT(6) Matrix Reformation Interval for
Nonlinear Analysis (4)

25-28 IOPT(7) Matrix Profile Map Flag

=0: No Map

=1: Print Map of Matrix Topology

29-32 IOPT(8) Random File Write-in-Place Flag (5)

=0: No Write-in-Place

=: Rewrite All Random File Records

Directly in Place

33-36 IOPT(9) Flag for Element Distributed Loads

=0: No Distributed Loads

=1: Read Distributed Loading Data

*0 8.2.1



CARD COL DATA DESCRIPTION NOTES

1 37-40 IOPT(10) Flag for User Loads Subroutine

(cont) =0: Normal Loads Input

=1: User Subroutine(s) Provided

41-44 IOPT(ll) Flag for Postprocessor File Option

=0: No Postprocessor File Written

>1: Postprocessor File is to be
Written on Local File MPOST at
every IOPT (ll)th Increment

45-48 IOPT(12) Number of Time Increment Changes
in Nonlinear Solution (6)

49-52 IOPT(13) Variable Time Step Flag (7)

=0: Fixed Time or Loading
Increments

=1: Automatic Variable Time Step
to be Used in Solution

53-56 IOPT(14) Thermal Stress Analysis Flag (8)

=0: Neglect Thermal Effects

=1: Include Thermal Effects

57-60 IOPT(15) Contact Analysis Flag (9)

=0: No Surface Contact

=1: Include Surface Contact
Analysis

2 1-4 NSTEP Number of Solution Time Steps (10)

5-8 IPRF Printing Frequency (in Increments) (11)

9-12 NRANGE Number of Nodal Ranges for Printed
Output (Default=Print all Nodes) (12)

13-16 IVPRNT Velocity Printing Flag

=0: Velocity Output Suppressed

=1: Print Velocities

17-20 ISTART(l) Beginning Node Number for Output
Range No. 1. (12)

4 21-24 IEND(l) Final Node Number for Output
Range No. 1. (12)

8.2.2
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CARD COL DATA DESCRIPTION NOTES

-- 2 25-28 ISTART(2) Beginning Node for Range No. 2. (12)
(cont)

29-32 IEND(2) Final Node for Range No. 2. (12)

73-76 ISTART(8) Beginning Node for Range No. 8. (12)

77-80 IEND(8) Final Node for Range No. 8. (12)

3 1-10 DT Time (or Load Parameter) Step Size (13)

11-20 TZERO Time at Start of Solution (13)

21-30 TMAX Maximum Time Value (13)

31-40 DTMIN Minimum Time Step Size (Variable
Time-Step Option Only) (14)

41-50 DTMAX Maximum Time Step Size (Variable
Time-Step Option Only) (14)

4 1-10 ALPHA Time Integration Parameter, a (15)

11-20 DELTA Time Integration Parameter, 6 (15)

5 1-10 BETA Stiffness Matrix Coefficient for
Proportional Damping, 8 (16)

11-20 GAMMA Mass Matrix Coefficient for
Proportional Damping, y (16)

6* 1-5 INCR(1) Increment Number for First Time
Increment Change (17)

6-15 TIME(l) Time Increment Value

16-20 INCR(2) Increment Number for Second Time
_ _ _ Increment Change

*NOTE: Card 6 is required only if IOPT(12)>O; that is, if the

solution time increment is to be modified during a

nonlinear analysis.

8.2.3
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CARD COL DATA DESCRIPTION NOTES

6 21-30 TIME(2) Time Increment Value
(cont)

31-35 INCR(3) Increment Number for Third Time
Increment Change

36-45 TIME(3) Time Increment Value

46-50 INCR(4) Increment Number for Fourth Time
Increment Change

51-60 TIME(4) Time Increment Value

8
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- --- - -- ...

NOTES:

(1) Rotational degrees of freedom are permitted only when IOPT(1) = 2;

when beam elements (Element Type 12) are used., IOPT(1) = 2 is required.

IOPT(1) = 1 is sufficient for all other element types, which use

only displacement variables.

(2) In the current version of the program, a value of 2 for the material

* nonlinearity flag automatically invokes the large-displacement

(geometric nonlinearity) option.

(3) Required only for transient dynamic analysis.

(4) IOPT(6) determines the interval at which both element and system

stiffness matrices are reformulated in a nonlinear analysis.

Default value = 1.

(5) The write-in-place option causes random file record (including

global stiffness and mass matrices, load vectors, and displacement,

velocity, and acceleration vectors) to be rewritten directly in

place to reduce the total amount of disc storage used by the

program in a nonlinear analysis. This option is appropriate for

large nonlinear problems (many degrees of freedom, many time or load

steps, or both). I/O times may be increased 25-30 percent when

using the write-in-place utility.

(6) In any nonlinear (static or dynamic) analysis, the solution time

step may be increased or decreased at predetermined stages of the
solution. A maximum of four time step changes are permitted.

(7) If IOPT(13) = 0, user-defined time or loading increment values will

be used throughout the solution. When IOPT(13) = 1, the program

will increase or reduce solution increment sizes based upon the

rate of convergence in previous steps. When variable time stepping

is used, equilibrium iterations must be performed at frequent

intervals in the solution to maintain numerical stability. The

* - solution terminates whenever NSTEP increments have been performed

or when T > TMAX.
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(8) IOPT(14) must be set to 1 to verform thermal stress analysis (linear

or nonlinear). If the input data contains nodal temperatures,

thermal expansion coefficients, etc., these data can be suppressed

if desired by setting IOPT(14) = 0.

(9) Contact between three-dimensional Curfaces may be considered in

nonlinear static and dynamic analysis only. Contact analysis data

is entered as shown in Section 8.6 if IOPT(15) > 0. At present,

surface contact and thermal stress may not be analyzed simultaneously.

(10) NSTEP is applicable in all nonlinear and/or transient dynamic

solutions. The analysis is continued until NSTEP increments have

been performed, or until the time value exceeds TMAX (Card 3). In

a restart run, NSTEP is interpreted as the last increment to be

performed (including those completed in the preceding run(s)).

(11) Solutions will be printed every IPRF time or load steps. It should

be noted that, in linear dynamic analysis, stress and strain

calculations are performed only when output is required, so that use

of a small printing frequency can significantly increase solution

time. Choice of an output frequency in nonlinear analysis affects

solution time only slightly.

(12) If NRANGE is zero or blank, nodal solution quantities "e.g.,

displacements, velocities, reactions) will be output for all nodes

in the model. When NRANGE > 0, output will be generated for all

nodes contained in any of the point ranges ISTART(i) - IEND(i), for

i=1,2...NRANGE. Up to eight ranges of nodes may be specified for

selective nodal output.

(13) Solutions are performed at times (TZERO + I*DT), for I 1,2,...,

NSTEP, or until the value of time exceeds TMAX. In a transient

dynamic solution, DT and TZERO represent actual values of time.

For nonlinear static analysis, "time" is used as a load parameter;

I. that is, all loads are specified in the form P = P(t) (see Section

8.9), and values of t. = TZERC -, I*DT are used to determine the

successive load levels at which increments of the solution begin

and end. As an example, a 1000 lb. load applied in increments of

. 100 lb. could be specified using DT = 1.0, TZERO 0.0, and

specifying (in Section 8.9) that P(t) = 100.t.
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(14) DTMIN and DTMAX are used as limiting time (or load parameter) step

S. _sizes in solutions based upon the variable time step option (IOPT(13)=1).

In dynamic analysis, it is advisable to specify at least a nximum

time step (DTMAX), as the automatic time step feature may, in some

cases, select a time step which ia too large for high accuracy. In

'. plasticity and/or contact analysis, the time step may tend to become

quite small; in these circumstances, a minimum step size should

* 'always be specified.

(15) Parameters oa, 6 are relevant for transient dynamic analysis by

Newmark's operator (implicit integration). A linear dynamic solution

is unconditionally stable provided S > 1/2 and a > (1/4) (1/2 + 6)2.

Default values are a = 1/4, 6 = 1/2 ("constant-average-acceleration"

operator).

(16) In transient dynamic analyses, a da'ping matrix is permitted., of

the form C = BK + YM (Rayleigh damping). For an undamped solution,

=Y = 0.

(17) IOPT(12) determines the number of pairs (increment, time step) to
be entered in this section. The initial time step, DT, is entered

OTTon card 3 (see note 13); at increment INCR(1), the time step will

be changed to the value of TIME(1), and so on. Increment values

INCR(1) must be entered in ascending order. If IOPT(12) < 0, do not

enter this line :f data. Note that time step changes are permitted

only in nonlinear analysis, and that a maximum of four such changes

is permitted.
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8.3 ITERATIVE SOLUTION AND ANALYSIS RESTART DATA

- Enter data in Section 8.3.1 for all nonlinear analyses

- Enter data in Section 8.3.2 for natural frequency
analyses

- Enter data in Section 8.3.3 or 8.3.4 for all nonlinear
analyses in which restart data is to be read or written

- Enter data in Section 8.3.5 for steady-state harmonic
analysis

8.3.1
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8.3.1 Equilibrium Iteration Control Parameters

(Required for nonlinear, static and dynamic analysis
only)

• CARD COL DATA DESCRIPTION NOTES

'. 1 1-5 ITFLAG Equilibrium Iteration Flag (1)

=0: No Iteration

-l: Modified Newton-Raphson
(constant stiffness) Iteration

-2: Full Newton-Raphson Iteration

=3: Combined Full and Modified
Newton-Raphson Iterations

6-10 INTRVL Number of Solution Increments
Between Equilibrium Iterations
(Default = 5)

11-15 MAXIT Maximum Number of Iterations per
Solution Increment
(Default = 10)

16-25 EQT0L Relative Convergence Tolerance on
Residual Forces
(Default = 0.10) (2)

26-35 DIST0L Absolute Convergence Tolerance on .9
Displacement Corrections
(Default = 0.0005) (3)

36-40 LRGR0T Large Rotations Flag (4)

=0: Normal Iteration Used

-1: Modified Iteration for Large
Rotation Problem

8 .
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NOTES:

(1) ITFLAG determines the type of equilibrium iteration (if any) to

be performed at specified intervals in the solut'on to restore the

nonlinear conditions of eauilibrium (i.e., internal forces = external

forces). Modified Newton-Raphson iteration (ITFLAG = 1) involves

no reformulation of the system stiffness matrix; internal forces
are computed at each iteration, and the resulting out-of-balance

forces are applied to obtain displacement corrections to improve the

solution. With full Newton-Raphson iteration (ITFLAG = 2), the

stiffness is formed and resolved at each iteration; this procedure

is, there fore, more expensive than the modified iteration, but

is normally quicker to converge. For ITFLAG = 3, two full Newton

iterations are performed, followed by modified Newton iterations

until convergence is achieved. Convergence is achieved when
either the out-of-balance force tolerance or the displacement

correction tolerance is satisfied. The only exception occurs

in contact analysis, where both criteria must be satisfied

*! for convergence.

(2) EQT0L defines the convergence tolerance on out-of-balance forces
WR, as a fraction of the applied load, F, during equilibrium

iteration. The iteration is considered converged when

< EQT0L

where IIIf denotes the lucidean norm, 0F

(3) DIST0L is an absolute tolerance on the displacement corrections

computed during an equilibrium iteration. If u is the displacement

correction vector, the iteration is considered converged if ITu
< DISTOL. If convergence is to be measured only on the basis of

out-of-balance forces (EQT0L), the DIST0L should be set to a very

small value (e.g., DIST0L = 1.9 x 10-20).

(4) LRGROT = I causes the normcl equilibrium iteration methods to be

modified to improve convergence in problems involving large

0 _ -incremental rotations (e.g., a cantilever beam). The use of full

or combined Newton iteration (ITFLAG = 2 or 3) is suggested when

the large rotations flag is switched on.
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8.3.2 Eigenvalue Solution Control Parameters

(Required onZy for natural frequency analyses)

CARD COL DATA DESCRIPTION NOTES

1-5 NTRIAL Number of Iteration Trial Vectors (1)
(Default = 2, Maximum = 50)

6-10 NREQD Number of Natural Frequencies to be (2)
Determined (Default = 1)

11-15 MAXIT Maximum Number of Iterations (3)
(Default = 3)

- 16-25 T0LVEC Vector Tolerance for Convergence (4)
of Frequency Solution (Default =
0.001)

26-30 MFLAG Mass Matrix Type

=0: Consistent Mass

=1: Lumped Mass

31-35 ITYPE Frequency Range Flag (5)

=0: Lowest

=1: Highest

36-40 IPREST Flag for Prestress Effects (6)
=0: No Prestressing Considered

=1: Include Nonlinear Prestress
Effect

41-45 INCPRE Flag for Initial Geometry File (7)

=0: No Geometry File
>0: Increment Numbnr on Initial

Geometry File corresponding
to Nonlinear, Prestressed
State

46-55 ESHIFT Eigenvalue Shift (8)

8.3.4
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NOTES:

(1) The natural frequency/normal mode problem is solved by the vector

iteration procedure described in Section 4.5. In general, the
greater the number of trial iteration vectors, NTFIAL, the better

the convergence and accaracy characteristics of the solution.

However, the use of an excessive number of iteration vectors is

cost7y and inefficient in terms of central memory requirements.

The use of the NTRIAL = min (2*N, N+5), where N is the number of

frequencies to be solved, has been found to provide a good balance

between rate of convergence and storage requirements.

* (2) The program will determine the first NREQD natural frequencies and

"* normal modes of the linear system KX = w2 MX, where K is the system

. stiffness matrix and M the mass matrix. Note that, since the

solution is performed by a vector iteration method, NREQD is limited

to values which are relatively small for large finite element models.

(3) MAXIT controls the total number of iteration cycles performed during

the solution. A value of MAXIT = 15 to 20 is sufficient for nearly

" all problems, unless the number of frequencies to be computed

(NREQD) is quite large.

(4) TOLVEC defines the convergence tolerance on successive approximations

to each eigenvector requested. If V. and V.+1 are successive

iterates to a single eigenvector, that eigenvector is considered

converged if

Iv+ - V. < TOLVEC

where I V 11 denotes the Euclidean norm, V . The solution is

terminated when the first NREQD eigenvectors have converged.

(5) For most problems, ITYPE = 0 is appropriate, causing the lowest

NREQD frequencies of the finite element model to be determined.

ITYPE = 1 specifies that the NREQD highest frequencies are to be

computed; the normal usage of this option would be to determine the

highest natural frequency to determine critical time step values for

dynamic analysis. For this purpose, one would specify NREQD = 1

* and ITYPE = 1.
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(6) The option IPREST = I can be used in computing the natural frequency

of the model about an existing deformation state. A nonlinear

solution must be performed to obtain the nonlinear equilibrium

state; in addition, the file of element stiffness matrices from the

nonlinear solution must be saved for use in the natural frequency

solution. In the nonlinear solution, the element stiffness file is file

STIFF (CDC version), dataset FT12 (CRAY version), or file MAGNEM.DAT

(VAX version). If IPREST = 1, MAGNA will use the nonlinear stiffness

coefficients stored on this file in the eigenvalue solution. For the

eigenvalue solution, the saved stiffnesses must be supplied to MAGNA

as file TAPE22 (CDC), FT22 (CRAY), or MAGNST.DAT (VAX).

(7) The initial geometry file is used in conjunction with the prestressed

natural frequency option (see Note 6). If INCPRE > 0, MAGNA will

read the MPOST postprocessor file from the previous (nonlinear)

solution, and record the geometry in the prestressed state on the

current postprocessor file. Mode shape plots of the computed

vibration modes superimposed on the geometry in the prestressed
state can then be obtained using CPLOT. If INCPRE > 0, the MPOST

file created during the nonlinear solution should be supplied to the

eigenvalue analysis as logical unit 23 (TAPE23 on CDC, FT23 on

CRAY, and MAGNRO.DAT on VAX machines).

(8) When ESHIFT = 0, the usual natural frequency analysis KX = w2MX is

performed. If ESHIFT = p (p >0), the modified system (K + pM)X =
. 2 + p)MX is considered. If the model is unconstrained, rigid body

2
modes have zero frequencies (w = 0) associated with them, while the

i '. 2

modified system has only positive eigenvalues w + p > 0.

44r
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8.3.3 Analysis Restart Data (CDC and CRAY versions only)

(Required for all nonlinear or dynamic analyses
which read or write a restart tape)

CARD COL DATA DESCRIPTION NOTES

1 1-7 Literal "RESTART"

8-10 - (blank)

11-15 IREAD Analysis Restart Flag (1)

=0: New Analysis (no Restart)

=1: Read Restart File from
Previous Analysis

16 - (blank)

17-20 IDOLD Restart File Label (2)

21-25 INCOLD Increment at Which Analysis is to (2)
be Restarted

26-30 IWRITE Checkpoint Flag (3)

=0: No Restart File to be Written

=1: Restart File to be Written
During Current Job

31 - (blank)

32-35 IDNEW Label for New Restart File (4)

36-40 IRFREQ Number of Increments between (5)
Checkpoints on New Restart File

IMPORTANT: In the CRAY-I version of MAGNA, IDOLD defines the
permanent file name of an existing restart file, as
well as its label. IDNEW similarly provides the
permanent file name for new restart files created
during the run.
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NOTES:

(1) IREAD = I indicates that a previous analysis is to be continued

in the current job. The restart file written by the previous

analysis must be supplied to the program on unit 23; the necessary

job control language is described in Chapter 7.

(2) IDOLD is the four-character alphanumeric label written to the

restart file in a previous analysis. INCOLD is the increment

of the previous analysis at which the solution is to be continued.

The current analysis begins at increment INCOLD + 1. Prior to

executing an analysis restart, bcth IDOLD and INCOLD are compared

with the values written on the restart file to verify that it is

properly positioned.

(3) IWRITE = I indicates that a restart file is to be written during

the current job. The new restart file (usually written directly

on magnetic tape in case of job failure) may be written to the

same tape as the old restart file (if IREAD = 1), or to a

different tape. In either case, the new restart tape is written

to file NRSTAP. The necessary job control language is described A

in Chapter 7.

(4) IDNEW is any alphanumeric string of four characters, which is

used to identify the restart file created during the current

job. Subsequent jobs which access the restart file must supply

this string as IDOLD (Note 2) for identification. If no

verification of the file is desired on subsequent runs, IDNEW

may simply be left blank.

(5) When IWRITE = 1, a restart checkpoint is written to NRSTAP

whenever the last complete increment is an integral multiple

of IRFREQ. Note that each increment written to NRSTAP corresponds

to a single system logical record (i. e., an end-of-record mark is

recorded at the end of each checkpoint).
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8.3.4 Analysis Restart Data (Vax version only)

Required for all nonlinear or dynamic analyses
which read or write a restart file (tape or disk)

CARD COL DATA DESCRIPTION NOTES

1 1-9 Literal "RESTARTVX"

10 - (blank)

11-15 IREAD Analysis Restart Flag (1)

=0: New Analysis

=1: Read Restart File from
Previous Analysis

16-20 -(blank)

21-25 INCOLD Increment (number) at which (1)
analysis is to be restarted

26-30 IWRITE Checkpoint Flag (2)

=0: No New Restart File to be
Written

=1: New Restart File to be
written during current job.

31-35 - (blank)

36-40 IRFREQ 1 Number of Increments Between (3)
Checkpoints on New Restart File

2 1-9 Literal "RESTARTVX"

10 - (blank)

11-60 IDOLDX Old (input) Restart File Name (4)
and Version Number (e.g.,
REST.DAT:I0)

3 1-9 Literal "RESTARTVX"

10 (blank)

11-56 IDNEWX New Restart File Name (Name Only) (5)

57 - (blank)

58-67 INITVN Initial Version Number for New (6)
Restart File
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NOTES:

(1) IREAD = 1 indicates that a previous analysis is to be continued in

the current job. The restart file written by the previous analysis

is identified by name in IDOLDX. The first increment in the current

analysis will be numbered (INCOLD + 1).

(2) IWRITE = 1 indicates that a new restart file is to be written during

the current job. The initial restart file name is defined by IDNEWX;

the initial version number is defined by INITVN.

(3) When IWRITE = 1, a restart checkpoint is written whenever the last

complete increment is an integral multiple of IRFREQ. Each checkpoint

is contained in a separate file, with successive checkpoints each

being assigned unique (and increasing) version numbers.

(4) IDOLDX is the complete VAX file specification for the old (input)

restart file, including (- file version number.

(a) IDOLDX must include the device name (e.g., MITAO:) if the file

is to be read from tape. Default device specification is allowed

(for disk) but it is advisable to specify the device explicitly

whenever possible.

(b) The usual VAX/VMS rules for file specification must be followed,

e.g., no blanks are allowed in the file name. Within the card

field, the file name need not be left - or right - justified.

For a new analysis with no restart file, card 2 is still

required. Columns 1-9 must contain the literal "RESTARTVX".

The remainder of the card is ignored.

(5) For the new restart file name IDNEWX, the user must specify the

complete file name, including the device name. No file version

number should be specified in the input field for INDNEWX.

.A If the new file is to have the same name as the old restart file

(except for version number), this field may be left blank. A

blank field encountered where a new name is required will not cause

termination of the job. Data will be written to the disk file

MA GNRST. DAT.
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(6) INITVN is the initial version number for the new restart file. An

* integer is required, in the range 2 < INITVN < 999. Any other

numbers read will cause the ini;ial version number to be set to 1.

Ole

8
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8.3.5 Frequency Response Solution Control Parameters

(Required only for steady-state harmonic solution)

CARD COL DATA DESCRIPTION NOTES

1 1-5 NFREQ Number of Excitation Frequencies (1)

6-10 IMASS Mass Matrix Type -

=0: Consistent Mass

=1: Lumped Mass

11-15 IFDEP Frequency-Dependent Materials Flag (2)

=0: Constant Properties

=1: Frequency-Dependent
Material Properties

16-20 - (blank - Inactive Option)

21-25 - (blank - Inactive Option)

26-30 - (blank - Inactive Option)

31-35 ILOSSF Flag for Loss Factor Calculation (3)

=0: No Loss Factor Calculation

=1: Compute System Loss Factors

36-40 ISTRES Flag for Stress Calculation (4)

=0: No Stress Calculation

=1: Compute Stress Data

8.3.12
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NOTES:

(1) The maximum number of forcing frequencies per analysis is 50. Values

of the excitation frequencies are entered as data in Section 8.11.

Note that the raqnitudes of the harmonic forces are entered in

Section 8.10.

(2) When IFDEP = 0 identical stiffness and damping properties are

assumed at all excitation frequencies. Frequency-dependent data

(modulus, loss factor) may be used by setting IFDEP = 1 and supplying

the user-written subroutine UDAMP described in Chapter 9.

(3) ILOSSF = 1 causes the overall system loss factor (the ratio of

dissipated energy to stored energy) to be computed for each forcing

- frequency considered. This cption is useful in obtaining information

on the variation in energy dissipation for a range of frequency values.

(4) When ISTRES = 1., harmonic stresses are computed at each excitation

frequency considered in the analysis.

-.
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8.4 NODAL COORDINATE DATA

(Required)

The number of cards entered in this Section is determined

by the number of nodal points to be defined in the model. Nodal

input is terminated by a single blank card (i.e., NODE = 0).

CARD COL DATA DESCRIPTION NOTES

1 1-15 Literal "COORDINATES"

16-20 NODES Total Number of Node Points

21-25 MGEN Mesh Generator Flag (1)

.LE.0: Read Coordinates

.GT.0: Coordinates to be Read or
Generated in User
Subroutine MESHG

26-35 TDFLT Default Nodal Temperature Value (2)

36-40 ITDATA Data Curve Index for Time Variation (3)
of Nodal Temperatures

2-n 1-5 NODE Node Point Number (4)

6 ISYS Reference Coordinate System (5)

= :Cartesian X,Y,Z

=A: Cylindrical R,O,Z

=B: Spherical R,4,e

=C: (user-defined)

=D: (user-defined)

=E: (user-deinfed)

7-10 NINCR Increment for Node Point Generation (6)

11-20 X(NODE) Coordinate X1

21-30 Y(NODE) Coordinate X

31-40 Z(NODE) Coordinate X

141-50 T(NODE) Nodal Temperature (7)

8.4.1
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NOTES:

(1) Coordinate data may, optionally, be read and/or generated in a

user-written subroutine MESHG. User subroutines are described

in Chapter 9.

. (2) TDFLT is a default temperature value which will be assigned to any

node point whose input temperature value is zero. This parameter

is commonly used in problems of uniform heating, etc., in which

temperature data may be absent from the original input data.

(3) ITDATA refers to a user-defined data curve (i.e., function of time)

which is input in Section 8.1. Data curve ITDATA describes the

time variation of temperature at all nodes in the model, and is

used in all nonlinear analyses and all dynamic analyses.

(4) Acceptable nodal point numbers are between 1 and NODES. Not every

node need be connected to an active element in the model, but

inactive nodes must be fully constrained (through boundary condition

input). Coordinate data is read until a blank (i.e., NODE = 0) is

encountered.

(5) Nodes may be defined in circular cylindrical coordinates by setting 4

ISYS=A and providing as input the R,0,Z coordinates of the point,

where e is measured in degrees. In this case, the node coordinates

are converted internally to Cartesian coordinates defined by:

X = Rcose

Y = Rsine

When ISYS=B, the program interprets coordinate data as spherical

coordinate values R, 0, and e., where both and e are measured in

degrees. Spherical coordinates are then converted to Cartesian

coordinates by the formulas:

X = Rsincose

Y = RsinsinO

Z = Rcost.

Alternate systems of coordinates can be defined to facilitate input

data preparation. Transformations for user-defined systems are

performed in the user subroutine CTYPE, described in Chapter 9.

8.4.2
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(6) Node generation increments NINCR are entered on the second card of

a pair, causing nodes to be equally spaced between the last and

current nodes, with numbering increment NINCR. As an example, the

data

10 0. 0. 5.

20 2 35. -25. 0.

is equivalent to

10 0. 0. 5.

12 7. -5. 4.

14 14. -10. 3.

16 21. -15. 2.

18 28. -20. 1.

20 35. -25. 0.

Note that incremental node generation is performed in the Cartesian

system only.

(7) Nodal temperatures are understood to be the differences in

temperature from the (unstressed) reference state of the structure

(usually "room temperature").

8.4.3
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8.5 ELEMENT PROPERTIES AND CONNECTIVITY

(Required)

Element input data is entered by element types. For each

element type requested, the following sequence of data is

required:

A. ELEMENT TYPE HEADER CARD

B. MATERIAL PROPERTIES DATA

C. ELEMENT DEFINITION DATA.

Element types should be entered in ascending order (all Type 1

elements first, followed by Type 2, etc.). For any given element

type, elements are numbered continuously from 1 to NELEM, where

NELEM is the number of elements of this type (given on the header

card).

IMPORTANT: Following the last block of element data, a single

blank card is required to terminate element input

(i.e., ITYPE = 0 is read by the program).

.5
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8.5.1 Data for Element Type 1

(Three-Dimensional, Isoparametric Solid with
Variable Number of Nodes)

A. HEADER CARD, ELEMENT TYPE 1

CARD COL DATA DESCRIPTION NOTES

1 1-5 ITYPE Element Type; Enter the Number "1"

6-10 NMAT Number of Material Property Sets

11-15 NELEM Number of Elements of this Element
Type

16-20 NAXIS Number of Orthotropic Axis
Def initions

B. MATERIAL PROPERTIES DATA, ELEMENT TYPE 1

- For each initially isotropic material, enter properties
data from Section B-l, below (one card/material).

- For each elastic orthotropic material, enter properties
data from Section B-2, below (two cards/material).

- NMAT material property sets should be defined in this
data block.

8.5.2

-I



B-i. Isotropic Material Properties

CARD COL DATA DESCRIPTION NOTES

1 1-10 EE(I) Elastic Modulus (1)

* - 11-20 PR(I) Poisson's Ratio -

21-30 DNS(I) Mass Density (2)

31-40 YLD(I) Equivalent Stress at First Yield (3)

41-50 DEMAX(I) Maximum Strain Subin-rement (4)

51-60 GAMMA(I) Ratio of Yield Surface Expansion (5)
to Translation for Combined
Isotropic and Kinematic Strain
Hardening

61-65 IHARD(I) Strain Hardening Type Code (6)

=1: Isotropic Hardening

=2: Kinematic Hardening

=3: Combined Isotropic and
Kinematic Hardening, with
Constant Proportions of
Yield Surface Expansion
and Translation

66-70 ISSC(I) Number of Data Curve Containing (7)
Uniaxial Stress-Strain Data for
this Material

71-80 ALPHA(I) Coefficient of Thermal Expansion
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B-2. Orthotropic Material Properties

CARD COL DATA DESCRIPTION NOTES

MTYPE Literal "A" - Flag for

Orthotropic Materials Data

2-10 El(I) Elastic Modulus in Direction 1 (8)

11-20 E2(I) Elastic Modulus in Direction 2 -

21-30 E3(I) Elastic Modulus in Direction 3

31-40 G12(I) Shear Modulus in Plane 1-2

41-50 G13(I) Shear Modulus in Plane 1-3

51-60 G23(I) Shear Modulus in Plane 2-3

2 1-10 PRl2(I) Poisson's Ratio in Plane 1-2 (9)

11-20 PRI3(I) Poisson's Ratio in Plane 1-3

21-30 PR23(I) Poisson's Ratio in Plane 2-3

31-40 DNS(I) Mass Density (2)

41-50 ALPHAl(I) Coefficient of Thermal Expansion -
in Direction 1

51-60 ALPHA2(I) Coefficient of Thermal Expansion
in Direction 2

61-70 ALPHA3(I) Coefficient of Thermal Expansion
in Direction 3
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C. ORTHOTROPIC MATERIAL AXIS DATA, ELEMENT TYPE 1

- Enter NAXIS sets of orthotropic axis data in this
section

- If NAXIS < 0, skip this data block.

CARD COL DATA DESCRIPTION NOTES

1 1-5 NODE1(I) Node Number Defining Origin of (10)
Coordinates

6-10 NODE2(I) Node Number Defining Material
Direction 1

11-15 NODE3(I) Node Number Defining one
Additional Point in the 1-2 Plane
of the Material

8.5.5
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D. ELEMENT DEFINITION DATA, ELEMENT TYPE 1

(A single blank card terminates input)

CA ) COL DATA DESCRIPTION NOTES

-1 1-5 IEL Element Number (11)

6 IOUT Output Code (Blank or "N") (12)p 7-10 IPR Material Property Set for this
,,. Element

11-13 IAX Orthotropic Axis Set

14-15 INT Order of Numerical Integration (13)

16-20 KGEN Node Increment for Element (14)
Generation

21-25 ISUP Stiffness Generation Code (15)

26-30 N(l) Local Node Number 1 (16)

31-35 N(2) Local Node Number 2

75-80 N(11) Local Node Number 11

2 1-5 N(12) Local Node Number 12 (17)

6-10 N(13) Local Node Number 13

4 75-80 N(27) Local Node Number 27
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NOTES:

(I) Repeat card set B-I (or B-2) for each material property set to

be defined. The nth card set entered in this section defines

material property set n for n = 1, 2, ... , NMAT.

(2) Mass densities are entered in a Force-Length-Time system of units

consistent with those used elsewhere in the data. For example, in

British units, mass density is entered in units of lbf-sec 
/in4

The mass density of aluminum, for instance, would be entered as

p = (0.1 b/in 3)/(386.4 in/sec
2) = 0.000259 lbf-sec 2/in

4

(3) Omit yield stress as input if material nonlinearities are to be
A12

neglected. Default value set to 1.0 x 10

* (4) The program attempts to follow the material stress-strain curve as

closely as possible, using a subincremental method of analyzing

plastic flow. Each increment of time or load is divided into several

"strain subincrements" at which material behavior is analyzed.

DEMAX(I) is the largest value of any incremental strain component

which is permitted before stresses, strains, and the constitutive

0- law are reevaluated. Default value set to 0.00020.

(5) Applies only when IHARD(I) = 3 (combined hardening rule). Definition

of y is discussed in Chapter 2.

(6) Isotropic hardening permits a uniform expansion of the yield locus

in stress space; it predicts no Bauschinger effect, and is generally

applicabe in elastic-plastic problems involving nearly proportional

systems of loading. Kinematic hardening allows the yield locus to

translate in stress space, giving an "ideal" Bauschinger effect.

The combined hardening rule, which permits both expansion and

translation of tie yield surface, is sometimes preferable for unloading

and cyclic plasticity problems. Default hardening type is isotropic.

* (7) Uniaxial stress-strain data for a material are entered in Section 8.9,

DATA CURVES. ISSC1) is the index of a particular data curve

describing the uniaxial stress-strain behavior of the current material.

Note that uniaxial material curves are represented as piecewise
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linear functions, giving equivalent stress versus plastic strain;

that is, the required data in Section 8.9 defines

aeq vs. (e-alE) fora q > aield

(8) Orthotropic material properties must be defined with respect to theL "

principal directions of the material (e.g., parallel and perpendicular

to the fiber directions, for a filamentary material). Elements in

which the principal material directions are not aligned with the

global coordinate axes are transformed to global coordinates using

the orthotropic axis data entered in part C (see Note 10).Ii (9) The Poisson's ratio PR. (I) defines the laterial contraction in
7i

direction j due to a unit extension in direction i. Care should be

taken to ensure that these values satisfy the symmetry conditions

and other restrictions summarized in Chapter 2.

(10) The definition of material axis direction is depicted in Figure 8.5.2.

NODE1 defines an "origin of coordinates," located arbitrarily in space;

NODE2 locates the first principal direction of the material by

specifying any point on the 1-axis. NODE3 is any third point, which,

together with NODEI and NODE2, uniquely defines the 1-2 plane (i.e., t.

the three nodes should not be collinear). Repeat card C-1 as required

to define all orthotropic axis systems for this element type. The

nth line entered in this section defines material axis set n, for

n =1, 2, ..., NAXIS.

(11) Valid element numbers are 1, 2, ... , NELEM. Elements must be defined

sequentially, but intermediate elements can be generated automatically

(see Note 14, below). Cards D-1 and D-2 are repeated as needed to

define all Type 1 elements in the model. Following the last element,

a single blank card (setting IEL 0) is entered to terminate input

* .for element Type 1.

(12) The output code determines whether or not integration point stress
0

output will be printed for element IEL. A blank field causes full

printing for the element; an "N" in column 6 suppresses stress output.
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(13) Integration orders avadlable for the variable-node solid elements are

2 and 3 point Gaussian rules, corresponding to 8 and 27 integration

points per element, respectively. The non-Gaussian 14-point integration

rule is selected by setting INT = 14. Locations of integration points

for INT = 2, 3, and 14 art licted in Tab les 8. F. 1 through 8. 5. 3,

Iroes:v'. o I, 7Pe Zy.

(14) A nonzero value of KGEN on the second card of a pair causes elements

between the last and current elements to be generated automatically.

With the exception of node numbers, all elements generated are

assigned the scone data as the current element. Local node numbers

for the previous element are incremented by KGEN to generate each

succeeding element. Only nonzero local node numbers are incremented,

and node numbers for the current element need not be given. More

than one element must be generated to use this feature. If element

cards are omitted but KGEN = 0, a default value of 1 is used.

(15) ISUP should be set to zero for linear analysis. In a nonlinear

solution, ISUP = 0 permits full nonlinearities to be included in the

stiffness calculation for an element. If ISUP = 1 for a nonlinear

element, the original (linear) stiffness matrix is used throughout

the solution for the element in question. Nonlinearities in elements

having ISUP = 1 are taken into account by means of equilibrium

correction, as in constant stiffness iteration. The use of ISUP = 1

is appropriate for regions in a st2y'4cture which experience very mild

nonlinearities. If ISUP = -1 for a nonlinear element, the nonlinear

stiffness is reformulated at each increment using an approximate

calculation based upon the average values of the nonlinear terms

over the element. For ISUP = -1, internal forces are still evaluated

exactly at all times, to avoid erroneous results. The use of

ISUP = -1 can result in considerable savings of computer time in

nonlinear analysis, but should not be used without equilibrium

iteration (Section 8.3).

(16) Local node numbering proceeds as shown in Figure 8.5.1. Nodes 1

through 8 (vertices) are required for all elements. Nodes 9 through

427 are each optional, and element interpolation functions generated

8.5.11
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by the program automatically account for the absence or presence

of each local node.

(17) Card D-2 must be entered, even if local nodes 12 through 27 are

not used in a particular element.
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TABLE 8.5.1

INTEGRATION POINT LOCATIONS FOR VARIABLE-NODE
SOLID ELEMENT WITH INT = 2

Nearest
Point Node r s t

1 7 -h* -h -h

2 3 -h -h h

3 6 j -h h -h

4 2 -h h h

5 8h -h -h

6 4 h -h h

7 5 h h -h

8 1 h h h

*h =0.5773502691896
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TABLE 8.5.2

INTEGRATION POINT LOCATIONS FOR VARIABLE-NODE
SOLID ELEMENT WITH INT = 3

*. -Nearest I
Point Node r s t

1 7 -h* -h -h

2 19 -h -h 0

3 3 -h -h h

4 14 -h 0 -h

5 24 -h 0 0

6 10 -h 0 h

7 6 -h h -h

8 18 -h h 0

9 2 -h h h

10 15 0 -h -h

11 25 0 -h 0

12 11 0 -h h

13 26 0 0 -h

14 27 0 0 0

15 23 0 0 h

16 13 0 h -h

17 22 0 h 0

18 9 0 h h

19 8 h -h -h

20 20 h -h 0

21 4 h -h h

22 16 h 0 -h

23 21 h 0 0

24 12 h 0 h

25 5 h h -h

26 17 h h 0

27 1 h h h

h = 0.7745966692415
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TABLE 8.5.3

INTEGRATION POINT LOCATIONS FOR VARIABLE-NODE

SOLID ELEMENT WITH INT =14

Point r s t

1 *-.a 0 0

2 a 0 0

3 0 -a 0

4 0 a 0

5 0 0 -

6 0 0 a

7 **-b -b -b

8 -b b -b

0!9 -b -b b

10 -b b b

11 b -b -b

12 b b -b

13 b -b b

14 b b b

* a =0.795822426

**b =0.758786911
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8.5.2 Data for Element Type 2

(Three-Dimensional, Isoparametric Eight-Node Brick)

A. HEADER CARD, ELEMENT TYPE 2

CARD COL DATA DESCRIPTION NOTES

1 1-5 ITYPE Element Type; Enter the number "2"

6-10 NMAT Number of Material Property
Sets

11-15 NELEM Number of Elements of this
Element Type

16-20 NAXIS Number of Orthotropic Axis
Definitions

B. MATERIAL PROPERTIES DATA, ELEMENT TYPE 2

- For each initially isotropic material, enter
properties data from Section B-l, below (one
card/material)

- For each elastic orthotropic material, enter
properties data from Section B-2, below (two
cards/material)

- NMAT material property sets should be defined
in this data block.

4
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B-I. Isotropic Material Properties

CARD COL DATA DESCRIPTION NOTES

- 1-10 EE(I) Elastic Modulus (1)

11-20 PR(I) Poisson's Ratio -

21-30 DNS(I) Mass Density (2)

31-40 YLD(I) Equivalent Stress at First Yield (3)

r 41-50 DEMAX(I) Maximum Strain Subincrement (4)

.:: 51-60 GAMMA(I) Ratio of Yield Surface Expansion (5)
to Translation for Combined

-"Isotropic and Kinematic Strain
Hardening

61-65 IHARD(I) Strain-Hardening Type Code (6)

=: Isotropic Hardening

=2: Kinematic Hardening

O =3: Combined Isotropic and

Kinematic Hardening, with
Constant Proportions of
Yield Surface Expansion
and Translation

66-70 ISSC(I) Number of Data Curve Containing (7)
Uniaxial Stress-Strain Data for
this Material

71-80 ALPHA(I) Coefficient of Thermal Expansion

85 1
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B-2. Orthotropic Material Properties

CARD COL DATA DESCRIPTION NOTES

1 1 MTYPE Literal "A" - Flag for

Orthotropic Materials Data

2-10 El(I) Elastic Modulus in Direction 1 (8)

11-20 E2(I) Elastic Modulus in Direction 2 -

21-30 E3(I) Elastic Modulus in Direction 3

31-40 G12(I) Shear Modulus in Plane 1-2

41-50 G13(I) Shear Modulus in Plane 1-3

51-60 G23(I) Shear Modulus in Plane 2-3

2 1-10 PR12(I) Poisson's Ratio in Plane 1-2 (9)

11-20 PRI3(I) Poisson's Ratio in Plane 1-3

21-30 PR23(I) Poisson's Ratio in Plane 2-3

31-40 DNS(I) Mass Density (2) Pp

41-50 ALPHA1(I) Coefficient of Thermal Expansion -

in Direction 1

51-60 ALPHA2(I) Coefficient of Thermal Expansion
in Direction 2

61-70 ALPHA3(I) Coefficient of Thermal Expansion
in Direction 3
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C. ORTHOTROPIC MATERIAL AXIS DATA, ELEMENT TYPE 2

- Enter NAXIS sets of orthotropic axis data in this
pI -- section

- If NAXIS < 0, skip this data block.

CARD COL DATA DESCRIPTION NOTES

1 1-5 NODEl(I) Node Number Defining Origin of (10)
Coordinates

6-10 NODE2(I) Node Number Defining Material
Direction 1

11-15 NODE3(I) Node Number Defining one
Additional Point in the 1-2
Plane of the Material

I-
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D. ELEMENT DEFINITION DATA, ELEMENT TYPE 2

(A single blank card terminates input)

- CARD COL DATA DESCRIPTION NOTES

1 1-5 IEL Element Number (11)

6 IOUT Output Flag (Blank or "N") (12)

7-10 IPR Material Property Set for this
Element

11-13 IAX Orthotropic Axis Set -

14-15 INT Order of Numerical Integration (13)

16-20 KGEN Node Increment for Element (14)
Generation

21-25 (Blank - Inactive Option)

26-30 N(l) Local Node Number 1 (15)

31-35 N(2) Local Node Number 2

61-65 N(8) Local Node Number 8

40

54
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Figure 8.5.3 Nodal Connectivity for Eight-Node Solid Element.
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NOTES:

(1) Repeat card set B-I or B-2 for each material property set to be

* defined. The nth card set entered in this section defines material

property set n for n = 1, 2, ..., NMAT.

(2) Mass densities are entered in a Force-Length-Time system of units

consistent with those used elsewhere in the data. For example, in

British units, mass densit4 is entered in units of lbf-sec2/in
4.

The mass density of aluminum, for instance, would be entered as

p = (0.1 lb/in 3)/(386.4 in/sec2) = 0.000259 lbf-sec 2/in4 .

(3) Omit yield stress as input if material nonlinearities are to be

neglected. Default value set to 1.0 x 1012.

(4) The program attempts to follow the material stress-strain curve

as closely as possible, using a subincremental method of analyzing

plastic flow. Each increm( att of time or load is divided into several

"strain subincrements" at which material behavior is analyzed.

DEMAX(I) is the largest value of any incremental strain component

which is permitted before stresses, strains, and the constitutive

law are reevaluated. Default value set to 0.00020.

(5) Applies only when IHARD(M) = 3 (combined hardening rule). Definition

of y is discussed in Chapter 2.

(6) Isotropic hardening permits a uniform expansion of the yield locus

in stress space; it predicts no Bauschinger effect, and is generally

applicable in elastic-plastic problems involving nearly proportional

systems of loading. Kinematic hardening allows the yield locus to

translate in stress space, giving an "ideal" Bauschinger effect.

The combined hardening rule, which permits both expansion and

translation of the yield surface, is sometimes preferable for unloading

and cyclic plasticity problems. Default hardening type is isotropic.

(7) Uniaxial stress-strain data for a material are entered in Section 8.9

DATA CURVES. ISSC(T) is the index of a particular data curve

describing the uniaxial stress-strain behavior of the current material.

Note that uniaxial material curves are represented as piecewise linear

functions, giving equivalent stress versus plastic strain; that is,

the required data in Section 8.9 defines

8.5.23
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aeq vs. (ce-/E) or a >yaeq" ea - yield"

(8) Orthotropic material properties must be defined with respect to the

principal directions of the material (e.g., parallel and perpendicular

to the fiber directions, for a filamentary material). Elements in

which the principal material directions are not aligned with the

global coordinate axes are transformed to global coordinates using

the orthotropic axis data entered in part C (see Note 10).

(9) The Poisson's ratio PR. I) defines the lateral contraction in

direction j due to a unit extension in direction i. Care should be

taken to ensure that these values satisfy the synnetry conditions

and other restrictions summarized in Chapter 2.

(10) The definitions of material axis directions is depicted in Figure 8.5.4.

NODE1 defines an "origin of coordinates," located arbitrarily in space;

NODE2 locates the first principal direction of the material by

specifying any point on the 1-axis. NODE3 is any third point which,

together with NODE1 and NODE2, uniquely defines the 1-2 plane (i.e.,

the three nodes should not be collinear). Repeat card C-1 as required

to define all orthotropic axis systems for this element type. Theth
n line entered in this section defines material axis set n, for

n = 7, 2, ... , NAXIS.

(11) Valid element numbers are 1, 2, ..., NELEM. Elements must be defined

sequentially, but intermediate elements can be generated automatically

(see Note 14, below). Card D-1 is repeated as needed to define all

Type 2 elements in the model. Following the last element, a blank

card setting (IEL = 0) is entered to terminate input for Element

Type 2.

(12) The output code determines whether or not integration point stress

output will be printed for element -EL. A blank field causes full

4 inting for the element; an "N" in column 6 suppresses stress

output.

(13) Integration orders available for the eight-node solid element are 1,

2, and 3 point Gaussian rules, corresponding to 1, 8 or 27 integration

0.5.24
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points per element, respectively. A non-Gaussian rule using six

integration points is also available (INT = 6), as well as a

selective, nine-point integration rule (INT = 9). Locations of

integration points for INT = 2, 3, and 6 are listed in Tables

8.5.4 through 8.5.6, respectively.

(14) A nonzero value of KGEN on the second card of a pair causes elements

between the last and current elements to be generated automatically.

With the exception of node numbers, all elements generated are

assigned the same data as the current element. Local node numbers

for the previous element are incremented by KGEN to generate each

succeeding element. Node numbers for the current element need not

be given. More than one element must be generated to use this

feature. If element cards are omitted but KGEN = 0, a default

value of 1 is used.

( (15) Local node numbering proceeds as shown in Figure 8.5.4.

0io*
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TABLE 8.5.4

INTEGRATION POINT LOCATIONS FOR E1GHT NODE

SOLID ELEMENT WITH INT =2

Nearest
Point Node r s t

1 7 -h* -h -h

2 3 -h -h h

3 6 -h h I -h

4 2 -hh h

5 8 h -h -h

6 4 h -h h

7 5 h h -h

8 1 h h h

*h =0.5773502691896
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TABLE 8.5.5

INTEGRATION POINT LOCATIONS FOR EIGHT-NODE
SOLID ELEMENT WITH INT = 3

Nearest

Point Node r s t

1 7 -h* -h -h

2 19 -h -h 0

3 3 -h -h h

4 14 -h 0 -h

5 24 -h 0 0

6 10 -h 0 h

7 6 -h h -h

8 18 -h h 0

9 2 -h h h

10 15 0 -h -h

11 25 0 -h 0

12 11 0 -h h

13 26 0 0 -h

14 27 0 0 0

15 23 0 0 h

16 13 0 h -h

17 22 0 h 0

18 9 0 h h

19 8 h -h -h

20 20 h -h 0

21 4 h -h h

22 16 h 0 -h

23 21 h 0 0

24 12 h 0 h

25 5 h h I -h

26 17 h h 0

27 1 h h h

h 0.77459666924'
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TABLE 8.5.6

INTEGRATION POINT LOCATIONS FOR EIGHT-NODE
SOLID ELEMENT WITH INT = 6

Point r s t

1 -1 0 0

2 0 -1 0

3 0 0 -1

4 1 0 0

5 0 1 0

6 0 0 1

852
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8.5.3 Data for Element Type 3

-(Quadrilateral Plane Stress, Plane Strain, or
Shear Panel Element in Three Dimensions)

A. HEADER CARD, ELEMENT TYPE 3

CARD COL DATA DESCRIPTION NOTES

1 1-5 ITYPE Element Type; Enter the Number "3"

6-10 NMAT Number of Material Property Sets
(Maximum of 20)

11-15 NELEM Number of Elements of this Element
Type

.. -
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SO



B. MATERIAL PROPERTY DATA, ELEMENT TYPE 3

(NMAT Cards are Required in this Section)

CARD COL DATA DESCRIPTION NOTES

1 1-10 EE(I) Elastic Modulus (1), (2)

11-20 PR(I) Poisson's Ratio (3)

21-30 DNS(I) Mass Density (4)

31-40 YLD(I) Equivalent Stress at First Yield (5)

-- 41-50 DEMAX(I) Maximum Strain Subincrement (6)

51-60 GAMMA(I) Ratio of Yield Surface Expansion (7)
to Translation, for Combined
Isotropic and Kinematic Strain
Hardening

61-65 IHARD(I) Strain Hardening Type Code (8)

=1: Isotropic Hardening

=2: Kinematic Hardening

=3: Combined Isotropic and
Kinematic Hardening with
Constant Proportions of Yield
Translation

66-70 ISSC(I) Number of Data Curve Containing (9)
Uniaxial Stress-Strain Data for
this Material

71-80 ALPHA(I) Thermal Expansion Coefficient

.O
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C. ELEMENT DEFINITION DATA, ELEMENT TYPE 3

(A single blank card terminates input)

CARD COL DATA I DESCRIPTION NOTES

1 1-5 IEL Element Number (10)

6 IOUT Output Flag (Blank or "N") (11)

7-10 ITYP Element Subtype (12)

=1: Plane Stress (Membrane)

=2: Plane Strain

=3: Shear Panel

11-15 IPR Material Property Set for this
Element

16-20 INT Order of Numerical Integration (13)

21-25 KGEN Node Increment for Element (14)
Generation

26-30 N(l) Local Node Number 1 (15)

31-35 N(2) Local Node Number 2

36-40 N(3) Local Node Number 3

41-45 N(4) Local Node Number 4

46-55 THICK Element Thickness (16)

56-60 ISEL Selective Integration Flag (17)
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Figure 8.5.5 Nodal Connectivity for Quadrilateral Plane
V Stress, Plane Strain, and Shear Panel Element.
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NOTES "

- (1) Repeut Card B-1 for each material property set to be defined. The
th
n card entered in this section defines material Property set n,

for n 1, 2, ... , NM4T.

(2) For plane stress or plane strain analysis, EECT) is the Young's

modulus (i.e., extensionaZ modulus) of the material. When shear

elements are used, EE(I) is interpreted as the shear modulus.

(3) PR(I) is ignored in shear panel elements.

(4) Mass densities are entered in a Force-Length-Time system of units

* consistent with those used elsewhere in the data. For example, in
2 4British units, mass density is entered in units of lbf-sec /in

The mass density of aluminum, for instance, would be entered as
3 2 24P = (0.1 lb/in )/(386.4 in/sec = 0.000259 lbf-sec /in

(5) If material nonlinearities are to be neglected, omit the yield stress

as input. Default value set to 1.0 x 10

(6) The program attempts to follow the material stress strain curve as

closely as possible, using a subincremental method of analyzing

plastic flow. Each increment of time or load is divided into

several "strain subincrements" at which material behavior is

analyzed. DEMAX(I) is the largest value of any incremental strain

component which is permitted before stresses, strains, and the

constitutive law are reevaluated. Default value set to 0.00020.

(7) Applies only when IHARD(I) = 3 (combined hardening rule). Definition

of y is discussed in Chapter 9.

(8) Isotropic hardening permits a uniform expansion of the yield locus in

stress space; it predicts no Bauschinger effect, and is generally

applicable in elastic-plastic problems involving nearly proportional

systems of loading. Kinematic hardening allows the yield locus to

translate in stress space, giving an "ideal" Bauschinger effect. The

combined hardening rule, which permits both expansion and translation

of the yield surface, is sometimes preferable for unloading and cyclic

- -plasticity problems. Default hardening type is isotropic.
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(9) Uniaxial stress-strain data for a material are defined in Section 8.9,

DATA CURVES. ISSC(I) is the index of the particular data curve

describing the uniaxial stress-strain behavior of the current

material. Note that uniaxial material curves are represented as

piecewise linear functions, giving eauivalent stress versus plastic

strain; that is, the required data in Section 8.9 defines

a vs. (e-a/E) for aeq > ayield'eqeq-yed

(10) Valid element numbers are 1, 2, ..., NELEM. Elements must be defined

sequentially, but intermediate elements can be generated automatically

(see Note 14, below). Card C-1 is repeated as needed to define all

Type 3 elements in the model. Following the last element, a single

blank card (setting IEL = 0) is entered to terminate input for

Element Type 3.

(11) The output code determines whether or not integtation point stress

output will be printed for element IEL. A blank field causes full

printing for the element; -n "N" in column 6 suppresses -tress output.

(12) All element subtypes are based upon the scone theoretical formulation,

but the stress-strain descriptions for the three possible subtypes

are different. Subtypes 1 and 2 use the usual plane stress/strain

assumptions; generalized plane strain (in which the transverse strain

is uniform, but nonzero) is not available with Element Type 3 but may

be analyzed using the three-dimensional elements (Types 1, 2, 6, 7

and 8) and the LINEAR CONSTRAINT utility (Section 8.8). Shear panel

elements are assumed to sustain only shear stresses in the plane of

* the element; a shear web element may experience strain in tension or

compression, but such direct strains produce no stress, and no strain

energy.

(13) Integration orders available for Element 2jpe 3 are 2 and 3

point Gaussian rules, corresponding to 4 and 9 integration

points per element, respectively. Locations for the

integration points for INT = 2 and j are listed in

Tables 8.5.7 and 8.5.8, respectively.
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(14) A nonzero value of KGEN on the second card of a pair causes elements

between the last and current elements to be generated automatically.

With the exception of node numbers, all elements generated are

assigned the same data as the current element. Local node numbers

for the previous element are incremented by KGEN to generate each

succeeding element. Node numbers for the current element (second

1card of the pair) need not be given. More than one element must be

generated to use this feature. If element cards are omitted but

KGEN = 0, a default value of 1 is used.

(15) Local node numbers are aiven in counterclockwise order around the

*I element, as shown in Fiaure 8.5.5. Nodes 1 and 2 determine the local

x-axis of the element, and nodes 1, 2, and 3 define the reference

plane for an element (computed stresses and strains for Type 3 elements

are output in this local system of coordinates).

(16) For plane strain elements (ITYP = 2), the thickness is automatically

set to 1.0, and need not be input.

* (17) Normally, ISEL = 0, and the element is integrated using the order of

Gaussian quadrature specified by INT. When ISEL > 0, shear strain

contributions to the element stiffness are evaluated by a single-point

integration, to alleviate excessive element stiffness when the element

is extremely tong and thin. Generally, the use of ISEL > 0 is

advantageous in modeling plane bending of slender beams, whose

length-to-thickness ratio is sufficiently large that transverse

shear stresses would be expected to vanish.

8 .
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TABLE 8.5.7

INTEGRATION POINT LOCATIONS FOR QUADRILATERAL PLANE STRESS,
PLANE STRAIN, AND SHEAR PANEL ELEMENT WITH INT = 2

Nearest
Point Node r s

1 1-h* -h

2 4 -h h

3 2 h -h

4 3 h h

h = 0.5773502691896
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TABLE 8.5.8

INTEGRATION POINT LOCATIONS FOR FOUR-NODE

PLANAR ELEMENT WITH INT 3

Point r s

1 -h* -h

2 -h 0

3 -h h

-- 4 0 -h

5. 0 0

6 0 h

7 h -h

8 h 0

9 h h

*h =0.7745966692415
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8.5.4 Data for Element Type 4

(Truss Element in Three Dimensions)

A. HEADER CARD, ELEMENT TYPE 4

CARD COL DATA DESCRIPTION NOTES

1 1-5 ITYPE Element Type; Enter the Number "4"

6-10 NMAT Number of Material Property Sets
(Maximum of 20)

11-15 NELEM Number of Elements of this
Element Type
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B. MATERIAL PROPERTY DATA, ELEMENT TYPE 4

(NMAT Cards are Required in this Section)

,CARD COL DATA DESCRIPTION NOTES

1-1-10 EE(I) Elastic Modulus (1)

11-20 DNS(I) Mass Density (2)

21-30 * YLD(I) Equivalent Stress at First Yield (3)

I 31-40 DEMAX(I) Maximum Strain Subincrement (4)

41-50 GAMMA(I) Ratio of Yield Surface Expansion (5)
I. to Translation, for Combined
', Isotropic and Kinematic Strain

Hardening

51-55 IHARD(I) Strain Hardening Type Code (6)

=1: Isotropic Hardening
=2: Kinematic Hardeninc

=3: Combined Isotropic and
Kinematic Hardening, with

0-7, Constant Proportions of
Yield Surface Expansion and
Translation

56-60 ISSC(I) Number of Data Curve Containing (7)
Uniaxial Stress-Strain Data for
this Material

Il 61-70 ALPHA(I) Coefficient of Thermal Expansion -

8 -
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C. ELEMENT DEFINITION DATA, ELEMENT TYPE 4

(A single blank card terminates input)

CARD COL DATA DESCRIPTION NOTES

1 1-5 IEL Element Number (8)

6 IOUT Output Flag (Blank or "N') (9)

7-10 IPR Material Property Set for this -
Element

11-15 KGEN Node Increment for Element (10)
Generation

16-20 N(l) Local Node Number 1 (11)

21-25 N(2) Local Node Number 2

26-35 AREA Element Cross-Sectional Area
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* NOTES:

(2) Repeat card B-1 for each material property set to be defined. The -

th
n card entered in this section defines material property set n,

" for n =, 2,..., NMAT.

" (2) Mass densities are entered in a Force-Length-Time system of units

consistent with those used elsewhere in the data. For example, in
2 4

British units, mass density is entered in units of lbf-sec /in. The

mass density of aluminum, for instance, would be entered as
3 22 4

P = (0.1 lb/in )/(386.4 in/sec 2) - 0.000259 lbf-sec /in

(3) If material nonlinearities are to be neglected, omit the yield

stress as input. Default value set to 1.0 x 10

(4) The program attempts to follow the material stress strain curve as

closely as possible, using a subincremental method of analyzing plastic

flow. Each increment of time or toad is divided into several "strain

subincrements" at which material behavior is analyzed. DEMAX(I) is

the largest value of any incremental strain component which is permitted

before stresses, strains, and the constitutive law are reevaluated.

Default value set to 0.00020.

(5) Applies only when IHARD(I) = 3 (combined hardening rule). Definition

* .of y is discussed in Chapter 2.

(6) Isotropic hardening permits a uniform expansion of the yield locus in

stress space; it predicts no Bauschinger effect, and is generally

-. applicable in elastic-plastic problems involving nearly proportional

systems of loading. Kinematic hardening allows the yield locus to

translate in stress space, giving an "ideal" Bauschinger effect.

The combined hardening rule, which permits both expansion and

translation of the yield surface, is sometimes preferable for unloading

and cyclic plasticity problems. Default hardening type is isotropic.

S- (7) Uniaxial stress-strain data for a material are defined in Section 8.9,

DATA CURVES. ISSC(I) is the index of the particular data curve

describing the uniaxial stress-strain behavior of the current material.

Note that uniaxial material curves are represented as piecewise linear
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functions, giving equivalent stress versus equivalent plastic strain;

that is, the required data in Section 8.9 defines

a vs. (s-a/E) for aeq > aield"

eq e il

(8) Valid element numbers are 1, 2, ..., NELEM. Elements must be defined

sequentially, but intermediate elements can be generated automatically

(see Note 10, below). Card C-I is repeated as needed to define all

Type 4 elements in the model. Following the last element, a single

blank card (setting IEL = 0) is entered to terminate input for

element Type 4.

(9) The output code determines whether or not integration point stress

output will be printed for element IEL. A blank field causes full

printing for the element; an "N" in column 6 suppresses stress output.

(10) A nonzero value of KGEN on the second card of a pair causes elements

between the last and current elements to be generated automatically.

With the exception of node numbers, all elements generated are

assigned the same data as the current element. Local node numbers

for the previous element are incremented by KGEN to generate each

succeeding element. Node numbers for the current element (second

card of a pair) need not be given. More than one element must be

generated to use this feature. If element cards are omitted but

KGEN = 0, a default value of 1 is used.

(11) Local node numbers for Element Type 4 are shown in Figure 8.5.6.

8.5.43
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8.5.5 Data for Element Type 5

(Three-Dimensional Thin Shell Element)

A. HEADER CARD, ELEMENT TYPE 5

CARD COL DATA DESCRIPTION NOTES

1 1-5 ITYPE Element Type; Enter the Number "5" -

6-10 NMAT Number of Material Property Sets
(Maximum of 20)

11-15 NELEM Number of Elements of this
Element Type

B. MATERIAL PROPERTY DATA, ELEMENT TYPE 5

(NMAT Cards are Required in this Section)

CARD COL DATA DESCRIPTION NOTES

1 1-10 EE(I) Elastic Modulus (1)

11-20 PR(I) Poisson's Ratio

21-30 DNS(I) Mass Density (2)

31-40 ALPHA(I) Coefficient of Thermal Expansion -
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C. ELEMENT DEFINITION DATA, ELEMENT TYPE 5

(A single blank card terminates input)

CARD COL DATA DESCRIPTION NOTES

1 1-5 IEL Element Number (3)

6 IOUT Output Flag (Blank or "N") (4)

7-10 IPR Material Property Set for this -
Element

* 11-15 KGEN Node Increment for Element (5)
Generation

16-20 N(l) Local Node Number 1 (6)

21-25 N(2) Local Node Number 2

51-55 N(8) Local Node Number 8
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NOTES:

(1) Repeat card B-1 for each material property set to be defined. The
n th card entered in this section defines material property set n for

n =1, 2,..., NMAT.

(2) Mass densities are entered in a Force-Length-Time system of units

consistent with those used elsewhere in the data. For example, in
2 4British units, mass density is entered in units of lbf-sec /in

The mass density of aluminum, for instance, would be entered as
3 2 2 4p = (0.1 lb/in )/(386.4 in/sec2) = 0.000259 lbf-sec /in

(3) Valid element numbers are 1, 2, ... , NELEM. Elements must be defined

sequentially, but intermediate elements can be generated automatically

(see Note 5, below). Card C-1 is repeated as needed to define all

Type 5 elements in the model). Following the last element, a single

blank card (setting IEL C ) is entered to terminate input for

Element Type 5.

(4) The output code determines whether or not integration point stress

output will be printed for element IEL. A blank field causes full

O- printing for the element; an "I" in column 6 suppresses stress output.

(5) A nonzero value of KGEN on the second card of a pair causes elements

between the last and current elements to be automatically generated.

With the exception of node numbers, all elements generated are

assigned the same data as the current element. Local node numbers

for the previous element are incremented by KGEN to generate each

succeeding element. More than one element must be generated to use

this feature; node numbers for the current element need not be given.

If element cards are omitted but KGEN = 0, a default value of 1 is

* -used.

(6) Local node numbering proceeds as shown in Figure 8.5.7.
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8.5.6 Data for Element Type 6

(Three-Dimensional, Isoparametric Solid Twenty
Node Brick)

A. HEADER CARD, ELEMENT TYPE 6

CARD COL DATA DESCRIPTION NOTvS

1 1-5 ITYPE Element Type; Enter the Number "6"

6-10 NMAT Number of Material Property
Sets

11-15 NELEM Number of Elements of this
Element Type

16-20 NAXIS Number of Orthotropic Axis
Definitions

B. MATERIAL PROPERTIES DATA, ELEMENT TYPE 6

- For each initially isotropic material, enter
properties data from Section B-1, below (one
card/material)

- For each elastic orthotropic material, enter
properties data from Section B-2, below (two
cards/material)

- NMAT material property sets should be defined
• " in this data block.

8
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B-I. Isotropic Material Properties

CARD COL DATA DESCRIPTION NOTES

1 1-10 EE(I) Elastic Modulus (1)

11-20 PR(I) Poisson's Ratio -

21-30 DNS(I) Mass Density (2)

31-40 YLD(I) Equivalent Stress at First Yield (3)

41-50 DEMAX(I) Maximum Strain Subincrement (4)

51-60 GAMMA(I) Ratio of Yield Surface Expansion (5)
to Translation for Combined
Isotropic and Kinematic Strain
Hardening

61-65 IHARD(I) Strain-Hardening Type Code (6)

=: Isotropic Hardening

=2: Kinematic Hardening

=3: Combined Isotronic andewig Kinematic Hardening, with
Constant Proportions of

L Yield Surface Expansion
and Translation

66-70 ISSC(I) Number of Data Curve Containing (7)
Uniaxial Stress-Strain Data for
this Material

71-80 ALPHA(I) Coefficient of Thermal Expansion
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B-2. Orthotropic Material Properties

CARD COL DATA DESCRIPTION NOTES

1 1 MTYPE Literal "A" - Flag for Orthotropic -

Materials Data

2-10 El(I) Elastic Modulus in Direction 1 (8)

11-20 E2(I) Elastic Modulus in Direction 2 -

21-30 E3(I) Elastic Modulus in Direction 3 -

31-40 G12(I) Shear Modulus in Plane 1-2

41-50 G13(I) Shear Modulus in Plane 1-3

51-60 G23(I) Shear Modulus in Plane 2-3

i-10 PRI2(I) Poisson's Ratio in Plane 1-2 (9)

11-20 PRl3(I) Poisson's Ratio in Plane 1-3 (

21-30 PR23(I) Poisson's Ratio in Plane 2-3

31-40 DNS(I) Mass Density (2)

41-50 ALPHAl(I) Coefficient of Thermal Expansion -

in Direction 1

51-60 ALPHA2(I) Coefficient of Thermal Expansion
in Direction 2

61-70 ALPHA3(I) Coefficient of Thermal Expansion
in Direction 3
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C. ORTHOTROPIC MATERIAL AXIS DATA, ELEMENT TYPE 6

- Enter NAXIS sets of orthotropic axis data in this
section

- If NAXIS < 0, skip this data block.

CARD COL DATA DESCRIPTION NOTES

1 1-5 NODEl(I) Node Number Defining Origin of (10)
Coordinates

6-10 NODE2(I) Node Number Defining Material
Direction 1

11-15 NODE3(I) Node Number Defining one
Additional Point in the 1-2
Plane of the Material

I
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D. ELEMENT DEFINITION DATA, ELEMENT TYPE 6

(A single blank card terminates input) ]
CARD COL DATA DESCRIPTION NOTES

1 1-5 IEL Element Number (11)

6 IOUT Output Code (Blank or "N") (12)

7-10 IPR Material Property Set for this -
Element

11-13 IAX Orthotropic Axis Set

14-15 INT Order of Numerical Integration (13)

16-20 KGEN Node Increment for Element (14)
Generation

21-25 ISUP Stiffness Generation Code (15)

26-30 N(l) Local Node Number 1 (16)

31-35 N(2) Local Node Number 2

78-80 N(11) Local Node Number 11

2 1-5 N(12) Local Node Number 12

6-10 N(13) Local Node Number 13

41-45 N(20) Local Node Number 20

8
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Figure 8.5.8 Nodal Connectivity for Twenty-Node Solid Element.
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Figure 8.5.9 Definition of Orthotropic Material Axis

Orientation.
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- •NOTES:

(1) Repeat card set B-i or H-2 for each material property set to be

. defined. The nth card set entered in this section defines material

* property set n for n = 1, 2, ... , NMAT.

(2) Mass densities are entered in a Force-Lenth-Time system of units

consistent with those used elsewhere in the data. For example, in
2 4

British units, mass density is entered in units of lbf-sec /in

The mass density of aluminum, for instance, would be entered as
3 22 4

P = (0.1 lb/in )/(386.4 in/sec) = 0.000259 lbf-sec /in

(3) Omit yield stress as input if material nonlinearities are to be

neglected. Default value set to 1.0 x 10.

(4) The program attempts to follow the material stress-strain curve as

closely as possible, using a subincremental method of analyzing

plastic flow. Each increment of time or load is divided into several

"strain subincrements" at which material behavior is analyzed.

* - DEMAX(I) is the largest value of any incremental strain component

which is Permitted before stresses, strains, and the constitutive

law are reevaluated. Default value set to 0.00020.

(5) Applies only when IHARD(I) = 3 (combined hardening rule). Definition

of y is discussed in Chapter 2.

(6) Isotropic hardening permits a uniform expansion of the yield locus

in stress space; it predicts no Bauschinger effect, and is generally

r applicable in elastic-plastic problems involving nearly proportional

systems of loading. Kinematic hardening allows the yield locus to

-ranslate in stress space, giving an "ideal" Bauschinger effect.

T,,e combined hardening rule, which permits both expansion and

translation of the yield surface, is sometimes preferable for

unloading and cyclic plasti.city problems. Default hardening type

is isotropic.

(7) Uniaxial stress-strain data for a material are entered in Section 8.9,

DATA CURVES. ISSC(I) is the index of a particular data curve

*describing the uniaxial stress-strain behavior of the current material.

Note that uniaxial material curves are represented as piecewise
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linear functions, giving equivalent stress versus equivalent plastic

strain; that is, the required data in Section 8.9 defines

.. aeq vs. (s-o/E) for aeq > a yield"

(8) Orthotropic material properties must be defined with respect to the

principal directions of the material (e.g., parallel and perpendicular

to the fiber directions, for a filamentary material). Elements in

which the principal material directions are not aligned with the

global coordinate axes are transformed to global coordinates using

the orthotropic axis data entered in part C (see Note 10).

(9) The Poisson's ratio PR.(I) defines the lateral contraction in

direction j due to a unit extension in direction i. Care should be

taken to ensure that these values satisfy the symmetry conditions

and other restrictions summarized in Chapter 2.

(10) The definition of material axis direction is depicted in Figure 8.5.9.

* •NODE1 defines an "origin of coordinates," located arbitrarily in

space; NODE2 locates the first principal direction of the material by

specifying any point on the 1-axis. NODE3 is any third point which,

together with NODE1 and NODE2, uniquely defines the 1-2 plane (i.e.,

the three nodes should not be collinear). Repeat Card C-i as

required to define all orthotropic axis systems for this element
"-'" th

type. The n line entered in this section defines material axis

set n, for n = 1, 2, ... , NAXIS.

(11) Valid element numbers are 1, 2, ..., NELEM. Elements must be defined

- " sequentially, but intermediate elements can be generated automatically

(see Note 14, below). Cards D-1 and D-2 are repeated as needed

to define all Type 6 elements in the model. Following the last

element, a single blank card (setting IEL = 0) is entered to

* .terminate input for element Type 6.

(12) The output code determines whether or not integration point stress

. output will be printed for element IEL. A blank field causes full

printing for the element; an "N" in column 6 suppresses stress output.

(13) Integration orders available for the twenty-node solid element are

2 and 3 point Gaussian rules, corresponding to 8 and 27 integration
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points per element, respectively. The non-Gaussian 14-point

integration rule is selected by setting INT = 14. Locations of

integration points for INT = 2, 3, and 14 are listed in Tables

,8.5.9 twot-u.h 8.5.11, respectively.

(14) A nonzero value of KGEN on the second card of a pair causes elements

between the last and current elements to be generated automatically.

With the exception of node numbers, all elements generated are

assigned the saoe data as the current element. Local node numbers

for the previous element are incremented by KGEN to generate each

succeeding element. Node numbers for the current element need not

be given. More than one element must be generated to use this

feature. If element cards are omitted but KGEN = 0, a default

value of 1 is used.

(15) ISUP should be set to zero for linear analysis. In a nonlinear

solution, ISUP = 0 permits full nonlinearities to be included in the

stiffness calculation for an element. If ISUP = 1 for a nonlinear

element, the original (linear) stiffness matrix is used throughout

the solution for the element in question. Nonlinearities in elements

having ISUP = 1 are taken into account by means of equilibrium

correction, as in constant stiffness iteration. The use of ISUP = 1

is appropriate for regions in a structure which experience very mild

nonlinearities. If ISUP = -1 for a nonlinear element, the nonlinear

stiffness is reformulated at each increment using an appropriate

calculation based upon the average values of the nonlinear terms

over the element. For ISUP = 1, internal forces are still evaluated

exactly at all times, to avoid erroneous results. The use of ISUP = -1

can result in considerable savings of computer time in nonlinear

analysis, but should not be used without equilibrium iteration

(Section 8.3).

* (16) Local node numbering proceeds as shown in Figure 8.5.8.
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TABLE 8.5.9

INTEGRATION POINT LOCATIONS FOR TWENTY-NODE

V. SOLID ELEMENT WITH INT =2

Nearest

Point Node r s t

1 7 -h* -h -h

2 3 -h -h h

3 6 -hh -h

4 2 -h h h

5 8 h -h -h

6 4 h -h h

7 5 h h -h

8 1h h h

*h =0.5773502691896
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TABLE 8.5.10

INTEGRATION POINT LOCATIONS FOR TWENTY-NODE
SOLID ELEMENT WITH INT = 3

Nearest
Point Node r s t

1 7 -h* -h -h

2 19 -h -h 0

3 3 -h -h h

4 14 -h 0 -h

5 24 -h 0 0
1 0 -h 0 h

7 6 -h h -h

8 18 -h h 0

9 2 -h h h

10 15 0 -h -h

11 25 0 -h 0

12 11 0 -h h

- 13 26 0 0 -h

14 27 0 0 0

15 23 0 0 h

16 13 0 h -h

17 22 0 h 0

18 9 0 h h

19 8 h -h -h

20 20 h -h 0

21 4 h -h h

22 16 h 0 -h

23 21 h 0 0

24 12 h 0 h

25 5 h h -h

26 17 h h 0

27 1 h h h

• h = 0.7745966692415
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TABLE 8.5.11

INTEGRATION POINTS FOR TWENTY NODE

SOLID ELEMENT WITH INT = 14

Point r a t

1 *-.a 0 0

2 a 0 0

3 0 -a 0

4 0 a 0

5 0 0 -a

6 0 0 a

7 **-b -b -b

8 -b b -b

9 -b -b b

10 -b b b

11 b -b -b

12 b b -b

13 b -b b

14 b b b

: -

S* a = 0.795822426

" b - 0.758786911
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8.5.7 Data for Element Type 7

--- (Three-Dimensional, Isoparametric Solid with
8-20 Nodes)

A. HEADER CARD, ELEMENT TYPE 7

CARD COL DATA DESCRIPTION NOTES

1 1-5 ITYPE Element Type; Enter the Number "7"

6-10 NMAT Number of Material Property
Sets

11-15 NELEM Number of Elements of this Element
Type

16-20 NAXIS Number of Orthotronic Axis
Definitions

B. MATERIAL PROPERTIES DATA, ELEMENT TYPE 7

- For each initially isotropic material, enter
properties data from Section B-l, below (one
card/material)

- For each elastic orthotropic material, enter
properties data from Section B-2, below (two
cards/material)

- NMAT material property sets should be defined
in this data block.
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B-I. Isotropic Material Properties

CARD COL DATA DESCRIPTION NOTES

1-10 EE(I) Elastic Modulus (1)

11-20 PR(I) Poisson's Ratio -

21-30 DNS(I) Mass Density (2)

31-40 YLD(I) Equivalent Stress at First Yield (3)

41-50 DEMAX(I) Maximum Strain Subincrement (4)

51-60 GAM1MA(I) Ratio of Yield Surface Expansion (5)
to Translation for Combined
Isotropic and Kinematic Strain
Hardening

61-65 IHARD(I) Strain-Hardening Type Code (6)

=1: Isotropic Hardening

=2: Kinematic Hardening

=3: Combined Isotropic and
Kinematic Hardening, with
Constant Proportions of
Yield Surface Expansion
and Translation

66-70 ISSC(I) Number of Data Curve Containing (7)
Uniaxial Stress-Strain Data for
this Material

71-80 ALPHA(I) Coefficient of Thermal Expansion

8

I.
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B-2. Orthotropic Material Properties

CARD COL DATA DESCRIPTION NOTES

1 MTYPE Literal "A" - Flag for Orthotropic -

Materials Data

2-10 El(I) Elastic Modulus in Direction 1 (8)

11-20 E2(I) Elastic Modulus in Direction 2 -

21-30 E3(I) Elastic Modulus in Direction 3

31-40 G12(I) Shear Modulus in Plane 1-2

41-50 G13(I) Shear Modulus in Plane 1-3

51-60 G23(I) Shear Modulus in Plane 2-3

2 1-10 PR12(I) Poisson's Ratio in Plane 1-2 (9)

11-20 PRl3(I) Poisson's Ratio in Plane 1-3

21-30 PR23(I) Poisson's Ratio in Plane 2-3

31-40 DNS(I) Mass Density (2)

41-50 ALPHAl(I) Coefficient of Thermal Expansion -

in Direction 1

51-60 ALPHA2(I) Coefficient of Thermal Expansion
in Direction 2

61-70 ALPHA3(I) Coefficient of Thermal Expansion
in Direction 3
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C. ORTHOTROPIC MATERIAL AXIS DATA, ELEMENT TYPE 7

- Enter NAXIS sets of orthotropic axis data in this
section

- If NAXIS < 0, skip this data block.

CARD COL DATA DESCRIPTION NOTES

- 1 1-5 NODE1(I) Node Number Defining Origin of (10)
Coordinates

* 6-10 NODE2(I) Node Number Defining Material
* Directioni1

11-15 NODE3(I) Node Number Defining one
Additional Point in the 1-2 Plane

.__of the Material

0

°
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D. ELEMENT DEFINITION DATA, ELEMENT TYPE 7

(A single blank card terminates input)

CARD COL DATA DESCRIPTION NOTES

1-1-5 IEL Element Number (11)

6 IOUT Output Code (Blank or "N") (12)

7-10 IPR Material Property Set for this
Element

i 11-13 IAX Orthotropic Axis Set -

14-15 INT Order of Numerical Integration (13)

16-20 KGEN Node Increment for Element (14)
Generation

21-25 ISUP Stiffness Generation Code (15)

- 26-30 N(l) Local Node Number 1 (16)

31-35 N(2) Local Node Number 20-,

75-80 N(11) Local Node Number 11

2 1-5 N(12) Local Node Number 12 (17)

- 6-10 N(13) Local Node Number 13

0 41-45 N(20) Local Node Number 20

8. -
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Figure 8.5.10 Nodal Connectivity for Variable-Node Solid Element.
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Figure &.5.11 Definition of Orthotropic Material Axis
- Orientations.
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NOTES:

(1) Repeat card set B-1 or B-2 for each material property set to be

defined. The n card set entered in this section defines material

property set n for n = 1, 2, ..., NMAT.

(2) Mass densities are entered in a Force-Length-Time system of units

consistent with those used elsewhere in the data. For example, in

British units, mass density is entered in units of lbf-sec /in

The maws density of aluminum, for instance, would be entered as
3 2 2 4

p = (0.1 b/in )/(386.4 in/sec ) = 0.000259 lbf-sec /in

(3) Omit yield stress as input if material nonlinearities are to be

neglected. Default value set to 1.0 x 1012.

(4) The program attempts to follow the material stress-strain curve as

closely as possible, using a subincremental method of analyzing

plastic flow. Each increment of time or load is divided into several

"strain subincrements" at which material behavior is analyzed.

DEMAX(I) is the largest value of any incremental strain component

which is permitted before stresses, strains, and the constitutive . '

law are reevluated. Default value set to 0.00020.

(5) Applies only when IHARD(I) = 3 (combined hardening rule). Definition

of y is discussed in Chapter 2.

(6) Isotropic hardening permits a uniform expansion of the yield locus

in stress space; it predicts no Bauschinger effect, and is generally

applicable in elastic-plastic problems involving nearly proportional

systems of loading. Kinematic hardening allows the yield locus to

translate in stress space, giving an "ideal" Bauschinger effect.

The combined hardening rule, which permits both expansion and

translation of the yield surface, is sometimes preferable for

unloading and cyclic plasticity problems. Default hardening type

is isotropic.

(7) Uniaxial stress-strain data for a material are entered in Section 8.9,

DATA CURVES. ISSC(I) is the index of a particular data curve

describing the uniaxial stress-strain behavior of the current material.

Note that uniaxial material curves are represented as piecewise
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linear functions, giving equivalent stress versus equivalent plastic

strain; that is, the required data in Section 8.9 defines

a vs. (c-o/E) for a > a
eq eq - yield'

(8) Orthotropic material properties must be defined with respect to the

principal directions of the material (e.g., parallel and perpendicular

to the fiber directions, for a filamentary material). Elements in

which the principal material directions are not aligned with the

global coordinate axes are transformed to global coordinates using

the orthotropic axis data entered in part C (see Note 10).

(9) The Poisson's ratio PR..(I) defines the lateral contraction in

direction j due to a unit extension in direction i. Care should be

taken to ensure that these values satisfy the symmetry conditions

and other restrictions summarized in Chapter 2.

(10) The definitions of material axis directions is depicted in Figure

8.5. 11. NODEZ defines an "origin of coordinates," located arbitrarily

in space; NODE2 locates the first principal direction of the material

by specifying any point on the I-axis. NODE3 is any third point

which, together with NODE 1 and NODE2, uniquely defines the 1-2 plane

(i.e., the three nodes should not be collinear). Repeat card C-i

as required to define all orthotropic axis systems for this element

type. The nth line entered in this section defines material axis

set n, for n = 1, 2, ... , NAXIS.

(11) Valid element numbers are 1, 2, ..., NELEM. Elements must be defined

sequentially, but intermediate elements can be generated automatically

(see Note 14, below). Cards D-1 and D-2 are repeated as needed to

define all Type 7 elements in the model. Following the last element,

a single blank card (setting IEL = 0) is entered to terminate

input for element Type 7.

(12) The output code determines whether or not integration point stress

output will be printed for element IEL. A blank field causes full

printing for the element; an "N" in column 6 suppresses stress output.

4 (13) Integration orders available for the variable-node solid element are

2 and 3 point Gaussian rules, corresponding to 8 and 27 integration
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points per element, respectively. The non-Gaussian 14-point

integration rule is selected by setting INT = 14. Locations of

integration points for INT = 2, 3, and 14 are listed in Tables

8.5.12 through 8.5.14, respectively.

(14) A nonzero value of KGEN on the eecond card of a pair causes elements

between the last and current elements to be generated automatically.

With the exception of node numbers, all elements generated are

assigned the same data as the current element. Local node numbers

for the previous element are incremented by KGEN to generate each

succeeding element. Only nonzero local node numbers are incremented,

and node numbers for the current element need not be given. More

than one element must be generated to use this feature. If element

cards are omitted but KGEN = 0, a default value of I is used.

(15) ISUP should be set to zero for linear analysis. in a nonlinear

solution ISUP = 0 permits full nonlinearities to be included in the

stiffness calculation for an element. If ISUP = 1 for a nonlinear

element, the original (linear) stiffness matrix is used throughout

the solution for the element in question. Nonlinearities in elements

having ISUP = 1 are taken into account by means of equilibrium P.

correction, as in constant stiffness iteration. The use of ISUP = 1

is appropriate for regions in a structure which experience very mild

nonlinearities. If ISUP = -1 for a nonlinear element, the nonlinear

stiffness is reformulated at each increment using an approximate

calculation based upon the average values of the nonlinear terms over

the element. For ISUP = -1, internal forces are still evaluated exactly

at all times, to avoid erroneous results. The use of ISUP = -1 results

in considerable savings of computer time in nonlinear analysis, but

should not be used without equilibrium iteration (Section 8.3).

(16) Local node numbering proceeds as shown in Figure 8.5.10. Nodes 1

4 through 8 (vertices) are required for all elements. Nodes 9 through 20

are each optional, and element interpolation functions generated by the

program automatically account for the absence or presence of each

local node.

. (17) Card D-2 must be entered, even if local nodes 12 through 20 are not

used in a particular element.
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TABLE 8.5.12

INTEGRATION POINT LOCATIONS FOR VARIABLE 8-20 NODE
SOLID ELEMENT WITH INT = 2

Nearest
Point Node r s t

1 7 -h* -h -h

2 3 -h -h h

3 6 -h h -h

4 2 -h h h

5 8 h -h -h

6 4 h -h h

7 6 h h -h

8 1 h h h

* h = 0.5773502691896

8 5-
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TABLE 8.5.13
INTEGRATION POINT LOCATIONS FOR VARIABLE 8-20 NODE

SOLID ELEMENT WITH INT = 3

Nearest

Point Node r s t

1 7 -h* -h -h

2 19 -h -h 0

3 3 -h -h h

4 14 -h 0 -h

5 24 -h 0 0

6 10 -h 0 h

7 6 -h h -h

8 18 -h h 0

9 2 -h h h

10 15 0 -h -h

11 25 0 -h 0

12 11 0 -h h

13 26 0 0 -h

14 27 0 0 0

15 23 0 0 h

16 13 0 h -h

17 22 0 h 0

- 18 9 0 h h

19 8 h -h -h

20 20 h -h 0

21 4 h -h h

22 16 h 0 -h

23 21 h 0 0

24 12 h 0 h

25 5 h h -h

26 17 h h 0

27 1 h h h

• h = 0.7745966692415
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TABLE 8.5.14

* INTEGRATION POINT LOCATIONS FOR VARIABLE 8-20 NODE
SOLID ELEMENT WITH INT =14

Point rSt

1 *...a0 0

2 a 0 0

3 0 -a 0

4 0 a 0

5 0 -a

6 0 0 a

7 **-b -b -b

8 -b b -b

9 -b -b b

10 -b b b

11 b -b -b

12 b b -b

13 b -b b

14 b b b

* a = 0.795822426

0 ** b - 0.758786911
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8.5.8 Data for Element Type 8

(Three-Dimensional, Isoparametric Sixteen-Node
Solid/Thick Shell)

A. HEADER CARD, ELEMENT TYPE 8

CARD COL DATA DESCRIPTION NOTES

1-5 ITYPE Element Type; Enter the Number "8"

6-10 NMAT Number of Material Property
Sets

11-15 NELEM Number of Elements of this Element
Type

16-20 NAXIS Number of Orthotropic Axis
Definitions

B. MATERIAL PROPERTIES DATA, ELEMENT TYPE 8

- For each initially isotropic material, enter
properties data from Section B-l, below (one
card/material)

- For each elastic orthotropic material, enter
properties data from Section B-2, below (two
cards/material)

- NMAT material property sets should be defined
in this data block.

8

I
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* B-I. Isotropic Material Properties

CARD COL DATA DESCRIPTION NOTES

1-10 EE(I) Elastic Modulus (1)

11-20 PR(I) Poisson's Ratio

21-30 DNS(I) Mass Density (2)

31-40 YLD(I) Equivalent Stress at First Yield (3)

41-50 DEMAX(I) Maximum Strain Subincrement (4)

51-60 GAMMA(I) Ratio of Yield Surface Expansion (5)
to Translation for Combined
Isotropic and Kinematic Strain
Hardening

61-65 IHARD(I) Strain-Hardening Type Code (6)

=1: Isotropic Hardening

=2: Kinematic Hardening

=3: Combined Isotropic and
Kinematic Hardening, with

Constant Proportions of
Yield Surface Expansion
and Translation

66-70 ISSC(I) Number of Data Curve Containing (7)
Uniaxial Stress Strain Data for
this Material

71-80 ALPHA(I) Coefficient of Thermal Expansion

.
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B-2. Orthotropic Material Properties

CARD COL DATA DESCRIPTION NOTES

1 1 MTYPE Literal "A" - Flag for Orthotropic

Materials Data

2-10 El(I) Elastic Modulus in Direction 1 (8)

11-20 E2(I) Elastic Modulus in Direction 2 -

21-30 E3(I) Elastic Modulus in Direction 3 -

31-40 G12(I) Shear Modulus in Plane 1-2

41-50 G13(I) Shear Modulus in Plane 1-3

51-60 G23(I) Shear Modulus in Plane 2-3

2 1-10 PRI2(I) Poisson's Ratio in Plane 1-2 (9)

11-20 PR13(I) Poisson's Ratio in Plane 1-3

21-30 PR23(I) Poisson's Ratio in Plane 2-3

31-40 DNS(I) Mass Density (2)

41-50 ALPHAl(I) Coefficient of Thermal Expansion
in Direction 1

51-60 ALPHA2(I) Coefficient of Thermal Expansion
in Direction 2

61-70 ALPHA3(I) Coefficient of Thermal Expansion
in Direction 3
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C. ORTHOTROPIC MATERIAL AXIS DATA, ELEMENT TYPE 8

- Enter NAXIS sets of orthotropic axis data in this

section

- If NAXIS < 0, skip this data block.

CARD COL DATA DESCRIPTION NOTES

1 1-5 NODEl(I) Node Number Defining Origin of (10)
Coordinates

6-10 NODE2 (I) Node Number Defining Material
Direction 1

11-15 NODE3 (I) Node Number Defining one
Additional Point in the 1-2
Plane of the Material
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D. ELEMENT DEFINITION DATA, ELEMENT TYPE 8

(A single blank card terminates input)

CARDi COL DATA DESCRIPTION NOTES

1 1-5 IEL Element Number (11)

6 TOUT Output Code (Blank or "N") (12)

7-10 IPR Material Property Set for this
Element

11-13 IAX Orthotropic Axis Set

14-15 INT Order of Numerical Integration (13)

16-20 KGEN Node Increment for Element (14)
Generation

21-25 ISUP Stiffness Generation Code (15)

26-30 N(l) Local Node Number 1 (16)

31-35 N(2) Local Node Number 2

75-80 N(11) Local Node Number 11

2 1-5 N(12) Local Node Number 12

6-10 N(13) Local Node Number 13

21-25 N(16) Local Node Number 16

8.5.78
'4



3
10

I 2

66

12r 13

t12

Figure 8.5.12 Nodal Connectivity for Sixteen Node Solid Element.
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" "NOTES:

(1) Repeat card set B-1 or B-2 for each material property set to be defined.

The nth card set entered irn this section defines material property set

n for n =, 2,..., NMAT.

(2) Mass densities are entered in a Force-Length-Time system of units

consistent with those used elsewhere in the data. For example, in

British units, mass density is entered in units of lbf-sec 2/in
4

The mass density of aluminum, for instance, would be entered as
3 2 2 4

p = (0.1 lb/in )/(386.4 in/sec 2) = 0.000259 lbf-sec /in

(3) Omit yield stress as input if material nonlinearities are to be

neglected. Default value set to 1.0 x 12.

(4) The program attempts to follow the material stress-strain curve as

closely as possible, using a subincremental method of analyzing

plastic flow. Each increment of time or load is divided into several

"strain subincrements" at which material behavior is analyzed.

DEMAX(I) is the largest value of any incremental strain component

which is permitted before stresses, strains, and the constitutive

law are reevaluated. Default value set to 0.00020.

(5) Applies only when IHARD(I) = 3 (combined hardening rule). Definition

of y is discussed in Chapter 2.

(6) Isotropic hardening permits a uniform expansion of the yield locus
in stress space; it predicts no Bauschinger effect, and is generally

applicable in elastic-plastic problems involving nearly proportional

systems of loading. Kinematic hardening allows the yield locus to

translate in stress space, giving an "ideal" Bauschinger effect.

The combined hardening rule, which permits both expansion and

translation of the yield surface, is sometimes preferable for

unloading and cyclic plasticity problems. Default hardening type

is isotropic.

(7) Uniaxial stress-strain data for a material are entered in Section 8.9,

DATA CURVES. ISSC(I) is the index of a particular data curve

6 I describing the uniaxial stress-strain behavior of the current material.

Note that uniaxial material curves are represented as piecewise
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linear functions, giving equivalent stress versus equivalent plastic

strain; that is, the required data in Section 8.9 defines

aeq vs. (s-a/E) for aeq > ayield*

(8) Orthotropic material properties must be defined with respect to the

principal directions of the material (e.g., parallel and perpendicular

to the fiber directions, for a filamentary material). Elements in

which the principal material directions ae not aligned with the

global coordinate axes are transformed to global coordinates using

the orthotropic axis data entered in part C (see Note 10).

(9) The Poisson's ratio PR. .(I) defines the lateral contraction in

direction j due to a unit extension in direction i. Care should be

taken to ensure that these values satisfy the symmetry conditions

and other restrictions summarized in Chapter 2.

(10) The definition of material axis directions is depicted in Figure

8.5.13. NODEl defines an "origin of coordinates," located arbitrarily

in space; NODE 2 locates the first principal direction of the material

by specifying any point on the 1-axis. NODE3 is any third point

which, together with NODEl and NODE2, uniquely defines the 1-2 plane

(i.e., the three nodes should not be collinear). Repeat card C-1

as required to define all orthotropic axis systems for this element

type. The nth line entered in this section defines material axis set

n, for n = 1, 2, ... , NAXIS.

(11) Valid element numbers are 1, 2, ..., NELEM. Elements must be defined

sequentially but intermediate elements can be generated automatically

(see Note 14, below). Cards D-1 and D-2 are repeated as needed to

define all Type 8 elements in the model. Following the last element,

*a single blank card (setting IEL = 0) is entered to terminate

input for element Type 8.

(12) The output code determines whether or not integration point stress

output will be printed for element -EL. A blank field causes full

printing for the element; an "N" in colwn 6 suppresses stress output.

(13) Integration orders available for the sixteen-node solid element are

2 and 3 point Gaussian rules, corresponding to 8 and 27 integration

8.5.82
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points per element, respectively. The non-Gaussian 14-point

integration rule is selected by setting INT = 14. Locations of

integration points for INT = 2, 3, and 14 are listed in Tables

8.5.15 through 8.5.17, res.vectiveZy.

(14) A nonzero value of KGEN on the second card of a pair causes elements

between the last and current elements to be generated automatically.

With the exception of node numbers, all elements generated are

assigned the same data as the current element. Local node numbers

for the previous element are incremented by KGEN to generate each

succeeding element. Node numbers for the current element need not

be given. More than one element must be generated to use this

feature. If element cards are omitted by KGEN 0 0, a default value

of 1 is used.

(15) ISUP should be set to zero for linear analysis. In a nonlinear

solution ISUP = 0 permits full nonlinearities to be included in

the stiffness calculation for an element. If ISUP = 1 for a nonlinear

element, the original (linear) stiffness matrix is used throughout

the solution for the element in question. Nonlinearities in

S.-I  elements have ISUP = 1 are taken into account by means of equilibrium

correction, as in constant stiffness iteration. The use of ISUP = 1

is appropriate for regions in a structure which experience very mild

nonlinearities. If ISUP = -1 for a nonlinear element, the nonlinear

stiffness is reformulated at each increment using an approximate

calculation based upon the average values of the nonlinear terms over

the element. For ISUP = -1, internal forces are still evaluated

exactly at all times, to avoid erroneous results. The use of

ISUP = -1 results in considerable savings of computer time in

nonlinear analysis, but should not be used without equilibrium

iteration (Section 8.3.).

4 (16) Local node numbering proceeds as shown in Figure 8.5.12.
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TABLE 8.5.15

INTEGRATION POINT LOCATIONS FOR SIXTEEN-NODE
SOLID ELEMENT WITH INT =2

Nearest
Point Node r s t

1 7 -h* -h -h

2 3 -h -h h

3 6 -h h -h

4 2 -h h h

5 8 h -h -h

6 4 h -h h

*7 5 h h -h

8 1 h h h

*h =0.5773506291896
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TABLE 8.5.16

INTEGRATION POINT LOCATIONS FOR SIXTEEN-NODE
SOLID ELEMENT WITH INT = 3

Nearest
Point Node r s t

1 7 -h* -h -h

2 19 -h -h 0

3 3 -h -h h

4 14 -h 0 -h

5 24 -h 0 0

6 10 -h 0 h

7 6 -h h -h

8 18 I-h h 0

9 2 -h h h

10 15 0 -h -h

11 25 0 -h 0

12 11 0 -h h

0-1 13 26 0 0 -h

14 27 0 0 0

15 23 0 0 h

16 13 0 h -h

17 22 0 h 0

18 9 0 h h

19 8 h -h -h

20 20 h -h 0

21 4 h -h h

22 16 h 0 -h

23 21 h 0 0

24 12 h 0 h

* 25 5 h h -h

26 17 h h 0

27 1 h h h

U - * h = 0.7745966692415
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TABLE 8.5.17

INTEGRATION POINT LOCATIONS FOR SIXTEEN-NODE
SOLID ELEMENT WITH INT - 14

Point r a t

1 *-a 0 0

2 a 0 0

3 0 -a 0

4 0 a 0

5 0 0 -a

6 0 0 a

7 **-b -b -b

8 -b b -b

9 -b -b b

10 -b b b

11 b -b -b

12 b b -b

13 b -b b

. 14 b bb

"0
* a = 0.795822426

** b = 0.758786911
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8.5.9 Data for Element Type 9

(Isoparametric Plane-Stress Element with 4-9 Nodes)

A. HEADER CARD, ELEMENT TYPE 9

CARD COL DATA DESCRIPTION NOTES

1 1-5 ITYPE Element Type; Enter the Number "9" -

6-10 NMAT Number of Material Property Sets
(Maximum of 20)

11-15 NELEM Number of Elements of this Element
Type

I
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B. MATERIAL PROPERTIES DATA, ELEMENT TYPE 9

(NMAT Cards are Required in this Section) -

CARD COL DATA DESCRIPTION NOTES

1 1-10 EE(I) Elastic Modulus (1)

11-20 PR(I) Poisson's Ratio

- 21-30 DNS(I) Mass Density (2)

31-40 YLD(I) Equivalent Stress at First Yield (3)

41-50 DEMAX(I) Maximum Strain Subincrement (4)

51-60 GAMMA(I) Ratio of Yield Surface Expansion (5)
to Translation, for Combined
Strain Hardening Rule

61-65 IHARD(I) Strain Hardening Type Code (6)

=1: Isotropic Hardening

=2: Kinematic Hardening

=3: Combined Isotropic and
Ainematic Hardening

66-70 ISSC(I) Number of Data Curve Containing (7)
Uniaxial Stress-Strain Data for
this Material

71-80 ALPHA(I) Coefficient of Thermal Expansion

I .
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C. ELEMENT DEFINITION DATA, ELEMENT TYPE 9

h "(A single blank card terminates input)

CARD COL DATA DESCRIPTION NOTES

1 1-5 IEL Element Number (8)

6 IOUT Output Code (Blank or "N") (9)

7-10 IPR Material Property Set for this
Element

11-15 INT Order of Numerical Integration (10)

16-20 KGEN Node Increment for Element (11)
I -KGeneration

K. 21-25 N(l) Local Node Number 1 (12)

26-30 N(2) Local Node Number 2

31-35 N(3) Local Node Number 3

P 61-65 N(9) Local Node Number 9

66-75 THICK Element Thickness (Default = 1.0)
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Figure 8.5.14 Nodal Connectivity for Variable-Node
Plane Stress Element.
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NOTES:

.- (1) Repeat Card B-1 for each material property set to be defined. The
th

n card entered in this section defines material property set n,

for nN1, 2, . MA T.

(2) Mass densities are entered in a Force-Length-Time system of units

consistent with those used elsewhere in the data. For example, in

British units, mass density is entered in units of lbf-sec2/in4 . The

mass density of aluminum, for instance, would be entered as
3 2 2 4

p = (0.1 lb/in )/(386.4 in/sec2) = 0.000259 lbf-sec /in

(3) If material nonlinearities are to be neglected, omit the yield stress
12

as input. Default value set to 1.0 x 10

(4) The program attempts to follow the material stress strain curve as

closely as possible, using a subincremental method of analyzing

plastic flow Each increment of time or load is dividcd into several

"strain subincrements" at which material behavior is analyzed.

DEMAX(I) is the largest value of any incremental strain component

- which is permitted before stresses, strains, and the constitutGve

law are reevaluated. Default value set to 0.00020.

(5) AppLies only when IHARD(I) = 3 (combined hardening rule). Definition

K of y is discussed in Chapter 2.

(6) Isotropic hardening permits a uniform expansion of the yield locus in

stress space; it predicts no Bauschinger effect, and is generally

applicable in elastic-plastic problems involving nearly proportional

systems of loading. Kinematic hardening allows the yield locus to

translate in stress space, giving an "ideal" Bauschinger effect. The

combined hardening rule, which permits both expansion and translation

* _"of the yield surface, is sometimes preferable f-r unloading and

cyclic plasticity problems. Default hardening type is isotropic.

(7) Uniaxial stress-strain data for a material are defined in Section 8.9,

DATA CURVES. ISSC(I) is the index of the particu&" data curve,

describing the uniaxial stress--strain behavior of the

material. Note that uniaxial material curves are s

piecewise linear functions, giving equivalent stress
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equivalent plastic strain; that is, the required data in Section

8.9 defines

aeq vs. (c-a/E) for aeq > a yield*

(8) Valid element numbers are 1, 2, ... , NELEM. Elements must be

defined sequentially, but intermediate elements can be generated

automatically (see Note 11, below). Card C-1 is repeated as needed

to define all Type 9 elements in the model. Following the last

element, a single blank card (setting IEL = 0) is entered to

terminate input for Element Type 9.

(9) The output code determines whether or not integration pcint stress

output will be printed for element IEL. A blank field causes full

printing for the element; an "N" in column 6 suppresses stress

output.

(10) Integration orders available for Element Type 9 and 1, 2, and

3 point Gaussian rules, corresponding to 1, 4, and 9 integration

points per element, respectively. Locations of integration

points for INT = 2 and 3 are listed in Tables 8.5.20 and

8.5.21, respectively. Def'7a,t interction order is 3.

(11) A nonzero value of KGEN on the second card of the pair causes elements

between the last and current elements to be automatically generated.

With the exception of node numbers, all elements generated are

assigned the same data as the current element. Local node numbers

for the previous element are incremented KGEN to generate each

succeeding element. Node numbers for the current element (second

card of the pair) need not be given. More than one element must

be generated to use this feature. If element cards are omitted but

KGEN = 0, a default value of 1 is used.

(12) Local node numbers are defined as shown in Figure 8.5.14. Nodes 1-4

are required for all Type 9 elements, and each of nodes 5-9 is

optional. The presence or absence of each node is automatically

taken into account by the program.
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TABLE 8.5.18

INTEGRATION POINT LOCATIONS FOR VARIABLE-NODE
PLANE STRESS ELEMENT WITH INT =2

Nearest
Point Node r S

1 1 -h -

2 4 -h h

3 2 h -h

4 3 h h

fro

h =0.5773502691896
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TABLE 8.5.19

INTEGRATION POINT LOCATIONS FOR VARIABLE-NODE
PLANE STRESS ELEMENT WITH INT = 3

Point r s

1 -h* -h

2 -h 0

3 -h h

4 0 -h

5 0 0

6 0 h

7 h -h

8 h 0

9 h h

* h = 0.77459666.92415
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8.5.10 Data for Element Type 10

.-. (Isoparametric Axisymmetric Element with 4-9 Nodes)

A. HEADER CARD, ELEMENT TYPE 10

CARD COL DATA DESCRIPTION NOTES

1 1-5 ITYPE Element Type; Enter the Number "10"

L 6-10 NMAT Number of Material Property Sets
(Maximum of 20)

11-15 NELEM Number of Elements of this Element
Type

IMPORTANT: (1) Thermal Stress Analysis is not available with

this element

(2) Axisymmetric models must be defined within the

x-y plane; x corresponds to the radial coordinate.

,"
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B. MATERIAL PROPERTIES DATA, ELEMENT TYPE 10

*..- (NMAT Cards are Required in this Section)

CARD COL DATA DESCRIPTION NOTES

1 1-10 EE(I) Elastic Modulus (1)

11-20 PR(I) Poisson's Ratio -

21-30 DNS(I) Mass Density (2)

31-40 YLD(I) Equivalent Stress at First Yield (3)

41-50 DEMAX(I) Maximum Strain Subincrement (4)

51-60 GAMMA(I) Ratio of Yield Surface Expansion (5)
to Translation, for Combined
Strain Hardening Rule

61-65 IHARD(I) Strain Hardening Type Code

=1: Isotropic Hardening

=2: Kinematic Hardening

=3: Combined Isotropic and
Kinematic Hardening

66-70 ISSC(I) Number of Data Curve Containing (7) t7
Uniaxial Stress-Strain Data for
this Material

e

Sm
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C. ELEMENT DEFINITION DATA, ELEMENT TYPE 10

(A single blank card terminates input)

CARD COL DATA DESCRIPTION NOTES

1 1-5 IEL Element Number (8)

6 IOUT Output Code (Blank or "N") (9)

7-10 IPR Material Property Set -

11-15 INT Order of Numerical Integration (10)

U 16-20 KGEN Node Increment for Element (11)
Generation

21-25 N(l) Local Node Number 1 (12)

26-30 N(2) Local Node Number 2

31-35 N(3) Local Node Number 3

61-65 N(9) Local Node Number 9
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Figure 8.5.15. Nodal Connectivity '7or Variable-Node Axisymmetric
Element.
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NOTES:

(1) Repeat Card B-1 for each material property set to be defined. The~th
n card entered in this section defines material property set n,

for n = 1, 2, ..., NMAT.

(2) Mass densities are entered in a Force-Length-Time system of units

consistent with those used elsewhere in the data. For example, in

British units, mass density is entered in units of lbf-sec 2/in 4. The

mass density of aluminum, for instance, would be entered as
3 2 2.4o = (0.1 lb/in )/(386.4 in/sec) = 0.000259 lbf-sec /in

(3) If material nonlinearities are to be neglected, omit the yield stress

as input. Default value set to 1.0 x 10 2 .

(4) The program attempts to follow the material stress strain curve as

closely as possible, using a subincremental method of analyzing

plastic flow. Each increment of time or load is divided into several

"strain subincrements" at which material behavior is analyzed.

DEMAX(I) is the largest value of any incremental strain component

which is permitted before stresses, strains, and constitutive

law are reevaluated. De.1ault value set to 0.00020.

(5) Applies only when IHARD(I) = 3 (combined hardening rule). Definition

of y is discussed in Chapter 2.

(6) Isotropic hardening permits a uniform expansion of the yield locus in

stress space; it predicts no Bauschinger effect, and is generally

applicable in elastic-plastic problems involving nearly proportional

. systems of loading. Kinematic hardening allows the yield locus to

translate in stress space, giving an "ideal" Bauschinger effect. The

combined hardening rule, which permits both expansion and translation

of the yield surface, is sometimes preferable for unloading and

cyclic plasticity Problems. Default hardening type is isotropic.

(7) Uniaxial stress-strain data for a material are defined in Section 8.9,

DATA CURVES. ISSC(I) is the index of the particular data curve,

describing the uniazial stress-strain behavior of the current

material. Note that uniaxial material curves are represented as

- piecewise linear functions, giving equivalent stress versus

8.5.99
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equivalent plastic strain; that is, the required data in Section

8.9 defines

°eq vs. for aeq - yield*

(8) Valid element numbers are 1, 2, .. ., NELEM. Elements must be

defined sequentially, but intermediate elements can be generated

automatically (see Note 10, below). Card C-I is repeated as needed

to define all Type 9 elements in the model. Following the last

element, a single blank card (setting TEL = 0) is entered to

terminate input for Element Type 10.

(9) The output code determines whether or not integration point stress

output will be printed for element TEL. A blank field causes

full printing for the element; an "N" in column 6 suppresses

stress output.

(10) integration orders available for Element Type 9 are 1, 2, and

3 point Gaussian rules, corresponding to 1, 4, and 9 integration

points per element, respectively. Locations of integration

points for INT = 2 and 3 are listed in Tables 8.5.20 and 8.5.21,

respectively. The default order !.- TNT = 3.

K: (11) A nonzero value of KGEN on the second card of the pair causes elements

between the last and current elements to be automatically generated.

With the exception of node numbers, all elements generated are

assigned the same data as the current element. Local node numbers

for the previous element are incremented KGEN to generate each

succeeding element. Node numbers for the current element (second

card of the pair) need not be given. More than one element must

be generated to use this feature. If element cards are omitted but

KGEN = 0, a default value of 1 is used.

(12) Local node numbers are defined as shown in Figure 8.5.15. Nodes 1-4
are required for all Type 10 elements, and each of nodes 5-9 is

optional. The presence or absence of each node is automatically

taken into account by the program.
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TABLE 8.5.20

INTEGRATION POINT LOCATIONS FOR VARIABLE-NODE
AXISYMMETRIC ELEMENT WITH INT =2

Nearest
Point Node r s

1h 1h

2 4 -h h

3 2 h -h

4 3 h h

h =0.5773502691896
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TABLE 8.5.21

INTEGRATION POINT LOCATIONS FOR VARIABLE-NODE
AXISYMMETRIC ELEMENT WITH INT 3

Point r s

1-h* -h

2 -h 0

3 -h h

4 0 -h

5 0 0

6 0 h

7 h -h

8 h 0

9 h h

* h = 0.7745966692415
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8.5.11 Data for Element Type 11

(Three-Dimensional, Isoparametric Sixteen-Node
Layered Shell)

A. HEADER CARD, ELEMENT TYPE 11

CARD COL DATA DESCRIPTION NOTES

1 1-5 ITYPE Element Type; Enter the
Number "11"

6-10 NMAT Number of Material Property
Sets

11-15 NELEM Number of elements of this
Element Type

16-20 NLAM Number of Laminate Cross-
Section Definitions*

B. MATERIAL PROPERTIES DATA, ELEMENT TYPE 11

- For each initially isotropic material, enter properties
data from Section B-i, below (one card/material).

- For each elastic orthotropic material, enter properties
data from Section B-2, below (two cards/material).

- NMAT material property sets should be defined in this
data block.

" *A laminate cross-section refers to a pattern of materials
-and their relative thickness which occur through the total thickness

of a shell. Each unique combination must be defined as a separate
"cross-section."

15
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B-I. Isotropic Material Properties

CARD COL DATA DESCRIPTION NOTES

1 1-10 EE(I) Elastic Modulus (1)

11-20 PR(I) Poisson's Ratio

21-30 DNS(I) Mass Density (2)

31-40 ALPHA(I) Coefficient of Thermal Expansion (3)

41-50 YLD(I) Equivalent Stress at First Yield (4)

51-60 SLP(I) Hardening Slope (Plastic Modulus) (5)

8 .
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B-2. Orthotropic Material Properties

CARD COL DATA DESCRIPTION NOTES

MTYPE Literal "A" - Flag for Orthotropic

Materials Data

2-10 El(I) Elastic Modulus in Direction 1 (6)

11-20 E2(I) Elastic Modulus in Direction 2 -

21-30 E3(I) Elastic Modulus in Direction 3 -

31-40 G12(1) Shear Modulus in Plane 1-2 -

41-50 G13(I) Shear Modulus in Plane 1-3 -

51-60 G23(I) Shear Modulus in Plane 2-3

2 1-10 PRl2(I) Poisson's Ratio in Plane 1-2 (7)

11-20 PR13(I) Poisson's Ratio in Plane 1-3

21-30 PR23(I) Poisson's Ratio in Plane 2-3 -

el 31-40 DNS(I) Mass Density (2)

41-50 ALPHAl(I) Coefficient of Thermal Expansion (3)
in Direction 1

51-60 ALPH'2(I) Coefficient of Thermal Expansion (3)
in Direction 2

61-70 ALPHA3(I) Coefficient of Thermal Expansion (3)
in Direction 3
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C. LAMINATE DEFINITION DATA, ELEMENT TYPE 11

- For each laminate cross-section definition, enter the
data block below. NLAM laminate definitions should appear.

- At least one laminate definition is required in all
problems.

- Card 1 below is repeated as necessary to define all NLAM
cross-sections. For each laminate definition, Card 2 is
repeated for each layer of the cross-section.

CARD COL DATA DESCRIPTION NOTES

1 1-5 LAM Laminate Definition Number (8)

6-10 NLAY(LAM) Number of Layers (9)
(Min = 2, Max = 11)

t

2 1-5 LAYTYP Layer Type (10)

=0: Variable Thickness

=1: Constant Thickness

6-10 MATL Material Property Set for
this Layer

11-20 THICK Layer Thickness (LAYTYP = 1) (11)
or Thickness Fraction
(LAYTYP = 0)

21-30 ANGLE Orthotropic Material Axis (12)

Orientation for this Layer

8.5.106
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Variable-thickness (LAYTYP = 0)

Constant-thickness (LAYTYP = 1)

o Constant-thickness layers are of uniform thickness in the
direction (approximately) normal to the layer

* Thicknesses of variable-thickness layers are distributed
according to thickness fractions from the remaining
thickness of an element

* All layers may have completely independent material
properties and/or material axis orientations

e At least one layer must have variable thickness

Figure 8.5.16. Layer Type Definitions for Multilayered
Shell Finite Element.
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Figure 8.5.17. Definition of Orthotropic Material '
Axis Orientation for a Shell Layer.
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D. ELEMENT DEFINITION DATA, ELEMENT TYPE 11

(A single blank card terminates input)

CARD COL DATA DESCRIPTION NOTES

1 1-5 IEL Element Number (13)

6 IOUT Output Code (Blank or "N") (14)

7-10 ILAM Laminate Number for this (15)
Element

11-15 INT Order of Numerical (16)
Integration

16-20 KGEN Node Increment for Element (17)
Generation

21-25 (Blank) (Inactive Option)

26-30 N(l) Local Node Number 1 (18)

31-35 N(2) Local Node Number 2

75-80 N(11) Local Node Number 11

2 1-5 N(12) Local Node Number 12

6-10 N(13) Local Node Number 13

21-25 N(16) Local Node Number 16

L
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Figure 8.5.18. Nodal Connectivity for Sixteen-Node
Layered Shell Element.
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NOTES:

(1) Repeat card set B-1 or B-2 for each material property set to be
th

defined. The n card set entered in this section defines material

property set n for n = 1, 2, ... , NMAT.

(2) Mass densities are entered in a Force-Length-Time system of units

consistent with those used elsewhere in the data. For example, in
2.4British units, mass density is entered in units of lbf-sec /in

The mass density of aluminum, for instance, would be entered as

* 02 bi 3  2 2.4P = (0.1 Win )/(386.4 in/sec ) = 0.000259 lbf-sec /in

(3) The coefficient of thermal expansion may be input but is not used.

Thermal stress analysis is currently not available with Element

Type 11.

(4) Omit yield stress as input if material nonlinearities are to be

neglected. Default value set to 1.0 x 1012.

(5) SLP(I) represents the strain-hardening slope of the material in the

. plastic range, dod . SLPI) may be determined from a bilinear
p

representation of the material stress-strain curve (elastic modulus

E, tangent modulus ET) using the relation SLP(I) = EE2 (E - ET).

Isotropic strain hardening is assumed in all elastic-plastic

materials with this element type.

(6) Orthotropic material properties must be defined with respect to the

principal directions of the material (e.g., parallel and perpendicular

to the fiber directions, for a filmentary material). Elements in

which the principal material directions are not aligned with the

global coordinate axes are transformed to global coordinates using

the laminate definition data of Section C.

(7) The Poisson's ration PR.. (I) defines the lateral contraction in

direction j due to a unit extension in direction i. Care should be
taken to ensure that these values satisfy the symmetry conditions

and other restrictions swmarized in Chapter 2.

8 .
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(8) Each Type It element is defined by its nodal connections and by

reference to one of the laminate definitions entered in this section.

At least one laminate definition must appear in this input section.

(9) "Layers" may refer to a true layered construction (multiple materials,

or axis orientations), or may be defined to enhance resolution of

:' yielded zones through the thickness of the shell. Each laminate

must consist of at least two layers (they may be identical). Materials,

thicknesses and material axes are entirely independent from layer to

layer. Layers are numbered sequentially starting from the bottom

layer (i.e., the layer nearest to the -t element surface).

(10) LAYTYP = 1 specifies a layer whose thickness is constant over an

entire element, even though the total element thickness may be

variable. LAYTYP 0 defines a layer whose thickness may vary

quadratically over an element. These conventions are illustrated in

Figure 8.5.16.

(11) For LAYTYP = 1 (constant thickness layer), THICK defines the acual

thickness for this layer. If LAYTYP = 0 (variable thickness) a

"thickness fraction" is defined. The thickness of the layer at any

point in an element is then "

tlayer = [ ttotal - (constant layer thicknesses)] • THICK

where t total s computed from the node coordinates.

The sum of all the thickness fraction values for LAYTYP = 0 layers
is always scaled so that the sum of the thickness fractions is one.

(12) The "3" direction of an orthotropic material is assumed to be in
the shell thickness direction. The orientation of the orthotropic

(1,2) axes is controlled by ANGLE, which is measured in degrees

counter clockwise from a line connecting nodes 1 and 2 of an element

(see Figure 8.5.17).

(13) Valid element numbers are 1, 2, ... , NELEM. Elements must be defined

sequentially, but intermediate elements can be generated automatically

(see Note 17, below). Cards D-1 and D-2 are repeated as needed to

define all Type 11 elements in the model. Following the last element,
a single blank card (setting IEL = 0) is entered to terminate

input for Element Type 11.
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. (14) The output code determines whether or not integration point stress
-i. output will be printed for element IEL. A blank field causes full

printing for the element; an "N" in column 6 suppresses stress output.

(15) Each element must reference one of the laminate definitions entered

in Section C. The top layer of the laminate is nearest the (+t)

element surface (containing nodes 1- 4).

(16) Integration orders available for the element are 2 and 3 point

Gaussian rules, corresponding to 4 and 9 integration points per

element, respectively. Integration through the element thickness is

always performed analytically. The default value of INT = 2 is

suggested for general use. Locations of integration stations at

the upper and lower surfaces of each layer are shown in Table 8.5.22.

(17) A nonzero value of KGEN on the second card of a pair causes elements

between the last and current elements to be generated automatically.

With the exception of node numbers, all elements generated are

assigned the same data as the current element. Local node numbers

for the previous element are incremented by KGEN to generate each

succeeding element. Node numbers for the current element need not

be given. More than one element must be generated to use this

feature. If element cards are omitted but KGEN = 0, a default value

of 1 is used.

(18) Local node numbering proceeds as shown in Figure 8.5.18.
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TABLE 8.5.22

INTEGRATION POINT LOCATIONS FOR SIXTEEN-NODE

LAYERED SHELL ELEMENT

Nearest

Point Nodes r** s**

1 1,5 -h* -h

2 4,8 -h h

3 2,6 h -h

4 3,7 h h

* h = 0.5773502691896

** A similar array of integration points is located

at the upper and lower surfaces of each layer.

8.5.113(a)



8.5.12 Data for Element Type 12

(Three-Dimensional Isoparametric Curved Beam)

A. HEADER CARD, ELELMENT TYPE 12

CARD COL DATA DESCRIPTION NOTES

1 1-5 ITYPE Element Type; Enter the
Number "12"

6-10 NMAT Number of Materio' Property
Sets (< 10) /

/
11-15 NELEM Number of Elements of this

Element Type

16-20 NSEC Number of Beam Section
Properties (< 10)

B. MATERIAL PROPERTIES DATA, ELEMENT TYPE 12

- For each material, enter properties data below (one card/
material).

- NMAT material property sets should be defined in this data
block.

CARD COL DATA DESCRIPTION NOTES

1 1-10 E(I) Elastic Modulus

11-20 G(I) Shear Modulus (1)

21-30 RHO(I) Mass Density (2)

31-40 SY(I) Yield Stress (3)

41-50 H(I) Hardening Slope (4)

51-60 ALPHA(I) Coefficient of Thermal (5)
Expansion
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C. SECTION PROPERTIES DATA, ELEMENT TYPE 12

- For each beam section to be defined, enter geometric data
below (2-5 cards/section).

- NSEC section properties should be defined in this data
block.

CARD COL DATA DESCRIPTION NOTES

1 1-5 ISEC Section Property Number (6)

6-10 NSEG Number of Segments in this (7)
Beam Cross-Section

11-20 ZD(l) Default local Z-Axis Orientation (8)
for this Cross-Section

21-30 ZD(2)

31-40 ZD(3)

2 1-10 YDIM(ISEG) Segment Width (9)

11-20 ZDIM(ISEG) Segment Depth (9)

21-30 YOFF(ISEG) Segment Y-Offset (10)

31-40 ZOFF(ISEG) Segment Z-Offset (10)
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• 1 1 Segment

2 Segments

3 Segments

4 Segments

Figure 8.5.19. Some Typical Beam Sections Constructed
from Rectangular Segments.
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4 Figure 8.5.20. Beam Cross-Section Parameters.
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1 Segment
9 Integration Points

* 4 Segments

36 Integration Points
(.5 overlap)

0

4 Figure 8.5.21. Cross-Sectional Integration Stations-
in Curved Beam Element.
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- Each of nodes "3" and "4" is optional

- Nodes "3" and "4" may be identical in
curved elements

z

4 -

Figure 8.5.22. Connectivity and Local Axis Conventions
-,, " for Beam Element.
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D. ELEMENT DEFINITION DATA, ELEMENT TYPE 12

(A single blank card terminates input)

CARD COL DATA DESCRIPTION NOTES

1 1-5 IEL Element Number (11)

6 IOUT Output Code (Blank or "N") (12)

7-10 MATL Material Property Set
Number

11-15 ISEC Section Property Number (13)

16-20 KGEN Node Increment for Element (14)
Generation

21-25 N(l) Local Node Number 1 (15)

26-30 N(2) Local Node Number 2

31-35 N(3) Local Node Number 3 (16)
(Optional)

36-40 N(4) Auxiliary Node for Local (17)
Placement (Optional)
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RULES FOR LOCAL BEAM AXIS ORIENTATIONS

- Local X-axis is tangent to reference axis, proceeding
from node 1 to node 2

- Local z'-axis is determined at any point on the
reference axis by the following conventions:

(1) if node 4 is specified, z is oriented normal
to the line connecting nodes 1 and 2, passing
through node 4

(2) otherwise, the default z-axis orientation for
the cross-section is used

(3) if neither of the above apply, the global Z axis
is tried as the local z direction (followed by
global X, then global Y).

- Local y is finally determined from z'® x, and
local z from x y
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NOTES:

(1) For beam elements, G may be specified independently of E, for the

purpose of introducing shear correction factors, etc. Note that

the value of G affects both the torsional behavior and the trans-

verse shear deformation of the element.

(2) Mass densities are specified per unit volume, in a Force-Length-Time

system of units. For example, in British units, mass density is

entered in lbf-sec 2/in4 .

(3) Omit the yield stress as input if material nonlinearities are to be

neglected. Default value set to 1.0 x 1012.

(4) H(l) represents the strain-hardening slope of the material in the

plastic range, do/de . H(I) may be determined from a bilinear
p

representation of the material stress-strain curve (elastic modulus

E, tangent modulus E,) using the relation H(I) = EE2/(E - E,.

Isotropic strain hardening is assumed in all elastic-plastic

materials with this element type.

(5) The coefficient of thermal expansion may be input but is not used. - "

Thermal stress analysis is currently not available with Element

Type 12.

(6) Section properties should be numbered from one through NSEC, and

must be input in ascending order. Each Type 12 beam element is

defined by its nodal connections, a material property reference,

and reference to one of the section property definitions entered

in this Section of input.

(7) From one to four segments are permitted for each cross-section

definition. Some typical cross-sections are shown in Figure 8.5.19.

(8) All cross-section properties are defined in a local (y, z) coordinate

system perpendicular to the beam axis. ZD(1), ZD(2), and ZD(3)

are components of a vector which defines the default local z-axis

direction for elements in which the local directions are not

specified elsewhere.
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(9) The size of each cross-section segment is defined by its width and

depth in the local (y-z) system for an element. Fach segment is

rectangular, as shown in Figure 8.5.20. rn nonlinear analysis, the

segment definitions also determine the array of points used for

stress storage and integration of beam internal forces (Figure 8.5.21.)

(10) YOFF and ZOFF specify the distance of the centroid of a segment to

the reference axis (through the nodes) of the beam. For a segment

whose centroid coincides exactly with the nodes of the beam, YOFF

and ZOFF are zero. Note that if NSEG > 1, YOFF or ZOFF will be

nonzero for at least (NSEG - 1) segments.

(11) Valid element numbers are 1, 2, ... , NELEM. Elements must be

defined sequentially, but intermediate elements can be generated

automatically (see Note 14, below). Card D-1 is repeated as needed

to define all Type 12 elements in the model. Following the last

element, a single blank card (setting IEL = 0) is entered to

terminate input for Element Type 12.

(12) The output code determines whether or not integration point stress

output will be printed for element IEL. A blank field causes full

printing for the element; on "N" in colun 6 suppresses stress

output.

(13) Each element must reference one of the cross-section definitions

entered in Section C. Note that offsets and local axis directions

may be overridden by additional input on the element data cards.

(14) A nonzero value of KGEN on the second card of a pair causes

elements between the last and current elements to be generated

automatically. With the exception of node numbers, all elements

generated are assigned the same data as the current element. Local

node numbers (if nonzero) for the previous element are incremented

by KGEN to generate each succeeding element. Node numbers for the

current element need not be given. More than one element must be

generated to use this feature.

(15) Local node numbering proceeds as shown in Figure 8.5.22.
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(16) The third local node (at mid-element) is optional and may be

omitted. When node N(3) is not used, the element is straight and

uses linear interpolation. When node N(3) is included, the element

may be curved, and is based upon quadratic interpolation.

(17) Node N(4) is an additional point used to determine the local axis

direutions of the beam element. The local (xz) plane of the

element is determined by nodes N(1), N(2), and N(4), as shown in

Figure 8.5.20. and 8.5.22. In curved beam elements, node N(4) may

be the same as node N(3); in this case, the local z-axis is located

in the plane of the element, always perpendicular to the reference

axis of the beam. If node N(4) is not specified, the default

orientation of the cross-section is used, as input in Section C.
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8.6 DATA FOR SURFACE CONTACT ANALYSIS

(Required for Nonlinear Analysis when IOPT(15)=l)

A. SIZING DATA

CARD COL DATA DESCRIPTION NOTES

1 1-5 NSESET Number of Surface Element Sets (1)

6-10 NSUREL Total Number of Surface Elements
to be Defined

B. SURFACE ELEMENT SET LIMITS

- Repeat Card B-1 as required to define the last element
in each surface element set (enter 16 values per line)

CARD COL DATA DESCRIPTION NOTES

1 1-5 IESET(l) Last Element in Set 1 (1)

6-10 IESET(2) Last Element in Set 2

11-15 IESET(3) Last Element in Set 3

76-80 IESET(16) Last Element in Set 16
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C. INTERACTION TABLE FOR SURFACE ELEMENT SETS

CARD COL DATA DESCRIPTION NOTES

1 1-5 NENTRY Number of Nonzero Entries in (2)
Interaction Table

2 1-5 ISLSET Element Set for Slave Nodes (3)

6-10 IMSSET Element Set for Master Surface (3)
Elements (>ISLSET)

- Repeat Card C-2 as required to define all nonzero

entries in the interaction table (i.e., NENTRY lines)

D. SURFACE ELEMENT DEFINITION DATA

CARD COL DATA DESCRIPTION NOTES

1 1-5 IEL Surface Element Number (4)

6-10 KGEN Node Increment for Element (5)
Generation f

11-15 N(l) Local Node Number 1 (6)

16-20 N(2) Local Node Number 2

21-25 N(3) Local Node Number 3

51-55 N(9) Local Node Number 9

- Repeat Card D-1 as required to define NSUREL Surface
Elements.
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Figure 8.6.1. Connectivity for Variable-Node,

Three-Dimensional Contact Element
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NOTES:

(1) Surface Elements must be defined sequentially by sets; element sets

are then used in Section C to define those combinations of elements

which are to be examined for contact conditions. Elements 1, 2, ... ,

IESET(1) belong to surface element set number 1, elements IESET(1)

+ 1 through IESET(2) belong to Element Set 2, and so on. Thus,

rESET(I+1)>IESET(I) is always reauired, and IESET(NSESET)=NSUREL.

(2) The interaction table defines combinations of surjace element sets

which are to be examined for possible contact. The maximum value of

NENTRY is NSESET*(NSESET-1)/2.

(3) Each pair (ISLSET,IMSSET) defines a combination of surface element

sets to be examined for possible contact at each step of the analysis.

Each node of each element in set ISLSET will be compared with every

surface element in set IMSSET to determine contact conditions. When

contact is detected, constraints are applied to nodes in the slave

node set to prevent motions which are not tangent to the surface

element in IMSSET. Note that ISLSET must always be less than IMSSET.

Sets specified as slave node sets in one entry of the table may

be assigned as master surface sets in subsequent entries, if

required.

(4) Card D-1 should be repeated as required to define all surface

elements in the model. Elements need not be defined in sequential

order; however, the highest-numbered element (element NSUREL) must be

defined last. Input is finished when element NSUREL has been defined.

(5) A nonzero value of KGEN on the second card of a pair causes intermediate

elements to be generated by incrementing each nonzero node of the

previous element by KGEN.

(6) Local node point numbering for surface contact elements is shown

in Figure 8.6.1. Nodes N(1) through N(4) are always required for each

surface element. Each of the local nodes N(5) through N(9) are

optional, and the absence or presence of each node is automatically

taken into account in the program. Generally, the number of nodes

used in a particular element will be the same as that on the

corresponding surface of the structural finite element at the same

location.

8.6.4



8.7 BOUNDARY CONDITIONS

(Required)

Boundary conditions can be supplied to the program in

three ways*:

1. Constraint of a specified range of nodes (with
specified increment) in selected nodal components.
Used for homogeneous constraints (zero displacement)
only.

2. Constraint of selected nodal components for a list of
of nodes. Used for homogeneous constraints only.

3. Linear, multivariable constraints between global
displacement variables.

A. BOUNDARY CONDITION INPUT CONTROL DATA

CARD COL DATA DESCRIPTION NOTES

1 1-5 NBC1 Number of Type 1 Constraints

O 6-10 NBC2 Number of Type 2 Constraints

11-15 - (Blank)

16-20 NLCC Number of Linear Constraint
Conditions

21-25 MLCT Maximum Number of Terms in a Single
Linear Constraint Equation

*Note that nonzero prescribed displacements may also be
specified, as part of the nodal point force data in Section 8.10.
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B. TYPE 1 CONSTRAINT DATA

(Range of nodes constrained in specified components)

- Omit this section if NBC1 = 0.

- Repeat cards 1 and 2 as required (NBC1 times).

CARD COL DATA DESCRIPTION NOTES

1 1-5 Ni Beginning Node Number (1)

6-10 N2 Ending Node Number

11-15 INCR Node Number Increment

2 1-5 JD(l) First Nodal Component Constrained (1),(2)

6-10 JD(2) Second Nodal Component Constrained -

46-50 JD(10) Tenth Nodal Component Constrained

C. TYPE 2 CONSTRAINT DATA

(Specified Components Constrained at List of Nodes)

- Omit this Section if NBC2 = 0.

- Repeat cards 1 and 2 as required (NBC2 times).

CARD COL DATA DESCRIPTION NOTES

1 1-5 JD(l) First Nodal Component Constrained (3)

6-10 JD(2) Second Nodal Component Constrained

46-50 JD(10) Tenth Nodal Component Constrained

2 1-5 ND(l) First Node Constrained (3)

6-10 ND(2) Second Node Constrained

46-50 ND(10) Tenth Node Constrained -
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NOTES:

(1) Nodes NI, N1 + INCR, N1 + 2*INCR,...,N2 are constrained in nodal

components JD(i) through JD(1O). Note that the meaning of the

nodal component numbers JD(I) depends upon the solution variable

set used (see Section 8.2, SOLUTION OPTIONS AND CONTROL PARAMETERS).

For example, with IOPT(1) = I, the Cartesian displacement components

are U = 1, V = 2, W = 3. When IOPT(1) = 2, rotational freedoms are

numbered 0 = 4, 0 = 5, e = 6.x y z

(2) IMPORTANT: When IOPT() = 2 (rotational degrees of freedom

permitted), all rotations at nodes not connected to elements which

use rotational degrees of freedom are automatically suppressed.

For exanple, if both beam (Type 12) and solid (e.g., Type 8) elements

are used in the model, rotational degrees of freedom will be

activated only for nodes connected to the beam elements.

(3) Each of the nodes ND(1) are constrained in the specified components

JD(J); some of the ND(I) and JD(J) may be zero.

4

8.7.3



8.8 LINEAR CONSTRAINT DATA

(Optional for all analysis types)

Data entered in this section enforces linear constraint

relationships between global degrees of freedom (e.g., to enforce

skewed boundary conditions or rigid links within the model). The

total number of constraints of this type, including both input and

generated constraint equations, is defined in Section 8.7 (NLCC).

CARD COL DATA DESCRIPTION NOTES

1 1-5 NTERM Number of Terms in the Current
Constraint Equation

6-10 NUMC Number of Constraints to be (1)
Generated

11-15 KGEN Node Number Increment for Constraint (1)
Generation

2 1-5 NOD(l) Node Number (2)
6-10 IC(l) Direction (2)

11-20 XM(l) Multiplier (2)

21-25 NOD(2) Node Number

26-30 IC(2) Direction

31-40 XM(2) Multiplier

61-65 NOD(4) Node Number

66-70 IC(4) Direction
0

71-80 XM(4) Multiplier

- For each constraint, Card 2 is repeated as required
to define all terms in the equation (four terms/,
card).

Repeat Cards 1,2 until NLCC constraints have beendefined.

8.8.1
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NOTES:

(1) The values NUMC and KGEN can be used to generate a series of linear

constraints, when the number of terms, the nodal components, and

multipliers are identical. NUMC constraints will be generated

(including the one input), by incrementing each of the node numbers
involved in the constraint by KGEN each time. IF NUMC = 0, only the

input constraint is generated; if NUMC.GT.0 and KGEN = 0, KGEN is

assigned a default value of one.

(2) The node number NOD(I), and direction IC(I) = 1,2,3, and multiplier

XM(I) define a single term of the linear constraint. The form of

the constraint equation is then

NTERM
XXM(I) U (~I)

I=1

where UI) is the global displacement degree of freedom defined at

node NOD(I) in direction IC(I). Displacement degrees of freedom

which appear in linear constraint equations must not be otherwise

constrained.

8.8.2
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8.9 DATA CURVES FOR NONLINEAR AND/OR DYNAMIC ANALYSIS

- "(Required for all nonlinear analyses and all transient

dynamic analyses)

This section permits input of:

- Loading curves for nonlinear static analysis;

- Time-dependent loading functions for transient analysis;

- Time histories of prescribed nodal displacements;

- Uniaxial stress-strain data for elastic-plastic
materials, in the form of equivalent stress versus
plastic strain; and

- Temperature time-history data for thermal stress
analysis.

Cards 2 through 7 below are repeated as required to ..

define all data curves to be used in the analysis.

CARD COL DATA DESCRIPTION NOTES

1 1-5 NCURV Number of Data Curves to be Defined (1)

2 1-5 NC Data Curve Identification Number (2)

6-10 NPT Number of Point Pairs [X(I),Y(I)] (3)
Used to Define the Curve

11-80 HED Optional Alphanumeric Title

3 1-10 X(l) Abscissa for First Data Point -

11-20 Y(l) Ordinate for First Data Point

61-70 X(4) Abscissa for Fourth Data Point -

71-80 Y(4) Ordinate for Fourth Data Point

4-7 1-80 Additional Pairs [X(I),Y(I)] as (4)
shown for Card 3 ,

- -

8.9.1 ]
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NOTES:

(1) Maximum number of data curves is fifty.

(2) Data curves need not be numbered sequentially, but identification

numbers must be between 1 and 50.

(3) A maximum of twenty data points is permitted to define each curve.

(4) Cards 4-7 are supplied only as needed to define all points on the

curve. Unneeded cards should be omitted.

81

4i

-- i 8.9.2

[ *.



*~~~ ~~~~~ ------ - - -- - - --------------------

8.10 EXTERNAL LOADS

(Required for all Static and Transient Dynamic Analyses)

External forces acting on the finite element model may be

of two types:

- Concentrated forces (or imposed displacements) at
nodal points, and

- Distributed volumetric or surface forces applied to
selected elements.

These external forces are entered as data in Sections 8.10.1

(nodal loads), and 8.10.2 and 8.10.3 (distributed loads).

NOTE: Data must be entered in this Section for all static, harmonic,

and transient dynamic analyses. The number of loading

conditions (Section 8.10.1A) is always required in linear

static analysis; if no nodal forces are to be prescribed in

Section 8.10.1B or 8.10.1C, a single blank line sould be

entered to terminate nodal force input.

8.10.1 Concentrated Nodal Forces and Prescribed
Displacements

- For all linear static and steady-state harmonic
analyses, enter data from Section A and B
below.

- For all nonlinear and/or transient dynamic
analyses enter data from Section C below.

A. NUMBER OF LOADING CONDITIONS (LINEAR STATIC AND STEADY-
STATE HARMONIC SOLUTIONS)

CARD COL DATA DESCRIPTION NOTES

1 1-5 NLC Number of Loading Conditions (1)
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B. NODAL FORCES AND PRESCRIBED DISPLACEMENTS (LINEAR STATIC
AND STEADY-STATE HARMONIC ANALYSIS)

- Repeat Card 1 as required to define all nodal loads
and imposed displacements

- Input from this block is terminated with a single
blank card. If no nodal forces are to be prescribed,
enter a single blank card to terminate input.

CARD COL DATA DESCRIPTION NOTES
1 ITYPE " " (Nodal Force) or "D" (Nodal (2)

Displacement)

2-5 ICASE Load Case Number (I-NLC)

6-10 N0DE Node Number at which Load is
Applied

(I=FX,2=FY,3=FZ,4=MX,5=MY,6=MZ)

11-15 IDIR Nodal Component Number

16-25 P Load or Displacement Magnitude

C. INCREMENTAL NODAL LOADS AND PRESCRIBED DISPLACEMENT

DATA (NONLINEAR AND/OR TRANSIENT DYNAMIC ANALYSIS)

- Repeat Card 1 below as required

- Loads input is terminated with a single blank card. If no
nodal forces are to be prescribed, enter a single blank
card to terminate input.

CARD COL DATA DESCRIPTION NOTES

1 ITYPE " " (Nodal Force) or "D" (Nodal (2)
Displacement)

2-5 NODE Node Point at which Load is Applied

6-10 IC Nodal Point Component in Direction
of Load
(I=FX,2=FY,3=FZ,4=MX,5=MY,6=MZ)

11-15 NCURV Identification Number of Data Curve (3)
Describing the Time Variation of
the Load or Displacement

16-25 SCALE Scale Factor (3)
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NOTES:

(1) The number of load cases is limited only by the available storage.

In steady-state harmonic solutions, only one case is permitted

(NLC = 1).

(2) A blank field in column I (ITYPE) indicates that the input record

describes an applied nodal force. For ITYPE = "D". the current

input line defines a prescribed displacement at the node.

(3) In nonlinear and transient dynamic analyses, all loads must be

defined using DATA CURVE input (Section 8.9) to indicate dependence

of the load upon time or load parameter. At each increment of

the solution, data curve NCURV is interpolated at the current

value of time to determine the total applied load at a particular

node. Interpolated values are multiplied by SCALE and accumulated

into the total loads vector. An example of the calculation of

incremental loads data is shown in Figure 8.10.1. Prescribed

displacements (ITYPE - "D") are interpolated and scaled in exactly

the same way as nodal forces.
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DATA CURVE INPUT

X(1)=0. Y(1)= 0.

X(2)=2. Y(2)=1000.

X(3)=5. Y(3)=1300.

X

NODAL POINT LOADS INPUT

NODE IC SCALE

20 2 1.00

32 3 2.00

56 3 2.00

RESULTING NODAL FORCES VERSUS TIME

F
3000 Nodes 32,56

2000
Node 20

1000

0 Time

0 1 2 3 4 5

Figure 8.10.1. Example of Incremental Load Definition
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9.10.2 Distributed Element Forces

- Repeat Card 1 below as required to define
all element surface pressures.

- Input in this block is terminated with a
single blank card.

CARD COL DATA DESCRIPTION NOTES

1-5 IETYPE Element Type Number (1)

6-10 IBEGIN First Element to which Pressure (2)
is Applied

11-15 IEND Last Element to which Pressure (2)
is Applied (Default = IBEGIN)

16-20 INCR Element Number Increment (2)
(Default =1)

21-25 LTYP' I Loading Type and Direction Code (3)

26-30 ILIVE Live Loads Flag (4)

=0: Dead Loading

pr =1: Live Loading

31-35 ICASE Load Case Number (for Linear Static (5)
Analysis) or Data Curve
Identification Number (Nonlinear
and/or Dynamic Analysis)

36-45 P Load Magnitude (all loading types (6)
± except centrifugal)
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AS a) W (40

>4 0 0 ~ 0 U
0 U) D 0g 4>4 44W 0)ul0) V) 02l) En20)
1-4 H t4 r4 0 M2 ( 20 00 02V0En(

x >4 >1 W .44 (D 0 a)C 0o QO (d a)(
a o z 4.) w w p W04 WrZ W W N

- 0 0 04 124 04 034

-4 $4 $4 r- 1 p ( 4 4k
-4 - 0 0 0 0 ) 0 ) 0 ) : 3 0 ) : 3

13 .- 4. W D4x DW 4 N 4 $4 (1.4) a) C% 0)0 lW ) m a) Irgu a)O
>4Z 0 zd 0z~> r~'- 2)0) U20 02(2 C)02u0a ) U 2a)U

* 4 ~ C) >4 >1 >1 wW w ( a ( a)C 04 0) co a) 0 a) fu
*n .-1 to- V 4.) W4 W0 W W D4 5-i4 Pk 4 $-i4r4

04 0 0 0 0 4 P4 P4 P4 04 0i4

UI >4 go
43 E-4

0 W2 0) W) ".
u 0- 0 0 to 0) 4) W) 0) 0

.0 $4 1. 4 $4 $4 -4 WCN 4 1 41~ I-Lni W to
z- 0 0 0 ~

.- 0 .0~ W X P4>4 rT4e 4-4W 020o ) w 1) 02) a) to0) 020) w2a)
'D4 *00 040 2i0 U)0 U 2 020 Q2 w020u o

1-4 .2 UC) >4 >4 >4 w.0 a) 0 4) t (L) 0) m 4) (a Q)4 t
uo C*'I V o V 4.) $40r4 $404 lr4 w 04 44 4z 4 1.104

0 0 0 0 04 P4 P4 P4 A4 04
1-4 0)

-~ 0 0 0 40 V
w w4 w wx64 >46 $44) m 4 w o) 04C') .0

04 0 q0 0N M 0 01

>4 >1 > >1 $40r4 W) WV 4) WVa)t WVr
E-4 0 '04 V V 4.) 00 r.2 9 z

S0 0 0 *4 *d * d

0 U

* . 0 0 0 10C) X4 44 >4 4 N 44W F
Cl)q 00

E-4 >1 >4 >1 W$4 Z Z Z

0 0 0

". N m ~ .C4 m-. (% Ln' I

8.10.6



IdI

SURFACE LOCATION CORNER NODES

1 R =-1 2 -3 -7 -6

2 S=-i 3-4-8-7
3 T -1 5-6-7-8
4 r+1 1-4-8-5
5 S +1 1-5-6-2
6 T +1 1-2-3-4

(ALL PRESSURES ARE POSITIVE OUTWARD)

Figure 8.10.2. Reference Surface Numbers for Pressure Loading
on Three-Dimensional Solid and Shell Elements.
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"- LI

EEDGE 4

3

. 4

EDGE 3
": 

EDGE 1 
6 52

i-: EDGE 2

Figure 8.10.3 Edge Numbering for Two-Dimensional and
Axisymmetric Distributed Loads.
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NOTES:

(1) The types of distributed loading which are valid for each element

type are summarized in Table 8.10.1. Elements and element types

may be listed in any order in this data block.

(2) The specified loading is applied to elements IBEGIN, IBEGIN + INCR,

IEND. Element numbers on successive data cards need not be

entered in any specific order, and element numbers may be repeated

(e.g., when pressures act on more than one surface of an element).

(3) Loading type and direction codes are swn'arized in Table 8.10.1.

Surface and edge numbering for distributed loading are shown in

Figures 8.10.2 and 8.10.3.

(4) "Dead" loads (ILIVE = 0) are independent of the deformation of the

element, and therefore are defined with reference to the undeformed

element geometry. "Live" loads (ILIVE = 1) always act in the

direction normal to the current element surface (as follower forces),

and are defined as the force per unit deformed surface area, length

or volume. Live loads are permitted only in nonlinear analysis

(static or dynamic).

(5) In linear static analysis, ICASE is interpreted as a loading

condition number (the total number of load conditions, NLC, is

defined in Section 8.10.1-A). For nonlinear or transient dynamic

analysis types, ICASE is the number of the user-defined data

curve which describes the time variation of this load. Data curves

are defined in Section 8.9. In steady-state harmonic analysis,

ICASE is not used.

(6) Positive values of P define surface forces directed outward from

the surface or edge in question. For linear static or harmonic

analysis, P is simply the load magnitude; in nonlinear/dynamic

solutions, the time-dependent function defined by data curve ICASE

(see Note 5) is multiplied by P to obtain the loading value at

any given time. This entry is ignored if LTYPE = -4 (centrifugal

loading). If rotational body forces are to be generated, the

axis of rotation and rotational speed must be defined in

Section 8.10.3.
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8.10.3 Centrifugal Loading Data

(Required for all analyses in which body forces

due to rotation are included.)

CARD COL DATA DESCRIPTION NOTES

1 1-10 REFPT(1) X-Coordinate of Reference Point (1)
on Axis of Rotation

11-20 REFPT(2) Y-Coordinate of Reference Point (1)
on Axis of Rotation

21-30 REFPT(3) Z-Coordinate of Reference Point (1)
on Axis of Rotation

31-40 AXDIR(l) X Component of Direction of (i)
Rotational Axis

41-50 AXDIR(2) Y Component of Direction of (1)
Rotational Axis

51-60 AXDIR(3) Z Component of Direction of (1)
Rotational Axis

61-70 OMEGA Rotational Speed (or Scale Factor) (2)

71-75 ICURV Data Curve Describing Time (2)
Variation of Rotational Speed "
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NOTES:

(1) The axis of rotation is defined by specifying the coordinates of

an arbitrary point lying on the axis, and a vector describing the

axis direction. REFPT(1)-(3) define the coordinates of the point,

and AXDIR(1)-(3) the axis direction. The vector defined by AXDIR

need not be normalized, but must have magnitude greater than

zero. The rotational axis so defined will be used to generate

centrifugal loading for all element loads having LTYPE = -4 in

Section 8.10.2.

(2) In linear static analysis, OMEGA gives the rotational speed, while

ICURV is unimportant. For nonlinear and/or dynamic analysis,

OMEGA is used as a scale factor; the function value interpolated

from data curve ICURV at any time will be multiplied by OMEGA

to obtain the rotational velocity at that time. In both cases,
2the body force per unit volume is pw r, where r is the perpendicular

distance of a point from the axis of rotation. NOTE THAT OMEGA

MUST BE DEFINED WITH UNITS OF (RADIANS/UNIT TIME); e.g., a

rotational speed of Z0 cycles/sec would be specified by setting

0MEGA=2007r=628. 31853.
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8.11 HARMONIC FORCING FREQUENCIES

(Required only for steady-state harmonic solution)

- Repeat Card 1 as required (10 values/card) to define
all forcing frequencies.

- NFREQ frequency values are required, as specified
in Section 8.3.5.

CARD COL DATA DESCRIPTION NOTES

1 1-8 FRQ(1) Excitation Frequency No. 1 (1)

9-16 FRQ(2) Excitation Frequency No. 2 -

73-80 FRQ(10) Excitation Frequency No. 10
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NOTES:

(1) The frequency values entered in this Section apply to all

external forces given as data in Section 8.9. The form of the

applied forces is F = F° e ., where F° is defined by the nodal

and element forces defined previously. Frequency values have

units of cycles per unit time (cycles = radians/2n).
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CHAPTER 9

USER SUBROUTINES

A number of user interfaces are provided in the MAGNA

program for increased flexibility in modeling capabilities and

data preparation. Most of these user interfaces are implemented

in the form of user-supplied subroutines which permit the

generation of data or user intervention at convenient points

in the analysis. User-written subroutines are currently

available for:

- generation of nodal coordinate data,

- transformations from user-defined coordinate systems,

- specifications of incremental nodal loads in nonlinear
and/or dynamic analyses,

- definition of variable surface pressure loading,

- definition of initial velocity conditions in dynamic
analysis,

abr - generation of nodal temperature distributions,

- specification of output parameters,

- definition of various nonlinear and anisotropic

material models, and

- specification of damping properties for harmonic analysis.

A small COMMON area, labeled/USERC/, is also provided in the

program for storing data which must be used repeatedly by

user-written subroutines. An example of the use of this block

for storing nodal dearees-of-freedom numbers appears in Section 9.3.
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9.1 MESHG (GENERATE COORDINATES)

Coordinate data may optionally be generated or read in

the user-supplied subroutine MESHG. This feature is useful in

generating node point data for models with regular geometry,

or in reading geometry data in non-standard card formats.

MESHG has the form:

SUBROUTINE MESHG (N0DES,NW0ORK,MGEN,NTIN)

(code to read or generate coordinates)

RETURN

END

1 in which the formal parameters are:

NODES = number of node points

NWRK = (internal parameter)

MGEN = integer value input on COORDINATES card

NTIN = input file number

Whenever subroutine MESHG is supplied by the user, only

the COORDINATES header card is read in the nodal point input

section of the program. Additional input data required by the

user-written routine MESHG can be inserted in the input stream

in place of the usual nodal coordinate data. For example, nodal

point coordinates prepared for other programs can be entered

directly by supplying the proper READ directives in subroutine

MESHG.

For each node whose coordinates are to be defined in MESHG,

it is necessary to call the internal routine USRNOD, which places
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the coordinate data in the proper storage area. Calls to

rJSRNOD have the form

CALL USRNOD (NODE,X,Y,Z)

where

NODE = node point number, and

N X,Y,Z = Cartesian coordinates.

Example 9.1-1

The simple MES11G routine shown below accepts as data a

FORTRAN format specification, and then reads the coordinate

data for each node in that format from the input data stream..

SUBROUTINE MESHG (N0DES ,NW0RK ,MGEN ,NTIN)

DIMENSION IFMT(20)

1 FORMAT (20A4)

READ (NTIN,l) IFMT

Do 2 I =l,N0DES

READ (NTIN,IFMT)IN0DE,X,Y,Z

CALL USRN0D (IN0DE,X,Y,Z)

2 CONTINUF

RETURN

END
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9.2 CTYPE (COORDINATE TRANSFORMATIONS)

User-defined coordinate systems can be defined in

subroutine CTYPE to facilitate input data preparation. The
*form of this routine is as follows:

SUBROUTINE CTYPE (ITYPE,Xl,X2,X3)

Go To (1,2,3,4,5),ITYPE

1 CONTINUE

(coordinate system transformation, Type 1)

RETURN

2 CONTINUE

(coordinate system transformation, Type 2)

RETURN

(etc.)

END
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Formal parameters are:

ITYPE = coordinate system type
th

Xi = on input, the i component in system ITYPE
.th

on output, the i Cartesian component

The default version of CTYPE included in the program

includes two default transformation types, (1) cylindrical,

and (2) spherical, described in the table below.

Cylindrical Spherical

ITYPE = 1 2

Input Xi = R,O,Z R,0,0

Output Xi = X,Y,Z X,Y,Z

X = Rcos8 Rsinocos8

Y = Rsine Rsinosine

Z = Rcoso

In the nodal coordinates input (Section 8.4), the value

of ISYS (A,B,C,D,E or blank) determines which of the coordinate

transformations in CTYPE is performed for a given node. If

ISYS = blank, CTYPE is not called; when ISYS = A, CTYPE is

called with ITYPE = 1; ISYS = B imples ITYPE = 2; etc.

92
".
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9.3 ULOAD, USRL0D (INCREMENTAL LOADS)

In the incremental analysis of nonlinear and/or dynamic

problems, it is often necessary to specify external loads whose

maqnitude or direction depends upon the deformed shape of a

structure (or its rate of change). Typical examples include

follower forces, structure-media interaction forces, and loading

due to ballistic or soft-body impact on a structure. The user-

written subroutine UL0AD (and, optionally, USRL0D) permits the

introduction of any type of incremental loading into the analysis,

including forces which may depend upon the current displacements

or velocities.

The form of subroutine UL0AD is as follows:

SUBROUTINE UL0AD(P,W0RK,TIME,DT,

+ NTN0DV,NRD0F,NRC0DE,

+ NTDIS ,NRU ,NRV ,NIN,N0UT)

DIMENSION P(l),W0RK(l)

C0MM0N/MPART/N, IFILL (3) , NW0RK

oC0MM0N/D0F/NFVAR, NDPVPN, NDPN, MAXK0D
C0MM0N/VCARAY/LIST (20)

C0MM0N/CTRL/N0DES

(code to generate incremental loads)

RETURN

END

The form of subroutine USRL0D is arbitrary, since only

UL0AD is called directly from MAGNA.

Formal parameters used in the subroutine to call UL0AD

are defined as:

9.3.1



14 1

P = current vector of consistent nodal loads. The
array dimension of P is N words, where N is in
/MPART/. The array contains total force values
to be applied in the next increment; values -

defined in UL0AD are to be added to the contents
of P.

WORK = working vector available for use in UL0AD. The
array dimension of WORK is (NWORK-N), where
N and NW0RK are contained in /MPART/. In most
cases, the number of words in the array will be
equal to the number of words of storage
allocated in COMMON/BLANK/ (see Chapter 7), less
the number of active degrees of freedom in the
finite element model.

TIME = Current value of time, or load parameter.

DT - Time (or load parameter) increment.

NTN0DV = Device number of random-access file containing
nodal degree-of-freedom tables.

NRD0F,NRC0DE = Random file record numbers at which nodal
degree-of-freedom tables are stored.

NTDIS = Device number of random-access file containing
current values of nodal displacements and
velocities.

NRU - Record number for nodal displacements.

NRV - Record number for nodal velocities.

NIN - Input file number.

N0UT = Output file number.

Definitions of pertinent variables stored in labeled

COMMON are:

S1. COMMON /MPART/
N = number of active nodal degrees of freedom.

NWORK = number of words of array storage currently
available in core. (NW0RK-N) gives the
amount of array space available to the user
in the vector WORK.
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2. COMMON /D0F/

NFVAR = number of field variables in the problem.

NDPVPN = number of nodal degrees of freedom (maximum)
per field variable.

NDPN = total number of degrees of freedom per node.

MAXK0D = parameter used in unpacking nodal degree of
freedom lists (see examples below).

3. COMON /VCARAY/

LIST = integer array used to store degree-of-freedom
table for a particular node in unpacked form
(see example below).

4. COMMON /CTRL/

NODES = number of node points defined in the finite
element model.

The contents of the last three COMMON blocks will normally

not be used in UL0AD unless the global degree of freedom number

corresponding to a certain component of displacement at a node is

unknown at the beginning of the analysis. If the degree of

freedom of the model to which a user-defined load is to be

OT applied is known (from a previous analysis, for example), the

load may be applied directly, as shown in the following

example.

Example 9.3-1

Consider a finite element model in which a follower force

is to be directed at a particular nodal point (see Figure 9.3.1).

The direction of the force is determined approximately by a

vector from node A to node B. For simplicity, both nodes are

- assumed to remain on the X-Y plane at all times, so that the

orientation of the force is a function of displacements U,V at

both nodes.

* Original coordinates of A and B are:

Node X Y Z
0 0 0

A 10. 1. 0.

B 10. 0. 0.
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The relevant degrees of freedom, from a previous linear analysis,

are known to be:

Node Displacement D.O.F. Number

A UA 20

A VA 21

B U13  31

B VB  32

The unit vector from A to B in the current position is,

therefore, given by

(UB-U) + (VBVl)oB- A vB-VA-1) A

n =n + n 
x y

/(UBUA) 2 + (VB-VA-I) 2

and the components of force applied at node A will be

P =P n
x x

P =P n
y y

where P is the magnitude of the force. A version of UL0AD

which demonstrates the retrieval of the current displacements

and generates the current load is shown below.

SUBROUTINE UL0AD (P,WK,TIME,DT,NTN0DV,NRD0F,NRC0DE,NTDIS,

NRU,NRV,NIN,N0UT

DIMENSION P(1),WK(1)

COMMON /MPART/ N,IFILL(3),NW0RK

C

C EX. 9.3-1 FOLLOWER FORCE DIRECTED FROM NODE A TO B

C

C NOTE: ARRAY WK IS USED To STORE CURRENT DISPLACEMENTS.

C

DATA NUA,NVA,NUB,NVB/20,21,31,32/

* -PT0TAL 100.0
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cI
C CRETDISPLACEMENTS OBANDFO ADMFILE

C

C DISPLACEMENTS AT A,B,

p C I
UA =WK(NUA)

VA = WK(NVA)

UB = WK(NUB)

VB = WK(NVB)

C

C UNIT VECTOR

XN = UB-UA
YN = VB-VA-1.0

C = SQRT(XN**2+ YN**2)

XN = XN/C

YN = XN/C

C

C ADD LOADS To VECTOR "P"

C

P(NUA) = P(NUA) + PTOTAL*XN

P (NVA) = P (NVA) + PTOTAIJ*YN

CI
C WRITE LOADS TO PRINTED OUTPUT FILE
C

WRITE (N0UT,100) TIME,P(NUA),P(NVA)

RETURN

100 F0RMAT(/1OX,26HL0ADS AT NODE A FOR TIME =,E15.8, -
+ /1OX,11HX-DIRECTI0N , E15.8,

+ /1OX,11HY-DIRECTI0N , E15.8

END
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In the example, current values of the nodal displacements

are retrieved from record NRU of file NTDIS and stored in WK.

In a dynamic problem, the corresponding velocities are stored at

record NRV, so that velocity-dependent loadings could be

specified as well. Note that the loads specified in UL0AD are

current values of the total loads at the specified degrees of

freedom; the incrementaZ application of nodal loads is

automatically accounted for elsewhere in the program.

In some cases, degree-of-freedom numbers for displacements

at which incremental loads are to be generated are not known in

advance and must be retrieved using data generated during the

analysis. To accomplish this, the subroutine UL0AD is used to

assign array storage for a second routine, USRL0D, so that

workspace may be used for both real and integer variables.

Example 9.3-2 illustrates this procedure.

Example 9.3-2

Figure 9.3.2 shows a structure supported by a series of

0'1- discrete, nonlinear spring elements whose elastic response

follows the load-deflection equation

F = k w + k1W3

where w is the total extension. The nonlinear springs are

applied at nodes 2,4,6,...,20 in the vertical (Z) direction;

the corresponding nodal degree-of-freedom numbers are not

known a priori. User subroutines UL0AD and USRL0D, listed

below, are used to apply the proper forces at each node

supported by a nonlinear spring.

SUBROUTINE UL0AD (P,WK,TIME,DT,NTN0DV,NRD0F,NRC0DE,NTDIS,

+ NRU,NRV,NIN,N0UT)

DIMENSION P(l),WK(l)

COMMON /MPART/N,IFILL(3) ,NW0RK

COMMON /CTRL /NODES

C

4 C EX. 9.3-2 NONLINEAR SPRING FORCES

9.3.7
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C UL0AD USED T0 SET UP ARRAYS FOR USRL0D

C

C THREE ARRAYS (BESIDES P) ARE REQUIRED:
CA

C A. TW0 INTEGER ARRAYS, EACH OF LENGTH "NODES" To

C STORE NODAL D.0.F. TABLES

C

C B. 0NE REAL ARRAY OF LENGTH "N" FOR DISPLACEMENTS

C

C

C Ni START OF ARRAY ND0F '
C N2 = START OF ARRAY K0DE

C N3 = START -OF ARRAY DISP

C N4 =END OF ARRAY DISP

C

Ni 1

N2 = N1+N0DES

N3 = N2+N0DES

N4 = N3+N-i

IF (N4.LE4(NW0RK-N)) Go To 10

NW =NW0RK-N

WRITE (N0UT,100) N4,NW

100 FORMAT (/i0X,27HN0T ENOUGH STORAGE IN UL0AD,

+ /1OX,4HN4 =, I8,5X,4HNW =, 18)

STOP

10 CALL USRL0D (P,WK(N1),WK(N2),WK(N3),TIME,DT,NTN0DV,

+ NRDOF,NRC0DE,NTDIS ,NRU,NRVNIN,N0UT)

RETURN

END

SUBROUTINE USRL0D (P,ND0F,K0DE,DISP,TIME,DT,NTN0DV,

+ NRD0F,NRC0DE,NTDIS,NRU,NRV,NIN,N0UT)

DIMENSION P(1),ND0F(1),K0DE(1),DISP(1)

C0MM0N/MPART/N

C0MM0N/D0F/NFVAR, NDP VPN ,NDPN, MAXK0D

C0MM0N/VCARAY/LIST (20)

C0MM0N/CTRL/N0DES
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C

C EX. 9.3-2 NONLINEAR SPRINGS

XKO=1000. 0

XK1=124. 5

C

WRITE (N0UT,10) TIME

S10 FORMAT(/10X,32HN0NLINEAR SPRING FORCES F0R TIME, E15.7,

//1oX,11HN0DE F0RCE,/1X)

C

C READ CURRENT DISPLACEMENTS FROM RANDOM FILE "NTDIS'

C

CALL READMF (NTDIS,DISP,N,NRU)

C

C READ N0DAL DEGREES OF FREEDOM TABLES. THIS OPERATION IS

C ALWAYS PERFORMED EXACTLY AS WRITTEN BELOW (2 STATEMENTS)

* C

CALL READMF (NTN0DV,ND0F,N0DES,NRD0F)

CALL READMF (NTN0DV, K0DE ,N0DES ,NRC0DE)

C

*C COMPUTE SPRING FORCES AT EACH NODE

C

NN= 3

D0 100 IN0D=-2,20,2

C

C GET D.0.F. NUMBER FOR DISPLACEMENT COMPONENT "NN"

C AT NODE "IN0D". THIS OPERATION IS ALWAYS PERFORMED

C EXACTLY AS WRITTEN BELOW (4 STATEMENTS). THE

C DESIRED D.0.F. NUMBER IS DENOTED BY "ID0F" HERE.

CDKD(ND

NF=ND0F (IN0D)

CALL UNPACK (NF,NDPN,MAXK0D,KD,LIST)

ID0F=LIST (NN)

C

*C GET DISPLACEMENT VALUE AND COMPUTE FORCE

9.3.10
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C

W=DISP (ID0F)

F0RCE=XKO*W + XK1*(W**3)

P (IDOF)=P (ID0F) -F0RCE

WRITE (N0UT,50) IN0D,F0RCE

50 FORMAT (10X,14,E12.5)

100 CONTINUE

RETURN

END

The above example is intended to demonstrate the

procedures involved in retrieving both the current solution

parameters and the nodal degrees of freedom tables stored

by the program. In practice, one would employ the more

efficient procedure of determining the needed degree of

freedom numbers only at the first increment, and storing

the information for use in later computations. The

labeled COMMON block /USERC/, whose length is unrestricted,

can be utilized for this purpose (see Section 7.1.2). The

U2 form of subroutine UL0AD is as follows:

SUBROUTINE UL0AD (P,WK,TIME,DT,NTN0DV,NRD0F,NRC0DE,

+ NTDIS,NRU,NRV,NIN,NUT)

DIMENSION P(l),WK(l)

COMMON /USERC/ ID0F(i0)

DATA KEY /0/

C

C DETERMINE IF FIRST INCREMENT

C

IF (KEY.NE.0) Go T0 10

KEY=l

C

C CALCULATIONS FOR FIRST INCREMENT

C
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C

C INCREMENTAL LOADS CALCULAT ION

C

10 CONTINUE

RETURN

END

9 .
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9.4 VINIT (INITIAL VELOCITY CONDITIONS)

The user subroutine VINIT is used to specify initial

velocities at specified degrees of freedom in linear or

nonlinear dynamic analyses. Degree of freedom numbers at which

velocities are prescribed must be known explicitly. The

subroutine has the form

SUBROUTINE VINIT (V,N)

DIMENSION V(N)

code to prescribe velocities

RETURN

dT END

in which the formal parameters are:

V = vector of velocity components at unconstrained
degrees of freedom

N = total number of unconstrained degrees of
freedom.

Subroutine VINIT is ignored in all static analyses, and

in solutions which are being restarted from a previous

checkpoint file. All initial velocities not specified in

VINIT are automatically defined as zero.
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9.5 TEMGEN (GENERATE NODAL TEMPERATURES)

Subroutine TEMGEN is a user-supplied routine which can

be used to compute or define a reference temperature
:. distribution throughout the finite element model. The resulting

temperature values are interpreted as differences in temperature

from the unstressed reference configuration. The temperature

field can be made to vary proportionally with time by defining

appropriate time functions (data curves), as described in

Section 8.4 and 8.9.

i The general form of TEMGEN is:

SUBROUTINE TEMGEN (N0DES,X)

DIMENSION X (4,NODES)

(code to generate temperature data)

RETURN

END

The formal parameters are

NODES = number of node points,

X(I,I) = coordinate X at node I,

X(2,I) = coordinate Y at node I,

X(3,I) = coordinate Z at node I, and

X(4,I) = temperature at node I.

Coordinate data is defined prior to entering TEMGEN; thus,

these values may be used to compute nodal values of a
temperature field which is a known function of X,Y and Z, as

shown in the following example.
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::xample 9.5-i1i

Consider a two-layer slab, in which Z is the thickness j
direction. The temperature field is

T(Z) = 200. + 65Z , 0 < Z < 2,

T(Z) = 150. + 90Z , 2 < Z < 6.

The corresponding temperature subroutine is shown below.

SUBROUTINE TEMGEN (N0DES,X)

DIMENSION X(4,NODES)

Do 1 I=1,NODES

Z=X(3,I)

T=200.+65.*Z

IF (Z.GT.2) T=150.+90.*Z

1 X(4,I)=T

RETURN

END
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9.6 U0UT (SPECIFY OUTPUT PARAMETERS)

The control of output to both the line printer and the

postprocessor file (MPOST) is normally accomplished through the

output frequency parameters entered in Section 8.2. In some

situations, however, it may be desirable for MAGNA to produce

output at irregular intervals during a nonlinear solution. Some

typical instances are variable time step solutions, restart jobs,

and problems in which the loading does not vary linearly with

time. When circumstances dictate, the user-written subroutine

UOUT may be used to request printer and/or postprocessor file

output at arbitrary intervals in the analysis.

The general form of U0UT is as follows:

SUBROUTINE U0UT (ISTEP,TIME,IPRINT,IP0ST)

(code to define output flags, IPRINT, IPOST)

RETURN

END

Formal parameters passed to U0UT are

ISTEP = current increment number

TIME = current time (or load parameter) value
IPRINT= line printer output flag

(=1 for output; =0 for no output)

IPOST = postprocessor file output flag

(=1 for output; =0 for no output)

On entry to the subroutine, IPRINT and IP0ST contain default

values assigned by the program. Both parameters may be redefined

* freely based upon the values of ISTEP and TIME. Note that under

• . no circumstances should the parameters ISTEP and TIME be modified

in UOUT.
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Example 9.6-1

The sample version of UOUT shown below will request printed

output at every other increment for times less than t = 50.,

and at every fourth step thereafter. Output is written to the

postprocessor file only after t = 50., where every eighth

increment is recorded.

SUBROUTINE UOUT (ISTEP,TIME,IPRINT,IPOST)

IF(TIME.GE.50.0) GO TO 10

C

C TIME.LT.50 - PRINT EVERY OTHER STEP, MO MPOST OUTPUT

C

IPOST = 0

IPRINT = 0

IF (MOD(ISTEP,2).EQ.0)IPRINT = 1

RETURN

C

C TIME.GT.50 - PRINT EVERY FOURTH STEP, AND

C WRITE TO POST FILE EVERY EIGHTH STEP

C

10 IPOST = 0

IPRINT = 0

IF (MOD(ISTEP,8).EQ.0) IPOST = 1

IF (MOD(ISTEP,4).EQ.0) IPRINT = 1

RETURN

END

AJ
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9.7 NELASi (NONLINEAR ELASTIC MATERIAL LAW)

Four subroutines are available in MAGNA for the

specification of nonlinear materials whose constitutive properties

are not path-dependent (e.g., nonlinear elastic materials or

elastic-plastic materials described by deformation theory).

They are:

NELAS1 - for one-dimensional elements (Type 4)

NELAS2 - for two-dimensional elements (Types 3 and 9)

NELAS3 - for three-dimensional elements (Types 1, 2, 6, 7
and 8)

NELASX - for axisymmetric elements (Type 10)

Each of the above user-written subroutines has the general

form:

SUBROUTINE NELASi (IELTYP,IELNO,MATLNO,EPS,SIG,D)

DIMENSION EPS(3),SIG(3),D(3,3) [for NELAS2 only]
DIMENSION EPS(6),SIG(6),D(6,6) [for NELAS3 only]
DIMENSION EPS(4),SIG(4),D(4,4) [for NELASX only]

(code to define SIG and D)

RETURN

END

in which the formal parameters are:

IELTYP = MAGNA element type

IELNO = element number

MATLNO = material property number

EPS = current Green's strain vector;

= C (a scalar) for NELAS1 
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= [ x , Cy, Yxy for NELAS2

= [Ex Ey, ez , Yyz' Yxz' Yxy for NELAS3

= [E: Cy0 Yy ' I for NELASX

SIG = Piola-Kirchhoff stress vector, whose components
correspond to those in EPS

) = current tangent modulus matrix, such that

A(SIG) = D*A(EPS)

The first four parameters (IELTYP,IELNO,MATLNO,EPS) are input to

the routine and should not be modified. The total stresses in

Lagrangian coordinates (SIG) and the instantaneous stress-strain

coefficients (D) are to be computed by NELASi.

When these user subroutines are supplied, material

properties should still be specified in the normal input data

to ensure that the correct default values are set for certain

internal material parameters. Material densities should be

entered correctly, while the actual values specified for other

properties are unimportant. When elastic-plastic materials are

defined using the NELASi routines, it is recommended that no

yield stress value be specified in the materials input data;

this practice will prevent any attempt by the program to perform

plasticity calculations prior to entering NELASi.

Example 9.7-1

The following example demonstrates the use of NELASI to

define the stress-strain law for an elastic-plastic material,

using the deformation theory of plasticity. The material has

elastic modulus E 300,000, yield stress a = 10,000, an- ay
plastic modulus E = 27,000.p

SUBROUTINE NELAS1 (IELTYP,IELNO,MATLNO,EPS,SIG,D)

C

C ELASTIC PROPERTIES

C

D = 300000.

SIG = D*EPS

IF (ABS(SIG).LE.10000.)RETURN
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C

C ELASTIC-PLASTIC PROPERTIES (0.0333... .=YIELD STRAIN)

D = 27000.

TEMP = EPS-0.333333333

* IF(EPS.LT.0.0)TEMP=EPS+0.0333333333

2 SIG = 10000.

IF (EPS.LT.0.0)SIG=-SIG

SIG = SIG + D*TEMP

RETURN

END
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9.8 UST6P (CONTROL POINT FOR JOB TERMINATION)

The lack of prior knowledge of structural response and

the performance of a finite element program in computing it

represents a potential source of difficulty in nonlinear

analysis applications. In particular, the computing effort

required for a given problem depends heavily upon the number of

iteration cycles needed, the degree of material nonlinearity, and

other factors which tend to be highly unpredictable. The user-

written routine UST0P can be used to monitor the progress of

a nonlinear solution, and optionally signal the termination of

the job to avoid abnormal termination (due, for example, to

CPU time limit errors).

UST0P is called once at the beginning of each complete

increment of the solution. The general form of the subroutine

is

SUBROUTINE UST0P (ISTEP,TIME,CPUTIM,IST0P)

RETURN

END

in which the formal parameters are:

ISTEP - the pending solution increment number,

TIME - the time (or loading parameter) value corresponding
to ISTEP,

CPUTIM - the current CPU time (in seconds) since the start
of the job, and

IST0P - a solution control flag (0 = continue, 1 stop)

On entry to UST0P, all of the above parameters (including

IST0P) will be initialized. The value of IST0P will be set to

a value determined by the input solution parameters (number of

time steps, etc.).
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A common use of UST0P is to guard against abnormal

termination due to time limit errors; in this case, the UST0P

routine might be written as follows:

SUBROUTINE UST0P (ISTEP,TIME,CPUTIM,IST0P)

IF (CPUTIM.GE.1200)ISTP=l

RETURN

END

Note that the limiting value of CPUTIM should be determined so

that sufficient time remains to perform another complete increment

if IST0P is not set to one.

Another approach might be to write UST0P such that the

greatest possible number of solution increments are performed,

without exceeding a certain CPU time limit. Subroutine UST0P

is nearly the same in this case: the single statement ISTOP = 0,

added as the first executable line, will force the solution to

continue until the time limit is reached.
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9.9 UPLASi (USER-DEFINED ELASTIC-PLASTIC MATERIAL LAW)

Three user-written subroutine interfaces exist in

MAGNA for the definition of general incremental constitutive

relations. These routines are:

UPLAS3 - for three-dimensional elements

UPLAS2 - for two-dimensional (plane stress) elements

UPLASX - for axisymmetric elements

The UPLASi routines may be used to implement material laws

suitable for large or small deformations, including effects

such as thermoplasticity, strain-rate sensitivity, or creep.

Sufficient information is provided to the user subroutines to

define constitutive equations expressed either in Lagrangian

or Eulerian form, as appropriate.

The general form of subroutines UPLAS3, UPLAS2, and UPLASX

is shown below.

9.9.1
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SUBROUTINE UPLAS_ (NTYPE, IEL, INTPT, MATL, ISET,

+ TEMP,DTEMP,E,RH0,TEC,G,XK, '

+ RATI0,DEMAX,S,DS,EPS,DEPS,

+ DG,DGINC,D,SEQ,EPQ,EP,ALPHA)

COMMON /DYNINT/ DUMMY(4) ,DT,TZER0,TIME

DIMENSION E(m,m) ,TEC(n) ,S(m) ,DS(m) ,EPS(m) ,DEPS(m)

DIMENSION DG(3,k),DGINC(3,k),D(iu,m),EP(m),ALPHA(m)

(user-written code)

RETURN

END

The parameters m,n,k are defined as follows:

UPLAS3 -m=6, n=6, k=3

UPLAS2 -- 3, n=l, k=2

UPLASX - m=-4, n=l, k=2

Formal parameters for the subroutines UPLASi are defined below.
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NTYPE = (input) element type code

IELN0 = (input) element number

INTPT = (input) integration point number for the element

MATL = (input) material property number

ISET = (output) flag for entry into UPLASi. On exit,

ISET=O indicates that no calculations were performed

in the user-written routine; ISET=l indicates that

UPLASi has been used.

TEMP = (input) current temperature increment during the

current time or load step

E = (input) elastic stress-strain matrix

RHO = (input) original material density

TEC = (input) thermal expansion coefficient. In UPLAS3,

TEC is a vector of length six, referred to global

coordinate directions.

G = (input) elastic shear modulus

, XK = (input/output) yield surface size, initialized to

the input yield stress

RATIO (input/output) ratio of yield surface expansion

to translation, as input in materials data.

DEMAX = (input/output) maximum strain subincrement size,

as input in materials data

S = (input/output) on entry, contains the stress at the

beginning of the increment. On exit, must contain

the stress at the end of the increment

DS = (output) stress increment

EPS = (input/output) on entry, contains the strains at

the beginning of the increment. On exit, must

contain the strain at the end of the increment

DEPS = (input) increment of Green's strain for the

current time or load step

DG = (input) deformation gradient at the beginning of the

increment

DGINC = (input) incremental deformation gradient
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D = (input/output) on entry, contains the stress-strain

matrix at the end of the previous increment. On

exit, must contain the stress-strain matrix at the

end of the current increment.

SEQ = (input/output) effective stress, if applicable

EPQ = (input/output) effective plastic strain, if applicable

EP = (input/output) inelastic strain components (or

other state variables as appropriate)

ALPHA = (input/output) additional space for storage of

state variables at individual integration points.

Stress and strain components are stored in the following order:

UPLAS3 - xx a yy, a zz, a yz' xz' xy

UPLAS2 - xx' a yy' xy

UPLASX - a , Iy axy a
UPAS xxI yy' xy' zz

This ordering must be maintained as well in the formulation of -

the stress-strain matrix D. The ordering convention for the

total and incremental deformation gradients are

axDG(I,J) = aXj IJ + u I,j

For the three-dimensional and axisymmetric elements, all coordinates

and displacement values are referred to global directions; in the

two-dimensional elements, a local system is used in which the
z (or X3 ) direction is normal to the element. For UPLASX

(axisymmetric elements), the additional component ax 3 /aX 3 is stored

in location DG(3,1).
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The following operations are required within UPLASi:

- updating of the strains, EPS(i)=EPS(i)+DEPS(I)

- updating of the stresses, S(I)=S(I)+DS(I)

- setting ISET=l is required whenever elastic-plastic

computations are performed, to prevent conflicting

calculations from being performed elsewhere in

MAGNA.

If ISET=O on exit from UPLASi, MAGNA will assume that no action

has been taken by the user routine, and will perform stress and

strain updating and elastic-plastic calculations as usual.

Several conventions should be noted for the proper operation

of the UPTASi subroutines:

- strains supplied to the routine are "engineering"

values, in whichthe shear strains are set to twice

their tensorial (Green's strain) values;

- since the nonlinear formulation uses the total

Lagrangian formulation, stresses output from UPLASi

should be second Piola-Kirchhoff stresses, to ensure

proper computation of the geometric stiffness;

- the modulus matrix D is necessary for correct

computation of thermal "loads", and should always

be computed in thermal problems;

- in nonlinear solutions using equilibrium iteration,

UPLASi may be called several times per integration

point. The initial values supplied to the routine

are always those obtained from the last converged

step, to avoid artificial "cycling" due to fluctuations

in the estimated state of strain.
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For the storage of state variables, several parameters

are available whose values will be retained throughout the

solution and which may be updated incrementally. In addition to

the two vectors EP and ALPHA, which are specifically intended

for the maintenance of state variables, the following parameters

may be updated freely as needed: G, XK, RATIO, DEMAX, SEQ,

and EPQ. Note that the values of SEQ and EP will appear in the

integration point stress and strain output, since they normally

contain the effective stress and the plastic strains, respectively.

.
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*. 9.10 UDAMP (STEADY-STATE DAMPING PROPERTIES)

The user-supplied subroutine UDAMP must be supplied in

steady-state forced vibration analysis, to define elastic and

damping properties of the materials to be analyzed. Optionally,

this routine may be used to specify properties as functions of the

excitation frequency (see Section 8.3.5).

The general form of the subroutine UDAMP is

SUBROUTINE UDAMP(IELTYP,MATL,FREQ,ETA,

+ G,GO,IFDEP)

(user-written code)

RETURN

END

Formal parameters for subroutine UDAMP are as follows:

IELTYP = (input) element type code

rr MATL =(input) material property number

FREQ = (input) excitation frequency (cycles/time)

ETA = (output) material loss factor

G = (output) shear modulus at the current frequency

GO = (output) shear modulus for FREQ = 0

IFDEP = (input) flag for fequency dependent properties
(0 = no, 1 = yes)

For sinusoidal motions, the shear modulus of the material is

assumed to be defined in the form G* = G(I + n). G* is complex-

valued; the real part of G* (that is, G) is the elastic property,

while n defines the amount of intrinsic damping:

energy dissipated per cycle
energy stored per cycle

-- The values of G, Go , and n (G,GO,ETA) must be defined by the

subroutine UDAMP. If the material properties are independent of
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frequency (IFDEP = 0), then G G. When IFDEP = 1, both G and n
0(but not G0 ) may be functions of the harmonic forcing frequency.

Since UDAMP is called for each element of the model, it is

also possible to define properties which vary with temperature.

To obtain the average element temperature, the additional declara-

tion statment

COMMON/USERC/AVTEMP

can be included in the subroutine. On entry to UDAMP, the variable

AVTEMP contains the average temperature for the current element.
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9.11 UPRESS (VARIABLE SURFACE PRESSURES)

The user-supplied subroutine UPRESS is intended for the

definition of distributed surface pressures which may vary as

functions of both time and spatial position. Variable surface

pressures may be defined for all three-dimensional solid and shell

finite elements inMAGNA (Element Types 1, 2, 5, 6, 7, 8, and 11).

The general form of subroutine UPRESS is as follows:

SUBROUTINE UPRESS (ISTEP,TIME,X,Y,Z,ISURF,PRESS)

(user-written code to define PRESS)

RETURN

END

where the subroutine parameters are

ISTEP = current solution increment

TIME = current value of time or loading parameter

X,Y,Z = Cartesian coordinates of a point at which the
pressure is to be specified

ISURF = surface number (1-6) on which the point lies

PRESS = output pressure value (positive outward)

Note that all elements for which UPRESS is to be used to

define surface loading must be identified through the distributed

loads input described in Section 8.10.2. The surface number (LTYPE)

should be set to the appropriate value (1-6); note also that a

data curve or load case number (ICASE) must be given as input.

In nonlinear analysis, the interpretation of the coordinates

X,Y,Z which are passed to UPRESS depends upon the value of the

live loads flag (ILIVE) on the pressure data card. If ILIVE = 0

(dead loading), the original coordinates of pressure sampling

points are sent; when ILIVE = 1 (deformation-dependent loading),

the X,Y,Z values are the updated coordinates for the current

configuration.
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The following simple example defines a hydrostatic pressure,

wth Z as the "depth" direction, which varies quadratically with

time as

p (X, Y, Z,t) =(Z) (t + 29),

where -y= 0.03613/lb/in 3(for water), and Z is in inches.

SUBROUTINE UPRESS (ISTEP,TIME,X,Y,Z, ISURF,PRESS)

DATA GAMMA/0.03613/

PRESS =GAMMA*Z*TIME*(0.5 + 2.0*TIME)

RETURN

END
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9.12 UANIS2 - (Anisotropic Material Properties for 2-D Elements)

The user-written subroutine UANIS2 permits the definition of

orthotropic, anisotropic, or other special material properties for

*' two-dimensional finite elements (Element Types 3 and 9). UANIS2

is accessed by MAGNA during the input phase of an analysis,

during which isotropic material properties defined as input data

may be overridden selectively. Element stiffness formulation and

stress recovery operations are fully consistent with the

anisotropic properties specified in UANIS2.

The general form of subroutine UANIS2 is as follows:

SUBROUTINE UANIS2 (IELTYP, MAXNOD, IELNUM, MATLNO, IGLOBL,
+ XG ,YG ,ZG ,TRAN ,E

C
DIMENSION XG(MAXNOD), YG(MAXNOD), ZG(M-AXNOD)
DIMENSION TRAN(3,3) , E(3,3)

C

icode to define anisotropic stress-strain coefficients, E)

C
RETURN
END

Formal parameters for subroutine UANIS2 are:

IELTYP - MAGNA element type (3 or 9)

MAXNOD - Maximum number of connected nodes (4 for

Element Type 3, 9 for Element Type 9)

IELNUM - Element sequence number (as defined in input)

MATLNO - Material property number (as defined in input)

IGLOBL - Flag for local (IGLOBL=l) or global (IGLOBL=2)

coordinate system used for the current element.

The global coordinate system (IGLOBL=2) is used

only for Element Type 9, in elements which are

oriented parallel to the global X-Y plane. The
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local coordinate system, used in all other

cases, has x parallel to the direction from

node 1 to node 2 of the element, and y

perpendicular to the x direction in the plane

of the element. All properties specified in

UANIS2 must be referred to the coordinate

system used for the element for correct

results.

XG,YG,ZG - Global coordinates X, Y, and Z, respectively,

at each of the nodes connected to the current

element. These values are provided for use

in specifying anisotropic properties which may

be dependent upon position or orientation.

TRAN - Transformation matrix relating the local and

global coordinates in the element. When

IGLOBL=2, TRAN is an identity matrix; other-

wise, TRAN is an orthogonal transformation

matrix other than the identity. In either

case, multiplication of the global coordinate

values (X,Y,Z) by TRAN gives the local coor-

dinate values (x,y,z) at the same point.

E - Elastic stress-strain matrix, referred to the

element coordinate system. The stresses are

assumed to be ordered (a , ay, ay), and the

strains (c X y' Y xy ), in which y is the

engineering shear strain.

The following rules and conventions should be observed in

using the user-written subroutine UANIS2:

0 (1) Properties data for anisotropic elements should be

def 4ned in the normal MAGNA input, and overridden

using UANIS2. A material number of "0" should NOT

be input for such elements.
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(2) No subroutine narameters other than the stress-strain

matrix "E" should be modified in UANIS2. Modification

of other formal parameters could result in abnormal

termination or incorrect results.

(3) In nonlinear analysis, properties defined in UANIS2

are saved with the normal restart data; analysis

restart runs can be made without supplying the sub-

routine if desired. Changes to subroutine UANIS2

made during analysis restarts will have no effect on

the solution.

(4) In transforming orthotropic properties from material

to analysis coordinates, note that the strain values

used in defining "E" must be engineering strains,

for which the shear strain is twice the tensorial

strain.

WT4
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CHAPTER 10

PROGRAM OUTPUT

A general description of the MAGNA program printed output

is given in this Chapter. Not all of the output referred to

here will be obtained in a particular analysis, and in some

instances, the output from linear and nonlinear solutions are

necessarily different; where such differences occur, all

possible forms of the printed information are discussed.

The first of the normal MAGNA outputs are the title page

and the system notes page. These are self-explanatory and will

not be discussed further here. Also, graphical output is

obtained interactively (see Chapter 11) and is not part of the

batch printer output.

.0
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10.1 STORAGE ALLOCATION MODULE (CDC MACHINE VERSION ONLY)

The MAGNA storage allocation utility module acts as a

precompiler to the main finite element program, and is only

activated when a STORAGE ALLOCATION card is supplied (Sections

"'"~ 7.1 and 7.2). Information printed by the storage allocation

module includes

(1) a summary of the program working storage,
including actual, default and minimum
values, and

(2) an estimate of the total central memory
requirements, in both decimal and octal
values.

A sample of the storage module output is shown in Figure 10.1.1.

Output from the storage allocation utility can be used

to verify that the STORAGE ALLOCATION card has been processed

as expected, and that the central memory actually specified

for the job is actually sufficient. Refer to the description

of program working storage in Section 7.2 if difficulties are

WT- encountered in specifying the STORAGE ALLOCATION parameters.

Following the precompiler output, a FORTRAN compilation

of the MAGNA main program appears. User-written subroutines

are also compiled at this time and should be checked for coding

errors.
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10.2 INPUT AND GENERATED DATA

Va. The summary of model data, including both input and

internally generated information, represents most of the MAGNA

output generated prior to actually performing a solution. This

output is intended to verify that the problem data has been

read and interpreted correctly. Individual sections of this

phase of the program output are described in the subsequent

sections.

10.2.1 Input Data Listing (CDC and VAX Versions)

Immediately followinq the storae allocation

module output and the user subroutine compilations (if any),

a complete listing of the problem data is given, as it appears

on the input file (TAPE5). The input listing should be

inspected for keypunch errors, and checked with subsequent

output to ensuri that geperated and/or defaulted data values

have been assigned correctly.

10.2.2 Options and Solution Parameters

In this section of output, a label echo print

of all initial data is printed, with default values inserted

where appropriate. For nonlinear and natural frequency analyses,

parameters governing the iterative solution are also printed

at this time. If the job is to read or write restart files,

a message is output verifying this fact and displaying the

pertinent File labels and restart parameters. Runs in which

the label or increment value on a previous restart tape has

been incorrectly specified are terminated with an error

message.

10.2.3 Nodal Coordinates

The nodal coordinate listing contains all input

and generated values of the Cartesian coordinates x,y,z. Nodes

for which no coordinate values have been assigned are flagged

with a diagnostic message, and the value -9999.99999 is written

4for each coordinate. If thermal effects are to be included in
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the solution, the temperature (as read or generated) at each

node is also output, and the data curve number defining the

temperature history is identified immediately following the

coordinate listing.

10.2.4 Element Definition Data

Materials and element connectivity data are output,

* in order of element types, in this section of the MAGNA output.

* This portion of the printing should be examined to verify that:

- the element types have been specified
in ascending order,

- the correct number of elements of each
type have been read or generated,

- material numbers and integration orders
are correct for all elements,

- all necessary moduli and densities (if
required) have been specified,

- all elastic-plastic materials are assigned
initially-isotropic properties, and

- stress-strain curve numbers have been
properly assigned for all nonlinear
materials.

The items listed above represent the most common errors made

in this section of the data, and may generate errors which are

otherwise difficult to trace. Orthotropic axis data can also

be verified at this point, since the relative coordinates

defining each local axis direction are printed explicitly.

Immediately following the regular element definition

output, a summary of input parameters related to special surface

contact elements is printed. This output consists of the number

of surface elements and surface element sets, the element set

limits, the active interaction table entries, and all input and

generated contact element definitions. Particular care should

be taken to verify that master/slave set entries in the

interaction table are correctly defined, and that the orientation
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of each contact element is such that the normal to the element

is directed outward from the surface in question.

10.2.5 Boundary Conditions

Homogeneous nodal constraints are first written

out exactly as input, with labeling to make possible errors more

readily identifiable. A number of diagnostic messages may also

appear, as described later in this chapter under Error and

Warning Messages. Once all boundary conditions have been

processed, a complete listing of unconstrained degrees of

freedom for all nodes of the model is printed, as shown in the

example below.

NODAL VARIABLE TABLES

Node NFDF Code 1 2 3

1 1 3 1 2 0

2 3 3 3 4 0

3 5 4 0 0 5

514 6 7 6 7 8

At a particular node, NFDF specifies the number

of the first nonzero (unconstrained) degree of freedom, CODE

represents an internal variable used in packing the nodal

equation tables, and the entries in columns 1, 2, 3 give the

actual equation (degrees of freedom) number for the first,

second and third variables at the node (in this case, the

displacements u,v,w). This table can be used to check that all

nodal constraints have been applied correctly, and if necessary

to trace back subsequent errors in equation solving, etc., if

an artificial instability exists in the model.

Linear (multipoint or tying) constraint data are

the last items printed in the summary of boundary conditions

for the model. The analyst should verify that the correct

number of constraints appear if generation has been used, and

that no previously constrained degrees of freedom appear in

the specified constraints (a diagnostic is issued in this case).
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10.2.6 Data Curves and Applied Loadings

The final portion of the input data summary lists

the user-defined data curve input and applied nodal and element

forces. This output is largely self-explanatory, and follows

the input data sequence nearly line by line. Once these

data have been output, input processing is complete and control

is transferred to the appropriate solution branch in MAGNA.

Note that output pertaining to matrix topology (Section 10.3)

precedes this section of printing.
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10.3 MATRIX TOPOLOGY AND PARTITIONING DATA

The matrix partitioning data printed immediately following

the boundary conditions is one of the more important sections

of output, since it gives a brief summary of the utilization of

working storage within the program. Input/output times for

large analyses can be drastically affected by the amount of

array space, and the partitioning data output from MAGNA often

can be used to determine the correct storage requirements for

a given application.

The following parameters are always printed:

- Degrees of Freedom

- Number of Matrix Partitions

- Maximum Partition Size

- Work Area Available

- Work Area Used

- Maximum Half-Bandwidth

- Average Half-Bandwidth

- Apparent Population

The number of degrees of fr',linom is the final number of

equations for the model; the lenyh of /IDENT/ (see Chapter 7)

must be at least as large as this value.

The next two items have to do with the splitting of

system matrices into blocks (partitions) to perform a solution.

The number of matrix partitions varies inversely with the

working array space (/BLANK/ in Chapter 7) supplied to the

program. A large number of partitions usually causes the CPU

time for matrix assembly to increase dramatically, and leads to

high I/O times during the assembly and solution steps. In

nonlinear analyses, where these steps must be repeated many

times, it is advisable to assign sufficient work space in /BLANK/

to keep the number of partitions relatively small (i.e., 25
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or less). When the problem is large enough to force a larger

number of partitions to be created, the length of /BLANK/ on the

otorage card should be specified as large as possible for the

machine being used. The available work area and the array space

actually used are printed as part of this summary; the program

uses a special algorithm for each analysis type to make optimal

use of the available working storage.

The final three items, bandwidths and population, are

printed to provide a rough idea of the size of the system being

solved. The maximum bandwidth is usually determined by linear

constraints, which are the highest-numbered equations of the

system; this value is relatively unimportant. Average bandwidth

is a measure of how well the model has been numbered; very high

values can force the creation of a large number of matrix

partitions , which in extreme cases can affect the solution

time dramatically. Finally, the apparent population is the

number of entries in the system stiffness (or effective

stiffness) matrix which are considered as nonzeros during the

solution. The population is approximately given by the average

half-bandwidth times the number of degrees of freedom.

If the optional matrix profile map has been selected

(IOPT(7) = 1), this output is also given with the matrix

partitioning data. The profile map indicates the pattern of

nonzero terms in the system matrices, and provides an indication

of the efficiency of storage utilization. An example is shown

in Figure 10.3.1. The matrix map is always scaled to fit on two

pages of printed output, so that each block of nonzero terms

(indicated by "X" in the output) represents a submatrix whose

size depends upon the total number of equations in the sstem.

Diagonal submatrices are printed as "D" on the matrix profile

map.

10.3.2
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10.4 ELEMENT GEOMETRIC PARAMETERS

In all linear analyses, and in nonlinear dynamic analysis,

a summary of element geometry is output by MAGNA. This

- information is useful in isolating errors in coordinate and/or

connectivity data which might not be obvious from geometry plots

of the finite element mesh.

For all two- and three-dimensional elements, the following

data are listed:

- element type and number,

- minimum, average and maximum Jacobian determinant
values,

- element volume (area for 2-D elements), and

- element distortion ratio.

The Jacobian determinant values are characteristic of the mapping

between physical and isoparametric coordinates, and should

always be positive in elements of reasonable shape. Element

PT areas or volumes are printed to permit identification of

elements which are incorrectly defined or of unreasonable

dimensions. Finally, unreasonably distorted elements can often

be identified from the distortion ratio, defined as

8 (minjJ)/Vol. (3-D Elements)

4 (minjJ)/Vol. (2-D Elements)

in which I~l is the Jacobian determinant. The distortion ratio

is equal to one for elements which are parallelepipeds, and is

less for more distorted elements. Elements having a distortion

ratio less than about 0.25 are likely to result in local

ill-conditioning and/or inaccuracy and may require redefinition

as two or more elements.

1
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10.5 ITERATIVE SOLUTION PARAMETERS

The progress of any nonlinear solution must be monitored

continuously to ascertain the validity of the results and to

detect convergence or divergence of successive approximations at

a given loading or time value. During an iterative nonlinear

solution, the MAGNA program uses two primary means of monitoring

the proaress of the iterations: residual (i.e., out-of-balance)

forces and displacement corrections. Since both of these

quantities are vectors for a multiple degree of freedom system,

their "size" is measured using the Euclidean norm, denoted by

v J = /v-v. The force and displacement quantities monitored

and printed during the solution are

FNORM = IIresl / 1Fext"1

and

DNORM JJAu(i+l) - Au(i) 

in which i denotes an iteration number during a given time or

*m loading increment. Note that the quantity FNORM, being normalized

with respect to the total external forces, is independent of the

particular system of units being used, while DNORM is measured

in units of length. An exception occurs when the applied forces

are zero, in which case the actual residual force norm is used

for FNORM.

At each iteration cycle, the iteration number and current

values of FNORM and DNORM are printed, along with appropriate

diagnostic and/or informative messages. As the solution converges,

both FNORM and DNORM will gradually decrease (in some cases

following a few oscillations) until the force and displacement

tolerances specified as iteration parameters (Section 8.3.1) are

satisfied. In dynamic problems, and in those for which linear

constraints have been specified, FNORM will tend to converge to

some constant value other than zero, due to inertial forces and

to reactive forces which occur due to the presence of the

6 constraints. For such analyses, residual force tolerances are

applied to the differences in FNORM between successive iterations.

10.5.1
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It should be noted that one additional cycle of iteration

is performed to complete the solution after convergence is

achieved, so that the residual forces assocated with the printed

solution are often an order of magnitude or more smaller than

the specified tolerance. Final residual forces and displacement

corrections are displayed following the printed displacement

and stress results for the increment, and labeled with NUMIT = 0.

Typical output for the iteration control variables

appears as follows:

ITERATION CONTROL VARIABLES INCREMENT = 4

NUMIT = 0 THE FOLLOWING ARE FINAL VALUES AT
COMPLETION OF PREVIOUS INCREMENT

NUMIT =0 FNORM = .448E-09 DNORM = .553E-10

STIFFNESS TO BE REFORMED
NUMIT = 1 FNOM = .250+00 DNORM .349E-01

STIFFNESS TO BE REFORMED
NUMIT =2 FNORM = .176E-03 DNORM =.348E-04

STIFFNESS TO BE REFORMED
NEXT ITERATION TO BE ACCEPTED

In the above example (taken from the analysis of Section 6.15),

the values for NUMIT = 0 are final values for the third

increment, and iterations for increment 4 begin at NUMIT = 1.

The informative message "STIFFNESS TO BE REFORMED" appears

at varying intervals in the solution, dependinq upon the type

of iteration strategy requested. Convergence is indicated by

the message "NEXT ITERATION TO BE ACCEPTED." Lack of convergence,

which results in job termination, is signaled in this section

of the output by one of the following diagnostics:

SOLUTION STOP - RESIDUAL FORCES INCREASING

SOLUTION STOP - DISPLACEMENT SOLUTION DIVERGING

SOLUTION STOP - NO CONVERGENCE IN MAXIT CYCLES

15
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10.6 INCREMENTAL LOADS

- At each increment of a nonlinear solution for which output

is requested, the current external forces are printed immediately

preceding the displacement solution. For concentrated nodal

forces, which are obtained from the time function curves input

in Section 8.9, the following information is printed:

NODE : node number at which force is applied,

COMPT : component (i.e., direction) of the force,

DOF : the global degree of freedom number, and

1MAGNITUDE : value of total force.

Body forces, surface pressures and line loads are summarized

element by element, in order of element type and number (this

sorting is performed during the input stage). The following

parameters are output for each distributed load:

- element type,

- element number,

- surface number, edge number, or body force direction,

- loading type ("LIVE" or "DEAD"),

- data curve number for this load,

- loaded volume, surface area, or edge length,

- loading magnitude.

For "live" loads, the distributed loading is applied per unit

of deformed length, area, or volume; live pressures and line

loads are assumed to act along the outward normal to the

deformed surface or edge, and therefore may change direction

during the course of the solution. "Dead" loading is always

referred completely to the original geometry of an element.
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10.7 DISPLACEMENT AND VELOCITY SOLUTIONS

Displacements are output by node and direction whenever

printing is requested in a nonlinear or dynamic solution, for

each loading condition in linear static analysis, and for each

requested vibration mode in natural frequency problems.

Velocities are also displayed in all dynamic analysis printouts.

Output is given in the global Cartesian coordinate directions.

When a nodal displacement (or velocity) is suppressed through

boundary conditions, such constraint is indicated by an asterisk

printed to the right of the corresponding displacement (velocity)

value.

10.7.

10.7.1



* . .. .. " . . . . . . . .. . k. ,. . -. .- ,-I
Ai

10.8 ELEMENT STRESSES AND STRAINS

n In linear and nonlinear analysis, there are four categories

of stress/strain output:

- One-Dimensional Elements,

- Two-Dimensional Elements,

- Three-Dimensional Elements, and

- Thin Plate and Shell Elements.

Within any of these categories, which are described separately

in the following sections, the element stress output is virtually

identical regardless of the element type. In all cases, the

stress and strain quantities are those consistent with the

Lagrangian formulation used throughout the program (see Section

2.1).

10.8.1 One-Dimensional Elements (Type 4)

The one-dimensional element, or truss, is an axial

force element, and thus the state of stress is characterized by

the stress parallel to the axis of the bar. Therefore, all stress

and strain outputs are given in terms of a locaZ coordinate

directed from one end of the bar to the other.

In linear analysis, the output for each element

consists of the following:

- element number,

- elastic modulus,

- element area,

- element length (undeformed),

- axial strain,

- axial stress, and

- total force (stress x area).

For each different material used, the most highly stressed element

is also identified each time the stress output appears.

10.8.1

*



For nonlinear analysis, additional output is

provided to describe possible material nonlinearities. Output

parameters consist of:

element number, -

- element area,

- element length (undeformed),

- total axial strain,

- total plastic strain,

- axial stress,

- total force (stress x area),

- yield surface size, and

- yield surface translation.

The plastic strain as output by the program is defined as the

residual strain which would exist if the element were unloaded

perfectly elastically; that is,

Cp = total -alE

where E is the original elastic modulus. The yield surface size
(i.e., the current "yield stress") and yield surface translation
result from isotropic and kinematic strain-hardening effects,

respectively.

10.8.2 Two-Dimensional and Axisymmetric Elements (Types
3, 9 and 10)

The two-dimensional elements in MAGNA are initially

planar, although they may be arbitrarily oriented in space and

may deform into a warped curvilinear shape. Due to the preferential
orientation of the stress state, strain and stress output are

normally given in a local system of coordinates parallel to the

plane of the undeformed element. The reference coordinate

directions are shown in Figure 10.8.1 for a typical element.

The local x direction is determined from the first two corner

nodes of the element; the local y axis lies in the plane defined

10.8.2
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by nodes 1, 2 and 3 for the element, and is oriented perpendicular

to local x. Since Element Type 9 is often used for true plane

stress applications, output for Type 9 elements is given with

respect to the gZobaZ x,y coordinates, provided the element lies

in a plane for which z is constant. When output is given in

global directions, the axis type printed in the original element

connectivity output is given as "GLO", rather than "LOC". For

axisymmetric analysis (Element Type 10), stresses and strains

are always output in the global system of coordinates.

All two-dimensional and axisymmetric elements in

the program are numerically integrated, and, therefore, strain

and stress outputs are given at the actual integration points

of the element. The ordering of the integration points for 1, 2

and 3-point Gaussian quadrature rules is shown in Figure 10.8.2.

Note that stress or strain results can be listed at the node

points and/or plotted in contour or relief form over all or

selected elements (see Chapter 11); this is usually the most

useful and readily assimilated form of stress output. Having

determined the most critical locations from stress or strain

plots, the analyst can examine these portions of the model in

greater detail using the printed output.

In linear analysis, the two-dimensional element

output consists of:

- element and integration point numbers,

- strainsxx' yy' xy'

- stresses axx, ayy, 0 xy, and

- minimum and maximum principal stresses.

Circumferential (z-direction) strains and stresses will also be

output for axisymmetric elements. The shear strain yxy is an

"engineering shear strain" which is twice the tensorial value. The

principal stress values are ordered algebraically (rather than by

absolute value); that is,

10.8. 3
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For each different material, the element having the largest von

Mises effective stress is also identified and printed at the end

of this segment of the output.

The element output for nonlinear problems is

similar, but includes additional parameters which describe

possible material nonlinearities. Besides the stress and strain

quantities described above, the following data are printed at

each integrating point:

- plastic strains x P yy' Y xy'

- yield function F,

- relative error estimate f and

-von Mises equivalent stress a eq.

The equivalent stress is given by

2 2a =( I - a + 0
eq 1 a2) 1 2

in the plane stress case, where all 02 are the principal stresses

at a point. The yield function F is

2 2
eq

in which k represents the current yield surface diameter (i.e.,

the yield stress). Thus, the yield function is negative at a

point if the material behaves elastically, and is equal to zero

for plastic states. Due to numerical error accumulated during

the solution, F will usually take on a small positive value for

elastic-plastic points, rather than being exactly zero. Such

truncation error is always expected to occur in plastic analysis,

and the remaining output quantity, the relative error f is
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provided as a check that the amount of numerical error remains

small. Define
2f =F/k

R

this quantity then describes the relative amount by which the

computed stress state deviates from the yield surface. Note that,

although a stress correction procedure is employed to adjust the

computed stresses to lie on the yield surface, the error fR is

evaluated before any stress corrections are appZied. Thus, the

value of f R is always larger than the final error associated with

deviations from the current yield surface. Relative errors in the

range of one or two tenths of a percent (.001 - .002) are normally

acceptable, although the values are generally smaller in a well-

behaved solution.

10.8.3 Three-Dimensional Elements (Types 1, 2, 6, 7 and 8)

The three-dimensional solid elements are arbitrarily

shaped and oriented, and in general contain no preferential

directions for strains or stresses. For this reason, the element

i i. output for all solid elements is referred to the global Cartesian

system of coordinates.

As with the two-dimensional elements, all of the

three-dimensional solids are isoparametric, numerically integrated

elements. Printed output is given at the integration points,

which are summarized for various orders of integration (1, 6, 8,

14 and 27 points) in Tables 10.8.1 through 10.8.5. For the

9-point integration available with Element Type 2, output is

generated at the 2x2x2 Gauss points (Table 10.8.3). Averaged

nodal stress/strain values and plotting on selected elements surfaces

are also available with the graphics utility programs described in

Chapter 11.

For linear analyses, three lines of printed output

are produced per integration point. These consist of:

Line 1 - element number

S_-_ - integration point number

- strains c £ yy' ,zz' Yyz' Yxz' Yxy
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TABLE 10.8.1

INTEGRATION POINT LOCATIONS FOR SOLID "TEMENTS
(1 Integration Point)

Point r s t

1 0 0 0

TABLE 10.8.2

INTEGRATION POINT LOCATIONS FOR SOLID ELEMENTS
(6 Integration Points)

T
Point r s t

1 -1 0 0

2 0 -1 0

3 0 0 -1

4 1 0 0

5 0 1 0

6 0 0 1

4k
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TABLE 10.8.3

INTEGRATION POINT LOCATIONS FOR SOLID ELEMENTS
(8 Integration Points)

Nearest
Point Node r s t

17 -*-h -hi

2 3 -h -h h

36 -h h -h

4 2 -h h h

58 h -h -h

6 4 h -hh

7 5 h h -h

8 1h h h

h =0.5773502691896
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TABLE 10.8.4

INTEGRATION POINT LOCATIONS FOR SOLID ELEMENTS
(14 Integration Points)

Point r r s t

1 0 0

2 a 0 0

3 0 -a 0

4 0 a 0

5 0 0 -a

6 0 0 a

7 *b -b -b

8 -b b -b

9 -b -b b

10 -b b b

11 b -b -b

12 b b -b

13 b -b b

14 b b b

a = 0.795822426

b = 0.758786911
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TABLE 10.8.5

INTEGRATION POINT LOCATIONS FOR SOLID ELEMENTS
(27 Inteqration Points)

Nearest
*Point Node r S t

17 -*-h -h

2 19 -h -h 0

3 3 -h -h h

4 14 -h 0 -h

5 24 -h 0 0
6 { 10 -h 0 h
7 6 -h h -h

8 18 -h h 0

9 2 -h h h

10 15 0 -h -h

11 25 0 -h 0

12 11 0 -h h

13 26 0 0 -h

14 27 0 0 0

15 23 0 0 hi

16 13 0 h -h

17 22 0 h 0

18 9 0 h h

19 8 h -h -h

20 20 h -h 0

21 4 h -h h

22 16 h 0 -h

23 21 h 0 0
24 12 h 0 h

25 5 h h -h

26 17 h h 0

27 1 h h h

h =0.7745966692415
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Line 2 - stresses a a azz a

Line 3 - principal stresses al, 2 , a 3

The shear strains Yij are "engineering" values which are twice

the tensorial shear strains. In addition, the element having

the highest von Mises effective stress for each material used

is identified and printed. Note that, since yield stress values

are not required as input in linear analyses, the effective

stress can be computed correctly only for isotropic materials

(for anisotropic material, the direction-dependent yield stress

values usually appear in the definition of effective stress).

In nonlinear problems, four lines of output are

provided per integration point:

Line 1 - total strains

Line 2 - plastic strains

Line 3 - total stresses

Line 4 - principal stresses.

Also, the yield function F, equivalent stress aeq' and estimated

relative error fR are output at each point; these quantities

are defined and described in Section 10.8.2.

10.8.4 Thin Plate/Shell Elements (Type 5)

Output for the MAGNA thin shell element is

presented in the local coordinates used for element stiffness

formulation. These coordinate directions are determined in a

similar manner to those used for the two-dimensional elements

(Section 10.8.2), but are located in the element midsurface

(Figure 10.8.3). Due to the simplicity of the element shape

functions, the most accurate stress and strain values are those

obtained at the element centroid; for this reason, all printed

strain and stress values are evaluated at the center of the

element for selected stations through the element thickness.

For linear problems, the output is labeled as

follows:

10.8.12
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Figure 10.8.3 Local Coordinate Directions for Thin Shell
Elements.
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LABEL QUANTITY

EPS (U) centroidal strains at upper surface _

EPS (L) centroidal strains at lower surface

UPPER centroidal stresses at upper surface

MIDDLE centroidal stresses at midsurface

LOWER centroidal stresses at lower surface

For each line of output, the xx, yy and xy components of strain

or stress are given, along with maximum and minimum (principal)

values. One set of the above output is printed for each shell

element in the model.

In nonlinear analysis, two lines of output are

produced at each sampling point through the element thickness,

proceeding from the lower to the upper surface at the element

centroid. These lines are labeled EPS(i) and SIG(i), where

i denotes the number of the sampling point. In nonlinear elastic

analyses, 1 < i < 3, so that i = 1 denotes the lower face of

element, i = 2 the midsurface, and i = 3 the upper surface.

At each point, xx, yy, xy, maximum and minimum values of both

strain and stress are given as output.

10.8.5 Layered Shell Elements (Type 11)

Strain and stress data for the layered shell is

fully three dimensional, and are referred in the output to the

global coordinate directions. All printed strains and stresses

are listed by layers, with layer 1 being defined as the lower

surface of the element (t = -1; see Figure 10.8.4).

In linear problems, strain and stress data is

output for each layer at the corners of an element. Corners are

labeled 1 through 4, corresponding to nodes 1-4 in Figure 10.8.4.

Output lines for upper and lower surfaces of each layer are

labeled "UP" and "LO", respectively. The output data consists of:

- element, corner, and layer numbers;

- strainsc xx yy, zz yyz' xz' yxy;

10.8.14
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K Figure 10.8.4. Node Numbers and Natural Coordinate
-i Directions for Layered Shell Element.
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-stresses 0 a 0 a Cy a- stesse xx' ayy zz' ayz' xz' axy;

- equivalent stresses aeq.

The shear strains Yij are engineering strains, which are twice

the corresponding tensorial values.

Nonlinear strain and stress output for the layered

shell element is similar to that for linear analysis; however,

data are printed for integration points in each layer of an

element. Within a particular layer and (upper or lower) surface,

the integration points form a two-dimensional pattern (as in

Figure 10.8.2). The precise locations of the integration points

in terms of element natural coordinates are summarized in

Table 10.8.6.

10.8.6 Beam Elements (Type 12)

The state of stress in the Type 12 curved beam

element is characterized by a direct (axial and/or bending)

stress, and two transverse shear stresses. Therefore, all

element output is referred to the local coordinate system shown

in Figure 10.8.5.

In linear problems, stresses are always distributed

at most linearly over the beam cross-section and may be charac-

terized exactly by stress resultants (forces and moments). The

resultant quantities printed are:

- axial force (parallel to x);

- transverse shear forces in local y and z
directions;

- twisting moment (moment about x); and

- bending moments about local y and z.

No strain data is printed for the beam element.

For nonlinear problems, the stresses may vary more

than linearly over the cross-section, and shear stresses cannot

be separated uniquely into contributions due to torsion and
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- Each of nodes "3" and "4" is optional

- Nodes "3" and "4" may be identical in
curved elements

z

4 x

y2

Y

0

Figure 10.8.5. Local Coordinate Axes for Three-Dimensional,
Curved Beam Element.
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TABLE 10.8.6

INTEGRATION POINT LOCATIONS FOR SIXTEEN-NODE

LAYERED SHELL ELEMENT

Nearest

Point Nodes r** s**

1 1,5 -h* -h

2 4,8 -h h

3 2,6 h -h

4 3,7 h h

* h = 0.5773502691896

** A similar array of integration points is located

at the upper and lower surfaces of each layer.

10.8.18



transverse shear strain. For this reason, local stresses are

output in nonlinear analysis, rather than stress resultants.

Within a cross-section, output for all integration points

(identified by their local y,z coordinates) is printed, consisting

of:

- element and integration point numbers;

- local coordinates of the integration point;

- stresses cxx Exy, C xz; and

- effective plastic strain p.

A typical grid of integration points within the cross-section

is shown in Figure 10.8.6. The number and location of these

points depends upon the number of segments in the cross-section.
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1 Segment

9 Integration Points

0 4 Segments

36 Integration Points
(5 Overlap)

Figure 10.8.6. Typical Integration Point Locations in
Beam Element Cross-Section.
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10.9 SOLUTION SUMMARY

At the end of every complete solution, a brief summary

is displayed giving the total amounts of CPU time consumed in

each stage of the analysis, as well as a summary of input/output

resources used. This output is largely self-explanatory, and

is used to determine the critical phases of the solution in terms

of computing expense. An example of the solution time summary

(in this case for a nonlinear static problem) is shown below.

SOLUTION TIME SUMMARY

INPUT AND TABLE SETUP ........................ .406

ELEMENT MATRICES, EQUILIBRIUM
CORRECTION AND STRESS RECOVERY ........ 26.508

MATRIX ASSEMBLIES ........................... 1.601

LOADS CALCULATIONS .......................... .505

EQUATION SOLUTIONS .......................... 4.708
DISPLACEMENT RECOVERY ...................... 1.297

TOTAL LOAD INCREMENTS ....................... 9

TOTAL ITERATION CYCLES ..................... 23

SUMMARY OF SEQUENTIAL I/O OPERATIONS

READ REQUESTS .............................. 5601

WRITE REQUESTS ............................. 1953

WORDS TRANSFERRED (INPUT) ................ 456357

WORDS TRANSFERRED (OUTPUT) ............... 296469

For the VAX 11/780 version of MAGNA, any modification of

the program storage or introduction of user-written subroutines
requires that a new executable file be created. This revised

executable file may be reused as required with the modified

storage parameters and user routines intact. For this reason,

a summary is also printed at the conclusion of the analysis

run to record storage allocation parameters which are preset

in the executable file used.
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10.10 ERROR AND WARNING MESSAGES

The following is a summary of error and warning statements

issued by the MAGNA program in addition to messages given by

the operating system. These diagnostics fall in four general

categories:

(1) errors in model definition,

(2) error conditions occurring during the actual
solution,

(3) errors due to exceedance of program capacity
or invalid file operations, and

(4) system-generated error messages.

The compilation of diagnostic messages below is divided into

these four categories. Probable causes and corrective actions

are listed whenever possible.
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10.10.1 Model Definition Error Diagnostics

* ERROR IN ELEMENT GEOMETRY TYPE = ... ELEMENT = ...

Error Type Fatal

Meaning Indicated element possesses a singular
isoparametric mapping on the interior
of the element, indicating an
unreasonably distorted geometry.

Probable Error in connectivity for the element,
Cause or incorrect definition of coordinates

of one or more nodes connected to the
elements.

Corrective Verify that the connectivity for the
Action element is correct. If so, determine

whether the coordinates of each node
in the connectivity list have been
correctly defined. If the connectivity
and coordinates are correct, refine
the model to give a less distorted
shape for the element.

N FOLLOWING ELEMENT IN ERROR (Shell Element Only)

Error Type Nonfatal

Meaning A thin shell element has been defined
for which the isoparametric mapping
is singular at one of the corners,
indicating the possibility of
unreasonable distortion.

Probable Error in connectivity or nodal
Cause coordinates for the element. In

certain cases, this diagnostic may
be issued when the element is
correctly defined, for example, if
two adjacent sides of the element are
made coplanar.

Corrective Check the element connectivity and
Action the coordinates of each node connected

to the element. If these are correct,
refine the model to give a less
distorted element shape.

N WARNING - CONSTRAINED NODE IN ABOVE LIST IS
UNDEFI NED

10.10.2
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Error Type Nonfatal

Meaning A boundary condition has been applied
to a node whose number is greater
than the number of nodes specified
at the time of coordinate input. The
constraint is processed but may cause
an error.

Probable Incorrect definition of the num'ber of
Cause nodes in the model, or keypunching or

other error in the boundary condition
input.

Corrective Correct the constraint as required and
Action rerun.

- WARNING - SPECIFIED RANGE OF NODES NOT EVENLY
DIVISIBLE BY INCREMENT

Error Type : Nonfatal

Meaning : A possible error has been detected in
the generation of boundary conditions
for a series of nodes.

Probable Error in starting or ending node
Cause numbers given for the constraint, or

in the increment value.

Corrective Check the list of nodal degrees of
Action freedom in the output to verify that

the correct nodes have been constrained.
If extra nodes are constrained which
were unintended, correct the input
and rerun.

- WARNING - UNDEFINED NODAL COMPONENT IN CONSTRAINT

Error Type Nonfatal

Meaning An undefined direction (component of
displacement) has been referenced in" a boundary condition. Although the
undefined degree of freedom is simply

ignored by the program, a constraint
Uwhich was intended may not be applied

if a keypunching error is involved.

Probable Usually due to keypunching error.
Cause
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Corrective : Verify that all nodal degrees of
Action freedom to be constrained actually

have been suppressed, by checking
the final list of nodal degrees of
freedom. If this is not the case,
correct the error and rerun.

W ERROR - SUPPRESSED DEGREE OF FREEDOM APPEARS IN

FOLLOWING CONSTRAINT

Error Type : Nonfatal

Meaning : An inactive displacement degree of
freedom is specified in a linear
constraint equation. The result may
not be intended. The superfluous
degree of freedom is ignored by the
program.

Probable : Incorrect specification either of the
Cause linear constraint or of the boundary

conditions at the node in question.

Corrective : Verify that both the linear constraint
Action and the boundary condition which

suppressed the degree of freedom are
correctly specified. If not, correct
and rerun.

a LOAD INPUT ERROR, CODE =

Error Type : Nonfatal

Meaning : A nodal force has been incorrectly
specified, and will be ignored by the
program. Error codes are interpreted
as follows:

Code 1 : Undefined node

Code 10 : Undefined direction

Code 100 : Load applied to suppressed
degree of freedom

Code 1000 : Data curve number not
specified (nonlinear
analysis)

Code 10000 : Undefined loading condition
specified (linear analysis)

Error codes may be summed; for example,
CODE = 1010 indicates the occurrence
of two errors (code =10 and code =
1000).
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Probable Error in loads input, boundary
Cause conditions, or specifications of the

number of loading conditions.

Corrective Correct and rerun.

Action

* ERROR - INDICATED ELEMENTS ARE UNDEFINED

Error Type : Nonfatal

Meaning : Pressure loads have been defined for
an element type which is not present
in the model. The specified pressures
are ignored.

Probable Incorrect specification of element
Cause type in either element or distributed

loads data.

Corrective Correct and rerun.
Action

* ERROR - INVALID ELEMENT RANGE

Error Type Nonfatal

Meaning An element or series of elements
CT specified in pressure loads input

does not exist. The input line is
ignored.

Probable Incorrect specification of element
Cause type, or starting/ending element

numbers.

Corrective Correct and rerun.Action

ERROR - INVALID SURFACE NUMBER

Error Type : Nonfatal

Meaning : Pressures have been specified on an
undefined element surface (<0, or >6).
The input line is ignored.

Probable : Keypunching error or incorrect ordering
Cause of data.

Corrective: Correct and rerun.
Action
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10.10.2 Solution Error Diagnostics

U NONPOSITIVE PIVOT AT EQN .... VALUE =

Error Type : Nonfatal

Meaning A non-positive diagonal element has
been encountered during solution of
the system equations, indicating
that the stiffness (or effective
stiffness) matrix is no longer
positive definite.

Probable In linear analysis, this error
Cause generally indicates the presence of

modeling errors not detected during
input, or of possible ill-conditioning
of the equations due to distorted
elements, inadequate supports, or
excessive use of reduced numerical
integration. In nonlinear analysis,
the presence of non-positive pivot
values often signals the onset of
either structural instability (due to
passage through a limit point) or
numerical instability (due to the
rapid increase in plastic strains
in a materially nonlinear analysis).

Corrective For linear problems, check the model
Action (e.g., by plotting) for unreasonable

element distortion. If very large
displacements are predicted, check
for proper application of the
boundary conditions or, when reduced
integration is being used, increase
the integration order in selected
elements to stabilize the solution.
In materially nonlinear problems,
check for rapid increase of the
plastic strains; if this is the case,
specify a finer tolerance for iteration,
decrease the step size, or both as
required. If perfect plasticity has
been assumed (no strain hardening),
check to see if catastrophic collapse
has occured. When buckling is
suspected (i.e., limit-point
instability), the analysis can be
rerun as a dynamic analysis with very
large time steps, in which case inertial

effects will stabilize the solution
into the post-buckling range.
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3 ZERO PIVOT AT EQN ....

- Error Type : Fatal

Meaning : Same as above, except that a pivot
value is exactly zero to machine
precision.

Probable Usually due to insufficient boundary
Cause conditions, excessive use of reduced

integration, or the occurrence of
plastic collapse or limit-point
instability.

Corrective In linear problems, or in the first
Action increment of nonlinear problems,

insufficient supports are usually
the problem. Check for the validity
of the boundary conditions, or increase
the order of numerical integration
in strategically placed elements. In
the later stages of a nonlinear
analysis, collapse or instability is
generally the source of trouble.
These are corrected as outlined under
the previous message.

i BAD DIAGONAL I= .... D(I) =

Error Type : Fatal

Meaning : Eigenvalue solution has failed due to
a zero or very small positive pivot
value, indicating either a singularity
or severe ill-conditioning in the
model.

Probable Generally due to insufficient supports,
Cause excessive use of reduced integration,

or highly distorted element shapes.

Corrective Correct constraints, increase the
Action order of element integration, or

refine the model to eliminate
unreasonable element geometry.

e SOLUTION STOP - RESIDUAL FORCES INCREASING

* SOLUTION STOP - DISPLACEMENT SOLUTION DIVERGING

• SOLUTION STOP - NO CONVERGENCE IN MAXIT CYCLES
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Error Type Fatal

Meaning The iterative solution for nonlinear
equilibrium is nonconvergent or divergent
at the current load level or time step.
This lack of convergence is detected
by large increases in out-of-balance
forces, diverging estimates for the
incremental displacements, or
exceedance of a specified maximum
number of cycles of iteration.

Probable Usually due to the use of loading or
time increments which are too large
for the use of a simplified stiffness
formulation (constant or averaged
stiffness) in elements which are
strongly nonlinear, or to an
insufficient frequency of equilibrium
iterations.

Corrective Change the method of stiffness
Action formulation to full tangent stiffness

in strongly nonlinear elements.
Decrease the number of steps between
stiffness recalculations and/or
equilibrium iterations as required,
or decrease the specified time or p
load increment value. Switching
from modified Newton iterations to
either full or combined Newton-Raphson
iterations may also be helpful.

4

10.10.8



10.10.3 Central Memory and File Handling Errors

3 INSUFFICIENT LENGTH IN /.

Error Type : Fatal

Meaning : One of the core-resident COMMON areas
which determine the program capacity
is not sufficient to process the
problem.

Probable A large number of nodes, load cases,
Cause degrees of freedom or stiffness matrix

partitions dictates the use of more
array space.

Corrective Modify the length of the indicated
Action block of storage as indicated in

Chapter 7.

a WORK SPACE.... INSUFFICIENT FOR MATRIX STORAGE

Error Type Fatal

Meaning The longest column of the stiffness
(or effective stiffness) matrix is

1W_ too long to be stored in high-speed
memory.

Probable : Insufficient array space, or poor
Cause node numbering of a large model.

Corrective : Renumber nodes if possible to reduce
Action the local matrix bandwidth. Increase

the length of COMMON/BLANK/ as
indicated in Section 7.1.2.

w INSUFFICIENT SPACE FOR ELEMENT FORCE DATA

* INSUFFICIENT STORAGE FOR LOADS

Error Type Fatal

Meaning The program storage is insufficient
for element or nodal force data.

Probable Large number of loading conditions in
Cause linear static analysis; very large

number of surface pressure input lines.

* Corrective Reduce the number of load cases orr-Action pressure inputs (use generation features),
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or increase the working storage in
COMMON/BLANK/ as outlined in
Chapter 7.

I/O ERROR UNIT = .... , SUBROUTINE =

Error Type Fatal

Meaning An irreprievable error has occurred
during transmission of data to or from
peripheral storage.

Probable : In many instances, this type of error
Cause occurs due to incorrect use of the

internal data generation features of
the program (e.g., causing too many
or too few elements to be generated,
etc.). If the input data has been
processed correctly, error is due to
an internal file-handling error.

Corrective Verify that all input has been
Action specified and processed correctly.

If the problem persists, contact
installation analyst or the developer.

10.10.4 System Errors and Abnormal Termination

In some situations, modeling or data formatting

errors may not be trapped by the built-in data checks in MAGNA.

The usual result is an abnormal job termination due to one of

the three following types of run-time errors:

(1) Arithmetic Overflow

(2) Random Access File Errors

(3) Sequential' File Errors

Although the error messages generated by the system under these

conditions may vary widely, the error is usually recognizable"

for example, the arithmetic error will appear as a MODE error

on CDC or CRAY machines, divide check or overflow error on VAX,

etc. The sources of each of these types of problems under norma!

conditions are summarized in the following paragraphs.

Arithmetic Errors. The most common sources of

arithmetic errors are:
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1. Poisson's ratio declared as v 0.5

2. Extensional modulus/moduli E. 0.0
1

3. A material property set is referenced, but
not created

4. A nonlinear element has erroneous geometry.

Materials data should be checked to ensure that the Poisson's

ratio is less than 0.5 for isotropic materials, that all moduli

are positive, and that all materials used in element definitions

have been defined previously. Errors in the materials data such

as (1)-(3) will normally results in termination during the element

input phase. The fourth type of arithmetic error generally

results when a geometry error is not isolated by performing

a preliminary Linear analysis. This type of error typically

occurs during the first cycle of element calculations; the

preceding MAGNA output is the iteration information for INCREMENT=0

and NUMIT0.

Random File Errors. The usual source of random

file access errors is an erroneous reference to an undefined

data curve. Care should be taken to verify that none of the

following two conditions exist:

1. An elastic-plastic material is assigned a
stress-strain curve number not defined in
the data curves input.

2. A nodal or element load specification
references an undefined data curve number.

Sequential File Errors. Sequential file errors

(such as end-of-file condition or I/O list-exceeds-record-length)

are sometimes caused by an incorrect use of element generation

facilities, or by a failure to input element data in the proper

sequence. The following conventions should be noted:

- the number of elements declared on the element
type header(s) must match the number of
elements defined;

-element types must be input in ascending order;
and
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- within element types, individual elements are
numbered between 1 and the number of elements
of a given type.

In most cases, a quick review of the element input echo will

help to isolate the source of the problem.

10.10.12
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10.11 STRAVG OUTPUT

STRAVG (Section 5.7) is a companion program to MAGNA which

performs extrapolation of strain and stress values from integration

points to the nodal points of the model, and finally generates

continuous nodal strain and stress information. The nodal strain

and stress data is useful for examining interior and/or surface

stresses at easily identified points, for comparison with strain

gauge data, and for the generation of contour and surface plots

(Section 11.2). The data generated by STRAVG also permits the

plotting of individual layer stresses in multilayered shell

elements (Type 11).

The STRAVG utility is often executed as a part of the

MAGNA analysis run, and its printed output is described in the

following sections. Postprocessing files, which are also

generated by STRAVG, are described separately in Section 5.7.

10.11.1 Model Parts Definitions

The first section of STRAVG output describes the

definition of "parts" within the finite element model. A "part"

is defined as any unique combination of element type and material

number (or laminate number, for element Type 11). The definition

of each part is summarized in a table such as the one shown below.

Part No. Elem. Type Material No.

1 7 1

2 7 2
3 8 1

A list of elements assigned to each model part is also output;

within each part, elements are listed in sequential order

(ascending element types and number) as defined in the original

input data.

The significance of a model part as defined in

STRAVG is that stress and strain values for adjacent elements
are combined to generate nodal values only if the elements belong

to the same part. Due to the differences in material properties
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which exist between elements of different parts, discontinuities

in strain and stress values will necessarily occur. By performing

smoothing operations only within parts, such discontinuities

are correctly accounted for in the data generated by STRAVG.

10.11.2 Nodal Strains and Stresses

The remaining output from STRAVG consists of nodal

values for all components of strain and stress. These values

are output for each increment, loading condition or mode shape

written to the MPOST file by MAGNA (see Sections 5.7 and 8.2).

At each increment processed by STRAVG, nodal

values are generated separately for each part, for all nodes

connected to the part. The output is sorted by increments, then

by parts, and finally by node number. For a particular part,

only those node points connected to the part are printed; a

node may appear more than once in the listing for each increment

if it is connected to more than one part of the model. For each

node, the printed output consists of the Green's strains (cxx,

Cyy, E zz ':yz' Cxz ':xy and Piola stresses (axx' ayy a Z yz a (.

0 xz, xy

10.11.3 Error Messages

Error messages are output from STRAVG in numeric

form (e.g., "FATAL ERROR NUMBER 100"). The corresponding error

descriptions are given in Table 10.11.1. The possible errors

are of two types, file errors ("F" in the Table) and storage

limit errors ("S" in the Table). File errors are typically

encountered when the MPOST file generated in MAGNA is either

nonexistent (not requested in the problem input) or incomplete

(due to premature termination of MAGNA). Storage limit errors

occur when the array areas in STRAVG are insufficient to process

a problem. In the event a storage limit error occurs, a larger-

capacity version of STRAVG should be requested from the installation

analyst or the developer.
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CHAPTER 11

PLOTTING UTILITIES

The MAGNA finite element program is supported by three

types of plotting utilities:

- undeformed and deformed geometry plotting,

- contour and relief plotting of analysis results, and

- variable versus variable plotting.

On CDC computers, these graphics utilities are available with

the Tektronix 4014 graphics terminal (or other PLOT-10 1

compatible hardware) and with the Hewlett-Packard 7221A four-

color pen plotter. On the Hewlett-Packard plotter, transparencies

for overhead projection can also be made directly. The Tektronix

versions of the graphics utilities are also available on the

Digital Equipment VAX 11/780.

Computer graphics utilities for use with MAGNA are divided

p-i into three physically distinct programs, GPLOT (geometry

plotting), CPLOT (contour/relief plotting) and XYPLOT (variable

versus variable plots), all of which can be accessed

independently of MAGNA itself. Undeformed geometry plotting,

which is done interactively, requires only the MAGNA data file,

so that graphical verification of a finite element model can

be obtained without submitting a large analysis run. Contour,

relief, deformed geometry and x-y plots are produced interactively

using the postprocessing files created by MAGNA (Section 5.7), so

that decisions concerning which results are to be plotted may

be made after the analysis is complete.

Commands, options and representative output from the

graphics support programs are discussed in Section 11.1 throigh

11.3. Job control procedures necessary for accessing the

programs are summarized in Section 11.4.
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11.1 GPLOT - DEFORMED AND UNDEFORMED GEOMETRY PLOTTING

GPLOT is an interactive utility plotting program which

accepts as input either a MAGNA data file (Chapter 8) or the

MPOST postprocessor file (Section 5.7), for plotting undeformed

and/or deformed geometry of a finite element model. A wide

variety of options and features is available in GPLOT; these

include

- -- orthogonal or perspective views,

- translations, rotations and/or reflections,

- labeling of nodes (all or selected surfaces) and
elements,

- zooming, clipping and unscaling,

- exploded views, and

- plotting of selected elements by element type and
number.

GPLOT is accessed using the command procedures described

in Section 11.4. Prior to issuing the command to initiate

execution, it is necessary only to attach the file to be plotted

under the local (temporary) file name TAPE5. For the VAX 11/780

version of GPLOT, the file to be used for plotting is requested

at the start of execution. GPLOT automatically retrieves all

additional files which are required for execution, and returns

them at the end of a session.

During execution, GPLOT is controlled by commands entered
by the user which select options and define plotting parameters.

Valid commands are summarized below. In each case, only the

first four characters of the command need be entered. In

alphabetical order, the commands recognized by GPLOT are:

AXIS - select option to draw Cartesian axes

CLIP - define "clip plane" position; used for situations
in which eye position is inside the model.

CUBE - define limits on points to be plotted, based
on minimum and maximum values of X,Y,Z

11.1.1



DEFAULT - reset all parameters and options to their
default values

DEFORM - select geometry to be plotted: undeformed,
deformed, or both

DRAW - plot the model using current values of all
parameters and options.

ELEMENTS - specify plotting of selected elements only

EYE - define viewing position in X,Y,Z coordinates

HELP - display a list of valid commands

LABEL - select labeling of nodes and/or elements

NEW - initiate input of a different model (more
than one model may be stored on a single
data file)

PROJECTION - select orthogonal or perspective view

REFLECT - specify reflection of model with respect
to a coordinate plane

ROTATE - define rotations of model about coordinate
axes

SCALE - select scaling/unscaling of the plot

SHRINK - select exploded view

STOP - terminate execution

SUMMARY - list of current values of all parameters
and plot options

TIME - display CPU time elapsed since sign-on

TRANSLATE - define translations of the model along
coordinate axes

VERTICAL - select vertical axis direction

ZOOM - define a portion of the model for "close-up"
viewing using the cursor.

In the command mode, a prompt symbol "*" is displayed whenever

the program is ready to accept a new command. As commands are

entered, additional input is requested as needed to define the

11.1.2



relevant parameters. Input requests are self-documenting and

straightforward; one or two short sessions should be sufficient

for the inexperienced user to become acclimated to the full

range of capabilities of GPLOT. A sample terminal session

using GPLOT is reproduced in Figure 11.1.1

4
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11.2 CPLOT - CONTOUR AND RELIEF PLOTTING

CPLOT is an interactive graphics program designed for

contour and relief plotting of analysis results (displacement,

strain, stress) obtained using MAGNA. A contour plot displays

lines on selected element surfaces along which the value of a

particular function is constant; relief plots are obtained by

projecting the values of a function above the plotting surface

an amount proportional to their magnitude. CPLOT also permits

superposition of both types of plots, or relief plotting of

contour lines. Both types of plots may be superimposed on

either the original geometry or the deformed geometry of a

model. CPLOT accepts as input the APOST postprocessing file

described in Section 5.7.

CPLOT is executed using the commands summarized in

Section 11.4. Prior to entering the command to begin execution,

pr it is necessary to attach the postprocessing file to be plotted

under the local (temporary) file name TAPE99. On the VAX 11/780,

the disk file name is requested by CPLOT following the start of

execution. CPLOT automatically accesses all additional files

which are required during execution, and returns them when the

program is terminated.

As with GPLOT, the CPLOT program is controlled by

alphanumeric commands, entered in response to the prompt

symbol "?". Valid CPLOT commands are:

ALEL - specify selected elements for plotting

CLIP - specify CLIPping plane position (usually used for
eye posi--os within the model)

CONL - select labeling or no labeling of contour lines

1
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CORE - define COntour/RElief plot parameters; these
include the type of plot, contour values,
relief scale*, and number of relief lines
per element

CUBE - define minimum and maximum x,y,z coordinates
to be plotted

DEFO - select geometry (undeformed, deformed) to be
plotted and scale displacements. Contour and
relief plots may be drawn on either the
undeformed or deformed geometry

ENTE - specify plotting of ENTire Element (for 3-D
element types), rathe-Fthan-plotting surfaces
only

EXIT - terminate execution

EXPL - select EXPLoded view

EYEP - specify viewing (EYE) Position

HELP - display list of valid commands and options

LABE - select option to plot title block, outline the
finished plot, and print contour label values

LAXS - specify plotting of Cartesian axes

LELE - select element numbering options

MOVI - force plotting limits to be fixed at the values
entered in CUBE for a series of plots; normally
used for setting up a series of frames for
animation or for overlaid transparencies

NEWD - used to set up a NEW Data set (from the same
model) for plotting-(displacements, stress or
strain component).

NINC - select a New INCrement to be plotted

NODE - select option for NODE point numbering

PLOT - PLOT the model using current values of all
parameters and options

*The "relief scale" is the number of units of length to be
assigned to the largest function value to be plotted. This scale

controls the height of the relief plot above the plotting surface.
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PROJ - select PROJection type (orthogonal or perspective)

REFL - specify REFLection of plot about a coordinate plne

RESE - RESEt all parameters and options to default values

SITE - define physical coordinate values to be located at
the center of the finished plot; normally used to
recenter a plotting region "clipped off" using the
CUBE command

STEP - modify STEP size used in following contour lines
through an element; normally used to increase
resolution on contour lines which are poorly
represented with the default step size

SUBT - enter a one-line SUBTitle on a labeled plot

SUMM - print a SUMMary of current parameter values and
options

SURF - select the SURFace of solid elements on which
contouring or relief plotting is to be done.
Surfaces (numbered in the same manner as for
element pressure loads) are specified by
element type. SURF is also used to select a
specific layer for plotting, with layered shell
elements (Type 11).

TIME - print CPU TIME elapsed since sign-on.

VERT - specify VERTical axis direction

ZOOM - input plotting limits via the cursor to obtain
close-up views, or to turn this option off
after use

At the start of execution, the RESE and NEWD commands

are automatically executed to establish the default parameter

values and to ready the first data set for plotting.

In addition to the usual contour/relief plots of
displacement, strain or stress in the model, it is interesting

to note that CPLOT can be used to obtain useful representations

of deformed structural geometry. For instance, by setting

contour values which are out-of-range, and selecting the deformed

-option, one can produce deformed geometry plots of selected

surfaces of the model. Another example is the use of relief
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plots on the deformed geometry, with the relief scale set to
zero (function values not projected above the surface); by

specifying a relatively large number of lines per element

(5-8 or more), deformed plots are obtained which can be made to

produce a "shaded" effect which emphasizes the patterns of

deformation to a greater extent than the usual deformed geometry

plot.

As with GPLOT, the CPLOT program can be utilized by even

inexperienced users with a minimum of orientation, since the

commands are largely self-explanatory; the interactive mode of

operation of the program permits the repetition of selected

plots with various options, parameter values and viewing

positions to obtain the best form of presentation of results.

A short sample terminal session with CPLOT is reproduced in

Figure 11.2.1.
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11.3 XYPLOT - VARIABLE VERSUS VARIABLE PLOTTING

XYPLOT is an interactive graphics program which can be

used to construct two-dimensional plots of one (or more)

dependent variables versus a single independent quantity. Most

of the plot specification parameters are under user control,

including:

- physical dimensions of the plot,

- number and values of axis tic marks,

- output formats for axis label values,

- axis and plot titles, and

- line and symbol types.

The program is particularly useful on the Hewlett-Packard 7221A

and similar plotters, since each part of the plot can be drawn

before proceeding to the next. XYPLOT accepts input data either

from a specially prepared plot file or directly from the terminal,

and, therefore, can be used for producing plots of data from

any source.

When x-y plots of MAGNA results are required, two utility

programs, WRTFIL and WTFILA, may be used to extract analysis

data from the MPOST and APOST files respectively. WRTFIL, which

accesses the MPOST file, can retrieve displacement data or

average element stresses versus time, and is most useful for

plotting displacement histories at selected nodes of a model.

WTFILA extracts results from the APOST postprocessor file for

selected node points. Using WTFILA, plot files can be generated

for any combination(s) of the following data:

- increment number

- time value

- displacement components (u,v,w)

- absolute displacement magnitude

-strain components (E, Eyy ... ,E

11.3.1
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IJ

- unit extensions (Ux , U, U

- stress components (ax, y

-von Mises effective stress

Other variabl.-versu-s-variable plots can be produced

using XYPLOT directly, with input provided at the keyboard or

on free-formatted input files. Manually-prepared file input

to XYPLOT follows the simple format described in Table 11.3.1.

For specialized applications, it is also useful to write a

short program to extract the needed data from a MAGNA postprocessor

file (see Section 5.7), and write it to an XYPLOT input file.

Sample plots produced using XYPLOT are reproduced in

Figures 11.3.1 through 11.3.3.
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TABLE 11.3.1

XYPLOT FILE INPUT SEQUENCE

Data Item Description

N Number of plots

nI  Number of data points for plot no. 1

1l, yl
x 2' Y22 2Data for plot no. 1

x ,y

n 2  Number of data points for plot no. 2

x 2 1 Y2
X21 ~2Data for plot no. 2

Xn2 ' Yn 2

nN Number of data points for plot no. N

xl, yl

2 ~Data for plot no. N

xn , Yn
nN N

File Type : Sequential, Formatted
Formats : Data in free format; data items

- separated by commas or blanks
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11.4 PROCEDURES FOR ACCESSING GPLOT, CPLOT AND XYPLOT

Each of the plotting utility programs described in this

Chapter is executed through a separate (control language)

procedure. These procedures automatically access the required

program and library files, and return them upon completion of

the run.

On the VAX-II/780, the plotting programs can be accessed

by simply entering

RUN[MAGNA. RAB]GPLOT

or

RUN[MAGNA.RAB]CPLOT

The names of files containing data to be plotted will be

requested by GPLOT and CPLOT after the RUN command is issued.

In the case of XYPLOT, the WRTFIL (or WTFILA) utility can be

used to read an MPOST (or APOST) postprocessor file, and extract

displacement, strain, stress or other data for XYPLOT. The

required commands are

RUN[MAGNA.RABIWRTFIL (or WTFILA)

RUN [MAGNA. RABIXYPLOT

WRTFIL and WTFILA generate a (formatted) disk file XYSCR0.DAT,

which is properly formatted for XYPLOT. Alternatively, XYPLOT

may be used alone to plot from an existing XYSCR0.DAT datafile,

or from keyboard data input. Run-time procedures for all of the

plotting programs may be accessed on CDC computers, by attaching

a single file:

ATTACH,P,PLOTPROC,ID=BROCKMAN,MR=l.

The actual filename required (PLOTPROC,ID=BROCKMAN is used above)

may be installation dependent.

Prior to the execution of GPLOT, a MAGNA input file or

MPOST postprocessor file must be attached under the local

11.4.1
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(temporary) file name TAPE5. If the data to be plotted resides

on an input file and a user-written mesh generation program is

being used, this routine should also be attached, as file MESHG.

To initiate execution, then, the following sequence of commands

is typical:

ATTACH,TAPE5,MYDATAFILE.
ATTACH,MESHG,MYGENERATOR. (optional)
ATTACH,P,PLOTPROC,ID=BROCKMAN,MR=I.
BEGIN,GPLOT,P.

For plotting on Tektronix 4010 series graphics terminals, the

above sequence can be followed exactly. On Hewlett-Packard

equipment, the BEGIN command must be modified slightly:

BEGIN,GPLOT,P,HP.

CPLOT, the contour/relief plotter, accepts as input only

the MAGNA APOST postprocessor file. Prior to execution, the

postprocessing file must be attached under the local file name

TAPE99. The command sequence necessary to begin execution is

of the form

ATTACH,TAPE99,APOSTFILE. p.
ATTACH,P,PLOTPROC,ID=BROCKMAN,MR=l.
BEuIN,CPLOT2,P.
(or BEGIN,CPLOT2,P,HP.)

For variable-versus-variable plots on the CDC computer,

the XYPLOT program is executed by entering

BEGIN,XYPLOT,P.

or

BEGIN,XYPLOT,P,HP.

If a plotting file has been prepared prior to the execution of

XYPLOT, this file should be attached as local file XYSCR0 prior

to entering the BEGIN command. If results are to be extracted

from an MPOST postprocessor file directly (using WRTFIL), the

appropriate commands are

ATTACH,TAPE99,MPOST
ATTAC,P,PLOTPROC,ID=BROCKMAN,MR=l.
BEGIN,WRTFIL,P.)
(or BEGIN,WRTFIL,P,HP.)
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The procedure WRTFIL automatically transfers control to XYPLOT

"* . for plotting once the data has been selected from the

postprocessor file. To extract results from the APOST file

using WTFILA, and then perform x-y plotting, the required

sequence of commands is

ATTACH,APOST
ATTACH,P,PLOTPROC,ID=BROCKMAN,MR=l.
BEGIN,WTFILA, P.

BEGIN,XYPLOT,P.
(or BEGIN,XYPLOT,P,HP.)

-4
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CHAPTER 12

GUIDELINES FOR EFFECTIVE MODELING

The conduct of a practical nonlinear analysis requires

a considerable amount of judgment and insight on the part of the

analyst. Many decisions must be made concerning the modeling

detail to be used, the options to be exercised, and the general

strategy upon which the solution is to be based. While a great

deal of experience is necessary in making optimum use of any

nonlinear solution program, several general observations can

readily be made concerning good modeling practices and the

effective choice of solution options and procedures. In the

remainder of this chapter, some general guidelines which have

proved to lead to effective modeling with MAGNA are outlined.

While some of these suggestions are particular to the solution

methods employed in MAGNA, the majority can be understood to

represent good modeling practice in a more general sense.
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12.1 ANALYSIS OPTIONS

In many instances, the scope of an analytical study or

some prior knowledge of the structural response will be

sufficient to dictate the analysis option to be used and will

give the needed information concerning time or load

incrementation. Unfortunately, such cases are exceptional,

and in the general case it is frequently necessary to study a

problem in depth using several different analysis options.

The use of linear analysis to gain insight to the

requirements for nonlinear analysis, and the performance of

static analysis as a percursor to extended-time dynamic

solutions, cannot be overemphasized. When relatively little

is known about the nonlinear dynamic response of a structure,

for example, the following progression of analyses may be

in order:

(a) linear static solution, to determine the order
of magnitude of the response and to discern the
possible importance of material nonlinearity,

-. (b) nonlinear static analysis, to assess the influence

of large displacement effects upon load path
redistribution and to estimate the degree of
"stiffening" or "softening" under the loads of
interest,

(c) natural frequency solution, for use in estimating
time step values for dynamic solution, and finally,

(d) nonlinear dynamic analysis, to actually solve the
problem of interest.

Obviously, not all of these steps are necessary in every

application. However, the information obtained from a less

complex form of analysis than that for which final results

are sought can often prevent a great deal of difficulty by
0 revealing unexpected characteristics of the structural response.

In some situations, a preliminary linear analysis may reveal

that a nonlinear analysis is in fact not even necessary.
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In some applications, the choice of analysis option may

not be obvious even though the expected response is reasonably

well-defined. An important example of this is in static

postbuckling analysis. Though the loading is slowly applied,

the most expedient means of extending a solution into the

postbuckling range with MAGNA is to exercise the nonlinear

dynamic option, using very large time increments. For

postbuckling response (which is frequently characterized by a

loss of positive definiteness of the tangent stiffness) the

dynamic analysis uses inertial effects to stabilize the numerical

solution, while the use of large time steps minimizes the effect

of inertia upon the values of the computed displacements. Thus,

a nonlinear static analysis can be used to isolate the critical
load, and a restarted dynamic analysis performed to follow the

response into the postbuckled region.
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12.2 NODE POINT AND ELEMENT NUMBERING

One of the simplest ways of improving the efficiency of a

linear or nonlinear analysis is through effective numbering of

the finite element model. The solution of equations in MAGNA

is performed using a profile storage scheme (also called

variable bandwidth, skyline or active column storage), in which

the system of equations

KX F (12.1)

is factored in the form

LDLTX = F (12.2)

as described in Chapter 4. The upper triangular portion of K

is stored as shown in Figure 12.2.1. In any column of K, only

those entries below the first nonzero element of the column

are stored and manipulated during the solution. The envelope

of nonzero entries in K (called the skyline or profile of K)

is small in a well-numbered model, thus minimizing the number

of operations performed during the solution.

To assess the effectiveness of a numbering scheme, one

could imagine tae model as having one degree of freedom per

node, and note that nonzero entries in the matrix occur

wherever two different nodes are connected within a single

finite element. An example of a truss-like structure is shown

in Figure 12.2.2, with two different node numbering schemes.

For the case in which node 1 is connected to all of the higher-

numbered nodes, a full matrix results, and numbering in this

fashion should obviously be avoided. In general, effective

node numbering involves minimizing the number of connections

from low-numbered nodes to higher-numbered nodes. Since

numbering of the elements does not affect the matrix profile,

any convenient scheme for numbering the elements may be adopted

without affecting the efficiency of the solution.
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MATRIX PROFILE

x x X X:
XOXXI x

X X 0 U 1IX 0 X ; ' , 
I ' I

X', !OX X O: .1"xxX Ixxo
x xLjx x x: F
XXXXXXXXO"
XOOOXXOX
X 0 X X X.X

XXXO XX

(symmetric) X X X X X

XXX X X '-
X X "

X "

X = NONZERO ENTRY
0 = ZERO ENTRY

= ZERO ENTRY

Figure 12.2.1 Variable Bandwidth Matrix Storage.
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Figure 12.2.2 Effect of Node Point Numbering on
Matrix Profile.
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In models having a fairly regular pattern of nodes (e.g.,

rectangular solids, aircraft wings, etc.), the usual rules

which should be observed for bandwidth minimization (i.e.,

"number the shortest directions first") will generally result

in an adequate numbering for the profile solution. For more

general models, numbering will typically begin in one corner

of the mesh and proceed across the grid along directions having

a relatively small number of nodes. Due to the method of

storage used in MAGNA, local increases in bandwidth are not

of particular concern. Therefore, if convenience in generating

a series of nodes results in a somewhat wider bandwidth at a

few nodes of the model, solution efficiency is minimally

affected.
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12.3 SELECTION OF ELEMENT TYPES AND OPTIONS

Computational efficiency is of primary concern in most

practical nonlinear analyses, since the cost of analysis

invariably influences modeling detail (and, therefore, accuracy).

A wide variety of element types, integration rules and element

formulations are provided in MAGNA for three-dimensional

analysis, and effective use of these options can result in

considerable savings in computer resources.

In one- and two-dimensional problems, and in thin plate

or shell analysis, the choice of an element type is relatively

straightforward. For three-dimensional or thick shell problems,

however, MAGNA offers a wide variety of element options, and

the proper choice of element configuration, integration order

and stiffness formulation is important in terms of analysis

accuracy and efficiency. Although the engineering judgment

of the analyst must ultimately prevail in the selection of

element types and options for specific applications, some

suggestions for choosing the appropriate element form in a few

general problem classes are offered in the following paragraphs.

Fully three-dimensional continua, such as valve bodies,

pistons, foundations or slabs, generally require elements with

a similar node pattern in each direction. Examples are the

eight, twenty and twenty-seven node brick elements (Types 2, 6

and 1, respectively). Element types 1 and 7 are often useful

in transitioning between these different types of elements.

It should be observed that the eight-node solid element (Type 2)

is incapable of representing complex states of stress unless

a very fine mesh is used; the higher-order (quadratic) solids

are nearly always superior for general use. For most analyses

of solid continua, reduced numerical integration is not

necessary and in fact may reduce the accuracy of materially

nonlinear solutions. When Gaussian integration is used, the

2x2x2 rule is suggested for eight-node elements and a 3x3x3

rule is generally appropriate for the quadratic solids. The
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non-Gaussian integration rules available with all solid elements

in MAGNA (6-point and 9-point rules for Element Type 2, and

14-point rule for all others) are highly recommended; these

integration formulas give good accuracy and reliability at a

substantially lower cost than the Gaussian quadrature formulas.

Thick shells are one of the most common classes of

engineering structures. Components of this type include pressure

vessels, turbine blades, aircraft transparencies, arch dams

and floor and bridge slabs. Such structures may certainly be

analyzed using the 20 or 27-node elements; however, some

simplification is often possible since the state of strain

across the thickness of the shell is adequately described by

simple linear shape functions. Element Type 8, which uses

quadratic shape functions over the element surfaces and linearly

varying displacements through the thickness, is most often

appropriate in this case. Either a 2x2x2 integration (the most

commonly used) or the 14-point quadrature rule can be used

effectively with the sixteen node element (Type 8). If a

different nodal pattern is desired, one of the variable-node

elements (Types 1 and 7) can be used to construct an appropriate

element. One example is the eighteen (3x3x2) node Lagrangian

thick shell element, which is a subcase of Element Type 1. Since

the response of moderately thick shells generally involves a

certain amount of bending, the use of Element Type 2 (8-node

brick) is not recommended, since bending deformation cannot

occur in these linear-displacement elements without introducing

significant transverse shear strains (Figure 12.3.1). When

Type 2 elements are used for such an application, selective
(9-point) integration should be used. Regardless of the element
configuration used, care should be taken to construct elements

with "reasonable" length-to-thickness ratios. A conservative

guideline is to use elements whose maximum length-to-thickness

ratio is 100:1 or less, to avoid numerical ill-conditioning which

might result from extreme element thinness.
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ELEMENT IN PURE BENDING

QUADRATIC ELEMENT APPROXIMATION

LINEAR ELEMENT APPROXIMATION

., Figure 12.3.1 Approximation of Bending Deformation Using
Eight-Node Solid Elements.
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In plate and shell analysis, two element types (5 and 11)

* are available in MAGNA. The eight-node (Type 5) shell element

provides good results for shells with small to moderate initial

" curvature, but may be poorly-behaved in coarse meshes when inplane

* deformations are important. In particular, the inplane bending

(cross-bending) response of Element Type 5 is relatively poor;

the higher-order Type 11 shell is preferred when inplane bend-

ing is important.

The sixteen-node shell (Type 11) represents both inplane and

bending deformations with high accuracy, when the stiffnesses of

the shell layers are similar in magnitude. Application of the

Type 11 shell to layered constructions with widely dissimilar layer

properties (such as thick sandwich panels, or the plastic-

interlayer construction typical of aircraft transparencies) should

be approached with extreme caution. Since displacements vary

only linearly through the element thickness, stiff layers tend to

dominate the transverse shear behavior, and bending rigidity may

be overestimated; the extent to which this effect is manifested in

the behavior of a model depends strongly upon the wall construction

and upon the types of boundary conditions. In mch pathological

cases, the specification of orthotropic material properties in the

stronger layers to eliminate excessive transverse shear stiffness

is sometimes a useful device.

Finally, a note regarding reduced numerical integration is

appropriate, since this device is often used to improve the bending

flexibility of thick or moderately thin shell models composed of

three-dimensional solid elements. The use of inexact integration

produces an "artificial" element flexibility which compensates for

the overestimate of element rigidity typical of displacement finite

elements. Inexactly integrated quadratic elei-!nts (e.g., 20-node

brick with 2x2x2 quadrature) produce good results and in fact are

much less expensive than exactly integrated elements, but the

existence of zero-energy deformation modes, or mechanisms, which

could lead to meaningless results is possible. The use of a

preliminary natural frequency analysis to verify that no such

mechanisms exist is strongly encouraged in all applications

involving reduced integration.
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12.4 USE OF EQUILIBRIUM ITERATION

The choice of an equilibrium iteration option determines

the manner in which the nonlinear finite element system is

solved by MAGNA. In some types of problems, the use of

iteration is unnecessary, while in other cases a solution

cannot be obtained without it. The remainder of this section

is intended to classify some of these problem types and to

suggest appropriate iteration strategies wherever possible.

The equilibrium iteration methods available in MAGNA are

based upon full and modified Newton-Raphson techniques, and a

combination of these. Figure 12.4.1 shows the processes of

full and modified Newton iteration for a single degree-of-

freedom system, where iteration is performed at a constant

value of the applied loading. For the system shown, the

tangent stiffness simply corresponds to the instantaneous slope

of the load-deflection path. In (full) Newton-Raphson

iteration, the slope (stiffness) is adjusted at each iteration

cycle, so that convergence occurs rapidly. Modified Newton

iterations are always based upon the stiffness computed at

the beginning of the step, and for this reason are sometimes

called "constant stiffness" iterations. For systems having

many degrees of freedom, updating of the stiffness matrix at

each iteration requires a considerable amount of additional

computation in return for the fast rate of convergence. It

should also be observed that the domain of convergence is also

improved with full Newton iteration; that is, an initial

estimate of the solution which is relatively poor is often

sufficient when full Newton iterations are used, while modified

Newton iteration may diverge from the correct result. A third

iteration strategy, combined Newton-Raphson iteration, is also

available in the program. The combined iteration method is

designed to retain the best features of the full and modified

iterations (Figure 12.4.2).

In general, the modified Newton-Raphson iteration is

effective only in mildly nonlinear problems, or when rather
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Figure 12.4.1 Newton-Raphson and Modified Newton Iteration
Schemes.
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small increments of loading are used. For most applications,

the combined Newton iteration strategy is the most cost-

effective means of solution, provided moderately sized

increments of time or loading are chosen. A full Newton-

Raphson method is superior for highly geometrically nonlinear

problems (particularly when large rotations are involved), and

for analyses using very large increment sizes. Thus, if a

solution for the entire history of loading is required, a

natural approach is to employ moderate loading increments in

conjunction with the modified Newton solution. A problem

involving primarily geometric nonlinearities and for which only

a final solution is required would be better solved in relatively

large increments using full Newton-Raphson iteration. Dynamic

analyses, in which time increment sizes are generally limited

by accuracy considerations, are most appropriately solved

with combined iteration in almost every instance.

In materially nonlinear analysis, due to the path

dependence of the problem, care must be exercised in the iterative

solution to ensure that the increment size is not excessive .

even though convergence appears satisfactory. The incremental

solution is incapable of detecting any changes in relative

magnitude among the incremental components of strain. That

is, the individual strain components are constrained to behave

proportionally within any single increment, and the solution

increment must be made small enough that this constraint is

acceptable, whether or not equilibrium iterations are used.

Plastic analyses involving unloading also require special

consideration, due to the dependence of the tangent stiffness

upon the location and magnitude of the external forces. When

unloading (or any abirupt change in loading history) occurs,

it is advisable that the increment during which this event

takes place be made rather small to avoid possible divergence

of the solution. The effect of using large load increments

in regr-r.rs of the solution during which highly nonproportional

loadinq is present is illustrated in Figure 12.4.3.
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For geometrically nonlinear analyses in which large

incremental rotations are involved, the use of equilibrium

iteration at frequent intervals in the solution is particularly

important. Due to the total Lagrangian formulation used in

MAGNA, finite incremental rotations tend to introduce artificial

-* stresses which, when uncorrected, produce an artificial

geometric stiffness and lead to the "ratcheting" behavior

pictured in Figure 12.4.4. The most effective means of

avoiding such inaccuracies in large rotation problems is the

full Newton-Raphson procedure. In addition, MAGNA includes a

"large rotation iteration" option which is designed to systematically

eliminate the detrimental effects of artificial geometric stiffening

during equilibrium iteration; this scheme is user-selectable, by

setting the iteration parameter LRGROT (see Section 8.3) to a

nonzero value. When The LRGROT option is invoked, geometric

stiffnesses are suppressed in the tangent modulus calculation for

three-dimensional elements, until a converged state of equilibrium

is obtained.
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d __ Figure 12.4.4 Ratcheting Effect (due to Large Rotations)
in Solution without Equilibrium Iterations.
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APPENDIX

Several input data decks are listed in this Appendix

to clarify the actual form of the problem data expected by

MAGNA. In each case, pertinent data concerning the type of

analysis and features used are given, along with geometry

plots of the undeformed finite element model.
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Input Deck Example #1

Shallow Spherical Cap Under Apex Load (Section 6.2)

Type of Ana'ysis ............. Nonlinear Static

Number of Increments ......... 50

Equilibrium Iteration ........ None

Coordinate Data .............. Spherical Coordinates

Element Type ................. 5 (15 Elements)

Linear Constraints ........... 14 (2 Terms Each)

Data Curves .................. 1 (Applied Loading)

External Forces .............. Nodal Loads
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Input Deck Example #2

Elastic-Plastic Two-Bay Truss (Section 6.7)

Type of Analysis ........... Nonlinear Static

Number of Increments ....... 25

Equilibrium Iteration ...... None

Coordinate Data ............ Cartesian Coordinates

Element Type ............... 4 (10 Elements)

Data Curves ................. 2 (Stress-Plastic Strain
and Applied Loading)

External Forces ............ Nodal Loads
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Input Deck Example #3

Postbuckling of a Simply-Supported Plate (Section 6.14)

Type of Analysis ........... Nonlinear Dynamic

Number of Increments ....... 20

Equilibrium Iteration ...... Combined Newton-Raphson

Coordinate Data ............ Cartesian Coordinates

Element Type ............... 8 (16 Elements)

Data Curves ................ 2 (Applied Loading)

External Forces ............ Nodal Loads and Surface
Pressures
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Input Deck Example #4

Elastic-Plastic Analysis of a Perforated Strip (Section 6.15)

Type of Analysis ........... Nonlinear Static

Number of Increments ....... 2

Equilibrium Iteration ...... Combined Newton-Raphson

Coordinate Data ............ Cartesian/Cylindrical

Element Type ............... 9 (24 Elements)

Data Curves ................ 2 (Stress-Strain and Applied
Loading)

External Forces ............ Nodal Loads
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Engineering Mechanics Research Corp., Troy, Michigan.

SECTION 6.20:

1. D. P. Mondkar and G. H. Powell, "Finite Element Analysis
of Nonlinear Static and Dynamic Response," Int. J.
Num. Meth. Engng., Vol. 11, pp. 499-520, 1977.

2. G. Weeks, "Temporal Operators for Nonlinear Structural
Dynamics Problems," J. Eng. Mech. Div., ASCE, Vol. 98.
pp. 1087-1104, 1972.

SECTION 11.0:

1. _ , "PLOT-10 Terminal Control System User's Manual,"
Document No. 062-1474-00, Tektronix, Beaverton,
Oregon, 1974.
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