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1 NOTICE

when Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States Govern-
ment thereby incurs no responsibility nor any obligation whatsoever;
and the fact that the government may have formulated, furnished, or
in any way supplied the said drawings, specifications, or other
data, is not to be regarded by implication or otherwise as in any
manner licensing the holder or any other person or corporation, or
conveying any rights or permission to manufacture, use, or sell any
patented invention that may in any way be related thereto.

!

This report has been reviewed by the Office of Public Affairs
(ASD/PA) and is releasable to the National Technical Information
Service (NTIS). At NTIS, it will be available to the general public,
including foreign nations.

This technical report has been reviewed and is approved for
publication.

Reberk €, NS Canly il 2 Bale K —

ROBERT E. MCCARTY (| CHARLES A. BABISH, III
Project Engineer Acting Group Leader
Subsystems Development Group
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OLOMON R. METRES
Director
Vehicle Equipment Division

"If your address has changed, if you wish to be removed from our
mailing list, or if the addressee is no longer employed by your
organization please notify AFWAL/FIER, W-PAFB, OH 45433 to help us
maintain a current mailing list."

Copies of this report should not be returned unless return is required
by security considerations, contractual obligations, or notice on a
specific document.
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FOREWORD

—-— This report describes the finite element solution program

MAGNA, developed at the University of Dayton Research Institute,
Dayton, Ohio. Develbpment of the program was performed between
_ January, 1978 and December, 1982, by the Analytical Mechanics

i! Group (Dr. F. K. Bogner, Leader) within the Aerospace Mechanics

Division (D. H. Whitford, Supervisor) of the Research Institute.

This work effort was accomplished under Project 2402,
"Vehicle Equipment Technology," Task 240203, "Aerospace Vehicle
Recovery and Escape Subsystems," Work Unit 24020332, "Computer

Aided Design of Bird-Resistant Transparencies for USAF Aircraft."

The present report provides final documentation of the

developments performed on Air Force Contract F33615-80-C-3403
between March, 1980 and December, 1982 for the Flight Dynamics
Laboratory, Air Force Wright Aeronautical Laboratories, Wright-
Patterson Air Force Base, Ohio. The project manager for this
effort was Dr. Fred K. Bogner, and the Principal Investigator was
Dr. Robert A. Brockman. Technical direction and support was
provided by Mr. Robert E. McCarty (AFWAL/FIER) as the Air Force

Project Engineer. The work described herein represents a continu-

b ation of previous developments performed in-house at the University
-l of Dayton Research Institute, and on Air Force Contract
1 F33615-76-C-3103.

The author wishes to express his appreciation for the

contributions of several individuals and organizations whose efforts,

i SR

support, and suggestions have resulted in significant improvements
9 to the MAGNA program. Continuing support and many useful discussions
q have been provided by Dr. Fred K. Bogner; numerous improvements to
:7. both the program and its documentation have been suggested by
:. Mr. Robert E. McCarty. The analytical development performed by

Dr. H. C. Rhee and Dr. Mohan L. Soni, and the computer graphics
_ support provided by Messrs. T. S. Bruner, C. S. King, M. P. Bouchard,
- M. J. Hecht, Ms. M. A. Dominic, and Ms. M. E. Wright are also




gratefully acknowledged. Mr. Thomas W. Held performed the
conversion of MAGNA to the VAX 11/780. Computer resources and
assistance in adapting the program to the CRAY-1l computer were
provided by United Information Services; special thanks are due
to Mr. Kent Griffith of UIS, who developed the necessary direct
access file utilities. Finally, the efforts of Ms. Kathy Reineke

in typing the manuscript of this manual are deeply appreciated.

This report (Parts I, II, II1II, and IV) supersedes
AFWAL-TR-80-3152, AD A099454 dated January 1981; AFWAL-TR-80-
3151, AD A099530 dated January 1981; AFWAL-TR-81-3180,

AD Al117544 dated February 1982; and AFWAL-TR-81-3181,
AD All6541 dated February 1982.
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CHAPTER 1
INTRODUCTION

The finite element method has emerged as a valuable tool
for the design and performance qualification of complex
engineering structures involving arbitrary geometry, boundary
conditions, and applied loads. The mathematics of most types
of linear finite element formulations are well understood, and
effective numerical methods have been developed for the
computation of linear solutions to large structural analysis
problems.

The consideration of nonlinear effects (large
displacements, finite strains, plasticity) in finite element
structural analysis is often desirable for studying stability,
crashworthiness, or collapse behavior. However, present
capabilities for modeling nonlinear behavior in structures of
practical size are largely limited to one- and two-dimensional
(including axisymmetric) components. Although it is possible
in principle to predict the nonlinear response of complex,
three-dimensional bodies, the volume of calculation required
to evaluate nonlinear effects on the elemental level often

makes the required analysis prohibitively expensive.

This report describes the finite element program MAGNA
(Materially And Geometrically Nonlinear Analysis). MAGNA has
been developed to perform nonlinear response solutions for
general structures of practical size and complexity. 1In
contrast to most existing nonlinear finite element systems, the
code is oriented primarily toward the nonlinear analysis of
three-dimensional structures, including solids, shells, and
layered constructions. The emphasis on three-dimensional
analysis is reflected in the history of the development of
MAGNA: the three-dimensional continuum elements were developed
and implemented first in the program, and the programming
techniques used have been designed to function most efficiently
for elements having many degrees of freedom and relatively

1.0.1
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large bandwidth. The program also operates largely out of core,
to remove most restrictions on the number of elements, number
of degrees of freedom, and model topology. Elements are, of
course, included in the program for the analysis of one-~ and
two-dimensional problems; however, the major strengths of

MAGNA lie in its three-dimensional nonlinear solution
capabilities. It is hoped that in this respect the program
will help to fill an important need in the current state of
nonlinear analysis methodology.
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1.1 OVERVIEW

- = MAGNA (gaierially And Geometrically Nonlinear Analysis)
;ﬂ is a large-scale computer program for the static and dynamic
analysis of complex, three-dimensional engineering structures.
- The program is based upon the finite element method of analysis
- to permit the simulation of practical structures composed of
- many different types of elements. MAGNA combines effective

3 isoparametric modeling techniques with state-of-the-art

; numerical analysis and programming methods to provide accurate
] and efficient solutions for large problems involving highly

n ‘nonlinear response.

The modeling capabilities of MAGNA include structural elements
\ for truss members, plane stress and plane strain sections, "shear
panels,” axisymmetric solids, general three-dimensional solids,
thin plates and shells, and beam/frame members. All finite
elements are arbitrarily oriented and are fully compatible in

three-dimensional space. Degrees of freedom can be coupled to

represent skewed boundary conditions, rigid regions, and complex
structural joints. Nonlinear boundary conditions due to surface
contacts, including sliding, can also be considered. Uniform

mass damping, as well as structural damping based upon the
instantaneous stiffness, can be applied in the solution. Time
history solutions are performed in MAGNA using an implicit

scheme for direct integration of the equations of motion. Applied
loading may consist of concentrated nodal forces, distributed

surface pressures, body forces in line loads; "live" pressures

such as fluid loading may be considered, as well as other

deformation-dependent forces defined in user-written subroutines.

Each of the finite elements in MAGNA includes the effects of
¢ full geometrical nonlinearities (large displacements, large
strains), using a Lagrangian (fixed reference) description of
motion. 1In shell and beam analysis, arbitrarily large rotations
can also be treated. Material nonlinearities, in the form of
. @ elastic-plastic behavior, are analyzed using a subincremental

1.1.1
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solution strategy which minimizes the error in following the
material stress-strain curve. Isotropic, kinematic, and combined
strair-hardening rules are available for use in plastic analysis
with MAGNA.

The MAGNA program includes numerous user convenience
features to aid in the generation of finite element modeling
data. Geometry data may be input in Cartesian, cylindrical,
and spherical coordinates, or in arbitrary, user-defined systems.
Incremental generation of nodal coordinates and element
connections is also available to exploit repetitive patterns in
the structural model. User-written subroutines, which provide
for user intervention or specification of data at several stages
of the analysis, can be supplied for defining mesh geometry,
coordinate systems, initial conditions, and incremental applied

loading.

Interactive plotting utilities are also available for use
in checking data, and for interpreting analysis results obtained
from MAGNA. Geometry plotting, including exploded views, is
available for all finite elements. Postprocessing functions
include stress and strain contours and stress relief plots.
Scaled and exploded views or close-up plots of the deformed
structural model can be generated, with the undeformed geometry
optionally superimposed in the display.

A number of data generation and model editing facilities
have also been developed for use with the MAGNA finite element
code. These preprocessing utilities are described briefly in
this report. Interfaces to existing pre- and postprocessing
systems have been developed as well, to permit users of MAGNA
to take full advantage of the many geometric modeling and
graphical output packages currently used to support finite

element structural analysis.

To facilitate the solution of complex nonlinear problems
and to make effective use of computer resources, a restart

capability is provided in MAGNA for all nonlinear and transient

.
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E analysis options. Restarts may be performed at any point during
%’ — the solution, to perform dynamic analysis with a nonlinear

4 equilibrium state as the initial condition, to modify solution
parameters or strategy, or to continue an abnormally

terminated run.
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1.2 MANUAL ORGANIZATION

4
!

b —

€§ This report summarizes the theoretical basis of the
MAGNA finite element program, the numerical procedures used,
and information required for execution of the program. The

documentation is divided into four parts:
- theoretical development (Chapter 2),

- finite element library, program options, and
special features (Chapters 3, 4, and 5),

~ demonstration problems (Chapter 6), and
- user information (Chapters 7-12).

Although the input data and control language described
in Chapters 7 and 8 are sufficient to permit the definition
and execution of many types of structural analysis problems,
efficient usage of the program often requires a more thorough
familiarity with the theoretical and numerical procedures
used in MAGNA. The user is therefore encouraged to review
the documentation as thoroughly as possible, particularly
when large nonlinear applications are to be performed.
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CHAPTER 2
THEORETICAL DEVELOPMENT

Theoretical aspects of the finite element analysis
performed in MAGNA are outlined in the following sections.
Governing equations, in both continuous and semidiscretized
form, are developed for a general, three-dimensional body
which undergoes large displacements, large strains, and
nonlinear material behavior. The various analysis options
and finite element types included in the program are all
obtained from this mathematical basis, either directly or
as special cases. The material constitutive laws included
in MAGNA are also described in detail.
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2.1 CONTINUUM EQUATIONS OF MOTION

The principle of virtual work is used in the following to
obtain the governing incremental equations for a three-dimensional
structure undergoing large elastic-plastic deformations. A
Lagrangian description of motion, in which all kinematic
quantities are referred to the initial configuration of the
structure, is employed. The development, which is similar to
that presented in References 1 and 2, accounts for the effects of
materially nonlinear behavior as well as geometrical nonlinearities

due to large displacements and large strains.

2.1.1 Principle of Virtual Work

Consider a body whose initial position and state
are denoted by Co’ and in which Cartesian coordinates Xi are
assigned to a generic point P as shown in Figqure 2.1.1. At an
arbitrary time during the subsequent deformation of the body,
denote the current configuration by C1 and the position of P by

X, - The principle of virtual work3 in state Cl is written as

I(lcijdleij t 5Py Suylav =
Vv
(o]

Jlfi Su, av + IlEi Su; da, (2.1.1)
oV OBV

in which a left subscript denotes the configuration, and all
kinematic variables are referred to the geometry in state Co.
The integrals extend over the original material volume oV, and
its traction boundary oav. Differentiation with respect to time
is indicated by an overdot. Inertial effects have been
introduced in Equation 2.1.1 as body forces in the D'Alembert

sense.

Some discussion of the force and deformation quanti-
ties in Equation 2.1.1 is in order, to identify the appropriate

2.1.1
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measures for a Lagrangian description of motion. Displacements
u. are resolved in the directions of Xi’ and the corresponding

171
strains are given by the Green-Saint Venant tensor,

=1
1535 =2 Q%5 * 19,1 * 1%,i 1%,5) (2.1.2)

where differentiation is performed with respect to Xi.
0.. are Cartesian components of the

171
pseudo-stresses defined by

The stress measures

o.. = /G

1915 lnij (2.1.3)

in which lnij are the second (symmetric) Piola-Kirchhoff
stressess, and /G is the determinant of Green's deformation

tensor, in state Clz

(2.1.4)

The loij are interpreted as forces per unit of undeformed area,
rotated by the local deformation, which occur in the deformed
state. The foregoing stress and strain quantities are
conjugate variables in the sense that the tensor product

1°ij leij is a true measure Zf the internal work per unit of
volume in the reference state . The prescribed body forces

fi and surface tractions .t. represent the applied forces

1l 171
acting in state C1 per unit initial volume and area,
respectively.
Equation 2.1.1 can be recast in a more convenient
form using the deformation gradients axi/axj, asl
I(loij X, i Guk,j + Pl Gui)dv =
oV
: Jlfi Gui av + Ilti Gui da. (2.1.5)
°V OBV
2.1.3




2.1.2 Incremental Principle of Virtual Work

For the purpose of obtaining an incremental form
of the virtual work equality, it is necessary to compare two
adjacent states of equilibrium whose difference corresponds
to a small increment of time or loading. Consider a
neighboring configuration C2' in which the virtual work
expression is

( . _
] Q295 Zk,i SYk,5 t oP2¥i0uy)dV =
OV
fzfi 6ui av + Izti aui da, (2.1.6)
v SV

and z; are the new coordinates of the point P. As before, all
guantities are referred to the initial state.

The increment of deformation between states Cl

and C2 is characterized by the displacements

u. = ,u. - .u. . (2.1.7)

Similarly, the incremental strains and stresses are denoted by
Eij and oij respectively; the internal virtual work per unit

volume in state C2 can therefore be restated as

Zcij zk,i 6uk,j = (lcij+0ij)(xk,i+uk,i)5uk,j (2.1.8)
and Equation 2.1.6 becomes

J[(lcij+°ij)(xk,i+uk,i)6uk,j + 0pi(lui+ui)6ui]dV
\"
o

= szi Gui av + [Zti dui dA. (2.1.9)

v oV
o
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The incremental accelerations ﬁi have been obtained from the

relations

i, = 2, = ¥, + 4, = 4, + 4, . (2.1.10)

Subtracting the virtual work equalities for the two neighboring
configurations (Equations 2.1.5 and 2.1.9) yields

J{[loij Uy + oij(xk,i+uk,i)] suk,j + opuidui} av =

\Y
o

Ifi Gui av + Jti Gui da , (2.1.11)

\ oV
o o

where

Hhi
(]

1]
1

FHhi

E. = _t. - .t. (2.1.12)

are increments of body force per unit reference volume and
surface traction per unit reference area, respectively. Using
the identity

1
3 oij(luk,i Guk,j+luk,j6uk,i) ’ (2.1.13)

which is true whenever the tensor oij is symmetric, the
incremental virtual work equality (Equation 2.1.11) is
rearranged as follows:




(s s _svws auns e aven el il b SR UEAC SML RO AN

1 1
i J 2[1°ij S(u oy ) * 3 944 G(Ui,j+uj,i+“k,i“k.j)]
X o’
y + 36, (ju, .su. L+u, L8u. )+ pil du.] av =
. 21935 “1%,i%%k,371%, 3%, i’ ToPHi%M
’ inéui av + Jti Gui da. (2.1.1°)
| oV OBV
Equation 2.1.14 can be identified as contributions to the

m The displacement terms occurring in the volume integral of
b
L
r incremental strains, Eij‘ Defining the total increment of

strain between configurations Cl and C2 as

- - €., = LE.. — ,€.. = .., + n.. (2.1.15)

with eij linear, and 34 nonlinear, in the increments of
displacement leads to the definitions6

= 1
€35 = 3 Wy, 579y 3*1%, 1Y%, 51 %, 5%, i
n..=%%u .u . (2.1.16)
i35 =3 Y, i%,5 ¢ -1
Equation 2.1.14 is then simplified to
J(oij 5€ij + 1°ij5”ij + opuiéui) av =
v
o]
Ifi su, av + fti su, da. (2.1.17)
v X
O (o]

The constitutive relation considered in the
present development assumes that, at any instant, a linear

2.1.6
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relationship exists between the increments of Lagrangian
stresses and strains,

Oij = Dijkl(ekk = %y T) . (2.1.18)

Here o, , represents the thermal expansion tensor, and T is the

temperature change from the previous configuration. In general,

the constitutive tensor Dijkl depends upon the history of
deformation and the temperature at a point. Specific forms
of Equation 2.1.18 are considered in Section 2.3.

Introduction of the incremental constitutive
equation, Equation 2.1.18, into the incremental principle of
virtual work yields the incremental equations expressed solely
in terms of displacement variables,

I[Dijkl (x0T €54 + 10548n54 + opuisui] av =

Ifi Su, dv + Iti Gui da, (2.1.19)

in which eij and ”ij are defined by Equations 2.1.15 and 2.1l.16.

2.1.3 Linearization of Equations of Motion

The numerical solution of Equation 2.1.19 is
complicated by the appearance of quadratic and cubic terms in
the incremental displacements u, . To obtain an efficient
solution procedure for the incremental motion, it is useful to
linearize the incremental virtual work equality. Linearization
of Equation 2.1.19 involves the following considerations:

® expressions of higher order than linear
in u; are neglected; the nonlinear strains
Eij in Equation 2.1.19 are therefore
approximated by eij (Equation 2.1.16),

2.1.7
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e the constitutive tensor Dijk2 is assumed
to be constant for the increment,

e dependence of the body forces and surface
tractions upon the incremental deformations
for a single time or loading step is
assumed to be negligible.

Under these assumptions, the linearized equation
of virtual work becomes

J[Dijkz(ekz‘“sz) Sejy * 1954%M54 * opuiéui] av =
v
(o]

Ifi Gui dv + Jti Gui da . (2.1.20)

v av
o o

2.1.4 Equilibrium Corrections and I+eration

Using the linearized virtual work equality
{Equation 2.1.20), a nonlinear solution can be performed as
a sequence of linear subproblems; however, if no control is
exercised over the accumulated truncation errors, the computed
solution tends to drift rather quickly away from the true
nonlinear solution. Consider, for example, a piecewise linear
solution in which an approximate result has been obtained for

an intermediate state Cl' From Equation 2.1.1, the imbalance
in virtual work in Cl is simply

§,R = [lfi Su; av + Jlti Su; da

- I(loij Gle.. + Py Gui) dav . (2.1.21)
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Since GlR = 0 in an exact mathematical sense, Equation 2.1.21
provides a measure of error in the computed solution in
configuration Cl' As such, the residual élR can be employed as
a means of a posteriori correction for the effects of
linearization in the numerical analysis. To this end, the
error GlR (Equation 2.1.21) is appended to the linearized

virtual work expression (Equation 2.1.20), as follows:

J[Dijkl (eyg=aygTI0€ 4 + 1055855 + opuidui] av =
v

- J(lcijdleij + opq iy dui) av . (2.1.22)

\"
(o]

The correction included in this augmented equation of virtual
work may be viewed as an application of reactions to the
out-of-balance forces observed in state Cl' which tends to
return the computed solution to the true conditions of
nonlinear force equilibrium. By repeating this correction

at a fixed value of time or loading, errors in the computed
solution can be corrected to within a predetermined tolerance.
This procedure, called equilibrium iteration, is discussed in
detail in Section 4.3.

2.1.9
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2.2 DISCRETE EQUATIONS OF MOTION

The incremental principle of virtual work as given by
Equation 2.1.22 describes the static or transient behavior
of a general, three-dimensional continuum experiencing
both geometric and material nonlinearities. In the following,
the construction of a finite element discretization of the
virtual work equality, and the assembly of finite elements

to form a complete structural model, are discussed.

2.2.1 Element-Based Virtual Work Equations

To obtain the appropriate continuum equations for
a single finite element, the integrals in Equation 2.1.22 are
expressed in terms of contributions from individual elements,

as

g I[Dijkz(ekl-ale)Geij * 19546034 ¥ opuidui] dv =
v
O e

) szi Su; av + J fzti Su; da

e e
o'e 0?Ve
(
— v [ 't
é J(lcijdl Cij + oP14; 6ui) av . (2.2.1)
o'e

Such a decomposition into element contributions is valid,
provided the displacement fields in adjoining elements are

at least continuousl. The interpretation of boundary integrals
in Equation 2.2.1 is consistent with that of the global
equation of virtual work (Equation 2.1.22). That is, the
surface tractions 2€i are understood to include prescribed
external forces only, and the integrals on oave are therefore
nonzero only on the true external boundaries of the structure.
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2.2.2 Finite Element Discretization 3

tc The discrete governing equations corresponding to
) Equations 2.2.1 are obtained by the assumption of an
approximate state of displacement within each individual
finite element. The displacement state for a single element

has the form

_ T
u(X,,t) = N (X;) Ut , (2.2.2)

in which gT(xi) represents a matrix of interpolation functions,
and U(t) is the vector of nodal displacement parameters. 1In a
particular state k, the total nodal displacement vector is
denoted by kg’ so that the increment in nodal displacements
between states k and k+l is

U = U (2.2.3)

x+1)Y = Y

Strain-displacement equations can be written !f+
directly in matrix form for the linear part of the incremental

strains (eij in Equation 2.1.16),

i

e = A . (2.2.4)

Here ké is a function of the deformation gradients in state k,

and A is a vector containing the incremental displacement

b SRR

4 gradients. To fix ideas, consider the special case of plane

B v

deformation, for which

e" = | e e 2| , (2.2.5)

B b/l s
' .

B = 0 ku,y 0 (1+kvly)

2.2.2




and

T
é = l urx uly le v'y J (2-2.7)

By virtue of Equation 2.2.2, the displacement

gradients can be written as

o A=cnu, (2.2.8)

i@}
2z

in which gT is a matrix of linear, differential operators,

- and therefore
{

T

T
S‘ kg g (2.2.9)

llg]
2

for the increment from state k to state (k+1).

Although the nonlinear contributions to the
incremental strain tensor (”ij in Equations 2.1.15 and 2.1.16)
cannot be written explicitly in matrix form, the gquadratic

form ,0.. n appearing in the incremental virtual work equality

k7ij 'ij
is easily rewritten in a convenient matrix notation. Let ké
denote the matrix of stresses in configuration k,
k%11 k%12 k13
: & = | ¥%12 k%22 k%23 ],
k%13 k%23 k933 (2.2.10)
t’ and define
o
: S g 0
[
@ kS* = 9 k& 9 :
i
3 0 g k& (2.2.11)
-
} ® -
£ -
2.2.3
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Then,

or, using Equation 2.2.8,

~uT Ny, g cYT

2 (%35M33 =9 8

@]
2

u.

=
ikn

With the foregoing definitions, the

(2.2.12)

(2.2.13)

evaluation of

the required element matrices and load vectors is straightforward.

Corresponding to the terms in Equation 2.2.1, one can identify

the tangent stiffness matrix,

e _ )
&= @ gatpe ¢ty av,

v
o e

and thermal load vector,

o  T) av ,

<O
®
I
S——
iz
o
i
3
o
jo]

s*c” NV) av ,

and the element mass matrix

M = I(opg NT) av .

\%
o e

- = el m. om e NI W S A a

(2.2.14)

(2.2.15)

(2.2.16)

(2.2.17)

.
et

.
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The consistent loads due to prescribed body forces and surface
tractions are given by

e _ -
K = I(g K£) av (2.2.18)
o €
and
e _ -
(I = J(g Kt da . (2.2.19)
OaVe

_ e =
kL = [(g C B (8) av + M~ U . (2.2.20)

2.2.3 Assembly of Finite Elements

Using Equations 2.2.14 through 2.2.20, the
incremental principle of virtual work (Equation 2.2.1) can be
written in discrete form as

7 sut (Kp + Kg)U + sut MU =

L S0 (Bp * B)U + 807 M0 U
] sul (F® + 1® + 0% - 1% , (2.2.21)
e

where all terms are understood to be evaluated at the state k.
The summation over the elements indicated in Equation 2.2.21
implies the enforcement of displacement compatibility on all
interelement boundaries, as noted in Section 2.2.1. 1In
practice, the enforcement of these conditions takes the form
of an assembly of the element matrices, with the element

2.2.5
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stiffness and loading terms at coincident nodes being summed

in a consistent manner.

The nodal degrees of freedom U for an element are

related to the global vector of unknowns X by

[_]:

li=

X , (2.2.22)

in which 1 is a Boolean matrix determined by the topology of
the finite element model. Assembly of the individual finite
elements to form the global discrete model is therefore
represented formally by the equations

I su” (Kp + KS)U = 8X° Ky + KX , (2.2.23)
JsuT MU = sxT M X, (2.2.24)
e
and
JouT (F® + 1% + 0% - 1%) = sxX"(F 4T 40 - I), (2.2.25)
e
in which
Kp = g AT K3 A (2.2.26)

and so on.*

The matrix equations of motion for the assembled
finite element model are obtained from

*Note that the relationship stated in Equation 2.2.26 is
only symbolic; the actual assembly of elements is performed
using certain tables within the program, which accomplish
this procedure much more efficiently.
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5x" [‘§T+§G’§+§§'E“-S-2+£]=O . (2.2.27)

In view of the fact that the discrete virtual displacements
6§T are arbitrary and independent, their coefficients must
vanish; the semidiscrete equations of motion are therefore

KJX +MX=F +T+6-1. (2.2.28)

r‘ The discretization of Equation 2.2.28 in the time domain, as

—
.

well as procedures for numerical solution of the equations
for several classes of problems, are addressed in Chapter 4.
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2.3 MATERIAL CONSTITUTIVE DESCRIPTIONS

The material stress-strain relationships used in MAGNA
are incremental in nature, in keeping with the nonlinear
analysis procedures described in Chapter 4. The constitutive
descriptions are therefore of the hypoelastic typel, in which
increments of stress are linearly related to increments of

strain,

o (2.3.1)

ij = xPijmn Smn
where k denotes the current state. Stress-strain laws for
specific classes of materials are discussed in the following

sections.

2.3.1 Isotropic Elastic Material

For an ideally elastic material, the
relationship between stress and strain is given by Hooke's

Lawz,

koij = oDijmn k€mn ° (2.3.2)
That is, the stress-strain law of Equation 2.3.1 may be
interpreted either as a total or incremental equation, and
the constitutive tensor oDijmn is unaffected by the history
of deformation.

When the material is isotropic (does not exhibit
direction-dependent behavior), the number of independent
parameters which determine °Dijmn reduces to two: the
extensional modulus, E, and the Poisson's ratio, v. In three
dimensions, the isotropic elastic material law can be

represented in matrix form by

g=De¢e, (2.3.3)

2.3.1
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in which
0T = (017 O Oay Ooq Oqa 041 (2.3.4)
g 11 %22 933 923 913 932! 3.
T o (e e € 2€.. 26,. 2€4.] (2.3.5)
£ 11 €22 €33 “Bp3 4€33 “E551 - 3.
and
_ _
(1-v) v Vv 0] 0 0
v o (1-v) v 0 0 0
_ E V v (1-v) 0 0 0
D = Iy (1=2w) ooy (2.3.6)
0 0 0 ( 5 )y 0
0 0 0 0 (1’§v) 0
0 0 0 0 0 (1‘3“)

In the case of plane deformation, the number of
stresses and strains which are independent is reduced to
three,

=

T _
q 9" = [93; 932 92! (2.3.7)
- T
& £ = [e17 E3p 28151 | (2.3.8)
b,
-
£ For the plane strain problem, the conditions €13 = €53 = €33 = 0
d: are imposed, vielding the stress-strain matrix
-
i‘ (1-v) v 0
g E ) 0
; D (1+v) (1-2v) v (1=
- 0o 0 (2 (2.3.9)
L‘
8
Ph.
[ 2.3.2
4
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In addition, the normal stress is determined by the condition

€33 = O
033 = \)(cll + 022) (2.3.10)
In plane stress analysis, the restrictions are 013 = 053 = O34
and
1 v 0
D = E 5 v 1 0
1-v 0 o (Y (2.3.11)

2.3.2 Initially Isotropic, Elastic-Plastic Material

For most metals and a number of other homogeneous
materials, nonlinear constitutive behavior (in the form of
strain-hardening plastic deformation) can be described using
a hypoelastic stress-strain relationship having the form of
Equation 2.3.1. The elastic-plastic material law implemented
in MAGNA is based upon an isothermal, time-independent theory
of plasticity, using the von Mises yield criterion and its
associated flow rule. Strain hardening is considered usina

isotropic, kinematic, and combined hardening rules.

To improve the computational efficiency of the
elastic-plastic analysis, the formulation is based upon
assumptions which are appropriate for large displacement,
large rotation, and small strain problems3. In particular,
the constitutive equations are written directly in terms of
the second Piola-Kirchhoff stress and Green-St. Venant strain
tensors, and an additive decomposition of the elastic and
plastic Green's strains is assumed.

The general form of a yield criterion in which the
yield locus is permitted to expand, contract, or translate is4
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F(o,. - a.,.) - k" =0. (2.3.12)

Here oij is the stress tensorf aij describes the center of the
yield surface in stress space, and k is a measure of the

diameter of the yield surface. 1In general, both ;. and k are
dependent upon the history of inelastic deformation at a material

point. The von Mises yield function is used in the present

development, so that5

= 3, - [ ] - ]
F = 5 (oij aij)(cij aij) . (2.3.13)

The notation ( )' indicates deviatoric quantities, for example,

1
] -— - -
Oij = oij 3°k] Gij (2.3.14)

where Gij is the Kronecker delta. It is useful to note that,
due to the form of Equation 2.3.13,

oF ' oF (2.3.15)

== -
=

Boij 3aij

«from which the differential of F can be written as

- OF -
dF = 3°ij(doij doyy) - (2.3.16)

The derivatives aF/aoij are given by

*

For clarity, left subscripts indicating the
current state are omitted throughout this section, and
differential stresses and strains are simply denoted by

doij and deij.

L1
Py
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= 3(o!. - a
aoij 1j

'

ij) . (2.3.17)
The associated plastic flow rule corresponding to

Equation 2.3.12 is

dei. = dX =— (2.3.18)

in which dX is as yet undetermined. Components of the
incremental plastic strain are represented by degj.
Consistent with Equation 2.3.18, the projection
of a stress increment dcij onto the yield surface normal is
proportional to the projection of the corresponding increment

of plastic strain, de?j. Therefore4,

ij 30,5 (2.3.19)

where H is a strain-hardening parameter determined from
uniaxial stress-strain data. In particular, specialization

of Equation 2.3.19 to the one-dimensional case gives

_ EEt
P (E-Et)

do
de

e
|
Wi

(2.3.20)

where Et is the instantaneous slope of the uniaxial stress-
strain curve.

The increment of stress can be related to
increments of strain by assuming the additive decomposition of
elastic and plastic strain increments depicted in Figure 2.3.1;
thus,

= _ 4 P
doij = Eijmn (demn demn) , (2.3.21)
2.3.5
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Figure 2.3.1 Decomposition of Incremental Strains into
Elastic and Plastic Components.
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where Eijmn is the elastic constitutive tensor. With this
assumption, it is now possible to determine the constant of
proportionality d\ in Equation 2.3.18. By multiplying Equation
2.3.21 by aF/acij, using Equatign 2.3.19 to substitute for
doijaF/aoij, and eliminating deij by means of Equation 2.3.18,

the final result is

Ei'mndemn agF
an = ) ij , (2.3.22)
- oF oF dF
(Byoo o mo— + H 5——) =
ijmn 30 955 oij

Equations 2.3.18 and 2.3.22 are next used to eliminate the
plastic strains, dein, in Equation 2.3.21, yielding the
required relationship between incremental stresses and strains,

*

doij = Dijmn demn ‘ (2.3.23)
in which
E oF oF E
ijke Bokl aopq pamn (2.3.24)
Pijmn = Fijmn - BF__ F_, 5 OF _9F
aokl klpg Bopq ackl aokl

Equation 2.3.24 can be written in a more convenient form, a36

= - ) - ] [ ] - []
Dijmn Eijmn B(oij aij)(cmn amn) ’ (2.3.25)

where B is defined by

B = 3G (2.3.26)

(1 + H/2G)k?

*
Note that, in the notation of the present section, this
is the form corresponding to Equation 2.3.1.
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for inelastic response (B=0 if the material behaves elastically).
Here G is the elastic shear modulus, and H is the strain-

hardening slope defined in Equation 2.3.20.

Equation 2.3.25 and 2.3.26 define the instantaneous
material law corresponding to Equation 2.3.1. However, the
parameters k, H, and aij’ which describe the strain-hardening
response of the material, must be determined separately in some
manner. The hardening slope (H) is obtained from uniaxial test
data, as indicated in Equation 2.3.20. In the present development
the yield surface size (k) and components of translation (ai.)

b
are determined by one of three hardening rules:

- isotropic hardening (uniform expansion of the
yield surface),

- kinematic hardening (arbitrary translation
of the yield surface), and

- combined hardening (both expansion and
translation of the yield surface).

The isotropic and kinematic rules are shown in Figure 2.3.2,
in a two-dimensional stress space. The above three descriptions
of material strain hardening are equivalent when all components
of stress are increased proportionally and monotonically, but
produce quite different effects for problems involving
non-proportional or reversed loading. A graphical comparison
of the methods is shown in Figure 2.3.3, for the case of

reversed loading in the plastic range.

The kinematic hardening law is obtained from
Ziegler's7 modification of Prager's kinematic ru1e8, in which

the incremental components of yield surface translation are

daij = du (Gij - aij)‘ (2.3.27)
Noting that, since k = constant (no expansion of the yield
surface), the condition that the stress state remain exactly
on the yield surface becomes

- - - - - - — —— el e o — Y - - PR - - . . -t - - = e - - - A = - . - J
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Figure 2.3.2 Isotropic and Kinematic Hardening Rules
in a Two-Dimensional Stress Space.
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(dcij - daij) YT 0. (2.3.28)

Combining these two equations, du is obtained
from

do agp
du = 1) ) (2.3.29)

For purely isotropic hardening (aij=0), the
condition that the stress state lie on the yield surface becomes

oF

acij

do.,. = 2k dk , (2.3.30)
1]

and the uniform yield surface expansion is therefore

_ 1 3F
dk = 2—); %TJ' doij . (2.3.31)

A combined isotropic/kinematic hardening rule, as
suggested by Tanakag, is also used for elastic-plastic analysis.
With this method, both translation and expansion of the yield
surface is permitted. The relative magnitudes of the translation
and expansion are determined by a parameter y, such that y=0
corresponds to ideal kinematic hardening, and y=1 to fully
isotropic hardening. In this case, the yield surface expansion
is given by

= X oF
dk 3% 307 do.. , (2.3.32)

and the translation is obtained from Equation 2.3.27, with

2.3.11




(1-y) %"F—do.. X (2.3.33)
2k iy 13

du =
Negative values of y can also be used in the combined hardening
law, to model the yield surface as simultaneously translating

and contracting.

During an incremental analysis, yielding of a
material point may occur in the middle of an increment of loading.
It is therefore desirable to account for the rapid change in
constitutive behavior by analyzing the elastic and elastic-
plastic portions of the increment separately. To accomplish
this, it is necessary to adopt a scaling algorithm which
determines that fraction of the current increment which is
sufficient to cause initial yielding at a point. The procedure
suggested by Yamada6 is used here, and is outlined briefly

below.

Consider a single increment of loading, for which
the initial elastic stress state at a point is denoted by P.
The state at first yielding is represented by Q, and the final
stress state by R, as shown in Figure 2.3.4. The equivalent
stress at P, ¢, is assumed to be known. Consider next a point
S, which falls on the radial path Bf, and lies on the same yield
locus as point R. Then, the equivalent stresses at R and S are
equal, and given by

o G = 2 ' ' t t
o + do ’J > (0ij + doij)(oij + doij) (2.3.34)

The stress increment required to cause yielding is represented
by 56, letting

IBS|_ .

Iﬁil ' (2.3.35)

2.3.12
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Figure 2.3.4 Scaling of Stress Increments to the
Yield Surface.
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the associated components of stress are simply (0ij + rdoij).
The value of r to cause initijial yielding can therefore be
determined by solving

2__3_ [ ] ] ]
k® = 3 (Jij + rdoij)(oij + rdo!

lj) (2.3.36)

for r on the interval [0,1].

The above formulation of initially isotropic,
elastic-plastic material behavior is implemented in MAGNA using

a subincremental method,4'lo

which permits a very accurate
determination of the material behavior even for large increments
of loading. Each load increment is divided into a number of
smaller intervals for treating the calculation of material
nonlinearities, with this interval size chosen so that a
specified increment of strain is never exceeded. Since the
subincrement sizes are chosen independently at each integration
point of the finite element model, regions of rapidly increasing
strain are automatically treated in finer detail in the
analysis.

2.3.3 Orthotropic Elastic Material

The elastic constitutive properties of an
orthotropic material are completely specified by nine
independent constants:

- ' 3
Young's moduli El' E2, E3,

- shear moduli G12' G13, G23, and

- Poisson's ratios v Vv v

12’ "13' "23°

These properties are defined with respect to the preferential
axes of the material (denoted 1,2,3), which in general do not
coincide with the reference coordinate axes of the structure
under consideration (referred to here as x,y,z). The notation
for the basic orthotropic properties used above follows that
of Jonesll; that is, Ei refers to the extensional stiffness

2.3.14
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along direction i, Gij describes the engineering measure of
shear stiffness in the plane (i,j), and Vij is the lateral
contraction in direction j due to a unit longitudinal extension

in direction i.

Conditions upon the orthotropic material
constants, which are useful in verifying that material
properties have been specified correctly, can be summarized
as follows. From the symmetry of the compliance matrix
(inverse of stiffness), it is required that

Yij _ Vid )
E. E. !
1 J

i,j =1,2,3. (2.3.37)

The positive definiteness of the stiffness and compliance
matrices leads to the conditions

Ei >0 ; 1i=1,2,3
Gij >0 : 1,3 =1,2,3 (2.3.38)
and
(l - vijvji) >0 H ilj = 112l3
A=1- VigVay v23v32 - v31v13 - 2v21v32v13 > 0. (2.3.39)

The complete stress-strain relation of an
orthotropic material can be written with respect to the
principal axes of the material as

2.3.15
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o, ) D;; Dy, Dy O 0 0 €y ) ‘i
9 Dy; Dy; Dp3 O 0 0 €5
J 04 _ Dl3 023 033 0 0 0 ! €3} (2.3.40)
r23 0 0 0 D44 0 0 Y23
112 0 0 0 0 0 D66 le
S J A ]
The constants Di' are defined by
Dyp = (1 = vy3v3,)E /4
Dyjp = (V35 + V3pVy3)Ey/A
Dyy = (V33 + VypVp3)E5/A
Dyy = (1 = vy3v3,)E,/A |
Dy3 = (vy3 + vyyVy3)E5/A (2.3.41) g
_ _ e
D33 = (1 = y,v5;)E5/S ]
Dyg = Gy3
Dgg = Gp3
Des = C12
and A is as defined previously.
The above stress-strain relation is used in linear and
geometrically nonlinear analysis with MAGNA. In nonlinear analysis,
the given constitutive equation is presumed to hold between the
second Piola-Kirchhoff stress and the Green-St. Venant strains
in Cartesian coordinates. This description is consistent for
small strain situations, in which the Piola-Kirchhoff stress
corresponds closely to the nominal (engineering) stress.
In general, the principal axes of an orthotropic
material do not coincide with the reference axes defined for

the total structure under consideration. Thus, it is necessary

2.3.16
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to transform the orthotropic stress-strain relation to the
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analysis reference coordinates prior to assembly of the finite

element approximation.

Consider a material having principal axes Xs 0
oriented arbitrarily with respect to reference coordinates
xi. Let the relationship between these two sets of coordinate
axes be

X, = a,.X. . (2.3.42)

That is, aij are the direction cosines of the direction X with
respect to Xj. The tensorial values of stress and strain in

the two systems are therefore related by
%15 T 2ix232%2
€

i3 T 2ik%92%ke (2.3.43)

where primed quantities refer to the principal material
directions. These can be expressed in matrix form as

1Q
1

t3

tQ

(2.3.44)

tm
[}
|
tm
»

Since the stress and strain vectors used for computational
purposes include the shear terms only once each, the right half
of matrix T is modified to provide the correct transformatio:x

of the shear stress and strain quantities.

Write the stress-strain relation of Equation
2.3.40 as

o° =Dy’ (2.3.45)

ns o Aoa PPN, . — da RN, S WU IO VI I VI S U

B |




1

MMM sl

o o A A A i AR aA b kgt e, AR AR gt R agr o Y Y e
oo N . P . , PR R I AR AR A , A
., S .. . t . LN N - . A e el - a L ot
B N " PN . B I i P . et . O
. . - . B . . . . + . . - . . - ‘ . v

AR
. i ’."'l..-
v'. I S

Ty
e

LA A A e e ]
T
@

L
o

Ty
«

LS i A i Seha iy S Y LRt i i laliL A A A A S .- e T

where y° refers to the engineering strains. Note that the

engineering strains are related to the tensorial strains by

y© = 8 o (2.3.46)

M

in which

(o]

B 0 21 : - (2.3.47)

Thus the stress-strain relation may be written in terms of

-

the tensors o”, €” as

~

g' =D Be’” . (2.3.48)

Transforming the stress-strain vectors to global coordinates

gives
BT ™ ¢ (2.3.49)

or

o=TD B 1 g1 y=Dvy . (2.3.50)

Therefore, the engineering stress-strain coefficients must be

transformed by

D=TD BT T g . (2.3.51)

However, it is straightforward to show that11

g gl ot (2.3.52)

so that the transformation of D to the analysis coordinates
has the simple form

D=1TD" T" . (2.3.53)
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2.4 SURFACE CONTACT ANALYSIS

In many structural analyses, support conditions and applied
loading distributions can be specified a priori with sufficient
accuracy for engineering purposes. However, in some cases
boundary conditions may involve appreciable relative motion

PERVLEPU A s At e of /e cn ha aara e boa o ‘I_r‘rv v
P P T T~ .

between the structure and supports, or a loading distribution

may be the result of mechanical contact between objects. Still

other situations may involve constraints which are applied only
after a certain (finite) displacement has occurred. For each of
these situations, the details of the support conditions and/or
the loading involve nonlinearities, which are best taken into

account as a part of the finite element solution.

T i"-i' v

Such situations can be considered with MAGNA using the

surface contact analysis option, which includes the nonlinear

helil]
P

b
(Y

effects arising from mechanical contact between two or more
portions of a finite element mesh. By defining one of the
contacting bodies as a rigid surface, a variety of other nonlinear
support situations can likewise be included in the numerical

ﬂ 07 solution.

L 2.4.1 General Description of Contact Solution

Consider two bodies which, in their current

configurations, occupy the regions V1 and V2; the corresponding
boundaries are denoted by BVl and aV2 (Figure 2.4.1). If the
two bodies are in contact with one another, their common

boundary is
I = avlcw avz. (2.4.1)

When T = @, the usual displacement and stress boundary
conditions apply. If frictionless contact occurs, however, the
displacements and tractions on the surfaces of the two bodies

are related by

T,'my

u,'ny +uy'n,

~

= ?2°§2 0 on T (2.4.2)

I A

on T (2.4.3)
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Here Ti represents the Cauchy surface traction vector on 8Vi, us
the corresponding displacement, and n. the outward unit normal

to surface 1i.

In the numerical solution, the region of contact T

is not determined explicitly; only the condition
(Vl - avl)rw 8V2 =g (2.4.4)

which states that interpenetration of the two bodies is not
permitted, is used in the analysis. Relevant portions of the
surfaces avl and 8V2 (and others as necessary) are represented
in a piecewise, isoparametric form, and the regions Vi are
defined implicitly by these surface definitions. Note that,
since BVi is defined in a piecewise fashion, situations in which

two portions of a singly-connected body come into contact can
also be considered.

Since the analysis is performed using a displacement
formulation of the finite element method, the essential constraints
for the contact problem are those of Equation (2.4.3), and only
these conditions are imposed directly. The force eguilibrium
condition on common surfaces, Equation (2.4.2), is to be satisfied
as a consequence of the iterative solution method in which auil
unbalanced forces are systematically eliminated. Equation (2.4.2)
is considered explicitly only as a condition for releasing
contact constraints when load reversal or rebounding occur in
the solution.

The essential elements of the numerical analysis
of contact used in MAGNA are as follows. First, surface regions
which represent potential areas of contact are defined. At
each iteration cycle, each possible combination of surface
segments is screened using simple, conservative tests to
eliminate those pairs which are obviously not in contact. For
remaining pairs of surface segments, a more precise determination
of the relative positions is then made. Finally, when a contact
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condition is detected, constraint equations are formulated which

suppress all relative motions normal to the contact surface, or

L

restore the displacement condition of Equation (2.4.3) in the
event penetration has already occurred. Each of these steps is

discussed in detail below.

2.4.2 Definition of Potential Contacting Surfaces

The first step in the contact analysis is the
identification of those surfaces between which contact might
occur during the course of the numerical solution. Each such

surface is defined by a grid of special surface elements, which

for the boundaries of flexible bodies simply correspond to
external faces of three dimensional structural elements (Figure
2.4.2). A completely rigid surface is represented by surface
elements alone, connected to node points whose motions are

suppressed or otherwise prescribed.

A typical surface element configuration is shown
in Figure 2.4.3. The element may have from four to nine connected
nodes, depending upon the type of structural element to which gﬁq
it is connected. For rigid boundaries, the number of nodes
depends upon the geometry of the surface to be defined. A rigid
half-space, for instance, can always be defined using a single

surface element having four nodal points.

Once the surface element geometry has been defined,
surface element sets are defined, each of which consists of a
specified range of elements. Combinations of surface element
sets which represent potential pairs of contacting surfaces are

identified in an interaction table. All possible combinations

of nodes and elements corresponding to nonzero entries in the

interaction table are to be examined for possible contact at

each iteration cycle of the solution. As an example, consider
the drawing problem shown in Figure 2.4.4. Four sets of surface
elements are defined, and the interaction table is defined as in

Table 2.4.1. By convention, the higher-numbered surface of a
pair is always considered the master surface, while node points

W
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"J
o
‘
.
2.4.6
- o PR R Y L _» Y Y A N B Ny e e e o 5




4
y
4
1

LR At AN A S PP S A i S -t A i A i A g ;1

TTTT ST Y T T

R I- RABADAR Ry
P PP 1£
RN PR

: ® W

@® = surface element set

Figure 2.4.4. Definition of Surface Element Sets for a Drawing
Problem.




TABLE 2.4.1

i- INTERACTION TABLE FOR DRAWING EXAMPLE
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in the lower-numbered set are considered slave nodes in the

formulation of displacement constraints. Generally, the boundary
of the stiffer of two bodies is defined as a master surface,
although this is not essential. Note also that a given surface
may represent a master surface in one interaction table entry,

and a slave node surface in another.

2.4.3 Screening of Possible Contact Conditions

The effectiveness of the contact analysis depends,
at least in part, upon the ability to eliminate all but a few
possible combinations of nodes and elements from consideration
with a relatively small amount of computation. 1In practical
analyses, it may be necessary to examine hundreds of potential
contact conditions before isolating the few which are truly
active. For this reason, an approximate screening procedure 1is
used to eliminate those node/element combinations which obviously
need not be considered in detail. When this procedure fails,

a more accurate determination of the relative positions of the

surfaces in question is undertaken.

In each iteration cycle, all possible slave node/
master surface element combinations, as defined in the interaction
table, are examined for contact. In each master element, a local
rectangular coordinate system X is constructed which is
approximately aliagned with the natural coordinates (r,s,t) of
the element shown in Figure 2.4.3. The current position of each
node of the element is determined in this system, as well as the
maximum and minimum values of X5 i=1,2,3. The current location
of each slave node, denoted by Xs is also computed in the local
coordinates. As an initial check, any master/slave pair for

which one of

x‘i’ > max(x;) + e [max(x;) - min(x,)]; i=1,2,3 (2.4.5)
x? < min(xi) - el[max(xi) - min(xi)]; i=1,2 (2.4.6)
2.4.9
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is satisfied is rejected unconditionally. Typically, g = 0.1.
This simple test eliminates most of the potential slave nodes
which are obviously out of range of the master element. If
neither of Equations 2.4.5 or 2.4.6 are satisfied, the coordinate
values in the local coordinate system are used to estimate the
natural coordinate values (r,s) at which the normal to the

surface passes through the slave node in question.

Using the initial estimate so obtained, a Newton-
Raphson solution is performed to determine the position R(r,s)

whose surface normal vector

oR 9R

n= 5 X3

o9R dR

3% X s (2.4.7)

intersects the given slave point. The condition to be satisfied
is

Rp = R(r,s) + dn (2.4.8)
in which r and s are to be determined. Figure 2.4.5 shows the

geometry of Equation 2.4.8 for the simple case of a planar

master surface and an initial trial point r=0, s=0.

From the solution of Equation 2.4.8, the orientation
of a potential slave point with respect to the master surface
element is known precisely. The slave point is rejected on the
basis of this solution if the inequality

max [|r|-1, |s|-1] > ¢ (2.4.9)

2

is satisfied, in which €,y = 0.001. Points for which r,s are

very slightly beyond the boundaries of the master element are
retained, since discontinuities in the slope of adjacent elements
might otherwise permit a node to penetrate the master surface

without being detected.

2.4.10
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The remaining checks for determining whether or not

contact occurs are straightforward, since Equations 2.4.2 and ‘Aj
2.4.4 may be applied directly. 1In particular, if d < 0 in —

Equation 2.4.8, interpenetration occurs and the appropriate
contact constraints must be applied. During iteration, previously
active constraints for which 4 becomes slightly positive are also
retained if the corresponding normal forces are compressive in

order to suppress artificial oscillations in the solution. For

similar reasons, previously active constraints for which d < 0
and the normal forces are very small and positive are also
permitted to remain active. Small fractions of the existing

{' element internal forces and of the current surface element size
are used to provide a measure of scale for force and displacement

quantities.

APl SR A A
ol .
it
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2.4.4 Application of Constraints

Consider next the case in which a slave/master

- element combination has been found for which contact occurs.

Let d be the distance of the slave point from the surface :
element along its normal at the point (r,s) as in Equation 2.4.8. 6‘1
For the constraint equation, a generalization of Equation 2.4.3

is used which returns the slave node to the master surface in

the event that 4 < 0:

[u - u(r,s)l*n +d =0 (2.4.10)
In Equation 2.4.10, up is the incremental displacement vector of
the slave point, and u(r,s) is the incremental displacement of
the element at the position (r,s)

9
u(r,s) = L

-~ .

: Ni(r,s)gi (2.4.11)

1

where Ni(r,s) are the surface element shape functions. In the
present development, the above constraint is introduced into

the system-level equations via the penalty function

2.4.12
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E[u ‘n - u(r,s)-n]2 = K d2 - d{u_ - u(r,s)]l-*n 2.4.12)
2%p’ 7 T F & 3 T &
The left side of Equation 2.4.12 is guadratic in the incremental
nodal displacements up and uy and therefore represents a
contribution to the stiffness matrix. The remaining terms are

~1
equations as additional "incremental force" terms. The penalty

linear in up and u, and enter the incremental equilibrium

factor ¥ is made sufficiently large to enforce the required
constraint, while maintaining reasonably good conditioning of
the system of equations. In the current implementation of the

procedure, the value
kK = 100 max(Kii); i=1,2,...,N (2.4.13)
is used, in which K is the most recently computed tangent

stiffness matrix and N is the number of degrees of freedom in
the finite element model.

2.4.13




- CHAPTER 3
LT FINITE ELEMENT LIBRARY

The MAGNA program contains a variety of finite element
types to permit the effective modeling of complex structures.
The element library currently consists of twelve element tyves,
which are summarized in Table 3.0.1. These elements are fully
compatible with one another, and can have arbitrary orientation
in three-dimensional space.* Thus, any two elements having
similar nodal patterns may be joined directly, with the
compatibility of displacements on common boundaries being
enforced automatically. Layered or sandwich structures, as
well as tangential joints between shells and solids, can
therefore be considered without the use of constraints or other
special joining techniques.

Each element in the MAGNA finite element library is
available for both linear and nonlinear analysis. A summary
of the major analysis options available with each element type
appears in Table 3.0.2. Since the computations for nonlinear
elements are considerably more involved than for linearized
elements, MAGNA contains separately-programmed linear and
nonlinear versions of each element type. Therefore, no penalty
is paid when using the program for linear analysis.

The finite element library is discussed in the following

sections. Particular attention is devoted to the specific
strong points and/or limitations of each element type, and to

the proper selection of numerical integration rules.

| @

*

The single exception is the axisymmetric solid element
e (Type 10), which is required to lie in the global X-Y coordinate
.- plane.
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TABLE 3.0.1
MAGNA FINITE ELEMENT LIBRARY

i ELEMENT NUMBER OF | DEGREES OF
r? TYPE DESCRIPTION NODES FREEDOM
F 1 3-D Solid 8-27 24-81
-
o 2 3-D Solid 8 24
: Plane Stress/
3
= 3 Shear Panel 4 12
{
b 4 Truss 2 6
e
Thin Plate
3 or Shell 8 24
6 3-D Solid 20 60
7 3-D Solid 8~20 24-60
3-D Solid/
8 Thick Shell 16 48
.
= 9 Plane Stress 4-9 12-27
-
a
- Axisymmetric - _
i5 10 Solid 4-9 12-27
g
A Layered Plate
i! 11 or Shell 16 48
- 12 3-D Curved 2-3 12-18
L Beam
;.
3
3.0.2
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3.1 ONE-DIMENSIONAL CONTINUUM ELEMENTS

The one-dimensional bar or truss element (Element Type 4)
is a prismatic, axial-force member with arbitrary orientation

in space. Figure 3.1.1 shows the truss element, which is defined

by the two connected nodes at its end points.

Both the geometry and the displacements of the bar are
represented by linear interpolation between the two nodes of

the element. Consequently, the axial strain and stress are

constant within an element, and all integrations of the element

properties (stiffness, mass, residual forces) are evaluated

exactly.

The truss element formulation includes full geometrical
and material nonlinearities, using the original configuration
as a reference state. Three~-dimensional inertial effects are
included in the mass matrix formulation, to ensure correct
results in dynamic analysis with arbitrary orientations. A
lumped mass matrix is used in all dynamics problems with the

bar element.

Typical applications of the truss element include the
following:

- one-dimensional problems,

cable structures,

pin-jointed plane or space trusses, and

modeling of spar/rib caps and posts in wing-like
aerospace structures.

3.1.1
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Figure 3.1.1 Three-Dimensional Truss Element.
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3.2 TWO-DIMENSIONAL AND AXISYMMETRIC CONTINUUM ELEMENTS

Two-dimensional elements contained in MAGNA include
Element Type 3 (four node, plane stress, plane strain or shear
panel element), Element Type 9 (variable-node plane stress
element), and Element Type 10 (variable-node axisymmetric solid
element). These elements are planar (i.e., not warped) but may
assume an arbitrary orientation in space. Axisymmetric elements
must lie in the x-y plane, with x being the radial coordinate.
Geometrical (large-displacement) nonlinearities, including
warping and other out-of-plane deformations, are included, as
well as material nonlinearities (plasticity). Elements 3, 9,
and 10 may be used with either a lumped or consistent mass
formulation. Out-of-plane inertial effects are included in

Element Types 3 and 9.

The three/four node plane element (Type 3) is shown in
Figure 3.2.1. 1Its geometry and displacement field are. approxi-
mated by linear polynomials in each natural coordinate direction.
Since certain components of stress or strain in the direction
transverse to the element are assumed to vanish, an auxiliary
local coordinate system (XL, YL in the figure) is used to
describe the element properties; all output is given in this
system of coordinates to facilitate the interpretation of
results. The X, axis is directed from node 1 to node 2, and
the YL axis is perpendicular to X;, and in the plane determined
by nodes 1, 2, and 3. The fourth node is optional; however, the
three-node element is suggested only when mesh geometry dictates

that it be used.

Element Type 3 can be used for plane stress analysis, plane
strain analysis, and in specialized application as a shear
panel element. The primary difference in these three element
subtypes is in the material stress-strain law employed.
Constitutive equations for the plane stress and plane strain
forms of the element are given in Section 2.3; for the shear

3.2.1
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panel (usually used to model vertical rib and spar spections
in aerospace structures), the element is assumed to carry only

Txy = Gny.
elastic-plastic stress-strain law are provided for the plane

shear stresses, Consistent formulations of the
stress and shear panel element. At present, the plane strain

formulation uses the relation
o_ =v(o_ + o)
z X y
which is only approximate when plastic deformations occur.

Numerical integration of the four-node planar element may
be performed using 1, 2, or 3 point Gaussian quadrature (1, 4, or
9 integration stations), or by a selective integration technique.
A 2-point integration is sufficient for virtually all applications.
The triangular version of the element is integrated using
one-point integration in all cases. The one-point integration and
selective (2x2 rule with one-point shear integral) integration
options are provided for use in the analysis of planar beams and
other situations involving large element length-to-thickness
ratios. The performance of the four node element in representing
in-plane bending is poor unless an extremely fine mesh is used;
the reduced and selective integration options help to relieve

this deficiency.

The most common application of the Type 3 element is in
the analysis of airplane wings and similar box-type structures,
using the plane stress formulation for skin elements, the shear
web element for spar/rib sections, and bars (Element Type 4) as
caps and posts. Another specialized application is in the
analysis of crack-tip stresses in perfectly plastic materials;
here one edge of the elements at the crack tip can be degenerated |

to zero length to provide the needed 1/r - type singularity in !
the shear strains. Notice that in such applications, either edge

3-4 or edge 4-1 must be degenerated, since the first three nodes

must be non-collinear. In most plane stress applications,

Element Type 9 is considerably more effective.

3.2.3
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Element Type 9 (Figure 3.2.2) is a plane stress element
which can possess from three to nine nodes per element. The —
first three (corner) nodes are always required, but each of
nodes 4 through 9 are optional. The absence or presence of each
optional node is automatically taken into account by the program.
Node 4 must be present whenever any of the midside nodes are used.
Thus, Element 9 may be used as a nine-node Lagrangian element,
as the popular eight-node serendipity element (node 9 omitted),
or as a transition from lower-order to higher-order elements.

The eight-node and nine-node forms are particularly effective
for general plane stress analysis, but lower-order versions

of the element can often be used to advantage. For example,

in analyzing planar beam structures, a six-node element (with
linear interpolation through the thickness) is often effective.

The variable-node plane stress element can be integrated
with 1, 2, or 3 point Gaussian quadrature in each direction.
One-point integration is provided for use when only three or
four nodes per element are specified; in such cases, the use of .;L
Element Type 3 will be slightly more efficient. The higher-order
versions of the element generally require the use of 3x3
quadrature (nine integration stations) for exact evaluation,
particularly when all nine nodes agre present. In bending
problems, the six and eight-node elements can sometimes be
integrated with a 2x2 rule to improve element flexibility,
provided the number of boundary conditions is sufficient to
eliminate all singularities in the assembled mesh.

Although the Type 9 element may have a general orientation
» - in space, the primary use of this element is in plane stress

r analysis. Therefore, element properties are computed in global
ii coordinates if possible, and output is referred to the global

3 (x,y) axes for all elements which are oriented parallel to the
(x,y) plane. When a more general orientation is specified,
output is given with respect to local axis directions defined

in the same manner as for Element Type 3.
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The usual applications of the variable-node plane stress .
. element are in general plane stress analysis and in the analysis ;j

1! of planar beam or frame structures. Another more specialized

- -
[

) application is the analysis of crack problems in two dimensions.
: The simple device of positioning midside nodes (and the
centroidal node) at the 1/4-points in elements located at the
tip of a crack yields the 1//T singularity in strains predicted
by linear fracture mechanics, permitting such problems to be
modeled using relatively few elements. This technique is
illustrated in Figure 3.2.3.

The axisymmetric solid element (Type 10) in MAGNA is a
variable-number-of-nodes element, whose appearance is exactly
the same as the 3-9 node plane stress element (Figure 3.2.2).
The first three vertex nodes (nodes 1-3) are always required.
For quadrilateral elements (nodes 1-4 present), each of the
remaining five nodes may be included or omitted as appropriate.
The eight- and nine-node configurations are particularly

effective for general axisymmetric stress analysis, although

sk aat .

a linear interpolation in the thickness direction is often L

acceptable for axisymmetric plate and shell analysis.

Axisymmetric solid elements are assumed to be situated
in the global x-y coordinate plane. The x-direction corresponds
to the radial coordinate, and y is parallel to the axis of
revolution of the model.

One, two, or three Gaussian integration points may be used
in each element coordinate direction to evaluate the element

stiffness and mass properties. While the choice of integration
5 rules follows the same reasoning as the Type 9 plane stress
element, the use of a 3x3 integration is advisable in most

‘ applications.

. Either a consistent or lumped mass formulation may be
- chosen for inertial properties of the axisymmetric element; the

use of consistent masses for the Type 10 element is recommended.

T

Thermal stress analysis is currently not avatlable with the

axtsymmetric solid element. .

3.2.6
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Figure 3.2.3 Quarter-Point Crack Tip Element.
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3.3 THREE--DIMENSIONAL CONTINUUM ELEMENTS

MAGNA contains a number of three-dimensional solid

elements for linear and nonlinear analysis:

Element Typve 1 - 8-27 Variable-Node Solid

Element Type 2 Eight-Node Brick

Element Type 6 Twenty-Node Brick

8-20 Variable Node Solid

Element Type 7

Element Type 8 Sixteen-Node Solid or Thick Shell.

All of the above elements contain full geometrical nonlinearities
(large displacements and finite strains) and material
nonlinearities (metal plasticity), and may be used either

in static or dynamic analysis. Orthotropic materials can be
considered for elastic analysis, whether linear or nonlinear.

Elastic-plastic materials must be initially isotropiec.

The 8-27 node solid (Element Type 1) is shown in
Figure 3.3.1. The remaining solid elements (Types 2, 6, 7 and 8)
have similar nodal patterns, with node points numbered higher
than the maximum for a specific element type simply being
omitted. Element Types 1 and 7 are variable-number-of-nodes
elements; with each of these types, nodes 1 through 8 are
always required, but each of the remaining nodes is optional
and may simply be omitted if not needed. The absence or presence
of each optional node is accounted for automatically in the
program. The variable-node elements are particularly useful in
transitioning between coarse and fine regions within the mesh
(Figure 3.3.2), and for blending regions modeled usina Element
Types 2, 6 and 8. Alternatively, the variable-number-of-nodes
elements can be used to construct standard element types not
included explicitly in the program (e.g., eighteen-node thick
shell elements with nine nodes per surface).

This variety of solid elements is included in MAGNA
primarily for reasons of efficiency. In nonlinear analysis the
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Figure 3.3.1 Three-Dimensional Solid Element with Variable
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computing time per element for a single increment will vary
approximately as the square of the maximum number of nodes for
that Element Type. Therefore, Element Type 8 requries about

35 percent as much CPU time per element as Element Type 1, since
(16/27)2 = 0.351. 1In general, then, it is advisable to select
the Element Type with the least "excess" nodes for a specific
application.

Numerical integration of the higher-order solid elements
(Types 1, 6, 7 and 8) can be performed using 2 or 3 point Gaussian
quadrature in each coordinate direction(i.e., 8 or 27 integration
stations). Also available is the l4-point integration rule
introduced by Ironsl. For general application, the l4-point
rule is recommended; this rule possesses similar accuracy to
the 3x3x3 Gaussian integration, does not permit artificial "zero-
energy" modes in most solid elements and involves only half as
many sampling points as the Gaussian rule. The moderate increase
in element flexibility using the l4-point rule leads to improved
results with coarse meshes, while the reduction in number of
integration stations over 3x3x3 integration reduces computing
times considerably. For elements with 20 nodes or less (no
mid-face or centroid nodes), a 2x2x2 Gaussian rule can often
be used, provided the boundary conditions are sufficient to
remove all singu'arities from the final system of equations.

This integration scheme is particularly useful in problems of
moderately thin plates or shells. For the sixteen-node element
(Type 8), which is commonly used for such applications, the
2x2x2 integration rule is generally reliable.

The effect of the choice of integration rule for various
three-dimensional solid elements is illustrated in Table 3.3.1.
For each combination of element nodal pattern and integration
scheme, the Table gives the number of zero-frequency modes
present in the linear element stiffness matrix (less the normal
six rigid body modes). Thus, a zero entry indicates that the
element is fully integrated and, therefore, completely reliable.
For the reduced integration orders shown, the application of

3.3.4
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boundary conditions is often sufficient to eliminate the
unwanted zero-energy modes. For models involving high aspect
ratios, very light constraints or large disparities in material
modulus, however, the use of fully-integrated elements is always
indicated.

Element Type 2 (eight-node brick) can be numerically
integrated using 1, 2 or 3 point Guassian quadrature (1, 8 or
27 integration stations). A non-Gaussian, 6-point rule is also
provided; this integration rule gives similar performance to
2x2x2 Gauss integration, at a slightly lower cost. A special
selective integration option, which uses nine integrating
points, is also available. The 2x2x2 and the 6-point rules are
generally sufficient, and the use of a larger number of elements
is generally preferred over an increase in integration order.
The nine-point, selective rule is appropriate for use when the
eight-node brick must be used to represent bending-type response.
An example of an application of this type is the sandwich
construction pictured in Figure 3.3.3. Here the core layers are
represented by Type 2 elements with nine-point integration, and
Type 5 shell elements are used in the face sheet layers. For
the analysis of general continua, the quadratic solid elements
are usually more effective than the eight-node brick. 1In
particular, the use of the eight-node brick in problems
involving bending-type response is not advisable, except with

the use of the selective integration option.

Three-dimensional nonlinear analyses can involve a great
deal of computing effort, in spite of the fact that highly
nonlinear effects may be concentrated in relatively small
portions of the finite element model. 1In view of this, a
number of stiffness formulation options are provided in MAGNA
for the quadratic solid elements (Types 1, 6, 7 and 8). Normally
all elements are formulated using the "tangent" stiffness method,
in which the element stiffness matrices are recomputed exactly
at user-controlled intervals within an analysis. However, a

o3
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Figure 3.3.3 Three-Layered Sandwich Construction.
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"pseudo-force" formulation may also be specified for selected
elements, causing the original (linear elastic) stiffness matrix R
to be used in these elements throughout the analysis. This
option, which merely accounts for nonlinear effects in a
different manner from the tangent stiffness approach, is suitable
for use in elements for which nonlinearities are expected to be
rather mild. Alternatively, the analyst may specify a special
"averaged" stiffness formulation for selected elements, in which
the element tangent stiffness is computed in an approximate
manner by averaging nonlinear effects in an individual element.
Nonlinearities are still represented with full accuracy in

the averaged stiffness method, since the element residuals

(i.e., out-of-balance forces) are always computed exactly.

Both the averaged stiffness and constant stiffness formulations
can drastically reduce computing times in nonlinear analysis,

but should always be used with equilibrium iterations to

maintain stability of the solution. In highly nonlinear

portions of a model, the use of the standard tangent stiffness

-
ey

formulation is generally superior because of its improved iﬁ{
numerical stability characteristics. )
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3.4 THREE-DIMENSIONAL PLATE AND SHELL ELEMENTS

MAGNA contains two types of shell elements: a monolithic,
linear-displacement thin shell (Element Type 5) and a layered,
quadratic-displacement shell element (Element Type 11). Both
of these element types are described briefly below.

The eight-node thin plate or shell element (Element Type 5)
is an isoparametric finite element, based upon a penalty function
formulation. Full geometrical nonlinearities can be considered,
including both large displacements and arbitrary rotations.
Materially nonlinear analysis is currently not available with
the Type 5 shell element. Both static and dynamic formulations

of the element are included in the program.

Element geometry and local node numbering for the
eight-node shell are shown in Figure 3.4.1. Note that the
element has nodes at the upper and lower surfaces, not at the
shell midsurface. Each node point is permitted three translational
degrees of freedom, in the global coordinate directions
(rotational degrees of freedom are not used). With this choice
of nodal locations and degrees of freedom, the shell element is
fully compatible on all exterior surfaces with other shells and
with conventional solid isoparametric elements. Layered shells,
sandwich constructions, transitions between shells and solids,
or joined shells are thus easily modeled without special
constraints (Figure 3.4.2). The shell element can be of variable
thickness, and the lateral boundaries of the element need not
lie along the normal to the shell midsurface.

The nonlinear capabilities of the Type 5 shell element
include the analysis of arbitrarily large displacements and
rotations. Full coupling between the bending and extensional
strains is retained, and nonlinearities are included in the
stretching strains as well. Details of the theoretical
formulation of the shell element can be found in Reference 1.
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Figure 3.4.1 Three-Dimensional, Eight-Node Thin Shell
Element.
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Figure 3.4.2 Modeling Capabilities of the Thin Shell Finite

Element.
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Element Type 11 is a specialized element intended for use
in analyzing multilayered, moderately thin shell structures.

Like the Type 5 element, Element Type 11 contains full
nonlinearities and may be joined to isoparametric solid elements
without the use of special constraints. However, the Type 11
shell element may be composed of multiple layers of different
materials, each of which may have variable thickness within an

element.

The element geometry and local node numbering for the
sixteen-node layered shell (Type 11) are shown in Figure 3.4.3.
This element is identical in appearance to Element Type 8
(16-node solid/thick shell), and uses the same quadratic
displacement approximation. Each node possesses three translational
degrees of freedom in the global coordinate directions. The
element may have a variable total thickness (defined by the nodal
positions), and lateral boundaries of the element need not be
normal to the shell midsurface.

The composition of the Type 11 shell element through its
thickness is defined by laminate cross-section definitions, each L

R

one referring to a different combination of layer materials and
relative thicknesses. Materials may be of two types, initially-
isotropic, elastic-plastic material, with bilinear stress-strain
curve, or orthotropic, elastic material. These may be combined
arbitrarily within the shell cross-section. 1Individual layers

of the cross-section may be classified as variable-thickness

layers or as constant~thickness layers. This type of classification
is useful in modeling layered constructions such as the one shown

in Figure 3.4.4. Constant-thickness layers are defined by
specifying the material and the actual thickness of the layer;
variable thickness layers are defined by specifying the material

and a thickness fraction fT. At any point within an element, the
thickness of a variable-thickness layer is simply

tlayer = fp [Ftotal - g tgé;nstant thickness)

ol
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Figure 3.4.3. Nodal Connectivity for Sixteen-Node
Layered Shell Element.
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Figure 3.4.4.
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Layered Construction Using a Combination
of Constant- and Variable-Thickness Layers.
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At least one layer of each laminate cross-section must have
variable thickness, to avoid ambiguous geometry for the element.

The total number of layers in any Type 11 shell element may be
between two and eleven.

Either 2x2 or 3x3 Gaussian integration may be used in the
Type 11 shell element; the 2x2 integration rule is advisable in
most situations for good element performance. The thickness
integration for Element Type 11 is performed analytically,
using two integration points per layer. ©Note that in materially
nonlinear situations, resolution of yielded zones through the
element thickness may be increased by simply defining more layers
in the element cross-section.

3.4.7
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3.5 THREE-DIMENSIONAL BEAM ELEMENTS

The three-dimensional beam element (Element Type 12) in
MAGNA is a curved, quadratic-displacement element which may be
used in static or dynamic analysis. Nonlinear effects included
in the beam element formulation include large displacements,
large rotations, and plasticity, the only restriction being that

of small strains.

Element geometry and node numbering for the Type 12 beam
element are shown in Figure 3.5.1. Nodes 1-3 define the reference
axis of the element, and each possess six degrees of freedom:
three nodal translations and three rotations, all referred to
global coordinate directions. Node 3 (the mid-length node) may
be omitted if desired; however, element performance will be
improved substantially in most problems if all three of these
nodes are retained. Node 4 is an auxiliary node, which may be
used optionally for the definition of local coordinate directions

within the beam cross-section.

The cross-section of a beam element is defined using from
one to four rectangular "segments." Each segment is defined by
its dimensions in the two local coordinate directions, and by
the offset distances from the reference axis of the element.
Examples of cross-section definitions are shown in Figure 3.5.2.

An important consideration is the use of beam elements as
stiffening members on shell or solid finite elements. The Type 12
beam element is based upon the independent approximation of
digsplacements and rotations, so that compatibility of displacements
between the beam and other elements is easily accomplished by
correct specification of the beam offset parameters (Figure 3.5.3).
When stiffener torsion is important, linear constraints can be
used to relate the axial rotation of the beam to the appropriate
displacements in neighboring elements.
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Example of Beam Cross-Section
Definition.

N S A - W AL W M = ¥ Ll £l A e s  m miml el LA _k..;L_AJ




- T T T Y o T —— ey (IR M e e 0B o Y oA T CAmntisatiien Shun drea g
- - .t M . N - . . R - '

- “r”,/’ BEAM
ﬁ: .

CENTROID\Q\ o

OFFSET
h_~_"¥, ‘

f

COMMON NODE

J
|
|

Figure 3.5.3., Use of Offsets in Stiffening Elements.

)
P W

NI P *ad aaiomnd, s e o PP U S - . PRI ~__:_.-‘,,.---;_A_.J




5
h
»
V-
14
14
_[.
]
-
y
»
.

| S I

5

Integration of the beam element is always performed using a
three-point Gaussian quadrature along the element length. In linear
analysis, integration over the beam cross-section is performed
analytically. For nonlinear problems, cross-section integration is
performed by separate, three-point Newton-Cotes integrations
(Simpson's rule) over each of the segments comprising the beam

cross-section.

3.5.5




CHAPTER 4
NUMERICAL SOLUTION OPTIONS

Analysis procedures which are currently available in
the MAGNA computer program include linear and nonlinear, static
and transient dynamic solutions, natural frequency/normal mode
mode analysis, and steady-state forced vibration analysis. The
nonlinear analysis options include all effects due to geometric
and material nonlinearities, as well as error control measures

to prevent drifting during the incremental solution. Specially
programmed linear versions of each element type are provided to
eliminate unneeded calculations wherever possible; in this way,
no penalty is paid in computation time when performing linear
analysis with a program which is primarily designed for

nonlinear analysis.

In this chapter, specialization of the discrete governing
equations of Section 2.2 to each of the possible analysis
options is discussed, and the numerical algorithms used in the
solutions are presented. Special features available for use
with a particular solution option are noted where appropriate.

4.0.1
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4.1 LINEAR STATIC ANALYSIS

In a linear static analysis, all loadings are assumed
to be carefully applied, so that inertial effects may be
neglected. Further, the resulting displacements are taken to
be small enough that nonlinearities in the strain displacement
equations are negligibly small. Material nonlinearities are
not considered.

With these assumptions, the discrete equations governing
response of the finite element model are

kg X=F+I+58, (4.1.1)
in which

Kp = linear stiffness matrix

. |
X = nodal displacement vector |
F = body force vector l
T = external loads vector
8 = thermal force vector.

A solution is obtained by the following steps:

Decomposition: §E =LD ;T (4.1.2)
Forward Substitution: L 2 =F + T + ¢ (4.1.3)
Scaling: B Y = 2 (4.1.4)
Back Substitution: L X =Y . (4.1.5)

Nodal loads are specified directly in the program by
input of a load case number, node, component (direction), and
load magnitude. The number of static load cases which can be
solved in a single analysis is limited only by the available
storage. Nonzero, imposed values of displacements can also be
analyzed as a separate loading case.

4.1.1




4.2 LINEAR DYNAMIC ANALYSIS

In the linear dynamic analysis, inertial effects are

included, but displacements and strains are assumed to be
sufficiently small that neither geometric nor material
nonlinearities are significant. It should be noted that,
although the structural response is assumed to be linear,
certain types of nonlinearities can be considered in such an
analysis; an example is the presence of external loads which
depend upon velocity or displacement (follower forces, etc.).

The semidiscrete equations of motion for a linear,
dynamic problem are

I
]
"1
+
L)
+
jo®

K X+ M (4.2.1)
where

linear stiffness matrix

tI‘I’VQ

= consistent mass matrix

nodal displacement vector
body force vector

= traction vector

thermal force vector,

I I L I 4
il

and (°) denotes the differentiation with respect to time. 1In
- the general case, the body force F' may be considered to include
dissipative forces due to damping, which are assumed to be
of the form

1
B
n

F + (4.2.2)

Fn

= ~(BRg + YM)X = -¢

1)
)

(4.2.3)
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where B,Ynare arbitrary constants. Selection of 8 and y
typically depends upon known or estimated values of modal or
structural damping for the particular structure to be analyzed.
Substitution of Equation 4.2.3 into Equation 4.2.1 gives

§+Si+ §§=£+2+g. (4.2.4)

=
[fc<

E

In a linear dynamic analysis, implicit integration of
Equation 4.2.4 in time uses Newmark's generalized operatorl'z,
which is based upon the following finite difference

approximations in time:
X, = &+ [a-ek + 5%, | ot (4.2.5)
X, = X, + X, At + [(l-a)i + aX ] (at) 2 (4.2.6)
=22 =1 b | 2 =1 =2 : *e
Here subscripts 1, 2 denote the state; that is,

= X (t,) (4.2.7)

= ti + At ., (4.2.8)

The parameters a, § are free parameters which can be chosen
in such a way as to obtain desirable numerical properties
with the algorithm. In particular, it can be shown that the
conditions

§ > 1/2 (4.2.9)
@ > (8§ + 1/2)2%/4 (4.2.10)

are sufficient to ensure unconditional stability of the
numerical integration for linear problems. The values

4.,2,2
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8=1/2 and a=1/4 yield the so-called "constant average |
acceleration" operator, a commonly used form of the Newmark
algorithm.

Combining Equations 4.2.4 through 4.2.6, the current
velocity and acceleration are eliminated as unknowns in the
integration; the result is

[&:*a;z’——‘*oﬂért-g-] Xp=E+I+5
*5[;%2‘51+&%¥5—‘1+(%E‘1) X ]
veate % +(21) 2 + 35 (8 2) 1] (4.2.11)

A somewhat simpler form is obtained in terms of incremental

displacement unknowns X = gz-xl Assuming Equations 4.2.11

to be satisfied at time t1 gives the incremental form

(&g + aml;z M+ gE C] X=FEpp ¢ Ty, + 8,
+ 4 [Ei_t_ k) + '213 X
re 2% +3% (2-2) ] (4.2.12)
where
Fi1,=F, - F (4.2.13)
T,=T, - T, (4.2.14)
8y, = 8, - 8 . (4.2.15)

Equation 4.2.12 is written symbolically as

4.2.3
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X = . (4.2.16)

K P
=e e

The "effective stiffness” Ko is constant over any part of the
solution during which the time step At remains constant; the

"effective loads" ge at a particular time depend not only upon
the increment in external forces, but also upon the velocities

and accelerations computed at the previous increment of time.

Solution of Equation 4.2.16 is obtained using the
Gauss-Doolittle decomposition

T
5e =LDL , (4.2.17)
followed by the forward- and back-substitutions
LZ= Po (4.2.18)
DY=12 (4.2.19)
LX=Y (4.2.20)

to obtain the current displacement increment X. It is
important to note that, when At=constant, 5e is the same for
any increment; the process of matrix decomposition (Equation
4.2.17) therefore must be performed only once to obtain the
factors L and D. The solution procedure of a typical increment
of time then consists only of

- calculation of effective loads Ee
- forward/back substitution for X

- updating the solution §i+l=§i+§'

Calculations for element stresses and strains are performed
only at the particular increments in which output is required,
since this part of the solution is not necessary to advance
integration in time.

l._A A




4.3 NONLINEAR STATIC ANALYSIS (EQUILIBRIUM ITERATION)

The discrete governing equations for a nonlinear
structure with inertial effects neglected are, from Section 2.2,

(Kp + K)X=F +T+0 -1, (4.3.1)

in which

K. = tangent stiffness matrix

K = geometric stiffness

X = nodal displacement increments

F = body force vector

T = surface traction vector

6 = thermal loads vector

I = vector of internal forces

In the application of Equation 4.3.1, all loadings are
assumed to be gradually applied: the resulting displacements
and strains may be arbitrarily large, and material response
may be nonlinear. If the response is geometrically nonlinear,
Kp+ Kgs and I are functions of the solution X by virtue of
the nonlinear relationships existing between strains and
displacements; in the case of material nonlinearity (stress

a nonlinear function of strain), and I are dependent upon the

§T
displacement increments X.

In view of the nonlinear nature of Equation 4.3.1,
the numerical solution must either permit the use of
iteration to any desired accuracy, or provide a means of
correction for errors due to linearization. 1In practice,
nonlinearities are accounted for in the solution by four
different methods: equilibrium correction, "constant stiffness"
equilibrium iteration, full Newton-Raphson iterations, and
a combined strategy using Newton iterations followed by constant
stiffness iterations.

4.'3.1
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o The contents of I, as defined in Sections 2.1 and 2.2,
provide a step-by-step correction to the solution of Equation
4.3.1 in an incremental form; that is, within the increment

from state Ci to state Ci imbalances in virtual work

+1’
A observed in the state Ci are automatically corrected in an

iff approximate way. This procedure, called “equilibrium
Eiﬁ correction," tends to prevent the incremental solution from
drifting from the true solution, provided the displacement

steps are sufficiently small. Equilibrium correction is an
intrinsic part of the numerical solution, and is applied
automatically whether or not equilibrium iterations are used.
[‘I The use of such a correction leads to substantial improvement
over direct step-by-step integration.

e Equilibrium iteration by the constant stiffness method
gé; involves repeated application of Equation 4.3.1 at a single

o increment of loading. However, the expensive operations of

- ‘ element stiffness computation and matrix decomposition are not

repeated at each iteration. At a particular loading level, the

tangent stiffness matrices are formed, and an initial solution
is performed. Using the initial tangent stiffness, iterations

are then performed, consisting of the following steps:

(a) compute out-of-balance forces, (F+ T+ 6 - I)

. (b) test for convergence or divergence, and exit
= the cycle if either occurs

Lh N o v 2

7

(c) using the original tangent stiffness, solve
for a new estimate of the displacements X

(d) compute element strains and stresses
o (e) return to step (a).

Note that errors incurred in this procedure due to use of the
- @ initial tangent stiffness at all iterations are compensated by
the continual updating of the wvector I, which accounts for
imbalance in internal and external forces. That is, as the

internal forces in the element assemblage approach true
® equilibrium with the applied forces,

Gl el e s Ad
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(F+T+ 6 ~-1I) >0 (4.3.2)
regardless of the coefficient matrix used. The constant
stiffness form of iteration corresponds exactly to the modified

Newton iteration for solution of nonlinear systemsl.

Full Newton-Raphson iterations at a given loading level
proceed in the same manner as the constant stiffness iteration
described above: however, the coefficient matrix (§T + EG) is
continually updated using the latest estimates of the true
solution. The advantage of the full Newton iteration is
faster convergence at the expense of increased computational
effort per iteration. Computation of new element stiffness,
as well as reassembly and complete resolution, are required at
every iteration.

The nonlinear static analysis performed in MAGNA permits
a variety of types of solutions to be carried out:

(a) solution with equilibrium corrections only,
without iteration (one-step Newton method),

(b) solution with constant stiffness (modified
Newton) iteratious, using the tangent stiffness
from the beginning of the step,

(c) solution with continuously-updated stiffness
' during iteration (Newton-Raphson iteration),
and

(d) solution with a combined iteration strategy, in

which the tangent stiffness is updated in the

first two iterations of a step, and then held

constant.
Convergence of an iterative solution is determined in terms of
the unbalanced forces and the differences in successive
estimates of the nodal displacement vector, with user-defined
tolerances placed upon both of these quantities. It is also
possible to direct the program to use the same stiffness matrix
for several loading increments in succession: with this option,
a mildly nonlinear problem may be solved with stiffness matrices
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being recomputed and resolved only a few times during the
analysis. Alternatively, a "pseudo-force" solution can be
performed using the original linear stiffness for the entire —
analysis, with nonlinearities accounted for by equilibrium

corrections and iterations exclusively.

With the higher-order solid elements in MAGNA (tyves 1, 6,
7 and 8), still further flexibility is possible in a nonlinear
analysis. Each element independently is assigned a stiffness
formulation parameter, causing it to be treated as a constant
stiffness element, a tangent stiffness element, or an "averaaed
stiffness" element. With the averaged stiffness formulation,
nonlinear effects are averaged over the element before forming
the stiffness matrix, thus saving considerable computing time.
Unbalanced forces are always computed exactly, however, to ensure
correct results with iteration. 1If only a few elements of the
finite element model experience significant nonlinearity, these
can be analyzed with the tangent stiffness approach while the

remainder emnloy either constant or averaged stiffness matrices.

The finite element solution of Equation 4.3.1 is applicable t@
to geometrical nonlinearities, in the form of large displacements,
large rotations and finite strains. Material nonlinearities,
in the form of elastic-plastic, strain-hardening material ‘
behavior, are analyzed by a subincremental method to follow the
material stress-strain curve as closely as possible. Each %
increment of loading is divided into several (up to 500) strain
subincrements, whose size is user controlled. Elastic-plastic
constitutive matrices, strain-hardening slopes, and states of }
stress are updated at each subincrement in an attempt to
minimize the accumulated error. The number of subincrements is
controlled by the size of the total strain increment at a point,
so that points experiencing the most rapidly increasing strains
are automatically treated in the greatest detail. The states of
strain and stress within an element are permanently updated

only after all iterations are converged, to prevent artificial
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oscillations (e.g., unloading and reyielding) from occurring

during equilibrium iterations.

A External loads are specified for nonlinear analysis in the
form of piecewise linear data curves, which define the

magnitude of a force versus an arbitrary independent variable.
Several such curves may be input to describe non-proportional
loading systems. Both concentrated nodal forces and distributed
surface pressure loads may be specified in this fashion.

" which act in a constant

Pressure loads may be "dead loads,
direction, or "live loads," which act in the direction normal
to deformed element surfaces. Applied forces can alternatively
be defined in user-written subroutines which are accessed at
each increment of the nonlinear solution. This option is
useful in defining deformation-dependent loads (or velocity-
dependent loads in dynamic analysis) which cannot be estimated
prior to performing the nonlinear analysis. The use of user-
written routines for the specification of loading in nonlinear

problems is described in Section 9.3.
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4.4 NONLINEAR DYNAMIC ANALYSIS (IMPLICIT INTEGRATION)

In a nonlinear dynamic analysis, the response is governed
by the semidiscrete equations of motion

(Kp + KX+ MX=F  +T+6 -1, (4.4.1)

=

in which

= tangent stiffness matrix

gﬂ ﬁf

= geometric stiffness

= consistent mass matrix

= nodal displacement increments
body force vector

= surface traction vector

= thermal loads vector

H @ |3 Iﬂ Ix X
n

= vector of internal forces

and an overdot denotes the temporal derivative. Equation 4.4.1
is appropriate for large displacement and large strain response;
material behavior may be nonlinear as well. As in the linear
dynamic analysis (Section 4.2), the body force F” is considered
to include dissipative forces of the general form

F'=F + Fy, (4.4.2)

Fpo= - [B(K, + k) + ] k= -ck, (4.4.3)

where B and y are arbitrarily selected constants. With these
definitions, Equation 4.4.1 can be rewritten as

(Kp + K )X + CX + MX = F + T+ 9 - 1. (4.4.4)

Implicit integration of Equation 4.4.4 with respect to
time is performed using Newmark's generalized operator (see

4.4.1
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Section 4.2). For a nonlinear analysis, general conditions of
numerical stability of the integration operator cannot be proved: .*1
choice of time increments for the dynamic solution will, however,

”Wﬁ-,,,r.”
Y. IR

generally be made on the basis of accuracy (rather than

stability) considerations.

Use of the finite difference formulas

» v - Tew T oW .
. |l'l-"
ST LTl
A

k=[a -6k + X, ] at (4.4.5)
:. e -]: _ . . 2
- X =% ot + [(5-0a)X +aX, ] (At) (4.4.6)
g
?: in Equation 4.4.4 yields the discrete system
E‘ K, X="P_, (4.4.7)
: in which the "effective" stiffness and loads are
_ 88 1+y8At
Ko = [1+ 5 ] (K, + Kg) + 555 M (4.4.8) -
alt g
and
Pe=E+T+6 -1
+ (K )[ﬁ—x + BAt ]
=7 =G —1 (4.4.9)
L+yS8At ¢ 1-8yAt-20vAt 3
ML A 2a %]

The incremental solution of Equation 4.4.7 is performed

in the same manner as a nonlinear static analysis (Section 4.3),

r.

»
M
>

g! since the dependence of K. upon both geometric and material

- nonlinearities dictates that the effective stiffness matrix be

) reformulated and solved at frequent intervals in the solution.

f. Full, modified or combined Newton-Raphson iterations can be

H =
. ]
3 4.4.2
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performed at a fixed value of time in the nonlinear dynamic
analysis, with convergence measured in terms of tolerances upon
both the unbalanced residual forces and the displacement
corrections at any iteration. A more complete description of
the equilibrium iteration options is given in Section 4.3.

Nonlinear dynamic solutions obtained with the program
are valid for large displacements and large strains. Nonlinear
material response under dynamic loading is analyzed by a
subincremental strategy (see Sections 2.3 and 4.3), which
automaticzlly treats regions of rapidly increasing strains in
the greatest detail.

Incremental loads which are known a priori in the dynamic
analysis are specified in load versus time curves, and may
include suddenly-~applied forces, live or dead distributed loads,
and nonproportional or cyclic loading. User-written subroutine
interfaces are also supplied to permit the calculation of
concentrated loads whose magnitude and direction are functions
of the displacements or velocities.

4.4.3
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4,5 NATURAL FREQUENCY AND NORMAL MODE ANALYSIS

For the natural frequency analysis in MAGNA, linear
behavior (small displacements and linear elastic material
response) is assumed, and external forces are not considered.

For harmonic motions, then, the nodal displacement vector is
X = Usinwt (4.5.1)

and the equation of motion becomes

KU = oMU =0 . (4.5.2)
Here
Kp = linear stiffness matrix
M = consistent mass matrix
U = vector of relative nodal displacements
w = circular frequency of vibration.

Optionally, nonlinear effects such as membrane stiffening can be
considered in the equation of motion, in which case §E is replaced
by (gE + EG)’ EG being the geometric stiffness matrix. Equation
4.5.2 is an eigenvalue problem of standard form, in which both

w and U are unknowns. If the order of K, and M is n, there are

n solutions Wy Uk; i=1l,2,...,n.

Generally, the order of the finite element system is large,
which only a relative few of the natural frequencies (w) and
normal mode shapes (U) are of interest. Therefore, the free
vibration solution is based upon a vector iteration method which
permits a specified number of the lowest (or highest) frequencies
to be solved, along with their corresponding mode shapes. The
particular method employed is the simultaneous iteration algorithm
of Jenningsl and Rutishauserz; further details and a sample
implementation of the method can be found in Reference 3.

Beginning with Equation 4.5.2, a Choleski factorization

of K., is carried out,

E
T

=
]

|

e

(4.5.3)
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(4.5.4)
Defining
P=L"U, (4.5.5)

and premultiplying Equation (4.5.4) by the inverse of L vields

-1 T

(

e
=

L )P = 1—2 P (4.5.6)
w

or

p=%p. (4.5.7)
w

o

Equation 4.5.7 is the form of the eigenvalue problem on which
the simultaneous iteration is based, although matrix A is never
computed explicity. Instead, multiplication of a vector by A )
(the major computational step in the iteration) is accomplished i;j
by backsubstitution using ET, multiplication by M, and then -
forward substitution using L. Thus, sparsity of both L and M
can be used to advantage both to reduce storage requirements
and to eliminate unnecessary operations.

The actual iteration is carried out using m trial vectors,
where m<<n. If r represents the number of frequencies and mode
shapes to be extracted, m is usually slightly larger than r;

m = min (2r, r + 5) (4.5.8)

has been found to provide a suitable balance between rate of
convergence and storage requirements. The matrix whose columns
consist of the trial vectors, gi; i=1,2,....,m is denoted by ¢,

¢ =[P

—l' 22’...’2{“] . (4.5'9)
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The first step in the iteration is an interaction analysis, in
which the mxm interaction matrix

Ta

o
e

(4.5.10)

f

is formed. If the columns of ? are indeed eigenvectors, B should
be a diagonal matrix. If the trial vectors are suitably
normalized, the diagonal entries of B are estimates of the
eigenvalues,

N

bii ~ W (no sum) (4.5.11)

Since B is in general not diagonal, an approximate solution for
the eigenvectors of B is next used to uncouple the trial vectors.
Define the mxm matrix T by

-1 i=3
=2bh. .
t.. = bl] _. —
1] r.. + sign(r..) V/r.2 + 16b.2 i3
ij ij i3 ij J (4.5.12)
in which
r.. =b.. - b.. . (no sum) (4.5.13)

A set of decoupled trial vectors W is then constructed from

=

]
i
iher
i

(4.5.14)

in which

=
|

Wy s Woreeeyw 1 . (4.5.15)

Finally, Schmidt orthogonalization is used to obtain a new set
of trial vectors,
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» -i =i jzl ji—y ' )
in which
G, = Wew, . (4.5.17)
ji —j=i

The above sequence of calculations is repeated until the
norm of the change in the first r eigenvectors is less than a
specified tolerance. Generally the convergence of the
eigenvalues (frequencies) is much quicker than that of the
eigenvectors, and the entire procedure typically converges in
very few iterations. Since only a single factorization of §E
is performed, the simultaneous iteration solution is quite
economical, and its effectiveness relative to other solution
techniques tends to increase with the size of the problem

under consideration.

Generalized mass and stiffness information is also generated
by MAGNA upon completion of the natural frequency solution. The

generalized mass associated with vibration mode "k" is defined by

_ T
Mk = gk M Uk (4.5.18)

. Where the mode shapes U are orthononmalized, such that
. -
» T
- Y, gj = Sij (4.5.19)
-
- the corresponding generalized stiffness is
-
ti _ T _ 2
- K = 4 K U = w M (4.5.20)
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4.6 STEADY-STATE HARMONIC ANALYSIS

The steady-state, harmonic response solution is a specialized
case of linear dynamic analysis (Section 4.2). When the external
forces are sinusoidal functions of time with given frequency uw,
the linear solution for the system displacements is sinusoidal at the
same frequency, provided sufficient time has elapsed for transient
motions (due to initial conditions) to have "died out."

If the amplitude of the nodal forces is P, the applied loading

is

F(t) = Re[P e F) (4.6.1)

The corresponding steady-state displacements are of the form
X(t) =y ¥t (4.6.2)

in which U is the vector of nodal displacement amplitudes. If the
motion is undamped, U is real-valued since the response is exactly
in phase with the harmonic forcing function. When dissipative
effects are present U may be complex-valued, reflecting the phase
differences between input (forces) and output (displacements).

In the steady-state solution, material structural damping
may be included by means of the "complex modulus" description.
That is, the modulus of any material may be expressed as

E* = E(1 + in) (4.6.3)

in which E is the elastic modulus and n is the material loss factor.
Loss factors may be different for each material in the model.

The stiffness matrix used for steady-state vibration analysis

is, in general, complex-valued,

K=K, + iK (4.6.4)

4.6.1
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The complete equation of motion for the unknown displacement
amplitudes is then

2

o

(K + iK. - w

I

=

R JU =P (4.6.5)

which is a set of simultaneous equations with complex-valued
coefficients.

j - SR
— Y

Solution of Equation 4.6.5 is accomplished in much the
same way as for linear static analysis (Section 4.1), except that
the equation-solving process invloves complex variables. Note also
that a separate solution is required for each forcing frequency (w)
to be considered; many such solutions may be performed within a single
analysis run, to provide amplitude-versus-~frequency data for each
of the nodal displacements in the model.

KA SR
. A P r

Many commonly-used materials exhibit elastic and damping
properties which vary strongly with frequency and/or temperature.
The user-supplied subroutine UDAMP (Section 9.10), which is required
for the specification of material damping properties in the steady-
state solution, can also be used to define these properties as
arbitrary functions of forcing frequency and temperature. When
frequency dependent properties are used, the damping matrix K,
reformulated at each new forcing frequency based upon the material
properties specified in UDAMP.
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CHAPTER 5
SPECIAL PROGRAM FEATURES

The MAGNA finite element program contains several
special analysis features designed to improve analysis
flexibility and ease of use for a wide variety of problems.
These features include capabilities for incremental generation
of analysis data, creation of data files for postprocessing
functions, analysis restart options, and provisions for
intervention by user-written subroutines at appropriate
stages of an analysis. Additional program features which are
not described elsewhere in the manual are also introduced in

this chapter.




5.1 CURVILINEAR COORDINATES

- In many applications, it is convenient to define all
or part of a finite element model in terms of coordinates
other than the global Cartesian system. Geometry data for
the program may be entered in any desired coordinate
system(s), and transformed internally to the global axis
system. Coordinate transformations for circular cylindrical
and spherical systems are available in the code, and

additional transformations can be defined in a user subroutine
CTYPE (see Section 9.2). The built-in coordinate systems
(cylindrical and spherical) are shown in Figures 5.1.1 and
5.1.2,
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Figure 5.1.1 Cylindrical Coordinate System Definition.
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Figure 5.1.2 Spherical Coordinate System Definition.
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5.2 COORDINATE DATA GENERATION

The MAGNA program contains utilities for incremental
coordinate generation which are useful in describing
geometrically regular portions of the finite element nodal
mesh. Given two node positions, the program will generate
equally spaced nodal points with specified numbering
increment on a straight line between the given points, as
shown in Figure 5.2.1. Nodes 23 and 35 in the figure are
defined explicitly, and the increment specified for generation
is INCR=3; node points 26, 29, and 32 are then defined
automatically within the program. The node numbering increment
must be positive, and generation of node points is performed
in the global Cartesian coordinate system.

Coordinate data generation can also be performed in
a user-written subroutine MESHG, described in Section 9.1.
Such a routine can be created to automatically generate all
nodal data, or to read coordinate input in non-standard card
formats.

5.2.1
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5.3 ELEMENT GENERATION

Element connectivity data, which describes the connection
of individual elements to nodal points of the finite element
model, can be generated incrementally within the program in
many cases. Sequences of elements whose connectivities are
different by a constant are defined simply by inputting the
first element of the sequence, the ending element number, and
a node generation parameter (KGEN). This utility is available
for all element types; for the variable-node elements, in
which some connected nodes may be absent (i.e., zero),
generation is performed only on nonzero node numbers, so
that all elements in a generator sequence have an identical
number of nodes. Finite elements generated in a given sequence
are assigned the same material properties, but need not have
similar geometries. The node generation parameter KGEN, which
specifies the difference in connected node numbers between
successive elements, must be a postive integer value.
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5.4 INCREMENTAL LOADS

Nonlinear and dynamic solutions are performed in MAGNA by
considering a number of successive increments of time or
loading. In dynamic analysis, external loads applied to a
finite element model are defined directly in terms of time.

For nonlinear static analysis, where inertial effects are
neglected, loadings are also defined as functions of time;
however, in the static case, "time" is simply used as a loading
parameter (i.e., independent variable) which increases
continually throughout the solution.

Applied forces whose magnitude is known in advance are
specified by defining loading curves which describe the forces
as functions of time (or loading parameter). External forces
defined in this manner may include nodal forces in a given
direction, or distributed surface pressures. In the case of
pressure loading, surface pressures can besspecified to act
in the direction normal to the element in its initial state
("dead" load), or to act along the current (deformed) surface
of an element ("live" load, e.g., fluid pressure). Concentrated

nodal follower forces, and concentrated or pressure loads whose
magnitude depends upon the structural response, can be defined
in the user-written subroutines ULOAD and USRLOD (see Section
9.3) which are called during each time or load increment of

the solution.
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5.5 NONLINEAR MATERIAL STRESS-STRAIN DATA

The analysis of elastic-plastic, strain hardening
materials in MAGNA is performed using a "subincremental”
method, which allows the stress state at integrating points
in the finite element model to follow the material stress-strain
curve as closely as possible (see Section 2.3). Determination
of the work hardening behavior of the material uses known,

uniaxial stress-strain data, from which the instantaneous
hardening slopes (i.e., tangent moduli) are found. These

[‘ uniaxial data are supplied to the program in the form of
piecewise linear data curves which define stress as a function
of plastic strain in the Lagrangian description.

Typically, material stress-strain data are cbtained in

ri the form of total stress versus total strain, where the stresses
and strains recorded are either "true" or "engineering" values.
Reduction of the data to the form required by the program

&f . therefore consists of two steps:

b u ;I- (1) Conversion of total stress/strain values to the
- appropriate measures for a Lagrangian description (namely,
Piola-Kirchhoff stresses and Green-St. Venant strains), and

(2) Reduction of the data to give total stress in
terms of plastic strains.

For raw data given in terms of engineering values Ops €gv
G = applied force _ P
E original area Ao (5.5.1)

elongation _u

°E T original length L,

) (5.5.2)

The Lagrangian measures of stress and strain (oL,eL) can be
obtained from
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_ E
L = TFey)
= 1
€ = EE(1+2€E) .

True stress and true strain values o €

Tl

_ applied force _ P
T current area A

and

L
in [current length 7 _ daL
T original length L L !
o

™
I

(5.5.3)

(5.5.4)

o are defined by

(5.5.5)

(5.5.6)

and can be converted to the Lagrangian values (cL,eL) using

g

g = T A_
L exp (€ ) A

T 0

[exp(ZET) -1] .

t
NI

(5.5.7)

(5.5.8)

The ratio of current to original areas in Equation 5.5.7 is

normally not available as part of the data for a material,

but can be estimated from the following:

Ao 1 + €E

 liadl e (l-2v)eE (Elastic Range)
A l + ¢

KQ = E (Plastic Range)

Y
1+ (1 2v)€E

in which €p is the engineering strain

(5.5.9)

(5.5.10)

ad
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€g = exp(eT) -1, (5.5.11)

eg denotes the engineering strain at first yielding, and v is
the Poisson's ratio of the material. Equations 5.5.9 and
5.5.10 are valid provided

(1) the elastic strains at first yield are small
(much less than unity)

(2) the material is incompressible during plastic
deformation

(3) necking instability of the specimen has not
occurred.

The final step in preparing the stress-~strain data is the
reduction to the form of stress versus plastic strain. The
required plastic strains are obtained from

: (5.5.12)

As an example, consider a material whose engineering

ii stress-strain behavior is defined by the table of values below:
“E %k
;"‘j 0. 0.
e 0.0030 30000.
. 0.0045 35000.
= 0.0060 37500.
o 0.0090 40000.
E! 0.0150 41000.
8 0.1000 45000.
tl From Equations 5.5.3 and 5.5.4, the Lagrangian measures of
Eg - - stress and strain are found to be
:
5.5.3
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0. 0.
0.003005 29910.3
0.004510 34843.2
0.006018 37276.3
0.009041 39643.2
0.015113 40394.1
0.105000 40909.1

Next, Equation 5.5.12 is used to obtain stress as a function of
the plastic strain

‘L o1,
0. 29910.3
0.001026 34843.2
0.002290 37276.3
0.005077 39643.2
0.011074 40394.1 )
0.100909 40909.1 e

The original (engineering) data and the stress-versus-plastic
strain input data are shown in Figure 5.5.1.
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Figure 5.5.1 Reduction of Material Stress-Strain Data.
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5.6 LINEAR MULTIVARIABLE CONSTRAINTS

Linear constraints are a special type of boundary condition
which may be used in MAGNA to represent fixed relationships between
a number of degrees of freedom of a finite element model. Examples
include nodal constraints (due to fixity or symmetry) in skewed
coordinate directions, and rigid links between nodes of a model.

A single linear constraint equation has the form

n (d.)
) c. U nl =0 (5.6.1)

in which n is the number of individual terms in the constraint.
Each term is defined by a coefficient (Ci), a node number (ni) and
a direction (di); the node number and direction together define a
single unique degree-of-freedom of the model. A simple example is
shown in Figure 5.6.1, in which a node is contrained to move along
an inclined surface in the (X,Y) plane. If 6 is the angle between
the surface and the X-axis, displacements perpendicular to it may
be suppressed using the linear constraint

(=sinf)u + (cosb)v = 0, (5.6.2)
Here n = 2, and
Cl = -sinb C2 = cos®
dl =1 d2 = 2
n, = (node number) n, = (node number)

Equations of linear constraint are introduced into the global
equations of the finite element model using a penalty function
technique. Expressing a single constraint in the form

ng =0, (5.6.3)

5.6.1
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the penalty function is constructed by squaring the constraint and

assigning an associated penalty factor «,

axfec™x = 0 (5.6.4)
The left-hand side of Equation 5.6.4 may be interpreted as a "strain
energy penalty" associated with the violation of the original
constraint. When Equation 5.6.4 is added to the strain energy of
the finite element model, this error may be forced to arbitrarily
small values as the penalty factor (a) takes on a very large value.
In practice, the magnitude of a is based upon the magnitude of
existing coefficients in the stiffness matrix, so that constraints
are enforced properly while the system of equations remains

well-conditioned.

In non~linear and dynamic analysis, repeated solution of the
system may lead to accumulated errors in the satisfaction of the
linear constraint equations. To avoid this potential source of
error, each linear constraint is evaluated at each iteration or

time step in the solution to obtain the error ‘rl

Cc'X = € (5.6.5)
During the next time step (or iteration), a corrected constraint
is applied, requiring

cTx )~ cTax + e = 0 (5.6.6)

The error in satisfying the linear constraints is, therefore,

limited to very small values by the displacement convergence

tolerance normally used within MAGNA.
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Enforcement of Displacement Constraint on a

Skewed Boundary.
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5.7 POSTPROCESSING INTERFACE

b
3
p
k.
3

Interpretation of the results of a finite element solutior
can be greatly facilitated by the use of postprocessing programs
which provide tabular and/or graphical display of the computed
response. In addition to printed output, MAGNA optionally
producesva summary of analysis results which is suitable for use
as input to special-purpose postprocessing programs. The analysis
summary 1is output from the program in the form of a formatted
file on disc or magnetic tape, with the local (temporary) file
name MPOST. The MAGNA geometry plotter (GPLOT, see Chapter 11)
accepts the MPOST file as input for the preparation of deformed
mesh plots in an interactive mode. Contents of the MPOST file

include the following:
1. Nodal coordinate (input and generated values)
2. Element connectivities (input and generated)
3. Nodal displacements for each solution increment

4. Element strains, stresses, and equivalent stress

levels at integration voints for each increment.

Logical blocks of data are separated by formatted header

;. records; the contents of the data headers are indicated in
Table 5.7.1. A description of individual data records, in
-! their approximate order of appearance on the file¥*, is given
in Table 5.7.2. The maximum record length on file MPOST is
130 characters, so that the file can be copied to a high-
speed printer to provide a concise printed summary of the

b. analysis if required.

An additional postprocessing file is produced by the
stress extrapolation and smoothing program STRAVG (Section 10.11),
which is normally executed as part of a MAGNA batch analysis

LA S CONE ot A A

run. STRAVG, which generates smoothed nodal stress values

| n o s

sy

*The exact ordering of the postprocessor file data is
e N dependent upon the type of analysis being performed.
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TABLE 5.7.1
HEADER RECORDS FOR POSTPROCESSOR FILE MPOST

[ R &

{
hovo

E'.j:: Data

s Item Type Format

NS

E COOR Keyword for Nodal Coordinates Data A A4,11X

i 11 Number of Node Points I 15

v

t CONN Keyword for Element Connectivity Data A A4,1X

r I1 Element Type I I5

{‘ I2 Maximum Number of Nodes per Element I I5

"-

e 13 Number of Elements of this Type I 15

KT~

: ENDD Keyword for End of Data A A4

Vo

?’ DISP Keyword for Nodal Displacement Data A A4,1X

'{-:; Il Increment or Load Case Number I I5

\' -

\::j P12 Number of Nodes I 15

e i Rl Time (or Load Parameter) Value R E15.8 Y
v ’
P :
- ELSS Keyword for Element Stress/Strain Data a Ad,1X

o 11 Number of Element Types Used 1 15

A ) I1 Increment or Load Case Number 1 15

_ R1 Time (or Load Parameter) Value R E15.8

e

- ETYP Element Type Header for Stress/Strain Data A A4,1X

:::_: I1 Element Type T 15

L- I2 ! Element Dimensionality I I5

» .

o 13 Interpolation Type Code I 15

A 14 Number of Elements of this Type I 15

. !

L:.' ELEM | Element Header for Stress/Strain Data A Ad,1X

i

K 11 { Element Number I 5

12 i Maximum Number of Nodes per Element I 15

b ‘

t; I3 Number of Numerical Integration Points I I5

E! ENDP End-of-Problem Trailer A ad —
A R
E 5.7.2

3
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TABLE 5.7.2

DATA RECORDS FOR POSTPROCESSOR FILE MPOST
DATA TYPE DATA DESCRIPTION FORMAT
COOR Header (1) A4,11X,15
Coordinates 1. Node Number
2. Coordinates X,Y,2 I5,5X%,3E10.3
(one record per node point)
CONN Header (2) (1) A4,1Xx,3I5
Connectivity (2) 1. Element Number
2. Connected Nodes 2814
(one record per element) :
|
ENDD Trailer (1) ! A4
DISP Header (3; (1) 24,1X,215,E15.8

Displacements (3)

1. Node Number
2. Displacement Components
(one record per node point)

I5,5X,3E10.3

ELSS Header (3) (1) A4,1X,2I5,E15.8
ETYP Header (4) (1) 24,1X,415
ELEM Header (5) (1) ad4,1X,315
Element Strain 1. Strain Components (6)
and Stress (6) 2. Stress Components (6) 13E10.3

3. Equivalent Stress
ENDP Trailer (1) 24

Notes:

(1) See Table 5.7.1 for header and trailer record descriptions

Repeated for each
Repeated for each
Repeated for each
Repeated for each
Repeated for each
loading case; for
values are output

element type used

solution time step or loading’ case

element type at each time step or loading case
element at each time step or loading case
integration point at each time step or

Element Type 11 (layered shell), integration point
for each layer of an element.

5.7.3
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(and individual layer stresses for Element Type 11) as printed
output, also creates an "averaged-stress" postprocessor file

(APOST) which is used as input to contour plotters and other ]
special purpose data presentation programs. The contour/relief
plotter CPLOT (Chapter 11) developed for use with MAGNA accepts
the APOST file as input to generate a variety of stress, strain,

and displacement plots under interactive control.

The header information and data contained on the APOST
postprocessing file is summarized in Table 5.7.3. This data
is always arranged in the exact order shown in the Table. It
should be noted that the individual increments (or loading
conditions, or mode numbers) appearing on the APOST file are

the same as those contained in the MPOST file.

E'- Normally, no input is required for execution of STRAVG.
f! However, input can be supplied to control the amount of printed
output, and/or the increment numbers to be processed. When input
is supplied to STRAVG, the first input line contains a printing

specification

or PRINT=YES (normal printed output)

/(f"—T"—.|-.vl
".

PRINT=NO (minimal printed output)

beginning in column 1, with no embedded blanks. Additional input

lines should contain numbers or ranges of increments to be processed

by STRAVG; increment ranges are distinguished by a negative sign

s x—w
A

I' o
O o
et
ettt T

on the second number of a pair. The increment number data are
read in 1615 format, on as many lines as necessary, with blank
FT fields being ignored.
Ei The following example of STRAVG input requests minimal
E;g printing, with increments 5, 7, and 10 through 14 to be processed:
~@

M

PRINT=NO
AAAASAAAA?

* AAAlOAA-l4

f
)
cnmide.
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Requested increments which do not appear on the input MPOST file
are simply ignored. For example, if the MPOST file contained
increments 6 through 12, the above input stream would cause
increments 7, 10, 11, and 12 to be processed and written to the

{

APOST postprocessing file.
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TABLE 5.7.3

MAGNA POSTPROCESSOR FILE 'APOST' - GENERAL DESCRIPTION AND FORMAT
Record Columns Format Description
1 1-80 2024 Problem Title (Line 1 of 3)
2 1-80 20A4 Problem Title (Line 2 of 3)
3 1-80 20A4 Problem Title (Line 3 of 3)
4 1-4 A4 'INCS' - Increment List Header
5 1X (Blank)
6-10 15 Number of Solution Increments, Modes
or Loading Conditions to appear on
file
5 1-100 2015 List of Increments in ascending order.
(Additional records are used as
needed)
6 1-10 1011 Flags for Element Types Appearing
in the Model.
7 1-4 A4 'LIMC' - Coordinate Limits Header
5 1X (Blank) »
5-20 E15.8 X - Maximum Value L.
21-35 E15.8 Y - Maximum Value ’
.. 36-50 E15.8 Z - Maximum Value
p - 51-65 E15.8 X - Minimum Value
- 65-80 E15.8 Y - Minimum Value
-' 81-95 E15.8 Z - Minimum Value

3

E <<<<< Records 8-17 (described on the next page) each >>>>>
! <<<<< include data computed at each increment of the »>>>>>
i <<<<< finite element solution. Each of these records >>>>>
e <<<<< jis repeated (in the same order) for each solu- >>>>>

a8 ; ] i
. <<<<< tion increment, mode shape or loading case >>>>>
= <<<<< listed in Record 5. >>>>>
.
b‘ -
o
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-
3
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TABLE 5.7.3 (continued)

Record Columns Format
8 1-4 Ad
5 1X
6-10 IS5
11-15 I5
16-30 E15.8
9 1-4 A4
5 1X
6-29 E15.8
21-35 El15.8
36-50 E15.8
51-65 E15.8
66-80 El5.8
81-05 E15.8
10 1-4 A4
5 1X
6-10 15
11-15 I5
16-20 IS
21-25 I5
26-30 I5
31-35 I5
36-40 I5
41~45 I5
11 1-~108 2714
12 1-120 10E12.5
13 1-120 10E12.5

Description

'INCT' -~ Increment Header.
(Blank)

Increment Number

Total Number of Elements
Time Value at this Increment

'LIMC' ~ Displacement Limits
Header ‘

{Blank)

X = Maximum Displacement

- Maximum Displacement

~ Maximum Displacement

- Minimum Displacement

- Minimum Displacement

- Minimum Displacement

[ SIS S

'ELMT' ~ Element Header

(Blank)

Part Number (A 'part' is any
distinct combination of element
type and material property code;
elements appearing in the file
are sorted by parts).

Global Element Sequence Number
(numbers are secondary sort key)
Element Type (as defined in MAGNA)
Element Sequence Number (within type)
Material Property Code

Maximum Number of Nodes

Length of Coordinate Records

{3*Nodes)
Number of Layers (Element Type 11 only)

List of Connected Nodes (up to 27)

(Xcoor (i) ,i=1,maxnodes),

(Ycoor (i) ,i=1,maxnodes),

(Zcoor (i) ,i=1,maxnodes).

Nodal coordinates are written up to
10 entries per line, over as many
lines as needed (up to 9, for
27-node elements).

(Xdisp (i) ,i=1,maxnodes),
(Ydisp (i) ,i=1,maxnodes),
(2disp(i),i=1,maxnodes).
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TABLE 5.7.3 (concluded)

L( Record Columns Format Description
F. 14 1-10 E10.3 XX - Strain at Local Node #1
- 11-20 E10.3 YY - Strain at Local Node #1
[-. 21-30 E10.3 ZZ - Strain at Local Node #1
3 31-40 E10.3 YZ - Strain at Local Node #1
\ 41-50 E10.3 XZ - Strain at Local Node #1
!’ 51-60 E10.3 XY - Strain at Local Node #1
. 61-70 E10.3 XX - Stress at Local Node #1
- 71-80 E10.3 YY - Stress at Local Node #1
[ - 81-90 E10.3 77 - Stress at Local Node #1
;' 91-100 E10.3 YZ - Stress at Local Node #1
101-1190 E10.3 XZ - Stress at Local Node #1
! 111-120 E10.3 XY - Stress at Local Node #1
A 121-130 E10.3 Von Mises Stress for Node #1

<<<<< Record 14 is repeated for each node point >>>>>
i <<<<< connected to the element. Omitted points >>>>>
‘* <<<<< in variable-node elements assigned zeros. >>>>>
p

<<<<< For the layered shell element (Type 11), >>>>>
<<<<< a complete set of nodal values is output >>>>>

. <<<<< for each layer of the element. >>>>>
% 15 1-4 A4 'LIMS' - Stress/Strain Limits
Il Header
- 16 1-10 E10.3 Maximum XX - Strain for this Increment
3 11-20 E10.3 Maximum YY - Strain for this Increment
g 21-30 E10.3 Maximum ZZ - Strain for this Increment
- 31-40 E10.3 Maximum YZ - Strain for this Increment
. 41-50 E10.3 Maximum XZ - Strain for this Increment
g 51-60 E10.3 Maximum XY - Strain for this Increment
L 61-70 E10.3 Maximum XX - Stress for this Increment
= 71-80 E10.3 Maximum YY - Stress for this Increment
5 81-90 E10.3 Maximum ZZ - Stress for this Increment
& 91-100 E10.3 Maximum Y2 - Stress for this Increment
| 101-110 E10.3 Maximum XZ - Stress for this Increment
3 111-120 E10.3 Maximum XY - Stress for this Increment
3 121-130 E10.3 Maximum von Mises Stress for Increment
.
3 17 1-10 E10.3 Minimum XX - Strain for this Increment
3 11-20 £10.3 Minimum YY - Strain for this Increment
L‘ 21-30 E10.3 Minimum ZZ - Strain for this Increment
- 31-40 E10.3 Minimum YZ - Strain for this Increment
$ 41-50 E10.3 Minimum XZ - Strain for this Increment
51-60 E10.3 Minimum XY - Strain for this Increment
N 61-70 E10.3 Minimum XX - Stress for this Increment
5 71~-80 E10.3 Minimum YY - Stress for this Increment
. 81-90 E10.3 Minimum ZZ - Stress for this Increment
91-100 E10.3 Minimum YZ - Stress for this Increment
101-110 E10.3 Minimum XZ - Stress for this Increment
111-120 E10.3 Minimum XY - Stress for this Increment
121-130 E10.3 Minimum von Mises Stress for Increment

5.7.8
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5.8 ANALYSIS RESTART UTILITIES

In practical situations, very little may be known about the
characteristics of the solution prior to performing an analysis.
When a large nonlinear or dynamic analysis is to be performed, it
is therfore desirable in many instances for the analyst to intervene
at certain points within the solution to monitor progress and to

make decisions concerning solution strategy, analysis options or

E‘- modifications to the input data. In other cases, it may be con-
venient to perform the solution in several steps to safegquard
against job failure or to improve turnaround time.

E‘I MAGNA provides utilities to permit the interruption and

= subsequent restarting of any nonlinear analysis, with the

frequency of checkpointing and the point of restart controlled by

R‘ the user. The same restart facilities may be used in linear,
transient dynamic solutions. Input or output restart files, or
both, may be used, depending upon whether a new analysis, an

»f; intermediate analysis, or a run to completion is being made. Job

control procedures necessary for using the restart facilities are

described in Chapter 7.

During a restart analysis, a number of options and data
items may be changed from those specified in the original
solution. Examples of data which may be redefined freely during

a restart include:
® analysis type (static or transient),
e output options, including postprocessing files,

e time or load increments, integration parameters or

system damping coefficients,
® iteration parameters,

e stiffness formulation options or recompute frequencies,

and

e nodal/element loads and corresponding time functions.
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During a restart job, a complete input deck (Chapter 8) is

supplied to the program. It should be noted that nonlinear analyses
may c¢nly be restarted as nonlinear, and linear dynamic analyses

must be restartedas linear. In nonlinear analysis, however, the
solution type (static, transient) may be changed when restarting.

The following data should not be modified in a restart analysis:
e nodal coordinates,
® material properties and axis definitions,
® element connectivities (connected nodes),
® element integration order, and
e homogeneous boundary conditions.

Furthermore, those nonlinear elements using constant (linear)
stiffness matrices (ISUP=1 for Element Types 1, 6, 7, and 8)
should generally remain unchanged from the original analysis; all
other stiffness computation options and frequencies of
reformulation may, however, be modified as desired. If elements
using the constant stiffness option (ISUP=1l) are modified to

use the averaged or tangent stiffness formulation (ISUP=-1 or 0),
all such elements must be changed to one of the non-constant
stiffness options. Such a change in stiffness formulation method
is usual following non-convergence using the constant stiffness

approach in nonlinear analysis.

Input data which defines the actual restart parameters
is described in Section 8.3. Any analysis which creates a
restart tape is identified by a four-character identification
code, and each increment written to the tape is identified
by the number of the increment. When a restart analysis is
performed, both the identification code and the increment value
are verified prior to the restart, to detect any inconsistency

which might lead to erroneous results.
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5.9 NATURAL FREQUENCY ANALYSIS WITH PRESTRESS EFFECTS

The tendency of gross structural response to change

a T
‘ . .

markedly in the presence of nonlinear effects is important in

determining both static and dynamic behavior of a structure.

IERLS £ g

In addition to the modification of static and transient response

Fi

to loading, geometrical or material nonlinearities may bring
about changes in the nature of small, superimposed motions (such
as free vibration). A simple example is the increase in
fundamental frequency which accompanies the "stiffening" effect

in a beam experiencing large displacements.

MAGNA contains an option to compute the influence of
nonlinearities upon superimposed free vibrations within the
natural frequency branch of the problem. The solution is a two-
step procedure. First a nonlinear analysis must be performed,
to compute the equilibrium state corresponding to the prestressed
position. Secondly, the stiffness coefficients in the prestressed
state are included in a free vibration analysis, which solves

for the superimposed small harmonic motions about this equilibrium

position.

For purposes of plotting, the MPOST postprocessor file
(Section 5.7) from the preliminary nonlinear solution may also
be communicated to the natural frequency analysis. When this
option is exercised, the final geometry in the vrestressed state

: will be copied to the MPOST file for the frequency solution;
:} after completion of the entire analysis, geometry plots can be
o generated showing the true mode shape(s), superimposed on the

F! prestressed shape of the model.

The following points should be noted concerning the

|
b
¥
f} eigenvalue solution with prestress:
(
P
.

- the nonlinear portion of the analysis is best performed
with equilibrium iterations:

- strain and stress information generated in the natural
frequency solution is the superimposed strain and stress
state due to small vibration, and 1is assumed to be

.= elastic; and

w...
e
(]
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- the plotting scheme described in the previous paragraph
is optional, and may be omitted without affecting the
solution.

5.9.2
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Fo CHAPTER 6
DEMONSTRATION PROBLEMS

A number of sample analyses are presented in this

ol
.

- chapter to demonstrate the linear and nonlinear solution
capabilities of the MACNA program. The problems described
include both small structures having well-known or documented
solutions, and larger models corresponding to practical
applications of the program. In some cases, solutions to

] v

e
M ' .
Eh R

) Vs

- . Ak

two-dimensional or axisymmetric problems are obtained using
three-dimensional finite element models; this reflects the
emphasis during the early program development stage on
efficient three-dimensional analysis techniques, as well as
the scarcity of well-documented benchmark problems for

nonlinear response in three dimensions. The more practical
applications described in this chapter (many of which are
truly three-dimensional) demonstrate the capabilities of
the MAGNA program for performing nonlinear analyses of
structures of practical size and complexity.

6.0.1
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6.1 ELASTIC-PLASTIC ANALYSIS OF A CIRCULAR PLATE

The circular plate shown in Figure 6.1.1 is subjected to
a transverse load applied through a rigid punch. Dimensions
of the specimen are given in the Figure. Experimental load-
displacement curves for this plate have been presented by
Winter and Levine (Reference 1, Plate 4A250), together with an
axisymmetric shell solution obtained with the PLANS finite
element code. Analytical results obtained using axisymmetric
solid finite elements are reported by Hunsaker, Haisler and
Stricklinz.

Although this problem is axisymmetric, a MAGNA solution
has been performed using solid twenty-node elements (Element
Type 6) to demonstrate the three-dimensional large displacement
plastic analysis capabilities of the program. The finite
element model of one quarter of the plate, consisting of 14
solid elements, is shown in Figure 6.1.2. Two elements are used
through the plate thickness, since the specimen is rather thick
(R/t = 9.98) and considerable material nonlinearity can be
expected to occur before large displacement effects become

significant.

Two different sets of integration rules and stiffness
options have been employed in performing nonlinear analysis
of the plate. 1In the first model, which uses the tangent
stiffness option in all elements, 3x3x3 Gaussian integration
is used for the innermost six elements (R < 0.995) and 2x2x2
quadrature is specified elsewhere. The second model uses a
tangent stiffness option and l4-point numerical integration
for the six elements closest to the center of the plate, while
2x2x2 quadrature and an averaged stiffness option is used for the
remaining eight elements. The averaged stiffness approach is
appropriate due to the relatively simple strain and stress
distributions which are expected near the supvorted edge.
Model 1 is used without equilibrium iteration, while Model 2 is
solved by combined Newton-Raphson iterations to maintain solution
stability.

6.1.1
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Figure 6.1.2 Finite Element Model of a Circular
Plate.
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The stress-strain curve of the material, a strain-hardening
aluminum alloy, are defined by the engineering stress and strain
values listed below.

€ g

— B - E

0. 0.

0.009950 10000. (yield stress)
0.013100 20000.

0.045020 28000.

0.118000 36000.

0.363110 48000.

The MAGNA solution for the central displacement of the
plate versus the total applied load is compared with the
experimental results in Figure 6.1.3. Forty equal increments
of 100 pounds each have been used in the solution. The
particular solution pictured, which is obtained from Model 1,
uses a kinematic strain-hardening description: in fact, the type
of strain-hardening rule selected is rather unimportant for
the present solutionz. Solution accuracy is quite good for
the entire range of loading, during which the Green's strains

attain maximum values in excess of 30 percent,

Displacement solutions at the center of the plate
corresponding to Models 1 and 2 are compared in Fignre 6.1.4.
Model 2 predicts slightly larger displacements througunout the
loading history, but the agreement between the two results is
reasonably good. It should be noted that the most significant
reason for the differences in computed displacements between the
two models is the use of equilibrium iteration in Model 2,
rather than in the use of different integration schemes and
stiffness options.

Figures 6.1.5 and 6.1.6 show selected stress results, in
the form of contour plots, corresponding to an applied load of

6.1.4
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1000 pounds. At this stage yielding is confined fo a small

. region near the center of the plate, as shown in the yield locus
- plot of Figure 6.1.5. The distribution of von Mises effective
stress is nearly midplane-symmetric (Figure 6.1.6).

Similar contour maps for the 2000 pound loading level are
presented in Figures 6.1.7 and 6.1.8. Figure 6.1.7 shows the
yield locus, which is interpreted as a series of straight lines
due to the 2x2x2 integration rule used in the outermost elements;
only a small region near the boundary and the midsurface remains
elastic. The radial strain distributions of Figure 6.1.8 already
T‘ show the influence of geometric nonlinearities, although the
s maximum strains are still rather small (6 percent).
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6.2 SHALLOW SPHERICAL SHELL UNDER CONCENTRATED LOAD

The large displacement, elastic response of a shallow
spherical cap, subjected to a point force at the apex, is
considered. Figure 6.2.1 shows a cross-section of the
undeformed shell geometry: the included angle of the cap (from
the apex to the boundary) is 10.9 degrees. The shell material

is assumed to be linear and elastic, but nonlinear effects due
to large displacements are considered in the solution. The
static solution of this problem has been studied by several
investigatorsl-3; in Reference 3, Mondkar and Powell also

‘-r” Y
v L

presented nonlinear dynamic solutions for the case of a
constant, suddenly applied load.
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Several three-dimensional finite element models of the

A ]
4

o

cap are shown in Figures 6.2.2 through 6.2.5. The model of
Figure 6.2.2 consists of fifteen shell elements (Flement

Type 5), forming a ten-degree sector of the cap. Since the
response is axisymmetric, displacements normal to the lateral

boundary have been suppressed using linear constraints (see
Section 5.6). In Fiqures 6.2.3 and 6.2.4, the discretization
consists of three-dimensional solid elements (Element Tyve 1),
using twenty nodes per element and a 2x2x2 integration rule.
Five and nine elements, respectively, are used to represent

a ninety-degree sector of the shell. The last model (Figure
6.2.5) consists of seven solid elements (Element Type 1) on a
fifteen-degree sector of the cap* linear constraints are again
used to suppress the circumferential displacements on the
skewed boundary. In each case, the outer edge of the shell is
assumed to be completely clamped.

The nonlinear, static behavior of the spherical cap has

-

been studied for the loading range of 0-100 pounds. At low

‘q
-

load levels, the shell gradually becomes more flexible until the
curvature of the deformed shell begins to generate midsurface
tension stresses, causing a rapidly stiffening response. The
static behavior is highly nonlinear, involving displacements

which are twice the initial rise of the cap.

-
LI *
-
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R = 4.7600 in.  E = 10 x 10® psi
t =0.01576 in. v = 0.30

h = 0.0859 in.  p = 2.45 x 107 ib-sec?/in®

P
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f; Figure 6.2.1 Cross-Section of Shallow Spherical Shell
L Under Concentrated Loading.
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Figure 6.2.3 Five-Element Discretization of Spherical Cap
Using Three-Dimensional, Twenty-Node Elements.
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.i Using Three-Dimensional, Twenty-Node Elements.
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A load-displacement solution obtained with the fifteen
shell element model and two-pound loading increments is given
in Figure 6.2.6. The results reported by Mondkar and Powell3
using ten axisymmetric quadratic continuum elements, and a
MARC? solution performed with twenty axisymmetric shell elements,
are shown for comparison. Agreement among the three solutions

is quite good.

Static solutions using the five and seven-element
three-dimensional solid models are plotted in Figure 6.2.7.
The prediction by Mondkar and Powell is again shown for
purposes of comparison. The seven-element model gives
displacement results which are in good qualitative agreement
with the solution of Reference 3; the displacement values at
maximum load are different by approximately four percent.

The five-element result is surprisingly good, and demonstrates
that relatively few solid elements can be used to represent

a fairly complex nonlinear resmponse to within engineering
accuracy. It should be emphasized, however, that such a coarse
discretization is generally not sufficient for good stress

accuracy.

The initial nonlinear dynamic¢ response of the cap to a
suddenly applied load of 100 pounds has also been predicted
using MAGNA. In each case, the solution is obtained using
the Newmark constant-average-acceleration operator (§ = 1/2,

d = 1/4; see Section 4.2). Fiqure 6.2.8 shows the transient
response computed with the shell element model (fifteen
elements), using a time step of two microseconds. Similar
results due to Mondkar and Powell3 are shown for comparison.

The solutions show good agreement, while the difference in
superimposed high-frequency oscillations reflects the difference
in the two methods of discretization. Nonlinear dynamic
solutions obtained using the nine-solid-element model (Figure
6.2.4) are given in Figures 6.2.9 and 6.2.10, for solution time
steps of two and four microseconds. The solid element results

6.2.7
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Figure 6.2.8 Shell Element Solution for Dynamic Response —
of Shallow Cap (At = 2 usec.).
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: Shallow Cap (At = 2 usec.).
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are plotted with a NONSAP4 solution, which is virtually

identical to the results of Reference 3. For the smaller
increment size, the solution is quite good. At At = 4 usec.,
the maximum displacement is well represented but the period of
oscillation is overestimated; this error is typical of the
Newmark integration operator at large time steps. A similar
effect can be observed to a lesser degree even in the solution
for At = 2 usec., as shown in PFigure 6.2.11. 1In this case,
Newton-Raphson iterations have been used at each increment

of the solution for a 4 usec time step, and can be seen to
control the period distortion in the integration quite
effectively. It is worthy of mention that the total cost of
the two solutions shown in Figure 6.2.11 is nearly the same,
since relatively few Newton iteration cycles are required at
each time increment to stabilize the solution.

6.2.13
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6.3 LARGE STRAIN ELASTIC ANALYSIS OF A BAR IN TENSION

The problem of a rectangular, elastic bar under axial
load is considered, to test the large displacement and large
strain analysis in MAGNA. Figure 6.3.1 shows the geometry
of the bar; the material properties used are those of aluminum
(E=1.0 x 10’ psi; v = 0.30).
permitted in the solution, so that the only nonzero component

Only axial displacements are

of strain is longitudinal (exx).

The linear response of the bar has the following three-

dimensional solution:

b 4
u =
Ao A+ 2p
P
£ =
XX Ao(X + 21)
eyy = ., = 0
_ P
O T =
o

- _ P
Oy = °2 T A (r+ 2u) '
. o
in which P denotes the total load, Ao is the initial area of
the bar, and A,u are the Lamé constants of the material. 1In

the geometrically nonlinear range, the load-deflection curve
can easily be obtained as

P

AO(A + 2u) v (1 + v) (1 + v/2)

where v is the end deflection of the bar divided by the original

length.

The three-dimensional finite element discretization of
the bar (Figure 6.3.2) consists of twenty eight-node solid
elements (Element Type 2).

A large number of elements has

T O™ M w w5 W

.1
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been used here to provide a check of the uniformity of the
stress and strain solutions; one element would, in fact,

provide correct results. :

A linear solution has been performed for the bar, using
the data

A, = 0.0625 in.2
I. =10.0 in

6 2
A = 5.7693 x 10° 1b./in.
u = 3.8462 x 10° 1b./in.2
P = 6,000 1b.

Numerical results for the problem are compared with the
exact solution in Table 6.3.1:; computed values of the end
displacement, stresses, and strains agree with the analytical

values to the same accuracy as the data (above).

Load-deflection response obtained from the geometrically >
nonlinear solution are compared with the analytical solution ' ‘
in Figure 6.3.3, and tabulated .. increments of 40,000 pounds
in Table 6.3.2. The maximum load level considered is 2.4 x
105 l1b., corresponding to Green's strains of approximately
25%. Load increments of 10,000 pounds have been used, without
iteration. Table 6.3.2 shows that the error in the numerical
solution actually tends to decrease as the load is increased;

errors in the computed response at all load levels are quite
small.

6.3.4
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TABLE 6.3.1
: LINEAR SOLUTION FOR AXIALLY LOADED BAR
L
= Quantity Exact Computed Error (%)
End Deflection 0.07131 0.07132 0.01
Strain € xx 0.007131 0.007131 0.00
Strains £, € 0. 0. 0.00
Yy 2z
Stress oxx 96000. 96000. 0.00
Stresses 0, © 41140. 41143. 0.01
YY 2z

TABLE 6.3.2

NONLINEAR LOAD-DEFLECTICN RESULTS FOR RECTANGULAR BAR
é. Load Displacement Exact Load Error (%)
; 40000. 0.446839 40152. 0.38
=
a 80000. 0.842871 80153. 0.17
» 120000. 1.202215 120120. 0.10
b
i 160000. 1.532662 160111. 0.07
.
: 200000. 1.839616 200104. 0.05
¥ 240000. 2.127008 240100, 0.04
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Figure 6.3.3 End Displacement Versus Load Solution for
Axially Loaded Bar.
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6.4 ELASTIC DYNAMIC' BUCKLING OF A CIRCULAR ARCH

The dynamic stability of a shallow arch is considered,
to demonstrate the capabilities of the MAGNA program in
performing dynamic solutions involving both large displacements
and large rotations. A circular arch, pinned at each end, is
subjected to a rapid pressure loading, as indicated in
Figure 6.4.1. The geometry and material properties of the
structure are as follows:

R 67.115 inches

o = 15.0 degrees

o3
]

b=1.0 inch

E = 10.0 x 10% psi

v 0.20

o = 2.44 x 10~ % 1b.sec?/in.?
The initial height of the arch is H = 2.87 inches.

The pressure loading applied to the arch increases
linearly with time for 331.5 microseconds; after this time, the
distributed load remains constant at Po pounds per square inch.
At small values of the maximum pressure Po’ small vibrations are
observed which do not exceed the initial height of the arch.
However, for pressures greater than a certain critical value Pcr
(which is to be determined), the arch snaps through and

oscillates about an inverted vosition.

The stability of the arch has been studied using analog
methods by Humphreysl, who showed that asymmetric buckling
cannot occur for the particular case under consideration;
symmetry can, therefore, be used in the finite element
discretization. A finite element solution of the problem has
been presented by Bathe, Ozdemir and Wilsonz, using six eight-
node plane stress continuum elements to represent one-half of
the arch. 1In Reference 2, the critical pressure is estimated to
be between 420 and 440 psi.
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Figure 6.4.1 Shallow Arch Geometry and Loading.

6.4.2

.
Ma acia: o X . 1
At A A" ta ata. P Y




TS UNTN T Y

r—

| BT

) (] "T V"'IV ‘l
| Ay

A finite element model of the arch using six trilinear

thin shell elements (Element Type 5) is shown in Figure 6.4.2.
- Note that the solution could be performed more economically
using quadratic plane stress elements (Element Type 9); however,
use of the thin shell element is made to demonstrate the
dynamic and large rotation capabilities of the element. Half
of the arch is considered, taking advantage of symmetry, and
displacements normal to the plane of the arch are suppressed.
The dynamic response of the arch is obtained with MAGNA using
Newmark integration, with a constant time increment of 55.25 usec.
Transverse displacements at the crown of the arch are plotted
versus time in Figure 6.4.3, for several values of the pressure
Po. For an applied pressure of Po = 420 psi, relatively small
oscillations are observed about the initial position of the arch.
At Po = 430 psi, the arch snaps completely through; the critical
pressure is, therefore, in the range 420 < Pcr < 430 psi. This
conclusion is an agreement with the solution of Bathe, Ozdemir
and Wilson.

'ij? The solutions shown in Figure 6.4.3 indicate that, for
pressures greater than the critical value, the amplitude of
vibration is insensitive to the exact magnitude of the load; a
subsequent solution for Po = 800 psi has confirmed this fact,
producing maximum displacements of slightly less than eight
inches. While membrane stiffening effects control the
displacement amplitude at large pressures, the influence of
softening behavior is apparent at load levels which are less
than the critical level. For example, the period of oscillation
for Po = 420 psi is considerably larger than that for Po = 380
psi: this difference is due to the diminishing gross stiffness
of the arch at displacements which approach the flat position.
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6.5 LARGE DISPLACEMENT RESPONSE OF AN AIRCRAFT WINDSHIELD

The windshield transparency of the F-16 tactical fiaghter
is a monolithic, moderately thick shell made of polycarbonate
material. Static calibration tests of the windshield, performed
as part of a series of impact studiesl, have been modeled
numerically using MAGNA. This particular example demonstrates
the application of the program to a nonlinear problem of

practical size and complexity.

Figures 6.5.1 and 6.5.2 show two finite element
discretizations used for nonlinear analysis of the canopy.
The fifty-element model of Figure 6.5.1 is composed of
three-dimensional twenty-node solid elements (Element Type 6);
stiffness properties are evaluated using 3x3x3 Gaussian
quadrature and with l4-point integration, in two different
versions of the model. This mesh contains 428 nodes and 1110
active degrees of freedom. The shell (Element Type 5) model of
Figure 6.5.2 contains 100 elements, 242 nodes and 613 degrees

of freedom.

In each case, symmetry is assumed along the fuselage center
line. Adjacent support structure is not considered in the
numerical analysis, since the boundary reaction forces are
rather small for the range of loading considered. Rigid line
supports are assumed instead on the three external boundaries
of the model.

The material properties of the windshield material are
not well defined, as the available data for the elastic modulus
vary between 211000 and 300000 psi. Analyses have been
performed for three values of the elastic modulus (211000,
235000 and 285000 psi) using the solid element model, while for
250000 psi is used.

0.325.

the shell model a single value E

Poisson's ratio is taken to be v

A concentrated load is applied to the canopy through a
small circular pad, approximately two feet from the forward

¥ Y S S N S S Y S S L
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Figure 6.5.2 Shell Element Model of F-16 Windshield

canopy.
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edge on the windshield center line. Experimental values of the
deflection normal to the canopy at the point of loading have

been measured with deflectometers mounted inside the shell.

Experimental and computed values of the canopy
deflections, for the loading range 0-2200 pounds, are compared
in Figures 6.5.3 and 6.5.4 for the solid and shell models,
respectively. 1In view of the uncertainties in material
properties, boundary conditions and local load distribution,
the agreement between measured and calculated deflections is
excellent. A plot of the deformed windshield geometry is
shown in Figure 6.5.5. In each analysis, the response has
been computed in ten equal loading steps of 220 pounds. For
the solid element model, best agreement with the experimental
results is obtained using an intermediate value of the elastic
modulus (E = 235000 psi). However, no conclusions should be
drawn from this comparison regarding the true value of the
polycarbonate material modulus. Typical stress results,
obtained at the 1100 pound load level, are pictured in the
contour plot of Figure 6.5.6.

Natural frequency calculations have also been performed
for the F-16 windshield, using the fifty element model and a
finer solid element model which has been prepared for dynamic
stress studies under impact conditions. The finer mesh, shown
in Figure 6.5.7 consists of 189 sixteen-node elements (Element
Type 8), 1256 nodes, and 3450 active degrees of freedom.
Results for the two lowest frequencies using the solid element
models and the associated computing times are compared in
Table 6.5.1. The slightly higher frequencies obtained with the
189-element model are due to a slightly higher value of the

modulus having been used.
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TABLE 6.5.1

P W W R "

SUMMARY OF NATURAL FREQUENCY CALCULATIONS
FOR TACTICAL FIGHTER WINDSHIELD (3-D ELEMENTS)

[ Model No. 1 2 3
Nodes 428 1256 1256

h. Degrees of Freedom 1110 3450 3450

L -

Efjf_j Elements 50 189 189

Integration 3x3x3 14 pt. 2x2x2

b

L w, (Hz.) 51.0 55.3 55.2

s ] 1

g w, (Hz.) 70.4 73.3 73.9

-

N CPU Sec (CYBER 175) 49, 182. 173.

-®

S

. 6.5.10
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6.6 STRESS CONCENTRATION IN A THIN PERFORATED SHEET

A thin plate with a circular hole is subjected to a
uniform axial tension load, as shown in Figure 6.6.1. The
ratio of plate width to hole diameter is 2:1. For small
elastic deformations, the analytical solution for longitudinal
stresses at the hole edge and the outer edge of the plate

are given by Timoshenkolz

o
y

o
Y

4.30 8, at point A (edge of hole)

0.75 S, at point B (edge of plate)

where S is the applied averace stress.

The finite element discretization, consisting of 56 four-
node plane stress elements (Element Type 3), is indicated in
Figure 6.6.2. Only one quadrant of the plate is modeled,
taking advantage of symmetry. The hole diameter is two inches,
and the total length of the plate is 20 inches. Material
properties typical of aluminum (E = 107 psi, v = 0.30) are used

in the numerical solution.

Longitudinal stresses computed at the centerline AB
(i.e., y = 0.) are plotted in Figure 6.6.3, for an applied
stress S = 50 psi. Linear extrapolation of the integration
point stresses to the inner and outer edges of the sheet yields

o
y

o
Yy

4.19 S at point A

0.75 S at point B

which are in good agreement with the analytical solution.

6.6.1
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Figure 6.6.1 Thin Sheet with a Circular Hole.
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6.7 ELASTIC-PLASTIC, LARGE DISPLACEMENT ANALYSIS OF A

TWO-BAY TRUSS

The ten member truss shown in Figure 6.7.1 has been
analyzed for its static response due to a single concentrated
load. Both material and geometric nonlinearities are considered
in the solution. The same truss has been analyzed by Mondkar
and Powell1 and Goldberc and Richardz, using the displacement

method, and by Noor3 using a mixed force and displacement

approximation.

‘{‘ Horizontal members of the truss are assigned areas of

j- 0.25 square inches; the vertical and diagonal elements are

0.20 square inches. The truss material is defined by a Ramberg-
» Osgood stress-strain relation of the form

_ o [1 . a(o_)“]
. (o] o—O O'O

mlm

in which a = 3/7, n = 6, the vield stress 9 = 40520 psi, and

the corresponding strain is € = 0.004052 in./in. Young's
modulus for the material is, therefore, E = 1.0 x 107 psi. 1In
the numerical solution, the Ramberg-Osgood curve has been
approximated by a piecewise linear stress-strain path with

ten segments, and an isotropic strain hardening law.

The load-deflection curve predicted using MAGNA for a
range of applied loads between 0 and 15,200 pounds is shown
in Figure 6.7.2. A load increment of 400 pounds has been used
in this solution. First yielding in the structure occurs in
element 1 at a load of about 5500 pounds, below which the
response is very nearly linear. Nonlinearities due to large
displacements appear to be minor for the entire range of

loading considered.

Complete results of the analysis at an applied load of
10,000 pounds are presented in Table 6.7.1. Computed values
shown in the table have been obtained using two load incrementation

6.7.1
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Figure 6.7.1 Two-Bay Plane Truss Structure.
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schemes: (1) 25 equal increments of 400 pounds each, and (2) a

single 10,000 pound step, followed by Newton-Raphson iterations.
— Results of the two analyses are in agreement to within less than
one percent. At this point, all elements in the truss have
yielded except for the vertical posts and the two outermost
horizontal members. Individual member forces predicted by MAGNA
are compared with those reported in References 1-3 in Table 6.7.2,
and the corresponding deflection results are given in Table 6.7.3.
The four solutions are in excellent qualitative agreement; most
of the numerical differences noted are attributable to the details
of analyzing material nonlinearities in each analysis. For
example, the solution of Reference 1 simulates the nonlinear
Ramberg-0Osgood material curve using a series of elastic,
perfectly plastic parallel material elements, while the present
analysis employs a piecewise linear stress-strain curve and
isotropic strain hardening.
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TABLE 6.7.3

COMPARISON OF MAXIMUM DISPLACEMENTS OF TWO-BAY TRUSS
AT LOAD P = 10000 POUNDS

MAGNA*
Mondkar & Powell*
Goldberg*

Noor**

1.0388 in.
1.0511 in.
0.923 in.

1.0574 in.

* Displacement Method

** Mixed Force and Displacement Method
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3 6.8 STRESS DISTRIBUTIONS IN A SINGLE-LAP BONDED JOINT

r -— The elastic, small-displacement response of a single
;g! lap adhesive joint is considered, to determine the shear and

normal stress distributions within the adhesive layer. The
particular joint considered, shown in Figure 6.8.1, consists of

0.020 inch aluminum adherends joined by a 0.005 inch layer of
HYSOL EA 9601 adhesive. Material properties are listed in
the figure. This problem has been studied previously by
Dicksonl, using the special-purpose computer program BONJOz;
Reference 1 also presents an analytical solution obtained by
the method of Goland and Reissner3.

The solution for the adhesive stresses has been performed
using 144 Type 3 (Plane Stress) elements in MAGNA; each
adherend is modeled with 52 four-node elements, while 40 elements
are used in the adhesive layer. One end of the joint is
completely fixed, while the loaded end is constrained to move
only in the direction parallel to the applied forces. The
finite element grid for the problem is shown in Figure 6.8.2.

Adhesive stress profiles corresponding to an applied
load of 1000 pounds are indicated in Figures 6.8.3 and 6.8.4.

Both the shear and normal stress are nearly constant through
the thickness of the joint, but vary rapidly along the bond
line direction. Agreement between the MAGNA and BONJO analyses
is reasonably good, but the finite element grid is too coarse
to resolve the shear stress distribution at the extreme ends of
the bond line, where a sharp peak is observed before the shear

stress vanishes at the free boundary. The MAGNA analysis also
L predicts a lower maximum normal stress at the joint edge, and
’ hence a lower compressive stress near the center of the joint.

;9, , It is interesting to note the sensitivity of the computed
}’“ stress distributions to the boundary conditions applied at the
{f loaded end of the specimen. When transverse displacements of
9‘; the loaded edge are permitted, the peak shear and normal stresses

6.8.1
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become considerably greater, and the largest adhesive stresses

are redistributed toward the opposite end of the bond line,

as shown in Figure 6.

geometry of the free-

by a factor of ten.
the predominant mode

of the applied loads.

8.5. Figure 6.8.6 shows the displaced —
end specimen, with displacements magnified
Transverse bending is, in this instance,

of deformation, due to the eccentricity

6.8.6
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6.9 SANDWICH PLATE UNDER UNIFORM PRESSURE

A square sandwich panel, 50 inches on each side, is
subjected to a uniform lateral pressure loading. The three-
layer plate (Figure 6.9.1) has identical aluminum face sheets
(E = 10.5 x 106 psi; v = 0.3), 0.015 inches in thickness,
bonded to an aluminum honeycomb core one inch thick. The core
is assumed to be isotropic, with shear modulus G = 50,000 psi.
All lateral boundaries of the sandwich are fully clamped.

Due to the symmetry of the geometry and applied loading,
one quarter of the panel is considered in solution. The finite
element discretization consists of a total of 75 finite elements,
25 in each layer. The two face sheets are modeled using eight-
node, thin shell elements (Element Type 5). Three-dimensional,
eight-node solid elements (Element Type 2), with a single
integration point per element, are used for the sandwich core.
Note that these element types are fully compatible, so that no
special constraints are necessary for joining the shell and
solid layers. The nonlinear solution has been obtained in load
increments of one psi to a total pressure of 20 psi, followed
by two psi increments to 30 psi.

The nonlinear central displacement of the sandwich is
plotted versus load in Figure 6.9.2. Nonlinear finite element
results obtained by Monfortonl, using sixteen specially
formulated bicubic sandwich elements, are shown for comparison.
Agreement between the two finite element solutions is quite
good. Figure 6.9.2 also shows the perturbation solution of
Kan and Huangz, given by

3
q = 10.5299wc + 4.8550wc (6.9.1)

in which q is the applied pressure and We the transverse
center displacement. The analytical solution of Reference 2
is valid for deflections which are smaller than the core
thickness, and reasonable agreement with the two numerical

6.9.1
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Figure 6.9.1 Three-Layer Sandwich Panel under Pressure
Loading.
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solutions is observed in this region. For larger deflections,
o the perturbation analysis requires more terms for acceptable
E! accuracy; the two-term solution gives results which over-

: estimate the influence of membrane stiffening upon the panel

deflection.
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6.10 LARGE DISPLACEMENTS AND ROTATIONS OF A DEEP ARCH

A deep, clamped-hinged arch (Figure 6.10.1) is subjected
to a concentrated vertical load at the crown. Due to the
asymmetry of the edge conditions, the arch is capable of
executing extremely large, stable deflections prior to the
onset of buckling. This behavior has been studied experimentally
by Deutschl, and an analytical solution based upon Euler's
inextensional theory (the elastica) has been presented by
DaDeppo and Schmidtz. The prebuckling displacements, which
can be similar in magnitude to the radius of curvature, are
accompanied by very large rotations; thus, the prediction of
the arch response presents a demanding test of a finite element

solution using thin shell elements.

The particular arch under consideration has radius of
curvature R = 100 inches, thickness t = 1.0 inches, and a
flexural rigidity of EI = 1.0 x lO6 lb.-inz. The included
angle is 215 degrees. For this set of properties, the
analysis of Reference 2 indicates that stable behavior occurs
up to a load of 897 pounds, at which time the vertical
displacement is 113.7 inches. Only prebuckling displacements

are considered in the present analysis.

For the MAGNA finite element solution, the entire arch
is represented by 43 thin shell elements (Element Type 5), each
subtending a sector of five degrees. Displacements normal to
the plane of the arch are completely suppressed to permit
comparison with the analytical results, which do not account
for finite width of the structure. The range of loading
considered is 0-870 pounds, applied in six equal increments.
Full Newton-Raphson iterations are used to maintain equilibrium,
due to the large loading increments and the relatively large
incremental rotations expected.

The deformed shape of the arch at maximum loading is
shown in Figure 6.10.2. The vertical displacement of the

6.10.1




Figure 6.10.1 Deep Arch with Asymmetric Boundary Conditions.
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arch crown is slightly larger than the radius, and very large
rotations (in excess of 120 degrees) are observed near the
hinged support. An average of nine Newton iterations per step
is required for convergence, with a tolerance of 0.1 on the
residual force errors. Finite element results for the entire
load-deflection history, obtained using 10-pound increments,
are compared with the solution of DaDeppo and Schmidt in
FPigure 6.10.3. Agreement between the two predictions is
quite good. The accuracy of the finite element solution does
not diminish, even when predicting rotations which are
approximately eight times as large as those which can be
considered by the best available shell theories.
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6.11 LARGE DISPLACEMENT, ELASTIC RESPONSE OF A THIN CIRCULAR PLATE

The problem of a circular flat plate under transverse
loading provides an example of purely stiffening behavior for
increasing load levels. In particular, the clamped plate
pictured in Figure 6.11.1, subjected to a concentrated force
at the center, is considered. The plate is five inches in
radius, and the thickness is t = 0.1 inches. Material properties
used in the analysis are rouchly characteristic of aluminum
(E = 10.92 x 10% psi, v = 0.30).

1 has presented a solution for the linear

Timoshenko
displacement of the center of the plate as w, = Pa2/16nD,
where a is the radius of the plate, P is the applied force,
and D is the flexural rigidity, Et>/12(1 - v2). Using twelve
thin shell finite elements (Element Type 5) to model a single
quadrant of the plate (Figure 6.11.2), a central deflection of
0.4923 inches is obtained for P = 1000 pounds. Compared with
the exact value of W, = 0.49736, this displacement is
approximately one percent in error. The principal bending
stresses (which are largest in the circumferential direction)
are computed with a similar degree of accuracy. The exact
solution1 gives for the tangential surface stress

o = —337 {(1 +v) In 2 - v] , (6.11.1)

2wt

in which r is the radial coordinate. Tha computed stress profile
(Figure 6.11.3) shows a maximum error of about seven percent,
which occurs in the element nearest the center of the plate.

It should be noted that the stress distribution is particularly
difficult to resolve in this region, since the moments predicted
by thin plate theory become infinite at the point of loading.
Although the finite element mesh is not refined in the area

near the singularity, the stress accuracy of the MAGNA solution
is extremely good.

6.11.1
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The nonlinear solution for the central displacement of
the plate is also given in Reference 1, in the form

wC (WC) Paz
< +0.443(¢) =o0.217 35 . (6.11.2)

This solution corresponds to the case in which inplane
displacements at the boundary are prevented, and is valid for
deflections which are similar in magnitude to the plate
thickness. Using the same twelve-~-element discretization, a
finite element solution has been performed for the range of
loading 0 < P < 3000 pounds. The numerical results are compared
with the analytical solution (Equation 6.11.2) in Figure 6.11.4.
Exceptionally good agreement between the two predictions is
observed up to deflections which are twice the plate thickness.
Beyond this point, Equation 6.11.2 does not apply, and the
finite element solution shows a response which is slightly

more flexible than the analytical result. Figure 6.11.5

shows the distributions of midplane circumferential stress
predicted at selected load levels with the nonlinear finite
element model.

It is interesting to note the effect of the midplane
tensile stresses in redistributing the internal loading. Surface

. stresses for a load of 1000 pounds, obtained from the nonlinear
solution, are plotted in Figure 6.11.3 for comparison with the
-~ linear solution; the relatively small net tension stress in the
f! plate is sufficient to reduce the computed peak bending

L stresses by approximately a factor of two. Since the applied
- forces are resisted more efficiently by tensile (rather than

- bending) stresses, a significant increase in load-carrying

L! capacity is apparent which is not reflected in the linear
solution.
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6.12 COMPRESSIVE BUCKLING OF A SIMPLY-SUPPORTED SANDWICH PLATE

The stability of a plate of sandwich construction is
considered to demonstrate the use of the thin shell element
(Element Type 5) in the same model with standard isoparametric
three-dimensional finite elements (Element Type 2). A square,
three-layer panel (Figure 6.12.1) is subjected to a uniform

compressive load of ﬁx pounds per inch. The panel is 23.5
inches on each side, and supported at each face of the sandwich
on all four edges (vertical displacements only are prevented).

T‘ The outer face sheets of the panel, which are represented

q by thin shell finite elements, are each 0.021 inches in thickness,
with isotropic material properties E = 9.5 x 106 psi, v = 0.3.

The core layer, 0.181 inches thick, has a transverse shear
rigidity G = 19000 psi. In the finite element solution, the
sandwich core is modeled using three-dimensional, eight-node
solid elements (Type 2). Each layer of the model contains
sixteen elements of equal planform dimensions. Only one

quadrant of the panel is considered in the numerical solution,
due to symmetry of the geometry and loading. On the lateral
boundaries, the tangential transverse shear strains within the
core are suppressed by making the upper and lower face sheet
displacements equal in the direction parallel to each edge.

A solution for the buckling load ﬁCR has been obtained
by applying the inplane forces incrementally until a sudden
increase in transverse displacement is observed. Out of plane
deflections are triggered by a small (one pound) transverse
load applied at the center of the plate. Buckling is found to
occur for an applied load of ﬁx = 305 pounds per inch; this
computed value compares well with previous analytical and
experimental resultsl_s, as shown in Table 6.12.1. It is noted
that all of the analytical results give estimates of the critical
load which are about nine percent too high; it is likely that
the assumption of zero transverse shear strains at the panel

6.12,1
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j transverse shear constraint has been used in the MAGNA solution
F

to provide a fair comparison with previous analytical solutions.
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. . 6.13 CLAMPED PLATE UNDER UNIFORM PRESSURE LOADING

A moderately thin square plate is analyzed in this example
for geometrically nonlinear response to a uniform pressure
loading. Such a problem has been considered by Pica, Wood and
Hintonl, as part of their evaluation of plate-bending elements.

Physical properties of the particular plate considered

are:
Width a = 508.0 mm (20.0 in.)
Thickness t=1.27 mm (0.05 in.)
Modulus E = 68.9 GPa (1. x 10’ psi)
Poisson's Ratio v = 0.30

The boundaries of the plate are fully clamped. A uniform

pressure q is applied to the upper surface of the plate.

Figure 6.13.1 shows a finite element model of one guadrant
of the plate, using 16 three-dimensional, l6-node thick shell
elements (Element Type 8). Element properties are evaluated
using a 2x2x2 Gaussian integration. Pressure loading is applied
incrementally in increments of AP = 51.2, where P is the
normalized pressure

P = qa4/Et4.

The maximum normalized pressure considered is P = 512.

A load-versus-displacement history for the nonlinear
solution is shown in Figure 6.13.2. The central displacement
is normalized with respect to the plate thickness. The problem
is only mildly nonlinear, since the maximum displacement is only
about twice the plate thickness. However, the linear and
nonlinear displacement solutions at P = 512 are significantly
different (5.520 and 1.992, respectively). Combined Newton-
Raphson iterations have been used in the solution, with an

average of four iterations per load increment being required
to maintain equilibrium.

6.13.1
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Selected strain and stress results for the plate at
maximum loading are given in the form of contour plots in
Figures 6.13.3 through 6.13.7. Figures 6.13.3 and 6.13.4,
which show the strain Exx on the lower and upper surfaces

L.

(labeled surfaces 3 and 6, respectively), illustrate the
asymmetry caused by geometric nonlinearity. Similarly in
Figures 6.13.5 and 6.13.6, geometric stiffening is evident in

q the x-direction stresses; the maximum compression at the upper
‘ surface is about 4000 psi, while the lower (tension) surface
stresses exceed 5000 psi. The upper surface von Mises

r‘l equivalent stress is shown in Figure 6.13.7.

The efficiency of the 16-node thick shell (Element Type 8)

in nonlinear analysis is apparent from the computing times for

LIS SR Al o S g

this solution, On the CYBER 175 computer, an average of
3.75 CPU seconds is required per iteration for a l6-element
mesh.

6.13.4
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6.14 POSTBUCKLING RESPONSE OF A SIMPLY-SUPPORTED PLATE

A simply-supported square plate is considered, to
determine its static buckling and postbuckling response under
compressive loading. The plate geometry and properties are
identical to those used in the previous example,

width a = 508.0 mm (20.0 in.)
Thickness t =1.27 mm (0.05 in.)
Modulus E = 68.9 GPa (1. x 10’ psi)
Poisson's Ratio v = 0.30.

In this case, the boundaries of the plate are simply supported,
with inplane motions permitted at all points. A uniform
compressive stress is applied to opposite edges of the plate.

Since the buckling response is known to be doubly
symmetric, one quarter of the plate is modeled. Sixteen solid
elements (Element Type 8) are used in the discretization, with
all integrations performed using the 2x2x2 Gauss rule. To
follow the response past the point of bifurcation, the solution
is performed using the nonlinear dynamic option and a large time
step (At = 1000. sec.). Equilibrium iteration is used at each
increment, in the form of combined Newton-Ranhson iteration.

A solution for the central displacement of the plate as
a function of the compressive edge load is shown in Figure 6.14.1.
The theoretical buckling load1 of Oar = 1558 kPa (226 psi) is
predicted with accuracy. In the analysis, a very small
concentrated force is applied at the center point of the panel
to trigger the out-of-plane displacement, and thus a slight
nonzero deflection appears on the plot prior to the actual onset
of buckling.

At the maximum applied loading of 3500 kPa (510 psi), the
predicted central displacement is 3.594 mm (0.1415 in.), and
the average end-shortening over half of the plate is about
0.0044 mm. For the case of uniform end-shortening, the central
deflection predicted by Timoshenkol using an effective width

6.14.1
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formula is 3.663 mm, so that the postbuckled solutions are in

reasonable agreement.

6.14.3

PR - P s B P ST
i KY PR S . P NP L R S LA LI S S S )




6.15 ELASTIC-PLASTIC ANALYSIS OF A PERFORATED STRIP

The thin metal sheet shown in Figure 6.15.1 is subjected
to a uniform applied tension parallel to its longitudinal axis.
Overall dimensions of the plate are 36 mm by 20 mm, with a hole
diameter of 10 mm. Material properties of the strip are E = 7000
kqf/mmz, v = 0.20, and the yield stress is oy = 24.3 kgf/mmz.

This particular problem has been considered by Bathe,
Ozdemir and wilsonl, and experimental results are available
from the work of Theocaris and Marketosz. As in the analysis of
Reference 1, plane stress conditions are assumed, and the plate
material is taken to have the strain hardening slope H = 0.032 E.

The finite element model of one-quarter of the plate
(Figure 6.15.2) consists of 24 eight-node plane stress elements
(Element Type 9). Stiffness properties are evaluated in all
elements using a 3x3 Gaussian quadrature. The model contains 95
node points and 174 unconstrained degrees of freedom.

Strain results obtained at the point of first yielding
are presented in Figure 6.15.3. The point for which results are
plotted is located nearest the center of the plate, in element 1
(see Figure 6.15.2); the normalized strain is defined by
Eey/oy. The measure of applied loading is the mean stress
at the root section of the plate. Note that the applied stress
at the ends of the plate are one-half this value, since the hole
diameter is one-half the plate width. The range of loading
considered is 0 < o .. < Oy Two solutions are shown in the
Figure; one uses a load increment of 0.1250y and combined Newton-
Raphson iterations at each step, while the other consists of two
increments of 0.40y with full Newton-Raphson iterations used to
maintain equilibrium. In this instance, the elastic-plastic
behavior is not highly path dependent, since the two solutions
agree quite well. Longitudinal stresses in the plate at maximum

loading (o = oy) are shown in Figure 6.15.4 in the form of a

mean
contour map.
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L.i 6.16 NATURAL FREQUENCIES OF AN ORTHOTROPIC PLATE

) _ A simply-supported, one-layer orthotropic plate is considered,
3! hal to determine its natural vibration response. The 1l2-inch square

- plate is specially orthotropic; that is, the principal material

ffj axes (1,2,3) are aligned with the reference axes (x,y,z) of the

h structure. The specific material properties considered are:

Moduli E, = 1.0 x 107 psi
E, = E5 = 1.0 x 10° psi
G12 = G13 = G23 = 48000. psi
Poisson's Ratio vlz = 0.03
= 0.0

Vi3 T Va3

0.050 in.

it

Thickness t

7.764 x 1072 lb—secz/in4

Density p

In the finite element solution, 36 twenty-node elements
(Element Tvoe 6) are used to represent the entire plate (Figure
6.16.1). The model contains 315 nodes and 727 unconstrained

degrees of freedom.

The exact and computed frequencies for the first four
vibration modes of the plate are compared in Table 6.16.1. 1In
the table, m represents the number of waves in the fiber (high-
modulus) direction, and n the wave number for the lower-modulus
direction. Note that the 1,3 mode corresponds to a lower
frequency than the 2,1 mode, due to the strong orthotropy of
the plate. Deformed geometry plots for the first four modes
are pictured in Figure 6.16.2 through 6.16.5.

The eigenvalue solution was performed using six trial
iteration vectors, with four frequencies required to converge
(NREQD = 4). Convergence was obtained in 11 iterations, to a
vector tolerance of 0.001. The entire solution required 39.6
CPU seconds on the CYBER-175 computer.

6.16.1
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TABLE 6.16.1

COMPARISON OF EXACT AND COMPUTED NATURAL FREQUENCIES
FOR SQUARE ORTHOTROPIC PLATE

Mode Number Yexact (Hz.) wcomp. (Hz.)
m=1, n=1 59.6 59.9
m=1, n= 2 92.0 93.1
m=1,n=3 171.5 175.3
m=2,n=1 225.7 226.9

m = number of half-waves in high-modulus direction

n = number of half-waves in low-modulus direction

6.16.3
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6.17 PLASTIC COLLAPSE OF A RECESSED FASTENER

The elastic-plastic failure analysis of a recessed-head
mechanical fastener has been performed, as a part of an evaluation
of the simplified design/analysis method introduced by Venkayya
and Eimermacherl. The failure estimates of Reference 1 are based
upon an approximate axisymmetric fastener geometry, as indicated
in Figure 6.17.1, and the assumption of a failure surface
located as shown in the figure. Limited test results on actual
hardware are also available; see, for example, Reference 2.

Since the idealized geometry of the fastener is rotationally
symmetric, a representative one-degree sector has been modeled in
the MAGNA analysis. The finite element grid, shown in Figure
6.17.2, consists of 100 eight-node solid elements (Type 2). The
elements nearest the axis of revolution are triangular prisms,
having two coplanar faces on the rear edge of the model. The
eight-node element is used in this case because the load paths
are relatively simple, no bending deformation is anticipated,
and material nonlinearities are the predominant effect in the
nonlinear response. Normal displacements on the rear face of the
model are prevented using linear constraints, and rigid supports
along the inclined edge of the fastener head are applied in a
similar manner. The applied loading is purely axial, in the form
of a uniform stress over the bottom surface of the part. The
fastener material is high-strength steel, with the properties

E = 30. x 106 psi

v = 0,30

cy = 155000. psi
Cult = 170000. psi

The incremental solution is performed using a single 1000
pound step to the approximate point of first yielding, followed
by 300 pound increments up to the collapse load. The early
progression of yielding, which proceeds along the expected

6.17.1
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failure surface, is shown in Figure 6.17.3 for load levels of
2200, 2500 and 2800 pounds In the figure, the completely

;G darkened region represents the zone throughout which the
E& ultimate stress has been attained, while a single contour line
-
- shows the boundary of the plastic region. Figure €.17.4 presents
:?' similar results at the highest loading levels considered (4000,
ﬁi 4300, 4600 pounds, respectively). As the part nears collapse,
L the failure surface gradually shifts upward, away from the base
= of the recess; thus, the ultimate collapse made is somewhat
[{ different from that assumed in the simplified analysis. This
T-. effect is also observed in the experimental results. The
g collapse load of approximately 4600 pounds predicted by the
2
. analysis is substantially higher than the experimental failure
U
- load of 3732 pounds. This discrepancy is likely the result of
;‘ the simplified geometry used in the analysis, which produces
o a uniform stress distribution in the circumferential direction,
_f and the fact that no cracking and/or material removal has been
p considered in the numerical solution.
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6.18 FREE VIBRATIONS OF A CLAMPED TRIANGULAR PLATE

A cantilevered right-triangular flat plate is analyzed
for its natural vibration response. In this example, a very
coarse finite element mesh is used, both to illustrate the
effectiveness of the thin shell element (Type 5) and to contrast
the behavior of lumped and consistent mass formulations where
relatively crude element divisions are used.

Physical properties of the plate, which is made of

magnesium, are as follows:

Side Length a 6.0 in.

Thickness t 0.034 in.

Modulus E = 6.5 x 10° psi

Poisson's Ratio v 0.3541

Density o 1.66 x 10-4 lb—secz/in4

The finite element discretization of the plate (Figure
6.18.1) consists of three linear-displacement shell elements,
and contains 24 active degrees of freedom. The boundary
containing nodes 2, 4, and 6 is completely fixed. Numerical
solutions have been performed for the first three vibration modes
using both lumped and consistent mass formulations; the frequency

results are given in Table 6.18.1.

The lumped mass calculations are in reasonable agreement
with solutions obtained from the NASTRANl and ANSYS2 programs
using very fine meshes, and compare quite well with results
obtained from NISA3 using three quadratic-displacement shell

elements (Table 6.18.2).

The consistent mass results, however, are reasonable
only for the lowest natural frequency, even though the mode
shapes are only slightly different from those predicted using
lumped masses. The source of the difficulty in the consistent

mass solution is the coarseness of the finite element mesh,

6.18.1
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18.1

NATURAL FREQUENCIES OF TRIANGULAR CANTILEVER PLATE

Mode

Frequency (Lumped Mass)

Frequency (Consistent Mass)

53.3
201.8
248.1

59.7
324.0

476.7

(All frequencies are given in Hertz)
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TABLE 6.18.2

COMPARISON OF NATURAL FREQUENCY RESULTS FOR
CANTILFEVERED TRIANGULAR PLATE

] Program NASTRAN ANSYS NISA MAGNA¥*
)
&
f‘ No. of Nodes 496 66 16 14
a2
9 No. of Elements 900 100 3 3
-
- Mode 1 Frequency 55.9 55.9 54.3 53.3
¢
%i Mode 2 Frequency 210.8 210.9 215.4 201.8
. Mode 3 Frequency 292.1 293.5 303.7 248.1
*Lumped Mass Results el
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which is extremely crude when one recalls that the shell element
(Element Type 5) uses only linear functions for all of the shell

displacement.

If one were to perform an analysis of this plate alone,
a finer mesh of elements would normally be employed. However,
in the modeling of more complex structures, the element division
used in this example is rather typical of the degree of
model refinement used in relatively small components of the
total structure. The above problem illustrates the fact that,
when relatively coarse modeling is necessary, the lumped mass

approach is likely to yield results far superior to those

o obtained using consistent masses. Naturally, as the model is
EB_ progressively refined, the distinction between the two mass
N representations tends to become less and less crucial.
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6.19 COMPRESSION OF A DISK AGAINST A RIGID SURFACE

The analysis of a disk compressed against a rigid plane
provides a simple example of the surface contact feature in
MAGNA. The particular problem considered involves a disk of
unit thickness and radius 4.0 inches, assumed to behave
elastically in plane stress. Material properties of the part
are E = 1000. 1b./in2, u = 0.3. The range of loading considered
is 0-150 pounds, distributed over a small area at the top of
the di sk.

The undeformed and deformed geometries for a coarse
model of the disk are shown in Figures 6.19.1 and 6.19.2. Here
the rigid surface is constructed using a single contact element,
with all nodes fixed. Figure 6.19.3 shows the geometry of the
master (rigid) surface in three dimensions, with a somewhat

finer finite element model.

Vertical displacements for a series of nodes at successively
larger distances from the rigid surface are plotted versus a
normalized load factor in Figure 6.19.4, for the model of Figure
6.19.3. Since the load is monotonically increasing, nodes along
the circumference of the disk gradually come into contact with
the master surface and are thereafter constrained to move only

in the horizontal direction.

Notice that the displacement accuracy of the contact
solution is determined by the mesh refinement in the region of
contact, since the elements may be quadratic while contact
constraints are imposed only at discrete node points. The
coarse solution of Figure 6.19.2 illustrates this very well.
When two of the three nodes defining an element edge are in
contact, minor amounts of interpenetration can occur, though
the constraints at the nodes are satisfied quite well. Therefore,
the mesh in the contact region is best prepared with an eye
toward the degree of resolution required in defining the contact
area and the associated local stress field. When the contact
analysis is expected only to reproduce overall load transfer
characteristics, a coarse mesh may be appropriate.
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6.20 ELASTIC-PLASTIC ANALYSIS OF A CLAMPED BEAM

A clamped-clamped beam subjected to a central transverse
load is analyzed using the three-node, quadratic beam finite
element (Element Type 12). The elastic, large displacement
solution for such a problem is considered in References 1 and 2.

The following physical data has been used for analysis of

the beam:
Total length - 20.0 inches
Section width - 1.0 inches
Section depth - 0.125 inches
Young's modulus - 1.E7 psi
Poisson's ratio - 0.0

Half of the beam is modeled in the solution due to symmetry. Ten
beam elements are used, giving a *otal of 21 node points and
59 degrees of freedom.

Solutions for the static load vs. central deflection
response of the beam are shown in Figure 6.20.1, for several
values of the material yield stress. In all cases elastic,
perfectly plastic behavior has been assumed. For lower values of
the yield stress, relatively little geometric stiffening occurs
prior to yielding, and yielding occurs initially in bending.

When the yield stress is relative'y high, yielding occurs at

the upper surface due to combined tension and bending, and yield-
ing of the lower surface does not occur until near the point of
collapse.

Figure 6.20.2 shows profiles of direct stress through the
beam cross-section at the integration station nearest the clamped
end at various load levels, for a yield stress value of
15,000 psi. For this particular case, the lower surface stress
reaches a minimum value, near compressive yielding, at the
same time that geometric stiffening begins to dominate the state
of stress; thereafter, the lower surface stress increases continu-
ously until yielding (and collapse) occurs in tension over the
entire section.

6.20.1
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6.21 FORCED VIBRATIONS OF A JET ENGINE EXEAUST DUCT

The jet engine exhaust duct pictured in Figure 6.21.1 has
been analyzed to determine the effect of damping treatment upon
its forced vibration response. For a preliminary analysis, a
highly idealized model of the cylindrical shroud and vanes is
used, as shown in Figure 6.21.2. The model is constructed from
variable-node so0lid elements (Element Type 7), and contains 414
degrees of freedom for one-half of the structure.

The vane and shroud are both made of steel. The primary
geometric parameters are listed below.

Shroud Vanes
10.0 in. I.D. 2.50 in. length
0.05 in. thick 0.10 in. thick
3.0 in. wide 1.0 in. wide

The boundary conditions are indicated in Figure 6.22.2; each of
the vane inner ends is fully clamped, as is the rearward edge of
the shroud.

A natural frequency analysis has been performed for the
shroud model, for the undamped case. The first three (symmetric)
mode shapes are shown in Figure 6.21.3.

For forced vibraticn analysis, the exciting force is a
single nodal force applied in the radial direction, at the top
of the free edge of the shroud (see Figure 6.21.2). Although
multiple-layer damping treatments could be modeled in detail,
the present analysis uses internally damped elements to reduce
the problem size. Four different cases are considered:

(1) No damping;:

(2) Vane elements damped;

(3) Shroud elements damped;

(4) Vane and shroud elements damped.

In each damped case, a nominal value of five percent damping is
used.

6.21.1
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The variation of steady-state amplitude and phase angle
versus frequency, at the point of load application, is shown for
each of the four cases in Figure 6.21.4. For each case,

frequency sweeps have been made over 20 forcing frequencies near

LRI of i LIE

the first undamped natural frequency, a total of 80 separate
solutions. The results include both amplitude and phase angle
information (similar to that shown in Figure 6.21.4) for each

degree of freedom in the model. Each curve (20 solutions) required
approximately 1.1 minutes of CPU time on the CYBER 175 computer.
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Figure 6.21.1 Engine Exhaust Duct.
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Figure 6.21.2 Finite Element Model of Engine
Exhaust Duct Shroud.
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g- CHAPTER 7
Co PROGRAM OPERATION
<

The MAGNA finite element program is currently operational

on the following computer systems:

- CDC 6000 and CYBER series, under NOS/BE operating
system;

- CRAY-1/S under COS 1.08; and

- Digital Equipment VAX 11/780 under VAX/VMS operating
system.
Operation of the program on each of these computer systems is
outlined in detail in this Chapter. Information to be used in
estimating execution times for the various analysis options are

also presented for each machine version.

v v ]
ft L

.
| 2
e
4
1




| AT N A P A N AR Tl Tty A AN i A e S S et i JORE Riten Sy St el A A tr-Hh i B S Al - ARe-gh o b ar-Shat S Shan by S sage ma. o -

7.1 CDC PROGRAM VERSION

The CDC version of MAGNA, excluding pre- and post-processing
utility programs, consists of the following program files:

PP

® MAGNAJCL - CDC Procedure for MAGNA Execution

RAR B N an o0 4

® MAGNALGY - Relocatable Cbject Version of MAGNA

SEGL@D - Segmentation Loader Directives

; ad
. i . e
B PR AP
L PR PR
< I T

® RABDRIVER - Main Program Source, in UPDATE 0ld Program
Library Format

™ Ty
PR
FRTI
S

. e MAGNAUPDGEN - Update Input Generator for Storage Capacity
' Modification

éf‘ ® STRAVG - CCIL Procedure for STRAVG Execution
® STRAVGLG@ - Executable Version of STRAVG

ﬁt While all of these programs and control procedures may

: be accessed during a typical MAGNA run, all but two, MAGNAJCL

f{ and STRAVG, are transparent to the user of the program. The

ﬁt ) execution of MAGNA is accomplished by simple commands which

’ ﬁ' BEGIN execution of stored control language procedures which

- reside on these two files; in some instances, where postprocessing
- or restart files are to be used or saved, the needed files must

be supplied as local (temporary) files before initiating the

control procedures.

In subsequent sections, the use of these stored control
procedures in conjunction with a variety of program options is
discussed in some detail. Typical execution times on CDC machines

are also tabulated for reference.

7.1.1 Job Control Language

The MAGNA program is normally executed on CDC
machines under the control of the CCL (CYBER Control Language)
procedure XMAGNA. This procedure automatically generates the

command sequences required to attach and modify program files,
compile and insert user-written subroutines, and load and
execute the program.
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The general form of the MAGNA job deck is as
follows*:

! 1. JgB,T500,I8500,CM165000.
2. SET,R1=MFL.
3. ATTACH,TAPES5,USERDATAFILE.

ATTACH,USRSUB, USERSUBRGUTINEFILE.

RS SRS A
=Y
L]

5. REQUEST,MP@ST, *PF.
6. ATTACH,P,MAGNAJCL, ID=BR@CKMAN,MR=1.
BEGIN, XMAGNA ,P,MAIN,USRSUB,R1+B.

8. CATALOG,MP@ST,P@STPRACESSPARFILE.

~3
.

9. ATTACH,STRAVG, ID=BROCKMAN,MR=1.
10. REQUEST,AP@ST, *PF.
11. BEGIN,STRAVG,STRAVG.

12. CATAL@AG,AP@ST,APPSTFILE.

13. 7/8/9 (end of record)
14. (STORAGE ALLOCATION card)
15. 7/8/9 (end of record)
T l16. 6/7/8/9 (end of job)
; In the above deck, several options are used which are not always
- exercised in a typical analysis:
; - user written subroutines
-
1 - modifications to storage capacity,
- , . s q
- - execution of the stress smoothing utility STRAVG,
A and
! - cataloging of postprocessor files MP@ST and AP@ST.
F' *Control statements required for analysis restarts can
H take on a number of different forms; for this reason, use of
g, thg restart functions is described separately at the end of
> this section.
2 7.1.2
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For the simplest case, in which the above options are not

needed, the deck setup has the much simpler form:
1. J¢gB,T500,I8500,CM165000.
2. SET,R1=MFL.
3. ATTACH,TAPES,USERDATAFILE.
6. ATTACH,P,MAGNAJCL, ID=BRACKMAN,MR=1.
7. BEGIN,XMAGNA,P,,,R1+3.
8. 7/8/9 (end of record)
9. 6/7/8/9 (end of job)

The function of each card in the MAGNA execution deck is

described in detail belc ..

CARD 1: JOB CONTROL CARD. The job control card

requests system resources and identifies the job to the system.

Estimates of execution times (T and I@ specifications) are
discussed in Section 7.1.4. The default central memory (165000
octal words) is shown in the above examples; if user subroutines
are supplied, or the storage capacity of the program is modified,
the central memory requested should be modified accordingly

(see Section 7.1.2). Note that if the postprocessor file MP@ST
is to be saved on magnetic tape, a single tape drive (i.e., MT1,
NT1l, PEl or GEl) must be requested on the job card.

CARD 2: SET COMMAND. This control card places

the amount of central memory requested in a machine register

which is assessed by the procedure XMAGNA. The format of the
SET command is always the same.

CARD 3: ATTACH, TAPE5. This command attaches
the problem data (see Chapter 8) to the job as local file TAPES.
The data can also be copied directly from the input file (see

the examples at the end of this Section).
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CARD 4: ATTACH, user-written subroutines. This
command is optional, and should be used to attach the source

code of user-written subroutines on a named local file. User
subroutines are then compiled and loaded automatically by
XMAGNA. User~written subroutines can also be copied directly
from the input file (see the examples at the end of this
Section).

CARD 5: REQUEST,MP@ST. If a postprocessor (MP@ST)
file is to be saved following the MAGNA analysis, the file must

be assigned to a permanent storage device prior to the program
execution. The command REQUEST, MPOST,*PF indicates that
MP@ST is to be saved as a permanent file on disc following the
analysis. To record the file MP@ST on magnetic tape, the
request command is of the form REQUEST,MP@ST,VSN=X01234,

CARD 6: ATTACH,P,MAGNAJCL. This command attaches
the control language procedure XMAGNA as local file P. This card

is always required, and its format is always the same. The
required filename (MAGNAJCL,ID=BR@CKMAN is used above) may be
installation dependent.

CARD 7: BEGIN command. The BEGIN statement
initiates execution of the MAGNA program. The keyword MAIN

is used only if the program storage capacity is to be modified
(see Section 7.1.2); if this keyword appears in the BEGIN
command, a STORAGE ALLOCATION card (Card 14, below) must be
supplied. The second keyword (USRSUB in the above sample)

is the name of the local file on which user-written subroutines
are stored (this file is defined in Card 4); if user subroutines
are not supplied, the second keyword is simply omitted. The
last argument (R1+B) of the BEGIN command always has the same
format.

CARD 8: CATAL@PG,MP@ST. If the postprocessor file
MP@ST is to be saved on disc as a permanent file, the CATAL@ZG
statement is used to accomplish this. When MP@ST is written

directly to magnetic tape, the command UNLOAD,MP@ST can be used

T,
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at this point, unless the STRAVG procedure is to be executed.
If the postprocessor file is not to be saved, this command is

simply omitted.
CARD 9: ATTACH,STRAVG. This command accesses

the control procedure for the stress-smoothing utility program
STRAVG. This job step is optional (and in fact may be performed
in a separate background job). If smoothed nodal stress output
is desired, an MPOST file mus*t be created, since STRAVG uses

the MPOST file as input. If no stress smoothing is done, lines
9-12 of the job deck should be omitted.

CARD 10: REQUEST,APOST. A request is issued at
this point to associate the local file APOST (Averaged-stress

POSTprocessor file) with either a permanent file device or a
magnetic tape volume. The REQUEST command is of the same format
as that described under Card 5.

CARD ll: BEGIN,STRAVG. The BEGIN command
initiates execution of the STRAVG processor, described in
Section 5.7. STRAVG accepts the MAGNA MPOST file as input, and
generates the output file APOST. During this job step, it is
advisable to have the MPOST file attached as a local disk file
(rather than a tape file). The APOST file is written sequentially

in one pass, and may be written directly to tape if desired.

CARD 12: CATAL@G,AP@ST. The CATALPG statement
writes the newly created APOST file to permanent storage on disk.
If APOST has been written directly to tape, the UNLOAD command
can be substituted for CATALZG.

CARD 13: (end of record). This card signifies
the end of the control commands for the job, and is always

required.

CARD 14: STORAGE ALLOCATION card. The STORAGE
ALLOCATION card is required whenever the program storage capacity
is to be modified. The keyword MAIN in the BEGIN statement
(Card 7) causes the card to be read. The format of the
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allocation card is (5I5); that is, five integer numbers of
five digits each. Contents of the data fields, and the default

and minimum values of each, are described in Section 7.1.2.

CARD 15: (end of record). This end of record
card should be added whenever the STORAGE ALLOCATION card is
present in a MAGNA job deck.

CARD 16: (end of job). The end of job (end of
file) card is always required as the last card of the deck.

Other forms of the MAGNA job deck are possible.
The most common alternate format consists of control cards and
data together in the input stream. 1In this case, the input
deck is arranged as shown below.

J@B,T500,I4500,CM165000.

SET, R1=MFL.

C@PYCR, INPUT, TAPES.

ATTACH, P,MAGNAJCL, ID=BR@CKMAN,MR=1.
BEGIN, XMAGNA, P, ,,R1+B.

7/8/9 (end of record)

input data

7/8/9 (end of record)
6/7/8/9 (end of job)

When the postprocessor file MP@ST is to be saved from the
analysis, the needed REQUEST and CATAL@G (or UNL@AD) commands
are simply inserted before and after the BEGIN statement as
before. The additional input deck sample below illustrates the
user of user subroutines, the MP@ST option, the use of STRAVG,
and the STORAGE ALLOCATION card, with all data and user-written
routines supplied in the job deck. The MP@ST file is copied

to seven-track magnetic tape prior to the execution of STRAVG.
The APOST file is written directly to disk.

"

O |




T AT R T TR T T TR T AT YA LY LY LY s TR Y e R LY R Y

JgB,T500,18500,CM145000,MT1.
SET, R1=MFL.

C@PYCR, INPUT, TAPES,

C@PYCR, INPUT,USRSUB.

REWIND, USRSUB.

ATTACH, P, MAGNAJCL, ID=BR@GCKMAN,MR=1.
BEGIN, XMAGNA,P,MAIN,USRSUB, R1+B.
REQUEST, TEMP, MT, RING, VSN=X01234.
REWIND, MP@ST, TEMP.

C@PYBF,MP@ST, TEMP.

PETURN, TEMP,

ATTACH, STRAVG, ID=BR@CKMAN, MR=1.
REQUEST, AP@ST, *PF,

BEGIN, STRAVG,STRAVG.

CATAL@G, AP@ST, MYAP@ST.

7/8/9 (end of record)

!

input data

|

7/8/9 (end of record)

!

user-written subroutines

l

7/8/9 (end of record)
—» 12000..200
7/8/9 (end of record)
6/7/8/9 (end of job)

L STORAGE ALLOCATION CARD

7.1.7
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Many nonlinear solutions are best performed in
more than one submission of the program, in order to

- permit monitoring of the progress of the
solution,

- reduce computer resource requests and
safeguard against "time limit" errors, and

- modify the analysis data or solution type
at intervals during the solution.

When requested, MAGNA will create a checkpoint file at the
conclusion of specified increments during the solution, permitting
the analysis to be restarted from any of these points in a
subsequent job. The necessary input data is described in
Sections 5.8 and 8.3. A new restart tape always has the local
(temporary) file name NRSTAP, while old restart tapes (i.e.,
those to be read in to restart the analysis) are expected
to reside on local file TAPE23. Both NRSTAP and TAPE23 can
reside physically on the same tape, as illustrated in the
examples below. Each solution increment which is written to
the restart tape constitutes one system logical record on the
tape; this rule is used to position the restart tape correctly
prior to executing MAGNA. Several example cases are given below
to illustrate the use of the nonlinear restart function.
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Case 1l: New Analysis, and Creation of Restart Tape

In this case, a new restart tape is to be written
directly to magnetic tape. No input tape is used, since this
is the beginning of a new analysis. Problem data is included
in the job deck, and the program storage area is modified
using a STORAGE ALLOCATION card.

J@B,T300,18450,CM145000,GEL.

SET, R1=MFL.

COPYCR, INPUT, TAPES.

_ REQUEST, NRSTAP, GE, RING, VSN=X01234.
b{' ATTACH, P,MAGNAJCL, ID=BRPCKMAN, MR=1.
o BEGIN,XMAGNA,P,MAIN, ,R1+B.

RETURN, NRSTAP.

7/8/9 (end of record)

input data

7/8/9 (end of record)
12000..400

7/8/9 (end of record)
6/7/8/9 (end of job)

L ancrs o
‘v ‘ll ‘s '
A By X

AL
y

vy
oerow

""..u

7.1.9

'v-'.Y'.'.'.',T

Ta

i """" - PRI A S PR WA UE W GIT S - WS SS Caly G S VR G VY G T VUL —— 2l o PP P N




4

N Case 2: Analysis Restart, with no New Restart Tape

f: This example illustrates a restart analysis in which

FG the solution is to be continued from the ninth increment written —
8

N to tape (i.e., the old restart tape must be positioned after

E} the end of the eighth checkpoint file). No new restart tape is
- to be written. Also, in this analysis a postprocessing file
(MP@ST) is copied to tape upon completion of the run. Note in
particular that the old restart tape is requested, and then the
needed file is copied to a local file TAPE23. The file TAPE23
need not be rewound prior to execution. This procedure should
always be followed, ather than requesting the magnetic tape
directly as TAPE23. Failure to do so will result in an error.

J@B,T1000,IB1500,CML65000,GEL.

SET, R1=MFL.

C@PYCR, INPUT, TAPES.

REQUEST, SLDTAP, GE, NBRING, VSN=X01234.
SKIPF,@LDTAP,8,0,B.

CPPYBR, BLDTAP, TAPE23.

UNL@AD, BLDTAP . .
ATTACH, P, MAGNAJCL, ID=BRPCKMAN,MR=1.

BEGIN, XMAGNA,P,, ,R1+B.

REWIND, MP@ST.

REQUEST, P@STAP, GE, RING, VSN=X12345.

CPPYBR, MP@ST, PISTAP.

RETURN, P@STAP .

7/8/9 (end of record)

thaat

,x' vy

input data

Y

Lalited A 4
7

7/8/9 (end of record)
6/7/8/9 (end of job)
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Case 3: Intermediate Analysis, with Both 0ld and
New Restart Tapes Used

Sinden Sn 20 a0 an ¢

In the job below, a solution is restarted from the
sixth (and last) stored increment of an existing restart tape.

{

Results of the current analysis are to be added to the end of

v

NP SACHMLR »— IIESROEY - ISR

the previous restart tape for later use.

—

J@B,T600, 16600,CM165000,GEl.
SET,R1=MFL.

ATTACH, TAPES,MYDATA,CY=3.
REQUEST,NRSTAP,GE, RING, VSN=X23456.
SKIPF,NRSTAP,5,0,B.

C@PYBR,NRSTAP, TAPE23.

REWIND, NRSTAP.

SKIPF,NRSTAP,6,9,B.
ATTACH,P,MAGNAJCL, ID=BRGCKMAN,MR=1,
BEGIN,XMAGNA,P,,,R1+B.

RETURN, NRSTAP.

7/8/9 (end of record)

6/7/8/9 (end of job)

Note that the old and new restart tapes need not be the same; the
use of multiple tapes may be desirable when one analysis is to be

restarted from one (or more) intermediate points. The above case
is modified below to demonstrate the use of different tapes for
the o0ld and new restart files.

J@B, T600,I@600,CM165000,3EL.

SET, R1=MFL.
ATTACH, TAPES, MYDATA, CY=3.

REQUEST, SLDTAP, GE, NGRING, VSN=X01234,
SKIPF,@LDTAP,5,0,B.

C@PYBR, SLDTAP, TAPE23.

4 UNL@AD, LDTAP.

REQUEST, NRSTAP, GE, RING, VSN=X12345.
ATTACH, P, MAGNAJCL , ID=BRACKMAN ,MR=1,
BEGIN, XMAGNA, P, , ,R1+B.

P . RETURN, NRSTAP.

S 7/8/9 (end of record)

6/7/8/9 (end of job)
7.1.11
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The second type of restart function performed by
MAGNA is the eigenvalue solution with prestress effects (Sections
4.5, 5.9, and 8.3.). With this option, a nonlinear solution is
performed first to determine an equilibrium state, in which
large deflections and plastic deformation may be present. The
element stiffnesses computed from the nonlinear solution are
then incorporated into the natural frequency analysis, which

represents a small, superimposed vibratory motion.

The following example demonstrates the use of the
eigenvalue-with-prestress option. 1In the example, the MPOST
file from the nonlinear analysis is also used to provide the
reference geometry to the frequency solution; the MP0ST file
generated in the natural frequency analysis will then contain
(a) the prestressed state geometry as the "undeformed"” geometry,
and (b) the superimposed vibration modes as the displacements.

Run No. 1l: Nonlinear Analysis for Prestressed State

L

J@B,T800,I41000,CM165000.
SET,R1=MFL.
ATTACH, TAPES, NONLINDATA.
ATTACH, P,MAGNAJCL, ID=BR@CKMAN,MR=1.
REQUEST, MP@ST, *PF,

BEGIN, XMAGNA,P,, ,R1+B.
CATAL@G,MP@ST, NONLINMPZST.
REQUEST, DUMMY, *PF,
REWIND,STIFF,DUMMY.
C@PYBF,STIFF,DUMMY.
CATAL@G, DUMMY, NLSTIFF.
7/8/9 (end of record)
6/7/8/9 (end of job)

Run No. 2: Frequency Analysis with Prestress

J@B,T400,I#600,CM165000.
SET,R1=MFL,
ATTACH, TAPES, FREQDATA.
ATTACH, TAPE22 ,NLSTIFF.

7.1.12
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ATTACH, TAPE23, NONLINMP@ST.

ATTACH, P, MAGNAJCL, ID=BR@GCKMAN,MR=1.
REQUEST, MP@ST*PF,

BEGIN, XMAGNA,P,, ,R1+B.
CATAL@G, MP@ST, FREQMP@ST.

7/8/9 (end of record)

6/7/8/9 (end of job)

7.1.2 Modification of Storage Capacity

The MAGNA finite element program allocates array
storage dynamically for all matrices and internal tables whose
size is problem-dependent. Although analyses of rather large
size can be accomplished using only a small amount of array
space, computational and input-output efficiencies on CDC
computers can be improved dramatically by allocating additional
storage for larger problems. Modification of the program
capacity is quite simple, since only one additional data card
is needed in the input deck (see Section 7.1.1, Card 14, STORAGE
ALLOCATION card).

Program storage capacity is controlled by the
lengths of five labeled COMMON blocks declared in the main
program:

1. /BLANK/* - major arrays and internal tables,

including assembled stiffness, mass,

or effective stiffness matrix
partitions.

2. /IDENT/

tables describing the envelope of
active nonzero coefficients in the
system matrix.

3. /BLOX/

tables containing matrix partitioning
data for out-of-core solutions.

additional partitioning data for

-@ 4. /BLEQ/
- out-of-core matrix storage.

- *Labeled COMMON is used to replace blank COMMON in the
'@ - program for compatibility with the CDC segmentation loader.
-

3
N
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5. J/INDXK/ - record key tables for random-access
disc files.
This ordering corresponds to the integer data fields appearing
on the STORAGE MODIFICATION card. The minimum and default
lengths of these blocks are summarized in Table 7.1.1.

The COMMON areas /BLANK/ and /IDENT/ determine
the in-core storage capacity of the program, while the remaining
blocks are directly related to limits on out-of-core storage
used in the solution. In general, the most effective use of
the program for large-scale analysis results from increasing
the blocks /BLANK/ and /IDENT/. The default lengths of COMMON
blocks /BLOX/, and /BLEQ/, and /INDXK/ are normally sufficient
for all but the largest three-dimensional problems.

The largest array areas allocated in /BLANK/
correspond to partitions of the system stiffness (or effective
stiffness) matrices. Therefore, the length of this block is
determined largely by the number of unknowns in the model and
the density of the stiffness matrix. For models consisting
primarily of one- and two-dimensional elements, the default
length of 20000 words in COMMON/BLANK/ is often sufficient for
problems of a few thousand degrees of freedom. 1In three-
dimensional nonlinear and/or dynamic analysis, input-output
efficiency can be substantially improved by extending /BLANK/
for discretization involving more than about 2000 degrees of
freedom or very large matrix bandwidth.

The length of CCOMMON/IDENT/ must be greater than
the total number of unknowns in the final system of equations
to be solved. The total number of unknowns is the sum of the
number of unconstrained nodal degrees of freedom and the number
of linear constraints specified in the problems.

Lengths of the COMMON blocks /BLOX/, /BLEQ/, and
/INDXK/, which determine the out-of-core storage capacity of
MAGNA, can generally remain at their default values for all but
the largest three-dimensional analyses. A possible exception

7.1.14
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TABLE 7.1.1

DEFAULT AND MINIMUM COMMON BLOCK LENGTHS
(CDC Program Version)

BLOCK DEFAULT LENGTH MINIMUM LENGTH
/BLANK/ 20000 12000
/IDENT/ 2500 100
/BLOX/ 150 150
/BLEQ/ 150 150
/INDXK/ 170 170

7.1.15
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is the case of a linear static analysis in which many load
cases are to be solved. For the purpose of increasing problem
size capacity, increasing the available in-core storage (by
extending /BLANK/ and /IDENT/) is always preferred.

It should be noted that, when the program storage
capacity is modified, the central memory (CM on the job card,
see Section 7.1.1) requested for the job must be adjusted
accordingly. The default central memory requirement for
execution of MAGNA is approximately 165000 octal (60000 decimal)
words. Table 7.1.2 provides a list of octal-decimal conversions
for use in determining the number of octal words of memory to be

requested when the program storage space is changed.

Additional increases in central memory may be
necessary when user-written subroutines (Chapter 9) are supplied
to the program, if lengthy code or large amounts of data are
involved. For storage of smaller amounts of data which is
defined and used in these subroutines, a reserved COMMON block,
COMMON/USERC/, is provided, with a default length of 20 words.
This area, which is saved and reloaded whenever user subroutines

are called, is included in the stated values for central memory.

7.1.3 Reserved File Names

Since the MAGNA program is executed through control
language procedures which automatically attach, return, and
create the proper files for use in the analysis, certain local
file names are reserved for use in the CDC control procedure
XMAGNA. The following names are reserved file names, and should

not be in use at the time the BEGIN command is issued.

ABS NEWPL
COMPILE OLDPL
ERRORS SEGLOD
MAGNA TEMP

MAIN UPDGEN
MODS UPDIN
NEWB USuUB -

7.1.16
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OCTAL-DECIMAL CONVERSIONS

Decimal Octal
1000 1750
5000 11610

10000 23420
20000 47040
30000 72460
40000 116100
50000 141520
60000 165140
70000 210560
80000 234200
90000 257620
100000 303240

TABLE 7.1.2

Octal

1000
10000
60000

100000
120000
140000
160000
200000
220000
240000
260000
300000

Decimal

512
4096
24576
32768
40960
49152
57344
65536
73728
81920
90112
98304
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7.1.4 Typical Execution Times on CDC Computers

Data are presented in this section to aid in the f b
estimation of computer run times on CDC machines using MAGNA. -
The times, formulas, and data given are based upon observed
computer times on the CDC 6600 ccmputer. For the CYBER 74
machine, run times are nearly identical; on the CYBER 170 series
machines, CPU times should be approximately one-half the CDC
6600 requirement, and I/0 times may be slightly less.

In nonlinear analysis, computing times are typically
dominated by the nwnber of elemerts rather than by the time
to solve the system equations. This observation is particularly
true in three-dimensional problems, due to the computational
effort involved in evaluating nonlinear effects on the element
level. Computing time factors for each of the MAGNA elements
are listed in Table 7.1.3; for most nonlinear solutions, the
CPU time requirement can be estimated conservatively using
the formula:

CPU time = (CPU Time Factor) X (Number of Elements)
X (Number of Integration Points/Element) Mg
X (Number of Increments)

where CPU time factor is read from the table. A small amount
of overhead (typically 10-15 percent) should be added to this
estimate to account for additional calculations (e.g., solution
of equations). The I0-to-CPU ratios given in the table are
next used to estimate the IO time requirement. For nonlinear
analyses using equilibrium iteration, each cycle of iteration
should be counted as an "increment" in estimating computing

time requirements. However, since iteration cycles generally

require less time than an incremental step, the resulting

estimates will generally be guite conservative.

Typical solution times for selected linear and
nonlinear analyses are given in Table 7.1.4. B2As an example of
the estimation of CPU times, consider the F-16 windshield

7.1.183
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analysis using solid isoparametric elements (Type 6), with a
3x3x3 integration rule for each element. From Table 7.1.3, the
CPU time factor is 0.11 for nonlinear analysis with Element

Type 6. Thus,

CPU Time . (0.11) X (50 elements) X (27 points/element)

=

X (10 increments),

giving 1485 seconds. Allowing a 10 percent overhead for equation
solving and other calculations gives an estimate of 1630 CPU
seconds (for the CDC 6600). Actual execution time on the CYBER
175 is 673 seconds. The actual I0 time required for the above
example is 1136 seconds, so that the IO/CPU factor of 1.5 gives

a conservative estimate.

Computation time for nonlinear dynamic analysis
are only slightly higher than for nonlinear static analysis,
and the above estimating procedure can be used with confidence.
It should be noted that, in elastic-plastic analysis, the
computing time cannot be predicted quite as accurately, since
the amount of calculation per element may vary considerably.
For strongly materially nonlinear analysis, it is suggested
that 30-50 percent overhead be allowed with the estimates
obtained using the table. IO times are not affected in
materially nonlinear analysis.

For linear analysis with MAGNA, the estimation
of computer resources is much more difficult, since solution
times are dominated by the assembly and equation solving steps.
Values of the CPU time factor given in Table 7.1.3 refer to
element calculations only, and are not reliable for estimating
computer times in linear analysis. The 10/CPU time ratios
which appear in the table are fairly accurate, if a reasonable
value of the CPU time can be predicted. The higher values of
the IO/CPU ratio in Table 7.1.3 are applicable primarily in
linear dynamic analysis, where CPU times are typically very
modest.

7.1.21




7.2 CRAY PROGRAM VERSION

The CRAY-1l version of MAGNA offers the highest capacity
and computational speed of all the machine versions available.
The usual CRAY batch analysis run consists of executing MAGNA
and the STRAVG utility, as described in the subsequent sections.

Since the CRAY-1l computer does not support interactive
operation, job streams and data files will generally be prepared
on a "front-end" computer and then submitted to the CRAY system
through remote batch input utility. For this reason, the exact
procedures to be used in executing the CRAY version of MAGNA
can be highly installation-dependent. Some typical procedures,
which conform to the conventions of the United Computing Systems,
Inc. APEX/SL time sharing service, are outlined in this section.
For information concerning job control language and job submission
at particular installations, users should contact the installation
representative, or look for system information files outlining
the correct procedures to be followed.

7.2.1 Job Control Language

The CRAY computer version of MAGNA is typically
executed using a job stream of the form shown below.

J@B, T20

ACCOUNT, usernumber, password.
GET,FT05=data filename.
REWIND, FTOS.
ASSIGN,DN=FT10,BS=10.
GET,MAGNA/CRYLBRY.

MAGNA.
RETURN,FT10,FT12,FT14,FT20,FT98.
PUT,FT99=MP@ST/D.

GET, STRAVG/CRYLBRY.

STRAVG.
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