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I. Technical Report Summary

Two major advances have been made in the research on synthesis of long-~
period S waves at distances less than 40°: the incorporation of inelastic
attenuation and the development of a code to include a representation of
the source function. The large effects on the waveforms of rapid variations of
velocity in the upper mantle can be calculated and separated from the
effects of anelasticity.

Examples of synthetic seismograms are included to illustrate the effects
of attenuation on the displacement waveforms, as well as the effects of the
response of a typical long-period seismograph system.

The application of Green's Function techniques to elastodynamics has
led to methods for treating a variety of problems in wave propagation and
earthquake source representations. The complete theory is presented in
this report. Wave propagation is a realistic, layered earth, generalized
by a nonlinear source and the dynamic field due to stress relaxation around
a geometrically general, growing inclusion (an earthquake source) in a
spatially heterogeneous initial stress field are two of the significant
problems that have been treated. Computations based on the equations
derived here are currently being carried out.

There is evidence tﬁat specific anelastic attenuation, expressed as Q, is
frequency dependent. QQ models of the Earth based on free oscillations,
surface waves and body waves show that in the broad frequency band covered
by the input data, Q 1ncreaseg with frequency. Frequency-dependent Q is
modelled by a relaxation process with a range of relaxation times. An
investigation of the relaxation time characterizing the high frequency

corner of the absorption based was carried out using the data from 21
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shallow earthquakes, 1 at intermediate depth, and 4 deep ones.

The criteria used was that the Q-corrected spectrum show decay at high
frequencies at a rate in the range f'_2 to f"3 . The depth dependence
of the resulting relaxation times and corresponding values of T/Q
was examined. A mixed effect of depth and frequency dependence of P-wave
attenuation was found. The important conclusions is that the P and S
attenuation data can only be reconciled by including a bulk loss mechanism,
in addition to a shear loss mechanism. Although the results are not

unique, this suggests that the bulk loss mechanism is operative in the

upper mantle, perhaps within the asthenosphere.
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II. Synthesis of Long Period Body Waves in an Anelastic Earth
V.F. Cormier

Sunthesis of long period SH body waves has been completed in the PEM-C
(Figure 2.1) earth model of Dziewonski et al. (1975). This earth model
in conjunction with a simple frequency independent Q model was chosen as a
starting model for inversion for the upper mantle structure of western
North America. Synthetic modeling of waveforms at distances less than 40
degrees must be undertaken to separate the large effects of rapid velocity
variation in the upper mantle from the effects of anelasticity. The in-
corporation of attenuation in the analysis through a frequency dependent
complex velocity profile has been taken as complementary check of spectral
studies of upper mantle attenuation structure.

Seismograms have been synthesized using the method described by
Cormier and Richards (1977), in which the Fourier-transformed displacement
is evaluated by the evaluation of an integral over short paths in the
complex ray parameter plane. Langer's approximation to the radial eigen-
functions in the integrand of reflection—transmission'coefficients corrects
for the effect of velocity gradients and boundary curvature of inhomogeneous
spherical layers. In the last funding period a significant improvement in
the computation speed of synthetics has been achieved by using the three
point integration formula described by Jeffreys and Jeffreys (1956) for

the evaluation of the quantity

T

r
P

Lo ]
oo

)dr

in inhomogeneous layers. This quantity is required to evaluate the Langer
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approximation (Richards, 1976). By use of the three point formula, the

computation of synthetic seismograms for direct SH body waves in an attenuative-
dispersive earth model with two upper mantle T-A triplications requires

only 10 minutes execution time on a CDC-6600 at 2 degree intervals from

20 to 34 degrees.

Multiple reflections along the underside of discontinuous velocity
increases in the upper-mantle of PEM~-C are included by use of generalized
reflection coefficients and integration paths of the type described in
Cormier and Richards (1977). For example, the reflection coefficient at

critical incidence is taken as the functions

(2) (2) (2) () (1)
S SO ST S ey
22 (1) ° 1 ° 21 "12 (2) (2) 11_(2)

92 % % 9 %

along the integration paths illustrated in Figure 2.2, where R22 is the

reflection coefficient of SH from the top of the boundary, R the

11
reflection coefficient from the bottom, T21 ’ T21 transmission coefficients
from the top or bottom respectively, Gél) » ng) radial eigenfunctions
for (1) up or (2) downgoing SH waves in the upper medium, Gil) . oiZ)

radial eigenfunctions in the lower medium. These coefficients are related

by the equation

2) (2) (1) (L)
$ =Ry, o%l) + Ty Ty "%1) %) 1-Rpy 0}2) (2.1
o, \ o0 9 %

At distances much greater than critical a reflection coefficient is constructed

from the functions above for use along the integration path illustrated
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T21T12/{3-Ry3)

PATH FOR CRITICAL DISTANCI

Figure 2.2: Integration paths near a cusp at critical incidence. The
coefficients are taken alo?g)th?ziegments as shown. (Ratios
of radial eigenfunctions ¢ '/o are omitted in the figure.




in Figure 2.3, where

(2) (2) (@1 N 7"

s - R 2__TT2_°_1_ZRS;_ ;
22 (1) 21 "12 (1) (2) 1 (2)
) G, 9 n=0 %
n

T, T ——0"52) -—-°{1) ) R 1 (2.2)
21 "12 (1) (2) 11 (2) :

G, o n=N+1 %

The N waves constituting the direct transmitted and N-1 multiples

are included in a separate ray parameter integral when they are well separated

in arrival time from multiples described by eq. (2.2).

By proper choice of combinations of these functions and integration
paths, the effect of all the interfering multiples in two upper mantle
triplications can be included in the evaluation of a single integral over
ray parameter in the distance range near 20°.

Figure 2.4a-b shows the results of the synthesis for the response
of the PEM-C m&del to a SH source for the direct body wave. Comparison
of the results with (2.4b) and without (2.4a) attenuation demonstrate
that the removal of high frequencies by attenuation obscures details
in the waveform due to multiple arrivals from first order discontinuities
in the earth model. The difference in model response remains visible even
after inclusion of the transfer function of a long period seismograph
(Figures 2.5a- .5b). These'results are consistent with those reported by

Kennet (1975) for inclusion of attenuation in the reflectivity method of

seismogram synthesis,
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Integration path for an interference head wave.
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Figure 2.6 compares synthetics generated by convolving the model
response with a source function determined for the Borrego earthquake
(Helmberger and Engen, 1974) with observed seismograms of the earthquake.
The source function includes near source multiples and attenuation through the
Carpenter (1966) Q operator. The model response for no attenuation
consequently was the one convolved. Future research will compare wave-
forms predicted with the Carpenter—Q operator with those detgrmi;éd Sy’\f
including attenuation in the frequency domain. The latter approach has the
advantage of more easily handling complicated frequency dependence of Q,
but requires slightly longer computation time.

Analysis of Figure 2.6 indicates that of the later arrivals predicted
by the PEM-C model, the one due to reflection from the discontinuity at

671 km is not greatly in disagreement with the observed seismograms. The arrival

forming the latest and largest trough in the synthetics corresponds to a wave
diffracted along the top of the lower bounda -y of the low velocity zone of
PEM-C. Revision of the PEM-C model to agree with waveform (Figure 2.6)

travel times (Figure 2.7) can be simply accomplished

by modifying the structure of the low velocity zone. Unfortunately wave-
forms cannot sufficiently constrain deeper structure because a long period
recording of a sufficiently large earthquake cannot resolve the features

of waveform due to interfering triplications near 20 degrees. Attenuation

makes this resolution more difficult. One must rely on carefully matching

amplitudes near 20° and matching high quality waveforms at distances greater

[
than 30 degrees uncontaminated by PL waves.

In the next research period SH synthesis will be completed in earth

models satisfying travel-time, amplitude, and waveform data for western
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North America. A range of upper mantle models for S velocity and Q will be
suggested. The validity of including attenuation in the time domain via

the Carpenter Q operator will be investigated.
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II1. Anelastic Properties of the Earth Inferred from Earthquake Spectra:
Investigations of Frequency Dependent Q Models

G.M. Lundquist

Introduction

Anelastic attenuation of seismic waves is parameterized by the specific

quality factor, Q , defined by
Q =_2‘F—E_ (3-1)

where AE 1is the energy dissipated in a cycle whose average energy is
E . 1In a layered medium, the wave is attenuated proportional to a weighted

average of the Q-1 in each layer, where the weight is given by the travel

time.
>
Q
- i
-1 _ i
Qs 'E (3.2)
t
- 1

where ti is the travel time in each layer. The functional dependence of

the absorption becomes apparent in the definition,
. ul
TOTAL ANELASTIC ATTENUATION = e 2QEff (3.3)

where T 1is the total travel time. For convenience, we will note the
ratio T/QEff by t* with subscript oo or B for P or S waves respectively.
The minimum functional dependence for t* must be on velocity and Q structure
along the ray path.

If an additional dependence upon frequency is to be found, then the
velocity and Q structures must either be known or somehow eliminated from
the problem. As before (Lundquist, 1975) we assume a multiplicative
separability betweén the depth dependence and frequency dependence of the

form




e, w) = t*(r) Rw) (3.4)

where r 1is radius in a spherically symmetric earth model and R(w) carries
all of the frequency dependence. Equation (3.4) demonstrates explicitly

the nonuniqueness inherent in determining R(w) when t* is not known.
Unfortunately, since t* appears in an exponent, ratioing techniques will
not isolate R(w) . That is, the base t* functions must be estimated
independently.

Toward this end, a review has been made of published velocity and Q
models. Rather than finding a consensus among Q models, a frequency
dependence is noted depending upon the data set used. In ger.ral, Q seems
to be an increasing function of the frequency of the data set. To determine
whether this frequency dependence may be related to R(w) as determined
from body-wave spectra, preliminary attempts are made to model the differences
between published Q structure as a function of a frequency dependent Q,
with quite good results.

Published Models.

Velocity models are quite well constrained by both body-wave and free-
oscillation inversions. The slight (17%) base-line shift in theoretical
travel times was shown to be a result of ignoring anelasticity in the free
oscillation studies. Hart et al. (1977) corrected the entire set of known
spheroidal and toroidal modes for attenuation and reduced the base-line
shift from the Jeffreys-Bullen tables to less than a second. Since the
resulting velocity model, QM2, agrees with both body-wave and free-oscillation
data, it has been adopted for use in the present study.

Q models, on the other hand, are neither as well constrained nor as

consistent. The range of models is shown in Figure 3.1. Model SL1 was
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Model AFL was derived from body
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derived from free-oscillation data (Anderson and Hart, 1977); MM8 was
derived from surface-waves (Anderson and Archambeau, 1964); and AFL was
derived from P body waves (Archambeau et al., 1969). The frequencies in
the data sets appropriate to each model are given in Table 3.1. Note
that while the free-oscillation and surface-wave models overlap in frequency, ;
the body-wave model is taken from waves in a completely independent frequency

range.

TABLE 3.1
Model Data Frequencies
SL1 .0003-.015 Hz
MM8 .0025-.02 Hz
AFL 2-5 Hz

*
The variation in Q models was examined as a function of t .
*
Figure 3.2 shows t vs epicentral distance for a shallow focus earthquake
for each of the models of Figure 3.1. Model SL1 included both Qa and

QB . For the other two models, QB was obtained by Qa = 2.35 QB .
* %

When combined with velocity model QM2, this Q ratio gives ta/tB ~ 4.3 ,
* %
while the ratio for SL1 is ta/tB ~ 4,55 . There is very little change in

*
the shape of t vs distance as a function of source depth for any particular

model.

In both Figures 3.1 and 3.2, the low-frequency models overlap, as might
: ' *
be expected since they deal with data in the same frequency range. t (AFL) ,
*
however, is only half of the values for t (MM8) because Q(AFL) 1is con-~

sistently higher than that for the other models. If both SL1 and AFL are

correct, then Q must increase with frequency.
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Figure 3.2: T/Q vs. Distance. The velocity model used was QM2. Note that
T/Q(AFL) is well below T/Q for the low frequency models.




Figure 3.3 shows the variation of t* vs hypocentral depth as a
function of percent of surface focus value. Low frequency waves apparently
miss about 23% of the total attenuation if the source is at 600 km depth.
High frequency waves, on the other hand, apparently miss more than 40% for
the same change in source depth, and the difference seems to occur over
the depth range of the asthenosphere. This difference may also be reconciled
simply as a function of frequency if low and high frequency waves see
different changes in apparent G as a function of source depth.

Q(f) Model.

Before going further, it is appropriate to briefly review the form of
the frequency dependence of Q used here. The function, R(w) , in the
attenuation exponent of equation (3.3) generates an absorption band from
a constant T/Qeff . The absorption band is constructed theoretically
as the superposition of specific absorption mechanisms each of which is
modelled by a standard linear elastic solid. Each separate mechanism

attenuates according to

Q—l -c sz .
1l +wrT

where C 1is a constant depending upon the elastic parameters of the

medium and T 1is the medium relaxation time (see Mascn, 1958). A distribution

of relaxation times of the form

1/t , 1, >1>1
D(T)={ 1 2

0, 1>1T, T<*1

-1 2

defines an absorption band as (Liu et al., 1976)
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1+ sz T

w(t, - 1
Q—1 -c2 tan“lg——-————1 2)} (3.5)
12

The parameter of interest in (3.5) is 1 ,» the high-frequency half- }

2

power point of the absorption band. The other corner period is arbitrarily

placed well beyond the longest periods of interest in body-wave studies at

Tl = 2000 sec . Thus the only frequency dependence introduced in this work

is a roll-off in absorption toward high frequencies which may be varied by

changing T, -

The point of introducing a frequency dependent Q is to recover
observed seismic source spectra from seismograms. Theoretical source
spectra all show amplitude decays toward high frequencies of the order

~2 -3

w to w . The slope of an observed spectrum, however, is controlled

much more by the anelastic attenuation along the travel path than by initial

VPPN S =0 75 ARt o i TR e S AP e S i/ it

source properties. If a Q correction function is appropriate, it should
give back an observed spectrum with slopes in the theoretical range.

Thus R(w) 1s used in the attenuation correction as a decay slope . 1
modification. The results of that modification will be presented in the
next section. J

Body Wave Spectra.

To date, 21 shallow earthquakes, 4 deep and 1 intermediate depth event have w

been studied. Body-wave spectra were computed from digitized seismograms
using an autocorrelation technique which smoothed the individual spectra.
Additional smoothing was obtained by averaging several stations for each
wave type of each event studied. The result was usually (but not always)
a noise~-free spectrum whose high frequency decay slope could be uniquely

fit by a single line segment.
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An average spectrum without an anelastic attenuation correction was
prepared for each event, under the assumption that T/Qeff is nearly
constant with epicentral distance. Then each average spectrum was corrected
for attenuation with a range of T, - Initially, the base t* function
was assumed to be t; = 1.0 and t; = 4,0 ; and the variation of t*
with hypocentral depth was chosen to be that of model AFL. After the
review of published models was begun, this choice of t* was seen to mix
high and low frequency models. Thus the data set was reprocessed with t*
essentially following model SL1. For that test, t: = 1.0 and t; = 4.5
for shallow events, and the SL1 depth dependence from Figure 3.3 was applied
for deep and intermediate events.

The results of the tests are given in Tables 3.2 and 3.3 for shallow
and deep events, respectively. The values Ty = for w_3 slopes of
deep P waves result fromthe fact that the uncorrected station spectra
already have slopes less than w-3 . Since the Q correction can only
decrease the decay rate, an m-3 decay rate cannot be obtained for any
T, - This may imply a significant difference between deep and shallow
source mechanisms, or it may imply that the assumption of uf3 slope 1is
incorrect.

In Tables 3.2 and 3.3, the values of 1, in parentheses are the
results of reprocessing with t* defined by model SL1. Note that the
result of increasing t* is to increase the applied attenuation correction
and raise the slope. Thus a larger 1, is required to get back the same
slope for increased t* . Though the difference is negligible for shallow

*
S waves, the difference between t from models AFL and SL1 (or MM8)

as a function of source depth is significant. If any physical understanding




T/Qeff(s) = 4.0 for values not in parentheses

T/Qeff(s) = 4,5 for values in parentheses

L17¢(.

J17¢.

.19¢(.

.18(.

.19(.
.19¢(.

.18(.

15
TABLE 3.2
EVENT LIST SHALLOW EARTHQUAKES
L Date Depth T, p(m—z) T, p(w~3)
| 72/08/30 33 .09 17
1 72/08/30 33 11 .18
72/08/09 15 .06 12
72/04/09 33 .08 .16
71/05/22 33 .08 .18
71/04/03 33 .05 .13
71/03/23 33 .06 .14
70/08/13 15 11 .20
70/06/05 20 .08 .18
70/03/28 15 11 .20
69/02/11 33 .08 .16
67/08/15 33 .08 .18
67/02/11 5 .08 .18
63/04/19 33 .08 .16
71/01/10 33 .05 .14
70/07/26 35 .05 .16
69/11/07 35 .04 .14
69/02/28 22 .02 .09
65/06/27 27 .09 .20
65/02/02 12 .06 .14
64/03/28 21 .08 .20
T/Q_ g (P) = 1.0

18)
18)
20)

.19)

18)

20)
20)

18)

+24(.24)
.24(.24)

.26(.26)
.26(.26)
.28(.28)

(.28)

.27(.27)

.29(.29)
.28(.28)

.26(.26)




Date

63/11/09
72/02/30
74/03/23
68/11/04
75/02/22

T/Q(P)

n

T/Q(P)
T/Q(s)

T/Q(s)

Depth

600
532
535
585
375

16

TABLE 3.3 EVENT LIST
DEEP EARTHQUAKES

.08(.10)
.04(.06)
.08(.10)
.08(.10)
.08(.08)

()
.21(.22)
o (=)
o (®)
()

.06 for values without parentheses

0.785 for values with parentheses

2.4 for values without parentheses

3.5 for values with parentheses

.11(.15)
.07(.12)
.12(.15)
.12(.16)
.12(.15)

.19(.22)
.19(.20)
.21(.24)
.20(.22)
.18(.21)
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TABLE 3.4

STATISTICS OF OBSERVED RELAXATION PARAMETERS

Shallow Events

Deep and Intermediate
Events

*
From event of 72/03/30 only

*
(t from Model SL1)

Average T

2
-2 -3 -2
T, p(w ) T, p(w ) T, S(tn )
.073 .162 .185
*
.094 .22 .146

.266

.218
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is to be obtained from the Ty determined from this study, the depth

*
! dependence of the base t function must be known.
Added emphasis to this last conclusion is given by Figure 3.4, where

*
) Ty is plotted as a function of the base t value. The purpose of this

*
L; test is multifold: (1) Examination of the values of t and 12 in

*
Tables 3.2 and 3.3 shows a montonic trend in t vs T, from deep P waves

to shallow S waves, and it is necessary to show that the results presented

here are not artifacts of the processing. (2) The effect of base Q model on
12 must be investigated. (3) The deep event of 72/03/30 was chosen for
the study because it is the only deep event for which w_3 slopes may be )

obtained in the P-wave spectrum. Since this event yields the only data in the

- *
w 3 column, it should be carefully checked. Figure 3.4 shows that t vs

T, is indeed monotonic increasing, but the curves are distinctly different

for P and S waves. The change in T, as a function of wave type is not an

*
artifact. There is, however, an interdependence between t and T2 such

that the change in T as a function of source depth may be strictly a

2

*
matter of the different t required.

Table 3.4 shows that TZ(P) increases with source depth, while

T2(S) decreases. The decrease in TZ(S) is plotted in Figure 3.4, and

closely resembles the change in Ty with t* already described, That is, if
the spectra of deep and shallow events have the same shape and see the same
frequency dependent Q along the raypath, then the change in TZ(S) is

simply that required to account for the change in t* . Tentatively,

this result is interpreted as support for the basic similarity between

deep and shallow shear body-wave spectra. A reasonable corollary is that

P-wave spectra are also similar.

Under the assumption of similarity, the increase in TZ(P) with source

depth must be interpreted as a mixed depth and frequency dependence in Qa'

P PSP




18a

A0 l T T T I

t*vs. T
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Figure 3.4: Ty VS. t*. The solid lines give the functional dependence of T
on t*. TFor the range of t*, a T, may always be found which wilf
glve the desired slope on body wave spectra. The average S wave
data show the same trend as a function of changing T,, while
the average P data oppose the trend, suggesting the fwo wave
types don't see the same depth dependence in Q.
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Specifically, an isolated bulk loss mechanism must operate in the upper
mantle. The fact that TZ(P) increases toward TZ(S) implies that tle
amount of bulk loss seen along the travel path is decreased. An intuitively
appealing explanation is that the bulk loss mechanism operates within the
asthenosphere where a partial melt is hypothesized.

These conclusions may be visualized in Figure 3.5. The solid line
represents the right side of the shear absorption band as it affects P-waves.
The dotted line represents the observed P wave absorption band which is a
composite of bulk and shear losses. The dashed line represents the hypothetical
bulk loss mechanism which controls TZ(P) for shallow focus events. For
depth of focus beneath the bulk loss region, only half as much bulk loss
is seen by a ray, effectively pushing TZ(P) toward the limit of the shear
absorption band. Note that the implied relaxation time for the bulk-loss
mechanism as sketched is about 0.5 sec.

Frequency Dependent Earth Models.

The results of the preceding section provide a starting place in the
construction of a frequency dependent Q@ . 1In the examples discussed
below, TZ(P) will be assumed to be controlled by shear mechanisms in the
crust and in the mantle below the asthenosphere. In the asthenosphere,
where a partial melt may exist, T, is assumed to be controlled by a
bulk loss mechanism. The models AFL and SL1 will provide a framework for
model evaluation. As an example of the flexibility offered by manipulation
of Ty preliminary attempts will be made to generate AFL from SL1 by
adjusting the position and strength of a bulk loss mechanism in the
asthenosphere.

Tﬁe difference in average t* levels between AFL and SL1 is easily

modeled by adjusting T, without depth dependence. Table 3.5 gives four

2
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!
; TABLE 3.5
FREQUENCY DEPENDENT Q
MODEL PARAMETERS AND DISTANCE DEPENDENCE
i Model 1 Model 2 Model 3 Model 4
_% Depth TZ(P) Depth TZ(P) Depth TZ(P) Depth 12(P)
¥
¥ 0 0.26 0 0.18 0 0.26 0 0.18
% 2886  0.26 61  0.18 61  0.26 61  0.12
¥ 81  0.08 81  0.16 81  0.09
| 196  0.08 196  0.16 196 0.09
5 221 0.18 221 0.26 221  0.10
| 2886  0.18 2886  0.26 321 0.12
371 0.14
= 388 0.18
2886  0.18
t* t* t* t*
o [o o a

A(DEG) 200 sec 1 sec 200 sec 1 sec 200 sec 1 sec 200 sec 1 sec

80 .800 .284 .17 .400 .770 274 .172 L415
70 .858 .302 .822 .426 .822 .297 .824 442
60 .984 .333 .913 470 .912 .318 .914 487
50 .942 .327 .918 472 .917 .350 .919 .490
j 40 .860 .304 .868 .451 .865 .333 .868 472
é 30 .755 .267 .761 .405 .760 .302 .762 431

%*
i Note: tcl values are for depth of focus = 5 km.
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examples of Ty Vs depth which have been superimposed on SL1 and the
corresponding t* values for waves of period 200 sec and 1 sec. From
Figure 3.5, it is obvious that, for frequencies greater than w = l/‘t2
increasing T, increases the Q . Both Tz(w_z) and Tz(w-3) give
approximately correct change in t* with frequency.

The difference in t* vs hypocentral depth is not adequately modeled
by any of the Ty distributions shown in Table 3.5. t* vs depth is shown
in Table 3.6.

The complete inversion for Tz(depth) required to obtain model AFL from
model SL1 will be left to a future report. But it is apparent from the testing

already done that the result will be almost trivial. At each depth

o tar = g HsLD - R, T

Q(AFL) _ 1
Q(SL)  R(w, T,)

Note that the ratio of high frequency Q to low frequency Q must be
greater than orequal to onme, unless a bulk loss is operating. For these
two models, the ratio is less than one for a depth range 0-160 km, and is
always greater than two below 160 km. Again, the existence of a bulk loss
concentrated in the asthenosphere is supported by the data.
Summary

A review of published Q models was undertaken in an attempt to reduce
the number of variables in a study of the effect of frequency dependent
Q upon body-wave spectra. However, rather than finding a consensus among

Q models, a frequency dependence was found, corresponding to the data set

*
used. For the purposes of further work, t will be assumed to follow the

Ln e e

e M 1 gty s o

A AT TR T




22

TABLE 3.6

FREQUENCY DEPENDENT Q
SOURCE DEPTH DEPENDENCE
(% Surface Focus t;)

Model 1 Model 2 Model 3 Model 4
Depth 200 sec 1 sec 200 sec 1 sec 200 sec 1 sec 200 sec 1 sec

Ee s T -

TH e e T T g

5 100 100 100 100 100 100 100 100
50 97.9 100 99.6  99.6 99.9 100 99.6  99.8 '
; 100 9%.6  97.2 9.1 95.1 96.1  95.7 95.6  95.3 ,
| 150 91.0  93.2 92.4  89.8 92.5  90.5 92.3  90.4 ’
200 88.2  90.4 89.8  86.2 89.7  87.1 89.7  86.9 5
300 83.5  85.7 85.3  82.2 85.2  83.1 85.2  81.4 |
400 80.7  82.3 81.8  78.8 81.8  80.0 81.7  77.8 %
‘ 600 76.7  18.2 77.2 74.8 77.3  75.7 7.3 73.9 ‘
|
1

*
Note: ta values are for A = 50°

e S e R e g
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free-oscillation Q model, SL1. This choice is based upon the low-frequency
data used to compute SL1 and upon the fact that the frequency dependence
used in this study includes no variation in Q at low frequencies.

Given a starting model, then, the approximation of other Q models by

adjustment of T, vs depth 1s easy. Indeed, any high-frequency Q model

2
may be generated from any low-frequency model by adjusting the width of the
absorption band. Rather than a single infinity of Q models which will satisfy
a given data set, there is now a double infinity of models, even though the
frequency dependence modeled is simple enough to be characterized by a single
parameter.

It is thus even more important to constrain Q(f, r) with new data.
Of particular importance are the body-wave spectra, where direct observation of

T, may be made. Time-domain modeling of pulse shapes may also improve the

2
constraint. But basically any ray samples an average of properties along
the path, and detailed inversion for depth dependent properties cannot be

done simply. The conclusion put forth in this paper is that only the end of

a complicated band of relaxation mechanisms may be resolved by body-wave
spectra. If the window in the spectrum of relaxation mechanisms were not in

the passband of standsz 1 seismometers, then not even the end of the absorption

band could be observed.
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i

IV. Applications of Green's Function Methods in Elastodynamics to Source
Theory and Wave Propagation Problems

e sy

C.B. Archambeau
A major part of the effort during the past six months of the contract ;
period has been to develop a comprehensive theoretical framework for the

treatment of both source and wave propagation problems in elastodynamics.

The Appendix 1 provides a summary of the Green's fucntion theory which will
provide such a framework for elastodynamic problems in Geophysics. In
this theoretical development we consider media which may be inhomogeneous,

anisotropic and have both fixed and moving discontinuities in material

properties, the latter being included in order that generalized relaxation
sources in prestressed media may be treated. This work corresponds to a f
generalization of previous work (e.g., Archambeau and Minster, 1977) f
mentioned in earlier reports, which was specifically focussed on source

problems. The present work is more general in that we have included both

e o e s e gy -3,

fixed and moving boundaries in the same formulation and most importantly,
have generated explicit Green's functions for layered media to be used in
the integral equations for applications. We are therefore in a position to

solve a large number of outstanding problems in seismic source and wave

propagation theory and specifically particular problems of importance for
seismic event discrimination and explosion yeild estimations.

In this regard, in this section we show first how lavered half space

Green's functions are obtained and give explicit relations for them.

We then show how such a Green's function (or more properly this layered

R R e ST DRI, STy

half space Green's tensor) can be used with the integral formulations in the ;
Appendix 2 to provide the means of representing a general nonlinear (or linear)

energy source imbedded in a layered half space (which may be specified

—— i
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numerically in general) in analytic form. Such a result can then be used
to predict both surface and body wave radiation from general seismic energy
sources; in particular from complex numerical models of both earthquakes
and explosions.

In addition, we have formulated the same theory in a layered spherical
medium. Since this theory is very similar in principal to the layered
half space theory we do not include the details here.

Other applications of this theoretical formulation are being studied,
in particular effects of lateral variations in gructure on predicted
source radiation, effects of scattering from the growing source boundary
and a variety of perturbation modifications to be used to predict mroe
accurately the effects of anelasticity. velo:ity gradients and boundary
variations from spherical or planar form. These additional applications

will be described in subsequent reports.
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Eigenvectors for Layered, Isotropic Elastic Half-Spaces

Eigenvectors wk corresponding to the operator defined in the Appendix II,

equations (61) and (62) are generated by

Ly ¥, + pmzwl =0 : @

: [V"knk:ﬂ avI =0 \

[ 1, |

[‘l’zknk] o= 0
avéo) /

awi
where wlk = clkij 3;;

In a layered space, with boundaries along the coordinate surfaces

. +
Xq = z, s = 0,...,n-1, the set

' n
{ LD 4 6,250 L g }
<1

is equivalent to (63). That is le is represented by the differential

)" { (S)} b
operator set le and ¥, by the eigenvector set ¥, . The members
1

+Indices enclosed by parentheses are not subject to the summation rule. Thus
no sum is implied on the repeated indices (s) for example.




of the sets are connected by the boundary conditions, which are, from (62):

I
s (s+l)
' ok ™ RIATE" |
NO) o(5+D f
L 2 k
z_ f
(4.3) {
¢ (D -
Yox ™ 0
z
o
Here the free surface is the coordinate plane Xq = 2 . These conditions

insure that the members of the eigenvector set produce a continuous eigenvector

¢2 with associated continuous tractions. Explicitly, wl is given by

with the adjoining w( s) continuous at the boundary points z . A similar statement
applies to the tractions.

Now the elastic parameters and density are constant within each layer

by'definition, so that requiring isotropy as well produces the result:

@) 4 By (s) ° o 4 () 2, (s) _
S s S S S
[A ] axz 3;; +u 9x,9x 0w *z

373

(4.4)

(s) (s) (s+1)  (s+1) .
[ pk e ] = [ Apk Ve ] ; 8=0,1,..,n-1

z
8 s




where

B(S) %
Als). . 5 p= (4.5)
pk i
(l—cso)sjk
with Bﬁz) defined by
(S) (S) (S)
1% 3, 3,
(s),(s) _ () [k __ SO [ E n, 4.6)
L R B %, | ox |9 (

which is just the traction yklnl' Here the external boundary condition has

been incorporated with the boundary conditions on the internal boundaries
by defining 1(0) = u(o) = p(o)

(s)
Apk

= 0. In addition the 6 x 3 matrix operator

has been introduced for convenience in writing the boundary conditions

in compact form.

The vector form of

(1 4+, @] VG’&‘S)) SOOI oW

[é(s) .i(s):\ - [ A(s-l-l) ‘!’_(SH)l
2z Z

8 -8 /

(4.6a)




From (4.4) or (4.4a) it is easy to see that solutions for Y may be

generated by introduction of the (physical) potentials defined by

a¢§s)

(s) . "%
xlt axz '
4.7)

(s) _
X4

X
2

So that these potentials can be represented by a four vector with cartesian

components xgz;, a=1,2,3,4. In vector form:

Xt(,s) - v-y_(s)

2{(8) = 1/2 vx )

Using these in (4.4) or (4.4a) shows that if the cartesian components

xgsa; satisfy the scaler Helmholtz equation:

2

2 (s) (s) (s) ]
v x(a) + {k(u) :\ x(a) =0; a=1,2,3,4

o e et et g et el i e T A et e S A U A0t . w5390, At i AR A it i e A e e
e
Z
¥
h - L 1]
——_— a =



(s)

‘ then ¥, * is given by
’ ; 2 . (s) 2 (s)
1 9X X,
§ i . (s) (4.8)
§ w:s:) - - [klss ] T [ks ] 4mn “x
| E
|
‘{
| vhere k) . (k<s> MONNG) k(s))
] ; a [ * g > Mg » P
_ % with
. k(s) = mlv(s) ; v(s) ={A(S) + zu(S)
| g P P p(s) ;

ks(S),, m/‘,;S) ; vﬁs) - \"u(s)/p(s)

Alternately, in vector form, l{s) is generated from X,Ss) and

X= (xl,xz,x3) by

;(3
¢
i
Eﬁ
i .
f
'
:
|
z;

2 2
!(8) - [klfS)] VX4 + 2[1;8(8)] xx (4.8a)

provided the potentials x,‘

!
|
g

|

|

i
!
e
j

;' equations :espectively. That is, when

i
{
i
!
]
4
t
!
!

and x satisfy the scalar and vector Helmholtz

2
A+ [ ] @ -

4.9)
2
v2,(8) [kés)] X =0
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Eigenfunctions for the cartesian components of the potentials are

the set

W8, !
[Jm(kp) eimcb] (G)

and
(s)
+ v z

where

NOM (2 »
V(o) © \[k ‘

It is critical to this development that it turns out that only vg ; depends

e L 1

on the layer parameters, as evidenced by the index(s).

Therefore the cartesian components of xgzg can be written as:

@ _ [, @ o) ~$&s |
S s a s o 1l|'l¢ 4.
X(a) (a.) (k,w) e + B (k,w) e Jm(kp) e (4.10)

() ,m
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The reason for the introduction of coefficients in the expressions
for the Xy is, of course, that § must satisfy boundary conditions in order
that it be an eigenvector of the operator defined by (63) and (64), and
the coefficients are to be used to satisfy these conditions.

Use of (4.10) in (4.8) produces the eartesian components of E‘s). These
can be expressed as components in a cylindrical basis, which is most
convenient here. In particular, the eigenvectors can be expressed in terms

of the vector cylindrical harmonics P , B _.and C_ as (Ben Menahem and
“m’ —m —m

Singh, 1972; Morse and Feshbach, 1953):

@@ =00 e +EP e + P60 ¢ (4.11)
where
P =& J (kp)er™ )
o 11 | Z m
_[e . 1) o 1
Em = bep 2o + e¢ (kp) 8¢] Jm(kp)e > (4.12) .
a l a " a im¢
Cn = ! o (TtF)W " % 3(kp)] Tnlke)e )
Here P B =P +C = B *C_= O.
“Sme~m -m-m “m-m




The coefficient functions of z are (Ben-Menahem and Singh, 1972)

(S) (s)

p{ (2,1 = v | -2l ) e P s

(s), (S)

-V
+k c;s)(k) e 5 & d(s) (k) e

s) ),

v’z
E:ls)(z,k) =k a:‘s) (k) e P + b;s) (k) e P
(S)
()| _.(8) oy s (s)
vs —c ®e + d (k) e
(s) (s)
-y iz vz
r:f) (z,k) = eis) K)e ° 4+ f‘gs)(k) e®
The coefficients a(s), b(s)
™ m

(S).
(o)

appearing in the expressions for the potentials X

Note that:

" (S) (s)
v (8) kP
(S)

K < k(S)
P

»

(S)

)

> (4.13)

» etc. are linear combinations of the coefficients

and similarly for vis). Also, the radiation condition requires that:
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b(n) - d(n) - f(n) - 0.
m m m

The boundary conditions of (4.3) must be satisfied in order that (4.11)

be an eigenvector. Using (4.11) in these conditions shows:

(1) that the vector function P, B , C can be eliminted from the

-m’ —m’® —m
boundary condition equations, so that only the coefficients
Dis)(k,z), etc. are involved in the boundary conditions.

(2) The boundary equations at each layer interface can be separated
into two independent sets, the first composed of the coefficients
of P and B in the second involving only the coefficient

—m —~m _
of gﬁ. These correspond to the P-SV coupled waves and the SH
waves respectively. They therefore also represent Rayleigh and
Love type surface wave modes when the eigenvectors are‘viewed as
modes of oscillation of the medium.
The eigenvector can therefore be viewed as the sum of two decoupled eigenvectors
R, (s)

which may be denoted by !m and L_;S). Thus

(s) _ R (s) , L, (s)
8 = Ry s Ty

R, (s) _ L(s) (s)
Yo =Dy Rt E TR (4.14)

L, (s) g(e)
<.

-F,
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The traction vectors associated with the eigenvector components jgés)

and Lwis) on planes parallel to the layer interface boundaries, at z = Zgs

will be denoted as R}‘is) and L!:ls) respectively. They are (Ben-Menahem and

Singh, 1972):

@ - 08 e 2, + B 0 3, |

> (4.15)

0 = K90 ¢

where

-v(s)z

D!SIS) (z,k) = zu(s) [(kz_ llz[ks(S)]Z) {aliS) (k) e P

v(s)z

—v(s)z v(s)z
+ b:f‘) (k) e P - kvsfs) {cis) e ® - dlf!s)(k) e S

(s) (s)
-v’z vz (4.16)
Elgs)(z,k) = 2u(s)[ - kvp {81518) (k) e P - bxﬁs)(k)e P }

: (s) (s), )1
-V 2 v b4
+ (kz— 1/2[k§s)]2‘){c;s)(k) e 5 4 dis)(k) e S }-

-v
F:is)(z,k) = - u(s)vés) [elf‘s) (k) e ©
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All the boundary conditions are now expressed by the P-SV and SH boundary

conditions. In matrix form they are:

(1) P-SV boundary conditions:

() 2) ¢+ ()
(s) (s+1)
E.™ (2) i EST (2) (4.17)
2% (2) Dt oy
(s) (s+1)
Em (z) . Em (z) ,
S S
(2) SH boundary conditions
Fis) (2) Flfls+1> (2)
= (4.18)
F& () FOD o)
z z
8 8

The equations involving the unknown coefficients a;f), béf),... etc. in (4.13)

and (4.16) may also be written in matrix form. In particular, at z = z

we have, for the P-SV coefficients:

Dn(‘s) (Z) a‘S‘S)
: = Kéf)(zs) : o (4.19)
(s) “(s)

E. (2 ] 4
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and, for the SH terms, similarly:
F(S)(z) e ()
m (s) m .
= KL (zs) ; (4.20)
(s) s)
Fm (z) £
z
s

The matrices Kéé) and Kﬁs) are 4 x 4 and 2 x 2 respectively, and are
invertable (e.g. Haskell, 1953; Harkrider, 1964). Here of course the
(s) ()

m

coefficents a ... are not functions of z. Therefore we can evaluate

the equations at z = zZ__y» where this is the upper boundary of the layer

(s) and get another expression for the constant coefficients. Thus

D;s)(z) a;s)
. ) )
: = 'ﬁ(zs (zg_PY{ - (4.21)
(s) ' (s)
E. () d
) 2,
%) 2) els)
e ) (4.22)
(s) L s-1
Fo o (2)
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(s) f(S)

i These may be solved for the coefficients a ..ot

in terms of the

| functions of zZ._1 and one has: ,
| !
3:18) 1 D;S) (zs—l)
. - | .
. © [KR (zs—l) ] . © (4.23)
s s
dm Em (zs-l)
(s) (s)
e : _ F (Z _ )
" =[K£s)(z ] o (4.24)
£(8) s-1) NOPIER
m m (Zs—l

Now we can eliminate the coefficients from (4.19) and (4.20), this giving us a

result which effectively propagates the solution across the layers, from

the zo_1 boundary to the z_ boundary. In particular, from

(s) (s)
Dm (zs) Dm (zs-l)

- -1
= Kl({s) (zs)[ KI(KS) (zs—l) ] . (4.25)

: (s) ~(s)
Em (zs) Em (zs-l)




and from (4.20) using (4.24):

m s-l)

P (2 ) ( - SIS 12X

s) s
- = K (Zs)[KL (25—1) ] (s) ) (4.26)
Fms (zs) : FY* (z

Now, let:

)

-1
(s) = ¢(8) (s)
R (zslzs—l) = Kg (zs)[ Y (zs—l)] (.27
} -

-1
(s) (s) (s)
L (zs Izs—l) KL (zs)[ l(L (zs—l) ]

/

where these are the Rayleigh and Love or P-SV and SH propagators. Then

»®) () \
n ] R(s) m

. : (4.28)
E:,S) E;s)

s s-1 >
FS’) Frff)

)
£(6) ) t £(s) /
: m s m s-1

where the notation has been modified in an obvious way for brevity.

Now the boundary conditions require
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p(s*+D) p(s) p(s) \ f
.m = .m = R(S) .m “
L é(s+l) é(S) é(s)

" -] n s m s-1
> (4.29) ;
p(s+D) §(s) £() |

m m m

= = L(S) ,
F(S+l) F(s) F(s) } '

m s m m s-1

the final equality because of (4.28). iUsing (4.28) again, with (s) taken as

(s-1) in the expression, gives

(s-1) (s-1)
Dm - R(s—l) | Dm
£(s-D) gls-D)

n s-1 " 5-2

o S Omramrub s TR TR R 3 R A AT 4 2

e

for example, with a similar expression for the SH propagator equation.
This can be used in (4.29) to eliminate the factor

p(8)

m

: t]

E(s)

m

s-1

and likewise for the SH equation. Clearly this can be continued until

we reach the z, boundary at the free surface. We get in fact:

¥
1




(s+1) (1)

*n - [R(S’R(S“D...k(”] ’m \

E(s+1) E(l)

m s m

° 3 (4.30)
Fis+1) Fil)
- [L(S)L(S‘D...L(”]
F(s+1) F(l) J
m m
s [o]

The final boundary condition to be met is the vanishing of tractions at the
free surface z = z_ = 0, so D7 (0) = EV (@ = FP(0) = 0 4n (4.4.30). on
the other hand the displacements are non-zero at z = 0., One of them in the
P-SV eigenvector may be set to unity for the eigenvector solution sought
here, with the eigenvector normalization factors used to account.for this
later. For the decoupled SH vector, there is only one displacement

amplitude and so it may also be set to one,with normalization accounting

for it later. Thus we have

D;s+1) 1 \
. - [ R (D ] €
E(s+1) 0
m (]
s v
> (4.31)
(s+1)
F 1
n [L(s)...L(l) ] )
0

F(8+1)
m
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with €, = Eil)(O)/Dil)(O). (Use of €, as defined amounts to dividing both
sides of (4.30) by D;l)(O) for P-SV and by F;l)(O) for SH, and then

redefining the coefficients so that D;(s+1) = D;s+l)/D;l)(0). Because of

our freedom to normalize the eigenvectors however,we can simply write
these new coefficients as before.) |

Therefore, if this relation is satisfied for s = n-1, then all the
boundary conditions are satisfied. (Note that [R(s)..R(l)] must be taken
as unity when s = 0.)

The coefficients required to insure that (4.31) is satisfied for all
s = 0,...,n~1 are obtained from (4.23-4.24) using (4.31). That is, we require
that (46.32) be valid for any s, in particular for s = p-l. The same
holds for (4.23) and (4.24) for s = p. Therefore taking s = p - 1 in (4.31)
and substituting the resulting relation in (4.23) and (4.24) with s = p

used in these, we have

¢:)) ' K

-1
m .
_1.® (p-1) ,(p-2) (1)
= [KR (zp_l)] [R R ...R ]

a®
m

LI [

Q O M=

> (4.32)

P -1 1
v - [K,‘f’)(zp_l)] [L(P‘l)L(P‘Z)...L(l’] o)

£(®)
m

when p 2 2.

Ty J3nq
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Defining:
_ .1—1 _
1@ - kP p R“’“”...R“’] ; n2p22
r 1 |
JI(‘P) - Kﬁp)(zp_l) LL("’l)...L(l)] ; n2p22 (4.33)
- q-1 |
(p) (p)
J = | K™ (z__.) » when p =1
R L P-1" |
- 1-1
J{?) = ‘-Kip)(zp_l) , when p = 1
then we have: ;
(») 1 ‘i
am €° t
(p) “
"¢ = IR 0 i
aP) 0
n :

(4.34)
e:r) 1
- J](.‘P)
f.(lp) 0

Here Jg is a 4 x 4 matrix propagator and J{p) a 2 x 2 matrix propagator.

That 1is:

1® - Jf{”(zplzo) , W JI(.“’? (z,]2)




propagate the solution vector from the boundary surface at z, to the

boundary at zp .

Explicitly, the coefficients are:

(p) P12 I
a €
m LRy © ‘
p) - S
P i P ;
bm : LJR ’ + Eo )
I - - ] (4.35)
(») ? P + g
" - ]
(r) © ]
dm J§ + €
Ja °
e(P) J(P) .
m - L in (4.36)
£®) JI('p)
n 21

With the coefficients satisfying these relations, then the solutions in

(4.13) are in fact eigenvectors of the operator of (4.1) and (4.2)>.

a




The Layered Half-Space Green's Tensor: Eigenvector Expansion in _the
Frequency Domain.

The eigenvectors for the layered half space were shown to be given

v = { Qéé)

n
} (4.37)

where (equation 4.13)

¥ =280 2+ BV B RV b g,

(4.38)
z pls) 4 g(s) | o(®)
~m

~m -m

The functions D(S)

n etc., satisfy the boundary conditions of (4.2) if the

set of constant coefficients (i.e., independent of z) appearing in these

functions satisfy the conditions of (4.35) and (4.36).

Therefore we have found eigenvectors such that

-1 2
P Likwk + Wy, = 0 \

E:szwéﬂ =0

vy > (4.39)

I[‘bk]] 3vl =0
[szwk]] =0 ),
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Here the original differential equation has been divided through by p,

RO S e womer -

the density, in order to provide the same differential operator,

_1L

p Ly, = L'lk that was actually used to generate the eigenvectors of (4.37).

The functional orthogonality of the y(r,k) can now be easily demonstrated

~m
"z

these eigenvectors. (Actually, completeness of the eigenvector set is

and this in turn can be used to obtain the expansion for in terms of

N T

-} also needed for such an expansion to be rigorous. However, we will obtain
the expansion without the proof of completeness, just using the orthogonality 4
of the J. Since the ﬁ: so generated satisfy both the differential equation
for a Greens function and the required boundary conditions then by
uniqueness of solutions for such an equaﬁion we can claim to have a
sufficiently proper representation in the distributional sense.)

The orthogonality of thé eigenvectors Y, viewed as a set composed of
members with different eigenvalues m and k, is a consequence of the self-

adjointness of the operator defined by (all) the equations of (4.39).

(Here m and k are eigenvalues or "quantum numbers" for eigenvectors of
8 q

the operator. Clearly m is a discrete set of integers, while k

is a continuous set. For a bounded medium, like a layered sphere, the
eigenvalﬁes appearing are m and 2. They correspond (one to one) to the

set m, k appearing in this treatment of an unbounded medium. TFor the
bounded spherical medium however both m and £ are discrete integer sets.
These differences are, as implied, a consequence of the bounded or unbounded
nature of the space over which the operator is defined, the basic operator
being the same in both cases.)

The self-adjointness of (4.39) is demonstrated by considering two

paem————teE—
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arbitrary, distinct members of the eigenvector set Y and (say) ¢, where
we use different symbols for these members for clarity. Since ¥ and ¢
are distinct they will have two distinct sets of eigenvalues. In particular,

the eigenvectors satisfy:

2
Loy = - 'y
SN 'y 6.40)
2
Loxt = - Vv'¢,

where Lik = p-lek is used, with the distinction of the prime ignored.
Here both m2 and v are real. The inner product of ¢ with the first of

these gives (see Archambeau and Minster, 1977 for details):

*
(ilkwk’¢£) = (wz’sz¢k )
\YJ v

(4.41)
s .
where
=4 [czkijaj¢& ] ) [Czkijaj$i] (4.42)

is the bilinear form. Here 3; denotes the complex conjugate of ¢£.
R .
le is the adjoint differential operator and is found, in Appendix II, (49) to be a

self-adjoint differential expression, in that:

(4.43)

[N

———a— -
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The inner products are defined, for example, by

= ‘ — 3
| (sz"’k"’z) s/ai(czikjaj“’k)%""

v v
Now integrating the last term using the divergence theorem, taking

ST 74 . 4 VBN AT, WS 43§ 1 rer S T r

account of the existence of internal boundaries 3v_ in v, gilves:

I

,/;k,kd3x - f [ﬂ (ani) -, (81131)] da

v
_ 8véo)

+ f-l[;,;z (Bu"’i) - wz(BziEi)]da

avI
where Blk is the boundary operator defined in equation (68). Now ¥ and ¢

g

STEL L A N T 7T ST e TPV

are eigenvectors satisfying the boundary conditions of (102),and (100)

plus (101) s their explicit form. Thus since

- ot e 4 e g

I[ u"’i]} = [Bli‘biﬁ =0
v avI

I

. [‘pi] = K‘biﬂ =0
avI 'avI
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then the integral over the internal boundaries vanishes. Likewise, simce
[Bzi"’i] - [Bzi % ]
(0)
avE

then the first integral vanishes as well. We therefore have that

3
ka’kd x=0

\Y

|
o

avéo)

We have as a consequence that:

(sz"’k,% ) = (“’z”‘zkd’k)
v '\’

Since ¥ and ¢ satisfy (103), then this gives

(o)

But m2 4 '\72, since ¥ and ¢ are distinct, so that we must have+°

+0On occasioh we will use <¢:|¢> to denote inner products as well as (y,4).

e = — -

%
Ei
b
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L v le> = f \bﬁl x=0 (4.44)
v \Y

Hence Y and ¢ are orthogonal in both the vector inmer product sense and
the functional sense. (i.e., the repeated index £ requires summation
over its range so that we also have a vector inner product on v.)

The vectors y of the set are therefore mutually orthogonal, however

we do not assume that they are normalized., The normalization factors

N:(k,m), Ng(k,m), and Nﬁ(k,w) may be functions of the eigenvalues m, k

and are associated with the vectors P , B and C of
~m’ —m ~

defined from the magnitude of the inner product:

\Y

v

In view of the vector orthogonality of P , B and € , we can define norms
-m’ —m -m

for each of the component vectors making up ¥, in particular:

(4.45)

N (k) = Em.gmd x %
v f

Na) = 8 58 a3x |
]
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In view of the fact that § is the sum of Pm’Bm and Cm defined in (4.37),

then the orthogonality of ¢ is expressed by (using (4.44) and (4.45) together):

f PP a3k = N6™ & (k-k") )
“m —m m m
.
/__Bm°_-3:l:!,d3x = W56 (k") ( (4.46)
v
/c ' a3 = nC™ s(k-k") /
—m —m mn
AY)

The orthogonality of the eigenvectors can be used to provide an explicit
expression for the Greens tensor ﬁg. In particular we have that ﬁg

satisfies an equation of the type
+ v = - 4ned8(e-r )
r r —-o

Here v is the Fourier time transform parameter, corresponding to the angular
frequency. Also ﬁg satisfies the boundary condition of the form _

We take ﬁg(g,so) to be expressible by an expansion in the eigenvector
set y(r). For brevity we represent the eigenvalue pair m and k by the
single symbol A. Further we write the sum over the set of eigenvectors as
a "sum" over the sets of m and k, represented by { . Since m is integer
and discrete while k is a continuous set then { is equivalent, in this case,
to an ordinary sum over the discrete set of m values after integration over

the continuwous k set., Thus we take:

e e e e e e B s e e et T ———— =

gy P ety

PEo TeEn-C = ey

=TT

T T TS, TRt o 7 < o
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q
A

ﬁg(E;.Eo) =fA (x, M) ‘l’p(}'_;)‘) (4.47)

where the A(go;k) are unknown coefficients for the expansion. They may,
of course, be functions of x and A as indicated.

Substituting this expansion in the differential expression for flg gives

. 2 = - 1 -
{Aq(z,o,l) [Lrpwp + v wr] = lmér §(r 50)

iaking the inner product with another member of the eigenvector set ¢,

and observing that
2
Lrpwp oo wr

in the above, we have
/Aq(lfo;") [(wz—vz) < ¢r|¢r>]= s | o an > (4
. .

Using this and the orthogonality of the eigenvectors, we can determine the
coefficients of Aq(zo;k) in the Green's function expansion (4'47)f
However, to obtaln normalization factors for the A.q in the Green's
function expansion which are consistent with the use of the ratio
(éllipticity factor ) €, in reducing the eigenvector coefficients in
equation (4.30) to those of (4.31), we must express the eigenvectors as the

sum of a P-SV type vectof and a SH vector, in the form y = y?’+ QP, and
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normalize _'P_R and _tl_a_L separately. This decomposition simply means that the
equations of motion Lrp'pp + wzwr = 0 and boundary conditions can

simultaneously be broken into two independent sets with one set satisfied
by ¢}, the other by y*. The analysis starting with equation (4.37) and :
resulting in equation(l'i.38):app11es to each operator set (differential

equation plus boundary conditions) involving _QR and 1:_]‘. Then il: is given

by
~m ~m ~m
Hy = glip*t 1My
with
~m 2 ~m m
RLR.k RHk + w RHR. = - 4p6k6R(r r)

.

=m 2 -m _ m _
plog M + 0 By = - 4n8p8 (e - )

T AT T W - T S

where §(xr 'ro) = GR(_I.:—rO) + 5L(£—ro)’ in which 8 and § are decompositions

L R
of 8§ such that <6R|3’i > = 0 and <6Ll1}3_ >= 0.

e AT ey

We are then led to results parallel in all respects to those already

obtained for the eivenvectors; and such that

R 2 2
JLXRIY [(m - Vi< | o >] =an<o(r - 1) | 40> (4.48a)

L, . 2_ 2 L| L L
x/;q(%’“ [(w -v) <y, | ¢r>] =br<s (r-xr) | 60> (4.48b)
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with GR(E - Eo) and GL(E - 50) being regular delta functions of r and

X, but with the added property that these are projection operators along

r—evnee—y

!F and 2} (e.g., Morse and Feshbach, 1953). Here:

R

¥ =P+
L

¥,

in terms of our previous definitions. Now we have that:

P Bl.m' '
< 'pl: > - ‘[ER.ER(QX = [Nm + Nm]cm 8(k—k") (4.49)
v
L L _,Cm' ' .
.<wr 9. > = N8 &(k-k') (4.50)<

where we have expressed ¢§ and ¢: as

e an L armee .
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e i T g

+
Further

| ‘ <8ple-x) "’2(5"') >= 3:(50;2\')
g L . - —'L ..
<bz-1) ‘ g (EsAt) > = ¢ (51"

Therefore (111-a ) and {111-b) give

4 R
¢ (xr ;A")
Ny 970

L
Aq(zo;k') =

4 3L(r 3AY)

L )
A(r ;A" =
q o NL(X') q -—o

Here we have set:
P B., 2 2
QY = Wt NG - )

N = o w? %)

+ _
-The notation ¢ indicates the complex conjugate of ¢.

[ C et —

I
i
1
'
1
'
B 1
.

(4.51)

e s o,

B R

W r e e e




Since ¢ = 93 + 2} is just one of the eigenvectors of the set and X' its

associated eigenvalue set, then it is equivalent to write

L - —q‘ -
R Qp(g,k) ¢q(£°,k)

NL(A)

writing this out more fully, using the appropriate representation'of the

generalized sum over A, we have
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ﬁg(_x:;x_ro) =y fdk{
m o \

1 .
D (z;k) P (p,¢3k)-
NR (k) [( " =

S Ak vy e

+ E_(z;k) §m(§,¢;k)-ép)('3m(z°;k) §m(po.¢o ;k)'Eq

+ E (z 3k) §m(p°¢°;k)-éq)]

. 1 ‘ . . R WA . — . - .
* Ni(k) [(Fm(z’k) Em(p’¢sk) ep) (Fm(zo’k)' gm(oo,¢°.k)-cq)]} (4.54)

Here & and e_ are the p and q components of the coordinate basis chosen.
Of course a cylindrical coordinate basis is the natural choice for this Q
representation. | [

The functions Dm’ Em and Fm are defined in equation (4.11) and gm’ Bm %

and C in (4.10). The coefficients in the function D , etc., are given by

(4.35) and (4.36).
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Representation of the Radiation Field from a Linear or Non-linear

e .

Energy Source

We have at our'disposal the integral representation of the spectrum of

a displacement radiation field in the form (equation (60)):

- = =q.3
l"ruq =/ pfpﬂpd xo
vadv (4.55)
[ o8]
P PI PPrj r o
avéo)

and the layered half space Green's tensor

> [.R R ~
- P (xrim,k) ¢ (xr jm,k)
Hq(g;r)=4n2fdk P X q o
p—o wJ Nm(k)

(4.56)
L -1, .
%(E;m,k) 'liq(}'_o,m,k)

+
L
N, (k)

Consider now the application of these relations to the representation
of the elastic radiation from a general energy source (e.g. non-linear).-
We will assume that the source is actually given by a detailed numerical
calculation of the motion due to some particular phenomena (e.g. an explosion)
which is most likely a very non-linear process. Suppose the source region
occupies some finite volume within the half space and, for generality, that
this source volume or nonlinear zone, may intersect the free surface. The
situation may be as shown in Figure 2. In any case v is the linear elastic

zone, which will be assumed to be a layered half space. The external

P
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boundary of v,-denoted as avE, can be viewed as being composed of two

(0)

sections, the non-intersected free surface, avE

, and the (elastic)

B boundary between the (non-linear) source region and the elastic zone,

e g PO N £ e

avél).

With the layer half-space Green's function given in (4.56), and neglecting

e Ay

body forces at least for the moment (i.e. the first integral contribution

can always be added later), we have for the elastic displacement field in

v (outside the source region):

4ru = ﬁq; - ufd |nda . (4.57)
q P Pr P pr r o
| avél)

We can presume knowledge of both ﬁp and ;pr.nr’ the tractions, on 3vé1), :
the source boundary, since in the present application we have supposed :
that the results of a numerical calculation are specified on Bvél) in the
form of Fourier transforms of ;pr.nr and u

The question is then, how does this excite the surrounding elastic
medium. The answer of course is given by (4.57) in the form of the surface
integral which gives ﬁp, the elastic displacement at any point in v. Ve

note that the integral involves avél) only, and that this is only part

of the nonlinear zone surface boundary that does not intersect the free

surface.

i The representation (4.57) can be put in more explicit form. That is

4 using (4.56) in (4.57) and interchanging the integral over the surface
(1)

3vg with the sum over m and integral over k, gives:

&
+




(4.59)

Here also it is clear that we can define tractions associated with y

(1)

the eigenvectors on the surface BvE . (Previously, in equations (4.13) and

(4.14), tractions on planes parallel to the layer interfaces were

defined and called !m‘ These are the tractions computed for the layer
matrix and used in the propagators. They are also therefore those given

by the standard numerical calculations, e.g. Harkrider, 1964.) These are
undefined until we choose a surface. In this regard we have some flexibility
of choice since any boundary shape so long as it's entirely within the

linear region around the source zone will do. Clearly a surface with
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cylindrical coordinate planes is advantageous. To be definite about the

(1)

matter we will assume that avE

is taken to be a cylindrical surface.

Thus, the eigenvector stresses when denoted as Wzr and W;r, so that:

R 9 R
wpr cprst axt ws
(4.60)
L 9 L .
Yor® Corse N Ve
o
. (L R L
can be used to provide the tractions on BvE s a ¥ °n_and ¥ _°n_. These
A : pr r pr r

show the explicit dependence on the normal, as well as shorten

(4.58). That is, we have

-R R R T
W - - ?/dkmm(k) [!PP(L)/ (Tpn n ) Wg da_
[+

avél) )
R ~ | =]
- wbq(z)/ (up) Vﬁrnr da_ ] (4.61)
avél)
~L L L ~ =L
Ut ;/ dk/N (k) [wp(z)/(tpr'nr) tbq da_
(" (1)
avE
L ~\
- wq(;)/ (up) Yr';’r nrdao] (4.62)
(1)
avE

LA e o el




where

Therefore ﬁs and ﬁz have the forms:

ok A R .. R R, .
Y Zm:/ Lqu(m,k) wp(z.m,k) + B (m,k) wq(;_,m,k)] dk
[+

[

<L C 1L L, L -
Yq §[Lqu(m,k) ‘llp(_’;',m,k) + g (m,k) q;q(_!_-_,m,k)] dk
o

(R,L) _, _1
B FIRD f
-~ m

avél)

These coefficients are the objects of interest, since once they have been
computed it is a rather routine matter to.evaluaté (4.6la) and (4.62a)

by standard procedures -- such as by summing residues in the k plane to
obtain surface waves -~ and by evaluating the branch line integrals, also
occurring in the k plane, by approximate methods to obtain body waves.
(See Ben-Menahem and Singh, 1972 for examples.)

Since we know the forms of w;R’L), as given in equations (4.11)-(4.13) plus

(4.35) and (4.36) we can calculate the Yéi’L)nr components on the surface

in question and then evaluate the integrals in (4.63) by a suitable numerical




integration over the surface, using numerically specified fields (;i) and

(Tpr'nr) in the calculation.
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Appendix 1

ST g e % o e

Use of the High Order Langer Approximation in Seismogram Synthésis

V.F. Cormier

Y TR P TR

The objective of this research is to develop a method of seismogram
synthesis that is more efficient in computation than existing methods yet

capable of predicting waveform modulation by zones of intense vertical

gradient of velocity and density. In routine use such a method can facilitate
inversion for both source-time functions and earth structure.

The last semi-annual report considered an earth having regions of

e Rt

intense but continuous variations in elastic properties. Representations

T

for teleseismic displacement in this earth were derived using higher order

~keog 3o

solutions in frequency to the radial eigenfunctions that solve the potential
wave equations. Research has been directed now towards the practical
evaluation of displacement using this representation. The higher-order H
solution to the elastic wave equations given recently by Woodhouse (1977)

in terms of propagator matrices is shown to be equivalent to the solution
derived for the higher order potential equations. It is shown that for
practical calculations it is best to describe the earth model as a series of
radially inhomogeneous layers, each having a constant raidal gradient in
velocity and density. Seismogram synthesis can then be most efficiently
achieved using the propagator matrix solution in either a reflectivity or

a mode summation method. i

Solutions to Potential Wave Equations.

The Fourier-transformed potential wave equations satisfied by P, SV,

and SH scalar potentials are given by Richards (1974) as




V2P+ pmz p+5p=.f_1_’-ﬁ__a_(ﬂ) ( .1a)

A+2u P 2 3r2 ar ' r -1a

|

2 K. r
2y 4w - - 1|3 BV
VV+uV+€SVV— 2 | 3¢ r] ( .1b)

pw L

2 pr
VH+TH+€TH=0 .(.lc)

for P, SV, and SH waves respectively, where B 1is an operator acting as the
non-radial part of the Laplacian. Separation of variables allows the

solutions to be expressed as a sum over Legendre polynomials:

P(r,w) = Z w(r, n) Pn(cosA) ( .2a)
=0
—
‘ Vir,w) = L [x(r,n)/(iwp)] Pn(cosA) ( .2b)
n=0
: H{r,w) = Z y(r,n) Pn(cosA) ( .2¢)
: =0 .

n

The constant factor dwp (i -1 , w is radial frequency, p ray
parameter) divides the radial eigenfunction for SV waves to recognize its

dimensional difference from that of the radial eignefunction for P waves.

TR e s

This difference arises from the definition of P and SV potentials and
must be considered when determining the order in frequency of their coupling

terms.

L e i U e i - i A ot — a4
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Substituting ( .2a- .2¢) in ( .la~ .1lc) results in equations for the

radial functions:

2 K 2
a°w 2|1 _n(ntl) _ 11]4d W n(n+l) 3X
—5tow [——2 —5 37 ]w + epw =3 [——2 (r) 3¢ + 0(—~ )] ( .3a)
wr pw~ |dr r

2 K
dX.,.w?-[_li_“_('z‘_*_;l] x+e:3vx=__~—21—[3 (—)+n(n+1)—+o(——)](.3b)
B wr pw T w

2
.d_§+m2 _];__.ri!ﬂ'_l.)_]q.ew[-_-o (.3c)
dr™ 8 wr

where W , X , Y equal rw , rx/(iwp) , ry respectively.
Taking a Liouville transform of eqs. ( .3a- .3c), making the variable
| change proposed by Langer (1949), and substitutfng wuwp-1/2 for n gives

the equations:

2":7 m Q
P
2 l '2 le + 6?] w
3ty 6,
2 2
K.r w Q 2 2 ~
S S P~ w p~ dX '\1/2 ~. 2
02 2 [ o Wt 5 qr (Op) 7 + 0(wW) + 0w x)] ( .4a)
p PO r
2 2
8 ; + ° Qs + |e + & ] X =
2 ’ 0 p =

K 2 2 o~
_ 1 w” pt X | AW e 1/2 ~
T [ PX 4 e +o® +0(w)] ( .ah)
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where the prime (') signifies differentiation w.r.t, EP S and i
2 it
_ L _Pan
Q = (5 3) ( .4d) !
r 1
{
g
1 1/2 A
Qg= & - 2)’ ( .4e) ,
g r

The variables EP S and functions GP . GS are defined by
’

7 2/3

gP=eP=_%der ( .4f)
p

~2/3
( .41)

T
7
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@
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n.
"

where r and r

P g are the respective turning point radii for P and S waves

e SR g o AT [T gy T 7 P Ty g o -

in the medium. The functions %, and gs are the Schwarzian derivatives
resulting from the Liouville transformation plus a term reuslting from the
substitution for n :

e!!' ellz 1

E =-Zel (ev ) +4r2

| The Schwarzian derivative can be evaluated in terms of the physical variables

|
s
|
i
|

r , a , B , and p by the identity
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] where the subscripts P and S are omitted for evaluation in either the P

or S velocity profiles and

T = ./f QP,S dr

Tp,s

The radial eigenfunctions may now be found to any desired order in
frequency using the fundamental series solution given by Olver (1976).

For

e ' 2/3 e
N aiw?’3 £) B_(£.)
W= a3 £ A(E) =——E P Lsa)
P m P 4/3 2S
m=0 MZS w m=0 w

. =\ _ : (5
R-a1w?3 ey D, o +aiwPey Y, B (Lsp)
- m=0 78 n=0

where A1i represents any Airy function solution of the zeroth under

equation and Am , Bm s Am s iﬁ are functions to be determined by

substitution of the series of eq. .4a and .4b and equating terms of equal
order in frequency. Thus it can be determined that Ao is always constant
in radius for P, SV, and SH waves and in terms of physical variables Bo
T e +86 +-E£ (Q2 +0,)dr for P ( .6a)
1 P P p P Ps . )

T2, Q
Tp

I,

H

Q
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r €y GS + > ( 5 + OSP) dr . for SV,

~ 1 f 5 T
2QSS QS
r

SV ( .6b)

and

1 f €T+6s dr for SH ,

SH ( .6c)

where Ops » USP are coupling coefficients defined by

2%,
_P o 1/2 ~
Ops = ¢ 3z (Op 80 /W, ( .7a)
W
_ 1 o o' A'\1/2
Ip ~© 2_ %z G (.7v)

in which the sutscript (o) denotes the zeroth order term in the solution
series for W and X . After substitution of Wo and Xo above, it
can be shown that the coupling coefficients OPS R GS.P have a strength
proportional to p/r . Thus at vertical incidence on a region of intense

vertical gradient the coupling coefficients Ops » GSP = 0 . This

continuum property mimics the non-conversion of P and SV waves vertically

H Tttt 7 e s, ah
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incident on a discontinuity. For non-vertical incidence the coupling

coefficients introduce a phase factor determined by the strength of the
function Kllp between r and the turning point radius. The pkase

factor acts to correct for the phase accumulated along the path of a con-
verted wave type from the conversion point. Because the coupling coefficients
require the evaluation of additional Airy functions in the integrand of
integral for the Bo term, the efficiency of the higher order potential

solution in seismogram synthesis would be poor.

Propagator Solution for Wave Propagation.

An alternative description of seismic wave propagation in an inhomo-
geneous medium can be made in terms of the matrix equation satisfied by
components of displacement and stress (Gilbert.and Backus, 1966). The

wave equation is thus written in the form

&1

= sM(r) E(r)

where F@ 1is a funcamental matrix solution whose elements are Fourier-

transformed components of displacement and stress. (s = -iw for a forward
+

Fourier—~transform sign of the form fe lwt dat).

In obtaining higher order solutions for F Chapman (1973) decomposed

the matrix M into a sum of matrices of differing order in frequency, i.e.,

J
M - @ o3
3=0

where J = 2 for SH waves and 4 for P or SV waves. Wasow (1965) descriBed

how a uniformly asymptotic solution to such a system can be formulated

.:
s
|
b
|
:
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similar to the solution eqs.( .5a- .5b) derived by Olver (1976) for a'single
component system. Using a series of similarity transformations and Langer's
(1949) variable change, Chapman (1974) obtained matrix equations analogous

to the transformed equations ( .4a- .4b),

e TTIT AR

- Z E(K) (€) S-K-‘E ' ( .8)
=0

i

and solution formulae analogous to eqs. ( .5a- .5b),

©o

-12° 1® ® s

=0

fiv )
~~
©
S’

I

where
/3

hices?/3) 5i(es?/3)

l

!
H

S—1/3 : 2/3)

s™2/3 py(es2/3) Bi(ES

(Here the symbol A over a matrix denotes that the Langer variable change

of eqs. ( .4f- .4g) has been made.) Chapman (1974) determined the matrix

2(0) in a flattened earth as

L@ =(a (z,) ) 1/2
= F®

where 1 is the identity matrix and Za is a reference depth most conveniently

( .10)

(]

chosen as the earth's surface.




Using Chapman's (1974) results for higher order matrices g(K)
(2)

, 2 etc. can be

and

Wasow's (1965) theorems, the matrices 2(1)

determined. The procedure solves for the functions qfl) ’ qéi) in

solutions of the form

0@ =@ © 1+ @ F? ¢ .112)
p® = p® 4 o ® (& 1+ P © FO ¢ -119)

subject to the compatibility conditions

y©@ p® | p® WO Lo g g
K
] -
e - Y ) p Deorxto (.12
= j=l
where 2(1) is a particular solution and (') signifies differention w.r.t.
4

the Langer variable § . TFor example by considering the matrix system

for SH waves a particular solution to the compatbility condition for

2(1) is given in a flattened earth by
« 0
c -—H 9

2uEE
p{M) - - ( .13)
LR J 0
-39 C
28

where (+) signifies differention w.,r.t, to depth Z and C is a constant.

By again substituting the general solution (11b) for Q(l) in the compatability

condition it can be determined that
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-2 . e . .

(Em,. d., +m,, d,.)E" =d., EE -d,, E -

(1 _ 1 / 1 12 " %22 “o1) 12 21 a2 .14b)
VEE

q
Coa

where a 1is the radius of the earth and m s, d,. denote the

1] ij
ij elements of the gp and le) matrices respectively. Now substituting

this result in eq. ( .9) with expressions for the elements of E(o)

the solution for the fundamental matric Z' to second order becomes

E”' q](_o) Eo + T /s

+ @)
41, 7 9

d,. + & qgl) 0

When the quantity d12 = qél) is expressed in a single integral ISH

1)

over depth, the quantity d2l + £ 9, expressed in terms of 1 , and

SH
the varible of integration changed from the flattened depth coordinate

Z to radius r it can be shown that

r

q P -1 / €p + g dr  -Igy

— —— =

+ q =
12 2 ZQS QS_ ZQS
s




and

( .16b)

Q.1
(1) , -1 S "SH 1
dyy + &7 v £372 [ 7 T3

T:I'Ec
+

vvve o]

—)

The results given by ( .l6a~ .16b) for a spherical layer are equivalent
to those obtained by Woodhouse (1977) for SH waves in plane layer. Note
that the integral ISH is the same as that derived for the higher order

potential term Bo in eq. .6¢c for SH waves.

Practical Evaluation of Seismic Displacement

By Watson transforming the partial wave expansion the seismic dis-

placement components uP R uSV R uSV can be represented in the frequency

domain as

3
iw” M ,
o (r, B, 60) = - —————%—_/rFP WPy v P P e (172
: 4npoa T

sv 1’ sV (1) (1) (2)
uy (ro,Ao, 9, w) F7ox (ro) X (ro) Q dp ( .17b)
r

o

B~

4np03A

©

iw™ M s

PRy Wa) y Ve o® ap (7o)

[~)

U:H (r, AO, ¢’ w)

4mp B

[= 3

r

for a shear dislocation centered at radius r, with seismic moment Mo

P SV SH
and a radiation pattern described by the factors F , F , and F .
For a continuous earth with regions of intense gradient the last semi-annual

report considered the feasibility of calculating displacement by inte-

gration in the complex p plane using the respresentations given by

eqs. ( 16a—- .16b). If the regions of intense gradient are sufficiently

—— —
P




76

deep, the Airy functions in the higher order representation for the radial
eigenfunctions w, X, y may be replaced by their asymptotic approximations.

Thus w, x, y are approximated by

— i

(1) 1/2 +in/4 +T _ 1

w(2)~ Olo e e p 1+ i [:_[g_ ) ] ( .18a) i

~ TuQ, o2 T T -10a !

L — .

(2) 81/2 e+1'ﬂ'/4 eilTS 1 ;

X 0 1+ V.32 ( .18b) ’

~iwp Tw Qs -—w -2 72'rs ) :

1) 1/2 Hiwl4 +it
ROPE L PR S I ( .18¢c)
Trw QS - w SH 72 TS

for (1) up or (2) downgoing waves.
The representations given by eqs. ( .17) and ( .18), however, are
additionally limited in practical use to situations in which the coupling

coefficient present in 1 I , and 1 can be neglected. The

P’ SH sV

coupling coefficients themselves involve the evaluation of Airy functions

of both small and large arguments, making the evaluation of IP and Igy

very inefficient. A far better representation in practical use for P-SV

e Tl 13l 1 i 8 RGN Ty P . VAT § PO A 4 £ oy 81

displacements is given by the higher order fundamental matrices determined
by Woodhouse (1977). The higher order matrix correction to the fundamental
; matrix for P and SV waves fully accounts for wave-type conversion and in-
volves integrals no more complicated than that of the ISH type. A given
displacement component observed at the earth's surface can be calculated

from the product of propagator matrices for each model layer with velocity

and density describable by functions analytic 1in velocity. For example,

to r

the propagator matrix from the boundary radii r 1

2 of such a layer

can be written as
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e

B(r,, 1)) = E(r)) Eh(r) ( .19)

-1 1

vy B(r) Qo+ dw o, g(l)(rz)) $(r,) G(x,)

cglay ¢lap a-wle 1 Wey e 1

T e e SR e T

Woodhouse (1977). The elements of R are simple functions of elastic

constants density and ray parameter. For practical evaluation, the matrix

products ¢ G and g_l 2-1 can be expressed as matrices containing

up and downgoing generalized cosines and radial eigenfunctions using the

definitions of Richards (1976)

_ coég cos} y(l) 0 :
¢ G- 8 B ( .20a) ;

l_ 1 1 0 v




Fuchs and Muller (1971) describe how a displacement component observed
at the earth's surface can be calculated using an integral representation
equivalent to that eqs. ( .17a- .17c¢) but in which a reflectivity function

calculated from a product of propagator matrices substitutes for the radial

eigenfunctions w , x or y . An alternative representation of

displacement does not Watson transform the partial wave series and instead

takes a truncated sum of the discrete modes n = wp - 1/2 (Sato and

Usami, 1963). This representation allows synthesis of a longer portion in
time of the seismog;am from body to surface waves. The use of Woodhouse's
(1977) propagator matrices in either method eliminates the need for describing
the earth model as a stack of many plane homogeneous layers. Langer's
approximation to radial eigemfunctions, embedded in the Airy functions

- matrices, fully accounts for velocity gradients
and boundary curvature of radially inhomogeneous layers. A matrix solution
method is capable of handling mode conversion more efficiently than the
potential solution.

Since layers may be inhomogeneous, a question then remains of how

many inhomogeneous layers are necessary to describe an earth model. In

principle the earth model may be completely continuous. At sufficiently high
frequencies the next higher order term for the fundamental matrix accounts for
the effect of regions in which velocity and density gradients are large

and rapidly changing. In practice, however, it is seen that it is best not

to represent a region of rapidly changing velocity and density gradient as
a single inhomogeneous layer, e.g., representing a low velocity zone by
a parabolic function or a transition zone by a hyperbolic tangent function.

In these cases the integrand of the integrals ISH etc. in the higher order




matrix would be large and rapidly changing at those depths at which the

velocity and density gradients are rapidly changing (Figure 8). One must

choose between either increasing the number of inhomogeneous layers in the
earth model, and thereby the number of fundamental matrices to be evaluated,

or increasing the computation time and magnitude of the higher order correction
to the fundamental matrices. Representation of the earth model as inhomogeneous
layers of nearly constant depth gradient in velocity and density clearly

most efficiently comprémises between these choices. This representation
minimizes the effect of the higher order correction to the fundamental

matrix and in many cases allows the integrals I etc. to be evaluated

SH

using the three point evaluation scheme described by Jeffreys and Jeffreys
(1956).

In the next research period a practical computation code will be developed
incorporating higher propagator matrices in a either a reflectivity or mode
summation method of seismogram synthesis. The method will be tested in speed

and accuracy against other exist .. methods of seismogram synthesis.
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Appendix 2: General Elastodynamics Representation Theory for Inhomogeneous
Media with Moving and Fixed Internal Boundaries.

(1) Conservation Equations'in a Linear Elastic Medium

+
The linearized equations of motion may be written as (Archambeau and

Minster, 1977):

1.‘“\1Y = pfq s a,v,8 = (1,2,3,4) ' 1)

Here, uY is the space~like displacement field

uY = (ul,uz,u3,0)

while fu is the space-like force density

f(1 S (fl,fz,f3,0)

and x is the four vector:

x.Y E (xl,xz,x3,x4) = (xl,xz,x3,t)

The elastic operator is given by:

_ 3 [ |
Lay = axB (Casyé 32‘5) (2)

+The summaﬁion convention for repeated indices applies throughoutﬁ) I?g}ces
excluded from this rule will be enclosed in parentheses, e.g., Gj4  u implies

no sum on n, but summation on the j index over its range of values (1,2,3).
Also, Latin indices will range from 1 to 3, Greek indices from 1 to 4.
Cartesian tensors are used throughout, so while subscripts and superscripts
are used as is notationally convenient, they do not denote covarient or
contravarient components.
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t

with CGBY5 the elastic-inertial tensor:

Cagys = = Cyqpy 5 1-3ok,1= (1,2,3)

caByG = 0 ; otherwise

with Cijkl the usual elastic tensor. For an isotropic elastic medium

Cogrr = 2480 * (3850 + S5850)-

cijkl and CGBYG obey the same symmetry conditions in all cases, namely:

Cigk1 = Cyaer ™ Sy = Crasj

and

Cagys = CBays = CaBsy = CysaB

An alternate form of the equations of motion is obtained by defining
the generalized inertial-stress tensor:

Ju

= X
Tag © caByG 3x6 )
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Then, from (1), we have the equation of motior{+

T

8,8 = Lo 5)

et = e e

Finally, the natural boundary conditions in elastodynamics may be

expressed in terms of continuity conditions involving To Thus, if we

B.
consider general media in which we admit the possibility of moving
boundaries, such as a growing failure zone or moving phase boundaries, etc.,

then the boundary conditions can be exﬁressed in compact form if we define

a "space-time normal" to the surface as a four vector Ngs where

ng = (my,ny,n5, ~ Ufny) (6)

where @i = (nl,nz,n3) is the ordinary spatial normal to the boundary surface _ :

and U: is defined as

* .
Uy = Uy - v, , D
vhere v is the particle velocity within the medium into which the normal
to the surface is directed and U is the velocity of the boundary suxface.

The boundaries within and enclosing the medium will be designated by

*The usual notational convention for partial derivatives will also be used
occasionally, that is:

3.8

8 ~ - ]

i
t
|
o
i

9T Tap 8 © 7
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the symbol E. The boundary condition expressing conservation of momentum
across any interface or exterior boundary of the medium is (Archambeau

and Minster, 1977)+

MrgneD; = © (8

written out in component form this becomes, using the definitions of T

aB’
and nB:
Cv,v. -T, Yo T_=0 (8-2)
pvkvl - Ty n2 , . a
where -
*
V£=V£—U£

is the particlé velocity relative to tﬁe moving boundary. The tensor
le is the ordinary Cauchy stress tensor. |

' Clearly, if the boundary moves with the particles of the medium, in the
sense that ﬁ:nz = 0, then v: n,6 =0 also:and the equations (8) reduce to

the regular continuity of traction conditions across I, that is:

ar, ,n, 1, = 0 . ~ (8-b)

+The double bracket notation [IFIJE is used to denote the change in a
function F on crossing a surface . That is:

OFD; = F(z,) - F(z,)
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The remaining boundary conditions express conservation of mass and

energy. They are (Archambeau and Minster, 1977):

Tt T g p e

(a i} v:nz ;=0 (9)

and

*
E(oEvi - vaki + qi) ni',DE =0 (10)

Here 9, is the heat flux and E is the total energy
pE = pu + p/2v£v£ + pd

wvhere u is the specific internal energy and ¢ the body force density potential,

-_ 9
so,fu = = 3% ¢.
a
If the boundary moves with the material so that the boundary is carried
' *
normal to itself with the particles (i.e., Upn, = 0), then (9) reduces to

continuity of the normal particle velocity across I, so:

[Iyznlljz =0 (9-a)
In this case (10) reduces to

v D & = D9 Dy (10-a)

where tk = Tklnz are the components of traction. This relation simply

expresses the rate of heat production on the boundary (in terms of a jump

in heat flux) if there is relative slip of the material on opposite sides




of the boundary. This slip is constrained to be along the boundary,

however, because of the constraint imposed by (9-a).

If the physical boundary is such that a no slip condition is warranted ~

that is [I&kl]z = 0 - then (10-a) reduces to:

qunz]]z =0 (lo‘b)

This just states that the heat flux must be continuous across the boundary.
Since thermal effects are of second order in such a situation ('welded"”

boundaries), then this boundary condition may be neglected in solving for

the field hu from the equations of motion. The boundary condition of

importance, in addition to (8-b), is then the condition of no slip, which
requires:
v O, =0 - (11)

If this continuity condition is satisfied,then (9-a) is automatically

satisfled. Usually (11) is expressed more strongly through the use of the

(Gufficient) displacement continuity condition. In particular
ﬂ“knz =0 (11"3)

It is important to note that (11) and (1l-a), amount to assumptions

regarding the physical processes at the boundary and are not necessary

conditions, the most general case being covered by the relations (8), (9) and (10).
However, it is often the case that the boundary may be considered to be

"welded" (for solid-solid interfaces) and then (8-b) and (11) are the




appropriate boundary conditions.
In the cases to be treated here we are concerned with the simpler
case of welded internal boundaries (solid-solid contacts). In this case

we consider solutions of the system:

Layuy = pfa

[IB u I]z =0

ay Y (12)

EI“RJJZ =0

where the "boundary operator" ELY is defined as:

= a_
Bay = " [CGBY5 3x6] (3

On external Boundaries or solid-fluid interfaces the displacement condition

is either absent or replaced by:

[Ivanaljz =0 (14)

e T T Ve
applies (the motion of the boundary normal to itself is with the material

particles) then the boundary conditions in (12) reduce to the ordinary

continuity conditions for traction and displacement.

+In the linearized elastodynamic theory,boundary motion is neglected in the
sense that all fields are evaluated at the undeformed boundary position.

For an external boundary this leads to neglecting the continuity of normal
velocity condition.

if one or both materials are fluid.+ Since the condition that U*n - v*n‘ =0
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The boundary conditions expressed in (12) may also be written in
/

the matrix operator form:

B
RLEN =0 (15)

§
wY

(2) Green's Tensors for the Linear Elastic Medium

The Green's tensor associated with the elastic operator Luy can be

. defined by:

B, . _ AB , (16)
LaYGY(-’E’l‘o) = A, (x,x)
Here Agis the generalized delta function
B .
By = 4w 8 (-8 ) (1-8,,) 6(_->5—§°) (16-a)

As before the coordinate vector x is the four vector with components

(xl, x2,x3;t). Similarly, %, is a coordinate four vector. Thus G$ is a
second order, two point tensor. Specifically, G$ corresponds to the
space-like displacement at x in the B direction due to a point (vector)
force at X, in the y direction. Since G$ is space~like, then the time-like
component Gz is identically zero. Gs plays the roles of a propagator

for elastic displacement fields since solutions of (15) produce functions
Gs obeying the relations required for displacement field propagation in the

medium from one point (50) to another (x). In view of the meaning to be

attached to the Green's function Gs, only causal Green's functions are

e

et oo e st

R ortut o
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desired, so that Gs must also satisfy

05(5,50) =0 ; x <x

8
Tuis means that GY must have the property

i i g e L

k 4 k 4 k 4 k 4
( 0, 0) (xo) Xn3X ,-X )
The transmission properties of the medium are expressed by the opera’ o

However, the full specification of the medium, including the nature of the

external and internal boundaries, is achieved by specifying boundary

conditions.

Therefore complete specification of Gs requires a statement of boundary

conditions. For compatibility with the boundary conditions of (12)

we can take:

(s c? Oy,=0
ay Y 4 a7
o, -
or
Bay GB
Y =0 - (17-a)
6UY :

At "uawelded" boundaries (solid-fluid; fluid, solid-vacuum) only the first

of the relations in (17) applies in general, while the second condition

is replaced by the normal velocity continuity condition,

Sy,

N s s

e o A e e AT oy,
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B = -
[[Gv,lo"YDZ =0 (17-b)

when- a fluid is involved. At the exterior boundaries of the medium (usually
considered as an interface with a vacuum) only the traction condition need
be applied (the first condition in (17)).

The equations (15) and boundary conditions like (17) p1u§ the causality
condition, define the complete operator for Gs.

The operator to be used to generéte the Green's tensor G$(§;§D)
associated with the displacement field us(g) is ideally to be chosen so
that G$ can be employed to propagate known initial values or boundary

values of the field ug through the medium, so that u, can be predicted at

8
other space-time points. Thus, Gs is to be such that it acts like a simple
transfer function. 5 necessary condition for Gs to act in this manner is

that it satisfy (15), plus the causality condition, plus boundary conditions
accurately reflecting the properties of the medium like-those of (17). However,
as will be seen in the following section, when the field ug is known on a
particular boundary 20, then it is appropriate to use homogeneous boundary
conditions for G: on this boundary. (This statément anplies to tipe-like
boundaries, for initial values, as well as to space-like boundaries.)
Consequently, the space-time boundary condition for 20, the particular

surface over which the value of u, is known or specified, is of the

homogeneous form,

)

B _G =0,

ay Y Zo
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with the notation here specifying that the quantity is evaluated as a

limit from within the medium on one side of the surface Xo. The role

of this choice of boundary condition on Zo for Gs will be apparent in

the following section, where it will be seen that Gs will then have the

characteristics of a transfer function for the displacement field u

g
However, it is both necessary and advantageous to use a causal Green's

function, from the wide class generated by (15), satisfying boundary

conditions other than those of the "associated"field ug- This arises from

the fact that it is usually as difficult to determine the appropriate
Green's function (satisfying all the boundary conditions) as it is to

obtain complete solutions for ug itself. Thus it is usual to relax the

boundary conditions on the Green's function and to obtain a Green's

function that provides an approximate "transfer function'" for ug. Such

procedures result in approximations for the field ug elsewhere in the
space. Aspects of this approximate technique are also discussed by
Archambeau and Minster (1977), for elastodynamic relaxation source

representations.

Yo,
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(3) Green's Tensor Integral Equations

The formally defined properties of the Green's functior, in particular
the differential relation (15), can be used along with the differential

equation involving u, in (12) to obtain an integral equation relating the

B8

value of the field u8 at all points in the space to known or specified values
on space-time boundaries.
In particular, using Green's theorem in the four dimensional space 2,

we have for two fields with appropriate properties of continuity (Archambeau

and Minster, 1977):

* 4
(e, = @, LW, + JJB’Bd x (18)
where the inner products are defined according to:
(La,v)q = fv L v d . (13-a)

ooy y

. *
Here (Lay) Z | is defined in (2). The operator L 1is the adjoint operator
to L. It can be easily shown that L is a self-adjoint differential expression

that is: L = L*.

The quantity JB is:
J8 v, CGBYG wy,& - wY CuByd VQ,G : (18-b)
with CGBY6 the elastic-~inertial tensor defined earlier. It is evident that

a formal application of Gauss' theorem to the final integral in (18) produces

a "surface" integral over the boundary of 9, involving the projection of J8

on the normal to this surface as the integrand. We note, in fact, that this
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is JB"S’ and that

JBnB =vi[B w]-w

[B v.]
Q" ay y [o] ay Y

where Bayis the boundary operator of (12) and (17). It is this relation that
explicitly displays the role of the boundary conditions in the integral
equation (or solution) for ugs which will emerge from (18).

In the important cases in which the fields, or L itself, have first or
higher order discontinuities, then (18) cannot be employed in a direct,
straightforward, fashion. The physical situation in which the medium has
internal boundaries across which the material properties change is a particularly
important example. Further, this discontinucus behavior maj involve either

N fixed or rapidly moving boundaries, so that it may be space-time coupled.

Thus it is critical for applications that the more general discontinuous

case be considered explicitly. To do so we can redefine the inner product

over the space R, as:

4 4 _
(w,v) g f VoloyWy 4 X ...t f VolgyWy @ X 19)
(1 ()
1] Q
where the Q(P) are sub-regions, divided along space-time boundaries, within
which all quantities in the integration-are continuous. Implied here is a

separation of the sub-regions by a space-~time strip of width "2e" along the

surface of discontinuity, with the limit €+ 0 applied to the sum of integrals.

We can, however, also write this as

e ———— s e a o —




b e o Tt ek o il

T A s 20 AR % 4 o 8 A i e

93

Ht

4 4
(Lw,v)‘2 = f VGLGYWY dx = vaLquY d'x (20)

1) N) 12}

9( ® .- GQ( I

if we merely take note of the fact that this integral form can always be
written as a sum of integrals over the disjoint sub-regions defined by

sz, (or Me--00 ™),

9. -00 where ZI are the internal surfaces of discontinuity
within ﬂmf To be definite 9(1) is bounded by one of the exterior boundaries

of Q while Q(N) has, as a boundary any other exterior surface. (This "surface"
may be at the origin or at infinity.) Then all the Q(P),Z £ P <N, are

bounded by internal surfaces of discontinuity in the medium.

With this inner product definition in ? we can apply the generalized

®)

Green's theorem of (18) to each subregion @ ‘. It follows from (19) and

(18) therefore, that:
(L, 9)g = (@, L) + / Ig.8 a*x ' | (21)
QGEI

Here the inner products are defined by (19) or (20) and the previously

mentioned limit procedure applied to the subregion integrations is implied.

+The symbols ® and © denote the set theoretic sum and difference. Thus,
0y . denotes the space Q with the points of ?}} the surfaces):I deleted.
For N such surfaces, this is equivalent to - -80(




This result is nearly the same as (18); and indeed is the same if we
/

always think of @ as the set of subregions in which the fields and the

differential operator are continuous. However, (21) makes this fact clear

and, in addition to being more explicit than (18) in showing precisely

how ;nternal boundaries of discontinuity enter the problem, it is also

rigorously derived for the general case.

Some care must clearly be used in applying Green's theorem along with
Gauss' theorem to the elastodynamic problem to obtain an integral relation
for the displacement field in view of the fact that internal boundaries
are important. To obtain the desired relation we take wY in (21) to be a

two point causal Green's tensor Gs satisfying (15) and v, to be a displacement

field u, satisfying the differential expression in (12). Then considering the
inner product relation (21) over the coordinate space X, (the "source

coordinates, instead of the "observer!' coordinates x) along with‘differential !
expressions with x as the independent variable, one has (Archambeau and

Minster, 1977)+:

IR

+Archambeau and Minster denote the integration region simply as §I, and
implicitly use the general definition of 2 as the set of subregions in
which continuity holds. Here, however, we will be more explicit about
this restriction on the integration and write QQEI, with the implied limit
to be taken. :




4, () = / plxy) f£,(x) Cpluin) a*°
QL '

Moo, - B, 4 o
B ./.3 {Ga(i’-’-‘o) TQB(')"'D) uu(lco) GaB(E’-’So)}d x
oI,

The displacement field term on the left side arises from anv integration of the
left side of equation (21) using the genefalized delta function in the
differential equation for the Green's function. The first term on the right
side is the same as the inner product appearing in (21), with L::,YuY = LO‘YuY
.replaced by its equivalent pfa, tfrom equation (12). Similarly, the final '

integral is as given by (21), with JB 8 being replaced by its substitutional
L]

u
8

equivalent, J g where
)

J:(E,g) =G2(35;§0) Tas(l‘o) - “a(l‘o) Gts(ﬁ;zo) (23)

The Green's inertial stress tensor st is defined analogously to the regular

inertial-stress tensor TGB (equation 4); in particular:

GGu(z;_Jﬁo)

o ox

8

\Y . =
GuB (35-’30) CaByG ()

As with JB"B’ we note that:




so that the previously discussed boundary conditions appear explicitly in

the integral equation (22).

af and G:B

both have time-like components. Because of this mix of space~like and general

The fields G: and u, ate, as noted, space-like,whereas T

four dimensional tensors in the bilinear form JE, the reduction of the final
integral in (22) to a surface integral over the bou;xdaries of 9 is most
simply accomplished by separating the terms into pure space-like and time-
like components. Thus, writing out the tensors in component form and
separating the result into time and space-like integrals gives for the final

integral in (22):

) u u |4 0 _
/ 5‘2 [GaraB T Yy GuB]d x

ner,
d m 4 o
/ o [Gk Ty ~ “k(’:z] d'x
fer,
g™ )
3 kY. mf Yk 4 o (26)
-jaxzukpaxo kaaxo d’x
QoL 4 4
I

The first of these can be reduced by an application of the divergence

theorem to the spatial coordinates, so that:




) N) L
et N
. m m
= / de, E :f ( )[Gkaz - “kaz] n da.
o p=1"3v'P

(r)

where the sum is over the ordinary spatial (subregion) boundaries 3v
and the integrals over time and space are separated. We can separate the
set of boundary surfaces av(P) into two groups, that is, into those
defined to be the external boundaries of the entire medium and those that
correspond to internal boundaries. The latter, of course, always are the
common boﬁmdaties between two shbregions. Becausé the normals B‘p) to the

()

surfaces are always directed outwardly from any subregion v s then on an
interior boundary we always have g‘p) = - Eﬂp+l). Therefore the surface

integrals arising from the individual subregion integrations on common

(internal) boundaries can be combined, and we obtain:

Y e
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[%;;[kkl “kq:z]d":] [j%kkl “kG;:n}“n"%

9921

_[ [[ Cr ke “kG:z]] “zdao] (27

where the double bracket notation in the second integral over ail intemmal
boundaries avI within the medium denotes the change or jump in the quantity

within the bracket across the boundary surface. That is,

[Jl:“u = J:'l(a\)(p)) _ Jl;(av(P*'l))

for allp = 1,2,...,N. Here J? denotes the tensor product in the integrand

and Jf(av(p)) means the quantity evaluated on the internal boundary
separating the th and p+l££ subregions approached (in the limit) from within
the pEE subregion, while J:(av(p+1)) is the same quantity evaluaﬁed in the
limit by approaching the boundary from the (p+1) subregion.

In (27) we have suppressed the subregion indexing (over P), so that _
the sum of surface integrals over each of the internal boundaries is replaced
by the convention that dv, represents all‘the internal surfaces. The surface

integration is to be taken over all the disjoint surfaces. The same convention

of course, applies to 3vE, which represents all the external spatial surfaces

of the medium.

B A T
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.-: The final integral in (26) can be written

b -~

9G 9
L O R el |
ax 9x ax

4 4 4

o= 2w

"

L Qer

-
. L

. .
t m
, 3G 3
) k m %11 .3 0
[dtofat wilPse | S (f o d"x
(o] [o] [o]
(o]

veavI

where the spatial volume vQBvI excludes the internal boundary points and

implies, instead, limits from opposite sides of these surfaces approached
from within the separate spatial subregions. Further, veavI includes the

possibility of moving boundaries, either extermal or internal. ,Tﬁerefore

veavI may be explicitly a function of time to.

Following Archambeau and Minster (1977), we observe that when

oy~ T A T

vOavI is a function of time then the transport theorem provides; in effect,

the means of interchanging the partial differentiation with respect to

e

time and the time dependent spatial integration. Specifically, for any
function (scalar, vector or tensor component) of the deformation or flow

in a medium, then (Archambeau and Minster, 1977)

ot
o o
v'(e) v (e ' ()

d 30 oF 30
—&-[.Fdx= d'x +/FU£nEdao

where v' is any volume within the medium and Uz is a component of the boundary

velocity. If Uz is the particle velocity of the material points then this
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-

is the ordinary Reynolds transport theorem. The form above is a generalization

of that theorem. Ordinarily, in linear elastic theory, U, is the particle

L
velocity and the last term is neglected as being of second order. However,
for rapid boundary movement -- such as for a failure surface boundary -- this
term cannot be neglected.

If we apply this theorem to the last integral term in (26), taking

F to be the integrand in (26), and taking care to partition the region

vedv_ along the internal boundaries, we have:

1
2 G\ of %\ so
— —-—-.Gp—-d =
ax® | k| ® 5o o Y

J 4 4

201
t+ acz m auk 30
‘/. a5\ P ) %\ o d
veavl
t+ m

Gy ]
k "k
[“k (° —t;)‘ % (° 5‘{;)] Uyngda, 28)
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Here we have used the fact that Uz is continuous across all boundaries, by
7
definition, and that the normals from one subregion to the next change sign

along their common boundaries.

o

The last two integrals in (28) can be combined with the integrals in
(27). The first integral in (28) is to be treated as a Stieljes integral
of the form

t+

j dfm(to)

o .

where fn(to) may have step discontinuities within (o,t+) due to discontinuities
along time-like surfaces in @ (Archambeau, 1968, 1972; Minster, 1973;
Archambeau and Minster, 1977).

Now, using (27) and (28) in (26) gives: -

' t+ ' f
3 _tem -yt dho = w40 . ’

[ 0 [GaTaB uuGaB] d'x ] dto -[ JBana | %
QoL (o] VE

B
I

t+ . t+ .
u o 3 0
+ [ dto f[[JB"B]] da” - [ d [[ J4d x] (29)
vy ° A

993\»1

where we have combined surface integral terms in (27) and (28) and used the

definition identities (in linearized form):




[ dy -
"8 = | Tie” P o, Yy | my
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Ghang = | Gy — ° T Up | ™

h

along with the fact that

u u H
JB caTaB - uaGcB

and

e 3
4 _ G Y
Aeofnit-qi]

Throughout we use the linearized representation of the generalized space-time

normal n,, which is:

B’

7\8 E‘(nlsnznn3’ - U!.nl)

where n is the ordinary spatial normal to a surface.




Consequently, we may now write (22) in the form:

bru (x) = / plx) £ (x) Gz(gc_;_)so) a%x®
0L

fou [ [T

L1fx]

o vea\’I

Now we observe that spatial boundary conditions on the displacement

field v along "welded" internal boundaries are given in equation (12) as+:

B u EjT N =
avI 3\:1
u
_ Y 3\)1

Thus in (30), we have for the integrand, in the integral over internal surfaces:

M | - '
L]l - L], e =[],
1 I I

+The jump notation l[ _'[] g for a surface I will often be written simply as [[ ]] »
with the condition applying on any of a set of surfaces.
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e

If then G: satisfies the same boundary conditions over the surfaces avI,

namely:

8
B G =
[WYHQ\’
1
[, -
avI

then J:‘nB itself is continuous at all intermal boundaries. That is

1
e, o
HBB avI

and the internmal boundary integrals all vanish. Thus (31) and (32) are

(32)

"natural” boundary conditions for a region with welded internal boundaries
of discontinuity. Equations (32) are therefore "proper" boundary conditions
for the Green's tensor, in that they are complementary to those of (31)
and cause the internal surface integrals to vanish.

We note, however, that (30) has been obtained without direct use of
boundary conditions on either u_Y or Gs. It is therefore applicable to anyv

setof (linear) boundary conditions for uY and any choice of boundary conditions

for Gs. It is clear, however,that a choice of "proper" boundary conditions
for Gs will greatly simplify (30) and that if uY satisfies natural boundary

conditions (i.e. those naturally appearing in (30)) then additional reduction

of (30) is possible.

We will denote the particular Green's tensor that satisfies the boundary

conditions (32), on internal boundaries, by H$(55!5)' Thus
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]

8
[BYGHY ]] 3\)1 0

(32-a)
8
u:“;]avl =0
and then (30) becomes:
_ u 4o
4wuu(§) = pf H d'x
ez,
t+ +
u w.3 0
fdt:o JB"Bdao +[d[[.l4d x] (33)
o VE o veavI

where uY satisfies the boundary conditions complementary to those of (32-a).

The external boundaries of the medium avE may be defined rather arbitrarily
in that we may chose any boundary set to be the external boundary of the medium
in question and this simply defines the region over which (30) or (33) applies.
In particular, we normally chose one external medium boundary to be any moving
boundary so that (30) or (33) applies to the medium on one side or the other
of this boundary. However, this choice is not a necessary one and if the
moving boundary is not taken as an external boundary then it is to be treated
as an internal boundary. However, such boundaries cannot generally be
considered as welded boundaries and therefore the second condition of (31)

does not apply. Instead the weaker condition insuring conservation of mass

applies, that is, in linearized form:

Lo yn D=0

o e

o, A

ot v G

8 P 4 P {1 U e e BT 1 Yo




However, the first condition in (31) always applies, since it states that

momentum is conserved across boundaries. Thus if one of the internal

boundaries is a moving boundary, then un this particular internal boundary

(call it av‘I’) we have

u | X" N | T ‘
[[ans]]a ) [Gu:n o TuB"B [[uaGaBnB:u o |
vI avI avI

Clearly, if we chose a Green's function such that it satisfies the complementary

condition

n =0
‘Eﬁs!{ﬂav:

and the "welded boundary” condition:

[[c';]] o= 0
vy

then
u -- ¢
[[Jas“s]] | ﬂ:“a]] ag"8
av? av?
1 1

In the situation in which avg separates materials with differences in

physical properties and when the boundary is not geometrically simple, then
it is impractical to generate the Green's function satisfying these boundary

conditions. There are several ways around this difficulty which allow at

least good approximate results. However, we need not consider them in
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detail here since our ultimate goal is not to treat the gemeral moving
boundary problem but to obtain some particular results that involve fixed
internal boundaries with a moving boundary, if present, as an extermal
boundary.

Thus, in this development, we will take any moving boundary to be an
external boundary. The treatment of the spatial surface integral terms,
in this case, is formally the same as when all the boundaries are fixed.
~ With tﬁis provision, we return to (33) and note that Jgns appears in the
integral term over 3vE. Thus for a solution for v, —_rather than an
integral equation in u, - it is necessary that we know the -value of this

function over the external surface. Since

1] = u - H
JB“B [HaTaB “aHuB]"B

and 1if only the generalized tractions TcB"B are known or specified; say:

T N
aBBl., =D, (34-a)

E

then an appropriate Green's function is such that

u - -
HaBnB 0 (34-b)
avE
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in which case the second term involving u vanishes. Hence, Hz should

satisfy the homogeneous complementary condition+. Conversely, if u is known,

1)

. ™ c (35-a)
Then the complementary homogeneous condition for the Green's function is

uu
a

= ( (35-b)
3VE

In these two cases we get, respectively

u = u
J B"B avE baHu (36)
and
H = H
JB“B aVE caHaBnB .(37)

In these cases, assuming H: can be found satisfying both (32-a) and either
(34~b) or (35-b) as is apﬁropriate, then (33) can (normally) be used to obtain
a solution for uu(g). Often it is not possible to find Hz satisfying all
these conditions on all of the boundaries. In particular the conditions
(34-b) and/or (35-b) present considerable difficulties on at least parts

of the external boundary. Again there are various approximations that can

+Note that on a free surface, that is an external boundary in contact with a

vacuum, then bu =0, a=1,2,3,4. This causes J:nB to vanish when

avE

'ﬁB"B 3“3 = 0 on such a boundary.
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be used (e.g. Archambeau and Minster, 1977). However, in some applications

ot

both u and TuBnB can be compatibly given as known functions on parts or all
of the extermal boundaries. In this case H: need not satisfy any additional
conditions, other than those of (32-a), in order to obtain a solution for U,
This particular situation will be treated in the following sections since it
occurs for some particularly important problems.

The final integral in (30) or {33) corresponds to a generalized initial
value term or contribution and has been treated in this form by Archambeau (1972) )

and Archambeau and Minster (1977), as well as in other equivalent forms by

e e

Archambeau (1964,1968). In particular if the spatial integral term in brackets

is continuous in (o,f+), then

t+ t+
f d[ [ J:d3x°] --[ sz3x°] i
- [+

o vGBvI eavI

e 3

Because of the causal character of the Green's functions used, the value at 7

to = t+ always is zero, so that only the value at the initiai time to =0
. PN o (o]
contributes and this involves the initial values uu(xk,o) and atduu(xk,o).

If these initial values are zero, then the integral term vanishe=s.

g € <314 TP T

However, in general the integral can be discontinuous at a set of times

i throughout the interval (o,t+). In this case the time interval is to be
partitioned into time segments in which the integrand is continuous, just
as was done in the case of internal boundaries in the regular spatial domain.

M
Thus, for time boundaries at {tgp) } , then we have:
1

|
1l
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v,3 0| _ n,3 0
d[/Jl‘dx]-—E {[[J4dx]] (38)
o veavI p=1 veav t(p)
1 o

where the range of summation over the time boundary points is to M,if t > tsn),

or L if t < tgn), where L is the index of the discrete time point in the

set closest to, but less than, t. The bracket notation is the same as that

previously used for jumps at boundaries, except here the boundaries are at
the time points tgp).

We observe that, by definition:

u.3 o _ H,3 0
[foﬂgw@%[f”“‘l
o

=P
vedv, vedv, t =t
(38-a)
3.0
- THa”x
/ 4 ¢ =t Py e]
veavI -0 o

Since we are considering the medium to be bounded by external boundaries that may
move, then formally at least, veavl may be different in value #t tg?)- €

and tgp)+ €. However, we must define the medium in which the Green's

function representation of the field uu holds to be that occupying the region
which has not been traversed by the moving boundary. That is the volume in
which the integral representation of the field uu(g)vapplies must always

exclude the volume region swept out by the moving boundary in any time

increment. Consequently, the change implied by (38) and (38-a) applies to

(p)-e and t(p)+ €. Hence,
o o

a volume integral over the minimum of veavl at t
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(38-a) must be written as:

[/ 7] fJB :
£ (P) @ (38-b)

vedv, Vo 8dv,

where 'vpeavl Z min [veavI]tp
()

Hence, the generalized initial value term of (38) is given by:

t+ (L,M)

Lol B[

° vodv (p) .
I

Since:

“:J‘l:]) (5 '[ p{ “katoG: - G:atouki]]
to t \P
(]

then it is appropriate to require that the Green's function have the continuity

properties

m
[
o
c"‘]’ = 0
[[k P
(o]

(40)

Tk

e e e i g e
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However, if G

K is simply required to be continuous in to along with its

first derivative, for to < t, so that it is of the class Cl’ then the conditions

(40) are met. (Indeed such conditions hold for all times to < t, as well

as at the discrete boundary times tép), p=1l, ... , M.) Thus we require:

m .
Gk<_x_st ;”'EO :to) € C

1 (41)
fort < t.
(o]
In this case
H - m m
[[14:“:(19) B p[[“k]]t(p) atock - PG [[atouk]L(p) (82)
[ o] o o

If there are no external time varying forces applied discontimuously at the

times tgp)’ then the momentum changé' 4] [Eak u.k]] is zero. For spontameous processes
o

involving boundary movement (e.g. failure or phase changes under imitial

stress conditions) this is the case. Then -We have

] = o[ oo

(43-a)

with the (time) boundary condition on u being

[[ atou“:u:(l’) =0 (43-b)
[+
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Alternately we may have, when impulse forces are applied

w - - oc® -
[Jlo]t(p) " [[":o“k]]t(p) (4é-a)
[+ (o]

and . the appropriate time boundary condition for the problem is

=0 (44-b)
[[uk]l e

By far the most important case in applications is that given in (43-a)

and (43-b). Specifically, Archambeau (1968,1972) and Archambeau and Minster

(1977) consider failure in a prestressed medium and show that (43-a) and
(43-b) can be used to describe the radiation field arising from the failure
process. In this case (43-a) applies and [[ w IL(p) corresponds to the
change in the equilibrium field due to the creatidn of a failure boundary

(or its incremental growth) so that in this application:

[ * m
H:JI']] ¢ (P) g ﬂ:uk:[l ¢ (P atock
[ o] [+

where u{ is used to denote the equilibrium field explicitly.

Equation (39) expresses the contribution to the field uu(g) arising

M
4

M
at a discrete set of times {tgp) % . We may generalize this result to
1

from the discontinuous behavior of the spatial volume integral of J

M
include a representation in which the setz tgp) ; becomes partly or totally
1

a continuous distribution. The result is a straightforward generalization

A R T T




of (39) which has been shown by Archambeau (1968, 1972) and Archambeau
and Minster (1977), in the somewhat more restricted context of a growing

failure surface problem, to be of the form:

min(t,t(u))
t+ o -
al [#a®3°]= | ac [(s3¥%r8e e« (45)
4 o 4" "o o
o veavl o veavI
where tiM) is the upper limit point of the continuous and/or discrete set

of discontinuity points and GJZ represents the incremental change or

variation of J: over a time increment Gto. In (45) all quantities are teo

be measured relative to the initial state. (See Archambeau and Minster, 1977
for othér choices for the reference state.) Here GJ: is equivalent to

1] J: I in (39), while the time integral over to replaces the sum over the

index p. Formally, the integral is the limit of the summation as the time

spacing, §t,between successive tgp) is allowed to become infinitesimal.

To explicitly display the discrete discontinuous case, it is only
necessary to note that discrete discontinuities in J: at times tgp) correspond
to step function discontinuities of magnitude H.J: ) | kp)’ at to = t(p). Then

t .

[+
u (p)
(614/&:0)-[[ J:.]I‘S(tq- - :op)

with G(to—to(p)) the Dirac delta function. It is clear that use of this in

o

(45) gives the discrete result (39). Hencé (45) 1is a general form of the

result including both discrete and continuous distributions of time discentinuities.
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For the cases of greatest interest, namely when at U is continuous
and G:, and its first derivative in t, are continuous, then the integrand

in (45) has-the explicit form (e.g; Archambeau and Minster, 1977)

u * m '
(6J 4/5:0) = [p aco"k] 3:°Gk ~ (46)

*
where uk(zb,to) is the equilibrium field value.ac the source time to. The
*
factor 6uk/6t° has been written as a partial derivative with respect to
to since the meaning is the same as the variation ratio. The general case

is

H m m
[GJI.IG':O] =p (6u.k/6t° )aton - ka (ka/Gto)

where vk = at uk.

To collect and summarize the most useful results of this section, we

have shown that in general, the integral Green's tensor representation of

uu(§) is:
t+

- .3 0
’"'“,,(1‘) dtofpf G d7x

° veav

[ofefnfidk
[u / cJ"/st) %, 47
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where the result (45) has been used in (30) and t = min(t,t::). The Green's

tensor used to obtain (47) is the causal solution of Lach = Ai satisfying

B

the condition that GY and its first time derivative with respect to t, be

continuous for to < t. When the medium internal boundaries are fixed and
welded and any moving boundaries are external boundaries, then uu@ satisfies

the boundary condition

“: ay Y]av E[Tasns]]av -0
I
l[“v:ﬂ
avI .

on all internal boundaries. Then,

u - Il e _
l[" s“s-_“av “:Ga]]a Tag"s " Y l[c"zs“s:“ ) (48-2)
I V1 Y1 ‘

Further for spontaneous processes giving rise to generalized initial values,

(48) *

u
(=]

such as failure processes involving moving (or growing) boundaries in an

initially stressed medium, then

M * m
(6J4I<St:) = [p 3t uk] at Gk
. o o

*
with u the equilibrium field for the medium within the external boundaries.
Here at “k is the "source time" derivative of uk and is the source term for

the radiation field arising from the process. In principle uk(x ot ) can be obtained

e . i .y c———— e T - T
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independently from (47) (e.g. Archambeau, 1968) so that the integrand of the
final term in (47) can be considered as specified. Likewise the applied

force field fa(Eo) can be considered as a known field. Thus these contributions
to uu can be obtained directly, assuming that Gz,satisfying the conditions

just stated,is obtained. 1In view of (48-a) however, the surface integral over
avI, the internal boundaries, contains u, so that (47), as it stands, is

an integral equation for u.- Further the surface integral over avE, fhe
external boundaries, may.contAin u, terms as unknowns.

If we use the particular Green's tensor HZ(g;g% which satisfies the

internal bouﬁdary conditions complementary to those for u, in (48), namely

B w* =l ¥ n =0 (49)

Y avI

then with Hz used for G: in (4é-a) we have

u
J.n 0
. " B 8”3"1

and the integral over the internal boundaries 3v1 in (47) vanishes.

Further, if the external boundary of the medium is partly or wholly a

free surface, then the total external boundary may be denoted as

_..(0) (1)
avE avE + avE
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with av( ) denoting a free surface and 3\)(1)

E the remaining part of the

external boundary. On avé ) the boundary condition for up is:

B u = T N =0
[[ ay Y]] a"p(:O) ﬂ:aB {Ha"ém

The complementary condition for the Green's tensor is:

“:BaY Y]] I[HQB B:I] . (52)
(0) (0) )

(51)

In this case, using H$ satisfying (49) and (52) with uY satisfying (48)

and (51)

u
JBB

Uil
o

2 ®

Thus, with the Green's tensor H$, the integral relation for u (x) is:

lmu (x) f dt /pf iy d3 °

veav
t+

”[dtof Jznsdao , ' : (53)
3vé1)

X

+ dt au*ahud3x | ‘
o pta]ta o ) '

o veavl ° °
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where

T M
EARA step | "

If values of the fields u, Or T gn, are known or specified on Bvél)
then complementary homogeneous conditions on H: or HEB"B reduces Jgna on avél)

to a known function, not involving the unknown u, or its derivatives, and
(53) is a solution for uu(i). That is,in this case, HE in combination with
its space and time derivative, act as transfer functions for the field
specified on space and time boundaries,such that the field is propagated to
other spatial points at later times.

Alternately, if compatible values of both u, and T are known or

ag"B
can be specified on auél), then Hz need not satisfy any additional condition

in order that (53) provide a solution for uu(x). Th-t is J¥n

BB’
él) when the Green's tensor, Hz, satisfying

in this

case, is a known function on 3v

(only) (49) and (52) is used.
In the following sections this latter case will be demonstrated to

. occur in several important applications. In order to use (53), however,bﬂz_must

be  specified. The generation of Hz for media. of the greatest interest in

elastodynamic theory applications to Geophysics are layered elastic spheres

and half spaces. The form of Hz in such media will therefore be considered

in following sections.
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(4) Green's Tensor Integral Representations in the Frequency Domain

For this development to be pursued, it is necessary to transform all
the equations and fields from the time domain to the frequency domain. This
was the approach used by Archambeau (1968) from the onset in treating the
particular problem of a growing rupture zone in a stressed medium, this
being a particular case of the general problem treated here. We can however
use the time domain integral representation for u, given in the previous
section, to obtain the equivalent frequency domain result.

In particular, we define the Fourier transform operation with respect

to time t by

(54)

[~4]
Q
n
(=28
t
N
=
Q
S
m
>
Q
(]
!
%
>4
re
[N}
o

Here ‘t denotes the operator and ﬁu the transformed function. The inverse

operator 6;1 is defined by

o

u = 5’1{6 }=_[a et ar
a W a [+

where w = 2gf is the transform variable and here corresponds to angular
frequency with f the frequency.
The convolution of two (tensor) functions is then given by
-

‘;1 {aa‘.'ﬂ} - ,/‘ua(co) vs(t-to)dto

N T
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and 1if u, is such that ua(to) = 0 for t < 0 while vu(to) = 0 for

+
to 2t =t + €, then this becomes:

t+
4;1{ 5,7 } - f u, (£ Ivg(e-t ddt_
[«

In this case

t+
6:: 6—(];!{50.68} = ;a;'B T 6:{/ ua(to)vs(t_to)dto}
o
Convolution relations of this type can be seen to appear in the Green's
integral re‘lations for the elastic field ua(g_c_), for example in (53). Thus
since vB in the above relations plays the role of a transfer function, then
it is clear that the various integral kernels involving Green's functions
play the same role. This will become even more evident in the fqllowing
development.

Focusing our development on the most useful of the Green's integral
relations, we consider the Fourier transform of ua(z) in (53) with r.iespect
to the (observers) time variable t. In order to carry out this operation
in the most routine way, we first observe that the two point Green's tensor

H, k k
Ha(x ,t;xo,to) is causal, so that

H:(_)ﬁ;_)_ﬂo) = 0, for t, >t

This allows us to extend the integration range in the first and second integral

terms from (o,t+) to(o,») without chaning the value of these integrals,

;
z
1

3

o r————

A et M TA e 3 TR TR+ 1ttt P




since H: vanishes identically when t, = t+. Next we note that:

ua(t°)= 0 for e, < 0

by supposition (i.e. the field effects start at t, = 0). This allows us to
integrate over the "source time" range (~=,+*) in the first two integrals
since these integrals vanish in the range (-~,0) because of the latter
condition. Finally, for the last integral involving the "generalized initial
values", we can take the time changes in the equilibrium field to be zero
in the range outside the interval (o,tz) since such changes only occur in
this interval by our earlier definitions. Thus

Btou:(to) = 0; t < 0, t, > tg
This,in éombination with Hz = 0 for t, >t shows that the integration range
for the final integrél can be extended to (-«,+») without changing the value

of the integral as well. Thus (53) can be written as
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Finally we observe that the Green's tensors are functions which depend
only on the time difference t—to. This follows from the fact that they
are required to be causal and because of the self-adjointness of the
generating differential operator Lay' Thus we have that:

u k k

H H (x »Xst-t )

Now operating on equation {55) with 6t’ where we note that this operator

commutes with all the integral operators on the right side of (55), we get:

4o
~iwt 3
dmu = [ e d pf HMA'x
~w vOaIv
+o0 .
-imto u -
N e, [naTaB T Y HaB] ngda, (56)
—c avE
-imt 3
+ v Je [pa u H d x
QD
voav

Here we have used the fact that only B: and H:B depend on t on the right

side of (55) and that

~-jwt ~iwt
k k k _k ~
‘t {H:(x ,xo,t-to)} = e ° 6t{Hu X X ,t,} e ° H:

N b i e




If the medium boundary av(l)

is not stationary, then veavI and 8v§1) will be

functions of to’ so that the space integrals in (56) must be evaluated

first and then the Integral over to may be obtained. Thus the time integral
over to which is itself in the form of a Fourier transform operator, does
not commute with spatiai integral when there is boundary movement. (Of
course approximations can be obtained by neglecting the volume or surface
area changes and treating the limits of the spatial integrals as fixed in
time, at least to first order.)

If all the boundaries of the problem are fixed (in the sense of the
usual elastic theory approximation in which boundary movement with the
particles is considered as a fixed boundary), then the integration with

respect to t and the space integrals can be interchanged. We have then:

- ~ ~u.3
l.'rruu f pfc Had x,
_ W=~ oM
f[ ﬁaTaB i HaB ]nsdao
ko~
- wszu Hudax
a ¢ ‘o

veavl

(57

Here the boundaries are to be considered as fixed after the time to = 0.
However, this representation still admits the case of an instantaneously

*
created boundary at to = 0. In this case ua(xﬁ,to) is a step function at

t° = 0 whose transform ﬁ: is proportional to 1/w. This problem was treated

|
:
i
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by Archambeau (1972) using a representation form of essentially the type
(57), with only the last term retained as significant.

It is also worth pointing out that since the boundaries are assumed
fixed here, then Uz = 0 in (57). 1In this case all the tensors are purely
space-like; for example ng = (nl,nz,ns,O). This means that all the Greek
indices in (57) may be replaced by three term indices, denoted by the latin
forms, £, k,.., etc.

The general structure of (57), when viewed in terms of the convolution
definitions previously stated, is that of a sum of convolution operations.
In particular, all the terms in (57) involving forcés, that is pfa, ;uBnB
-pw ﬁ:, have ﬁ: as a (time-like) transfer function. On the other hand,
the term involving the boundary displacement ﬁa on avél), has ﬁanB as a
transfer function. Moreover, the Green's function will be dependent on the

spatial coordinates xk and x: through the absolute difference xk—xﬁ. That

is, its functional dependence can be expressed as
H_ B k _k v
H, = H (Jx xol, t-t )

This follows from the causal condition imposed on Hz, coupled with the
character of the generating equation LaYﬂs = Az. These of course are the
same conditions leading to the time difference dependence used earlier and
lead to the usual statement of reciprocity for the Green's function.
Therefore with Hz of tﬁe functional form described, it is clear that

the spatial integrations in (57) are also in the form of (three dimensional

space) convolutions. Therefore Hz and HanB are seen, from (57), to have

the character of space-time transfer functions or propagators.

Frempo
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The form of (57) is considerably simpler than that of the more
general result (56), which admits of the treatment of moving boundaries.
However, the structure of the two integral representations is essentially

the same. In particular, H: and H:B"B are the propagators for the fields.

Since st is related to HE within the integrands in (56) and (57) by:

9
Y . -
HuB(E*Eb) cu876(5o) ax

FP

time transforms with respect to t = x4 are related by

[o)

|
|

Therefore knowledge of ﬁs, the transform with respect to the receiver time
coordinate, is sufficient to spec?fy the tensor gz appearing &s a transfer
function in both (56) and (57).

Thus, it has now been shown that knowledge of ﬁ$ is all that is required
in order to use (56) and (57) to solve a large class of elastodynamic problems,
including problems involving moving boundaries, as well as classical space-
time boﬁndary value problems. Therefore solutions to a number of important
elastodynamic problgms‘réquire the solution of the receiver time transformed

equation corresponding to:

8 - = B »
Lov“y (x;x ) Aa(g,xo)




with boundary conditions, from equations (49) and (52),

HY n =0
[[us B]avl

. (60)
H =0
[[Y]L)v

B -
[Haﬁnﬁ =0

] avéo)

By our previous definitions of the boundaries 8\)1 and avéo), These are all

fixed boundaries while only avél) may be a

~
tensors in (60) are space like (i.e., U

moving boundary. Thus all the

. Q0 on these boundaries) amd so

these conditions may be written in terms of space-like components above.

We have:

I[H:z“z:ﬂ - =0
I
’ 1
m =0 (60-a)
Kuk:“ avI

H n] T =0
ke 2
[ MO

Taking the transform of these equations for HB gives:
t a




2

Lo, B+ pu? KD = - 4n6} (& - xl;) (61)

where ﬁ: is a function of the ordinary space coordinates alone, and where

3 3
Lix = ox; Coykn ax2
A m

is the regular elastic operator. The boundary conditions become:

m
“}‘u“z ]] =0
avI
T =0 (62)
[z].. |
[H:z“z:l =0
avéo)

wvhere
. aﬂ‘:
My = Gy 3:?_1'

The boundary conditions may be written in a compact matrix form,

analogous to that expressed earlier in the equation (14), as: :

ﬁ: -0 (62-a)




B "“‘] =0
il
[ 3vé0)

where sz is the''space boundary operator"

2
B = ™y [czjki' axi]

(62-b)
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