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I. Technical Report Summary

Two major advances have been made in the research on synthesis of long-

4' period S waves at distances less than 400: the incorporation of inelastic

attenuation and the development of a code to include a representation of

the source function. The large effects on the waveforms of rapid variations of

velocity in the upper mantle can be calculated and separated from the

effects of anelasticity.

Examples of synthetic seismograms are included to illustrate the effects

of attenuation on the displacement waveforms, as well as the effects of the

response of a typical long-period seismograph system.

The application of Green's Function techniques to elastodynamics has

led to methods for treating a variety of problems in wave propagation aid

earthquake source representations. The complete theory is presented in

this report. Wave propagation is a realistic, layered earth, generalizedq .

by a nonlinear source and the dynamic field due to stress relaxation around

a geometrically general, growing inclusion (an earthquake source) in a

spatially heterogeneous initial stress field are two of the significant

problems that have been treated. Computations based on the equations

derived here are currently being carried out.

There is evidence that specific anelastic attenuation, expressed as Q, is

frequency dependent. Q models of the Earth based on free oscillations,

surface waves and body waves show that in the broad frequency band covered

by the input data, Q increases with frequency. Frequency-dependent Q is
I

modelled by a relaxation process with a range of relaxation times. An

investigation of the relaxation time characterizing the high frequency

corner of the absorption based was carried out using the data from 21
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shallow earthquakes, 1 at intermediate depth, and 4 deep ones.

The criteria used was that the Q-corrected spectrum show decay at high

-2 -3
frequencies at a rate in the range f- to f- The depth dependence

- of the resulting relaxation times and corresponding values of T/Q

was examined. A mixed effect of depth and frequency dependence of P-wave

attenuation was found. The important conclusions is that the P and S

attenuation data can only be reconciled by including a bulk loss mechanism,

in addition to a shear loss mechanism. Although the results are not

unique, this suggests that the bulk loss mechanism is operative in the

upper mantle, perhaps within the asthenosphere.

?I

__ _ _ _ __ _ _ _
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II. Synthesis of Long Period Body Waves in an Anelastic Earth

V.F. Cormier

Sunthesis of long period SH body waves has been completed in the PEM-C

(Figure 2.1) earth model of Dziewonski et al. (1975). Thiq earth model

in conjunction with a simple frequency independent Q model was chosen as a

starting model for inversion for the upper mantle structure of western

North America. Synthetic modeling of waveforms at distances less than 40

degrees must be undertaken to separate the large effects of rapid velocity

variation in the upper mantle from the effects of anelasticity. The in-

corporation of attenuation in the analysis through a frequency dependent

complex velocity profile has been taken as complementary check of spectral

studies of upper mantle attenuation structure.

Seismograms have been synthesized using the method described by

Cormier and Richards (1977), in which the Fourier-transformed displacement

is evaluated by the evaluation of an integral over short paths in the

complex ray parameter plane. Langer's approximation to the radial eigen-

functions in the integrand of reflection-transmission coefficients corrects

for the effect of velocity gradients and boundary curvature of inhomogeneous

spherical layers. In the last funding period a significant improvement in

the computation speed of synthetics has been achieved by using the three

point integration formula described by Jeffreys and Jeffreys (1956) for

the evaluation of the quantity

or
T- dr

p

in inhomogeneous layers. This quantity is required to evaluate the Langer
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approximation (Richards, 1976). By use of the three point formula, the

computation of synthetic seismograms for direct SH body waves in an attenuative-

t - dispersive earth model with two upper mantle T-A triplications requires

only 10 minutes execution time on a CDC-6600 at 2 degree intervals from

20 to 34 degrees.

Multiple reflections along the underside of discontinuous velocity

increases in the upper-mantle of PEM-C are included by use of generalized

reflection coefficients and integration paths of the type described in

Cormier and Richards (1977). For example, the reflection coefficient at

critical incidence is taken as the functions

a(2), 0(2) 0(2) Y(1)()
R 02 2 T0T 2 01 0 R 1

(1)a (1) GM 21 T12 C (2)G (2) 11 a(2))
02 02 2 1 1

along the integration paths illustrated in Figure 2.2, where R22 is the

reflection coefficient of SH from the top of the boundary, R11  the

reflection coefficient from the bottom, T2 1  , T2 1  transmission coefficients

(1) (2)from the top or bottom respectively, )2 a 2 raial eigenfunctions
for (1) up or (2) downgoing SH waves in the upper medium, 1) (, 2)

radial eigenfunctions in the lower medium. These coefficients are related

by the equation

S -R 02 I T 1T 2 - /(i R 1  (2) (2.1)22 1) 21 12 (1) (2) 01a 2

0. /

At distances much greater than critical a reflection coefficient is constructed

from the functions above for use along the integration path illustrated
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T21T1 /(I-R 1 1)

PATH FOR CRITICAL DISTANC4Z

Figure 2.2: Integration paths near a cusp at critical incidence. The
coefficients are taken alo )th 2 egnents as shown. (Ratios
of radial eigenfunctions 7b/ T2 are omitted in the figure.
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in Figure 2.3, where

Y( 2) (2) (1) N 1 n

2 1Y 1 a
22 a(1) 21 12 a(1) U(2) 110

02 02 1 nOL 1

(2) (1) 0 (2
0Y2 a1 nNE+1

T 2 1 T 12 a(1) (2) [R1 1 cy() 22

The N waves constituting the direct transmitted and N-i multiples

are included in a separate ray parameter integral when they are well separated

in arrival time from multiples described by eq. (2.2).

By proper choice of combinations of these functions and integration

paths, the effect of all the interfering multiples in two upper mantle

triplications can be included in the evaluation of a single integral over

ray parameter in the distance range near th2 ythssfo0h.rsos

Figure 2.4a-b shows the resultsoftesnhisorheepne

of the PEN-C model to a SH source for the direct body wave. Comparison

of the results with (2.4b) and without (2.4a) attenuation demonstrate

that the removal of high frequencies by attenuation obscures details

in the waveform due to multiple arrivals from first order discontinuities

in the earth model. The difference in model response remains visible even

after inclusion of the transfer function of a long period seismograph

(Figures 2.5a- .5b). These results are consistent with those reported by

Kennet (1975) for inclusion of attenuation in the reflectivity method of

seismogram, synthesis.

I
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Figure 2.3: Integration path for an interference head wave.
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Figure 2.6 compares synthetics generated by convolving the model

response with a source function determined for the Borrego earthquake

(Helmberger and Engen, 1974) with observed seismograms of the earthquake.

The source function includes near source multiples and attenuation through the

Carpenter (1966) Q operator. The model response for no attenuation

consequently was the one convolved. Future research will compare wave-

forms predicted with the Caipenter-Q operator with those determined by

including attenuation in the frequency domain. The latter approach has the

advantage of more easily handling complicated frequency dependence of Q,

but requires slightly longer computation time.

Analysis of Figure 2.6 indicates that of the later arrivals predicted

by the PEM-C model, the one due to reflection from the discontinuity at

671 km is not greatly in disagreement with the observed seismograms. The arrival

forming the latest and largest trough in the synthetics corresponds to a wave

diffracted along the top of the lower bounda-y of the low velocity zone of

Pa-C. Revision of the PEM-C model to agree with waveform (Figure 2.6)

travel times (Figure 2.7) can be simply accomplished

by modifying the structure of the low velocity zone. Unfortunately wave-

forms cannot sufficiently constrain deeper structure because a long period

recording of a sufficiently large earthquake cannot resolve the features

of waveform due to interfering triplications near 20 degrees. Attenuation

makes this resolution more difficult. One must rely on carefully matching

amplitudes near 20* and matching high quality waveforms at distances greater

than 30 degrees uncontaminated by PL waves.

In the next research period SH synthesis will be completed in earth

models satisfying travel-time, amplitude, and waveform data for western



6a

0

$4-

00c

04.
r.

0

041)

Co Aj

0) co

0 c

0 1

1- 00

>0p

/w6 4

600C

( 41

0.

4h4

V) LL C wm0
4.) pbe



6b

+ -4

+ M4

+

+ .0
r+ 0

++
4-00

+ $4

+. 0

4#4.

C4

()3S NV



7

North America. A range of upper mantle models for S velocity and Q will be

suggested. The validity of including attenuation in the time domain via

the Carpenter Q operator will be investigated.

-J
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III. Anelastic Properties of the Earth Inferred from Earthquake Spectra:
Investigations of Frequency Dependent Q Models

G.M. Lundquist

Introduction

Anelastic attenuation of seismic waves is parameterized by the specific

quality factor, Q , defined by

o-1 = 1 AE (3.1)

where AE is the energy dissipated in a cycle whose average energy is

E . In a layered medium, the wave is attenuated proportional to a weighted

average of the Q-1 in each layer, where the weight is given by the travel

time.

t i

QEff (3.2)

where ti is the travel time in each layer. The functional dependence of

the absorption becomes apparent in the definition,

wT

TOTAL ANELASTIC ATTENUATION = e 2qEff (3.3)

where T is the total travel time. For convenience, we will note the

ratio T/QEff by t with subscript a or 0 for P or S waves respectively.

The minimum functional dependence for t must be on velocity and Q structure

along the ray path.

If an additional dependence upon frequency is to be found, then the

velocity and Q structures must either be known or somehow eliminated from

the problem. As before (Lundquist, 1975) we assume a multiplicative

separability between the depth dependence and frequency dependence of the

form
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t (r, w) =t (r) R(w) (3.4)

where r is radius in a spherically symmetric earth model and R(w) carries

all of the frequency dependence. Equation (3.4) demonstrates explicitly

the nonuniqueness inherent in determining R(w) when t is not known.

Unfortunately, since t appears in an exponent, ratioing techniques will

not isolate R(w) . That is, the base t functions must be estimated

independently.

Toward this end, a review has been made of published velocity and Q

models. Rather than finding a consensus among Q models, a frequency

dependence is noted depending upon the data set used. In ger-ral, Q seems

to be an increasing function of the frequency of the data set. To determine

whether this frequency dependence may be related to R(w) as determined

from body-wave spectra, preliminary attempts are made to model the differences

between published Q structure as a function of a frequency dependent Q,

with quite good results.

Published Models.

Velocity models are quite well constrained by both body-wave and free-

oscillation inversions. The slight (1%) base-line shift in theoretical

travel times was shown to be a result of ignoring anelasticity in the free

oscillation studies. Hart et al. (1977) corrected the entire set of known

spheroidal and toroidal modes for attenuation and reduced the base-line

shift from the Jeff reys-Bullen tables to less than a second. Since the

resulting velocity model, QM2, agrees with both body-wave and free-oscillation

data, it has been adopted for use in the present study.

Q models, on the other hand, are neither as well constrained nor as

consistent. The range of models is shown in Figure 3.1. Model SLl was
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derived from free-oscillation data (Anderson and Hart, 1977); MM8 was

derived from surface-waves (Anderson and Archambeau, 1964); and AFL was

derived from P body waves (Archambeau et al., 1969). The frequencies in

the data sets appropriate to each model are given in Table 3.1. Note

that while the free-oscillation and surface-wave models overlap in frequency,

the body-wave model is taken from waves in a completely independent frequency

range.

TABLE 3.1

Model Data Frequencies

SL .0003-.015 Hz

MM8 .0025-.02 Hz

AFL 2-5 Hz

The variation in Q models was examined as a function of t

Figure 3.2 shows t vs epicentral distance for a shallow focus earthquake

for each of the models of Figure 3.1. Model SLl included both Qt and

Qa * For the other two models, QB was obtained by Qa = 2.35 Q

When combined with velocity model QM2, this Q ratio gives t /to = 4.3

while the ratio for SLI is t /t 4.55 . There is very little change in

the shape of t vs distance as a function of source depth for any particular

model.

In both Figures 3.1 and 3.2, the low-frequency models overlap, as might

be expected since they deal with data in the same frequency range. t (AFL)

however, is only half of the values for t (MM8) because Q(AFL) is con-

sistently higher than that for the other models. If both SL and AFL are

correct, then Q must increase with frequency.
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12

Figure 3.3 shows the variation of t vs hypocentral depth as a

function of percent of surface focus value. Low frequency waves apparently

miss about 23% of the total attenuation if the source is at 600 km depth.

High frequency waves, on the other hand, apparently miss more than 40% for

the same change in source depth, and the difference seems to occur over

the depth range of the asthenosphere. This difference may also be reconciled

simply as a function of frequency if low and high frequency waves see

different changes in apparent Q as a function of source depth.

Q(f) Model.

Before going further, it is appropriate to briefly review the form of

the frequency dependence of Q used here. The function, R(w) , in the

attenuation exponent of equation (3.3) generates an absorption band from

a constant T/Qeff * The absorption band is constructed theoretically

as the superposition of specific absorption mechanisms each of which is

modelled by a standard linear elastic solid. Each separate mechanism

attenuates according to

-1 WT

Q =CQl =c22

where C is a constant depending upon the elastic parameters of the

medium and T is the medium relaxation time (see Mascn, 1958). A distribution

of relaxation times of the form

D(T) = lit , Ti 
> T > T2

defines an absorption band as (Liu et al., 1976)



12 a

tvs. HYPOCENTRAL DEPTH
A=5 0'

VELOCITY MODEL QM2

90)
0

wd SLI Qa a Qj

LL-

- = = MM8 Q0

~AFL Qa

0

0 100 200 300 400 500 600
HYPOCENTRAL DEPTH (Kin)

Figu:,, 3.3: T/Q vs. Source Depth. The velocity model used was QM2. Note
the variation as a function of the frequency in the data set
used to generate the Q model.



13

Q 1= C 2tan- I W{ 12)1 (3.5

The parameter of interest in (3.5) is , the high-frequency half-

power point of the absorption band. The other corner period is arbitrarily

placed well beyond the longest periods of interest in body-wave studies at

TI=2000 sec . Thus the only frequency dependence introduced in this work

is a roll-off in absorption toward high frequencies which may be varied by

changing T 2

The point of introducing a frequency dependent Q is to recover

observed seismic source spectra from seismograms. Theoretical source

spectra all show amplitude decays toward high frequencies of the order

-2 -3
W to W . The slope of an observed spectrum, however, is controlled

much more by the anelastic attenuation along the travel path than by initial

source properties. If a Q correction function is appropriate, it should

give back an observed spectrum with slopes in the theoretical range.

Thus R(w) is used in the attenuation correction as a decay slope

modification. The results of that modification will bc presented in the

next section.

Body Wave Spectra.

To date, 21 shallow earthquakes, 4 deep and 1 intermediate depth event have

been studied. Body-wave spectra were computed from digitized seismograms;

using an autocorrelation technique which smoothed the individual spectra.

Additional smoothing was obtained by averaging several stations for each

wave type of each event studied. The result was usually (but not always)

a noise-free spectrum whose high frequency decay slope could be uniquely

fit by a single line segment.
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An average spectrum without an anelastic attenuation correction was

prepared for each event, under the assumption that T/Qf is nearly

constant with epicentral distance. Then each average spectrum was corrected

for attenuation with a range of T Initially, the base t function
* * 2

was assumed to be t =1.0 and t6  4.0 ; and the variation of t

with hypocentral depth was chosen to be that of model AFL. After the

review of published models was begun, this choice of t was seen to mix

high and low frequency models. Thus the data set was reprocessed with t

essentially following model SLI. For that test, t a=1.0 and t~ 4.5

for shallow events, and the SUl depth dependence from Figure 3.3 was applied

for deep and intermediate events.

The results of the tests are given in Tables 3.2 and 3.3 for shallow

and deep events, respectively. The values T 2 = cofor w- slopes of

deep P waves result from the fact that the uncorrected station spectra

already have slopes less than w3. Since the Q correction can only

decrease the decay rate, an w decay rate cannot be obtained for any

This may imply a significant difference between deep and shallow

-3
source mechanisms, or it may imply that the assumption of w slope is

incorrect.

In Tables 3.2 and 3.3, the values of T2in parentheses are the

results of reprocessing with t defined by model SLl. Note that the

result of increasing t is to increase the applied attenuation correction

and raise the slope. Thus a larger T 2 Is required to get back the same

slope for increased t .Though the difference is negligible for shallow

S waves, the difference between t from models AFL and SUl (or M8)

as a function of source depth is significant. If any physical understanding
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TABLE 3.2

EVENT LIST SHALLOW EARTHQUAKES

(w- 2 (U;-3) T (W-2 2 (w-3

Date Depth2 p 2 p 2s 2 s

72/08/30 33 .09 .17 .17(.18) .24(.24)

72/08/30 33 .11 .18 .16(.16) .24(.24)

72/08/09 15 .06 .12

72/04/09 33 .08 .16 .17(.18) .26(.26)

71/05/22 33 .08 .18 .17(.18) .26(.26)

71/04/03 33 .05 .13 .19(.20) .28(.28)

71/03/23 33 .06 .14 (.19) (.28)

70/08/13 15 .11 .20

70/06/05 20 .08 .18 .18(.18) .27(.27)

70/03/28 15 .11 .20

69/02/11 33 .08 .16 .19(.20) .29(.29)

67/08/15 33 .08 .18 .19(.20) .28(.28)

67/02/11 5 .08 .18

63/04/19 33 .08 .16 .18(.18) .26(.26)

71/01/10 33 .05 .14

70/07/26 35 .05 .16

69/11/07 35 .04 .14

69/02/28 22 .02 .09

65/06/27 27 .09 .20

65/02/02 12 .06 .14

64/03/28 21 .08 .20

T/Qeff(P) = 1.0

T/Qeff(s) = 4.0 for values not in parentheses

T/Qeff(s) - 4.5 for values in parentheses
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TABLE 3.3 EVENT LIST

DEEP EARTHQUAKES

Date Depth T2pW -2  )T 2 p( -3 ) T 2 s (W 2  T r W-

63/11/09 600 .08(.10) wo).11(.15) .19(.22)

72/03/30 532 .04(.06) .21(.22) .07(.12) .19(.20)

74/03/23 535 .08(.10) wa).12(.15) .21(.24)

68/11/04 585 .08(.10) wa).12(.16) .20(.22)

75/ 22 37 .06.08 for.15 vaue1wthutpae1hee

T/Q(P) = .0678 for values withu parentheses

T/Q(s) = 2.48 for values withu parentheses

IT/Q(s) 3 .5 for values withou parentheses
T/Q~) =3.5 or alue wih paentes1



17

TABLE 3.4

STATISTICS OF OBSERVED RELAXATION PARAMETERS

(t from Model SLI)

Average T2

-2 -3 -2 -3
T (W -1 ( T (W r (W

2p 2p 2 a2

Shallow Events .073 .162 .185 .266

Deep and Intermediate ,

Events .094 .22 .146 .218

From event of 72/03/30 only
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is to be obtained from the 12determined from this study, the depth

dependence of the base t function must be known.

Added emphasis to this last conclusion is given by Figure 3.4, where

T2is plotted as a function of the base t value. The purpose of this

test is multifold: (1) Examination of the values of t and 'I in
*2

Tables 3.2 and 3.3 shows. a montonic trend in t vs T2from deep P waves

to shallow S waves, and it is necessary to show that the results presented

here are not artifacts of the processing. (2) The effect of base Q model on

2 must be investigated. (3) The deep event of 72/03/30 was chosen for

the study because it is the only deep event for which w - slopes may be

obtained in the P-wave spectrum. Since this event yields the only data in the

W - column, it should be carefully checked. Figure 3.4 shows that t vs

T2is indeed monotonic increasing, but the curves are distinctly different

for P and S waves. The change in T2as a function of wave type is not an

artifact. There is, however, an interdependence between t and '12such

that the change in T 2 as a function of source depth may be strictly a

matter of the different t required.

Table 3.4 shows that T 2(P) increases with source depth, while

T (S) decreases. The decrease in T (S) is plotted in Figure 3.4, and
2 2

closely resembles the change in T2with t already described, That is, if

the spectra of deep and shallow events have the same shape and see the same

frequency dependent Q along the raypath, then the change in T ()is

simply that required to account for the change in t .Tentatively,

this result is interpreted as support for the basic similarity between

deep and shallow shear body-wave spectra. A reasonable corollary is that

P-wave spectra are also similar.

Under the assumption of similarity, the increase in T 2(P) with source

depth must be interpreted as a mixed depth and frequency dependence in Qa
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give the desired slope on body wave spectra. The average S wave
data show the same trend as a function of changing T while
the average P data oppose the trend, suggesting the Kwo wave
types don't see the same depth dependence in Q.
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Specifically, an isolated bulk loss mechanism must operate in the upper

mantle. The fact that T (P) increases toward -r (S) implies that the

amount of bulk loss seen along the travel path is decreased. An intuitively

appealing explanation is that the bulk loss mechanism operates within the

asthenosphere where a partial melt is hypothesized.

These conclusions may be visualized in Figure 3.5. The solid line

represents the right side of the shear absorption band as it affects P-waves.

The dotted line represents the observed P wave absorption band which is a

composite of bulk and shear losses. The dashed line represents the hypothetical

bulk loss mechanism which controls T2()for shallow focus events. For

depth of focus beneath the bulk loss region, only half as much bulk loss

is seen by a ray, effectively pushing T 2 (P) toward the limit of the shear

absorption band. Note that the implied relaxation time for the bulk-loss

mechanism as sketched is about 0.5 sec.

Frequency Dependent Earth Models.

The results of the preceding section provide a starting place in the

construction of a frequency dependent Q . In the examples discussed

* below, T (P) will be assumed to be controlled by shear mechanisms in the2

crust and in the mantle below the asthenosphere. In the asthenosphere,

* where a partial melt may exist, T2  is assumed to be controlled by a

* bulk loss mechanism. The models AFL and SUl will provide a framework for

model evaluation. As an example of the flexibility offered by manipulation

of 'r2 ,preliminary attempts will be made to generate AFL from SLU by

adjusting the position and strength of a bulk loss mechanism in the

asthenosphere.

The difference in average t levels between AFL and SUi is easily

modeled by adjusting T 2 without depth dependence. Table 3.5 gives four
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TABLE 3.5

FREQUENCY DEPENDENT Q
M(ODEL PARAMETERS AND DISTANCE DEPENDENCE

Model I Model 2 Model 3 Model 4

Depth I2 (P) Depth t2 (P) Depth T2 (P) Depth i2 (P)

0 0.26 0 0.18 0 0.26 0 0.18

2886 0.26 61 0.18 61 0.26 61 0.12

81 0.08 81 0.16 81 0.09

196 0.08 196 0.16 196 0.09

221 0.18 221 0.26 221 0.10

2886 0.18 2886 0.26 321 0.12

371 0.14

388 0.18

2886 0.18

ta  t t : ta
A(DEG) 200 see I sec 200 sec 1 sec 200 sec I sec 200 sec 1 see

80 .800 .284 .771 .400 .770 .274 .772 .415

70 .858 .302 .822 .426 .822 .297 .824 .442

60 .984 .333 .913 .470 .912 .318 .914 .487

50 .942 .327 .918 .472 .917 .350 .919 .490

40 .860 .304 .868 .451 .865 .333 .868 .472

30 .755 .267 .761 .405 .760 .302 .762 .431

Note: t values are for depth of focus 5 km.
1
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examples of T2 vs depth which have been superimposed on SL1 and the

corresponding t values for waves of period 200 sec and 1 sec. From

Figure 3.5, it is obvious that, for frequencies greater than w 1/T2

increasing 12 increases the Q Both T2 (w 2 ) and T2(W give

approximately correct change in t with frequency.
,

The difference in t vs hypocentral depth is not adequately modeled
*

by any of the T2 distributions shown in Table 3.5. t vs depth is shown

in Table 3.6.

The complete inversion for T2 (depth) required to obtain model AFL from

model SLI will be left to a future report. But it is apparent from the testing

already done that the result will be almost trivial. At each depth

Q- (AFL) = Q-I (SL) - R(w, T2)

Q(AFL) =
Q(SLI) R(w, T2)

Note that the ratio of high frequency Q to low frequency Q must be

greater than orequal to one, unless a bulk loss is operating. For these

two models, the ratio is less than one for a depth range 0-160 km, and is

always greater than two below 160 km. Again, the existence of a bulk loss

concentrated in the asthenosphere is supported by the data.

Summary

A review of published Q models was undertaken in an attempt to reduce

the number of variables in a study of the effect of frequency dependent

Q upon body-wave spectra. However, rather than finding a consensus among

Q models, a frequency dependence was found, corresponding to the data set

used. For the purposes of further work, t will be assumed to follow the
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TABLE 3.6

FREQUENCY DEPENDENT Q
SOURCE DEPTH DEPENDENCE
(% Surface Focus t*)

Model I Model 2 Model 3 Model 4

Depth 200 sec 1 sec 200 sec 1 sec 200 sec 1 sec 200 sec 1 sec

5 100 100 100 100 100 100 100 100

50 97.9 100 99.6 99.6 99.9 100 99.6 99.8

100 94.6 97.2 96.1 95.1 96.1 95.7 95.6 95.3

150 91.0 93.2 92.4 89.8 92.5 90.5 92.3 90.4

200 88.2 90.4 89.8 86.2 89.7 87.1 89.7 86.9

300 83.5 85.7 85.3 82.2 85.2 83.1 85.2 81.4

400 80.7 82.3 81.8 78.8 81.8 80.0 81.7 77.8

600 76.7 78.2 77.2 74.8 77.3 75.7 77.3 73.9

Note: t values are for A 50*
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free-oscillation Q model, SLI. This choice is based upon the low-frequency

data used to compute SLI and upon the fact that the frequency dependence

used in this study includes no variation in Q at low frequencies.

Given a starting model, then, the approximation of other Q models by

adjustment of T2 vs depth is easy. Indeed, any high-frequency Q model

may be generated from any low-frequency model by adjusting the width of the

absorption band. Rather than a single infinity of Q models which will satisfy

a given data set, there is now a double infinity of models, even though the

frequency dependence modeled is simple enough to be characterized by a single

parameter.

It is thus even more important to constrain Q(f, r) with new data.

Of particular importance are the body-wave spectra, where direct observation of

T2 may be made. Time-domain modeling of pulse shapes may also improve the

constraint. But basically any ray samples an average of properties along

the path, and detailed inversion for depth dependent properties cannot be

done simply. The conclusion put forth in this paper is that only the end of

a complicated band of relaxation mechanisms may be resolved by body-wave

spectra. If the window in the spectrum of relaxation mechanisms were not in

the passband of stand& i seismometers, then not even the end of the absorption

band could be observed.
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IV. Applications of Green's Function Methods in Elastodynamics to Source
Theory and Wave Propagation Problems

C.B. Archambeau

A major part of the effort during the past six months of the contract

period has been to develop a comprehensive theoretical framework for the

treatment of both source and wave propagation problems in elastodynamics.

The Appendix 1 provides a summary of the Green's fucntion theory which will

provide such a framework for elastodynamic problems in Geophysics. In

this theoretical development we consider media which may be inhomogeneous,

anisotropic and have both fixed and moving discontinuities in material

properties, the latter being included in order that generalized relaxation

sources in prestressed media may be treated. This work corresponds to a

generalization of previous work (e.g., Archambeau and Minster, 1977)

mentioned in earlier reports, which was specifically focussed on source

problems. The present work is more general in that we have included both

fixed and moving boundaries in the same formulation and most importantly,

have generated explicit Green's functions for layered media to be used in

the integral equations for applications. We are therefore in a position to

solve a large number of outstanding problems in seismic source and wave

propagation theory and specifically particular problems of importance for

seismic event discrimination and explosion yeild estimations.

In this regard, in this section we show first how layered half space

Green's functions are obtained and give explicit relations for them.

We then show how such a Green's function (or more properly this layered

half space Green's tensor) can be used with the integral formulations in the

Appendix 2 to provide the means of representing a general nonlinear (or linear)

energy source imbedded in a layered half space (which may be specified
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numerically in general) in analytic form. Such a result can then be used

to predict both surface and body wave radiation from general seismic energy

sources; in particular from complex numerical models of both earthquakes

and explosions.

In addition, we have formulated the same theory in a layered spherical

medium. Since this theory is very similar in principal to the layered

half space theory we do not include the details here.

Other applications of this theoretical formulation are being studied,

in particular effects of lateral variations in tructure on predicted

source radiation, effects of scattering from the growing source boundary

and a variety of perturbation modifications to be used to predict mroe

accurately the effects of anelasticity. velocity gradients and boundary

variations from spherical or planar form. These additional applications

will be described in subsequent reports.
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Eigenvectors for Layered, Isotropic Elastic Half-Spaces

Eigenvectors *k corresponding to the operator defined in the Appendix II,

equations (61) and (62) are generated by

L tk k + p2 - 0 (4.1)

L knk] 3V1 =0

* £ I = 0 (4.2)

Iknka (0)

E

where - C i
Lk - kkij 3xj

In a layered space, with boundaries along the coordinate surfaces

x 3 f z, S M 0,...,n-1, the set+

L(S) + (s) 
2 (s) = 0 }

Lk1

is equivalent to (63). That is LLk is represented by the differential

operator set L(S n and *£ by the elgenvector set ( The members
31

+Indices enclosed by parentheses are not subject to the summation rule. Thus

no sum is implied on the repeated indices (s) for example.
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of the sets are connected by the boundary conditions, which are, from (62):

r (S) r1  s+l)

Il1

(4.3)

(0

Here the free surface is the coordinate plane x3 = z .  These conditions

insure that the members of the eigenvector set produce a continuous eigenvector

Yh with associated continuous tractions. Explicitly, ih is given by

J*(s) s)1 Z<Z

with the adjoining *(s) continuous at the boundary oints z . A similar statement
applies to the tractions.

Now the elastic parameters and density are constant within each layer

by definition, so that requiring isotropy as well produces the result:

+() (s + (S)s) 2s)3(S) axk t I£ =0

(4.4)

k) () A ( kl ; s =0,1,..,n-1

z
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where

(s) 4(s).5)

with Bs) defined by
tc

13()'() n IS -k +i (S !9LS ! (4.6)
tik 9. a1 /9

which is just the traction 'ktn£: Here the external boundary condition has

been incorporated with the boundary conditions on the internal boundaries

by defining AM = 1(0) = p(0) = 0. In addition the 6 x 3 matrix operator

A(s) has been introduced for convenience in writing the boundary conditions
pk

in compact form.

The vector form of

XV)

(4.6a)

jA(s) " (s) ] " [(s+l) ._%(s+'). 1Z_
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From (4.4) or (4.4a) it is easy to see that solutions for _t may be

generated by introduction of the (physical) potentials defined by

X4 ax 
(.7

(a) I__A

j 2 =~ 3i ; AtBil,2,3

So that these potentials can be represented by a four vector with cartesian

components X~s) a = 1.2,3,4. In vector form:

x(s) (s)

(4.7a)

s) 1/2 Vx *(s)

Using these in (4.4) or (4.4a) shows that if the cartesian components

x(s) satisfy the scaler Helmnholtz equation:

V2x(si) + k(c) j2 (s) 0 i a 1,2,3,4
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then iS) is given by

2 (S) 12 Elxn (xs)

- = - + 2 k ~s) ]2 (4.8)

where k (s) k k(s). )(s), k
SS 5 PS

with

(S q(hVS) (S)(s +

P p ( 5
p

(s) 

is))n

foS Ss) (s) gneatdfrm s

Alternately, in vector form, t(s) is generated from x and

X (x 1 ,x2 ,x3) by

(s) k (s) 1 + 2 kis)  VXX
P VX4 + (4.8a)

provided the potentials X4 and x satisfy the scalar and vector Helmholtz

equations -.espectively. That is, when

(S)+ [k(S)] 2  (s)

Vx + [k~s

x4  p 4  0

(4.9)
2 (as ) -+ k (s) X = 0



32

Eigenfunctions for the cartesian. components of the potentials are

the set

r -V(s) z

1i M(p im I e(cc)

and

Ji(kip) e.im (ci0

where

It is critical to this development that it turns out that only v~)depends
(0i)

on the layer parameters, as evidenced by the index(s).

Therefore the cartesian components of X(S) can be written as:

F z (a)

X c) . A(st),(k w) e (i)z + B(S)(k~w) e (O] jm(kp) em '(4. 10)
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The reason for the introduction of coefficients in the expressions

for the X, is, of course, that 0 must satisfy boundary conditions in order

that it be an eigenvector of the operator defined by (63) and (64), and

the coefficients are to be used to satisfy these conditions.

Use of (4.10) in (4.8) produces the eartesian components of I). These

can be expressed as components in a cylindrical basis, which is most

convenient here. In particular, the eigenvectors can be expressed in terms

of the vector cylindrical harmonics P m- B .and UC as (Ben Menahem and

Singh, 1972t Morse and Feshbach, 1953);

s) (r,k) D(S)(z,k) P + E(s)(z,k) B + F(S)(z,k) C (4.11)
-- m -m m -M m --m

where

P = J Jm(kp)eimo

B = [6 + to Jm(kp)e m (4.12)

C -P

Here P *B = P *C = B -C = 0.--m --m -.m --m -.' -m
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The coefficient functions of z are (Ben-Menahem and Singh, 1972)

((S)z ~()

(s)Vs) [(s)()ine
s S)[c(s)(k) eP + b (k) e

-(s) (s) (s)] (4

E(S)(zk) = k a(s)(k) e p  + b(S)(k) e (4.13)
m m

(s) s) ( ) 1

F(s) (z,k) = e s)(k) e 5  + f (k) ev
m m

The coefficients a(s). b(s), etc. are linear combinations of the coefficientsM m

appearing in the expressions for the potentials X(s)

Note that:

k2-((s) 2 k (s)p
pp

i J~k(S k k < k~s

and similarly for v s . Also, the radiation condition requires that:
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b(n) = d(n) = f(n) 0.
m m m

The boundary conditions of (4.3) must be satisfied in order that (4.11)

be an eigenvector. Using (4.11) in these conditions shows:

(1) that the vector function P B lC can be eliminted from the

boundary condition equations, so that only the coefficients

D (s ) (k,z), etc. are involved in the boundary conditions.m

(2) The boundary equations at each layer interface can be separated

into two independent sets, the first composed of the coefficients

of P and B in the second involving only the coefficient-In -m

of C . These correspond to the P-SV coupled waves and the SH

waves respectively. They therefore also represent Rayleigh and

Love type surface wave modes when the eigenvectors are viewed as

modes of oscillation of the medium.

The eigenvector can therefore be viewed as the sum of two decoupled eigenvectors
R(s) L (S)

which may be denoted by R and . Thus

(s)= R (s) L (s)

R (s D(s)p E(s)B
m -m m -M (4.14)

L (s). =F(S) C
M1D -
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The traction vectors associated with the eigenvector components R (s)
L, (s)

and *m on planes parallel to the layer interface boundaries, at z zs,

will be denoted as R If(s) and Lw(s) respectively. They are (Ben-Menahem and--I -m

Singh, 1972):

Ry(s)(rk) ( s ) (z,k) P + E(S) (z,k) B
Mm -- m m

(4.15)

L y(s)(rk) = F(s) ( z k ) C
m

where

D(s)(z,k) = 2P (s) k2 1/2[k (s12) a(s)(k) e-

+ b()(k) e p  z kv( s )  c(s)(k) e s d(S)(k) ems m m

V (s) ((s)Cs)(4.16)

m ) = 2 ( s a(k) e P (s)e

E(S(z,k) = 2 s a(s)(s ) eV b () Vs+(k 2_/2[k(S)2){c()(k) e-V + d~s)(k) ev 8 z}

Cs)~ (s)[Csm~) k I- (s V s) e (s(k) e -s f s(k) ev
M S m M
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All the boundary conditions are now expressed by the P-SV and SlI boundary

conditions. In matrix form they are:

(1) P-SV boundary conditions:

D (z) (+1) W
Mm

in) Em~)z (4.17)

V (s)(z) D(s + l ) W
M m

z z
s 

s

(2) SH boundary conditions

F(S (Z)4.18))
F (s) ( ) (s+l) (18

(z W F (zW)I

z
8 s

(s) (S)
The equations involving the unknown coefficients a , i M etc. in (4.13)

and (4.16) may also be written in matrix form. In particular, at z = z.

we have, for the P-SV coefficients:

D(S) (S)

S(s) (Z) (4.19)

is) (S">o \ <<jz
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and, for the SH terms, similarly:

F(s) (z) e(s)

m m

z =s !
Th mKrc s (s (s)

The matrices ) and KL are 4 x 4 and 2 x 2 respectively, and are

invertable (e.g. Haskell, 1953; Harkrider, 1964). Here of course the

coefficents a(S)...f(s) are not functions of z. Therefore we can evaluate

the equations at z Zs~i, where this is the upper boundary of the layer

(s) and get another expression for the constant coefficients. Thus

(aSs

z S-1

m 
m) - K(

z Zs -Ih -
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These may be solved for the coefficients a(S)...f(s) in terms of them m

functions of z and one has:

m (S) 1

[ (Zsl)] (4.23)
dm Em (zs-i/

(m (S z - q1i s-i1 (4.24)

m m s-if

Now we can eliminate the coefficients from (4.19) and (4.20), this giving us a

result which effectively propagates the solution across the layers, from

the z_ 1 boundary to the z5 boundary. In particular, from

m s F.S - 1 m s-i

(S) (z) Ki' (z ) ] S-(Z) (4.25)

m 8 )( m S-1

-~ (z E.. . (z'i " -:... ..::
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and from (4.20) using (4.24):

F(S)(zs) F(S (z(s S(s~ ) m(.6

K(s) F(S) (z_

Now, let:

(zs [ I ) -~ (z S) (Zs-.
(4.27)

t "s (sl - ZL S)) I s)(Zs.,) I- I

where these are the Rayleigh and Love or P-SV and SH propagators. Then

D(Ss (s)

m g m s-

E(s) E(s) )(U) (m 28
F(s) F(s)
m LS m -

where the notation has been modified in an obvious way for brevity.

Now the boundary conditions require

mom
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DpSI (S) D(s)m = M g(s) .m

E(s+l) (E(s) E()
m - m m -1

(4.29)

F sI F(s) F(S)
mL() m

(ms+l) F(S)) F(s) s-1

s

the final equality because of (4.28). fUsing (4.28) again, with (s) taken as

(s-1) in the expression, gives

( s-) =(Sl)
,,(s-1) m

S-1 s -2

for example, with a similar expression for the SH propagator equation.

This can be used in (4.29) to eliminate the factor

I ,

E (s)

E /
a-1

and likewise for the SH equation. Clearly this can be continued until

we reach the z boundary at the free surface. We get in fact:

A-o
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(sl (S) (S-1) ((())\
R. R R ...

U Sl I(1)] (1)E E!

(4.30)

I(s+1) ,/ (1)

/ /0

The final boundary condition to be met is the vanishing of tractions at the

free surface z = z0 = 0, so D(1)(0) = E ()(0) = F( 1 )(0) = 0 in (4.4.30). Onom m m

the other hand the displacements are non-zero at z 0. One of them in the

P-SV eigenvector may be set to unity for the eigenvector solution sought

here, with the eigenvector normalization factors used to account for this

later. For the decoupled SH vector, there is only one displacement

amplitude and so it may also be set to one,with normalization accounting

for it later. Thus we have

(4.31)( (s+l) =. I R (s) ... i(1) 1

E(s+l) 0
M (
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with co = E(1)(O)/Dm(1)(0). (Use of c as defined amounts to dividingboth

sides of (4.30) by D(1)(0) for P-SV and by F(1)(0) for SH, and then
m M

redefining the coefficients so that D' (s+l) D(S+l) /D (0). Because of
m M m

our freedom to normalize the eigenvectors however,we can simply write

these new coefficients as before.)

Therefore, if this relation is satisfied for s = n-i, then all the

boundary conditions are satisfied. (Note that [R(s)..R ( I ) ] must be taken

as unity when s = 0.)

The coefficients required to insure that (4.31) is satisfied for all

s = 0,... ,n-1 are obtained from (4.23-4.24) using (4.31). That is, we require

that (4 . 3 2 )be valid for any s, in particular for s = p-i. The same

holds for (4.23) and (4.24) for s = p. Therefore taking s = p - 1 in (4.31)

and substituting the resulting relation in (4.23) and (4.24) with s p

used in these, we have

N KP(z) [RP-lR(p-2... R1 1  (e\

) . (4.32)

((p) 
-lI

whenp>(z)]I L(P)L ... L(l.0

when p 2.
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Defining:

J (; K zR(-)..Rl n > p :42
R P-1

(3 .; )( n p 2 2 (4.33)

J(P) . K(P)(zp 1) when p = 1

J(P) . K (p)(z when p = 1

then we have:

) () 0

dR 0/

(4.34)

(p) 11

p j(P)
tL

Here is a 4 x 4 matrix propagator and J(P) a 2 x 2 matrix propagator.

That is:

((P) 
( p )JRP R JP(pZo 0 L L "('o)
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propagate the solution vector from the boundary surface at z to the

boundary at z .
P

Explicitly, the coefficients are:

a (P) J + [(P)E 112
b (p )  (P + CO [J (p )

m 21 22

( ) J (4.36)
f(P) ]41P I JP]4

With the coefficients satisfying these relations, then the solutions in

(4.13) are in fact eigenvectors of the operator of (4.1) and (4.2).



46

The Layered Half-Space Green's Tensor: Eigenvector Expansion in the
Frequency Domain.

The elgenvectors for the layered half space were shown to be given

by

f - S_1 <zz (4.37)

where (equation 4.13)

(S) (S))(S)k(SCD (z,k) P + E s)(z,k) B + m(z,k) C

(4.38)
p(s) + B(s) + (s)
-M --M -- m

The functions D(s ) , etc., satisfy the boundary conditions of (4.2) if the
m

set of constant coefficients (i.e., independent of z) appearing in these

functions satisfy the conditions of (4.35) and (4.36).

Therefore we have found eigenvectors such that

p-1Lj + W 24 0

[81-k.],l

(4.39)

i![Ok]a = o

Sk=0lk 8 k av =
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Here the original differential equation has been divided through by P,

the density, in order to provide the same differential operator,

P-LLk L' that was actually used to generate the eigenvectors of (4.37).
tk

The functional orthogonality of the J(r,k) can now be easily demonstrated

and this in turn can be used to obtain the expansion for I in terms of

these eigenvectors. (Actually, completeness of the eigenvector set is

also needed for such an expansion to be rigorous. However, we will obtain

the expansion without the proof of completeness, just using the orthogonality

of the _. Since the R£ so generated satisfy both the differential equation
I

for a Greens function and the required boundary conditions then by

uniqueness of solutions for such an equation we can claim to have a

sufficiently proper representation in the distributional sense.)

The orthogonality of the eigenvectors , viewed as a set composed of

members with different eigenvalues m and k, is a consequence of the self-

adjointness of the operator defined by (all) the equations of (4.39).

(Here m and k are eigenvalues or "quantum numbers" for eigenvectors of

the operator. Clearly m is a discrete set of integers, while k

is a continuous set. For a bounded medium, like a layered sphere, the

eigenvalues appearing are m and Z. They correspond (one to one) to the

set m, k appearing in this treatment of an unbounded medium. For the

bounded spherical medium however both m and L are discrete integer sets.

These differences are, as implied, a consequence of the bounded or unbounded

nature of the space over which the operator is defined, the basic operator

being the same in both cases.)

The self-adjointness of (4.39) is demonstrated by considering two
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arbitrary, distinct members of the eigenvector set _ and (say) ., where

we use different symbols for these members for clarity. Since i and

are distinct they will have two distinct sets of eigenvalues. In particular,

the eigenvectors satisfy:

L tk*k = - w2 ) L (4.40)

L£kfk = - V

where L =P 1  is used, with the distinction of the prime ignored.

Here both w and v are real. The inner product of j with the first of

these gives (see Archambeau and Minster, 1977 for details):

(4.41)

+fJk, kd 3x

V

where

J- [ Clkija'i] - *X [Cki j ] (4.42)

is the bilinear form. Here L denotes the complex conjugate of

Ik is the adjoint differential operator and is found, in Appendix II, (49) to be a

self-adjoint differential expression, in that:

L k Lk (4.43)
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The inner products are defined, for example, by

(Lkk.) f a, (Cl.kja 3j k)d x

Now integrating the last term using the divergence theorem, taking

account of the existence of internal boundaries 3vI in v, gives:

.fik,k d3x =f [ I(i*i) - i (~i)I da
V (0)

3VE

SI

where B S k is the boundary operator defined in equation (68). Now I and 0

are eigenvectors satisfying the boundary conditions of (102),and (100)

plus (101) is their explicit form. Thus since

v I  I l . vI

[j 0

ai8
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then the integral over the internal boundaries vanishes. Likewise, since

avE Ev 0

then the first integral vanishes as well. We therefore have that

fJk,kd3X = 0

We have as a consequence that:

Since and I satisfy (103), then this gives

(W 2 0- 9) 0

2 -
But w 4 V2, since t and 0 are distinct, so that we must have:

+On occasion we will use <*J > to denote inner products as well as

;iA
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/3

< I d x  0 (4.44)

Hence 4 and are orthogonal in both the vector inner product sense and

the functional sense. (i.e., the repeated index Z requires summation

over its range so that we also have a vector inner product on v.)

The vectors p of the set are therefore mutually orthogonal, however

we do not assume that they are normalized, The normalization factors

N P (k,), N (k,w), and N C(k,w) may be functions of the eigenvalues m, k
Nek2 etalue Nk ) m

and are associated with the vectors P, B and C of
-m -m

defined from the magnitude of the inner product:

14.£, ' > -/ £d x

V

In view of the vector orthogonality of P B and C , we can define norms

for each of the component vectors making up , in particular:

W- -

V

NB (k) 8 f B d3 x

] -m -M
( V (4.45)

N C(k) Cm -*rd 3x
V c,

VI
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In view of the fact that q is the sum of P ,B and C defined in (4.37),

then the orthogonality of I is expressed by (using (4.44) and (4.45) together):

P - ',d x . NP6m'6(k-k')

f - m m m

.'I d3x = B6m' 6(k-k') (4.46)

3m mmfC C',d x = mm 6k-'

The orthogonality of the eigenvectors can be used to provide an explicit

expression for the Greens tensor iq. In particular we have that fq
P P

satisfies an equation of the type

L fq + V2 q = - 4r6q6(r-r_)
rpp r r

Here v is the Fourier time transform parameter, corresponding to the angular

frequency. Also kq satisfies the boundary condition of the form
p

We take q )(rro) to be expressible by an expansion in the eigenvector
p - -0

set P(r). For brevity we represent the eigenvalue pair m and k by the

single symbol X. Further we write the sum over the set of eigenvectors as

a "sum" over the sets of m and k, represented by f . Since m is integer

and discrete while k is a continuous set then f is equivalent, in this case,

to an ordinary sum over the discrete set of m values after integration over

the continuous k set. Thus we take:
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fiic(r;r f = A(r; X) iF (r; X) (4.47)
p --- q-p

where the A(ro;X) are unknown coefficients for the expansion. They may,

of course, be functions of r and A as indicated.-o

Substituting this expansion in the differential expression for Hq givesp

A (r ;X)rL *+ V2*r] =- 41a6q 6(r-r_
A o rp p r

Taking the inner product with another member of the eigenvector set

and observing that

rp*p r

in the above, we have

A (r;A r w.-2  ' '
q ;) ( 2_ 2< *r Or>] 0 <6(r-- I 0q';') ;> (4.48)

Using this and the orthogonality of the eigenvectors, we can determine the

coefficients of A (r ;A) in the Green's function expansion (4.47).
.q -- o

However, to obtain normalization factors for the A in the Green'sq

function expansion which are consistent with the use of the ratio

(ellipticity factor ) c in reducing the eigenvector coefficients in

equation (4.30) to those of (4.31), we must express the eigenvectors as the

R L
sum of a P-SV type vector and a SH vector, in the form = + 2 ,and



54

normalize R and 1P separately. This decomposition simply means that the

equations of motion L rp p + W2r 2 0 and boundary conditions can

simultaneously be broken into two independent sets with one set satisfied

R Lby the other by . The analysis starting with equation (4.37) and

resulting in equation(4 .38) applies to each operator set (differential
equation plus boundary conditions) involving R and L. Ten is given

by

-m -m -M
t R Ht L R

with

-M 2 -~m = m 6(

L -in 2-mn
Lik Lk + w L H9 0 6 6 (r - r o)

where 6(r-ro ) 6 R(r-r o ) + 6L (r-r o ) , in which 6R and 
6L are decompositions

of 6 such that <6R LL> = 0 and =0.

We are then led to results parallel in all respects to those already

obtained for the eivenvectors; and such that

f A ) ; [) - ' < P r >  - 47 <6 (r - r) > (4.48a)

Lq 2- 2 r Li L0

q( ;) -o r I r L 4< ( -r) q > (4.48b)

A
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with 6 RCr -r ) and 5 (r -r ) being regular delta functions of rand

r0but with the added property that these are projection operators along

R L
±and (e.g., Horse and Feshbach, 1953). Here:

R
P m+ m

L

in terms of our previous definitions. Now we have that:

<' R f> R 3  
1  + NL]m'6(k-kJ (4.49)

L L NC 6m' 6kk)(4.50)

where we have expressed 0 and 0 as
r r

IR +IL

-m --u
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+
Further

R ~ -o

Therefore (111-a,) and (111-b) give

A Cr ;X') NR(X.1) q~~ ;)L')

AL (r ;)L,) = 4 CLr ;'
q N LA q -o

Here we have set:

NROO (PX B 2 v2

N (NM NM) (W V

InP22 I(4.51)

The notation *indicates the complex conjugate of f.
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Since R + L is just one of the eigenvectors of the set and A'its

associated eigenvalue set, then it is equivalent to write

R 47r -RAR(r ;A i(r;)
q --o q --o

(4.52)

A (r ;X) 0( ;.X)
q -0 NL(A) q -

The Green's function is therefore given by

fiq(r;r H q + Hq= 4ng-
P -0 R p L p NR(X).

(4.53)

L -L*4p (r;X) * q r oA

+ LI
N (A)

writing this out more fully, using the appropriate representation of the

generalized sum over X, we have
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P -J )N R(k) [ m' --m p
m 0

+ E (z;k) 8 (P,0;k). \((z ;k) P (p .0;k).eM --i Pj) m -i M o o q

+ E M(z 0;k) 8 p! o k- )

+ ( [( (z;k) C (ps0;k).p)'(i 7F(Z;k)- - (p% 4b;kQ q)] (4.54)

Here e and are the p and q components of the coordinate basis chosen.

Of course a cylindrical coordinate basis is the natural choice for this

representation.

The functions D M E Mand F mare defined in equation (4.11) and P IM, B

and C in (4.10). The coefficients in the function D, etc., are given by

(4.35) and (4.36).
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Representation of the Radiation Field from a Linear or Non-linear
Energy Source

We have at our disposal the integral representation of the spectrum of

a displacement radiation field in the form (equation (60)):

4fliiq f Ifpp d
veav (4.55)

pf T pr 5p pr] r odao

(0)avE

and the layered half space Green's tensor

iq(r r 41 j dk [Np __
p -'-0 NR(kmM

(4.56)

L. (r;mk) 4' (r;m,k)

+ p L q
N (k)

Consider now the application of these relations to the representation

of the elastic radiation from a general energy source (e.g. non-linear)..

We will assume that the source is actually given by a detailed numerical

calculation of the motion due to some particular phenomena (e.g. an explosion)

which is most likely a very non-linear process. Suppose the source region

occupies some finite volume within the half space and, for generality, that

this source volume or nonlinear zone, may intersect the free surface. The

situation may be as shown in Figure 2. In any case v is the linear elastic

zone, which will be assumed to be a layered half space. The external
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boundary of v, denoted as 3v can be viewed as being composed of two
Es

sections, the non-intersected free surface, vE0 ) , and the (elastic)

boundary between the (non-linear) source region and the elastic zone,
(1).

E

With the layer half-space Green's function given in (4.56), and neglecting

body forces at least for the moment(i.e. the first integral contribution

can always be added later), we have for the elastic displacement field in

v (outside the source region):

4U =/ rH-p- H 1 pr n da (4.57)

lq J Lppr p pr] r o

av~l)

We can presume knowledge of both u and ; -n, the tractions, on av(1)
p pr r

the source boundary, since in the present application we have supposed

that the results of a numerical calculation are specified on av () in the
E

form of Fourier transforms of i -n and
pr r p

The question is then, how does this excite the surrounding elastic

medium. The answer of course is given by (4.57) in the form of the surface

integral which gives Up, the elastic displacement at any point in v. We

note that the integral involves avEl) only, and that this is only part

of the nonlinear zone surface boundary that does not intersect the free

surface.

The representation (4.57) can be put in more explicit form. That is

using (4.56) in (4.57) and interchanging the integral over the surface

aVE with the sum over m and integral over k, gives:
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Rf
u qfdk{ ~N~h (k)p n) r~ (r ;n,k) da

E

N R(k) f P rst a .E~~k r 0a

avE
L (4.58)

+ 6T *n)4'(r ;m,k) da
N(L) (k) fbpr r q -0 0

aE

L

N L k) f (; C prst ax t @L-r;mkn rda o

m av(l) 0
E

We observe that u can, as expected, be written as:

;R + -L (4.59)
q q q

Here also it is clear that we can define tractions associated with

the eigenvectors on the surface 3vE). (Previously, in equations (4.13) and

(4.14), tractions on planes parallel to the layer interfaces were

defined and called T . These are the tractions computed for the layer-an

matrix and used in the propagators. They are also therefore those given

by the standard numerical calculations, e.g. Harkrider, 1964.) These are

undefined until we choose a surface. In this regard we have some flexibility

of choice since any boundary shape so long as it's entirely within the

linear region around the source zone will do. Clearly a surface with

it -
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cylindrical coordinate planes is advantageous. To be definite about the

matter we will assume that avE() is taken to be a cylindrical surface.
ER

Thus, tke eigenvector stresses when denoted as TR and It L so that:
pr pr

T R .a R

pr prst axt OS

0

(4.60)

T L a ,L J
pr prst at S

0

can be used to provide the tractions on 8v(1), as IF nr and TLn These
Epr r pr r

show the explicit dependence on the normal, as well as shorten

(4.58). That is, we have

I .- E dk/N (k) ['(r) (i n ,v da
q Rn pj pn rqo

o L (l)
VE

- R f (r))'? n da 1(4.61)
- jf p prr o I

av 
E

U drj, ( k) (r dapn (4.62)

J (1) p pr Jr

a E

ma
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where
-R L

Therefore u and u have the forms:q q

-R~ [R ( Rk R R ' 6a
u =m 

Ap q  (r;m,k) + B (m,k) qR(r;m,k)dk (4.61a)
q pqE I- I-

0
O

zL I L L *L1u q E f A (mk) 4L(r;mk) + BL(mk) q (r;m k) dk (4.62a)q m J~p q ' P -'

0

where:

(RNL) 1 ) 6(_)r O) da

N'q(R,L) J()pr r - 0

(4.63)

8 (R.L) = + N f (Ypv(RL)n daN RL)f p pr r 0
m a v0

E

These coefficients are the objects of interest, since once they have been

computed it is a rather routine matter to evaluate (4.61a) and (4.62a)

by standard procedures -- such as by summing residues in the k plane to

obtain surface waves -- and by evaluating the branch line integrals, also

occurring in the k plane, by approximate methods to obtain body waves.

(See Ben-Menahem and Singh, 1972 for examples.)

Since we know the forms of (R,L), as given in equations (4..11)-(4.13) plus
q

(4.35) and (4.36) we can calculate the T (RL)n components on the surfacepr r

in question and then evaluate the integrals in (4.63) by a suitable numerical
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integration over the surface, using numerically specified fields (~)and

6(r- n r in the calculation.
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Appendix I

Use of the High Order Langer Approximation in Seismogram Synthesis

V.F. Cormier

The objective of this research is to develop a method of seismogram

synthesis that is more efficient in computation than existing methods yet

capable of predicting waveform modulation by zones of intense vertical

gradient of velocity and density. In routine use such a method can facilitate

inversion for both source-time functions and earth structure.

The last semi-annual report considered an earth having regions of

intense but continuous variations in elastic properties. Representations

for teleseismic displacement in this earth were derived using higher order

solutions in frequency to the radial eigenfunctions that solve the potential

wave equations. Research has been directed now towards the practical

evaluation of displacement using this representation. The higher-order

solution to the elastic wave equations given recently by Woodhouse (1977)

in terms of propagator matrices is shown to be equivalent to the solution

derived for the higher order potential equations. It is shown that for

practical calculations it is best to describe the earth model as a series of

radially inhomogeneous layers, each having a constant raidal gradient in

velocity and density. Seismogram synthesis can then be most efficiently

achieved using the propagator matrix solution in either a reflectivity or

a mode summation method.

Solutions to Potential Wave Equations.

The Fourier-transformee potential wave equations satisfied by P, SV,

and SH scalar potentials are given by Richards (1974) as
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V2 P + 0it IF 2 ) -V-

2 +p p P 3 2 r r a)

1 2 V +_ (L V. : Vlb)1i CSV 2p~ r r

22

V2H + 1P H + e H =0 c)laT

for P, SV, and SH waves respectively, where B is an operator acting as the

non-radial part of the Laplacian. Separation of variables allows the

solutions to be expressed as a sum over Legendre polynomials:

Co

P(r,w) = E w(r, n) P n(COSA) ( .2a)

n=O

co

V(r,w) = L [x(r,n)/(iwp)] Pn(COSA) ( .2b)
n=0

o

H(r,w) = 00 y(r,n) Pn(COSA) (.2c)

n=O

The constant factor iVp (i = /T , W is radial frequency, p ray

parameter) divides the radial eigenfunction for SV waves to recognize its

dimensional difference from that of the radial eignefunction for P waves.

This difference arises from the definition of P and SV potentials and

must be considered when determining the order in frequency of their coupling

terms.
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Substituting ( .2a- .2c) in ( .la- .1c) results in equations for the

radial functions:

d2+ W 2 1 n(n+l)W + pW ()+ n(n+l) ) (.3a)2 + W 2 2 + PW 2 2 2 r +0() .a

dr L wr r r

dw 2 W 2 1 , Y + Kw , (W(ip+ n (n+1) A + 0c3b)

ro wr a pw2 tr ;rr ron

2

d Y+ (2 .3c)dr 2 2 e0)

Op - w r

where W , X , Y equal rw ,rx/(iwp) ,ry respectively.

Taking a Liouville transform of eqs. ( .3a- .3c), making the variable

change proposed by Langer (1949), and substituting u~p-112 for n gives

the equations:

2 2
+ + I+ C ++

PP

22 22 _' pd 01/2 +((W ( .4a)

0 pWr r r 2 d

s 12+T2 s

OSS

2 dW (0 )1 /2 + + )

6So 22 +W 2-O~ rox+~~ + .d
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2 W2 Q2

Y__+ - + + +61 Y (.4c)2 8 '2  61

S S S

where the prime (') signifies differentiation w.r.t. PPs and

1 - 2)1/2 .4d)

a r

1 p2 1/2 (.4e)
r 2

The variables EPS and functions Op , 0S are defined by

= E)P = [- Qp dr (.4f)P 2Ii f %Pdr
rP

r 2/3

E = es = [ f dr 2.4g)

r
s

where rp and rS are the respective turning point radii for P and S waves

in the medium. The functions and &S are the Schwarzian derivatives

resulting from the Liouville transformation plus a term reuslting from the

substitution for n

0''' 3 0'' 2 1
= + + -2

4r

The Schwarzian derivative can be evaluated in terms of the physical variables

r , a , , and p by the identity

______________ ________________________________
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0''' 30 2 2 2
6 e- I o 1 2 A~q+ 3L (A~)2 + 5

20' + - ) 2 2 4Q2 dr 36T2

where the subscripts P and S are omitted for evaluation in either the P

or S velocity profiles and

T= f QPs dr

The radial eigenfunctions may now be found to any desired order in

frequency using the fundamental series solution given by Olver (1976).

For

00 2/3

2= Ai(A 2/3 ip) Am( P) = E ( .5a)
W A______M( _ 4/3 2

m=0 26 m=O

- 2/3 V( '2/3 ES) E (CMS)
X= Ai(W Es Am( S) + Ai( 2  9) 2 ( .5b)

m= -- 2S m=0

where Ai represents any Airy function solution of the zeroth under

equation and A , B 'K A B are functions to be determined by

M m m m

substitution of the series of eq. .4a and .4b and equating terms of equal

order in frequency. Thus it can be determined that A is always constant

in radius for P, SV, and SH waves and in terms of physical variables B

r E + (Q2 + p) dr for P (.6a)

2Q Q

p

'P
p

2Q-i
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K 2
r V + 6 +- (- -+ O) dr for SV,

5V S P r S2Q sf Qs
r p

_ISV(
I SV(.6b)

- 2Q S

and

1 r T + 6S dr for SH

S

SH (.6c)2Q sH

where opS OSp are coupling coefficients defined by

2 aX 1/2 aP_ 0 (0p (s W.7a)

OPS =r 3Z P 0

1 o , 1/2.
'S P -2 aZ (08S P )2/X 0.7b)

r

in which the subscript (o) denotes the zeroth order term in the solution

series for W and X . After substitution of W and X above, it

can be shown that the coupling coefficients a , SP have a strength

proportional to p/r Thus at vertical incidence on a region of intense

vertical gradient the coupling coefficients apS , 'sp - 0 . This

continuum property mimics the non-conversion of P and SV waves vertically

- - . . . .--- - - -..- ~-. . -. .
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incident on a discontinuity. For non-vertical incidence the coupling

coefficients introduce a phase factor determined by the strength of the

function K1 /p between r and the turning point radius. The phase

factor acts to correct for the phase accumulated along the path of a con-

verted wave type from the conversion point. Because the coupling coefficients

require the evaluation of additional Airy functions in the integrand of

integral for the B term, the efficiency of the higher order potential

solution in seismogram synthesis would be poor.

Propagator Solution for Wave Propagation.

An alternative description of seismic wave propagation in an inhomo-

geneous medium can be made in terms of the matrix equation satisfied by

components of displacement and stress (Gilbert and Backus, 1966). The

wave equation is thus written in the form

DF
= sM(r) F(r)

where F__( is a funcamental matrix solution whose elements are Fourier-

transformed components of displacement and stress. (s = -iw for a forward

Fourier-transform sign of the form fe+iWt dt).

In obtaining higher order solutions for F Chapman (1973) decomposed

the matrix M into a sum of matrices of differing order in frequency, i.e.,

J
S = M(J) s- j

J=O

where J = 2 for SH waves and 4 for P or SV waves. Wasow (1965) described

how a uniformly asymptotic solution to such a system can be formulated
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similar to the solution eqs.( .5a- .5b) derived by Olver (1976) for a single

component system. Using a series of similarity transformations and Langer's

(1949) variable change, Chapman (1974) obtained matrix equations analogous

to the transformed equations ( .4a- .4b),

U (K) M s-K.8
-.% (.8)

and solution formulae analogous to eqs. ( .5a- .5b),

F=S F .9)

where

F
-2/3 2/3 -l/3 B;( s2/3)

(Here the symbol % over a matrix denotes that the Langer variable change

of eqs. (.4f- .4g) has been made.) Chapman (1974) determined the matrix

D(0) in a flattened earth as

=(0) (Z a )l1/2
D_-) .10)

where I is the identity matrix and Z is a reference depth most conveniently

a
chosen as the earth's surface.
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Using Chapman's (1974) results for higher order matrices M(K) and

Wasow's (1965) theorems, the matrices D D etc. can be

(i) (i)
determined. The procedure solves for the functions q q in

solutions of the form

(0) q (0) + q ( ) ( .la)

(1) D(l) (1) (1) -(o) (rbD + (4) ( (l)

subject to the compatibility conditions

M(0) D (K) - D(K) M 0  fi 0 for K 0

K

(Kl1)' - E U(j) D(K-J) for K # 0 .12)

j =1

where D(i) is a particular solution and (') signifies differention w.r.t.
P

the Langer variable . Eor example by considering the matrix system

for SH waves a particular solution to the compatbility condition for

D () is given in a flattened earth by

* 0

D 
(.13)

2z2 qlI

where () signifies differention w.r.t. to depth Z and C is a constant.

By again substituting the general solution (lb) for D(i) in the compatability

condition it can be determined that



74

q()= -C (.14a)

and

9q 0
(1d I~l d 1 2  dl~ I

q = + 1 d12 + 122 d21 )  - 21 - dZ ( .14b)

where a is the radius of the earth and mij , dij denote the

ij elements of the DO and (1) matrices respectively. Now substituting

this result in eq. ( .9) with expressions for the elements of M(0)

the solution for the fundamental matric T to second order becomes

=q + F/s ( .15)

where

T=0 d + q(1)
Kdl 12 2 0

211)

When the quantity d12  q2 l) is expressed in a single integral ISR

over depth, the quantity d21 + t q(l) expressed in terms of ISH , and

the varible of integration changed from the flattened depth coordinate

Z to radius r it can be shown that

r-1 r T + 6S dr -ISH

d)12 + q2 2Q - ( .16a)
rd

SI
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and

( 1 )s-sH + + .16b)21+ q2  " /2 [2

The results given by ( .16a- .16b) for a spherical layer are equivalent

to those obtained by Woodhouse (1977) for SH waves in plane layer. Note

that the integral ISH is the same as that derived for the higher order

potential term B in eq. .6c for SH waves.

Practical Evaluation of Seismic Displacement

By Watson transforming the partial wave expansion the seismic dis-
P SV SV

placement components u , u , u can be represented in the frequency

domain as

P (r, A, i ) = JF P w(1)(ro) W()(r) Q(2) dp (.17a)Ur 4Trop a4f

0 r

sv M0  fSV(l) '(1 (2)
U,& (rA ) =F x (r o ) x (r) Q dp (.17b)

SH i 3 M ,2)
uO (r, A, W) = Mf0o /SH y(1)(r Y 1 (ro) Q dp (.17c)

o 4 oPo r

for a shear dislocation centered at radius r with seismic moment M
0 0

P SV SR
and a radiation pattern described by the factors F , F and F

For a continuous earth with regions of intense gradient the last semi-annual

report considered the feasibility of calculating displacement by inte-

gration in the complex p plane using the respresentations given by

eqs. ( 16a- .16b). If the regions of intense gradient are sufficiently
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deep, the Airy functions in the higher order representation for the radial

eigenfunctions w, x, y may be replaced by their asymptotic approximations.

Thus w, x, y are approximated by

(1) 1/2 +ir/4 +T
w(2) ~ e- P 1 i Ip- 5

p w 72T (

(1) 1/2 eir/4 +iT
X(2) a e e-S

A _S 1 + .18b)-iwp rw Q S - w 2 72T .1b

(1) 1/2 +ir!4 +iT
(2) i + [I ( .18c)yr wQs --1 +- [ 72TS

for (1) up or (2) downgoing waves.

The representations given by eqs. (.17) and ( .18), however, are

additionally limited in practical use to situations in which the coupling

coefficient present in Ip, SH , and ISV can be neglected. The

coupling coefficients themselves involve the evaluation of Airy functions

of both small and large arguments, making the evaluation of I p and Isv

very inefficient. A far better representation in practical use for P-SV

displacements is given by the higher order fundamental matrices determined

by Woodhouse (1977). The higher order matrix correction to the fundamental

matrix for P and SV waves fully accounts for wave-type conversion and in-

volves integrals no more complicated than that of the ISH type. A given

displacement component observed at the earth's surface can be calculated

from the product of propagator matrices for each model layer with velocity

and density describable by functions analytic in velocity. For example,

the propagator matrix from the boundary radii r2  to r1  of such a layer

can be written as
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P(r 2, r) =F(r2 ) __-(r 1 )  (.19)

r21 R(r2) (I + iw-l r2 T()(r2)) (r2) G(r2)

l (r2) fl (ri) (1 - iJ 1 rI T(1)(ri)) R-1 (ri) r I

Woodhouse (1977). The elements of R are simple functions of elastic

constants density and ray parameter. For practical evaluation, the matrix

products G and G - i can be expressed as matrices containing

up and downgoing generalized cosines and radial eigenfunctions using the

definitions of Richards (1976)

and

y(2) 0 -l

-1 =(.20b)
(1) cosi

0B .

where

Cosi =+iwy (2)

'(2)
cosj =Y (2)

-iwy

-- Nebo
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Fuchs and Muller (1971) describe how a displacement component observed

at the earth's surface can be calculated using an integral representation

equivalent to that eqs. ( .17a- .17c) but in which a reflectivity function

calculated from a product of propagator matrices substitutes for the radial

eigenfunctions w , x or y An alternative representation of

displacement does not Watson transform the partial wave series and instead

takes a truncated sum of the discrete modes n - wp - 1/2 (Sato and

Usami, 1963). This representation allows synthesis of a longer portion in

time of the seismogram from body to surface waves. The use of Woodhouse's

(1977) propagator matrices in either method eliminates the need for describing

the earth model as a stack of many plane homogeneous layers. Langer's

approximation to radial eigenfunctions, embedded in the Airy functions

in the G G and G- 1  -1 matrices, fully accounts for velocity gradients

and boundary curvature of radially inhomogeneous layers. A matrix solution

method is capable of handling mode conversion more efficiently than the

potential solution.

Since layers may be inhomogeneous, a question then remains of how

many inhomogeneous layers are necessary to describe an earth model. In

principle the earth model may be completely continuous. At sufficiently high

frequencies the next higher order term for the fundamental matrix accounts for

the effect of regions in which velocity and density gradients are large

and rapidly changing. In practice, however, it is seen that it is best not

to represent a region of rapidly changing velocity and density gradient as

a single inhomogeneous layer, e.g., representing a low velocity zone by

a parabolic function or a transition zone by a hyperbolic tangent function.

In these cases the integrand of the integrals ISH etc. in the higher order

jS
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matrix would be large and rapidly changing at those depths at which the

velocity and density gradients are rapidly changing (Figure 8). One must

choose between either increasing the number of inhomogeneous layers in the

earth model, and thereby the number of fundamental matrices to be evaluated,

or increasing the computation time and magnitude of the higher order correction

to the fundamental matrices. Representation of the earth model as inhomogeneous

layers of nearly constant depth gradient in velocity and density clearly

most efficiently compromises between these choices. This representation

minimizes the effect of the higher order correction to the fundamental

matrix and in many cases allows the integrals ISH etc. to be evaluated

using the three point evaluation scheme described by Jeffreys and Jeffreys

(1956).

In the next research period a practical computation code will be developed

incorporating higher propagator matrices in a either a reflectivity or mode

summation method of seismogram synthesis. The method will be tested in speed

and accuracy against other exist , methods of seismogram synthesis.
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Appendix 2: General Elastodynamics Representation Theory for Inhomogeneous
Media with Moving and Fixed Internal Boundaries.

(1) Conservation Equations in a Linear Elastic Medium

+
The linearized equations of motion may be written as (Archambeau and

Minster, 1977):

LYu pf ; a,y,8 - (1,2,3,4) (1)

Here, u is the space-like displacement field
Y

u= (ul,u 2 ,u 3,0)

while f is the space-like force density
a

f = (fl'f2'fY O )

and x is the four vector:

-(X 1,x2,x3 x4) (xlx 2,x3,t)

The elastic operator is given by:

- a~y (2)
Lay- (C B 6 a (2

+The summation convention for repeated indices applies throughout. Ind3ces

excluded from this rule will be enclosed in parentheses, e.g., Gjj!1j implies
no sum on n, but summation on the j index over its range of values (1,2,3).
Also, Latin indices will range from 1 to 3, Greek indices from 1 to 4.
Cartesian tensors are used throughout, so while subscripts and superscripts
are used as is notationally convenient, they do not denote covarient or
contravarient components.
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with Cays the elastic-inertial tensor:

CCJ¥ 6 - - Cjk ; ij,k,1 = (1,2,3)

COSy 6: Ci4k4 - C414k ' P6ik;k , (1,2,3) (3)

CQy 6 - 0 ; otherwise

with Cijkl the usual elastic tensor. For an isotropic elastic medium

Cijkl X ijia k + P( 6 il 6 ik + 6 A6i1).

Cijkl and C .y, obey the same symmetry conditions in all cases, namely:

i Cjkl = Cjikl =  ijik =  klij

and

cOY6 = CcQY6 C0 6 Y = cy6cs

An alternate form of the equations of motion is obtained by defining

the generalized inertial-stress tensor:

au
T C (4)
a Ctyd 3x6
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Then, from (1), we have the equation of motion+

T Pfa (5)

Finally, the natural boundary conditions in elastodynamics may be

expressed in term of continuity conditions involving rC. Thus, if we

consider general media in which we admit the possibility of moving

boundaries, such as a growing failure zone or moving phase boundaries, etc.,

then the boundary conditions can be expressed in compact form if we define

a "space-time normal" to the surface as a four vector n., where

TI
- (n 1 ,n 2 ,n 3 , - U* n) (6)

where fi = (nln 2 ,n 3 ) is the ordinary spatial normal to the boundary surface

and u* is defined as

U -v (7)

where v is the particle velocity within the medium into which the normal

to the surface is directed and U is the velocity of the boundary surface.

The boundaries within and enclosing the medium will be designated by

+The usual notational convention for partial derivatives will also be used
occasionally, that is:

aB

a Toto CO, B ax8
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the symbol E. The boundary condition expressing conservation of momentum

across any interface or exterior boundary of the medium is (Archambeau

and Minster, 1977) +

ELICIO1IOlE -c(8)

written out in component form this becomes, using the definitions of T

and n

0(pvVk  - T ) nf 0 (8-a)
'I kt tM E 0

where

is the particle velocity relative to the moving boundary. The tensor

T k is the ordinary Cauchy stress tensor.

Clearly, if the boundary moves with the particles of the medium, in the

sense that U£nL = 0, then v n£ = 0 alsoand the equations (8) reduce to

the regular continuity of traction conditions across E, that is:

IJ TknjI = 0 (8-b)

+The double bracket notation [EFfl is used to denote the change in a

function F on crossing a surface E. That is:

CF33:- F(E1) - F(E2 )



84

The remaining boundary conditions express conservation of mass and

energy. They are (Archambeau and Minster, 1977):

t1 v *n 33 0 (9)

and

El(PEv* - vk k + qi ) niJ] 0 (10)

Here q is the heat flux and E is the total energy

pE = pu + p/2vLv, + po

where u is the specific internal energy and 4 the body force density potential,

so,fa =

If the boundary moves with the material so that the boundary is carried

normal to itself with the particles (i.e., U~n = 0), then (9) reduces to

continuity of the normal particle velocity across E, so:

Qv nf1lE - 0 (9-a)

In this case (10) reduces to

[TVk.]E tk = [rqintfl, (10-a)

where tk - Tk~nL are the components of traction. This relation simply

expresses the rate of heat production on the boundary (in terms of a jump

in heat flux) if there is relative slip of the material on opposite sides
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of the boundary. This slip is constrained to be f1ong the boundary,

however, because of the constraint imposed by (9-a).

If the physical boundary is such that a no slip condition is warranted -

that is UVkIJI = 0 - then (10-a) reduces to:

UYq - 0 (10-b)

This just states that the heat flux must be continuous across the boundary.

Since thermal effects are of second order in such a situation ('welded"

boundaries), then this boundary condition may be neglected in solving for

the field ua from the equations of motion. The boundary condition of

importance, in addition to (8-b), is then the condition of no slip, which

requires:

V = 0 (1)

If this continuity condition is satisfied,then (9-a) is automatically

satisfied. Usually (11) is expressed more strongly through the use of the

Gufficient)displacement continuity condition. In particular

[lUkl ZO. - 0 (11-a)

It is important to note that (11) and (li-a), amount to assumptions

regarding the physical processes at the boundary and are not necessary

conditions, the most general case being covered by the relations (8), (9) and (10).

However, it is often the case that the boundary may be considered to be

"welded" (for solid-solid interfaces) and then (8-b) and (11) are the
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appropriate boundary conditions.

In the cases to be treated here we are concerned with the simpler

case of welded internal boundaries (solid-solid contacts). Tn this case

we consider solutions of the system:

L Uu = pfa

YE (12)

luflE 0

where the "boundary operator" B, is defined as:

T1 C 2-Cay (13)

On external boundaries or solid-fluid interfaces the displacement condition

is either absent or replaced by:

Etvnfl =0 (14)a a E

if one or both materials are fluid. Since the condition that U~n = - vjn .0

applies (the motion of the boundary normal to itself is with the material

particles) then the boundary conditions in (12) reduce to the ordinary

continuity conditions for traction and displacement.

+In the linearized elastodynamic theory,boundary motion is neglected in the

sense tk.at all fields are evaluated at the undeformed boundary position.
For an external boundary this leads to neglecting the continuity of normal
velocity condition.
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The boundary conditions expressed in (12) may also be written in
/

the matrix operator form:

UY 0 (15)

(2) Green's Tensors for the Linear Elastic Medium

The Green's tensor associated with the elastic operator L can be

defined by:

L G (x;x ) = A (xx O) (16)
Cy Y --- o

Here A8 is the generalized delta functiona

11a E 4r (1-6 )(1-6) S(x--xo )  (16-a)
ai e*O 4 84 -

As before the coordinate vector x is the four vector with components
BL

(xl, x2 ,x 3 ,t). Similarly, x is a coordinate four vector. Thus G is a

second order, two point tensor. Specifically, G 0 corresponds to the
Y

space-like displacement at x in the $ direction due to a point (vector)

force at x in the y direction. Since G is space-like, then the time-like
-0Y4 A

component G4 is identically zero. Go plays the roles of a propagator4 Y

for elastic displacement fields since solutions of (15) produce functions

G obeying the relations required for displacement field propagation in theY
medium from one point (x ) to another (x). In view of the meaning to be

B
attached to the Green's function G Y. only causal Green's functions are
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desired, so that GY must also satisfy

-o 0GO(x'X o) - 0 ; 4 < x0

This means that G must have the property

0B k 4. k 4. 08 k 4 k 4,C x "x -x0 x0 = G (x0,-x0 ;x '-x
Y = . 0

The transmission properties of the medium are expressed by the opera, Y

However, the full specification of the medium, including the nature of the

external and internal boundaries, is achieved by specifying boundary

conditions.

Therefore complete specification of G requires a statement of boundary

conditions. For compatibility with the boundary conditions of (12)

we can take:

ELS G8 D 0 1 Y(17)

or

Y 0 (17-a)

£

At "unwelded" boundaries (solid-fluid; fluid, solid-vacuum) only the first

of the relations in (17) applies in general, while the second condition

is replaced by the normal velocity continuity condition,
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[IG 4 r1YJ 0 (17-b)

when- a fluid is involved. At the exterior boundaries of the medium (usually

considered as an interface with a vacuum) only the traction condition need

be applied (the first condition in (17)).

The equations (15) and boundary conditions like (17) plus the causality

condition, define the complete operator for G Y

The operator to be used to generate the Green's tensor G (x;x )

associated with the displacement field u(_x) is ideally to be chosen so

that G can be employed to propagate known initial values or boundary

values of the field u0 through the medium, so that u can be predicted at

other space-time points. Thus, G is to be such that it acts like a simple

transfer function. A necessary condition for G to act in this manner is

that it satisfy (15), plus the causality condition, plus boundary conditions

accurately reflecting the properties of the medium like those of (17). However,

as will be seen in the following section, when the field u$ is known on a

particular boundary E0, then it is appropriate to use homogeneous boundary

conditions for G on this boundary. (This statement anplies to time-like{ Y

boundaries, for initial values, as well as to space-like boundaries.)

Consequently, the space-time boundary condition for Eo, the particular

surface over which the value of uy is known or specified, is of the

homogeneous form,

B yG { =00
ayY0
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with the notation here specifying that the quantity is evaluated as a

limit from within the medium on one side of the surface E . The role
0

of this choice of boundary condition on E for G will be apparent in
0 Y

the following section, where it will be seen that G will then have the
Y

characteristics of a transfer function for the displacement field u8 .

However, it is both necessary and advantageous to use a causal Green's

function, from the wide class generated by (15), satisfying boundary

conditions other than those of the "associated"field u . This arises from

the fact that it is usually as difficult to determine the appropriate

Green's function (satisfying all the boundary conditions) as it is to

obtain complete solutions for u8 itself. Thus it is usual to relax the

boundary conditions on the Green's function and to obtain a Green's

function that provides an approximate "transfer function" for u . Such

procedures result in approximations for the field u8 elsewhere in the

space. Aspects of this approximate technique are also discussed by

Archambeau and Minster (1977), for elastodynamic relaxation source

representations.
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(3) Green's Tensor Integral Equations

The formally defined properties of the Green's function, in particular

the differential relation (15), can be used along with the differential

equation involving u8 in (12) to obtain an integral equation relating the

value of the field u8 at all points in the space to known or specified values

on space-time boundaries.

In particular, using Green's theorem in the four dimensional space n,

we have for two fields with appropriate properties of continuity (Archambeau

and Minster, 1977):

(w*_) (WL*v), + f 801d
4x (18)

where the inner products are defined according to:

(Lw,v) v L w d4x (18-a)

Here (L ) L is defined in (2). The operator L is the adjoint operator

to L. It can be easily shown that L is a self-adjoint differential expression

that is: L EL*.

The quantity J is:

JO va Ca.f6 wy, -w, a v 5  (18-b)

with C the elastic-inertial tensor defined earlier. It is evident that

a formal application of Gauss' theorem to the final integral in (18) produces

a "surface" integral over the boundary of S2, involving the projection of J

on the normal to this surface as the integrand. We note, in fact, that this
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is J nV, and that

iB~ v v[B wi w [B v I

where B L Is the boundary operator of (12) and (17). It is this relation that

explicitly displays the role of the boundary conditions in the integral

equation (or solution) for u8 , which will emerge from (18).

In the important cases in which the fields, or L itself, have first or

higher order discontinuities, then (18) cannot be employed in a direct,

straightforward, fashion. The physical situation in which the medium has

internal boundaries across which the material properties change is a particularly

important example. Further, this discontinuous behavior may involve either

fixed or rapidly moving boundaries, so that it may be space-time coupled.

Thus it is critical for applications that the more general discontinuous

case be considered explicitly. To do so we can redefine the inner product

over the space Ql, as;

vL~) =f L w~ d 4x+ f v L w d 4 x (19)

where the A(P) are sub-regions, divided along space-time boundaries, within

which all quantities in the integration-are continuous. Implied here is a

separation of the sub-regions by a space-time strip of width "20" along the

surface of discontinuity, with the limit c- -O applied to the sum of integrals.

We can, however, also write this as
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=w [v) v vLay ywY d4 x va L aw d4x (20)

if we merely take note of the fact that this integral form can always be

written as a sum of integrals over the disjoint sub-regions defined by

PO I (or (1)M. W(N) ), where EI are the internal surfaces of discontinuity

+
within 0.. To be definite n(l) is bounded by one of the exterior boundaries

of S while (N) has, as a boundary any other exterior surface. (This "surface"

may be at the origin or at infinity.) Then all the S 2 L P < N, are

bounded by internal surfaces of discontinuity in the medium.

With this inner product definition in 9 we can apply the generalized

Green's theorem of (18) to each subregion 2(P). It follows from (19) and

(18) therefore, that:

(Lw,v)Q (w,L*v)a + Jo's d4x (21)

POE 
I

Here the inner products are defined by (19) or (20) and the previously

mentioned limit procedure applied to the subregion integrations is implied.

+The symbols 0 and e denote the set theoretic sum and difference. Thus,
POE- denotes the space Q with the points of lthe surfacesE deleted.

For N such surfaces, this is equivalent to R .eN •
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This result is nearly the same as (18), and indeed is the same if we
/

always think of Q as the set of subregions in which the fields and the

differential operator are continuous. However, (21) makes this fact clear

and, in addition to being more explicit than (18) in showing precisely

how internal boundaries of discontinuity enter the problem, it is also

rigorously derived for the general case.

Some care must clearly be used in applying Green's theorem along with

Gauss' theorem to the elastodynamic problem to obtain an integral relation

for the displacement field in view of the fact that internal boundaries

are important. To obtain the desired relation we take w in (21) to be aY

two point causal Green's tensor G8 satisfying (15) and v to be a displacement
Y a

field u satisfying the differential expression in (12). Then considering thea

inner product relation (21) over the coordinate space x (the "source

coordinates, instead of the "observer!' coordinates x) along with differential

expressions with x as the independent variable, one has (Archambeau and
-o

Minster, 1977)

+Archambeau and Minster denote the integration region simply as Q, and
implicitly use the general definition of i as the set of subregions in
which continuity holds. Here, however, we will be more explicit about
this restriction on the integration and write POEI, with the implied limit
to be taken.
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F~ 4o4vru (x) = Ip¢ o) f (x) G(x;x) dx
fI

(22)

G 14 G(x;x) T (x)- u,(4) G,(x;x d 4 dxo
OL- --a cL8o ct 1 __--

4 d x o

The displacement field term on the left side arises from an integration of the

left side of equation (21) using the generalized delta function in the

differential equation for the Green's function. The first term on the right

side is the same as the inner product appearing in (21), with L* u = L uaT Y OY Y

replaced by its equivalent Pfo' from equation (12). Similarly, the final

integral is as given by (21), with J0" being replaced by its substitutional

equivalent, JU,8, where

J1 (G,) =Gl'(x;x_) r (x) - u (x ) G' (x;x) (23)
a - c0 -0 n-o COS-'--o

The Green's inertial stress tensor G is defined analogously to the regular

inertial-stress tensor T 0 (equation 4); in particular:

3GV(X;xo)
GP O (X;x ) l (x) - -- ,- (24)nO-- ob - x

As with Jono, we note that:

TB u
B QaY(25)

& n =B G
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so that the previously discussed boundary conditions appear explicitly in

the integral equation (22).

The fields GU and u are, as noted, space-like,whereas T and
a a

both have time-like components. Because of this mix of space-like and general

four dimensional tensors in the bilinear form J1, the reduction of the final

integral in (22) to a surface integral over the boundaries of A is most

simply accomplished by separating the terms into pure space-lke and time-

like components. Thus, writing out the tensors in component form and

separating the result into time and space-like integrals gives for the final

integral in (22):

f 0~ [(;"T.0 - u. G3]d 4x 0

fi;: 4G T k ~~~~o

fleE I

-XI

aa k d 4m (26)
a- G ax)I x

The first of these can be reduced by an application of the divergence

theorem to the spatial coordinates, so that:
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4 o(P4

f.~ [c km - U uki]4; f k rk2 -UkGkt]

+.4.~~~~ fa k k dx

t+

dt f [N -k 1kG~L] n Xda.~

where the sum is over the ordinary spatial (subregion) boundaries BV(P)

and the integrals over time and space are separated. We can separate the

set of boundary surfaces D(P) into two groups, that is, into those

defined to be the external boundaries of the entire medium and those that

correspond to internal boundaries. The latter, of course, always are the

common boundaries between two subregions. Because the normals n to the

surfaces are always directed outwardly from any subregion v(p ), then on an

interior boundary we always have n(p )  n(p+I). Therefore the surface

integrals arising from the individual subregion integrations on common

(internal) boundaries can be combined, and we obtain:
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+
t

E

whr th dobl brcedoao intescod2tg7loe)llitra

boundaries av Iwithin the medium denotes the change or jump in the quantity

within the bracket across the boundary surface. That is,

m aIp m (a(p+l))

Ti(, I) -

for all p - 1,2,...,N. Here denotes the tensor product in the integrand

and Jm(Bv(p)) means the quantity evaluated on the internal boundary
th llth

separating the p-- and p+l- subregions approached (in the limit) from within
th (v(p+l) .

the -- subregion, while ?(av ) is the same quantity evaluated in the

limit by approaching the boundary from the (p+l) subregion.

In (27) we have suppressed the subregion indexing (over p), so that

the sum of surface integrals over each of the internal boundaries is replaced

by the convention that 3vI represents all the internal surfaces. The surface

integration is to be taken over all the disjoint surfaces. The same convention

of course, applies to avE9 which represents all the external spatial surfaces

of the medium.
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The final integral in (26) can be written

0 vexv I

where the spatial volume veav excludes the internal boundary points and
I

implies,. instead, limits from opposite sides of these surfaces approached

from within the separate spatial subregions. Further, v93v includes the

possibility of moving boundaries, either external or internal. Therefore

veavI may be explicitly a function of time to.

Following Archambeau and Minster (1977), we observe that when

v93vI is a function of time then the transport theorem provides, in effect,

the means of interchanging the partial differentiation with respect to

time and the time dependent spatial integration. Specifically, for any

function (scalar, vector or tensor component) of the deformation or flow

in a medium, then (Archambeau and Minster, 1977)

d x f F d3 x° + f F Undao
It f~ x at f L
00 -

v'(t) v(t ) av' (t o )

where v' is any volume within the medium and U is a component of the boundary

velocity. If Ut is the particle velocity of the material points then this
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is the ordinary Reynolds transport theorem. The form above is a generalization

of that theorem. Ordinarily, in linear elastic theory, UL is the particle

velocity and the last term is neglected as being of second order. However,

for rapid boundary movement -- such as for a failure surface boundary -- this

term cannot be neglected.

If we apply this theorem to the last integral term in (26), taking

F to be the integrand in (26), and taking care to partition the region

VeavI along the internal boundaries, we have:

ax 0 ax k a4, N 41
o 

o

f'~~Of ' m ( uk

iij uk(P ,G \ )] Jnd a

t+ 
IG m

J)_ m ao

~~~~~A- (Pa j a UInId

,+ 

m
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Here we have used the fact that U is continuous across all boundaries, by

definition, and that the normals from one subregion to the next change sign

along their common boundaries.

The last two integrals in (28) can be combined with the integrals in

(27). The first integral in (28) is to be treated as a Stieljes integral

of the form

t+
f df (t )

where f U(to) may have step discontinuities within (o,t ) due to discontinuities

along time-like surfaces in A (Archambeau, 1968, 1972; Minster, 1973;

Archambeau and Minster, 1977).

Now, using (27) and (28) in (26) gives:

t+

[CUT P d x Jdt onda
J 3181 f IVE

+ ft~t [~ 8 Jd 0
-f d[ ~3o (29)

where we have combined surface integral terms in (27) and (28) and used the

definition identities (in linearized form):
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TaI 8  Tk - P - U] n

GU nri E -p U.] n.

along with the fact that

JU1  CUTr -u 11

and

L4 IG u
4 P[ukat 0.k at

Throughout we use the linearized representation of the generalized space-time

normal no, which is:

no(nl,n 2,ny 3- Uin.)

where nk is the ordinary spatial normal to a surface,
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Consequently, we may now write (22) in the form:

4ru (x) -
(x f (x ) G(x;x ) d 4 x °

R-I

dt ~j n - fdtf J)rl8]Jda

o 3VE 0 I

+fd f [1 ll d3o (30)

o voIv

Now we observe that spatial boundary conditions on the displacement

field u along "welded" internal boundaries are given in equation (12) as -

B L u I  01 V I

(31)

IuYI1vI= 0

Thus in (30), we have for the integrand, in the integral over internal surfaces:

I[~"8IIav IGfI TT1 -n[~ iJ

+The jump notation [ J E for a surface r will often be written simply as ,
with the condition applying on any of a set of surfaces.

.... .... .. .. .. .. r ... ' .... . . . . .... .'.. .... .
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If then C a satisfies the same boundary conditions over the surfaces DvI

namely:

(32)

then JN itself is continuous at all internal boundaries. That is

and the internal boundary integrals all vanish. Thus (31) and (32) are

"natural" boundary conditions for a region with welded internal boundaries

of discontinuity. Equations (32) are therefore "proper" boundary conditions

for the Green's tensor, in that they are complementary to those of (31)

and cause the internal surface integrals to vanish.

We note, however, that (30) has been obtained without direct use of

boundary conditions on either u or G . It is therefore applicable to any

setof (linear) boundary conditions for u and any choice of boundary conditions

for G . It is clear, however, that a choice of "proper" boundary conditions

for GB will greatly simplify (30) and that if u satisfies natural boundary
Y

conditions (i.e. those naturally appearing in (30)) then additional reduction

of (30) is possible.

We will denote the particular Green's tensor that satisfies the boundary

conditions (32), on internal boundaries, by H 0(x;x o). Thus
Y
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(32-a)

and then (30) becomes:

4vu (A) pf H d4xo

CL a•f £

0ofL ~n0dao + f!d[: f o (33)v o E  Ov I

where u satisfies the boundary conditions complementary to those of (32-a).Y

The external boundaries of the medium avE may be defined rather arbitrarily

in that we may chose any boundary set to be the external boundary of the medium

in question and this simply defines the region over which (30) or (33) applies.

In particular, we normally chose one external medium boundary to be any moving

boundary so that (30) or (33) applies to the medium on one side or the other

of this boundary. However, this choice is not a necessary one and if the

moving boundary is not taken as an external boundary then it is to be treated

as an internal boundary. However, such boundaries cannot generally be

considered as welded boundaries and therefore the second condition of (31)

does not apply. Instead the weaker condition insuring conservation of mass

applies, that is, in linearized form:

tuk 0

-. ... I1 .. lt1 iltt .. .. il ... :;- 60 1l .. .... ..0._ .. _ "' .. .. . ..... . ...
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However, the first condition in (31) always applies, since it states that

momentum is conserved across boundaries. Thus if one of the internal

boundaries is a moving boundary, then on this particular internal boundary

(call it 3vi) we have

Clearly, if we chose a Green's function such that it satisfies the complementary

condition

tl -1 vI  0

and the "welded boundary" condition:

I[GI 0=0

then

f "nDlJrIll " o I ctJ~ oGU

In the situation in which 3v separates materials with differences in

physical properties and when the boundary is not geometrically simple, then

it is impractical to generate the Green's function satisfying these boundary

conditions. There are several ways around this difficulty which allow at

least good approximate results. However, we need not consider them in
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detail here since our ultimate goal is not to treat the general moving

boundary problem but to obtain some particular results that involve fixed

internal boundaries with a moving boundary, if present, as an external

boundary.

Thus, in this development, we will take any moving boundary to be an

external boundary. The treatment of the spatial surface integral terms,

in this case, is formally the same as when all the boundaries are fixed.

With this provision, we return to (33) and note that J nappears in the

integral term over 3v E' Thus for a solution for u 1A- rather than an

integral equation in u -it is necessary that we know the-value of this

function over the external surface. Since

and if only the generalized tractions T n are known or specified; say:

CIlaV E ,b a (34-a)

then an appropriate Green's function is such that

T) 0 (34-b)
CIO 0 3
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in which case the second term involving u vanishes. Hence, H1 should
CL a

satisfy the homogeneous complementary condition+ . Conversely, if ua is known,

so

Uja - (35-a)ua VE  Ca

Then the complementary homogeneous condition for the Green's function is

HaIV =0 (35-b)

In these two cases we get, respectively

3 'PaIVE bHP (36)

and

C [P C(37)0 J1 av E  aa

In these cases, assuming H can be found satisfying both (32-a) and either

(34-b) or (35-b) as is appropriate, then (33) can (normally) be used to obtain

a solution for u (x). Often it is not possible to find Hia satisfying all
pa

these conditions on all of the boundaries. In particular the conditions

(34-b) and/or (35-b) present considerable difficulties on at least parts

of the external boundary. Again there are various approximations that can

+Note that on a free surface, that is an external boundary in contact with a

vacuum, then b 0, a - 1,2,3,4. This causes J V n to vanish when

aIr v - 0 on such a boundary.
013 E
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be used (e.g. Archambeau and Minster, 1977). However, in some applications

both u and T can be compatibly given as known functions on parts or all

of the external boundaries. In this case HP need not satisfy any additionala

conditions, other than those of (32-a), in order to obtain a solution for u

This particular situation will be treated in the following sections since it

occurs for some particularly important problems.

The final integral in (30) or (33) corresponds to a generalized initial

value term or contribution and has been treated in this form by Archambeau (1972)

and Archambeau and Minster (1977), as well as in other equivalent forms by

Archambeau (1964,1968). In particular if the spatial integral term in brackets

is continuous in (o,t+ ), then

Because of the causal character of the Green's functions used, the value at

0 0

contributes and this involves the initial values ua( ,o) and a x0,o)"

0
If these initial values are zero, then the integral term vanishes.

However, in general the integral can be discontinuous at a set of times

throughout the interval (o,t+ ). In this case the time interval is to be

partitioned into time segments in which the integrand is continuous, Just

as was done in the case of internal boundaries in the regular spatial domain.

Thus, for time boundaries at It p0 , then we have:
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+3 o ( L f 3

(38)

I 1ev 0~ fev

where the range of summation over the time boundary points is to Mif t ) t(M )

or L,if t < t(M ) , where L is the index of the discrete time point in the
0

set closest to, but less than, t. The bracket notation is the same as that

previously used for jumps at boundaries, except here the boundaries are a

the time points t(p ) .
0

We observe that, by definition:

ve v 0 veav 1  to 0=tP-

- fJd3 x° t =t(P)+ e
vav .0 0

Since we are considering the medium to be bounded by external boundaries that may

move, then formally at least, v Iv may be different in value at to- E
1 0.

and t(P)+ c. However, we must define the medium in which the Green's
0

function representation of the field u holds to be that occupying the region

which has not been traversed by the moving boundary. That is the volume in

which the integral representation of the field u Cx) applies must always

exclude the volume region swept out by the moving boundary in any time

increment. Consequently, the change implied by (38) and (38-a) applies to

a volume integral over the minimum of vOUvI at t(P-e and t(P)+ G. Hence,
0 0
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(38-a) must be written as:

11fJd~xoJ fF['AdkP)

S  (p) (p) (38-b)i vI o Vp9VI t
p 0a

where V 0V 1  min [vea3V ]

0

Hence, thegeneralized initial value term of (38) is given by:

ft+* 9v (L,?i) d
fdi J d3xo EJ'1 ()1 o (9

Since:

t p ok~ 6 Gtou

0 t
0

then it is appropriate to require that the Green's function have the tontinuity

properties

(40)

[ tj(p)J - 0

0



112

However, if Gm is simply required to be continuous in t along with its
k o

first derivative, for t < t, so that it is of the class C1, then the conditions

(40) are met. (Indeed such conditions hold for all times t < t, as well

as at the discrete boundary times t ( p ) , p 1, ... , M.) Thus we require:
0

G M(x,t;xo',to c C1  (41)

for t < t.
0

In this case

Y= PGu [9t~ - t t j(p (42)
0 0 0

If there are no external time varying forces applied discontinuously at the

times t(P) then the momentum change p CkUkClis zero. For spontaneous processes

involving boundary movement (e.g. failure or phase changes under initial

stress conditions) this is the case. Then we have

t ( p )  t ( p )  t (43-a)

o 0

with the (time) boundary condition on uk being:

[[a~u~ 1 ~ 0(43-b)atoUk]t(p) =0 (3b

0
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Alternately we may have, when impulse forces are applied

Gk (44-a)

0 0

and the appropriate time boundary condition for the problem is

uk It(p) = 0 (44-b)
0

By far the most important case in applications is that given in (43-a)

and (43-b). Specifically, Archambeau (1968,1972) and Archambeau and Minster

(1977) consider failure in a prestressed medium and show that (43-a) and

(43-b) can be used to describe the radiation field arising from the failure

process. In this case (43-a) applies and ff uk ](p) corresponds to the
o

change in the equilibrium field due to the creation of a failure boundary

(or its incremental growth) so that in this application:

t ( p )  P  t ( p ) atk

o 0

where u is used to denote the equilibrium field explicitly.

Equation (39) expresses the contribution to the field u (x) arising

from the discontinuous behavior of the spatial volume integral of J31

at a discrete set of times t () We may generalize this result too 1"

include a representation in which the settbecomes partly or

a continuous distribution. The result is a straightforward generalization



114

of (39) which has been shown by Archambeau (1968, 1972) and Archambeau

and Minster (1977), in the somewhat more restricted context of a growing

failure surface problem, to be of the form:
mn (t, t')

t 0

where t (M is the upper limit point of the continuous and/or discrete set
0

of discontinuity points and 6J represents the incremental change or

variation of J . over a tim increment 'St . In (45) all quantities are to
4 O

be measured relative to the initial state. (See Archambeau and Minster, 1977

for other choices for the reference state.) Here 6J is equivalent to

IIJ4 1 1 in (39), while the time integral over to replaces the sum over t

4V1 0o 0

index p. Formally, the integral is the limit of the summation as the tim

spacing, 5t,between successive t~ ) is allowed to become infinitesimal.
0

To explicitly display the discrete discontinuous case, it is only
necessary to note that discrete discontinuities inrm , at times ( or p

4 0

be~ ~ ~ ~ ~ ~~~~~~tp mesue reaiet h nta tt.(e rhmuadMnte . 1977

for step fucto iso tutherfrestate Her J is eqaet to o

4

( 6J4 i 6 to)-.' J ]6(tQ- t()

wit Ein(39),) the Dirac delta function. It is clear that use of this in

000

(45) gives the discrete result (39). Hence (45) is a general form of thl

result including both discrete and continuous distributions of time dLs.tinuties.
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For the cases of greatest interest, namely when It uk is continuous
0

and Gm, and its first derivative in to are continuous, then the integrand

in (45) has-the explicit form (e.g. Archambeau and Minster, 1977)

(FsjltSt) [ *] (46)

where uk(xot ) is the equilibrium field value at the source time to. The

factor 68/6t ° has been written as a partial derivative with respect to

t since the meaning is the same as the variation ratio. The general case

is

/p (6uk/St ato ) - p k  ( k/0)

where vk
0

To collect and summarize the most useful results of this section, we

have shown that in general, the integral Green's tensor representation of

u ( ) is:
t+

4v u (x) dt f Ga d 3Xo
"0 vOav1-fj. fo 0 ao- a~

ft++
-Jdto J J8 i8 da .. jdt] [J'Jn0 ] da

00 0 f00 ffv E  ). 
I  

(

+ fdrt f Ja0ISt o  d3 x (47)
4 0

va O
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where the result (45) has been used in (30) and T = mi(t,t ). The Green's
0

tensor used to obtain (47) is the causal solution of L C 8  A satisfyingQY Y a

the condition that G and its first time derivative with respect to t be
Y 0

continuous for t < t. When the medium internal boundaries are fixed and
0

welded and any moving boundaries are external boundaries, then u C_) satisfies

the boundary condition

[B l~ [ 8 Tt~~= 0

uyl 3 o

on all internal boundaries. Then,

CL CL a (48-a)

Further for spontaneous processes giving rise to generalized initial values,

such as failure processes involving moving (or growing) boundaries in an

initially stressed medium, then

with uk the equilibrium field for the medium within the external boundaries.

Here 3 ta uk is the "source time" derivative of uk and is the source term for
0 *

the radiation field arising from the process. In principle uk(xto) can be obtained
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independently from (47) (e.g. Archambeau, 1968) so that the integrand of the

final term in (47) can be considered as specified. Likewise the applied

force field f (x ) can be considered as a known field. Thus these contributions

to u can be obtained directly, assuming that Glsatisfying the conditions

just statedis obtained. In view of (48-a) however, the surface integral over

3VI, the internal boundaries, contains u so that (47), as it stands, is

an integral equation for u Further the surface integral over 3 vE, the

external boundaries, may contain u terms as unknowns.

If we use the particular Green's tensor Hlj(x;4x which satisfies the

internal boundary conditions complementary to those for u0 in (48),*namely

t[ ByHi v H = 0 (49)

then with H used for G in (48-a) we have

3VI

and the integral over the internal boundaries DI in (47) vanishes.

Further, if the external boundary of the medium is partly or wholly a

free surface, then the total external boundary may be denoted as

E E E (0
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with av (0) denoting a free surface and av(l) the remaining part of the
E :E

external boundary. On 3v the boundary condition for u is:
E I

IU ]av (0) T nll1 av(O) 0 (51)

The complementary condition for the Green's tensor is:

jYHYJ [HU ) 0 (52)

E E

In this case, using HP satisfying (49) and (52) with u satisfying (48)
Y Y

and (51)

ila(0) 
-

E  t

Thus, with the Green's tensor HU, the integral relation for u (x) is:
Y Pi

4in Cx) = t+ pf HP d
3xo4ux)i =f Of ea a

o veav I

- t J'v i da°  (53)

E(1)

T

" to P JdtJ[P3t H d x

o veav1 0 GO
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where

[J~~r$ - a~t au1 H]ri

If values of the fields u or T n are known or specified on 3v
(l)

a t8 E

then complementary homogeneous conditions on H11 or H11 n reduces J(1 on 3V-)

to a known function, not involving the unknown u or its derivatives, and

(53) is a solution for u (x). That is, in this case, HI in combination with

its space and time derivative, act as transfer functions for the field

specified on space and time boundaries,such that the field is propagated to

other spatial points at later times.

Alternately, if compatible values of both u and T are known or

can be specified on av 1 , then RN need not satisfy any additional condition
E J a

in order that (53) provide a solution for u (x). Th.t is J , in this

case, is a known function on 3VE when the Green's tensor, H , satisfying

(only) (49) and (52) is used.

In the following sections this latter case will be demonstrated to

occur in several important applications. In order to use (53), however , Hu mustct

be specified. The generation of H for media. of the greatest interest in

elastodynamic theory applications to Geophysics are layered elastic spheres

and half spaces. The form of Hi in such media will therefore be considered

in following sections.

II
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(4) Green's Tensor Integral Representatons in the Frequency Domain

For this development to be pursued, it is necessary to transform all

the equations and fields from the time domain to the frequency domain. This

was the approach used by Archambeau (1968) from the onset in treating the

particular problem of a growing rupture zone in a stressed medium, this

being a particular case of the general problem treated here. We can however

use the time domain integral representation for u given in the previous

section, to obtain the equivalent frequency domain result.

In particular, we define the Fourier transform operation with respect

to time t by

a -t uua f a e -itdt (54)

Here it denotes the operator and ui the transformed function. The inverse

operator -1 is defined by

U e'iwtd

where w - 2wf is the transform variable and here corresponds to angular

frequency with f the frequency.

The convolution of two (tensor) functions is then given by

i i- . t ) wt t ~ t
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and if ua is such that u (t o ) = 0 for t < 0 while v (to) = 0 for
+

t _ t = t + e, then this becomes:0

t+

00

In this case

t+

Convolution relations of this type can be seen to appear in the Green's

integral relations for the elastic field u a(x), for example in (53). Thus

since v in the above relations plays the role of a transfer function, then

it is clear that the various integral kernels involving Green's functions

play the same role. This will become even more evident in the following

development.

Focusing our development on the most useful of the Green's integral

relations, we consider the Fourier transform of u a(x) in (53) with respect

to the (observers) time variable t. In order to carry out this operation

in the most routine way, we first observe that the two point Green's tensor

V kk
R( ON t;x t 0) is causal, so that

0 0

HUCx;x) 0 , for t > t

This allows us to extend the integration range in the first and second integral

terms from (o,t ) to(o,-) without chaning the value of these integrals,
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since H vanishes identically when t > t Next we note that:
a 0

uL(to)= 0 for to < 0

by supposition (i.e. the field effects start at t = 0). This allows us to0

integrate over the "source time" range (--,+-) in the first two integrals

since these integrals vanish in the range (--e,o) because of the latter

condition. Finally, for the last integral involving the "generalized initial

values", we can take the time changes in the equilibrium field to be zero

in the range outside the interval (o,t M) since such changes only occur in
0

this interval by our earlier definitions. Thus

9 u (t 0  ; to<0, t > tMt Ccto 0 O 0 t o  0
0

This,in combination with HP' = 0 for t > t, shows that the integration range

a o

for the final integral can be extended to (--,+-) without changing the value

of the integral as well. Thus (53) can be written as

47ru11 - fdto fpf~ H~d 3 x - do ~ da4,

E a(55)

+ fdtof[p t 0 ua 3t Hd
3x

a 0-oj t~v o o o
-0

lA
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Finally we observe that the Green's tensors are functions which depend

only on the time difference t-t° . This follows from the fact that they

are required to be causal and because of the self-adJointness of the

generating differential operator Ly. Thus we have that:

RI a ON( x o~x k t - t o).
x cx o o

Now operating on equation (55) with it, where we note that this operator

commutes with all the integral operators on the right side of (55), we get:

oc

4w iwt 0 (ni afll

f . 0 dt RT u Hi n daoJIx -x ctB dao (56)
0~ aVE QCE

+ iwfe dt Pa uc*] Odx

Here we have used the fact that only Hip and H" depend on t on the right
a as

side of (55) and that

i-it t e O
it Ha (xk xt-to) " e 0 x (k ' e 0a
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If the medium boundary 9v( ) is not stationary, then v3V I and 3v(l) will be

functions of to, so that the space integrals in (56) must be evaluated

first and then the integral over to may be obtained. Thus the time integral

over t which is itself in the form of a Fourier transform operator, doeso

not commute with spatial integral when there is boundary movement. (Of

course approximations can be obtained by neglecting the volume or surface

area changes and treating the limits of the spatial integrals as fixed in

time, at least to first order.)

If all the boundaries of the problem are fixed (in the sense of the

usual elastic theory approximation in which boundary movement with the

particles is considered as a fixed boundary), then the integration with

respect to t and the space integrals can be interchanged. We have then:
o

4u f p f H'd3 xo

Veav I

• aP jn da

(1) ] (57)

E

veavI

Here the boundaries are to be considered as fixed after the time t 0 0.

However, this representation still admits the case of an instantaneously

created boundary at to 0. In this case u (xk,t ) is a step function at
a 0

t - 0 whose transform u is proportional to 1/w. This problem was treated
0
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by Archambeau (1972) using a representation form of essentially the type

(57), with only the last term retained as significant.

It is also worth pointing out that since the boundaries are assumed

fixed here, then U, = 0 in (57). In this case all the tensors are purely

space-like; for example = (nln 2 Pn3 "
0 ). This means that all the Greek

indices in (57) may be replaced by three term indices, denoted by the latin

forms, £, k,.., etc.

The general structure of (57), when viewed in terms of the convolution

definitions previously stated, is that of a sum of convolution operations.

In particular, all the terms in (57) involving forces, that is pf , n

2-*-pw u , have H as a (time-like) transfer function. On the other hand,

the term involving the boundary displacement u on avEI ) has RI, as a

transfer function. Moreover, the Green's function will be dependent on the

k k k k
spatial coordinates x and x0 through the absolute difference x -x 0 . That

is, its functional dependence can be expressed as

H- x I , t-to

This follows from the causal condition imposed on Ha, coupled with the

character of the generating equation L H8 = Aa. These of course are the
ay Y a

same conditions leading to the time difference dependence used earlier and

lead to the usual statement of reciprocity for the Green's function.

Therefore with HV of the functional form described, it is clear that
a

the spatial integrations in (57) are also in the form of (three dimensional
space) convolutions. Therefore HP and Hrin are seen, from (57), to have

the character of space-time transfer functions or propagators.
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The form of (57) is considerably simpler than that of the more

general result (56), which admits of the treatment of moving boundaries.

However, the structure of the two integral representations is essentially

the same. In particular, H11 and H" n are the propagators for the fields.

Since 0f1' is related to HP within the integrands in (56) and (57) by:

3H
P

HP1 (x;x.) c C 6 (_) .x

0

Then the time transforms with respect to t x4 are related by

0 i 6 0a(x) (58)

0

Therefore knowledge of Hi, the transform with respect to the receiver time
Y

coordinate, is sufficient to specify the tensor RV appearing e a transfer
Y

function in both (56) and (57).

Thus, it has now been shown that knowledge of H is all that is required
Y

in order to use (56) and (57) to solve a large class of elastodynamuc problems,

including problems involving moving boundaries, as well as classical space-

time boundary value problems. Therefore solutions to a number of important

elastodynamic problems riquire the solution of the receiver time transformed

equation corresponding to:

L H (x;x ) (x;x_) (59)
y Y -0
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with boundary conditions, from equations (49) and (52),

0

J (0))

[HC n ] =0

3V(6O)

VE

By our previous definitions of the boundaries 3v and 3v(0 )  These are all
I E

fixed boundaries while only 3v(l) may be a moving boundary. Thus all the
E

tensors in (60) are space like (i.e., U , 0 on these boundaries) md so

these conditions may be written in terms of space-like components above.

We have:

fkmnJ 3 Vj

=Hja (60-4a)

[I ant (0)
avE

Taking the transform of these equations for H gives:Tknthtrnfrit a

I
__________________________________

i . .. . 1|
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Lk-+ 2jjm 4 7r6 ' 6 (k - k (61)

where is a function of the ordinary space coordinates alone, and where

L k a (C ajk X)
I j Ij m 

is the regular elastic operator. The boundary conditions become:

~IB =} 0 (62)

I-

where

The boundary conditions may be written in a compact matrix form,

analogous to that expressed earlier in the equation (14), as:

Ik m 0 (62 -a
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t[SIkH] 3v(0 (62-b)

where Bl is the"space boundary operator"

51k 'j n t[jki ax,]
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- Examples of synthetic seismograms are included to illustrate the effects
of attenuation on the displacement waveforms, as well as the effects of the
response of a typical long-period seismograph system.-

7 The application of Green's Function techniques to elastodynamics has
led to methods for treating a variety of problems in wave propagation and
earthquake source representations. The complete theory is givenia this
report. In particular, wave propagation in a realistic, layered ,arth from
generalized nonlinear sources is treated specifically, the dynafiic field
due to stress relaxation around a geometrically general, growing inclusion
(an earthquake source) in a spatially heterogeneous initial stress field is
considered and computations based on the theoretical results obtained are
currently being carried out.

There is evidence that specific anelastic attenuation, expressed as
is frequency dependent. Q models of the Earth based on free oscillations,
surface waves and body waves show that in the broad frequency band covered
by the input data, Q increases with frequency. Frequency-dependent Q is
modelled by a relaxation process with a range of relaxation times. An
investigation of the relaxation time characterizing the high frequency
corner of the absorptionband was carried out using the data from 21
shallow earthquakes, 1 at intermediate depth, and 4 deep ones.

The criteria used was that the Q-corrected spectrum show decay at high
frequencies at a rate in the range f-2 to f-3 . The depth dependence of the
resulting relaxation times and corresponding values of T/Q was examined.

mixed effect of depth and frequency dependence of P-wave attenuation
..ds found. >The important conclusions is that the P and S attenuation
data can only be reconciled by including a bulk loss mechanism, in addition
to a shear loss mechanism. Although the results are not unique, this
suggests that the bulk loss mechanism is operative in the upper mantle,
perhaps within the asthenosphere.o
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