

INTRODUCTION -

The research covered by this final report has two principal
objectives. One is the development of methods and tools for the design and
evaluation of SECURE SYSTEMS. The other is th development of systems for
AUTOMATIC PROGRAMMING with emphasis on progran for specifying, designing,
and optimizing programs. In this area4We-&re-concerned both with specialized
systems for restricted domains and with the development of more general
KNOWLEDGE-BASED SYSTEMS.

The various projects in our research program, and the senior

investigators in each project are listed below:

A. SECURE SYSTEMS

(A.1) Protection and Integrity of Data Bases
(Naftaly Minsky)

(A.2) Architectural Features for Operating System Security

(Manfred Ruschitzka)

B. AUTOMATIC PROGRAMMING

B.1 Studies and Systems in Specific Domains

(B.I.1) Automatic Optimization of Programs Defined as
Finite State Machines
(Edward Wilkens)

(8.1.2) Programs for Computer Aided Formulation and
Improvement of Recursively Defined Algorithms
(Marvin Paull)

(B.1.3) Computer Aided Design of Specialized Efficient
Algorithms for Sorting and Selection Problems
(Saul Levy)

(B.1.4) Automatic Program Formation from Problem
Specifications 0 0)0
(Saul Amarel)

(B.2) Knowledge Based Systems: The Meta Description System MDS
.0(Chitoor V. Srinivasan)

S * °

6/

II

-2-

I. PROJECT SUMMARIES

A summary status of each project is presented in this section.
It is mainly intended as a guide to the collection of technical documents
that constitute the body of the present report; it also outlines the main
achievements, the current state of work, and the implementation status of
computer systems developed in each of the projects.

(Al1) Protection and -Integrity of Data Bases

The general objective of this research has been the development
of a protection theory which is suitable for the protection of the security
and the semantic integrity of databases. This objective has been achieved
by means of the new operation-control (OC) protection scheme, described in
(Minsky, 1976d, 1976e, 1977a)*. The new scheme is superior to the standard

* schemes in many ways: it has more expressive power, it is more efficient,
more stable and easier to prove and review. In the context of the new
scheme we attacked a number of old and new protection issues. In
particular: the principle of attenuation of privileges (Minsky, 1977d),
and revocation problems (Minsky, 1977a), cooperative authorization (Minsky,
1977b), "secure-information flow" (Minsky, 1976c), and others. We studied
the application of our scheme in a number of specific domains, such as:
privacy protection and its "intentional resolution" (Minsky, 1976 a),
networks, management and auditing of financial systems (Minsky, 1976e and
1977c0.

Fifteen publications covering work in this area are included in
the present final report.

Most of the work has been theoretical; however, it was supported
by two major system development activities:

a) A system which implements "files with semantics".
(This was written in SIMULA and is now completed.)

b) An experimental database system based on the OC scheme.
(This system has not yet been finished but parts of it
are working.)

(A.2) Architectural Features -for Operating System Security

The main thrust of our research effort-in the area of Secure
Operating Systems resulted in the definition of a novel protection mechanism
which attempts to combine the advantages of the capability and access control
list schemes and to minimize their limitations. The properties of this
mechanism (Ruschitzko, 1977a) have been studied in the context of a

*Kaferncs are i'st in Section 11 below (List of Publications).

:--

- , simulation which is based on the design of an educational computer system
(Ruschitzka, 1977b). This system is characterized by an integrated
design philosophy with respect to the hardware architecture (Ruschitzka,
1977c, 1977d), the implementation language (Ruschitzka, 1977e), and the
operating system (Ruschitzka, 1977f).

The protection of information resources depends on their secure
management. Our work on Secure Operating Systems has been influenced by
our earlier efforts in research management, in particular scheduling, which
have continued in parallel.

Eight articles covering work in this project are included in
the present final report. Two of these (Ruschitzka, 1977g, 1977h) are in
the area of scheduling, and they are included to reflect the overall scope
of our activities in this project.

(B.l.l) Automatic Optimization of Programs Defined as Finite State Machines

This research has achieved positive results in two areas, the
building of an optimizer for the efficient encoding of finite state machines,
and the definition and implementation of a specification language for finite
state machines.

The primary thrust of the work on an optimization program,
which has been the subject of most of the effort in this area, has been to

WI produce a program which can optimize finite state machines built by
practitioners of practical programing, rather than toy state tables de-
signed to exemplify the techniques. Such practical state tables should have
a range of inputs times states product in the area of fifty to one thousand.
When this product is above one thousand, and preferably even less, principles
of good modularization suggest that a composite of several such state tables
be used.

Part of the objective of this work was to extend the switching
theoretic partition methods to include such practical considerations as
don't care values in the state table. Switching theory has not been found
applicable in the past to problems of realistic size, without including
such difficulties as don't cares. The approach taken was to define con-
structs that had most of the mathematical properties of partitions, but to
sacrifice elegant properties to the more pragmatic goal of achieving
solutions to large programs.

An algorithm was developed based around these partition theory
techniques that uses a very complex, highly pruned search for an optimal
solution. The search is ordered in such a way that when a s'olutlof is
found it is optimal under the criteria used. This algorithm is described
partially in (Wilkens, 1977a). This paper describes the algori'thm as it
was when it was first able to find solutions to small state tables. The
algorithm as presently implemented is at least ten times faster than the

1-.

-4-

original algorithm. The speed-up is due to increased pruning of the
search tree by some as yet unreported techniques. This final algorithm
approaches the goal of solving practical sized problems by completing state
tables with sizes of 96 and 120 entries in 7.2 and 16 seconds respectively
on an IBM 370/168. However, it did not complete state tables of size 297
or 616 in 2 minutes on this machine. The larger state tables we have been
using for tests have been drawn from the applications literature, rather
than artibrarily constructed state tables. This accounts for the lack of
a large number of samples on which to evaluate the overall performance of

* the algorithm. The search traces of the two incomplete state tables
suggests still further pruning techniques that might be applied.

In summnation, the results of this work suggest that realistic
* sized state tables can be optimized. Further, the techniques used may be

more broadly applied to different criteria of optimality. In addition, by
* the level of success in finding a solution to optimization, it is reasonable

to conclude that sub-optimal, good solutions can be found with less develop-
mient a~ffort and less computer time.

The Finite State Specification Language developed as part of
this work provides a powerful yet simple to learn language. Since it is
based around the concept of a finite state machine, it is of potential value
to the hardware designers who are increasingly forced to learn micro-
processor assembly language. The use of this language removes most of the
programmling from the task, since only a state table is necessary. The
language is described in (Wilkens, 1977b), and more fully, and with more
description of its incorporation into a system in (Wilkens, 1977c).

The above described programs have been coupled with a small
program that runs on a PDP-10 to combine the outputs of the language and
optimizer and produces assembly code with the encoded finite state machine
and its interpreter ready to be assembled and run on a PDP 11. The

* machine dependent (PDP-ll) part is about a page of fortran code. Therefore
this is easily adapted to other target computers.

Three papers, covering work in this area, are included in the
present final report.

(B.1.2) Programs for Computer-Aided Formulation and Improvement of
Recursively Defined Algorithms

Our objective has been to develop a system which will aid a*
*user in the specification of a recursive definition for an enumeration-

based algorithm, and then to provide the user with one or more 'good'
algorithms that implement the definition and/or suggestions for reformulat-
ing the initial definition. Our research in this area produced several

* * theoretical results which provided the basis for building a small experi-
* mental system which transforms a given recursive definition into efficient
* code.

i5

In (Paull, 1977a, 1977b) an attempt is made to formally and
succinctly state and prove a number of relations between recursive
definitions and their implementations, including the significance of the
'uniform inverse' in allowing storage savings, and of transformations which
convert a recursive definition into a set of equations which can be solved
speedily.

In (Paull, 1977c, 1977d) we present a generalization of the
principle which allows the time efficient implementation of the shortest
path problem (Dikstra's algorithm). This principle is applied to two
problems involving solutions of sets of equations and it yields algorithms
more efficient than those currently known.

The experimental system which we constructed consists of the
following programs:

OFN.SNO. A SNOBOL program (^ 3300 statements) which takes as
Input a recursive definition; it searches for 'uniform inverse'
and other properties, and it produces an output program to
implement the given definition.

SIM.SNO. A SNOBOL program (1 1000 statements) which simulates
the recursive definition for sample inputs and produces the
resultant output.

low CHART .SNO. A SNOBOL program (% 500 statements) which makes
flowchart representations of output of OFN.SNO.

INF.SNO. A SNOBOL program (' 200 statements) which contains
descriptions and instructions on use of OFN.SNO.

Four papers covering work in this project are included in the
present final report.

(B.1.3) Computer Aided Design of Specialized Efficient Algorithms for
Sorting and Selection Problems

This research was directed to the automatic generation of
algorithms for solving a class of problems involving the order of a given
set of numbers. The progress in this report is described in (Levy, 1977).

We produced two ILISP programs, NAA and NAA1, which generate
good and extremely good programs (respectively) for determining order
statistics. In response to the request "Find the I-th out of R numbers"
NAA produces all 'reasonable' candidate programs and selects the best
among them. NAA1 is a refinement on NAA which not only produces the best
programs generated by NAA but also uses certain heuristics which enables it
to produce more human-like programs; in fact for all the examples which we
have tried NAA1 had produced the best programs known for the solution of
those problems.

, - , - " , r ' "

-6-

We started working on two additional aspects of the problem:
producing a better interface to the NMA programs (more intelligible
output), and an approach to the generation of programs for the solution of
order statistics problems in the presence of additional information about
the input set (e.g., find the I-th largest of (a, b, c, d, e, h) given
that it is not c, d, or h). We are concerned with the assimilation of the
information into the program generating process and consider this a key

* problem in the design of a man-machine interactive program-generating
system. Work in this area did not reach yet the state of documentation.

One report covering work in this project is included in the
present final report.

MIAl.) Automatic Program Formation from Problem Specification

The long term objective of this research is to understand
the interactions between knowledge representations and reasoning strategies
in program synthesis problems. In our work (which is also supported by
NIH as part of the Rutgers Research Resource * on Computers in Biomedicine)
we considered several forms of specification for the program systhesis
problem; but the emphasis has been on specifications in the form of a
finite number of input/output correspondences.

We developed a strategy which combines a model-guided global
approach to search for a program with a local approach which focuses on
detailed modifications of a program based on analysis of its performance.
To test this strategy, we started to implement a computer system (in

* LISP 1.6) which we called TF. Our main effort in this project over the
last 1 1 years was directed to representations in TF and to'subsystems for

* acquiring knowledge and for building and managing the knowledge base of TF.
The growth in size and complexity of TF (which occupies now a core image of
about 120K words in a PDP-lO) induced us to direct attention to several
problems of large system development. Because of the relatively small
level of effort directed to this project and the unexpected requirements of

* the system building task, we did not reach as yet a stage where our program
formation strategies could be studied experimentally. We plan to continue
work in this area, and expect to produce reports documenting the TF system
and related studies in program formation within about a year.

* (B.2) Knowledge Based Systems; The Meta Description System MOS

MOS proposes a new way of organizing intelligent systems and
*0 a new approach to Automatic Progranuning--where knowledge in a domain is

used to construct programs from vague specifications of their requirements.
We call this "Knowledge Based Programmning" (Srinivasan, 1973b). In
constructing programs in a domain and in using the domain knowledge, lIDS
can learn from its experience in a domain and improve its performance.
Establishing the logical foundations of these processes for knowledge

-7-

handling and utilization has been the major contribution of our work in this
project. Details of these processes are discussed in (Srinivasan, 1977).
This is the principal report which summarizes the progress, the key contribu-
tions and the significance of work in MDS. Problems are classified in MDS
as belonging to one or more of the following categories: Assimilation,
Planning, Recognition, Goal Seeking, Theorem Proving, and Language
Understanding.

Our recent work on Theorem Proving (Sandford, 1977a, 1977b)
establishes the logical basis for using model based reasoning to guide
theorem proving search. It also presents a new, sound and complete
resolution refinement strategy, called Hereditary Lock Resolution.

The MDS formalism for describing domain knowledge has been
applied to several tasks. Applications to banking and medicine are described
in (Srinivasan, 1974) and (Irwin and Srinivasan, 1976). A system which is
a specialization of MDS for research in action interpretation problems was
developed in the framework of our NIH-supported Research Resource on
Computers in Biomedicine and it is being applied to work in modeling
Belief System (the system is called AIMDS).. For the period 1973 to 1976,
research on MDS was jointly supported by the ARPA grant and by the NIH
grant.

Considerable progress was made towards the implementation of
MDS. Major parts of the system have been written in INTERLISP. System
development proceeded at ISI and at SUMEX-AIM through the ARPANET. At
present the system is at SUMEX-AIM. The current status of the implementation
may be summarized as follows: The "Domain Definition" system is now ready.
This is the subsystem that enables-a user to define "Structural", "Sense",
and "Transformational" knowledge in a domain and have the system create
compact representations of these definitions in the model space for the
defined domain. The second subsystem that is now operational is the
"Dimensional Consistency Check" system. This checks the given domain
definitions for "Structural Consistency" and builds a dictionary of all
possible interactions that can occur in the model space of the domain,
between properties of various instantiated models, and for each such inter-
action between pairs of properties of objects, builds the-co)itions under
which the interaction would occur. To complete the model space management
system it is still necessary to complete the so called "Domain Compiler".
Based on the domain definitions and the interactions between the various
objects in the domain and the conditions on the interactions, the domain
compiler compiles LISP code for the instantiation of the various objects and
relations in the model space, and for the access and updating of the objects
and relations. The compiled code has two parts: one for the creation and
updating of models in the model space; and the other for the checking of
consistency of the model space itself. We have now devised a scheme for
compiling the consistency conditions. Most of the code for the model
space compiler has now been written. The various parts of this code should
now be debugged and properly integrated. We expect to complete the
remaining tasks of the implementation in 1978 (which is beyond the period
of the current grant).

-8

Twelve papers covering work in this area are included in the
present final report.

October 14, 1977

APPENDIX

Financial Summary

Research on Secure Systems and Automatic Programming

I. Financial Status

A. Total funds allocated for the period
March 1, 1973 to August 30, 1977 $554,185.

B. Expenditures during period
March 1, 1973 to June 29, 1974 $ 92,226.

Expenditures during period
June 30, 1974 to August 31, 1977 461,875.

Total expenditures for the period
March 1, 1973 to August 31, 1977 $554,101. A-4,101.

Difference 84.

o II. Summary breakdown of the expenditures for the last reporting
period of the grant (June 30, 1977 to August 31,_1977)

Total Expenditures Total
Expenditures This Period Expenditures

7/1/74 to 6/30/77 to 7/1/74 to
6/29/77 8/31/77 8/31/77

PERSONNEL:

Faculty
Levy, S. $12,221 $ 2,450 $14,671
Minsky, N. 10,559 4,228 14,787
Morgenstern, M. - 1,770 1,770
Paull, M. 18,070 - 18,070
Ruschitzka, M. 6,810 3,910 10,720
Srinivasan, C. V. 8,856 - 8,856
Wilkens, E. 11,742 - 11,742

0 $ 68,258 $ 12,358 $ 80,616

Adjuncts
Morrell, L. 1,616 1,616
Groeber, B. 1,186 1,186
Anand, P. 4,373 - 4,373

$ 7,175 - $ 7,175

APPENDIX - Page 2 October 14, 1977

Total Expenditures Total
Expenditures This Period Expenditures

7/1/74 to 6/30/77 to 7/1/74 to
6/29/77 8/31/77 8/31/77

Research Assistants

Brutman, N. $ 5,619 $ - $ 5,619
Chen, D. 7,670 1,852 9,522
Dowuona, N. 17,440 1,940 19,380
Goegelman, M. 1,760 1,760
Griffin, G. 6,846 - 6,846
Grissom, J. 11,640 - 11,640
Sakrowitz, M. 1,386 - 1,386
Sandford, D. 2,284 - 2,284
Yuan, J. 488 - 488

$ 53,373 $ 5,552 $ 58,925
Clerical Support

Wiese, B. $ 1,662 $ 1,260 $ 2,922

Terminated Personnel 126,953 - 126,953

Salary Totals $257,421 $ 19,170 $276,591

Fringe Benefits 28,138 227 28,365

PERSONNEL TOTAL $285,559 $ 19,397 $304,956

EQUIPMENT

1 Special IMP-Host Interface $ 12,500 $ - $ 12,500
Computer Services 60,000 1,000 61,000

Computer Supplies 7,160 356 7,516
Data Communications 7,883 443 8,326

EQUIPMENT TOTAL $ 87,543 $ 1,799 $ 89,342

OTHER EXPENSES

Publication Costs $ 4,224 $ 415 $ 4,639
Travel 7,254 366 7,620

OTHER EXPENSES TOTAL $ 11,478 $ 781 $ 12,259

TOTAL DIRECT COSTS $384,580 $ 21,977 $406,557
Overhead (20% Salaries) $ 51,484 $3,834 $ 55,318

TOTAL ALL EXPENDITURES $463,064 $ 25,811 $461,875
4 Expenditures during period March 1, 1973 to June 29, 1974 92,226

$554,101

I

AAPPENDIX -Page 3 October 14, 1977

Notes on Financial Status

1. In our personnel plan, we had budgeted fractions of faculty time to
work on the project during the academic year. The faculty monies
thus released have been used to compensate adjuncts who relieve
the faculty on the project from some of their teaching responsibilities.

* This arrangement permitted faculty to spend the planned time on
research.

*2. This is the final reporting period for the grant. This grant has
covered the period March 1, 1973 to December 29, 1976, with two
no-cost extensions~the first to June 29, 1977 and the second extension

* to August 31, 1977. The initial award totalled $557,670, of which
$3,485 was not funded. Thus the actual available grant was $554,185.

* Our expenditures to date from the beginning of the grant (March 1, 1973)
are estimated to be $554,101. The University has continued to cover
the difference between actual computing costs and grant funds, as in
the past.

WAI

II. LIST OF PUBLICATIONS*

(Note: For convenience, the publications are listed alphabetically by
author; they are also indexed in the left margin by project. For example,
(A.1) indexes an entry from the project on "Protection and Integrity of
Data Bases".]

(B.1.3) Levy, S. (1977) "Approaches to Automatic Program Generation,"
Report SOSAP No. TR-36, Department of Computer Science, Rutgers
University, July 1977.

(A.1) Minsky, N., (1973) "On the Security of Data Base Systems".
SOSAP No. TR-l, Department of Computer Science, Rutgers University,
New Brunswick, New Jersey, December 1973.

Minsky, N., (1974a) "Comments on Privacy of Data Bases". SOSAP
No. TR-8, Department of Computer Science, Rutgers University,
New Brunswick, New Jersey, April 1974.

Minsky, N., (1974b) "On the Formation of Abstract Data Types".
SOSAP No. TR-IO, Department of Computer Science, Rutgers University,
New Brunswick, New Jersey, July 1974.

Minsky, N., (1974c) "Protection of Data-Bases, and the Process of
User Data-Base Interaction". SOSAP No. TR-ll, Department of Computer
Science, Rutgers University, New Brunswick, New Jersey, September, 1974.

Minsky, N., (1974d) "Another Look at Data-Bases," Bulletin of SIGMOD,
September 1974.

Minsky, N., (1974e) "On Interaction with Data Bases," proc. of the
ACM SIGMOD Conference, May 1974.

Minsky, N., (1976a) "Intentional Resolution of Privacy Protection in
Database Systems," Management/Database Systems, Vol. 19, Number 3,
pp. 148-159, March 1976.

Minsky, N., (1976b) "Files with Semantics," SOSAP No. TR-17, Department
of Computer Science, Rutgers University, New Brunswick, New Jersey,
March 1976.

Minsky, N., (1976c) "A Semi-Lattice Model for Secure Information
Flow," SOSAP No. TR-24, Department of Computer Science, Rutgers
University, New Brunswick, New Jersey, May 1976.

Minsky, N., (1976d) "An Activator-Based Protection Scheme," SOSAP
No. TR-25, Department of Computer Science, Rutgers University,
New Brunswick, New Jersey, July 1976.

* All the 42 publications in this list are included as part of the present

final report, with the exception of three (3) publications (Srinivasan
1974; Srinivasan 1976d; and Srinivasan 1977) which were mailed directly

5 by Dr. Srinivasan (who is currently in India on a sabatical) to
Mr. W. Carlson of IPTO.

-2-

Minsky, N., (1976e) "Protection in Programing Languages by
Operation-Control," SOSAP No. TR-27, Department of Computer
Science, Rutgers University, New Brunswick, New Jersey,
September 1976.

Minsky, N., (1977a) "An Operation-Control Scheme for Authorization

in Computer Systems," SOSAP No. TR-33, Department of Computer
Science, Rutgers University, New Brunswick, New Jersey, April 1977.

Minsky, N., (1977b) "Cooperative Authorization in Computer
Systems," SOSAP No. TR-34, Department of Computer Science, Rutgers
University, New Brunswick, New Jersey, November 1977.

Minsky, N., (1977c) "Auditing of Computerized Financial Systems,"
SOSAP No. TR-35, Department of Computer Science, Rutgers University,
New Brunswick, New Jersey, July 1977.

Minsky, N., (1977d) "The Principle of Attenuation of Privileges and
its Ramifications". To be presented at the workshop on "Foundation
of Secure Computers," October 1977.. September 1977.

(B.1.2) Paull, M.C., (1977a) "Relations Between Recursive Definitions and
Their Efficient Algorithms". SOSAP No. TR-37, Department of Computer
Science, Rutgers University, New Brunswick, New Jersey, January, 1977
(submitted for publication).

0 Paull, M.C., (1977b) "Memory Efficient Implementations of Recursive
Definitions". SOSAP No. TR-38, Department of Computer Science,
Rutgers University, New Brunswick, New Jersey, May 1977. (Submitted
for publication).

Paull, M.C., (1977c) "A Principle Useful in the Design of Minimum
Path and Other Algorithms". SOSAP No. TR-39, Department of Computer
Science, Rutgers University, New Brunswick, New Jersey, June 1977.
(Submitted for publication).

Paull, M.C., (1977d) "The Min-Max Branch in a Graph--An Application
of the Minimum Constant Principle". SOSAP No. TR-40, Department
of Computer Science, Rutgers University, New Brunswick, New Jersey,
July 1977.

(A.2) Ruschitzka, M., (1977a) "On the Use of Licenses as a Protection
Mechanism". SOSAP No. TR-35, Department of Computer Science,
Rutgers University, New Brunswick, New Jersey, August 1977.

Ruschitzka, M., (1977b) "An Operating Systems Implementation
Project for an Undergraduate Course". Proc. Seventh Tech. Symp.
on Computer Science Education, Atlanta, Georgia, February 1977.
SIGCSE Bulletin 9, 1, pp. 77-84.

*

-3-

Ruschitzka, M., (1977c) COS-Model 1 Reference Manual. CS
416/18 Class Notes, Dept. of Computer Science, Rutgers University,
New Brunswick, New Jersey, 1977.

Ruschitzka, M., (1977d) COS-Model 2 Reference Manual. CS 416/18
Class Notes, Department of Computer Science, Rutgers University,
New Brunswick, New Jersey, 1977.

Ruschitzka, M., (1977e) CAL-CAROL Reference Manual. CS 416/18
Class Notes, Department of Computer Science, Rutgers University,
New Brunswick, New Jersey, 1977.

Ruschitzka, M., (1977f) COSMOS Reference Manual. CS 416/18 Class
Notes, Department of Computer Science, Rutgers University, New
Brunswick, New Jersey, 1977.

Ruschitzka, M., and R.S. Fabry, (1977g) A Unifying Approach to

Scheduling. Comm. ACM 20, 7 (July 1977), 469-477.

Ruschitzka, M., (1977h) "An Analytical Treatment of Policy Function

Schedulers". To appear in the special issue "On Interfaces with
Computer Science" of Opns. Res. in late 1977 or early 1978.

(B.2) Srinivasan, C.V., (1973a) "Architecture of Coherent Information
Systems: A General Problem Solving System". IEEE Vol. C-25,
No. 4 pp. 390-402. Also presented at IJCAI 3 in August 1973.

Srinivasan, C.V., (1973b) "Programming Over A Knowledge Base:
The Basis for Automatic Programming". SOSAP No. TM-4, Department
of Computer Science, Rutgers University, New Brunswick, New Jersey
December 1973.

*Srinivasan, C.V., (1974) "Description in MDS of a Coherent

Information System for a Banking Domain," SOSAP No. TM-4A,
Department of Computer Science, Rutgers University, New Brunswick,
New Jersey, June 1974.

Hsu, Tau, (1976) "The Blind Hand Problem". SOSAP No. TM-IO,
Department of Computer Science, Rutgers University, New Brunswick,
New Jersey, December 1976.

Srinivasan, C.V., (1976a) "Introduction to the Meta Description
System". SOSAP No. TR-18, Department of Computer Science, Rutgers
University, New Brunswick, New Jersey, January 1976.

Srinivasan, C.V., (1976b) "Theorem Proving in the Meta Description
System". SOSAP No. TR-20, Department of Computer Science, Rutgers
University, New Brunswick, New Jersey, January 1976.

Irwin, J., and C.V. Srinivasan, (1976c) "Description of CASNET in
MDS". RUCBM-TR-49, Department of Computer Science, Rutgers University,
New Brunswick, New Jersey, August 1976.

-4-

S,-*Srinivasan, C.V., (1976c) "Formal Definition of the Model Space

of the Meta Description System," SOSAP No. TR-20B, Department
of Computer Science, Rutgers University, New Brunswick, New
Jersey, October 1976.

*Srinivasan, C.V., (1977) "The Meta Description System: A System

to Generate Intelligent Information Systems, PART I: The Model
Space". SOSAP No. TR-20C, Department of Computer Science, Rutgers
University, New Brunswick, New Jersey, July 1977.

Sandford, D.M., (1977a) "Hereditary-Lock Resolution: A Resolution
Revinement Combining a Strong Model Strategy with Lock Resolution".
SOSAP No. TR-30, Department of Computer Science, Rutgers University,
New Brunswick, New Jersey, April 1977.

Sandford, D.M., (1977b) "Formal Specifications of Models for
Semantic Theorem Proving Strategies". SOSAP No. TR-32, Department
of Computer Science, Rutgers University, New Brunswick, New Jersey,
June 1977.

(B.l.1) Wilkens, E.J., (1977a) "Realizations of Sequential Machines Using
Random Access Memory". IEEE Trans. on Computers (to be published).

Wilkens, E.J., (1977b) "Finite State Techniques for Software
Engineering Systems - Applications to Microcomputer and Large Scale
Systems". Tenth Hawaii International Conference on System Sciences,
1977.

Wilkens, E.J., (1977c) "Finite State Techniques in Software Engineer-
ing". IEEE COMPSAC 77, 1977.

* The "starred" publications by C.V. Srinivasan are being mailed directly
from India (where Dr. Srinivasan is now on sabatical) to Mr. W. Carlson
of IPTO.

SOSAP-TR-1

*December 12, 1973

ON THE SECURITY OF DATA BASE SYSTEMS

N. Minsky

Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, New Jersey

This research was supported by the Advanced Research Projects Agency
of the Department of Defense under Grant #DAHC15-73-G6 to the
Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the
• author and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of the Advanced
*Research Projects Agency or the U. S. Government.

0-

ON THE SECURITY OF DATA BASE SYSTEMS

N. Minsky

Abstract: Two aspects of security in data bases are discussed

in this paper: the description of the security state, and its

enforcement mechanzism. The conventional approach to these two

aspects has been found inadequate , and a new approach has

been proposed. According to the proposed approach, the user's

program which interacts with the data base is controlled by a

set of rules, collectively called schema, whose function is to

authorize the operations performed by the user. The schema has

no authority over information which is not related to the data

base, but it can rostrict the way in which information from the

data base is manipulated even when such information is in the

4 user's working space.

Acknowledgement: I have benefited greatly from many stimulating dis-

cussions ith Dr. C. V. Srinivasan, and from the interest and encourage-
ment of other participants of the "security" project in Rutgers.

ON THE SECURITY OF DATA BASE SYSTEMS

N. Minsky

1. Introduction

It is customary to distinguish between two aspects of security of data

bases, their integr-ity and pr-ivacy,. Although this classification will not be

essential to this paper, we will use it in order to introduce the subject.

In order to maintain the integrity of any system, one must first have a

* definition of what the proper state of this system is. This obvious observa-

* tion raises the question of how data bases are defined. Being a dynamic system,

it is clear that a data base cannot be defined just by specifying its informa-

* tion content at a certain moment in time; there must also be a set of rules

which specify the behavior of the data base under interaction with the outside

world. For example, it is not enough to know that there is an entity called

"number-of-employees" in a data base; it must be formally specified that this

entity should always be equal to (say) the number of "employee" records in the

- data base.

* Unfortunately, this is not the approach employed by contemporary data-

- ~ base systems. In most of these systems one cannot even specify the scope of

an entity, not to mention the ability to formulate general rules of behavior.

- The dynamic behavior of the data base under these systems is defined, de facto,

o by the users' programs which interact with it.

There is obviously no hope for providing integrity for data bases as long

as this approach prevails. The behavior of the data base should not be con-

S trolled by users' programs. On the contrary, the interaction of users' programs

with a data base should be under the jurisdiction of a set of rules built into

the data base itself.

-2-

Privacy has to do with the right of a user to perform certain operations

* on the data base. (The right to receive information from the data base is

the most publisized aspect of privacy, but it is not the only one.) This

implies, again, that there is a set of rules in the data base which dictate

the ways in which users can interact with it.

Thus, privacy and integrity--as different as their objectives may be--

have one thing in common: they both impose restrictions on the way in which

users interact with the data base. The form of these restrictions, and their

enforcement, are the subject of this paper.

The main thesis of this paper would be that privacy and integrity of

7V data bases cannot be secured very well just by imposing restrictions on the

information which flows into the data base and out. It will be argued that

some control must be exerted on the users' programs which manipulate this

information. A model for user data-base interaction, which allows for such

*a control, will be proposed. It should be pointed out at the outset that

the objective of this preliminary paper is not to present final results, but

rather to point out to difficulties in the conventional approach to security,

and to suggest an alternative approach.

0

-3-.

2. A Critical Review of Conventional Approaches

* When discussing security, it is sometimes useful to distinguish between

the following two aspects of it: (a) The specification of the securi-ty state,

by which we mean: the method used to specify the security measures to be

* imposed. (b) The enforcement of the security state. We will try to evaluate

* some conventional approaches to security in terms of these two aspects.

* 2.1 On the Specification of Security States

The prevailing approach to the specification of the security state of

systems is essentially the following: Assuming that there is a finite number

of objects in the system, and that there is a finite set of potential users

- (or classes of them), all we have to do is to specify which actions can every

one of the users apply to every object. One way to represent that is by

means of a matrix [Con.72, Grh.72, Lam.71]. The element a ij of such an

"access matrix" is the set of actions (typically called "accesses") which

user i can apply to object j. Although this access-matrix model is usually

considered to be conceptually complete,1 it is obviously not always practical.

A mathematically equivalent model, which is often more convenient, is the

envronentmacet 2)which had been recently elaborated by Anita Jones [Jon.731.

According to this model, every user who interacts with the system operates within

certain environment E which is defined by a set of pairs {(a,p)}, where P is

* (1) In its complete form, the matrix elements a.. in this model include
1J

the condition under which user i has this access to object j. But our
criticism of the model is independent of such a condition.

(2) Also called the "capability model."

-4-

an object in the system and a is the action (access) which the user is allowed

to apply to p. (The pair (a,p) is called access-right.)

Although this approach may be adequate for operating system; it is not

general enough. To see that, consider an operation A which a given p

user wants to perform. Using Jones' environment model, A would be a legal

operation if one of the following conditions is satisfied.

a) A is a legal primitive operation by which we mean that A calls for

the application of an action a to an object p, such that the access-right

(a,p) exists in the environment.

b) A is reducible (equivalent) to a sequence of legal primitive operations,

to be called the components of A.

The difficulty here is that one may want to allow a user to perform a com-

posite operation without authorizing him to perform any of its components. An

example may clarify this point.

Let b, b', c, c' be objects in a data base, and let U be a user.

Suppose that U is allowed to read these four objects. In addition, he is al-

lowed to exchange b with b', and c with c', but he cannot change these

objects in any other way. Suppose that there is a procedure EXCH in the data

base which exchanges any pair of objects specified as its arguments. U should

be allowed to call EXCH(b,b') and EXCH(c,c'), but these operations are not reduci-

ble to legal primitive components since U is not allowed to write into the

objects b, b', c, c'. Therefore, these operations must be directly specified

as legal operations for U. But since they are operations on pairs of objects,

there is no way to specify them by means of Jones' environment-model. The most

one can do in this model is to allow U to apply the procedure EXCH to any

of the objects b, b', c, c'. But this would allow U too much, for example,

to exchange b with c.

_ P4

-5- p!

In other words, the problem with the matrix and the environment models

is that one does not just access objects as is assumed by these models; one
on the data base

performs operations/. Such an operation can be formally described as a proce-

dure q0, being applied to a set of arguments q, ... qn; where the procedure,

as well as its arguments, may be objects of the data base. Therefore, it is

not a matter of the user having a particular access to an object, but of him

being able to perform an operation in which several objects of the data-base

participate. To specify that such an operation is permitted, we should use

something like the tuple (qo, q" qn). rather than Jones' pair (a,p).

In the case of operating systems, one does not usually deal with

composite operations,therefore, the "access-matrix" model may be satisfactory.

In the case of data-base, on the other hand, composite operations become

-<. very important so that a more general technique for the representation of

security states is needed.

2.2 On the Enforcement of Security States

In most papers on security of data bases it is assumed, sometimes implicitly,

that data bases can be protected by means of acceee-controZ [Bro.71, Owe.71].

Indeed the term "access-control" is frequently used as a synonym for "protection."

*By "access-control" one usually means a mechanism which controls the flow of

information into the data base and out. This mechanism is not supposed to have

4d any control over the user's program , to be denoted by wt which manipulates

this information and generates the various storage and retrieval requests. This

localization of the protection of the protection mechanism is very convenient.

Unfortunately, the access-control mechanism does not always work well, as we will

see now by an example.

4

4 -6-

Consider a data-base in which there is a set A of objects, and a func-

tion F defined over the members of A. Consider a user U whose interaction

with the data base has to be restricted by the following two rules:

Rule 1: Only a subset A' c A is accessible to U.

Rule 2: U is allowed to apply F only to members a' of A'.

Rule 1 can be easily enforced; by means of access control one can simply filter

out every object which does not belong to A'. Rule 2 may seem to be auto-

matically satisfied; since, by rule 1, U does not have an access to objects of

A which do not belong to A'. Unfortunately, there is nothing to prevent the

user's program 7r from getting a copy of a member of A from an outside

source, or from making up one Sy itself.

Thus, rule 2 is not automatically satisfied and must be enforced explicitly.

One may try to do this by checking the argument of F for membership in A'-

every time that F is invoked. This may be involved with a lot of computation

and data base search which is, in a sense, a duplication of effort. Moreover,

one might not be able to perform such checking at all. To see that, let us

change our example slightly. Instead of rule 2 consider:

Rule 2': wr is allowed to apply f only to elements retrieved by

Tr from A.

Now, given an invocation F(a') of F, it is not enough to check if a'EA',

because of the following reasons: First, it may be that a'cA', but the user

U did not receive it legally from the data base. Secondly, it may be that

when F(a') is invoked, a' is not a member of A', but it was a member of

A' when U got it from the data base, Finally, the set A' may simply be

defined as the set of all objects which U retrieved from A, so that there

is no "objective" criterion by which one can determine if a'eA'. One can get

-7-

arudthese difficulties by maintaining a record of all members of At which

* have been retrieved by nt, however, this may be extremely wasteful and can be

* considered as an entirely unrealistic solution.

It should be pointed out that rules such as 1 and 2 (or 2') appear

frequently in practice. Suppose, for example, that A is a set of names of

*patients in a medical data base. Let the user U be a doctor, and let A' c A

be the set of names of the patients of U. Let F(a) be a function which

returns some personal information about the patient a. In this case rules1

and 2 simply mean that the doctor is allowed to get personal information

about his own patients only, which is a very reasonable restriction. As an

example of rule 2', consider the same doctor who wants to transfer a patient

of his own to another doctor, to be done by the function F. He does it as

follows: A patient name a'eAl is retrieved, and deleted from A'. When

F(a') is invoked, assigning a' to another doctor, it is already too late

to verify that a' is a member of A'; it is not any more.

Thus, it was shown tVat the enforcement of some common restrictions by

means of access-control can only be achieved at the price of gross inefficiency.

* But the example above also suggests a solution to this problem. If one can

guarantee that only objects retrieved from A' can be used by wt as

parameters of F, then rule 2 (or 2') is automatically satisfied. This,

- however, requires that wt should be restricted in certain ways. The form of

such a restriction will be discussed next.

3. A Basic Model for the Interaction of Users with the Data Base.

* It has been shown in the last section that access-control alone is not a

satisfactory tool for protection of data base . It has also been suggested

that one might get better results by exerting some control over users' programs

which interact with the data base. In this section we will consider a model

for the user data base interaction which admits such a control. (The model

to be discussed here is intentionally simplified. Some generalizations of it

will be discussed in section 4.)

The-main participants in the user data-base interaction are the data-base

D, and the user U who is using a program nr. This interaction is supervised

by a mechanism (or data structure) which we will call schema l, to be denoted

by S. The schema is supposed to contain the sec'urity-state for a given set

of users, namely, the definition of what these users can and cannot do. For

a program wr, written by a user U, to operate, it must be "connected" to one

of the schemas in D. This connection mechanism will not be specified here,

but the following is assumed about it: Every schema S is connectable to

programs which "belong" to a specific set of users to be called the patrons

of the schema S, provided that they are written in a given programming language

L(S) (or simply, L). (For example, a certain schema in a medical data base

may be connectable only to COBOL programs written by doctors.) It is also

assumed that once such a connection is done, the correct identity, U, of the

user is known to the schema. (This, of course, is a very strong assumption

which is very hard to satisfy.)

(1) The concept of schema as an interface between user's programs and the
data base is a well-known and extremely important part of the data base

* architecture. (However, it is typically called sub-schema.) It was
initially introduced in order to help reducirg the dependency of 1T on
the storage structure of the data base [Dbtg.72], but its potential role
in maintaining security (usually by access-control) is also well recognized.
It is the security role of the schema which would interest us here.

-9-

The program r which is connected to the schema S would be denoted

by it/S. (1) The way in which ff/S is controlled by S is discussed next.

* 3.1 A Model for Users' Programs

The program 7t/S operates within an environment defined jointly by the

schema S and by the programming language L in which 7r is written. This

environment consists essentially of a set Q of objects available to wt, and

* a set R of rules which specify the operations that 7r can apply to objects

in Q

The set Qis a union of the following three disjoint sets:

a) The set QLof primitive objects. These are the primitives of the

programming language L. For example, a primitive operator such as or a

-Io- constant such as "1179 "

b) The set QSof permanent objects. These are objects which belong to

the the data base, and which are made available to it/S by the schema S. Such

objects may be, for example, files and procedures which operate on them. They

are'kermanent" only in the sense that their existence does not depend on the

existence of a program it which interacts with them.

c) The set QTof transient objects, objects which are generated by it

itself. Such an object exists only in the context of the program which generated

it, and it disappears with the program.

As to the structure of the objects we will only say this: Every object

qcQ is a pair

q =(brand, value)

40

(1) We will occasionally write t instead of it/S

-10-

where the brand is a symbol which is a member of a set B, to be introduced below.

The role of the brands in our model which will be explained in detail later

would be similar, but not identical, to the role of types in most programming

* - languages. The rest of the object, which is called its value ,can be any data

structure, e.g., a number, a file or a procedure.

The set of brands B is a set of symbols. It is a union of two sets,

B =B Lv B$a ewl e e L wudbe part of the specification of the

language L, and B would be part of the schema S.
S

The following can be said about the brands of the three classes of objects

introduced below:

a) The brands of objects qEQL will be members of B L.

b) The brands of the objects of QSwould be the names of these objects

- . themselves. (This is a rather formalistic point; these brands will not be

actually used, and we therefore do not include the names of the objects of Q

in the set of brands).

c) The objects in QT may have any brand from B, according to the rules

which will be introduced later.

Some conventions about brands are in order:

a) To distinguish between brands and other symbols which will appear in

our discussion, we will denote the former by a bar, e.g., b (generic brands

will be denoted without a bar).

b) The set B L would always contain the distinguished brand 0 .,to be

called the "empty brand," its meaning and use will be described later.

The process induced by iriS can be described as a sequence of operations

of the following form!

q <= q (q, ... qk (k 0) (3.1)

S0

-11-

where q0cQ is an operator (procedure), and qicQ (for i 1) are assumed to

be the operands (parameters). Such an operation may have two effects. First,

it generates a new (possibly null) transient object, denoted here by q, to

be called the product of the operation. Secondly, it may have "side-effects"

on the data base D.

Note that the concepts of variable and assignment(1) are avoided in this

abstraction. Transient objects can be generated and used, but they cannot be

changed. The questions of where is a generated object stored, and how is it

accessed are ignored at this point.

The specific operations which f/S is allowed to perform are specified by

a finite set of rules R, to be called application-rules. The rules rcR have

the following general structure:

r = p 4 (po Pk) (3.2)

where, px.B, p, e B v QL v QS' for 0 i 5 k.

The right hand side of a rule is called right, and will be denoted by p. It

is required that every right appears at most once in R.

Let us define next the set of all operations which are legalized by a

rule r--to be denoted by op(r)--as follows:

Definition: An operation x0 (x1 ... Xn) is in op(r) for r = p4 p0 (pl ...Pk

if the following conditions are satisfied.

a) k = n

b) For 0 s i!k, if Pi e QL v QS then xi = pi

0 c) For 0 ! i ! k, if pi e B, then x. may be any object whose

brand is pi.

It is clear from this definition, and from the definition of R that every

(1) The "<=" sign in (3.1) is not an "assignment symbol," it is meant only
to show that the operation generates an object q.

-12-

operation belongs to at most one set op(r). Namely, there is at most one rule

which legalizes any given operation.

The existence of a rule rcR is supposed to have the following affect on

every i/S. First, it gives to n/S the right to perform all operations in

op(r). Secondly, if any one of these operations is performed, and if it gen-

erates a product, this product would be branded by p (the left hand side of r).

If, in particular, p = (the special null brand), then any product that the

operation may have will be "annihilated;" namely, no transient object will be

generated. (Instead of the rule (P0 Pk) we will usually write only

"(PO ... Pk) ')Actual techniques for enforcing these rules will be discussed

later; for the time being we will just assume that the rules in R are observed.

Note that our rules have nothing to say about the operations themselves;

they only specify which operations can be applied to which operands, thus, the *. ,

name "application rules." The meaning of the operations themselves is supposed

to be imbedded in their value parts.

The set R of rules is a union of two sets, RL and RS, to be defined

as part of L and S respectively. These two sets will be described below

in some detail.

3.2 The specification of L and S

As was pointed out before, the environment of 7/S is defined jointly

* by the programming language L, and the schema S. But the two do not play

symmetric rules in this definition. The schema will be defined in terms of a

particular language L, while L must be completely independent of any schema,

* because several different schema's may be using the same L. We will now

summarize the information needed for the specification of both L and S.

-13-

The language L can be characterized within our level of abstraction by

the sets QL', BL , RL.

QL- is the set of primitive objects of L. This includes both operators

and structures. Specific examples of such primitives will not be given.

Here we will only introduce an operator which should be present in every

QL" It is the identity operator I which,when applied to any object,

generates a copy of its value part. If the rule P2 - (I, pl) exists in

R, it means that every object branded by p1 can be copied, and the copy

is branded by P2. For brevity we will denote the rule P2 - (I, pl) by

P2 *- (Pl)"-

B -is a set of brands. To distinguish between these brands and those in BS,9L

we will add the prefix X to every symbol in BL . In a typical case,

- the brands in B L would closely correspond to the types of normal pro-

gramming languages. We may, for example, have the following brands in

BL: T.I -- to brand integer objects, X.R for real, TS for string

objects, etc.

RL is a set of primitive application rules of the language L. They have

the same general form of rules in R:

P -(Po"". Pk)'

but the range of the various arguments is more restricted:

PEBL" pi e BL v QL for i ? 0

4 As an example, we may have the following rules in RL:

• X.R - (X.R, X.R)~T.- (+, 3TT, T) ,
:rI

k4

--

-14-

which means that the integer to integer addition gives an integer result,

but the addition of real to real, or real to integer gives a real result.

It should be pointed out that we do not really expect RL or Q to be

explicitly defined in this way. But the brands BL will be used in the defi-

nition of the schema and must be defined explicitly.

The schema S is specified by means of the sets QS' BSS L As was

already pointed out, the schema is defined in terms of a given language L.

It is connectable to programs written in this language, which belong to a

given set of users, called the patrons of S.

The set of permanent-objecte -- QS are those objects of the data base

which should be accessible to the patrons of S. Two comments are in order here.

a) The designer of the schema may decide that a given object P should

not be accessible to the users in its raw form. He may then write a procedure

P' which has an access to P, but which manipulate3 P in a certain desired

way. P', rather than P, is then listed in %S and the users can access P

* only in a controlled wayvia P'. This is an example of access-control, and

it is outside the scope of this paper as is the general subject of construction

and manipulation of the schema.

b) Our second comment is that the binding-time of the symbols in Qs does

not have to be the definition-time of S. It can be the connection-time with

a particular program n owned by user U. Thus, the interpretation of a.-.

sumbol in QS may well depend upon U. For example, consider a schema in a

medical data base whose patrons are doctors. We may have a symbol PAT in

QS of this schema which would give to each doctor the set of his own patients.

This is a very powerful capability of the schema.

The objects in Q cannot be manipulated freely by i/S; the use of
these objects is controlled by the rules in RS . The effect of these rules on

i/S is best seen by means of examples which will be given next.

. - -" - . ..I, a |

-15-

3.3 Examples

The examples in this section have two objectives: To illustrate the

concepts introduced above, and to show their relevance for protection.

Example 1: Consider a binary tree T stored in a bata base. Suppose

that there are four functions defined on the nodes nET: LSON(n) and RSON(n)

which return pointers to the left and right "sons" of node n; and KEY(n)

and TEXT(n) which return the "data" stored in node n. This data is given in

integer and string formats, respectively. (What we call "function" is usually

called an "attribute" of a node.)

For every node ncT, let us define Tree(n) to be the subtree of T whose

root is n. The following schema gives to every w/S certain access rights to

all the nodes in Tree(N) for a given node N.

The schema S is defined by means of the sets QS' BS' RS:

QS = {N,LSON,RSON,KEY,TEXT,STORE}

B n
S

R s {rl : n +(N)

r2 : n (LSON,n)

r3 n (RSON,F)

. 'r4 : .I (KEY,n)

r5 : X.5 (TEXT,n)

r6 : (STORE,TEXT,n,X.I)}

Let us see what can n/S possibly do.

By rules rl, r2, r3, he can get to the pointers of every node in Tree(N).

All such nodes are branded by n. Moreover, only nodes of Tree(N) can be n-

branded because there is no other rule whose product has n as its brand. Now,

rule r4 allows n/S to apply the function KEY to any n-branded object;

that is, to any node in Tree(N), and only to these. Note in particular, that

S.

-16-

it will not help the user to get a pointer to a node in the tree T from

some outside source; such a pointer will not be n-branded. Note also that to

get this security there is no need to check at run time if a given argument of

KEY is in Tree(N). It is enough that the rules in RS are satisfied.

Any object generated by the function KEY is branded by X.1 (rule r4).

Since X.I belongs to BL, such an object is under the jurisdiction of the opera-

tion rules--RL of the language L. Namely, it/S can do with it whatever the

language L is able to do with 7T branded objects. (In this particular

case, .T is assumed to be the brand of integer objects (numbers).) In such

a case we will say that an object is released to the user because it is not

controlled by the schema anymore. All objects whose brands are from BL will

accordingly be called free objects.

Rule rS is similar to r4; it allows n/S to get the TEXT of nodes in

Tree(N). The result is again released to the user in the form of string

objects (branded by X.S . Finally, r6 is a right to invoke the procedure

STORE(TEXT,n,X.S) which is supposed to store a new value in TEXT(n); this value

must be a free string object.

Let us point out that, as it was explained in section 3.2, the "b.nl!ng-

time" of the various symbols in S is the time of "connection" between 7r

and S. This allows N to depend on the user U. Therefore, the same schema

may allow various users to get to different subtrees of T.

Example 2: Consider a medical data base in which there is a set of pa-
0

tients PAT. Each patient pePAT has two attributesMEDICAL and PERSONALswhich

hold the medical and personal information about the patient in string format.

There are also other functions in the data base which are relevant to us; they
w
will be introduced later.

S!

-17-

The patron8 of the following schema are the doctors in the hospital.

Each doctor U is supposed to have access to two sets of patients: MY-PAT

is the set of all patients treated by doctor U himself, and DEP-PAT are all

the patients in the department in which U works. U would have different

access rights to these two sets, as we will see below.

The schema is defined by:

QS= {MY-PAT,DEP-PAT,NEXT,MEDICAL,PERSONAL,STATI,STAT2,STAT3,DELETE,ADD}

B3 = {q1, q2, q3,

R= rl : 1 (NEXT,MY-PAT)
RS

r2 ; .S ql

r3 : q2 (NEXT,DEP-PAT)

r4 : .S (q2)

r5 : X.S (MEDICAL,q)

r6 :)-.+ (PERSONAL,q)

r7 : q 3 (MEDICALq2)

r8 : X.- ({STAT1,STAT2,STAT,31)

r9 : (DELETE,MY-PAT,)

rlO: (ADD,MY-PAT,q-2)

For simplicity, we assume that the sets MY-PAT and DEP-PAT are ordered sets

of names of patients. The function NEXT returns on each call the next

patient name. The doctor U is allowed to get the names of patients in these

two sets (by rules rl, r3), and these names are released as free string objects

(rules r2, r4). But there are some privileged operators which can be applied

only to names retrieved from MY-PAT and DEP-PAT.

By rules r5 and r6 the doctor can get the medical and personal infor-

mation about his own patients. Moreover, this information is released to him.

S

-18-

His access to the other patients is more restricted. He cannot get any

personal information about these. He can get MEDICAL data about them, but

this data is not released; it is branded by q3 (rule r7). The doctor can-

not, for example, print this information. He can only use it as a parameter

to the three functions STATI, STAT2, STAT3 (Using an obvious convention,

rule r8 is equivalent to three rules, one of them, for example, is

5-T4- (STATl,q-3)). These three functions are assumed to be statistical

functions built into the data base. The idea is that the medical data of

patients not treated by the doctor can be retrieved by him; but he can only

use them for some well-defined statistical purposes. Namely, they can only be

fed to the three statistical routines.

Finally, the doctor can delete a patient from the set MY-PAT (by r9),

or add a patient of the department to MY-PAT (by rlO). -

3.4 Enforcement of the Application-Rules

Until now it was assumed that the application-rules are honored by the

programs n/S; we will now consider techniques for enforcing them.

The most obvious way for enforcing the rules in R is to do it at

"run-time": When an operation q0 (q1 ... qk) is about to be executed, one

searches in R for a rule r which gives the right to execute this operation.

Once the operation is carried out, and if it generates a product, this product

is branded by the left hand side of the rule r.

Because of obvious reasons of efficiency, run-time checking should be avoided

whenever possible. For this purpose in mind, let us introduce into our model

the concepts of variabZe and asignment operator which were avoided until now.

IL

-19.-

Definition: A variable is an object which has another object as its

value. Moreover, the value part of a variable can be changed. The only way

to change the value of a variable is by means of the operator , to be called

assignment operator, as follows: If v is a variable and q is a non-variable

object, then the operation :=(v,q), which is conventionally denoted by v:=q,

copies object q into the value part of v. (For simplicity we assume that

the product of the assignment operator is null.)

To fully incorporate variables into our model, we introduce the following

convention. Whenever a variable appears in an operation, other than as the

first argument of the assignment operator, the effect is as if the value part

of the variable appears in the same place. This, of course, is the normal

treatment of variables.

-- Now, it makes sense to talk about the scope of a particular variable which

is defined here to be the set of objects which can legally be assigned to it.

The scope of a variable, being so defined, obviously depends upon the set of

rules R. For illustration, consider the following example.

Let a language L be defined by:

(L = {DECLARE,INTEGER,:=,...}

BLf{I, IV, ...

RL {rl : IV (DECLARE,INTEGER)

r2 (:=V, T)

By rule rl, the operation DECLARE(INTEGER) creates an object branded by

S * -IV. Suppose that this is the only operation which generates TV-branded objects.

By rule r2, IV-branded objects are variables. If we also assume that r2 is the

-20-

only rule in R in which the symbols 11:="1 and ,IV,, appear as the first two

parameters, then it is clear that only integer objects can be assigned to TV-

branded objects. These objects are, therefore, what is normally called "integer

variables."

In general, for every brand 8, it is possible to generate variables whose

scope is the set of all objects branded by 8. We will say that the scope

of such a variable is 8

Now, if the scope of every variable used in a program 7T is some aeB,

then we do not need explicit brands to be stored in our objects. Moreover, if

the names of all variables in a program are declared together with their scope,

and if their names are used explicitly in the program, then it is clear that

the application rules can be enforced at compile-time.

3.5 On the Concept of "Type"

The reader may be wondering why did we choose to use the names brand and

scope for what may seem to be simply the standard concept of type. We will make

a small digression from our main subject to clarify this point.

First, it should be pointed out that there is actually no standard meaning

to the term "ype"l in programming. This concept is currently in a process of

evolution, and different people may have different things in mind when they use

the term "type." This is one good reason for avoiding the use of this term.

But there is also another, more serious reason: The term "type" is frequently

used for two fundamentally different concepts at the same time.

First, types are used as descriptors of objects. For example, the state-

ment "the value of a function is of type integer" is a statement about the .

objects generated by the function. (In this paper we used brands for this

purpose.) However, the term type is also used in an entirely different way:

the statement "the type of a variable is INTEGER" is a statement about the

-21-

.)copL? of the variable. In a language like FORTIRAN or ALGOL it may not he

* clear that there are two different concepts here, because in these languages

* the scope of a variable must coincide with a set of all object of a given

* type (or: with a given brand), e.g., integer variable, real variable, etc.

The difference between the scope of a variable and the brand of an object

* becomes important when the scope of a variable may be the set [I ... 10} for

* example. Thus, there should be no correspondence between the first interpre-

tation of the type and the second interpretation - as a scope.

The failure to make a clear distinction between these two concepts by

using the same term like "type or "mode"' for both of them may cause con-

siderable confusion. Like the "mode-UNION" confusion in ALGOL/68.

It should be pointed out that if one wishes to use an axiomatic approach

to the concept of type, then the scope of a variable is not a new concept at

all. It is a property of a variable-object which is derivable from the under-

lying application-rules of the language, similarly to what was done in the

last section.

-22-

4. Extension of the Basic Model ,

In this section we will see that our model is too primitive to be practical.

Several extensions to it will be considered but will not be discussed in

depth.

4.1 Value-Dependent Rules

The most obvious limitation of our rules is that they are defined in terms

of the names in Q, and the brands in B only; and they are totally invariant

of the value parts of the objects involved. For example, rule r5 in example 2

of section 3.3 allows 7/S to get the medical information about any patient

whose identifier is branded by ql. However, one might want to condition the

application of this rule on some property of the patient. For that, let us

generalize the rules defined in (3.2) to the form:

r' p (p0 ' Pk)/C(q0 ... q k0 ' (4.1)

The meaning of this rule is the following: suppose that q <= q0 (ql.. .qk) is an

operation which is about to be performed by i/S, and that this operation belongs

to op(r) for the rule r : p * (p0. ..p). i/S will be permitted to carry out the

operation only if C(q0 qk0 is satisfied (C is assumed to be a predicate).

Another restriction that one would like to lift from our rules is the fact

that all the operations, op(r), legalized by the rule r, generate objects with

the sai~ie brand. A higher "resolution power" of A brands can be achieved by

the following form of rules:

r" :(p/cp 2/c2 , ... n/cn) (P '" P)/C(q0 ".. qk) (4.2)

The right hand side of r" is identical to r'. The p in the left side of

r" are brands, and c are predicates defined over qq o ... qk of the opera-

tion in hand. The left hand side of r"t determines the brand of the product .

-23-

of the operation legalized by it, as follows: 'Ihe predicates ci are computed

one by one beginning with c'. If c is the first to be satisfied, the
i

brand of the product would be p . If none is satisfied, then the brand is 4.

4.2 Variable Brands

The brands defined in section 3 were a finite set of symbols. These sym-

bols appeared explicitly in the application rules. There seem to be good reasons,

however, to use more complex structures as brands, and to have variable brands

appear in our rules. The following example indicates such a need:

Consider a medical data base and a schema S which is supposed to be

used by nurses in the hospital. The following is a partial list of the rules

in RS given in the form of section 3. We will first explain these rules,

VOW and then point out to the difficulty that they present.

rl : d + (AXT,DOC)

r2 : pset - (PAT, d)

r3 : p - (NEXT,pset)

r4 : pp - (PERSONAL, p)

r5 : (SEND,pp,d)

DOC is a set of names of doctors which is accessible to a nurse U. Each

O doctor name generated by NEXT(DOC) is branded by d (rule rl). Thbe function

PAT applied to a legal name of a doctor returns a set of patients of this doc-

tor, to be branded by pset (r2). There may be many such sets; U can get

"* the names in each of them by the operator NEXT; the patient name so received

is branded by p. By rule r5, U can get the personal information of every

p-branded patient.

LS

-24-

Now suppose that the operation SEND(text,doct) sends the information

text to a file which belongs to the doctor doct. We would like to allow U

to send personal information about a patient to the file of the doctor who

treats this patient, and only to him. Rule r5, however, does not do that;

it allows U to send such information to any doctor. Moreover, there does not

seem to be any clear way to impose such a restriction by our form of rules.

To do so, we will have to generalize our brand concept:

Suppose that every brand is a pair 1.82 ; where a1 is a symbol, such

as we had until now; and 82 is an arbitrary integer number. Using such brands

we redefine our rules as follows:

rl' : di (NEXT,DOC)

r2' : pset.i (PAT,d.i)

43' p.i (NEXT,pset.i)

r4' : pp.i (PERSONAL,p.i)

r5' : (SEND,pp.i,d.i)

i is assumed to be a variable which may hold any integer. It is assumed that

every activation of NEXT(DOC) which retrieves a doctor's name, brands it by

d.i , with a different i for every doctor. This i is carried to the brands

of the patients (by rules r2', r3'), and their personal information (rule 14').

Thus, the brand of the personal information of a patient carries in it the

identification of the doctor of that patient. It is therefore possible, by

rule r5', to allow U to send such information L the right doctor only.

This example clearly suggests that variable, and non-scaler brands may

be useful. A systematic model of such brands is yet to be worked out.

4 . -25-

4.3 Global Brands

The brads, as they were introduced in section 3, are strictly local

to the schema and to the users' programs working under it. An obvious

generalization to make is to let objects in the data base have global brands;

indeed, such a generalization is absolutely necessary. The global brands may

be used not only by rules in individual schemas, they may also be utilized in

the formulation of a "constitution" for the data base, namely, a set of rules

with which every schema must conform.

4

I -

I

*1-26-

5. Conclusion

Two aspects of security in data bases were discussed in this paper: the

description of the security state, and its enforcement mechanism. The conven-

tional approach to these two aspects has been found to be inadequate, and a

new approach has been proposed. According to the proposed approach, the user's

program-i! which interacts with the data base operates under the jurisdication

of a set of rules, collectively called schema, which in effect defines the

security state of the data base with respect to a given set uf users. The

function of the schema is to authorize the operations performed by n. In such

a way it can control the fate of information originated by the data base, or

otherwise related to it, even when such information is in the user's working

space. But the schema has no authority over information which is not related

data base, and over the computation performed by nt on such information.

This paper is only a first step in a research which should progress in

several directions, as is briefly outlined below:

a) The model for user data base interaction proposed here is a radical

change from the conventional form of such interaction under which users'

programs were completely free. Various pragmatic aspects of our approach should

therefore be carefully assessed. In particular, it is not quite clear how

various general purpose languages should be adapted for the role designed for

them in ouir model. (It should be pointed out that the need to change general

4 purpose languitges in order to adapt them for the interaction with data bases

is not new with us, see, for example, DBTG reput [Dbtg.71].

b) A convenient language for schema specification should be developed.

I ,~-27-

c) The model proposed here is very basic. Some possible extensions

of it were briefly outlined in section 4; they should be pursued further.

d) Most important of all, it should be realized that controlled inter-

action between users and the data base is only a necessary condition for its

security; it is by no means sufficient. There are many more problems to be

solved before one gets a (reasonably) secure data base system. For example,

methods for generation and manipulation of schemas must be formulated.

References:

[Bro.71]: P. S. Browne and D. Sheinauer, "A Model for Access Control,"
Proceedings of the ACM SIGFIDET Workshop, 1971.

[Con.72]: R. W. Conway, W. L. Maxwell, H. L. Morgan, "On the Implementation

of Security Measures in Information Systems," CACM, April 1972.

[Dbt.71]: DBTG report to the CODASYL Programming Language Committee

[Grh.72j: G. S. Graham, P. J. Denning, "Protection-Principles and Practice,"
AFIPS/SJCC 1972.

[Jon.73]: Anita K. Jones, "Protection in Programming System," Thesis,
Carnegie Mellon University, June 1973.

(Lam.71]: B. W. Lampson, "Protection," Proc. Fifth Annual Princeton Conference
on Information Sciences and Systems, March 1971.

[Owe.71]: R. C. Owens, Jr., "Evaluation of Access Authorization Characteristics
of Derived Data Sets," Proceedings of the ACM SIGFIDET Workshop, 1971.

- . -

SOSAP-TR- 8

April 1974

COMMENTS ON PRIVACY OF DATA BASES

N. Minsky

Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus

- - Rutgers University
New Brunswick, New Jersey

* This research was supported by the Advanced Research Projects Agency
of the Department of Defense under Grant #DAHClS-73-G6 to the
Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the

* official policies, either expressed or implied, of the Advanced
* - Research Projects Agency or the U. S. Government.

- T --. '. A. . l i

Abstract

The protection of privacy of data bases is discussed. The I

*main results of the paper are: a) The conventional access-mztrix

* model, frequently used for the specification of privacy measures,

is found not to be suitable for data bases. b) The access conltroZ

mechanism commonly used to enforce the privacy measures of data bases

is found not to be powerful enough, since there are privacy measures

which cannot be'enforced by it. The paper argues that it is necessary

to impose restrictions on the user's program which-interacts with the

data base. .*.

* *~. q

Introduction'

In spite of the special importance of privacy in data bases,

most of the theoretical work on privacy and security was performed in the

context of operating systems. Some of the principles developed in these

studies were then adopted for application in data bases, without due regard

*to the fundamental differences between these two subject matters. An

example of such an adoption is the access-matrix model which was developed

for operating systems [1,2], and was then adopted as the conceptual frame-

work for protection of data bases as well, (see [3) for example).

One of the conclusions of this paper would be, however, that in

spite of the apparent success of the a-cces-matrix model in operating

-systems, it is not a suitable model for data bases. The point that we.

are trying to make is that the subject of protection in data bases has *

some unique aspects which deserve an independent study. Some of these

aspects will be discussed in this paper... * -I

As is implied by the title, there is no intention to conductj

a comprehensive study of privacy protection in this paper, we will be

just making several comments. *In these comments we will address ourselves 0

-. . to two aspects of privacy protection. First, the specification of the
A.

. ."privacy state". Namely, how does one specify what it is that a given

4.user is allowed to do to the data base, and which information can he I,
get from it. The second aspect which will concern us is, the enforcement
of the privacy-state.J

AA

A

-2-

1. On the Specification of Privacy States

The prevailing approach to the specification of the privacy

state of a system is essentially the following: Assuming that there is

a finite number of distinguishable objects in the system, and that there

is a finite set of potential users (or classes of them), all we have to

do is to specify which operations can every user apply to every object.

* One way to represent that is by means of a matrix, typically called

* access-matrix. The element A.. of such a 'matrix would be the list of* 1J

operations, or accesses, which user i is allowed to apply to object j.

An equivalent model, which is frequently more convenient, is the en-

. V ionment or eapabiZit modeZ. According to this model, every user -ho

interacts with the system operates within an environment E which is ..A
* . . .°

essentially a set of rights. Every right in E is a pair .(,q), where q

' is an object in the system and a is an access made, or a name of an

operation. The pair (a,q) serves as a right, for the user operating with-

in the environment E, to apply a to q.
"q-7.A

",- - - " -* Although this model for privacy specification was initially

introduced for operating systems [1,2], it was adopted by many researchers

as a conceptual framework for the protection of data bases as well, (see

*. [3], for example). This is unfortunate, however, because as we will show be-

low the access matrix model, or the equivalent capabiZiUt modeZ, is not

general enough, and is particularly inadequate for protection of data

* -- bases. First, let us consider an example.

(1) This model can be generalized, in order to cope with "value dependent"

privacy measures, as follows: The right (a,q) can be conditioned on a
predicate, which may be an arbitrarily complex procedure.

*-.,,-3-

Let EXCH(xy) be an operator which exchanges its two arguments,

provided that they are of the same type t (whatever such an "exchange"

may mean). Let a, a', b, b' be objects of type t, and let U be a user

who is allowed to exchange a with a' and b with b', but has no right to

manipulate these objects in any other way. It is quite obvious that

this privacy measure cannot be specified by means of the formalism

presented above. The best one can do is to allow U to apply the operator

* EXCH to all four objects, by providing him with the "rights": (EXCH, a)

(EXCH, a'), (EXCH, b), (EXCH, b'). But this is too permissive, it would,

for example, allow U to exchange a with b.

-. More generally the pr'tvaay state of a system can be specified by

means of an access matrIx if the primitives available to the user, for

'interaction with the system, are all operations on single objects. As it

is usually the case in operating systems, when these primitives can be

".: considered to be" the various access modes like "read access", "write

" * . access", etc. However, as was illustrated by the EXCH example, the access

matrix model is not powerful enough to deal with primitives which operate

on a nurber of objects. To specify that a user is allowed to apply an

. operation p to the objects ql...qn, we should use something like a..tuple

(p, q ',...qn) rather than the pair (c,q) of the capability model. For

instance, the privacy state of our example might be specified by the follow-

ing two triples:

S-- (EXOi, a, a') , (EXCH, b, b').

Now, the point is that the primitives operations which are avail-

able to the user of a data base are sometimes high level procedures which

operate on several objects; indeed, it has been shoum in (5] that such

- : - " " - • %" "- •," • • n d"S

-4-

primitives may be essential for the integrIty of the data base. Therefore,

the access-mztrx is not a suitable tool for specification of privacy in

data bases. (The use of n-tuples for that purpose was discussed in (6]).

"--* . .

6 o.

. * : , . . : -. .

2. A Model for User-database Interaction

In this section we will describe a schematic model of the

process of user-database interaction, which will serve as a framework for

the subsequent discussion of enforcement of privacy in data bases.

Let D be a data base, and U one of its users. According to the

Data Base Task Group report [4] the user should not "see" the data base D

itself, but an abstract image D' of it. D' would ideally contain only

* those parts of D which are relevant to U, and in a form most suitable for

him. The definition of such an image is usually called sub-schema and

" will be denoted by Z. In order to interact with the data base the user

must first connect himself to a certain Z, (there would, typically, be

many of them in a given data base), such connection would generate the

environment in which the user's program would operate. We will denote the

user's program by II, or 1(u)).

There are many issues which must be discussed in order to turn

the above into a meaningful model for user-database interaction. At

this point we will consider just one of them: the primitives operations

which should be available to the user for the interaction with the data

base. According to the conventional approach, that of the DBTG[4], in

- -"particular, these primitives are essentially update and retrievaZ opera-

tions; the same kind of operations which are traditionally used to mani-

pulate files. However, data bases are not files, and update and retrieval

operations are not suitable to manipulate them. One reason for that,

which was discussed in [5], is that in order to maintain the privacy and

integrity of the data base, the user must be provided with higher level

I -• ,

-. " - l, -. ~ -

-6--|

operators which manipulate the data base in some predesigned, presumably

correct, way. These operators, which will be called D-operator, or D-

* f ction, have a central role in the formation of the abstract image of

the data base which should be accessible by the user. The D-operations

should, therefore, be specified in the sub-schema, (see also figure 1).

In general, a D-operator may have two types of effects: It may affect

the data base itself, and it may generate information into the storage space

of the user's program which invoked it, such information will be called the

outcome of the D-operation. In other words, the o?.tcom of a D-operator

is the information retrieved from the data base. - .

- . ". ,I.

. - I.

. . *.. .

.. . ..-.' ." " * I

• .;. - - .

-6:t 4

-' I ' I",. , .

6 -7-
theimae ~the outcome of

generated by Z' -oeao

1 /7

sub-schema User's program

User
(U)

Data Base
(D)

Figure 1: A schematic model for user-Dlatabase interaction

4!

o-8-

3. On the Enforcement of Privacy

The conventional approach to interaction with data bases, as

outlined above, provides a basic framework for privacy protection, which

can be viewed as a two-level mechanism: First there are privacy re-

strictions as to which sub-schemas can be connected to the programs of

a given user, and there should be a mechanism which enforces these re-

strictions. The rest is up to the sub-schema itself. It is the role of

the sub-schema as a privacy enforcer which will concern us here.

- According to the conventional approach, that of the DBTG r 4]

in particular, the sub-schema acts essentially as an access-controZ

mechanism: It has an authority to decide which parts of the data base

can be-accessed by 11, and which operations can be applied.to the data

. base, but it has no authority over what happens inside the user's program

itself. In particular, once a piece of information is transmitted into

- -the storage space of 11, it is automatically released from the control of

the data base and of its privacy rules. - -

- This may seem to be the natural approach to protection, indeed,

" the term "access control" is frequently used as a synonym for "protection".

But as we will show in this paper, the access-control mechanism has some

inherent limitations, and cannot be used as a universal privacy enforcer.

We will see that some privacy measures can be enforced only by imposing

restrictions on what happens inside the user's program, or are

much-easier to enforce with such a control over T1.

There are, essentially, two problems with the access control

mechanism as the privacy enforcer; one of them will be treated in the

next section and the other is introduced below by an example:

-" " " , . . , . .. -- - . . ,, . , . -,,

14

Example 1

Consider a medical data base D, and let P be a set of patient's

names in it. Let A1 ... Ak be D-functions defined over the members of P.

(Ai are "functions" in the set theoretical sense of the term, one can
also view A.(q), for q c P, as the i-th attribute of q). Let the user

1

U be a doctor, and let P' (U) be the set of all patients of doctor U,

(P'(U) is a subset of P). Let p be the following privacy rule: "U

shouZd have no access to patient names which do not belog to P'(U), nor

to the attributes of such patients". How can this privacy rule be en-

"•. " forced?

First one may try to enforce the rule p simply by providing U

with the partial image of the data base which contains the names of his

patients only. This can be done as follows. Let MPAT be a D-function

provided to U by the sub-schema to which he is attached. Suppose that

MPAT, when invoked by 11(U), returns as its outcome the next name from

P' (U), (whatever "next" may mean). Assuming that this is the only way

for U to retrieve elements from P, the rest of our privacy rule may seem

to be automatically satisfied. Namely, a request to retrieve A.(q) can

be honoured without further checking, because q can be nothing but a

member of P'(U). .Unfortunately, however, this is not the case. Even

if U can get only names of his own patients from the data base, he may

still be able to get names of other patients from an outside source,

* or, he may simply "invent" a name. Thus, U has the potential ability to
4" invoke Ai(q) for q P' (U).

From the above it seem3 that the only way to guarantee that U

does not get the attributes of a patient q P'(U), is to check if q is

-10- -

I.I
;]... actually a member of P'(U) every time that Ai(q) is invoked. This, how-

ever. is a very wasteful solution, it means for example that the member-

ship of q in P' (U) may have to be checked several times for the same q.

To understand the nature of our problem let us look at it from a

more general point of view.

Let F be a D-function, and v a variable in the storage space of

11. Suppose that F is invoked by 11 and that the outcome of F is stored

in v. One can say that the variable v carries two types of information

in it: First there is the set of bits actually stored in v, which we

!! will call the e'licit information in v. In addition, v carries an

important implicit information, which is the fact that the content of v

- tas generated by the D-function F; in a sense, this implicit information

provides the interpretation for the expZicit information stored in v. For

instance, in our example above, the outcome of MYPAT is not just a string

-of bits, it is known to be the name of one of the patients of U. The

existence of such implicit information is so natural and obvious, that

one hardly gives any thought to it. However, consider the following

situation.

Let G be another D-function in our data base, which admits one

parameter. Suppose that G is invoked by 11, with v as a parameter. The

* invocation G(v) obviously communicates to the function G the expZicit

information in v, that is what parameters are for. But the implicit in-

formation, which gives to v its interpretation, is not communicated to G;

S - -because G has no way of knowing how was the content of v generated. Coming

back to example 1, if Ai (q) was invoked by It, there is no way for the

A
q0,

.
.,F -11-

function Ai to know that the content of q is in fact "the name of a

patient of U" without actually checking it. Namely, for the function

A. the parameter q is nothing but a string of bits, its implicit in-

formation is lost.

To summarize; the implicit information carried by the outcome of a

D-function into the storage space of 11, cannot be carried back into the

data base. This loss of information, which as we saw may cause difficulties

in the enforcement of certain privacy rules, is due to the complete freedom

that 11 has in the manipulation of its own storage space. As we will show

next, one can maintain the credibility of such implicit information by im-

posing restrictions on what the user's program can do with information

retrieved from the data base.

Consider the following modifications, borrowed 'from [6],

to the conventional model of interaction with data-bases. Suppose that

the outcome of a D-operation, when transmitted to the storage space of

S]I, can be marked, or brcoded, by one of a set of brands specified in the

sub-schema. (This branding process should be under the complete control

of the sub-schema, in a manner not to be specified here). The branded

information-objects, although they are stored in the storage space of 11,

cannot be manipulated freely by it. Rather, they are subject to a set of

rules, to be called D-rules, .provided by the sub-schema which in effect,

specify the operations which can be applied to the branded objects.

Every brand which appears in the sub-schema, also incbaces a new "type"

' into.], in the following sense: If 0 is a brand in E, then one may de-

clare, in 11, a variable to be of "type 0" much in the same way as one

declares variables to be of "type integer", say. A'variable of type

B may contain only $-branded information objects.

-12-

Coming back again to example 1: Suppose that the outcome

of WPAT is branded by the brand 8. Suppose also that the D-rules pro-

vided by E allow R to use a-branded objects non-destructively, but do not

allow it to modify them in any way. Under these assumptions the privacy

restriction p can be enforced simply by requiring that only variable of

-"type $" would be used as parameters of the D-functions A.. Because,

due to the restrictions above, a variable of type 0 can contain only names

of patients of U. We may say that the restrictions on the manipulation of

B-branded objects preserves the implicit information in them.

Thus, we saw that certain privacy measures can be enforced more

" efficiently if the user program can be controlled by the data base. We

will now see that for a certain class of privacy restriction such .control

is essential.

.-. • :. . -- .

4-.-

- - _ " - ' '- ° ': - " , .. . •

- S

". -13-

4. "Intentional Resolution Power" of Privacy Protection

One of the most important caracteristics of privacy protection

mechanisms is the fineness in which the privacy neasures can be specified,

which may be called the resoZution power of the privacy protection. One

may be interested in resolution along two orthogonal "dimensions". One

of them, whose importance is usually well appreciated, is the specification

of which parts of the data base should be revealed to the user; the other

dimension, which will be called intentional resolution, is related to

"what is the user allowed to do with a piece of information revealed to

him". It is this second aspect of the resolution power of privacy protec-

tion which will c:oncern us here.

It may seem that. intentionaZ resolution is mainly a legal

matter, not within the realm of computer technology, because once a

piece of information is revealed to a human user, there is no way for the

data base system to impose restrictions on how it is used. Indeed, in

'the traditional approach to privacy protection, the privacy enforcer is

viewed as a kind" of mediator between the data base and the userwhose job

is to decide which information can be revealed to the user. There is no

place for intentional resolution under this approach. Actually, however,

the data base does not usually communicate information directly to the

human user, but to his program. Moreover, much of the information re-

trioved from the data base is needed only for a certain computation to be

performed by the user's program, and there is no need for the user himself

to see it. To comply with the "need to know" principle, such information

should be released to the program HI, but IH should be _prevented from revealing

. .* -*-- - .- .- *- - . - --• * .

6'

• _ , - .w - ,I

-14-

this information to the human user. There is a difficulty here, however;

under the conventional approach, the data base, or its privacy enforcer,

has no more control over the user's program, than it has over the human

-° user himself. In particular, once a piece of information is trans-

mitted to H there is no wi,', short of a manual audit of the program, to

*i prevent R from printing this information, for the user U to see.

It is clear, therefore, that in order to provide any degree of

intentional resolution, the privacy enforcer must be able to impose re-

strictions on the computations performed inside the user's program, and

* not only on the D-operators invoked by it. This is again the conclusion

of section 3, derived in a different way. The implementation of inten-

tional resolution is discussed in some detail in [7]. This section will

be concluded by two examples which are intended to demonstrate the practi-

cal importance of intentional resolution.

-:- Example 2 - -

Consider a data base D, and a highly confidential set of records,

" F = {f, in it. Let U be a programmer who is commissioned to apply a

* transformation T to every record f c F and to store the transformed records

back into the data-base, as a set F'. Suppose that due to the confidentiality

of F we do not want its content to be revealed to the programmer U himself,

or to leak in any form or shape to the outside world. In other words, we

want the programmer to eat the cake, but not to have it in his stomach.

This case represents an important class of privacy problems. It

is this author's belief that the most serious threat to the privacy of

data bases does not come from outsiders who are using ingenious techniques

to penetrate the system, but from insiders who have the data base at their

fingertips. Every data-base system employs '"T1intenance programmers" whose

"5 -15- :

job is to perform routine transformations and manipulations of various

files. Most of these programmers have no need to actually see all

the information manipulated by them, and they should be prevented from

doing so.

Example 3

Consider a medical data base D. Let PAT = {p) be a set of

patient names in D. Let T = {t) be a set of treatment codes, and let

-EE(t) be a function, in the set-theoretical sense, which gives the fee,

in dollars, that has to be paid for treatment t. Suppose also that

for every patient p there is a list, TLIST(p), of all the treatments re-

ceived by p.

Let U be a clerk who has to write a program to :compute the

charge c(p) of patient p, in order to send him his bill. c(p) is given by:

* c(p) FEE(t)

.. '- te TLIST(p) ,-

It is clear the U must have an access to the list of treatments received

by p, in order to compute c(p). At the same time, however, TLIST(p)

is a confidential information which the clerk has no business seeing him-

" self, nor should he be able to leak it to anybody else.

- Thus TLIST(p) should be revealed to a program written by our

clerk, but for a limited purpose only.

For a discussion of the realization of the intentional resolu-

* tion required in these two examples, the readcr is referred to [7].

6

*-. - - - *-J--.

-16-

Conclusion

Two issues of privacy protection in data bases were discussed.

First, it has been shownm that the conventional access-viztrx technique

for the specification of the "privacy state" of a system is not as

general as it is sometimes believed to be, and it is particularly un-

suitable for data bases. A simple generalization of the matrix model was

proposed.

The second issue has to do with the enforcement of privacy. It

has been shown that not all privacy measures can be enforced by access-

control alone, and that it is necessary for the privacy enforcer to have

some control over the user program itself. The realization of such a control

was not.discussed in thispaper, but it is safe to say that it would require

some radical changes in the conventional approach to the user-database

interaction. The subject was discussed further in [5,6,7], but there is much

- more to be done.

-- 4,:

. - •.4 ... ;

-- E

SOSAP-TR- 10

July 11, 1974

ON THE FORMATION OF ABSTRACT DATA TYPES

N. Minsky

Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, New Jersey

*This research was supported by the Advanced Research Projects Agency
'of the Department of Defense under Grant #DAIICIS-73-G6 to the
Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the

* official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S. Government.

-1-

One of the most elegant and powerful concepts, recently developed

for programming languages is the concept of ab6stzact data :type, it

seems to have been invented by the designers of SIMULA language [1],

and received its final touch (to date) in a paper by Liskov and Zilles

[2] (we will refer to this paper by LIZ). Abzt'u.t data type was de-

fined by LIZ as "a class of objects which is completely characterized

by the operations which may be performed on those objects." To imple-

ment this concept they introduced a new linguistic construct called

opeketton ctuwteA. The cluster serves as a structural template for

the objects of the type t being defined by it. In addition, the

cluster contains the definition of a set of procedures which are to

serve as the ca cteAi6tic opeAato46 of type t. That is to say, an

object of type t can be manipulated only by means of these operators.

The usefulness of the cluster concept is unquestionable. In

addition to being an important tool for well structured programming,

* it provides the programmer with the very.desirable capability of im-

posing restrictions on his own program. But some of the claims made

by Liskov and Zilles about their cluster concept are not completely

justified. The following is a quotation from their paper: "We betieve

that the above concept captu~ez the Jwndamentat prop L o6 ab,6tact

objectO", since, they say: "The behavioA oJ an object .6 captuAed by

the Aet o6 [its] chatacteizZng ope a tio6." One objection to this rather

strong claim rests on the following observation:

The behavior of a data object cannot always be fully characterized

by the operators which are applicable to this object alone. One might

have to take into account the possible interactions of the given object

with other objects, which may belong to the same, or to different classes.

The difficulty here is that an interaction between two or more objects,

cannot always be reduced to a sequence of legal uperations on the objects

which participate in the interaction. Therefore, as we will see more

specifically below, an interaction between objects cannot always be implemented

within the framework proposed by LIZ. An example may clarify this point.

A

-2-

Let JOB and PERSON be two classes of objects (abstract data

types), and let the objects j and p be instances of these classes, (j

and p may be also viewed as "identifiers of", or "pointers to" the

corresponding objects). Let R be a one-to-one relation between the

two classes, which specifies "who is appointed to which job". One

way to implement such a relation is the following: Let j.person and

p.job be components of the objects j and p, such that j.person points

to the PERSON object assigned to j,and p.job is defined symmetrically.

Now suppose that we have to impose a certain discipline on the appoint-

ments. According to the philosophy advanced by LIZ, the following

.* technique is implied: The clusters which define the classes JOB and

PERSON should not provide any operators for direct update of the

components j.person and p.job (namely, from outside of these clusters,

j.person and p.job would be "read only" variables). Instead, there

should be an operator appoint (p,fJ which performs the appointment of

person p to job j, under the discipline at hand. Thus the behavior

of objects of types JOB and PERSON cannot be fully captured just by

the operators defined on these objects alone, one must consider also

the operator appoint which is, in effect, an interaction between a

(j,p) pair. Moreover, under these conditions the operator appoint

cannot be implemented in a language based on the cluster principle.

That is so because the operator appoint has to change the components

j.person and p.job of j and p. But the first can be changed only with-

in the cluster which defines JOB, while the second can be modified

only within the PERSON cluster. Thus there is simply no environment in

which appoivt can operate.

Two solutions to this problem suggest themselves: First, one

can remove the relation R from the body of the objects j and p; In-

stead of using the components j.person and p.job, one can define R

as a set of pairs {(j,p)}, using the mathematical definition of "rela-

tion". To manipulate this relation one does not need any privileged

access to the objects themselves since only the pointers to the objects

0 are involved. Thus, the operator appoint can be defined outside of the

clusters of JOB and PERSON. However, such decentralization of the data

which is relevant to the objects at hand is not compatible with the under-

lying philosophy advanced by LIZ. (Incidentally, the above suggests that

in order to define the behavior of a class of objects, one may have

to specify where pointers to these objects can be stored. The char-

acteristic operators of objects, and even the possible interactions between

objects may not be enough.)

The second solution to our problem calls for more sophisticated

scope rules than those suggested in LIZ. For example the procedure

appoint can be implemented if it is possible to give it a-privileged

access to both j.person and p.job, without giving such an access to

* the rest of the program.
In spite of its limitations the cluster may be an ideal construct

for most programming languages. Considering its simplicity, it

accomplishes amazingly much so that it can be rated as a "best buy"

Hwever, the limitation of the cluster concept becomes crucial in a

programming environment where security is essential, such as the con-

struction of operating systems and data bases. It is interesting to

*point out in this context that studies of protection in programming

systems tend to do the same oversimplifications made in'"LIZ. For

example, Lampson's protection theory [3] specifies the "protection

state" of a system by listing all the accesses (operators) which are
* applicable tD every object. This again ignores interactions between

objects and is not, therefore, general enough. (This problem, in the
context of data bases, was discussed by the author in [4].) The paper

- - of Morris [5] which studies protection in programming languages seems

* . to suffer from the same problem.

References I

1) Dahl, 0. J., Myhrhand, D. and Nygaard, D., "The Simula 67 Common
Base Language" publication S-22, Norwegian Computing Center,
Oslo 1970.

2) Liskov, B. and Zilles, S., "Programming with abstract data types",
Symposium on very high level languages, March 1974.

3) Lampson, B. W., "Protection", Proc. Fifth Annual Princeton Con-
ference on inf. sci. and systems, March 1971.

4) Minsky, N., "Comments on privacy of data bases", Somp. Sci. Dept.,
Rutgers Univcrsity, SOSAP-TR-8, April 1974.

5) Morris, J. H. Jr., "Protection in Programming Languages", CACM,
January 1973.

p

o'p

°,p

S"

SOSAP-TR-11

September 1974

PROTECTION OF DATA-BASES, AND THE PROCESS OF USER DATA-BASE INTERACTION

N. Minsky

Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, New Jersey

This research was supported by the Advanced Research Projects Agency
of the Department of Defense under Grant #DAfIC15-73-G6 to the
Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S.. Government.

u 0

a 0 ~
0 4 - 44 4

u 0
d -

.0640

44 .0

M4 44

X 0
40

> 44

44

004
0 1 44 0

a 44 4.

ca 00

44N4e 04 0. 4

m0 04 4
44 a4 0.

C4 0 0s

4,.

4 .0 k 0440
A N44 U 4.4

44 la".0 44

~44 .0
31 0 04

a 0 44 4 4

.0 04 4 4 4 4
0 U 0. 44 k4 '

of 44 ..4 44 o'lt4

040.4 'I ~ x. 0
0. 44 .0 a0 4 4

4 C4 00 44 -4R4c

44 44 0 k4 aU 0 : c

.4 cu 44 0 44 44 44 4 F
Idu00 kr 0 . 4

.0 41 a4 g 400 'U 4 4 4
o r 0 a44$ts Id 4 ..

0. .0

44 0 ow k4 44 0j
-0 .4 0 0 44 44 >4 4 4 0 44 44 U

I4 0. .U 0 .4 a 4 0. X0 u . 044 .0 be~
k 4 4 0 0 0 - . o 446 44 04 0 .

0 44 0N 0. >0 0 " a0 44 .4-S 4 ~ .4 4
44 0. 0 .44 4 , 4 0 0 "4 " 44 4 44 0 A4

-A 4 0 0
44 0 1.. 44 0 r. a0 p444 .

u0 . 04 0 4 0 44 a 44 0 U

0.~~~~~ 0 04 :300 U 4 4 . ~ 4 4 4 . 0 - a. 4 .

44~~- 0o :0 .00 4, 40 0. . 40 4 4 4 4.444 4 4 0

44 A4 04 4 4 . 4 0 .4 0 0 U 4 4 .4
44g 06

4 4 . 0j u44 3 4 4 4
44~ ~~ 44 .44 a44 ' t44 . 4 0 . ~ . , ~ 0

.4 3. 0 0 4 4 4 4 0 44 4, Is 0 9 UU a 4 .4

0 44 4 .0 44 44 0. 4 -4 4 '441 4 .1 44. 0 4 0.4 4 4o .0 4, 0 .44 - 0 44 . 0 4 4 4 4 4 4

VV

-. ..

0 03
- ~ ~ ~ ~ ~ -S P-4 4 .4 4 4 '4 0 44 4

0 4 a4 0 '4 0 0

0 4. 0 44'0 .4
k0 0 0 0 0 4

tu 44 0 *0 00 OW k 44: 0
44 0444 a 44.4
o 0 "4 U a4 44 1 . 4 44 44 '

4. ". .) " 4 A 1 4 0 '" .4 fn
00 ft0 ft 44 -4 '

M k4 4 .4 -. w 04 4k 4l c4. 4

0 A 444044 4

'44 0)0 A '4)4
* 4 0 0 '0 .4 -4 0 ce

A a 0 06 0 k 0 4
m4 48 .4 z4 44 44 a4 a4 0

'0 U 0 0 we t.4 I'
4) a' .4 0 "o4. ~'

4 0. 44 0 0 2 k).
3c. k42 r6 = = 4) u +

.0 CL 'A '44 c) A 4 0 C. 0 * .
0 A -a UZ a. 44 '4c 4) A044~~ -4 ' 0 .4 0 0 0 . 4 4
0 0 0 44 390 .4 4 0 0 4) - .

A M4 0 2 44 a x44~. 4 0 *- 4 2 4
w .2 444 P. > a 00 4 > 0.

0: 0. a 4 44l 1 ' 5.. 0 44 * 4A . 0 4
*~ -- - a4 0: 0) 4 4 ' 4 4 4)

0 4 . ca 0 0 '4 .0 0 4) 44 44 a' 0 '0
4) 0 0

0 0 0 a4 -- 0- 04 4 H 0 0 4 A 4)

>0 44)0 . 4 04 2 0 .
'0 t) r. P .-10 ~ . 4' 4 ' 4 4. . , 4 .) .

0) 0 04 ca '0 *
'd4 C 4 u 4 -* - 0 . ! 4

w x ql 4a .0 0 3 4
0 0 0. 70 Ur ft 4)J0.

44 a 0 4 ''. .) 4 4 0

0 4

0 "' 0 0

0 4 0 0 >) 00 4~c 00 3

0CL 0. 14.4

>4 0 0 c)4 14 04 24 44I) .4 .4
w4 -44 Q 44 *. 44 '4 0

44c 33 44. ,) 2' 4 0 u4 4 4 4
0 4 . 40' .4 o X a0 k am 0k 04 0.

.4 4 4 . 0 4) 2 0 0 u 4 CA k0

A0 '4 ' ' 04 ' .0 a 4 6

04 0' 00 0 m

k4 k 2 0 0
0 44 fl am m40.4

>4 be 0 0 4 .) 4 4 4

cl 44 "a2 3

:4 0. 0 It 0 a4 0) 4 4 4) '4 0 .4 0 444 4

44m 44 0 0 0 '44 u a) 4 4 44 0 0 4 4

A2 Is a4 4 4 '4 4 .0 - 0 0 4 4) .4 2 4
0. 00 0 43 04 a4 2' 04 4 0 44 44 44 4 4 1 4

44 0 U 20 0 4 'k 4 - 0 4) '0 A 44 '4
0 04 > " v.4 4 44)44 44) 0 0 A 0. 0

u 4 -4 .0 04 44 . 4 .
.4 ~ ~~ ~~~ 04 ' . 0 4) 4 33 0 4 4 0 0 4. 4"' 4 .~ .0 44 '4 4 0 0 4 0 4) 0 0

4) 0 44 -0 0.o . 0 0 4 a4 u00 4 0 Au 0 x

0~~~b 44 1.. a4 F. c4 4 : ' 4 4 4 4 0 2
. o 4 4 24 0 a t) c4 0 0 a 4 44 4 0-44 .

0 0 4 .44 a 44 "0 4 .) 4 4 .4 .4 4 4 04

A 44 '-' 44 . .0 4) A 0 3 0 4) 0 2 44 ' 4
U ' 4444 4) 44 0 .0 44 44 4 .4 .40

* ~0 H

0 ~ 41 0. V 0 -0 0

0 41 C. A4 4 " . 0 4 1 4 0. . 0
.0 4 1 s. '1 0 '..0 .0 1 0 014 I

41 '0 U . 1 0 H .

'0 4 . 4 4 0 a0 0 0. 3.U 4 H H 0 4 4
- 1 4 1 00 .. 0 0 41x'" 0 0
0~~~~~~~~~ 41 4 1 4 1 1 4 4 0 4 1 41 > H 4 0 4

o . 4 V .04 41 0 4 41 4 4 4.0 0 0 > . ' .

- ~ ~ 0 4 4Z .. 1 0 4 ' 41 H 0

.0 0 0.

> .4 0 1 0 04 0 1 41 H 0 4 - .

'41~ ~~ ~ 41 .0 U 3 H U 1 - . 4

0~ ~ .4 0 S1 41 0rd >1 r. a '
.00

0 r 1 .4 >. 1 S.' 0 4 " 0 0 0 .4 0
.4 4 . 4 4 . 1 0" 0 . N4 0 41 r

41 ~ A . -. 0.'4 4 - 1 0 4 . 0 0 0 ~ U0 Ha,4
41 H ~ 4 41 H 41 0 '0)

Ha m1 0 0 1 0:s 1 4 ' 1 0 0.
-0 m~~.. * 4 . $4 4H >. - 4 a3 0

41 0 U M 1 0 0 0 U 4

co k4 X 0 H 0 N , .0 4
4. ' '0 u 0 4 4 1 ' '" 0 .0 2 '

01 41 (4 01 " 0 4 4 4 0 "

0 k. '0 4' "4 .4 04 H 14 0 a 0 ' 0 .
0 -q 41o 96 = W ..0 to

~. . 0 0 0. 0 .00 X4H 0 4 1 4
V1 .0 cc 12 .4 H

0 0 4' .4 0 0 0

.0 .4 a 1 ". 41 ca to 1 4 1 1 0 44 H0

" . > 0 .40 0 ce 0 '. F. 41 3 u 4 4 0

- -4 41 4 0 4 0024U 0 4~0H. 410 1 . d'04 0.41 140

* 410 4 '~ 2 ' 0. . - 1 0 .0 H '~0be

0ca 0 1,4

2 %. Ao A a .. 9o54

.a StoA ato '0 0 .

to a
aa u.

.4 - A A'0 a

'0.4 a. 48 '060 -

co4t "4 0. a 0 0 . U

I 4 0'-.

U '.4 .4 41 51 tov 44 0 a . . '. o 4 4
0 to . -0 o to o to -4 to . 8 x4 a. 54 . 1 .0"

A a . o00 AV-4aA 4AA sa o 3 t

-z~ au0o' ' m- J t 4
"4 ~~~i~ to00 o 4 " ' -.

t o) o a
- A O

r o a 4 0 o 0 0to ~ .

u .. . 0o ts o to Wo t . "4 0 ' 0 0 '4 .
0 A1 +1 k 4 54 -0 A

v4 4 0 00

to 4 aO' > 0 Is 4o to U wCSto U 44 .

ov ~. 4~ "a a cc to4 to
.4 k' k4 a6 - .0 co .4 'co 0 o t .

U 0 . 00 0 0 ko0 t o t - A " .

a~S '0 04a . 4 0 4. r6 .1 ' A " 4 a
"40 to 0 a40 - o t . a t 4 Aa a t

a 5 if' .4 '0 to a. .4 co" 4 o U " 4 to
"4~~c "4 0o to C4 to 5 o . . ' 0 4 t A t o "

0. 4. a. a4~ 0. U d to A . 41 a
- '. toa .. .

= k4 .4 t . 0 0o >' "4 0t 1" 4 " 1 0 4
1 0 - o " a . a r 4~ o a a "

* ~ ~~~ .ot ' 4 . " 0 ' . 0 - ' 4 0 0o 04'A4.

q) C 5 0 a.to .4 . . . " ' 4t '0 a . t "4.
02 "4 41 A to 3 aa . . O t " " t . 4 4

4". dA 0t 0 1 0 4 o . t " " a 0

co m a0 to 0C t 0 1. 0 "4 to a
0o a ao0'4 ~ U t o t

.4k =C. 4 4 S a wk to 0. 4. r6 4 0 1 4 -to o to U

*~0 Cc go 0o " 8 t 4" 1 . o 4
'0 0 48 t t . to o 4a. 0 a 4 0 to 41 U xo '

-0 0. 0 "4 w to . t

0 0 0 U 0 1 -

If 48 U0 .4 Az 0 a4
t"~~ a '0 ko "4 .4 4 o t t 4

"14 "4 114 0 4, X OR4 t a k t. A A0

.4 41 0 ' 3 0 C.t " o to . "
0~ - 444

'. Au 0 9U 1 . a A

08 lo 0. 00 3 t o t " 5 4 " o
0 0 to o 0 t '. 0 tD > k. '0. 4

44 a. o a 0 o 0 '.4 4-0 t . 4 t

- 4 C '0 0 a4 "4 to0 ~ '
'0 a. 0 to ko a4 0 d 01 0 0o A 4 .a'

Vo It 4 x to . 10 a >4 04.4 0 4' a .4 U 0 t

"a C1 0 to to v4 0 04'
04 a '0 "4t3 .0 4 " o " .t

4. 54 '0 .4 to 0 CA o 4 .
:3~t 0 U O '0 0 C 4 '

0 U '0 .40 o t . . o 1 . ' 4 C t

0 an. cc Vo U A 4 4 a . 44 ' 4 t
0a a'0 o "If

r4 0 o 0 to . 11 Is 96 0 0 14a a t

04 to > ~ ' '4 a
-' 4 bt .4 "A A -0 to ' . 4 o " .4 a 4 0 t 4 4 0 '

uo 04 "0 54 t;' " o to 4 " 4 ' o . . 0 t
to0 00 g. 0 t 4 t 4 A 8 t " t o

a~4 0. o t 0 .4 '. a a - a o "4 ' s 0
"4~ "ko " 4 . . A 0 ' . 8 to a &4 to A o d A

0o ai4 ' 4 t 4 t

"4 o > OF 01 4a a41 0 a0 0 so. a
to~ 0 0 tg 41 "6 Ro Po, o '4 t 4 0 " t 4 ' 1 " . .

0- Uo 4' a. a. If0 0

'0

a 4. 0 P. r_ A- 0k 04 V ft ~ .
'A 94 .0 0 .
a. . 0. Go u. It 0 u

o ~ ~ ~ 4 +; 0 0 '. 0 4 3
0 .0 .0 4R0.. 4

o a0 A 0 44 0 . 4 '
'0~~'004 o. .

o4 a4.'= a.a.I

a '4 0o -. a "' 0 ft 0 ~
k. .. m .. .0 'a i 3 '-. . "

r. o a f 3. 44 a 0 v >0 0e
'.4~~ ~ U 0 '4 . 0 4 z .

u' 2. 0 0. . Aa 4. o.4 Z- 4
44.

'. 0 0 a 2 a. '4'4 4 4 1

0 . a '4 k . " . 4~~

4. ~ 0 a a Z. I 0- -4. 4 0 Q C 0 .1 a I '
'4~c 4. 0 cc 4. " 4 . 0

a 3L 0 '0 0 0 I " 0 4 . ' 4 .40 . 4

06 o

v: k oo '0 4. a4 u "4 k. 3. 4. 0 0"4 0
02 4. $4 u 0A 01 "4 0o c: 0 N0~ 3 0 '4 . A '4 4

k 0 "44..A a.'44Cfl
Am o Gi a d4 .0o 0~. "

Vi0 . 4 '4 3 4 '~ i " 3 ' . 4
0h to I. 4 0 0 0 4 0 " 40 .

o. is 0 a v . 0' 4 A '

0 - 0 a 0

0.44. ~ 444.0 ~4"

C6.. 0 0 4. 0 0

'.4 0 ft o'4

o. 0 " 0 s. . 3 ' 44

> '4 k to4 0 .0 0 0
'44a 0d '4 . 0 . 4 3

0 0 4. 4

4. a. Is 0 0 '4

0h 0 0 -_ 0 -4 . 0
46." " u4 - 0

0a " a' 40 0 0 .
41 ~ ~ ~ ~ V N . c .0'4 '

3.0 0 '4 0 0 4. . '4 0 0 4 '44 0 .
4.~~~ ~~ "4A4 4 . . 0 0 0

0 0
44

14 #-

Cl4.
o' 0 .0 04

14 . 4 . .00 4

* 0 C ' 0

.4' a - a4
14j 4'j.

'C4 4 0 E

4 A

Ol. 4'

m v ~ ~ ~ 4 Ulk > J- O A l 0 R a

4 0 Ul.

S. 0 0 0

404 0 c ' 0 0 to

Ok .0 4' 1

-5 0 . .4 41 i

r a- u $A

a4 44
-o

4.44 0b 4

14 ,Vo 0

Ad 40.04 4. $. 3
'4 44 01 0 00 '

93.4 .4' 4' 3 4

: a A Cl 4 0.
4'~~ ~~~ -0 M4~ .' 4 . ~a '

*' a .0 v4 t4~'~ ' ' '

a k4 . a ., 4 to o a 04 . 4

ig~4 0 4' ..u4 ' 0

4' 0 4' .0 A .441'0 .

4' ~4 .4' * I 4 . 4 0 .

0. 0 0 ' 1-' . 4 4 .

-0 4' 44
0 k' '4 4

04 A4 '4 . .

A ~ > 0 a .4 0(d4 U '4 0 0 U 4
4

0

12 4 0 4'1. ' 4

U 0 .4 4.4
.0~~~~ ~~ 444. 4 4 44 '' 4 '

in0 0 ILI 0 14 4'.4
14 44 ". . .4 0 0. 4 a4,~. 4 ~ 4

44~~~~~~ ~~~ 44 4 4 64 4 4 . 0

04 U

Vol m4 CA x4 x4 Is A '4 ' '% 0 4 0

uI

0 a0

14 - u e

.0 3 . ~ U a c
VI 0 ~ '.4 '.

uI * 4 0 u
-. 0 VI 0 0 "a, VI -

VI 0

Is 4u .0 4. 4.1 r

o U In U -A 0 1 1' .) 0 .4 '4 41 '
0 .0 XI 4 4 0 ~ V I 0 .0 0 1200 VI -V

o~b 43 0 VI 0 ") 4) 0 . 3 0 H - '
C 0 0.. ' . .) V . n 0 U 4

'4~~~~C VI 0k1 I VI ' 40

U ~ ~ ~ ~ ~ ~ ~ b m) U) k1 ' . I '. . 4 0 0'

ba aI 0 1 A t.0 4.) . H

0. 3. 4)) - ' I) 0 i 0. -. . .4 . . 4 '4 0 V
r u '4 a 4) C.4 k0 '45'4 c0 0 4

4) V I.'.4 4 .0 VI k0 :3 0. 0 H)c R4* 4

.0a 3 0 4. 4 s o 4) '0 41 40 A . 4) .) '
> N 4) :2 0 4 4) 0 0 4) U3 4 4. 0 4 .'4f 4)
VI 0 0. 4)0V . 4 . 0 I 0 0 0) . .0

4> "4 0 V .00 0V~ " " ') 3 0. '

" 0 0.3 4 0 0~0 . . 3 4 0
'4 '41. " 0') V 4)) "4 4
S. r_4. ~ ' * .) ~ 04 -H H

*) ~ '4 ' 4 ', ' 0 VI 0 o"0 0 0. ' 0
'0 U Hz '4 x 3' VI V 04- . 1 0 '." I0

oa 04 4 4 . 4 0 '4 0 .. 4

0 .4 0 0 a 0 0 3') 4 - ' I ' 0 0

0. 0 R' w) 4) A a'0 .0
0 I) 0 ZI x) .0 0 H . 4 V1. 4 V 4 V 4 '4 - 4

0- - '
* ~.0 '0 . 0 '4 's '.4 '4 0 4 H U -. 0 ->

-o 0 4 I V 4 " 0 . I ' 0j' 4 V 0
VI "4 0 U0.3 ' I ') ' 4 ' 4 . .")

3' HA4 4 3 4 '. 04 VI 04 4 4 I H
4) 0W44 4 00 ' 0 I ' 0 '4 '

*~4 r4 m4' 0 0 4 4 '

.0 ~ ~~~ '4k) 0 0 4 ' 0 0 '
'4 00iU VI ' 4 I

0~ ~ 4) VI cc000 H 0

'4 ' I 3 0 U>. -H
'4444 "w'4

.0 w 0) ' ~ V) ' 0 14 0 U V 3''
4) W f 3) 4' ' I

-~~. U. 4) O . I'0 V .

4.100 0'V 33 4). I .) .

40-40 4) 4 '0

3 41 ', 3 0 4 041

-u u~ t4 mI "4 r. 0 0 0 0 U"

0~~ 4) 3VI 0 k '4

.~~- ;0. m 4) VIV) 4 4'

44 3'. 00' 4. i go0 .~" 4
s!4 Uo 04 VI 4.E.'4 0.0

3'.~~ 0 I "44 4j) 4" 4

a0' '4 . 00 3'. U 0"4 0 4)
0 ' 4.)0 , 4, 44 '4 - a

4) VI VI H .0 0 0' 0 '.4 '4

VI0 4.1 .0 -04. ~ 4

a 4.4 0 0

0 44 o Q0'4 U ~ 0 ~ 4 '~
44 U ~~ > . 0 ' a

44444 4 %44

.4 U ' 0 4 0."40 u
0 U . Uc w00 0 4 4 - ' . '

> 4U' ' 0 44 .0 '4 0 44 '

~4 4 4
44 4 44. 0 Uo 4. 01 t44 4~ 4 4

* ~~~% =. .0 0A ' 4 U 0 4 4 '- 0 4 4 4
* 4 40 8 '4 44 '4 4 . 4 . 3 0

'4 z -.4 4 i4'2 0A S..4 ' 4 4 4 4 .
U U 0 0 --4 U 44 4' 4 0 0 1 4 0 40

0 0- '4 -a '. .44 0 . "I 0 =4 '! 4 .0 "4 '44 a '4
4 U 0 4 ' 4 ' 4 .o ' Z, .4 044 '

*~ ~ .. ' .u~ 0 '4 4. 0 444 0 0 4 4 .
4 .1 " N " 4 44 0 0 ts 0 '4' 4 U '4 44 U 44 4

U 0 .0 0. a4 U a 1. o444 o

U .0 a0 0.P .. 4 '4 4 I 4 . 0
'4 44 44 U J-0'1 4 0 4 4 4 . 0 '44 '4 - - 0 0
k :. I A ~ ' 0 - 14 0. C ' .4uU .4 '4 0 :3 '4 44S .4
d o a t '4 .0 UO a4 U
.0 >4 U 4 44 >~ (a 0 Q~ 41 0 44 .'

0 00 ba -4 cc A5 04 . . 4

'4. 0 .4 0' . 0' 0 o. 0 '44U
0. '4 'o4 * 4 4 ' 0 Its 3c' '4 A 4 A '4 0 '4 4 4 4 '44 o4 0 0 0 - 4 ' 4 4'4 ' "0 0 U U '

0.~ 04 4 " 0 0 4 ' 4 0 * . 0 . 0 44 UC ' 4

a4 '4 '4 U 0 "cm 03 '4 0 0 0- 04 '4 '4 0 0 a44
4 0. U 0 4.0 a ' - 0 a. 0 ' r- . 4 U U t0 0 . 4 '

'44 a ~ to 'U u 0 0

ca .9 .0 A4 a '4 . 4 4 ' - 0 0 4 'u
. 0 .4 0 s . 40 .4 1 -2 o4 0 ' 0 00 4.

0 0 a44 k4 '4 '4 s 4 44 0 4 '4 44 0
r-4r- 7.. .. '35 U A '- ' 4 '4 .4

* 0 4" 5 '4 0 .0 0 '4 "4 44 '4 0 44 4 ~ >, m' 0 ' 4

'4 9
g o o 4 ' ~ ' W U .4 '

"0 r 44 o0 '4 '4 ' ' 4 0 4
44 a4 0 0 29 .0 -4G 4 4 ' 0 4

1. '4 . 0 '4 0 '4 0 A 4 4 U 0 . 4
'4 44 '4 4 4 '4 . 4

+I ' 0 ' 0 44-
44 0 .4 .4 -" .0 0. m4 t '.

(6' C"' .0 '4 '4 4 ' 0 ' 0 'o .0
44 r- Uo 0 '4 ;" 4 04

-4 . 0 '4 U) U $0 ' . 01 U "

As U1 U) 44 00 .00

'4 0 16 4

+'0

U 04 4.
> '0 .0 4 0 0 A A 0 4 U ..

- ' 4 > C 0 0 .0 44 - 0 ' 4 '
0 ~ ~ -44 m4 ' 4 U 4 4 U 040

'4 '. 4 4 0 d 0: '4 '4 g '4 61- '4 "4 44

-0'4 0 '44 '4 0 0 44 '0 '4 -0 '4 0 44 . 4 4
U 0 4. 4 '40 . 0. 44 U P. 4 . 4 4 '4 ' 0 U

41 4444.'4 0 >0 H0 'cc a4 o. o 0 U
'4 44 0k 0 0 '4 .' 4 44 U 40 4 '4 - U ' 0 a44

0. '0'4 0. 0. 0 A" "d I4 4 k0 U C4 '40
0 - 0. - 4 a -'4U 4R C4 '4 4 '4 '4 44 0 '4

0 I. '4 0 '.'0
0O r UC)l o . .4 44 4 ' .4

44.4

>.00

U ~ ~ 0 0r 50 44l 0. '0 4 0 o 4 0 . . .4 .4 4

0 4 .' 0 4 0 0 - 4' 0 . 0 v0 '4 - ' " '4 4

0~~ - 44 ' 4 - '4 ' . U 4 0 ' 4 ' 0

0 0 4 4 - 44 w 4 0~4
4440 0 0" u4 .3 '4 04 ' 44 '

'44 0 0 '14

44U0 .0 u 44 ' 4 J4 0 0 0 10 '44 44

0~~~~~ ~~ 0 44 .' 4 ' O 4 4 - " 4 ' 4 4 4

a 9 0- 0 -'' ' ' ' ' M ' ' 4 4 0 .0'4. 04 0 4

U ' 0 .U ca. . 0 U 0 4 U '4 0 ' 0 4 4 0 0 4 4

t. .0.' 4 0 U) ' 0 '4 0 44 4

44 i'

. . 4 4

0 4 > - 5
.05 0 u444 39 r

-4~ a0 44--4

-4~~0 -. 4 54 "
.4~4 .a .4 4)4 .04 4

04 0 4 4 4 .0 3 .
0~~~~ 000 0 0 45

3g44 .0

to 0 -. 05 4 0 5 4

.0 .- .0 U
4

4 06 13
444 .0
-0 0 0

. .0 4 0. -0 0 45 44 .0

54 ~ + .4 . -. 44 4 4 . .w
> a 0 004444

a a 04 0.05 U
>. 5 . 5 k4 00 0

3 144U 0. 0 4 0 0 - U 0.V
.4 0 54 3t4 4

*~ ~ 0 U 0 - 4 4 0 ' '4 .4

*c 0 U40 " 4 4 0 4 4. .
0~~~ 45 .4 5 0 0 >) .4 U .4 4

B 0 C 0 a4 0 4

U. 0.0 . 0 "
.0 5 0 Q Us 0 5 "-4 m .a 4 5

05 4 5 . 4 .0 C: 44 0. 0
.0 4 04 0 0 04 454 0

44 . 0 3 4 45 '4. 0 . 05 N.

44 5 0 4 5 0 k 5 44 0 4

z 0 V .0 k4 >4 .o k4 54 0 . R5

45 V4 0 4

4 ~ ~~ ~ 0 5 4 000 >.
544 4. 5) .0 a

45~ 04 .0 44 .Z 45 4 4 4

54 0. .0 0 0 05 . . 4 5 .

0 11 -4 4) 4 4 40 0 .0
"4 45 45 .0 . . 4 5 4j A 4

-~~~~~ ~~ 0-4 0 0 4 - 4 4 4 5

0 0 5 0 0 5 4 5 4 3 0
00 0 .0, 44 45 45 " . 0 "3 5 0 0 r 0. 45 440

* ~ ~~ ~~ ~~ 0a .00. 4 0' 44 4 5 45 0 5 4
'44 s4 5 0 .. 4 > ~ o

44 04 4 4 4 4 5

*k 0 "4 . 0 .
S: 0 0 05 4 4;k

- .4 02

S. 05404 .4 4l 04 01 540
r-0 4 but 40 5 45 .4 0 1. 0.

V Is a 0 C5 00 0 .c 0 44,~~~ 4 5~~~~ 45 0m 4 5 5. " 4 4 4
4, = 15 ' 5 " 5 0 5 0 4) . 44 - 0 .
54 .4 U .44 0 4 . m a4 0 .00 0 4 5 4 4 .

.4 44N " 0 . 4w
.0 .5 .0 a 10 4C 0

0 0 5 0 4 55 5 0 . 0 4 0 4
45 4. 0 > 0.4 N.0 . 4 4 45 ~ 45 > 4

45~~~ ~ 0- 0A4 4 4 0 ~ ~ 0 - >) 4 0 4

-~ -0 44 44 .44 0o 5 .4 00 4 5 4 . 0
54 4. 04 4 5 . 4 4 0 4 4 4 4 0 4 5 ' 4 .

44 43 45 .4 0 . 9 i. - 0 45 " 4 0 0 4 0 0 .4 4

~~c ~ 44 0 0 4 4 . 4 4

k 4 5 0 4 k0 444 444 4 - 4

04 0 05 4 4 44 4 4 4
19 . 4 45- 3 54 0 0 "

00 a5 4 44 0g5
.0 .4 4504 ~~ 45- -454 5.0. 440

0 0 5 .45 - .4 .4 4 4 45 0 4 sS .0 ' .0 45 4

tog.>4~~e 0A00 . 4 U - l 4 5.4 . 4 5 . 41

0 th .0: -30 4
0 -0 0~. .4 0)

ul 'f 4 o-

ko4 . 0 4) .0 4 0
0 00 1 0 04o 1 44 4 0 44 u 0) 4 4

1 be $2,44 4 4
c 4444 .4 4) 44 -1co

4) 0 k 1 4

0. 04 :2 .0 4) 01 00.
04 0 -4 .442

ft be .4 - 0 .0 44 4 4
0) 40 M 4., & I . % -4.14 IM

0 p40 4 0 In 4

cz ., R0 .=e' ~ 0 be

.0 .H .4 4 0 4o 0 04
-~~~ ~ .44 3 0 0: t 0 4 .

be .0. 44 .4
"4~ 4 3 4 = I 3 N0 3. . .. r.) k4 0 0) u4 4

044A .- ;:z4u U ~ . - 0

4 4) 4 44 4 4 0 440 0 0 4) 4 - 4 3
- 0 -0) U . b) 4

.044 to, 0 =0Q>0

~~~~~ 0 4)4 4-00 . 0
.S!4 4) d0 04 44

Q: 444 4 'A km. 44 ) 4
.- .4 .0 4) 4) U 4 4 4 44 0

*~b 0 6 0 .0 00. 4 4 U 4 4 ) .

0 44 0o4

oj 0 0
4) 20 ..44 a

-9 m4 444 4
04 .0 0 .0

W, -0 44 0- 0A 0N 'o a

CZ k4 .u44
44 .44 'o - 4044 4

.0 0 Uo 4) 05 .0 3. 0 100 0 4 3 .. 0

U 44 Is 44 0 3 .4 o 4 44 4

"0 0 4 0 -00 0 444 4
44~ ~~ 0 4 0 e 4

0 ~ ~ ~ ~ ~ -44 4)0t444 *4 - 4 4 0 6 .
0 be x4 R)410.0 4 4 44 . ~ 4

A4 0 >~ . 44 444 4

00 0t 0
44 0 u000 U ~ .

U 4 .4 4 ' 0 4 ) 4 . 4

4 0 04 
4 4 0b

r4 00 44 U
U . 0 4 4 ~ 0 4) 44 0 440 3 4 43 5 4444~~~ U ) 0 0 0 0 0 0-0 4 4 1 .. 4 0

4 0 04 3. 0 3 U 4 4 4 .-. 4 - 4 )0

* ~ ~~~~~ 44 .4 U e 0 U 4 3 4 4. 4. 0.04

0~ ~~ A 44 .0 V beo 0 .4 4 4

-4~~~ 0 oJ~3 U 0 .

u4 0.0
o 04 44 44 . 0-, .4 .

04 N00 ~ .4

a4 00 4)

0> 0.0 0 0 -4
44 4 4 0 ) . 40 . 0 0 4)

00 0 3 .4) 0 4 . -0 0 4 4

0 0 .0 01 0 3 . u 3 ~
on 0 0 00 0.3 9U 0

.44 .5 4
* 0 .4 .4 44 0 4) 44 0

>



041C41
a 0 01 S03

0 to bo k 0 0 *
0. 40 A 0 0 :3 .4 "
1. 44 00 to . 4 4 4

01 4 4 0 . 4 4 0 be 0 3 0 4
*Q OF 0 .0 V1 -r. I4 0 . 0 4 1 '

-e 0 CA k1 - -. 41 k 0 '1

0. 01 a 
0. 0 0

4) 0.
44 u 0. 0 Q0 00 0 A

.4 01 0 .Q Al 44 .0 44 m . d. 1 ' 1 4
v 0 U 14 14

44 1
44 V1 41 3.

0 . 1 0 04 41 '.0 4
41 44 41 m 4 0 4 0a Aa40 00 0 1 .

u0 ~ 10 1 ' 0 A. 0 b M. 0 0 k1 01 3 0
'0 44 X 0 1 -1 44 44, 441 U 0 4 1

44 01 44. A0 0 41 .0 a. A4 a 1
'0 0 4 0 U -' 0 a. 4 ' 4 '4 4 4 4

0'0 44 m4 C4 00m0 co '00 4

'0 0 4 0u 'o 44 0 .. 01 oa 44 k1 0 0
41 .4 41 0l =1 01 0 01 k44 0 4 1 4

.0 01 00 > '0 .' 44 0. 'Es3. 4 '. ~
k1 U4 1 2 k' 41 01 0. UA40 4 4 4 1 4

r u01 0~.4 3 ~ 41' 41 4' 4 0

b0 30u 41 44 41 0 0 0 4 0 . 4 0 1 40 a4 .00 0 1 0 W4 ' 010 01k 01

01 0 u' > 4 0 4 too* 01 U 0 k, U 101

0d4 0 0 > '~ 1 01 N 1 a 1 .. 44 .. 01 :3 to . .4 >, 41 1
>4 >.'4 0 - 0 0 - .0 "" k. U4 3 4 0 " 4 S.4414r 0 41 41 0 44 01 a 0. 0 4 1 4 4 ' , . 4

4 o 44 09 .0 44 Uk. 0 N4 .0 r-4 3 4 1 *. 4 4 ' 4

0 U r 0 01 '. 41 4. 0. 0 0 4 04 10 ' '
41 0 41 A9 001 3 4 *~

U 0 .0 -4 .0 0 - 4 -0 0 .0 . . 4

3) C64 '4 0 0 0 0 0 o~ o ' 0
- 1 "' 4 3 03 .14 44'1 4. . "1 4 . 4

0 14 -k 4 00 44 41 W. "4 41 ' 0 0 1 " 0 4 * .

= 1 4 4 0 0.'44 444 0 0 0 4 '4 "

0 01 41 01 4 . 4 4 ' 1 - 0 4 3 4'1 0 u 41 4 0 44 41 .0 0 0 40 0 3
0 1 4 .0 0 44 4 .0 44 0c04o40 . 4 4

0 41 14 al 01 0 101 x4. H. 00 '401 4a- > .0 0."

U ~ ~ ~ ~ ~ ~ b 0.. 0"4-.- '4

.0~~ 0" , 1400 01 4

-3 ~ ~~ .44 4 '4-"

00 01 3 4 3 0 4 0 3 .4 01 U 0 4 0 44 0

94 0

a0 0 0 4.

44 4



.0 4 4.)
C4 .44 04 U

10 0 10

44 0

4o 0e U k . 1 0
41 0 .0 4 UU 4
.0 'a!.0

1
k . 3' r 30' cc 0

0 FA 0O . 0 01 .44 44 0 0 4

. 410 a >r 41 4 .0 .4 4. 1 4.0~ 0 *.4 444 .4 4 I-
04 1 co .01 4 .

4"U U4 000 4 0 . 4 3 4 . 0 - 4
- - 41 .4 0 .4 1 . 41 41 0 41

-. .0 .0 . 14 4 4 4 1 U"

0 - . 0 4 'd 00 (.. 0 00 0
= a -4k 4 4 4.4 4 41 C

go "4 "4 3 41 0c si fi k4 01 4
'- + 44 4 0 1 . 4 0

4.4 0 4 U--a-. U 0
4 41 (4 0 41 0 440C -4

0 8 40. 41'0 0414

0 41 4. 0 4 0 44440 0 .

a U 04 - Is .44 oX 0 ' U U .. - 4. 4.4
*0~I 0. 1 4 0 44 0 4Is 0 .0 cc -C rv::2 0  41j

A + 0 .m 444 4 -

a1 a 0 3 44 44 41 
7. k4 It 0 0 0 01 441~ ~~~ -4 0 c4 O 0 C . 1 .

01 3 C0.4 . 04 44 0

0 44 44 1 1 4 a U 41 0 W m0 1 04
.0 0 3 t04 0 -41 . 4 .4 44 CL. 4

>.4 01 01- 0 . ' 1 . 1 ' 4 4 4 1 0 . 0 0 . 1

Is 0 .3 09 41 .0 A144 ' 1 4 " 4 ( 4 ( 4

>~~ M 0a U.
U - U U 0 41 " 44 4 41 44 0 ~ 44

41 04 N 1 4 0 . . 4 4 0 0 4 44 ~ 4

d r. 44 41 4 1644 4 . 4 4

4.4C 41 .0044 1 0 U 41 0 0 1 41 41 41
93, 0 041 U u0, U 0 44 >44 .4

A1 01 4 4.
C 0 41.-0-441 414 . 4 4..

13k4 0 0.0 . 003 o
0 U0

V C 0 041o : x 3
" 4 " a ,.~ 0 C " u . -40 -

C. .0 41 4 1; o 44 0 0 4.4 .4
41 Q. . 0 0.0 C0 41 0 41N

'0 0 44 0 u4 "4a
o ~ ~ c 0 410 .0 4 4

- ~ ~ ~ ~ ~ ~ ~ 3 sm . . 0 0 4 .4 . 1 1 3 C
00 0 A 0U 0 4 . 14

44 Z 0 u 0 u
40 .5 0 0 0 0 CO U 44. 10 o . 0 41 4

0 41(4
4 0041 U 0O : - . r4 - 1 4

1 0 0k u1 4
*~~~ ~ 4. 0 .0 a0 u1.4 4 1 .4 0 4 1

a >4 4 U1 41 0. 0 .4 1 4 1 4 0 N4 0 . .
4.4 41 .4 -4 a1 U1 ct . 0 06 . 1 0 4-0 0 4 .44 0 4 41 0 -. 3 3 - 3 .

04 k0 04 0 -. 3S 41 U-- 0 0
4. 00 0. 44 U .441. 4 '

41 .0 4 . . .4 4. 4 1 4 )
0 0 0 O 41 0. 41 U 4. 0u4 4

0 4 0 "4 .. 54 . 4 1 4
.0 0 .44 CO1 044 41- "14 44 0

.44-0'4 4 to4 li' 0. -.0 . 1 . 4 4 40 44 4)k0 04 04 04 4.. US 4.44.,44 - - 0

k4. 9 . 0 41 41 (A41 4 0 A

id 0 k1 0 to4 0 .4 444 1 4 ' (*~~ 0. V)1.0 .044 00r 41
0- N0 44 -4 41 .0 4 -I

44~~~~~. 0 .4 4( 44 0 4
44~~~~~~ ~4 44 0 014- 4 4~ 1' 1 4



0 0

>5 01 ". 0. 11 w .

o 0 01 41 A "1. .. > 1U

.0 u Ok 0 4 ~ ~ - .
0 . o . 93, 4 c'A 4 00441 1 0

41 l r~

4410 a 9: 0 s 41 0 a .
0- .4 0 u4 > 1 U

.4; C:4 ~ I) 1 0 k . -

0.0

VI co 4414 r1 u 4.a 04 41 14.4 1 I 4C6 P. 04 041~ 41 44 A wI ca414 4 1 0 41 444 I1 ". u1 4 4 -. i
A~~~~~~~ 49 1 4 . 4 .~I 4 . , 4 . 1 " 1 >

44~~~~~ .4 4 1 41 4 4 . 1 4 4 1 1 4 4. 4 VI 0 aVI
.41 A m4 x W1 41 41 0 04.

0- 4. -4 0
41~~ 1.4 .2 IL) 0. t2 -2 r4 VI 4 . s 4 0 4 4 014

C6 0 41 > 0. V 41 0 0
IL R. 02 1. 4) 1. r U 41 1 1

0 0 .- 41-xU 0I 44 A 0' '0 444 U0~~~~~~~~ v -4 0 4 14 4~0
A~g '- d- 4. 4u14 . .

O~o 0 - "1 0 t4 .4 4 4 - 4 '4 0 A 4
-. 4 U N 40 4 .0r 04 U ,1 A 0 41 ~ 0 0 14 - A V

A V V, V0 V 44 1 4 4 0 1 0 I A . 4
VI A 41 01 14 r. 0 1 +4 4 V 4 1 4

144~~ ~ k4 -4 ~0 r 0 U 4 1 1 > .4.N44

Bt .4 44 14 A 0.A-.
c1 -1 ' 0 .0 41 -- k 0 0 4

44 u' cc 01 0. A0 A 1- Q; 4I . 4..

id 1 0 04 A 4 0 . A ' --4 0.. c 1 0 4
r 1 - 0 CU kI 44 41 0 1 4 0014 A 4 4

r. 14 U0 0 U 0 0114

VI~ ~~~~ 0 . 1 ~ .14

61 -4 0 4 I
2+ VI U -. s 1 4 0

A~ -4040>, 14 -. t0 A 14 -0VI V
~ ~ - 0 4 4-U .0 "U 41 9b

.4 0 41 41 -
14 44 0 44 0 u 4 4 * 4 1

'U~~ " = a4 U U
14.1~~~t 41 a4 f I .s

0 .00 . ~ ~ A4 > 1 4 4 4
44 l A 14 '0 0 A 4 4 0 0 4 4

U, 44 C. 41

6 1 0m 0A 0 14440-4 'U >1 > 14 1
1441 14

A1 04 4 a k 41 A
144

41 0 4

- 0 41 41 44 -4 4.4 to1
0 0. 1-4 1

.4 .4 14- . k4 14arA A 0 -A 4a 01 1 >
.4 4a A1 -U 4

41 U 14

0 14 0 44~~ AA 4
4 -4L - 414~~14~~ 0 ~ 0 .~ 4 -VI , c4 4 VI 4 4 V

in 449 A :



00

.444 4414 04 4 0 440 4 4 .
a 0

00 Fl 0 a 0 a 4

31' a'' 4 - 0 4 0 . 4 .0 4#--4 k 44 0. 4.

000 0 -V 44- .4 0 0 44 0 4.' 41

31t 1. .' 0 41 04 41 4
*0 3 v0 +- C * 0 '0 u) '.

- 4 .' 0 0 4' 0 -. .4 -A U4

04 0 .44 a 0 03 . u40 3 . 4 4'

3 0 0'- .40.. 4.'

4444 .0 .4~~41 44 >4.4 u

W4 0 0 a I.' .4 u4 > . 4
40~ 93 .4 >4 . 4 4 0

04 0 44 04 .0 4.' w4 44j 0 4 0

X It :34 ' 0 4. 0 4~ .4 '1 44

o 1 1; 0 cc 0 U .
o.0 0 0 . .4 a0 x 4 . 0 4

.0 '4 - 4 44 0 ' 4 04 0 0 44 4' .0 1114
k. k4 N~ 0 .0 1.,4> 0 ) 4' > '. 0 ~
44 ~ ~ 4 4' 4 0 4.' 44 k4 a0 H z A0.4 "

44 '.4 U 3 4 0 . S '. 4.V43 44 3 0 4.
*> 44 4 .0.0 4 0 .

.44 : 0 1 6 . 0.. r- 40 0 . 4
04 0 -4 4 0 . '. 0 0 .4 . 0 4

*0 0 1 H 14 0 11 1 > C4 44 - U '
* ~ ~ 93 444 .4 44 a x4' 0. 0 ' 4' 4

44 A. 0 0 0 -,14 4 040
44.4 .40 i'

I-. -4 r. 4
z . 4 .t 0 w 0 4. 0 4' 0

x 04 40 0 44 u~.4
to 44 0 " '. -. -U 4 * 4)U

'00

44 14 a4 u H

04 04 00

00- 44 OM 44 , 040~4' . 4 .
4'.'.4'0 - 4' 4. k. 61 0.

0 = 4 H u 0~ C.4 c4 0 ' .
94 .4 ( 0 > 4.4 0. .40.. 4 > . - 4 . . 0 ' 4 0 0 k +j z

00~~~4 0 "4 . 4 0 -'t 4 4 4 4 4 0 0 4
0 ~~ ~ .. ' 44 .4 O4D4.4 4 . 4.' q) 0 4 3 0

0 0 0. 0 0 0 A4 4 4 . 4 0 4 .4 0 4 4

. . 0 4-. a4 0 '0-4 . 0 H '
0 0. 44 0 4

(4 0 "4) . g '4' .44
a4' 000 4' 4 0 44 '

.0 0 U. 4.-H044 44 4 .

.4I N' 
b.e 

0 . . 0 4.0 0
3 ~ ~ ~ ~ ~ ~ l A4 '4 0 '., ' I 0 1 30 ' 4' 4 4 0

.) 44 44 44 k. 0 H -134 4 0 . 4~0 .
.0 .4 4 ;s

.0 04 ' " S o0x. . ' . .30 4

4. 4 ' 44 (a 4 441
0 N ~ 0- o 4. ' 440 4 4

440 4~4 .. .4 4.1 0 ,"
a.~ 4 I. It 04 0 , .14

A I .4 . k u P44.'

4. 0.0 4 H4.0. 0



0 4 0 0

0 40 . 4)4' . 4 10.
C 4) C Q. 0

0 0 0)0 4 ) 0 - '
4)'3 .0 0 444a 4 : 9) ~ 4

a0

* 0 - 0 0 r 0 .

.a 0~ 4l C 4 '
0 4 0. 40 41 Is4 000 0. 4,)

0 0 0 -0 0 430

0 4)be4 4

09 0. 0 0

0 0 a 0 04' 0 Id 44 .4
90 0 '0 0' 4 . 0

o 44 M ) 4) 03 1
ca 0 0 ' ) 09 'r) p. to x0 0) a :0:) . 0 .4 4 . '0 4)

0V ' 0. 0 4 4 4 4 4~
0 ~ ~ ~ ~ c ") " 0 . 0 . 4 0 ) 3 )

0. V. 0 04 4
4: 44 04 0094U 0 .

0 ) .0 +0 ' ) 0 . . ) ) . 4

4)~4 - .04 4)U0'

'0 0. + 000

.. :4 U ev $ = .>, 0 4) 1, >0 4) 4 . '0 4) '0 U
> 4, 0 0 44 4) A) 4 "..t 0; 2 !40

w4' 4 . " 4) .3 a 0 ~'3 . )~+ 9. : )4) 'D 0 0 .00 o
'0 )4 0. W S.44) - 4 4 -3 0 0 .0 4) .0 )

. 4 4 4 4) . 0 0 .. I m m ~ 0 >. o. 0 4) I .
0 40 0 0 UA cc m' ) 4 0 0 4:0 4) 4) .. U 0 4) .4 40 .000 *0.J

4) .0 .J " ' 0. d) 0 .4 '0 0 U o 0
.4 r 1 ~ 0 3t

4 '0 UI4 0 . 0 . )0'
0~~~. -) ' ' .. ~0 9. 4 0 U ) 4 00

U 4 0> ) 4 4 . 0 1 . 4 0 -' k) 4a 0
4) u) ) - ~ : '.3 g -H 4) - IN ) ' '4 4 . 0 4

3)04 k" 4a 0 4) 44~~to 04 4 0: J: .4 :34

k 9 r 0 ' 4) v 4 ) 0 . 0 0 ' 0 4 ) 00

4; .- 4 a 4) ) 4 O PA 4) to 'A0 4. 0 0 0

-0 to 0 ) 0 0" 0 4) 4).1
0 go j o i ~ 4 0 0

0 
u (

0 o 44 cc 4) z' 50

0 0 10 04 .4
94

'0 co CA 0
00 '0 0 V 0.

04 00 'o0
> 4)4.4 .

0 is u) 4) u4

'0 0 .4 0 4) '0 04 t0

4 0 U : i4.4 ) 400 ) '
-~~4 4) . )00 '.4 U U0 .

0~~4 40 0 0 t l' ' 4) .
II 0A '.2 .0,:32

U0 0U 4 i .~ . 0
4)~~ If 4) 4 4'.9'0 0) 0 4 0 '0 '4 ' 4 0 0

.0 0. '0 4044 -
0- ") 4) 0 0.0 0 4 0 44 4

0 0 0 0 40 ) U ' 4 ". .0 0
US S 10 4.' W) U0 04 ) 44 0 0.

0 4 4) 4) 4) 0 44 r_ "3 cc to0 00 )
4) 4. 0 0 .0 0 '0 .0 .14 14 '0 04

0 4 4) 0.4 0 0' 010
44 1 0- U: 0. 4 0 .. 4 - 14

4) 0) 4 0 -94 4)1 -04 -04 4. 0 '0 '

4) U 4)0 .4 N ' -m 02
444 0. U, U 04N .4 -0

4) ~ ~ ~ ~ - o- .40 00
4 ~~ 02 ."0 0 a ~0 2 ' ))) ' 0

.4 0 '0 4) 4) 1 -- 0 0'' 4'.

In ) 0 0 4 0 0 '~0 ' 4 0 44>4



V4 0 A. 91. 0

0~~~ a ~ ' 4 .

- -.4
4, UO 0 * 0 '

P 4 '0 4,, 4, a '4 a

= 4, k co 0. SO .
aw 0 

'~~4 'k' 'a .

g Or- r-, 0' b40 0o4.-.

4, CO R40 ~ ' 0

0 0 A 0 . t e m . ' 4 '

44 
441'4 

u >
k4 0 4 3 a ;4 40o 0.- . a k r" 40

4 4 § ~ r-' 0 '0

4..4 4) 0, * 44
0 co '4

a a >, 0 CC M4 0 , '- ~ ~ ~ ~ ~ , A3 1:4 4 4 4 4 ' 4 . 4

0i 0, ~ ~ ~ 4 4
V r- 4 A a 44 0 4

4, g, '4 A *-0 , A ~

r 4. '0 0 CC' 4>4 4 0 4, a : 0 4 a 4)A
4, 4 1 0 0 , u. ~4
k4 44 0, 0 ,3 4

'0 o 
:'4 '

I" 'A- V, a- 4a a' ~ 4
'4 

0 
0 4

4j 74 4

0 A

L4 A4 V. 4~~

0. '4 h 0 P 0-

4-4 '0
A 0. . , . 4 4 4 . 0 4

4 X4 4t4 o a0 4,:3., 0.'444

44~~~ .4 a0 44- 0. 4 4 4 ,4 '4

A. S, 4 4 A 4 - .4 4 '
' 4 . 0 4 0 k . I 4- '44,' ' 4 4 4,

0~ ~~~~ 44 4 0 4i4 4 a "
0 4 044 ' , 4 444 " , 0 4 4 4

0 - 4 '4 4 .4 4 4, 0 0 a ' -4 " I. 4

ao u
4 0 44.4' 

A -

'A 44 44 '0 0

af. o o 0

4 41

'4



a 00 a. 0 0

.0 Uo 04 U 5) .
0 C03

0 ) 0e 44 44 k 4
u. 1) U 4 4) 4 4) '.4 4.04

=1 -o 01. 44
o~ o4 w 4) v0 1 '

4) > k 0 4) 0. 4) 4) 4 4 44

0. 3. 4) W r44 4 4) 4
0 44 6 0 o o 4 U 4

-4 Q4 4) 4) 4 4 .
C~~ 4 44 0

o o o)-0 ' . 4 4 4 o.0 .,t o )
44> d) o4 0 4.) 0. H. i ) '4)"

'4.D. ") a4 U 44 F4 44 "4 4 )'0 3 4 44 J . - 4
.0 0 ) 0 0 U 4 044) .u o 0 v4

-1 4 u. -a > 4) U 4 ) .o ) 4 ) 4 4 0 0 '. .

4)~~4 0o VC 44 V44) 4 ) '4 0 ) 4
t). 4) 4 U o) 44 o4 . ' 0 o'. ) .0 0
o) 3o o4 v4 D4 o) 4 ) '4 4 0 4 ) 0 4.) 4

o m4 44 0 .0 0 0 '. ) 4 0 4 4 4 4

o) o0 a. 11) 44 44 ca' -10 44
r. >4 0It0 . 4) U .0 -) A 4)a' 4) 4.4) 0

a0 4) :1 o .0 44 4.' A u " 4 
3 

o

.0 * ' 410 ~ .4 4 0 ' . 4) 04 . 4
r_ 4) - . '.4 3c 44 -4, ::'o.41)
k4 4) o :3 4) o ) 4) .0 44 u4'4 U 34 4 3 4

r4 0 -AZ 41 v 4) 44 '0 I4 N 44 3: k) 0l 44 0 4 3 4
V ) 4 4 ' 4... ~ 4 4 4 . 0 44 0. o-r 4) o .. .0 F 04

(1) o 4x '4o o .,0I
04044a 44 44 4) u> )44 4 W U

44 0 ) " 4 . 4 0 0 40 ) 4 4 . 4 0
'0A o4 4 . 40 6 4 44 . 0 4 4 0 0 4

to r"~4 U 4 4 +o, 04 O0 o0 4) a4 0 '4
k 44 0. 04 #U V ) ) 4 ~

4 ) 4 J a -0 -a Q '.' '4w 4 4 443).1 )4 4 ' 4 4

0 .144 '0 4 44 4) 4c0c) 0 4

.0o 44 44 H44 0-
44 U 4 4~r44 4 4 ' 4) 'a 0 a 0. H I

>4) 0' 4 0 :1 o4

r4k) 4) 44 w.

e 0 .. _0sd , o
'0 44 00

a4 m 0 0 4)k 4) 4):1 '., ) 4
A4 4-. >,) 44 4 4 0 0 0

4) =). 44 o ) 4 'A.4 ) 0 G

4 '.4 o A

a4 -a '.4 4 .4 4 4) 0 4 U 4 4 . 0

r0 U .0 0 0 0 44 444 cc 44 'A '

0~ A. '

o ca o4~ 4)

k ~ ) o4 ).3 44

'0) 0 " ) r ) 4 4
4) 4 x" r4 .04 4 ,. 0 4 0 4 4

'4 0 t,
4 M ~ 4 

w) 0

'0 4o 4 - a) a) .00 4 2 . 4
40 ~~~ v 44 U ' 0 . 4 ) '. . 4k4

- 4 4 4 4 44 4 4 0 - 4
-,~ ~~ ~~ A' o0 .14 0 4 0 4 ) '. .) '1 . .'

cc + 1 4) V.4



4 '0 "4 .44

0~2 a * .
m0 0 0 4444..0

- .0 41 0 96
' .0 4. 44 m14 4 ~ 44.

0~~~~ v 4 4 0.
e 0 0 to I 4) .

r0 0 04 . 4
.411 - 44 C . - 4 0

0

L; * -0 A9 Cw0

0 44 '4
a0 ' 0 0 0 0A.4. o) 44

1. 44 4441 '444 '4 . 4 ) 0
Id 4 0 > 4) 0

0 4) 0 0 ~0 = j %4 0 4 . 4
> C C >4 C 44 0 A 0. 0. >. 0. -

* 0 . 0 4. u ~C -"

A ~ ~~~~~~ 41 44- 0. 4 ~ 4) .) 0 4 4 C 4 0
C .0 414C 0 .4 .04.

0 4"m 1 41 '4
04. 0 0 0 ..4. ..'- .. " CS

.0 4 C - '4)

' 0 4 C 4 0 C 4 4 4 44 4 . ) A ' 4 4

41 '- . C 4 '44 4. 41 - - C 4

0 - . 4. 1 @4 a 0 ' 4 4 4
'.4U -4 4 4 4 4 4C . C 3

4.0 A@C4 4.4 00 14 0 40
C . 44 U 0 N 0 '0 Q- 44

44 0. 0 4 4 .. '4 C . ' '4 4 4 C

0)U C @ . . ' 4 4 4 A4 4 0 .0 S. 0 * 44 0 4
0 ~ ~~~~ C1 04 44C 54 .4 4 . '

.0~- A1 34 04 4 )@ 4 4. CU
6j0 0 WO04 0 0 C 40 0 C. .44 ) 0

>4 040

0 0 0 0 U3A , .
0 v~

C -U4 C 0

.0 0. 0 0 44 4. W 44

N. 0

" o6 1 ' 4 4 4 .0 0 6 0 4
:i0 0 -0 '04.

W) '0 0 4.4 01 4. 0q444 0 ' A 0 0 

41. 41.4

4 4 *;i a 44 u 0 1.4 0 .
044 0 A '0 0 4 ( C C .

It. 0 0 On' 0 ' .-.0" "40 0 0 .4. ' 5 44 '
4. '4' 0. 4.44 '004 - -

'04. a. 0
44 4))

A 4 > 4 ~44 41 0 4 4 0 '. 0 o A0 k -4

"40 0a I "'6 04 m. . A 0 C0 . 4 - ) A U

U 4) @44 4 41 4 .
0. 0 3 ." 4 - 0 4

'A ) '1 00 0. 44 4

44) 4) A "4 4. 4 4
- ' 3 0 - 0 00 4) . "' 0. ) '04 .



4) P. 44
44 4) k ) o 4.44. ) 44

0 0j 0. 4. .0-' ) . A~N . ~ .

9: 4) 4 0 0 4 4 0 4) 4) 4)

S4 0. 0 1 - a) 144~ A )

4) 04 4 4 14*

0U 4). 04) -4 A

o0 04 0. 0 4) :3 m 4) k m 44

4) 4. 0 a041, 0 +
0. A 4) :3 :1 A

> 0) P. 0 4 0 0 ) ) 0 +P 44 a
0) 0 4. 0 00 "

- a> v4) k -4 0 '0 4)4

0 4) 4, IV 4. 4) 0bo~~ ~ '
o p '0 0 r 5 5 20 ' 1 o &A4 4 0 4' 4

4). r- p A .L 3 1 4 .. 4-.- 4)

r 4)..V 4.' -4 0
O ) 0 V)0 0.0~4

4 4) 0O A1 444 4) 0 4) 4~
k. 0 03 4 . N4 1 0 .

A. ca k 0 a4 00 o 44 4) 0 4 0 u 0. .
>4 4) -0 4) 44 A A.04 4

U 0 -4) A ) .' 4

4) 'd 0 0 x 44 4)4 0 A >
*0 k - 0 4) A0

4-4~~~ ~ *0 C4 '1 ;) 44-. 44 > ) A 4 . ) 0 64

I.,~ ~~~~ k UZ- : 3I
04 04 4) 44 4) .. 0 AQ6 4) 4-o 0. 0 0oo'. 0 5 .

a) M k0 4 0.4 .44o ..4A ) 4 4) 44 4 P.o 4

4 0 0. 0 414 r ) -c 0. 4) 4 4 a. U 0 r-P P

4 0 4) 4) ) 4 4 U 4 4) 0 4 0 ~ p4 4) 4) d '~ 0 4) -0
k) .- =. P. A A 0) -4 -0 0.4 414 0)) ) 4 ~ )

04 A 4) 4) 4) a) 4) -0 ) 044) ) 4) 4) A 4) n4 0 a4 r-
04 444 4) 4

0 4 I 4 cc 4) 0 - 4 1 0 %34 Ad 0 - 0a a0 4 .
>4 ~ ~ ~ ~ ~ ~ ~ ~ . 0)4 ) 4 0 4 4 ' 4 0 4 44

1"A 44 0 . )

0 P 0 a 0 4) :3 >4 0 4)w 4) 01
4) A 0 04 . 4 4 4

4) 0 $4 44 4 4 ) p4A
U ) 0 ) > 4) 4) 4) 3 41)~ 4) 4

z 4 ) ) v 4 0 A 0 0 0 04 4 A4 4) A1 4 44 0 440a
0~ ~ 44 4) 4) 4) 44 X) 4 . ) 4 ) .4 0 4) 4 ) 4 )

04 $. 4)4) 4
4- 0 ca > ) a C: 0'

4. - 4) 0 4 .2 0' 4 a 0 0 0 ..4 k , 0
k4)k 4 4 - . 1 - 4)0.

'-4 0 0 4-

0 0) 4 0 A '

0 ) 4 44 3P .0 4) 0)4

3 A 4) 44 0 '44 -4 u4 .44 4) A 4 U p
44.4 r a) 0 3 Ubb)04) 4 4

0~~~ ~~~ a #44 0 4 4 0 4 - A4
4o -0 4) : -0

N~~. A P 4 0.4 ) )

4) A .>44
4) af 4) r- 0. p4 m) >4 A

*~. 3 -) '0 P ) 4 ) A 4 , . 44 3 A 4 ) 4 44
N d 0 C) 4) >4 '0 0 4 4 -

4) 0 4) 4) P 4 4 0 . 4) 4 4 0 44
- 'd 0 - 4 4 -0 P 4o '0 4) P

") 0 4 p. 4) >4 9A k0 k~44 0

44 4) ... f. k 4) p4 -4 a- 0 k 4> 4 4 P 4 )
4 4) 4 4)4) 0. 0 a40 co a 4) '0 ) 0. 0. 4) 4 0 0)0

go: P. '44 4) 0 P P p0)0 0 4 6

4 4 4) 44 4) 4) 4 4) r0A 4 )A-4

A) 41 44 I 14 '0 4 4 )

44 04 0 ) go 0 >03 4 4 ~ 4
0~~ k0 - P 3 ) 440
04 4)% 4)4 4- 4 3 0

a)4 4 4 0 4 44 A. 4) .40.
4

U p. 4) 4) 4) A fA4) 4 4) " x .4
0 0.0 ) 4 ) M0 a 4) r) 4)14

' P '0 be -0 P. . . . . . 4)-0

4) 4 4 '9 4 0 - N 4 4 44 ' - g4 '0 P 0) P
4 0 AA

4) P 0. 4) =4 4)0 '

3 4 4 0 0)0 4 U ' 4 44
.0 00 4) 4) 44 4) 4

- +1 k 4) -0 P Av04 .

0 3 0 4)) .4 4 0 4

00 0, P
0. 4 4) .4 .441 4) ) 0 )04 P444 ~ 44 4

......... 0 ....... )



- . 4. 4 0

U~~~ ~ 0.41- .

0 0 0 ~ Z 0 k4 "'
.0 > V 00 0 1 4 > 2.04441 4 0 0 4 41'4A. 4 4

0 '0 . 4 U 4. .0 0 .4 V

440 4 U. 4 . 4 V 1 4 - 0 U 0 . 1 4 4 4

v.0 C4 '. -0 4 4' 4 04 44
.0 00

V '0 0 '0 4. 1- 414 04

LU x a

0 '0
41 00 :I 0 0 0 k 04m

0 0L . 0 0 U . l 41 0 4
:3 0 41 . 4) "4 >I I 0 44 0U

44 ~~~ 4.0 a0 k' 444 ~ U ' 1 4 . . 0 U0.4 '

w0 04 , w 4 >4 . -0 .04 1
I'. 0.41 . .0 S. ' A . 04 .44 4

W O O' k4 00- 0 "4 aI .

0 '~ ~ "4 0 " ' 0 t4 be 4 0

41 a4 0 A k1 k1Z 0 1 1 '
14~~~~~b V p. 4 0 '"4 4 4

I 0 b-a041 4 . 0 cc 4 IS 4 4 10 .4
41 40 10 104 4 0 . 4 0 '0 44 a0 4 4

0 00'4 ca4. M (" '0 0 4 0
00 k c:1 In v. 0.4' 44 00 .

oo4 0 0 .0 0 04 . 0 0 0 4 V 0 .
40 VI .0 '4 0 a I's Q .0 a4 " '4 4

2> 14 

rI 
4 4

0 . 0 4 0 -0 U 0 
4 

U 0 > ~ .0

.0 0 - 004 0 .

A4 4 co~1 0 0k41 0 %44.4 0 '4 0. '.4 0 " .0
* 0 41~~ ~ ~~ V I' 4 > .0 4 4 0 0 4.4

0 4 0 4 0.4 . 0 4 0 04 1 41 1

U0 01 0s 0 31'4 V 44 '404

AI 4.4 0
0 20 41'1 4 1404 .4

0~9 U 0A0 . 4 V I 4

'I 4 0 2 4 ' 4 414 U 0 0 0 0 4 V

0 40

0 '. 0

'0 '. 1 0' 0 . 4
4. 4 .

~~~ 'ol x 00 0 ~ . 4 0
44 "' .4 0C12 41 V

0 041 -0 0 01 44 4 10 . 41

' 000 44. 0 A u tm oV

I '0 4t 0 4 04 0 ' 4 0
cs .0 41 VI VI40.

U. '4 is 2 P. VI 0 -4. 0. -A
44 " 0 U 0 '0 1 4 > 1 0 0 0 4

0 V,4 1.44 4 . 4

'.4 .4 4 0 .0u 4 4

A31 ~ 4 '0 41 44 . 10

0. 4 .0 44 ' 0 144.0 U 04 4. O4.! 41'14' "4
VI~ ~~~~ U 440V 4 41 4

.0 44 14 1 4. 1 4 4 0 .4 .0 04 0 0

44 -. 4 . 0 404 .

i0 44 V 4 1 0 4 0 44 40V

0~~ ~ 14 4 04
O 1 4 2 0'~ V .4 ~ .. 0 4 VI U 44 404

1 4 0 4 . '. .14 4 ' . 44 4 4 0

4)0 0 0 U
0 0 " 0 .04) to -

S.4 4) 44 4) d (a 0 d (a 0a 3
9: P. 0 0) a- 4 - w4 >) a M

'U ~ O .4) 0. .404 .) -4

> 4 go Is 44. . .. U W
4. 0 w A 4, 4 4 .4.' 0 0 4. t) 4J 0 .4 4.

0.. - . 0 M) '~ .'0) 4) A 4
A a 0 V) '4 0 0 J__ 0: -4 44 go4 4 "4

4. 4V >) .44 0- u 0w . e 0 u

4). 'w0 4) Ac4 4 4 1 4) 44 4) oU 4
. A 004) o1 ' c. a w A A 4 IN

u 0. 4. o 'U 44. Oj)0 4 4 .4 .0

r u 4.' e o
'4 u o01k4 4
b ' 0 4.6 I.4 "4w 4)a '44 44. U O
t- c)A 4 U 4 0a A , o) u 0 0 4.4 +

0a c. V4 43 '> 0 w A

o Z 4.4 U N) Q) u) 44 04 4 o.

0 4 4 42 0 '.,'. -4 44 4

o) bb 44 A) 4) a 4) N '4 ') U 4 .
u w) r. "4 4 w 0 u 0 . 4 4.~ 0 0. >U 0 0)

0 0 V4 .4 44 0s 01 44 a4 4) .o A: 4) -
o 0

44~: 44_U 0. 4 4 0 00 w4 04 r. U 0 .
4) 4.' t.4 44 U A 0 '4 4 4 4) 0 4

44 ~ ~ : o "4 to.4) 0 44 4 44 4 4) 0 - 4 4 U 4 4

4)~s -A 44 4) 0) - A 04 . 0D4A A 4) 4

. E v - 44)A 44 4) OA AO "044 4
k 04 4 4 4 44 M4)U. 4) 4j -a c 0u U

.x a 4) U4 4) U F4 z) 0 a.0 ") ") 0 0 4

44 4).40. - A1 a) . o) 4)" 4 A

0 . 0 4 4 0 4) 0 4 . " 4 0 A 0:

AC'-)~~P rU) 0) 4 "- 0. 0. 44" 4 4 4
4)~~~1 4) 44 '4a 4) .4 o)* ~ a > 4 ~

>.. ~~~~~~~ ~. 0 g4.4 U 4 .4 4 .4 4

4)e r. 0o U 4 . U.4

4)44~~~~~I -4' 4 0 0) 0. t 4) '.) '4 4 4'U4.0e e4) 4 0 4 0 4) 4 A4 A 4 4 U 0
0~ 4) . .4 U 3 0 0 " 4 " U 4. U 4 . 4) 4

4)~U4) ' 4 4 ' 0 . 4)04) 44 4 '4
3. ~ ~~~~~~ ~~~ '+d 0 be 4 4 4)4 0 4 . A 0 '4 4 "

'o

440 4 44
w4jA 4 .

Ad. A..))

o aO A o 4)4 44A

4): Al 41 44 'a
4) 444 .40

0 0 j 44 4 4
a) z 0 44 .

40 4.4 .4U 44 4 4
4. 4.4-

A 4 .4 'a 0) - 44 'a v4 4). 4) 4

44 0001 a

44~~ 'A4 4)3 4 4
e .4 U3 01 aa4 4

4 44 44 :3 44
4_ 4 4 a . 4) 4 . 4

a. k I4 4) " 4) 44

44 k) 0 4439A U s:al 0 '
4) 4 a' 0a 44 A 44 4.4 4

4) C: 4 4 U 04 u4
44 . 4)

cc N N '44~ 44C a. a '

4) 4 44 4- A. " 0. .444

4) A a " ' 4a 4' U ~ 3 I a0 44 4-

.3 0 V -0 4l' -' o' 4 0 0)4 " >)~ U U A- 4
0 4 + ,, 4 4 0 ow go 44 4 4 44 4) A 044) ~

'4 4 '4 .4 .0 4) %) Uq a
4j '0 x 44 0 0 # 4) " 4

- A 4 ~0 4. '- a a. 3 4 14 ' X4 . 0
u- >4 440) 4) 4) 4 4 .4 . . 4 444

-~~~~~~~~~4 41I''. 44) 0 4) 4 a 44
3 ' 4 i i . .4) Is 0 0. = 44 44 0'

A 000))4 U 04)4) -4 a 04
j' 0a~~ 4a ' a 4) a4 0 j A U

4) . 443 0 1. A4 0 40 4

0a A '4. 0 44 41 1 4 r
41 00I 444).0 0 -44444

0 4) 4 o44:FZ 1 . 4) A a.-
43 .0 N 4 44. 04 44 41 A)"' 4 4 4) 4 48 4) 4 ~~4

4) A 4) A 4) 4 4 0 'a 4) a) a' 44
0' 404 4 44 44 4 4 a ' 0.4

+a .44 PC 0)44 ' 4 44 A k 4 44 0 4)4

0 44 4 4 4 4) 44)
4) 0 :" 'u 4) .0 41 0 w) 4 a

0 a '0 0 3 - k Qb
- V a o 0.44Aw 39

a U 4) a. 0 4 -. -40k 44)a. 0 4
0 d'4M 44 A 4 A H .4 44) '4

Is 4) 4) 44 4-)H 4 4 '
4444 4) . 4 0 0 044 41 a 44

0 v 0 $~) 4 4 004 a. 044
44 .4 44 u -. 04 .

P. -40

44 0 0.- 1) ' a 0

U 4- 8. 4) 4 -4
00 0 A) A '4 4 0 4) a4 3 A0) A

4)~~~4 44 a' .. a.4 4

4)~~~ ~ U 4 0 '04 a 4 4
-4~ ~~ 44 04 a 0~4

x4 a0 ao r- -~ 4) x)0 U 4 0 3 0 0 .4 4
4) 4) '44 0 40 :3 4 . 04 A1 44

4) 4 4 4) 4 - U 'D.44 4 a 4 4 4) 0 4) 34
bG 4 40 x A) 0 44 '4 040 4) 4 a 4 4 4

44 ' .4 0

44 44 4) 4 4 4 0 4 4) 440 4) 44A a 1 4 4
to 0) '4 - 4 0 44 'a -a. 3. .4 44 . -A .44

4).4 5 3 a0 oR43 4 '4 4 A . , ,4 a 4 4
0 'a44 04 0e P'44 4 04) 0*

4.4 4' 4 0. a 0j V)A ' 4 0 4 3. 3 -4 4
0) U04 4 4) A 0 4 44 0 U 4 44 ' . 4

44 0 U 0 44 0 A .4 4 4) . 3. 3 4 4 4
.44~ 44 -A4 0r 4) 4 ' 4 4 . . 4) 4

0 U a 4 4 'a 0 a 3) 4 44 A 4) 4 0 4
?~ . * o~ .- o wm 4 a. - . .. 'a .44 4 -,4 .0 4 a

4) 4 A A'44 .4 U a. .~ 44 4 " ' U 4 ~ " ') ' a 4 4

44 . 440 > O
44 U 44 44 A0 .4 84 0 a A .4 4 4) 40

0 4.
0 Z 41 41
0..

41- 411
a '4& ~ 41 to 0)

41 0 1 . 0 .
03 0) 0 0" a .4 C ft &

U)0 cc.4) 4 1 0 -
a. . U 1 03 4 . 4 .0 ca .41 0.*1

U .41 u444 H. '4 4 4W U 4 14 HN) 0 :3 v
N~c "0 3.) 4) 1 14 . 4 H 0 41 4 1 4'0 - 'm 4

H .0 +j I. 4 1 . 0. to0p H . 4

0. 41 0 0. 31 4! '4 0 4 1 0. 41 0 - 0"
:3 N0 41 .0 .0 -0 0 0 '0 a) 3 10 4.

4)G V. 4 5 -. "1 4) 00 M :3 r
0 .' - 3 1 g '0 02 01' . 13. N. 2 4) -1 H .'0- N 4

4 H w 0 A0 a4 4) a Is 4 +
3 0 M 0 ' 0 . .1 -) S: 0 g: .0 H "0 10- . >. 0 0 '4

'4 0 0 0) 1 ' 0 '0 4) -0 A0 N .' .0 .4) N 4
.0~~~ ~~~~ 0) 04+ 4 .) 0 0 4 0 . 0

41 o1U H 3 4 4 1~1 . 1 004
.0 ~ ~ ~ ~ ~ ~ J U4 01 .-) .1 4 U - 0 N " 1) 1

S. 4 0 4 0a k ~ 41 H . . . u. 0 L) ' . 4 1 4 ~ 4 ' .
H d 0. :3 - R , 9

C'>4 0 0 41 .1); P. -0
4) 4u4 4 4 .4) W) . 41). U 41 a

W0 >1U U ~ N. 4 0 U 04 '

004) 4 0. 00 04 0 -w 4) 4) 1 o

a 44 W 1. M 4'4)4 ~ 1644
k1 0 0 .0 0 .4 0 U 4)0 Up

4
'4. 0 0. 01 0

.0 . U * N 41 'M 04 . 41 U .. Q0 2) 10 -
0~~4 4) 0 0 .0 -4 4H k41 -

41~ ~~~~ ~ '0 01 4) H 4 1 4 4~lH .1 3
0 .0 N3 > 41 41 a 0 0 N1 413 410.v 4 1

41 W) 41 . 0 U .41 1 4) 0 '0 3 41 .0 0 .0 c M k4) 14
'4H 1HH 04 41 41 41) 4) " 4) 0

A0 0. 41 0 0. 4 0 1. N4 r- H 44 3 4 P
41 a) 1 0 41 0 0 413 a4 . H H9 .0

0a) 41 ') 41 0~ 4) .0 41 .0
k H 0 H. d) 4Mk 44 4U '4 . 10 0 1 0 0

41 '4 ' 0 r .0 .0 .4 41 4 ; 0, 0 0 ~ .1 4

Ad 04 41 P1 4 1 0 ~ 4 1 0 .

0 i N .41 It 0" od 4) .0 41 ca1 41H 0 0 0 H 4

A0 41 '4 N 4) C60
0 .0 d '4 4" 4) . N :a 0..) 0 .0 0

o N) U .0 0 41 N 0 0

41 4 U -4)0 34 0 0 1 4 1 0 3 4
H 4) 41 '4. 4) H ' N 4 41 41 0 .0 0 4 '

41 N 0 0 0 41 30 H3 4 .
44 0 0 0 .8'4 ~ 4 . N . ~ 0 4 .. 4 4
3. 0 '4 0 41 N ' .1 1) 14 4 41 40) .

41 1 1 44 . .0~ -0 -0 .j u In. 34 4 . 14

a 0. 0. 41 0 - u) R 3 1 0) c) 0

w4P 41

3410 .0 0 41 0 4 3 P
t0 41 0 4 0

4)4QU N.0 41 4 0 N 0)
* ..414) 1~:N N . 4 3 S0 .

v0 . 0 41 41 41 U 0 41 0 004 4) 1
40 41 3

9 .0 0 .4- , 0-0 0 4 .141 P .)4 41v

U 0 k4 U01 . 4 .1 4
4)4 F4 k) 41H 414

. 0 0! -A :9 '4 .4) 0 41 u. 0 4 0 41 '

41 4) v 41 .1 ' 4 0 Z4 P~ '0 4. 4 1 4
4 0 N 0 N 4U. 4 0 4 H N 4 1 0 441 41 041 (~~4M - --

.341 - . 41 t 0 .0 U +j .
04s1o 0 H) +1 4 4 . . t

4) " H '0 41 A d 16 c .4 . 4 41 H

v d) :j .0 4) 0.4 0 H 61 4

.41 44 'U4 N 0 Na 1 4) .

4) 4 0 0 N 0 41 4 1 4) ' U 41 0 4

.0 4 13 0 ' 4 1 4 to 41 .0 - 0 ~ 0
41 414V4 0 ' 4 4 41 to 0 0

00 4) 3 0e U4 00 P0~ 4 H "

"01 0l .) .4 41 ;1 a) 4 4 4" 4
0 ~~ co 047 . 4 1 P. U) .4 4

04444 ON 0) .0444,4
0 I- . ;.41 hR 4) 1 HN

4" 0

0z M4 . vi 4'
4 4. (-0 ,- ,0T 0M U k4

4. 0 40
SIR 0.W 0 4

44 to0 0 0 N 1
co- c4 0 0 W44 a 4

0 ". a. V C: 0 1

44 -- 4.0 L. 5 .

4' .. 4 '4 - 0.M a: . o k a. .

14. o a k44 w.4 44. 44 44
0 ft 0 44'- 50 U , 444 >- ..

-. 0o -a 0o44 o40 *4001 0 .4(4 . 4

N) .0 .%.4 b41 44
-~~~~~6 -4 :-4.u 44 4 0

4. w4 444 Z 41 r 4 oM
44 444 I. -k). o 4 . 40

a 0 W-a M 6.- u 44 T 40 04 0 . 0

x4 r0 .00 . 44)4 1 ~ 1

o.43 0 444 00 0o o

20 -. 0. .
,d 0-o U 14 44 '0W .544 a4 k4 t.l .

0. 0 0.4 ba4 44 44

0 s 04 00 4j 0c-0o 4 0 U 1
14 114 00. .4 .441 4 '0 4 . 4 4

12 U44 >4 , 40 4 . 4~

44 4.4 0 04 444 04 04 1. 44 4 o

44 0 4 4 >4. 444 0l 0 '.(4 k4 5, . 0.4
o. a4' o44 .-.. 4 40 v4 Q44 0 14

.4 0 44 0044 14 0.40 .4-4
44 1C* 0 -0 ao.4 4J 0' ~ *

* .3 0 4 014 a o4 -4 .0 0Q4 40 4

0. F. 04 a4 to v u a 1 o o 4j M.4 .

.960

.4 4.4 0 4

'0~ ~~~~ ...4 14o4 0 4 .4 44.4

'0~~ V- o " ..4 4 -a00. 4

0 4 4 4 0, 44 '4

.0~~~c 44 0 1 14 .4
44 ~~o 44 4' . 0.

.. 4 . ~ 0 ' ~ 4 4. '0o

'0 .0 -4C4

0s o4 cud 0o 0. o 44 0

0 0 0. a. 0 u0. '

-. ~6 44 4. 14 0 0 0 . 1

0~ ~~~~~~ o46 -.. . 0 4 ~ ~ 4
0 4 4

Appeared in the Bulletin of SIGMODX September 1974

ANOTHER LOOK AT DATA-BASES

N. Minsky

Department of Computer Science
Hill Center for the Mathematical Sciences

* Busch Campus
Rutgers University
New Brunswick, New Jersey

This research was supported by the Advanced Research Projects Agency
*of the Department of Defense under Grant #DAHCl5-73-G6 to the
Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S. Government.

Appeared in the Bulletin of SIGMOD, September 1974 "

0 ANOTHER LOOK AT DATA-BASES*

Naftaly Minsky
Dept. Of Computer Science
Hill Center, Busch Campus

Rutgers University
New Brunswick, N.J. 08903

1. What is a Data Base?

A data base is often viewed as a kind of glorified file which
allows for the storage of complex data strucutures, and which can
be shared by many users who have different needs. But there is
a more fundamental difference between data-bases and files then
just the complexity of data or the generality of its retrieval.
The traditional file is essentially a passive collection of coded
data which is devoid of any intrinsic meaning. Indeed the
interpretation of the data stored in a file is entirely up
to its users. The data-base, on the other hand, is usually used
as a model, or representation. of some system in the real world.
For example, a corporate -data base is, in some sense, a model
of a corporation; and it must reflect some of its structual
and behavorial properties. This is not just a matter of record-
ing correctly every.thing which happens within the corporation.
For example, when we "tell" the DB that an employee is fired,
we expect all necessary adjustments to be made automatically,
so that only current employees will be on the payroll of the
corporation at every moment in time. In short, we expect a DB to
"take care of itself" to a certain extent; it therefore cannot be
a completely passive collection of data. But if a data-base may
contain procedural components and not just. data, what kind of thing
is it? .In what way is it different from what we usually call pro-
grams? (It might have never occurred to the reader to compare
data-bases with programs, but as we will show later the two con-
cepts have more in common than meets the eye.) In an attempt to

* clarify the concept of data-base I will now offer a definition for
*it. The definition is an oversimplification, as any definition of

" such a fuzzy concept must be; it will emphasize certain characteris-
- tics of data-bases, at the expense of other, equally important,

properties.

Definition: A data-base is a model (or representation) of some
system in the real world, which satisfies aLl of the following
properties:

(a) The model contains a large amount of coded information.
W (b) It has a long life time (say, from several days to

several years).
(c) The model can be examined and interrogated at any moment

of its life time.
(d) The model changes primarily in response to operations

applied to it from the outside.

*This work was supported by Grant * DAHCIS-73-G6 of the Advanced
.." ~ Rasearch Projects Agency.

Best
Available

Copy

b

The first sentence of thi .: finition states the general objective
of a data base. This re is not specific to data bases,
however. For example, t. ;. }:ration can be modeled by a sim-
ulation program, not)u ".'.. DB. The specificity of this def-
inition to data-bases is i.>'ided by properties (a) to (d), the
first of which we assume tu be tacitly understood.

To see how the other properties relate specifically to data-bases
consider again a corporate DB. Such a DB functions as a model,
or a representation, of a corporation for long periods of time.
At every moment during this time the model can be interrogated,
which corresponds to retrie-i.ls of information from the DB. Note
that this is quite differen> from the behavior and usage of tra-
ditional programs.

A program is used primarily as a kind of input-output engine;
it is executed for its output, and it is not usually examined while
in the process of computation, Indeed, the active period of a
program, what may be called its life time, is relatively short
and insignificant.

Another difference between data-bases and programs is provided by
property (d) which states that a DB changes primarily in response
to operations from outside, update operations if you will. This
is in sharp contrast with, say, a simulation model of a system
whose dynamic behavior is determined primarily by the model it-
self. This property also introduces a new dimension into the
sufficiently difficult problem of correctness in programming systeml4
When we write a program we have to make sure that the program
will do exactly what we want it to do, which is difficult enough.
But the designer of a DB has an additional problem at hand. He
does not know in advance how the DB will change in time; this is

* up to the users who will interact with it. At the same time, it
is."up to the DB designer to establish the invariance of certain
structural and behavioral characteristics of the DB whatever the
users of the DB'might do. In other words, the integrity of the
DB must be protected against the essentially unpredictable inter-
action with the outside world. (Of course, this problem is not
peculiar to data--bases, it -.:,c ists to a certain degree in manyK programming systems, particularly in operating systems; but the
need for protection is partiaularly acute in the case of data- bases.)

Most of the current research on data-bases is directed towards
various implicationsof properties (a) to (d). People are most
concernedwithsubjectslike the physical and logical representation
of complex data, techniques and languages which allow flexible
retrieval from the data-base, etc. But it seems that the objective
of data bases, to be a model of a system in the real world, is
somewhat discarded, or at least, is not sufficiently emphasized.
True, the protection of the integrity of data bases is often stated
as one of the main objectives of data base systems. But in most
cases this is hardly more than lip service, supported, at best,
by simple consistency checking. But if there is a lesson to be

10

4. learned from the long experience with programming in general, and
with operating systems in particular, it is that protection is not
an add-on feature but must be designed deeply into the fundamental
structure of a system. This, to the best of my knowledge, is us-
ually not done in the case of data-bases.

In this paper we will examine some aspects of the architecture
of data-bases having in mind primarily the need to protect their
integrity with respect to the teal-life system which they are sup-
posed to represent. The conclusions of this paper are not new,
most of them are borrowed from ideas and principles developed in
the context of operating systems and programming languages. If
there is any originality in this paper it is the application of
these well known principles to data-bases.

To remove any possible misunderstanding it should be pointed out
that we are dealing here with the concept of data-base not data-base
management system (DBMS). The relationship between these two con-
cepts is somewhat analogous to the relationship between a program
and its compiler.

2. A Data-Base-Language

It is well known that the structure of programs is strongly affected
by'the properties of the programming language in which they are
written. A similar statement is probably true for data bases as
well. Most of this paper will, accordingly, be concerned with the
language used for the construction of data-bases. We will begin
-by reviewing the language proposed by one of the most influential
works on data bases, the Data Base Task Group (DBTG) report [1].

Two languages are introduced by the DBTG report: The Data Defin-
ition Language (DDL), which is a declarative, non-procedural language,
to be used for the definition of a DB; and the Data Manipulation
Language (DML) to be used for interaction with an existing DB.
This dichotomy of languages, which is somewhat analogous to the
sharp distinction made in COBOL between the "data division" and
procedure division", seems to imply that data-bases are essentially

passive structures, since they are to be defined by a language
which does not feature any data-manipulation capabilities. This
approach certainly does not agree with our view of a data-base as
a model of a possibly dynamic system. Moreover, it is not even
compatible with the modern approach to data structures in general,
as we will see later. Indeed, the DBTG report did not really view
data-bases as completely passive structures. To compensate for the
lack of procedural capabilities in its DDL, it allows for the in-
corporation of the so called DB-procedures within the data base.
But the report did not specify how such procedures should
be incorporated into a DB, or in which language they should be
written (should it be a DML)? These questions are generously left
for the implementor, in spite of the fact that the declarative
features of the DDL were described in great detail. It appears that
the authors of the DBTG report considered the DB-procedure just as

*,an additive feature of marginal importance.

It is my contention, however, that the.language to be used for the
uesign of data-bases must be an integration of declarative and pro-
cr!dural capabilities, as most programming languages are; one

may call such'a language a Data-Base-Language (DBL). An obviousreason for having such a lar'",e is that if procedures are at

all necessary for the desi,.- ', data-bases, there seems to be
no good reason to introduc:-. i-':, via the back door, as is done

* by the DBTG report. But tl, c,, is a more subtle reason for that.
The DB-procedures are the dy,-. -'*c components of a DB. If we want
to have any control over the dynamic behavior of the data base
we must be able to control th' OB-procedures themselves. In
particular, one should be able-to restrict a given procedure as
to what it can do to the rest of the DB. It appears that the
clearest way to achieve that, is to have all DB-procedures be
written in a given, well-defined, DBL. The manner in which such
a language can be used in order to impose certain disciplines on
the behavior of a DB, will be '%scussed in the rest of this paper.

3. "Information Objects" in Dhk-L Bases".

What was said about the data-base being a model of some system in
the real world should be true also for the individual components,
or records, stored in a DB. At least some of them must represent
specific objects in the real world. For example, we might have a
data structure which represents an employee in a corporation, and
another one which represents a job. The behavior of these data
structures within the DB must reflect, in some way, the behavior
of the objects they represent -within the corporation itself. For
instance, one should be able to hire or fire an employee, or to
assign him to a certain job; but one should not be able to manipu-
late arbitrarily a data-structure which represents an employee, or
a job. Thus, it seems that we need the ability to form data structur-es
which cen be manipulated only in a certain predefined way. Data
structures which have this property will be called here informatioR
objects.

Note, however, that being an information object is not really
a property of the data structure itself, but of-the "computing
environment" in which it exists, which shoulo prevent any illegal
manipulation of 'he object. Such a computing environment can be
created by a programminq language, as was demonstrdted by a num-
ber of researchers.

In a recent paper by Liskov and Zilles (31, a language is described
which features a linguistic co:truct called cluster which serves
as a template for a class of information objects. The cluster con-
tains a description of a conventional data-structure, together with
a set of procedures which are defined on that structure. For a given
cluster c, there is a way to generate objects using c as a template.
All such objects are said to belong to class C. Now, the crux of the
matter is that an object of class C can be manipulated on]y by means
of operators defined within the cluster, which turns these objects
into information objects, according to our definition.

Note that this is not an easy proposition; it is not just a matter
* .of adding yet another leature w an existing language. The entire

language must be very carefully designed in order to guarantee that

12

@

an object of class C is never manipulated by an operator which
does not belong to.it. Note also that the combination of both
declarative and procedural statements in the same cluster is
necessary for the formation of these information objects.

We will now try to demonstrate, by an example, the potential
usefulness of information objects for data-bases, assuming that
this facility is supported by the DBL at hand.

Example: Conservation of Money

One type of object which has to be represented in any financially
oriented DB, is money. One of the most important properties of
real money is that it cannot be created out of nowhere, at least
not in a legally operated establishment, nor should it be allowed to .

disappear into thin air. This property may be called conse-rvation
of money and it should be reflected in the behavior of the data-
structure which represents money in a DB.

To impose conservation of money on a DB, we will represent money
by means of information objects to be called safes. A safe is a
kind of money-variable which can be accessed and manipulated only*
by means of the following operators:

Content(s) returns the number of dollars currently stored
in safe s.

move(s Is ik)s . if s1 ,s2 are safes and k is a positive
number such that content(s 1) 3k, then this

operator "transfers" units of money (dol-
lars) from sl to s2- (Namely, it leaves
the content of s, smaller by k, and that of

s2 larger by k).

The operator move represents the act of money changing hands in the
real world. In order to represent the flow of money into the system
we use another class of information objects, to be called source. A
source is similar to a safe except that any amount can be moved
from a source into a sink, but no money can be moved into a source.
The content of a source would be negative, its absolute value being
equal to the total amount of money moved out of it.

Under these conditions, and assuming that the content of all sources
and safes is initially zero, it is easy to see that the sum of all
safes and sources in the system is always zero.

In spite of the obvious usefulness of being able to impose such
a law of conservation on a DB, it is not quite sufficient. For
example, one would like to impose certain disciplines on how the
money flows between the various safes, and how it is used within
the DB. We will return to these problems in the next section.

'O--*Ezccept for operators which generate and destroy safes, which are

not discussed here.

13

. __ •_ - - -° i '' e.. '

4. Environments of Execution

As was just demonstrated, the ability to create information objects
which can be manipulated only by means of given operators can
help in enforcing useful disciplipes on the behavior of a DB, but
this ability alone is certainly not sufficient. One should also
be able to specify "who" can apply which operator to a given ob-
ject. Such a capability is fundamental to the various protection
schemes recently developed for operating systems (2), it also forms
the basis Zor many of the techniques used for the protection of

* data-bases against users who interact with it. For example, ac-
cording to the DBTG proposal, a DB-user operates within an "environ-
ment" formed by a sub-schema which specifies, in effect, which
parts of the DB the user is allowed to get, and how he is allowed
to access them. But although this does provide a DB with certain
prctection against its users, it does not protect it against itself.*
A DB is manipulated not only by its users, but by its own procedures
as well; and it is a well known principle in the design of large
systems that no module should be allowed to access more of the sys-
tem than it needs, in order to perform its function. Thus, the
DBTG proposal should have assigned a sub-schema to every DB-procedure,
in order to limit the procedure as to what it can do to the rest
of the DB. This kind of protection scheme was proposed by Wulf,
Jones and others (2), for the design of operating systems. A'-
though their techniques must be modified before they can be applied
effectively to data bases, the basic philosophy has universal
validity, and is briefly described below with some changes, and
slightly different terminology.

According to Jones' and Wulf's proposal, every activity (or what
is usually called "process of computation") in a system is carried
out from a certain environment E, which can be formally described
as a set of pairs E = (q,a) , where q is the identifier of an
information object in the system, and a is one of the access-modes
defined for it. The pair (q,a) is called capability (or right).
A capability (q,a)F E serves as a right for a process which operates
under E to exercise access a to object q, in the following sense.
Every operator defined as an information object in the system,
expects the environment from which it was invoked to have certain
capabilities. Namely, the operation is carried out only if the en-
vironment in which the requesting activity resides contains the
required capabilities. An example may clarify this point.

Consider again our money example. Let get and put be two access
modes defined over a safe such that the operator move (sl,s 2 ,k)
can only be carried out if the calling environment has the capa-
bilities (sl,get) and (s2 , put). This allows us to specify not
only which safes a given user can access, but the direction in
which he can move money between them.

One of the most interesting aspects of Jones' model is its treatment

*It should be pointed out that even in this respect the sub-schema
of the DBTG report has serious deficiencies, as is shown in (4).

14

4...

of procedures: Every procedure is defined within its own en-.
vironment, whichobviously does not depend on the environment
of the potential caller of the procedure. The capabilities in
this environment are called the static capabilities of the pro-

*' cedure. In addition, when the procedure is called, it may re-
ceive some additional, dynamic capabilities, from the caller's
environment, by means of its parameters.

It is quite clear that such protection schemes can greatly en-
hance the reliability of a large programming system. But I
would like to demonstrate specifically the usefulness of such a
scheme in the context of data bases, using for that, our money
example.

In the previous section we saw how to establish a global "con-
servation of money"in a corporate DB. But more than that is re-
quired in order to model the behavior of money in the real world.
For example, assuming that paychecks are issued under the direct
supervision of the corporate DB, one may require that whenever
a check is issued on the amount of D dollars, the total amount of
money represented in the DB is reduced by D. The implemention of
this and other characteristic properties of money are discussed
below.

Consider a DB-procedure PAY (e,s) which is designed to issue a
check payable to employee e for the amount contained in safe s.
The following assumptions are made.

a) PAY has a static and exclusive put right to a safe called
cash, (namely, it has the capability (cash, put) in its
environment).

b) No environment in the DB has a get right to cash. (The
safe cash is, therefore, a sink of money).

c) PAY has a dynamic get right to the safe s given to it as a
parameter, and it has n.o other right to any other safe.

d) PAY is the only procedure which is able to actually print
a check.

Now, if the procedure PAY is known to perform the operation move
.(s,cash,content(s)) after printing a check for the amount of con-

tent(s), then we are assured that every check printed by the DB
is balanced by a suitable amount of dollars being transferred to
the safe cash. Moreover, content(cash) is equal to the total amount
of dollars which was paid by checks.

This example can be further refined to establish local conservation
of money, as follows: consider an environment E, which may be the
environment of some user, or of a DB-procedure. Suppose that E
contains the get right to a single safe so', and both the get and put

* rights to the set of safes Sl,..s n , Suppose also that no other
environment has the put right to Sl ... s n , and that E has the right
to invoke the PAY procedure. E may, for example, be the environ-
ment used by the clerks in the accounting, office of a certain-

15

r!

department in the corporation. It is clear that whoever operates
under E, has only as much money available to him as he can get from
so. which is his only external source of money. For example he
can never pay more in checks than what is given to him via so .
Thus, so can be used by an environment which happens to have the
puc right to it, as a way to allocate budget for E. Similarly, E
may grant some of his own money to some other environment via one
of the safes si.

It is clear that by these kind of restrictions on the manipulation
of safes one can model many of the properties associated with money
in the real world. A monetary information system built in such a
way also lends itself very nicely to auditing. The auditor can
know much about the flow of money inside the corporation just by
examining the various environments and some DB-procedures such as
our PAY procedure.

The implementation of the protection scheme described above is be-
yond the scope of this paper. I wish only to suggest that it should
be entiusted to the Data-Base-Language. This language has a unique

position from which it can control what happens within the DB, be-
cause the DB itself is presumably defined in it. In this sense,
the DBL will play the role of the protection kernel of operating
systems proposed by Wulf and Jones. (For the reader who is puzzled
by the idea that, a language can be used for protection, I would like
to point out that in a certain sense a programming language can be
viewed as a set of capabilities whichare provided to a program writ-
ten in this language. This view about languages, and its implica- -

tions, to the ability of a language to play a major role in protec-
tion is discussed in (4).

Conclusion

A DB has been viewed as a dynamic model of some given system,
rather than as a passive collection of data. This paper was con-
cerned primarily with some implications of this point of view to
the language used for the construction of data-bases. One obvious
implication is that a Data-Base-Language must have procedural capa-
bilities. A somewhat more subtle observation made by this paper,
is that a DBL should have certain features which would enable a DB
designer to impose some discipline on the behavior of his DB, under
its interaction with users.. There are, however, other important
issues concerning the Data-Base-Language, which were not discussed
here. In particular, there is the problem of the control-structure
of such a language. There are indications that the conventional
control-structure of, say, ALGOL-like languages, would not be suf-
ficient. For example, one needs tools to cope with the parallelism

in the activity of data-bases. In addition non-conventional con-
trol structures such as "event-sequencing" (or "demons"), which
were proposed for data-bases by Morgan (5), and which are being used
in several AI-languages, appear to be very promising. These and
other issues must be investigated in the context of the already ex-
isting knowledge about the structure and manipulation of complex 'I

data (1,5).

16

From the proceedings of the ACM SIGMOD Conference, May 1974

ON INTERACTION WITH DATA BASES

N. Minsky

Department of Computer Science
Rutgers University

New Brunswick, New Jersey

I7

__'S

. . : ;- . -. . . - .- , , _

N-5 r S

i4 n4 a 0 0 'k*... w3

0~~ 030 44
.~,. n 0 .

* ~ ~ 5 o. =.55

£3 - S 0~

00

n. 0.5 0 0*4

.4~~ a. . -

m4 cr W,0 0.4. 3

00 0i 00' jr3 . 3 3 . 0

4. ~ ~ .4 .400-" C

C6 0

:. IE os~Q 3 1B 45
... w N~ 0 0 w34 3S

-5 34 .. 03 ,5
3 .4~4333~..43

*o 0' 0.

of r'~ ,

w- 3*

to3 Z... 0

a -s

0 30 .0-4 n" 'a''f -
0.--.- Q -ft t'ym a0. =IL..34 .4 3 ' 0

0. '£ 3 0 3. 4 . 0 3 n5. .

3~ 00 3 w~p~
. 0 EI. 1 0 V"3 ei.

w.00 354 w.' 0"3 a. t4, 0 3 0. . 3.

0=3. . 0 -It c 51

0 3 4 3.3 0 0 0, <1 0 8

.33 0- 5) N3' 50 3 ." 4 ,, . -

335 -. o

3 3 .043 ' 0.4 4 34 n4 3

3, ft Is

*~l 0~" a .40 00 0455 03 00 0
3.4Is54 34~~~ a 3.S0 3 .3'''~."8 i '.

3~ 5. 3 3 141 0 0 a. n 3 ,3 ' .
so, 3 .~ .4 * . .4 4 3 .4 4I5 5 5 ~ . ' 3 U

0.3 0....40 0 0 59 .4 3 4CL

a c 0 d VI '

V -- 40
a4A.'-

Ow
044 3 . 4 0 0 0o- 04 0 44 0

0~~~- 4..o O 0 e.. CIS .- 4 -

go t10 4* .- 0 .04 1 -0 AI~ 0*1

.0 0 40 - u 0 0 0 - -40.4:.0. .. .0 05

0 S. -
=01 -

K10

74 40M -. 4 La 60 -- U

- ~ ~ ~ ~ -. 0.41 U.04 41 4 4 0. 4.

t-. 0 vu'I
00 01 4 m 040 -4. 0 4 0 0.. a

0 w.41- 0I*0

0...9.4 .10 S. 4.-S -. 4 4 35.

002.0 05. 1... - @

.4 .0 k.~4 4~~ . 00 0 ~ 00- a .0 d

-~0 21. 0
.1.oO.-044.0.4~ ~ - II04S -45. 1 0 4 "0..

.C.34S~ 4.o 0 *k O .4 4 1415

30. I 0 44-4 4 4 . 4 - u~.

40~~~04V .4 4044 '0O

.~~~.. 14 u4 3 3 .
t. t4 .0 a 0 0 .~'J 4 4.o .4

ro A.
be1.11 L w4-01 11 4 4402 00 0011

11.0~ ~ 00- 0051.0 0 40 44 4 .

- k k0 k .0 * .1-.. .. - .440 .0

>... 0 14k OS U 02 tag0 c .r C:3. -Au-4 , 0
.44.14. 4 404~ 0aI .0 a0I1 a 1"(1 30

0-4 714 j Z-0 0.400 I1l 0 140 .

c. r
01. o0 0 .

.1. 50 3 .4 03 4 45 - - i . -0 r 4 05500 0

- 0 S 0 V.40 441. 4..02 14.443'a0. 45 4

-...
0-.04. 15 4 ; 0 000 4... 0 -

0 .00 400 ~ U 00 4040A .. 0

k.~~~~~~ C>>. 1 5. .

0 - A.0051.
4

44.4
. 1.

o~ o. 0. .0 , 4 ~
5.~~~~~ r4 Q45 410k ~ *u

,l A~.S'.0 441. . 2 0 g~ 0 Z01. C..L34 50OM
2340 a

0 40 4

7S

a, 0s a
wo~~ Zo - 0 -

A14 0.. m 1. N
-o 0 4'c. 0cI

o4 n.4 o-c~ su. ova o .. :44 Oh
o o

:1 t. , I0-i . a o

01, -3 ow

0~~~~~.I ".2 oQ.4.:~ ' 4

44~ ~~~ 4N uvoco4 0o . .c 4' 1 1v0

0G4 o 0 . 0 0 * 4 . 4 . ' 4 4 4 2

* ~~~~ ~ ~ ~ . a.. ... * 4 o ~ U a 4 0 4 4 . 41 -4 4.
*~~ ~ ~~ ~~~~~~ . or 04 4 44 4.

.4 ~~~~~~~ ~~~~~~ u04q 4 a .- 4 O44l .4 ... 0O.-0.'. O 04.
3. .- 1- 0

- Q o44~-
0 4 A 3

.~~~4.~~ rA q4 Io . 4 - 4 m O . 0 . .
4*1 844 0 4. 049. .o 0 aN. 1 c. . .

A 0 . o40. x04. 0 .04oC* 0 _4.4 Q, * 0 L 2
'C ~ ~ ~ ~ ~ . 1,* 24 .44 C 0 - Uri. - 4 4 0.0 s0. >

m m. 0-o 0 -. a o o a o-~ . * = 1. a..= 4 .O' 4

4o o4. 4 4 o

v o o~kA0 u o o.

c0. 41.04

CAU - 4 0.. 0 '00 0 4 4.N - 4. a . I ::. 4. 4
-~~~~~= tic4 I" I-.444 .4 40. .

Z ~~~~~~~~~~ .0 400~4 o- 44~ O . .U 12 24*

x"u :, -C0 -r_ 40.. :. C 10 Iv

001..4~~t 00 . Q.. &4 .-. ,o0 .~ 4 ...
s-0. = =0 .02 0o'0 0: . 4.

c r . a. 0 0.4 k9 C-* 2i o Is k Z 0
4 ~ ~ ~ ~ 6 444 u04 c1. . .. 4.4444 ~ '0

0... .4-U 4.A.0 . 0 . a..~.. 4

9.41-. . ~ * .. 4. 094 4 0.

.c o41..0 N v0 4 .4.0 - .

0 3.4'
44 .

WV 0

0 4

08 'S
Q 00- o4 k4 4.' 2"0

U4440.4 4k r 4-'~~4 tc0 0 ~ ''' ~ ... 4 0

1.~1 0 .4.. c1 . I It.. c.. 0440A 11.

0 5 a &. 1. .4, 4. o t.-.

o4 o. 0 *4oX " a0 18..4-
.0~~o o 44-.* .. 04 . 0 0 ~ 4.4 .

I k ro. c4~4 1 0 4 -. 0*

t" I4 4re44 6 044m4.44 ac -m
U.b1-.2 U..-4 4

v"04. *-.1 "oaa'N ra1

44o-. 01 84 . 4110 0 4.4 o
A o r .0 IS4! ..1 -1 0

1 40 e -1 0u 1* .,.0 . 00 . *444 o 0.q O

I~~~~~~~~~~- 0 m.. 44.40 UO~4 ~ '4 .2 4 0 .. a.00

.4~ :.' N0 a a .42 .- ': 0 4 4 4 4 .a O -- ' o
A! o4- .4 . 4 4 4 ~ . 4 . * .

4~~ o.4 A-.. E-4 4 4

4~~~~~ .- 0 -.'44* I4 !:4.. 40 40 .4 a 4

4.4.4~~~r 440 '41 4 .24

.40 u 0 4 11 .. .0 0 0 . ft c1 9.4 c--t'

0'- 33 044..4 0 *40. 410 .40 ON 0 4>v44.

*~~~c 13 ~~: 4

-o04. .4_ N-4 -:4.0 lb444

o.41-.- *I cum .9.01. ;. 0. 4 0 0 1.4

*0 $. m-
1 0

a a c4 0.1

0 0 u1

.0l >0.00 .0 -. .0 " 4 6c 0

6100.4 0 0-- a0 80 - o~~0 ~ 88
8..40.c o.4 08 .4 m 0 ~ O 0 04 k A

00 . 0 10 m .X 0 0 0 41. - A 0

f! a3 00 .60 4' 0 6.

06x .6. 0 Z4

.4 0 '. 0 1. 0c
4

a .

6,0 *0 >c6 0 ' 0 >.>001 u o. r c-a.

04-0- v-.40... 0I 4, r

a-1 a.~5 0(6 u0.0 'A 0 00 0 -0

O.c .c 01 4 1, -. 0 0 o, 0 .0 10

1 0 08...4 u0 44.

*0 0 1 4 . 0 1 ..

.0> .0 400. .440W.4 c0 .- 0 .00 - 0.

U...-1Oc .A0 0 $.. a 4c0 .4 "a 0 0

ao~ .0,oO
.0.

* ~ ~ ~ ~ ~ ~ ~ . a.*' og c>0 .c4~. 006

c- 0 so w 40a

.0-~~~~ ~ ~ U 0c.4 ftc- a..0.8 w

00.4 ~ u X45. 0 4

-- S ~ 6...40',.40~.-0 S ~.-- 92
.. M 06 .4 0 6.6.464140 0 16 61 hca

o .4000 4 0 014 08.~41w 6...' 0 .A

8..(~ u.0 c -.1 C.- 0 . 00
0..c0'. .~o~c- 04.140600 0~c.0.- U

00.44 .4 .40061 . 0.4 0 005. 0 0 >V.0~

.4 0 646. 00.1 4.' .4 0 ~*08. 1 0 00
08.00~ ~~~~~~ 460 c -Z4 O O .'. -~- :

610 *c. -'..r00.4 'CIL1 a 0 .

.010.,1 0344. .. 4.00.--' 0.0.0 U 3.4..r

- 00 0 46c0. 0 0 0 -c *. 0.O~OU>0.0 0c~c0 c

0' ~~~~~~ ~ ~ c .- I . 6 4 .-- 4010l..0

In0 4 0.. .. 64 . 0n4

0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ l Ni4s464 0 .A0 61 6 41. ~0
08.AIO0 - .0NOWo

S41
:-2 18 .o 3.2 -0 0

ooo~~ 2u a -o ..
*~0 0..0 zv,- = .0 IU

' 0 r.0 k .C6 0 0 a- M. .-0.

0 ~ 5. 0 0 a..,5. 0 OZ.3 05 0. ~
N r 00 0 0O Oa -0 0.01 5o 0 s.

9. *1.0O 5 ' V!. 00O .0055 -0.

- 2.00o 0. 0 r o00£ 0

14 001 a 1. 0 c0 0.go

50~~£0.'1 *.50 0 -200 ~
1..0. 0. r ~ 0 4.

"s O10 0, a a.C 70 ! .- o...3-.4. 3.
0-~~000O- .00 o. a-5...0.£ 3

1Wl 00.450. . - -1 0. *
0~N m.- I *. 0 A0050

0 05 --

£0 auS -0 .

c 0 C" 44 Q) 0c U. US0o O.. 0

0- r-. :.30 a3 C7500 0 -
0~~~~~ 0. £0a.05 O.. 010. 50 -t I, z n.o -a'.- OW-'£ 0 r

S. $£.- 5 we0 . 3 0 0
> 9 - 0 . £0 --. w~~ 00 a 00

*0. 41 2 1,5 k =. C. £a
a 00. .. a .. 400 r 1.0 a.0 30

.. 000000..2 1 0 "'£0 .20 0 C 05

2 00 0. ~a. c M9
-~~~ r N0~o~ .

0 0 0 * .04 oo10 05 a
I . a 3. C" I .0 a.. a .00
ba E~ a U. I.0. 00 a . 0 0 2

91, 1010. -q- z0

00 -0 c - 000 -, 9 .0 0c5 .& :. k

Z0 OUU 0 - I..C a3 0a0um

.5 0 -o0

* u .W4 3. . . 0t 5 0 0 009 .a aOG0
0 3. 1.. * 0. N

3- 0- --a u0 *-3. 0..0 's
0 .0 0 0050 0.' U0 2 4

C40 000 00 00 0 2".2 -_,O " 5 0 ~ 0.zc.

0000 . 0 0 I's,0 E0S.
00o : o .0 r 0 :3 uS .. 100 ._t 4

10 0 0 £ >0.5 05

0. 0-35 17 a..- cr *oo .0 300.0 a . 0 0
?Us 0 .3 a50~@ . 0 0 ~ o 1 0 £

00.51.~~~~1 ;9 9. 0. -15 00 .5 00 00 0 0 0 0 0 .0

S~o30~0. 5.. .U 0 0 U..3 14.U 0 0 £54. U. a Oo~ r.3 00. a 0 0 00..00004 10 0 *002
*0 0r 0 0

.00 00s= 0

C, .. s9 O -. 0 0. 1. t X- 0 t
2

0o-

-1 W C0. 0 .00000 0 -00. 000.0 0.o. 3. 11 .50. 2 0
0) .5 .00 0. a5.. 00. .::~0 00 0 0 .00 g 11 U -5003 *c-.q ~ 5 0.000.00 .!W 9.0. W.C 05 30 0 5 0 .0 .0.

A Z.0-0. 0 S 0.0 0 00 00; 000. 0. o s5.

"1 30 . -- 0.2
-0 0 - c 00or _%a 40 ' -.50 0s2 0: NO5

0... 0 0. 00 5 . 0 .000 1.00 . 00 0
000£ 0 ...-. 0 :3 k. - .0 0.3 50 0 0 50*0. * 0.0 0001 k~ a_ o2 0 0 4C* -00- 00.00 w L 03 00. 0- >3 .0- I.. 000.0.~ 00. 0 0

o' o2I ~ 5.0.50 1- .2 .. 0 S 0- U 0 4. -0 96

0 31 0 o'00 23 0 .0- 03 a0~ 5.~ a000 0 0. 0 a..
U M 41 1.00 0~ 50 . 0 . 0 . 1 .5 0.50

0 00 .0u010. 0 . 0 2 -0=-.00 0 2 0 0 .00 0~.4 5.0 1UO A0 AM-0 t0 ~ ~ 0 ft a 5 0>0

ILm r-

Published in Management/Database Systems, March 1976

INTENTIONAL RESOLUTION OF PRIVACY PROTECTIONIN DATABASE SYSTEMS

'.7 N. Minsky

Department of Computer Science
Rutgers University

New Brunswick, New Jersey

0:

Management/ H. Morgan
Database Systems Editor

* Intentional Resolution .Itduto

of P iva y Pr tec ionTraditionally, privacy protection in database sys-
too arv c gienuercateterocadtaae.Thspaein ~z~ysernstemns is understood to be the control over what informa-
is concerned with another, independent, dimension of

Naftaly Minsky privacy protection, the control over what a user is at-
PttesUniversity lowed to do ivith a piece of information supplied toi~utgershim by the database. The ability to restrict the use of

information retrieved from a database will be called
"intentional resolution of privacy protection."

It may seem to the reader that international resol-
lution is mainly a legal matter, not within the realm of

______________________________________ computer technology, because once a piece of informa-

* ~~~Traditionally, privacy protection in database systems tinsrealdoahu nueteeisowyfr
is understood to be the control over what information a the database system to impose restrictions on how to
given user can get from a database. This paper is con- use it. However, the database does not usually corn-
cerned with another, independent, dimension of privacy municate information directly to the human user but to
protection, the control over what a user is allowed to do aprgmwitebyh.Infcuhofheno-
with a piece of information supplied to him by the data- mation retrieved from a database is not intended for
base. The ability to condition the supply of information the programmer's eyes, but for his program. For
on its intended use is called here "intentional resolution" example, it can. happen that confidential information is
of privacy protection. needed in the user's program as a means for getting

The practical importance of intentional resolution is other, sometimes less confidential data, which is what
demonstrated by several examples, and its realization is the user is really after. Were it possible to prevent the
discussed. It is shown that intentional resolution can be user's program from revealing to the user himself
achieved, but that it involves a radical change from the certain information given to it by the database (by

*traditional approach to the process of user-database printing the information itself or any computed result
interaction. In particular, it appears to be necessary for of it), one would be able to release to the program data
the database to impose a certain amount of control over which for privacy reasons should not be released to the
the internal behavior of users' programs which interact programmer himself. In the absence of such intentional

* with it A model for user-database interaction which resolution ;apability one is forced to release either too
admits such a control is developed, much or too little information to the requesting

*Key Words and Phrases: protection in databases, program.
protection in programming languages, privacy, security, Consider, for example, a programmer who works

4intentional resolution of privacy, interaction with data- for the "database administrator." Since it is the job
bases of such a programmer to maintain the information in

CR Categories: 3.50, 3.70, 4.20, 4.30 the database, he must be given almost univ~ersal per-
- mission to retrieve data from it. Thus, although most

of these i.rogrammers have no need to actually see theCopyright CO 1976, Association for Computing Machinery, Inc. nomto aiuae yte" hycnuulyd
General permission to republish, but not for rrolit, all or part inomtnmaputebyheteycnsalyd

*of this material is granted provided that ACtsls copyright notice so, which according to maliy observers, presents the
is given and that reference is made to the publication, to its date most serious threat to the privacy of databases. Wc

*of issue, and to the fact that reprinting privileges were granted would like, therfetbealtopvntargam
by permission of the Association for Computing Machinery. rfrt eal opcetaporm

*This work was supported by Grant DAHCIS-73-G6 of the mer from actually seeing certain information which is
*Advanced Research Projects Agency. Author's address: Department released to his program. In other words, we sometimes

of Computer science, Hill Center, Busch Campus, Rutgers Uni- want the programmer to "eat the cake blindfolded."
* versity, New Brunswick, NJ 08903.

In this paper, we will use the term "privacy protection" as a This is one aspect of intentional resolution.
restrkf ion oft the retrieval proce'ss wpily. This is admittedly a limited Unfortunately, intentional resolution is fundamen-sense of the term, since updates of the database should also inoptbewthtetaiine praht
subjet to privacy restrictions, Note also that many writers are using tal .lyinoptbewhtetrdinaapocho
the term "security" for what we call ,privacy."' privacy protection, which is based primarily on access

146 Communications March 1976
gOf Volume 19

the ACM Number 3

0 control.' That is, the "privacy enforcer" is usually information retrieved from the database (see Figure
viewed as a kind of mediator between a database and 1(b)). As we will show in this paper, a useful level of
its "user," where by the term "user" we mean the protection can be achieved by means of only a modest
human user together with his program (see Figure 1 (a)). degree of control over the user program, which can be
Such a privacy enforcer has the authority to decide imposed quite efficiently, often without any run time
which information could be transmitted to this "user checking. The approach to be proposed is based on
complex," but it has no say on how such information is well-known techniques of protection in programming
to be used, either by the human user or by his program. languages [I1l and in operating systems [51, but it is
Indeed the privacy enforcer has no more control over believed to be novel in the context of databases and it
the user's program than it has over the user himself. calls for a radical change in the traditional approach

It follows that in order to achieve any degree of to user database interaction.
intentional resolution it is necessary, in addition to the In Section 2 we summarize the basic principles on
normal access control protection, to give the database which the conventional access control protection mecha-
some control over what happens inside the program nisms are based. The limitations of this kind of protec-
which interacts with it. In particular, there should be a tion are illustrated by an example. In Section 3, some
way to restrict the program in what it can do with the relevant aspects of programming languages are dis-

cussed. Our model for user-database interaction is
presented in Section 4, and its use for privacy protec-
tion is discussed in Section 5.

Fig. I. Two approaches to privacy protection. Finally, in Section 6, the scope of application of our

(a) The traditional approaches to privacy protection do not protection technique is discussed. In particular, it is
distinguish between the human user and his program. pointed out that this technique is not intended for all

- types of users of a database.

2. Access Control Protection Mechanism

_ --Irogam We begin by presenting a schematic and simplified
s I I model for the process of user database interaction (see

Figure 2), which we believe is consistent with the con-
ventional approach to databases. The main participants
in this interaction are the user (U) and his program

u ma, (11), on one hand; and the database (D) on the other.
However, in general, the user is not presented with
the database itself, but with an image of it, which
contains only part of the database, possibly in some

P R VAC abstract form, [i, 2, 3]. Following the DBTG report
E N F0 R C -R [I], we will use the term subschema for the specification

of such an image, denoting it by i. (The image of D
which is formed by a specific _ will be denoted DIZ

(b) Here there is a clear distinction between the user and his pro- (see Figure 2)). There is no general agreement as to the
gram. The user's program is under (partial) control of the privacy exact nature of the subsehema concept, but from the
enforcer of the database, so that the program cannot communicate
to the user every piece of information it gets from the database. viewpoint of protection it can be described as the speci-

fication of which parts of the database a given user is
I.- allowed to access, and what operations he is allowed to

apply to them. In other words, the subschema is a col-
J s r's : lection of "capabilities" ' to be granted to a certain

0Datab Prg s e r auser or to a class of users. Of course, the database would
usually have many users with diverse needs and author-
ity; it must therefore contain many subschemas to
support the various necessary images. To interact with

U s r a database the user must first be connected to one such
subschema. Assuming that the user has an unforgeablc

-'This is true only in the context of databases. More sophisti-
cated protection techniques are being developed for operating
systems, (see 151, for example).

PR At this point we are using the term "capability" in its collo-
PRIVACY quial sense. A more technical meaning will be given to this term

149 Comunications March 1976
of Volume 19
the ACM Number 3

Fl. 2. Anillustration of the conventional view of user-database "left son" of n' and similarly for RSON(n). Now let N
interaction. aue hmwbe a certain node in T, and let U b: a user whom we

Datzd.se wish to grant a read-access only to the subtrcc of T j
whose root is N, which we will dcnote by tr'e(N). How

' 'can such a restriction be imposed?
-__ ,-,In order to make tree(N) accessible to U, it is

/ ''1 f'enough to provide the user with the node N, and to
- - ~allow him the use of the three functions DATA, LSON,

/ ir• RSON. It might seem that with just these four items
D/ - " the user cannot get to any node outside of tree(N).

S--This, however, is not the case. Suppose, for example,
User s our user manages to get a node identifier n' ,J tree(N)

- -- oqrarn from an outside source. Since he is allowed to use the
---- three functions that are associated with our tree, this

1. :-s:'er-a would give him an access to the entire subtree rree(n').
A- -maqe c - The only solution that an access control protection
3e-e-ate . - has to offer for this problem is to check the argument

of DATA(n) for membership in tree(N) whenever this
function is invoked. This brute force protection tech-
nique can become extremely inefficient for large trees.

identification, this connection can itself be under the and can be considered impractical. A potentially better
control of a protection mechanism which decides which method is suggested by the following observation.

"subschemas can be connected to which user. Let t be a "type" defined in the program 1li, and
The process of user-database interaction can be suppose that we manage to impose the fo!lowing rules

viewed as a sequence of "operations" applied by the on 1I:
user program IH to the database D, which may be Rule 1. The only "things" which can be stored in a
either retrieval requests or update operations.4 We will variable of type t are the node identifier N or outcomes
refer to any such operation as a D-operation. of the functions LSON, RSON.

The access control protection mechanism can now Rule 2. The functions DATA, LSON, RSON can be
be defined as the validation that: (a) each and every applied to the variables of type t only.
D-operation issued by I is permitted by the subschema It is quite clear that if H1 does not violate these
- to which the user is connected; (b) information to rules, it cannot access any node which does not belong

be transmitted by D to H, in a-response to a D-opera- to tree(N). Moreover, it should not be too difficult to
tion, belongs to the image D!1. impose such rules on a program, because they are

Without going into the details of such a mechanism, quite similar to the rules associated with types in
the following can be stated: From the point of view of programming languages. For example, there are rules
the access control protection, the. user program (or built into Algol which guarantee that only integer
process of computation) can be considered as a "black numbers can ever be stored in an integer variable, just
box" which issues D-operations, the internal behavior like our two rules above which guarantee that only
of II being irrelevant to this kind of protection. This is nodes from tree(N) can be stored in t variables. Of
true in principle, even if for effciency reasons one course, one cannot expect a language to contain rules
decides to examine the user program in order to identify for how a specific user should treat a specific data item
the potential D-operations, and check their validity at retrieved from a database. We suggest, however, that
compile time. Such a technique, proposed by several such rules can be induced into a language at the time
writers [3, 41, can still be considered as a version of that the user connects himself to a specific subschema.
access control technique, since it is not interested in The ability to induce such rules into a language depends,
the behavior of H itself, only in its D-operations. Some of course, on the programming language at hand.
of the limitations of an access control protection mech- Therefore our next step is to examine some relevant
anism will now be illustrated by an example. properties of programming languages.

Consider a binary tree stored in D which, in set-
theoretical notation, is defined to be the set T of "nodes"
together with the three functions DATA, LSON, and 3. Capabilities Built into a Programming Language
RSON, which are defined over T. For a given node
n E T, the value of the function DATA(n) is considered In this section we will try to characterize the "capa-
to be the "data" associated with the node n; the func- bilities" which are built into a programming language.
bon LSON(n) returns the node n' C T which is the By this we mean the "operational capabilities" pro-

'beae may be high-level operations loaded with semantics, vided by the language to a process of computation gen-
Such a "ire an employe" (we 121). crated by a program written in this language, rather

2Communications March 1976
of Volume 19
the ACM Number 3

than the "syntactic capabilities" which the language means of a set PL of primitive operators provided by
provides the programmer. For examplc, we will be the language. Examples of such primitive operators
interested in questions like what kind of operations can are: the "+" operator which adds two numbers (ob-

*a computing process carry out, or what can such a jects), generating a new number which is equal to their
process do to a certain type of information object, sum; or a "declare" operator which generates a new
e.g. to an integer variable. Such questions are relevant array. (Note that we do not distinguish between oper-
to our subject matter because when a piece of informa- ators that can act at "compile time" and those that act
tion is transmitted to a user program we would like to at "run time").
know what the program can do with it. In order to be The process 11 can now be formally defined as a
able to answer such questions we will now develop a sequence of operations of the form:
model for the "capabilities of languages." It should
be pointed out, at the outset, that this model is not so i- p(s,., s.,) (for n :0),
intended as a contribution to the theory of languages which is the application of the operator p ::P, to the
per se, but as a tool for the subsequent treatment of objects s1 , . .. , s. in S. Such an operation may affect
user database interaction. We begin by introducing the objects s, ; in addition it generates a new object so ,t
some basic concepts and notation, to be called the outcome of p, and which may in par-

Let L be a language, and let Hl, or 11(L), be a process ticular be null. (Note that this is not an "assignment
of computation generated by a program written in L. If statement"; a special assignment operator will be in-
we take a snapshot of 11 at a certain stage of its activity, troduced later). We will assume, for simplicity, that
we can talk about the information space of HI, to be once an object is generated into S, its brand cannot be
denoted by S, which is the set of all information objects changed; thus the operator p above can change at most
(or simply objects) which are accessible to HI at this only the value parts of objects si .
moment. By the term object we mean, informally Under most languages a computing process is not
speaking, a "thing" which has a state. The state of an free to apply any operator to any set of objects. The

*object can be observed and it may, or may not, be language usually has a set of rules built into it that
*changeable. For example, the number "17" is a specify which operators can be applied to which objects,

nonchangeable object, while the state of a "stack" can and under which circumstances. This set of rules, to be
be changed by means of a "push" or a "pop" operator. called the application rules of the language, will be

It would be convenient to consider some of the denoted by RL.. Languages may vary widely as to the
objects in S as being primitive objects provided by L type and form of their application rules; in particular,

*to every process 11(L), such as the various literals rec- a language may have no such rules at all, as the follow-
ognized by the language. This set of objects will be ing example shows.
denoted by SL. The other objects in S are generated by Let L be.the machine language of a classical von
1I itself, as we will see later. Neumann machine. The storage space S of every 11(L)

It is customary to classify the objects in S by means is fixed in this case, being the set of memory cells of
of types. The concept of type would be central to our the machine. The set of operators P1L available to 11
model, but since we will be interested only in some of are the machine instructions. There are practically no
its aspects, to which we will have a somewhat uncon- application rules here; II is free to apply any operator
ventional approach, we will avoid the term "type," to any cell. This does not necessarily result in complete
replacing it by "brand." We assume that the state of anarchy, since the operators themselves may have their
every object s E S has two distinguishable parts: own built-in rules. For example, although there is no 1
brand(s) and value(s). Here, value(s) stands for the way to prevent the division operator from being applied
"main part" of the object s, and brand(s) is a tag which to a zero denominator, the operator itself would usually

will be used to classify the various objects in S. For refuse to divide by zero. Such internal rules, built into
simplicity we assume that there is a fixed and finite set the operators, will not be discussed in this paper. We
of different brands for a given language L, to be denoted will look upon the various objects and operators as
by BL.- We will use the symbol 0 to denote a generic "black boxes," considering only application rules which
brand, and barred capital letters to denote specific are imposed by the language from the outside, so to
brands. For example, we will use I as the brand associ- speak. One class of such rules will be introduced later
ated with integer numbers, R as the brand associated in this section.

Lwith real numbers, T as the brand associated with text To summarize, we define what we call "the capa-
objects, etc. An object whose brand is a certain #i will bilities' of 'a language LV as the four-tuple
be referred to as a #-object. (Si, , L.PL , RL), where 0

For reasons which will not be spelled out here we
introduce the following convention: the language wil Sa. is the set of primitive objects in L,

L recognize a special "null" object which will be treatedL asif t isbraded y al th brndsin 8 . Not tht ths dfinthisth or "abitesisrledbuot'
Teobjects in S are generated and manipulated by ating systems (51.

11Communications March 1976

the ACM Number 3

B, is the set of brands defined in L, As another example, suppose that we have in L the
PL is the set of primitive operators provided to every data type "stack of integers" whose brand is S. Assuming

1(L), the existence of the two operators PUSH and POP in

R is the set of application rules imposed on 1(L). Pt., we might control the use of stacks by the follow-
ing rules:

We will now introduce a class of application rules that
will be useful to the rest of this paper. rl: 14-(POP,USH)

3.1 Simi le Application Rules Note that according to rl, PUSH has no outcome.
We now consider application rules which have the In order to get a better approximation to realistic

following general form: programming languages we must introduce explicitly
r: (p,O, ... ,) (for n > 0) the concepts of variable and assignment operator. This

we will do next.

where 0.C Bl.fori=0, 1, .,n; and pE PL.-
The rule r (r is a label, used for discussion only) 3.2. Variables and Assignment Operator

serves two functions. First, the right-hand side of r The concept of "variable" can be introduced into
serves as a right" for 1(L) to invoke any operation our model, intuitively, as follows: a variable is an
p(sl,. . . , s.) such that brand (s,) = 0, for I < i :5 n. object whose value part is another object or the "name"
The right-hand side of r will accordingly be called right of such an object, if sharing is desired (we will ignore
and will be denoted by p. It is assumed that no p can the distinction between these two cases). The value of a
appear more than once in RL. The second function of variable is assigned to it by the assignment operator
the rule is to determine the brand of the outcome of an ":= ". In our notation the assignment operation will
operation p(s, , . . . , s.): it is to be the 0o of the rule have the form :=(variable, object), and for simplicity
which contains the right for this operation (by the we assume that this operation has no outcome. If a
assumption above, there is at most one such rule). If variable appears as an argument of an operation in
Oo is null and "4-" does not appear in the rule, it would any other context, then the object which is its value is
mean that no new object is generated into S(11), even assumed. An important property of a variable is its
if p does have an outcome. domain, which is the set of all objects which can pos-

These rules are simple and restricted in several sibly serve as values of the variable. The domain of a
respects; in particular: (a) the rules are independent of variable is clearly determined by the rules in RX, as the
the values of their arguments, being defined in terms following example shows.
of the brands only; (b) the rules are invariant of the Let v and # be brands in BL, and suppose that the
state of computation (for example, they do not dis- following rule exists in R,
tinguish between the compilation phase and the execu-
tion phase of nly; (c) the rules have "global validity," r: (-, v,0)
so that they cannot be used to model any "name This rule allows v-objects to appear at the "receiving
scoping." Yet these "simple rules" can model a signifi- end" of an assignment statement, the other end of which
cant part of the application rules of many languages. is a $-object. Formally, this makes v-objects into vari-
For example, if), R, and C stand for the brands of a.les. In general, there may be additional rules in RL
integer, real, and complex objects, then the following which permit the assignment of other types of objects
are samples of the rules which one might have: to v-objects. If, however, r is the only such rule, then
rl :]=(-+, 1,), the domain of a v-object, as a variable, is the set of all

r2: R 4 (+, 1, R), #-objects. We will call such a variable a 0-variable; we

r3: C r= (+, C, C), will also refer to it as a simple variable. It is clear that
r4: Rc *= (IM, C). if an object s is stored in a simple variable, then itsbrand does not have to be explicitly stored. Moreover

The rule rl allows II to add two integers, specifying if all the variables in f1 are simple, then simple applica-
that the outcome is an integer. r2 allows II to add an tion rules can be enforced at compile time.
integer to a real number (obviously there is a conver- These properties are the main reason why many
sion to be done here, but this is irrelevant to the appli- programming languages have only simple variables, e.g.
cation rules). r4 allows li to apply the operator IM to integer variables, real variables, etc. In fact, simple
a complex number, which presumably returns its variables are so common that one tends to forget the
imaginary part. Note also that if the set RL at hand difference between the type (brand) of an object and
does not contain the right (+, 1, C), then II cannot add, the domain of a variable; indeed the term "type" is
directly, an integer to a complex number. usually used for both, although it is clear that an

"integer number," for example, and an "integer vari-$The tam"right" is borrowed from 13 1. al"aentsmlrojcsadd o aif h
' Such a distinction is made in most languages. For example, able" are not similar objects and do not satisfy the

in Fortran variables arc generated only at compile time. same rules.

152 Communications March 1976
of Volume 19
the ACM Number 3

. .. . V I.. IRl

L

Fig. 3. An illustration or the proposed approach to user-database databases, such as the DML features of the DBTG [1],
interaction. In order to interact with the database, the user must but it cannot have the specific capabilities which are
irst effect a "connection" between a language L and a subschenma
Z. This connection generates a "new" language L,. The user's necessary for the interaction with a given image D/Z.
program would operate from within L,, so to speak. It has, there- Presumably, such capabilities exist only in Z. In order
fore, the necessar'y capabilities to interact with D/Z. to provide our user with these capabilities, we will

S-. - augment the capabilities of the language L (in the sense
D _of Section 3), by the capabilities of Z. This action will

D/Ebe called the connection between L and Z. In a sense,~such connection generates a new "Z-amplified" Ian-,
guage, which we will denote by Lz. This "newly created
language," which exists only for the duration of a
single session of interaction between U and D, has the
same syntax and most of the semantics of the "base
language" L. It is an amplified language only in the

Lsense that it contains capabilities which do not exist in
- / --E a to" L. In particular, Z may contain new brands (types)

and new rules which are induced into the newly formed
language. Thus a program written in L- will be under
the joint jurisdiction of the set of rules built into L, and
those in Z, which is the effect we are trying to achieve.
Figure 3 is an attempt to illustrate this model of user-

user database interaction. A more formal treatment of this
model is presented below.

4.1. The Subschema and Its Connection to L '

In the rest of this paper we will assume, first, that The subschema will be viewed here essentially as a
the user program is written in a language whose capa- collection of capabilities which facilitate interaction

in par- with a given image of the database, and which arebilities can be described as above.8 This means, ipa- designed to augment the capabilities of a given language
ticular, that the application rules of the language are
strictly enforced (such languages are often called L.10 Formally, X is defined to be the 4-tuple (S- , B-, P-,

"strongly typed" languages). Second, we want these R5) where: -

rules to be explicit, rather than implicit in the overall 5 is a set of (names of) information objects in D, which
structure of the language. This second property will- are to be accessible to the user. They will be called
allow us to augment the application rules of the Ian- D-objects (e.g. sets, relations, records of various
guage by the rules built into a subschema of a database, types, etc). The specification of the brand 6 associ-
as we will see next. ated with an object Q E Sz will be done by the

notation "Q: P".
Bz is a set of brands, which are all different" from the

4. A Model for User-Database Interaction brands in BL.
Pz is a set of operators (or procedures) which are de-

We have already seen, in Section 2, that in order to fined in the database, and which the user is allowed
interact with an image D/ of a database D, a user U to use. These operators will be called D-operators.
must first be connected with the subschema Z, which in Rz is a set of application rules, to be called D-rules,
some sense contains the "capabilities" necessary for designed to regulate the interaction of a user pro-
interaction with D/Z. Retaining this basic notion we gram with the database. We again restrict ourselves
will now give it a new interpretation. We begin with a to "simple rules," which have the following general
general outline of our approach; a more detailed dis- form:
cussion will follow.

Let L be the programming language to be used by r: po (p, pt, .) (for n > 0)

U for his interaction with the database. This language where PE Bz U BL for 0 < i < n, and pE P- U PL.
might have some special tools for interaction with This is exactly the structure of the "simple rules" in

* This does not imply that every user should use such a language, to This does not mean that the interaction with the database
but only those who wish to take advantage of intentional resolu- must be carried out by means of a single language. Different sub-
tion (see Section 6). schemas may be designed for different languages.

* This language amplification is analogous to the extension of "To distinguish between the brands in _ from those in L, we
a language by qew data types or new "clusters" I 111, except that will denote the former by barred lower case letters, e.g. a,&; while
her the extension would be induced into the program from the the. latter are denoted by barred upper case symbols. When we do
database, and not defined by the programmer himself, not wish to distinguish between Bz and BL we will use A,.

U3 Communications March 1076
of Volume 19
the ACM Number 3

A& except that these rules can use the operators and introduce a special operator, called CONVERT, which
brands in X as well as those in L. does just that. For example, if we have the rule

This concludes the formal definition of the sub- $32 (CONVERT, 01) it means that the operation
schema. The connection of I with L can now be viewed s.- CONVERT(st) can be invoked for any 031-object
as an augmentation of the capabilities of L, namely the s, , generating an object v, such that brand(s.) = 0, and
sets SL , BL, P, , RL , with the corresponding sets value(s) = value(si). The operator CONVERT is
S_., B., P:, Rz. This augmentation creates the 1-am- assumed to be included in PL .
plified language L: whose capabilities would be (c) We assume that there is a universal retrieval

(SL U S:-, BL U B,:, PL U Pz:, RL U R:). operator GET, which retrieves an arbitrary member of
any set in the database. GET will be assumed to existIn practice, this means that the compiler of the in every P_ , but its application to a given set, and the

i language L should be able to accept the new brands, brand of its outcome, must be explicitly specified by
rules, etc. which are defined in Z, and it should enforce rules in R:. (Similar assumptions are made concerning
the rules R: U R. on the user program" 17. a universal storage operator PUT.)

One of the main reasons for introducing the above
model was to give the database a degree of control over 4.2. An Example
what happens with information transmitted to the To clarify all this, let us return to the binary tree
user's program. Here is how it works. Let T be a example of Section 2. Consider the following sub-
D-operator, and let r: 0 - (T, ...) be a rule in R: . Let schema:
1 4-- T(....) be an operation authorized by r. The ob-
ject t generated by T (which may simply be a piece of Z S:, Bz , P:, R:J,
data retrieved by T from the database) would, by rule S: = {N: fil, B: = JAI,
r, be branded by i3. To see what the future of t might P: = {LSON, RSON, DATA[,
be, we will distinguish between two cases, depending R: = Irl: i 7 (LSON, it)
on P. r2: it 4 (RSON, it)

First, if g is a member of BL then there would be r3: 14- (DATA, 71)1.
rules in R, which specify how such objects can be
manipulated. For example, if 6 is I then this object can First, note that there is a brand it, defined in Z, which
be manipulated like any other integer number. In gen- would therefore be induced as a brand (or type, if you
eral, an outcome of a D-operation which is branded by will) of the language L:. By convention (a) this means

- one of the standard brands of BL is released from the that a program fI written in L: can generate (or de-
control of the subschema and comes under the juris- clare) it-variables, namely, variables which can contain
diction of the language L. only i-objects. We need to ask how ii-objects can be

Suppose now that 3 is a member of o:. In this case generated, and how the. can be manipulated.
there is no rule in RL which authorizes any operation One it-object is the code N which is declared in S-.
on t. The only operations which are applicable to t are to be it-branded. In addition, the subschema provides
those which are authorized by rules in Rz. Thus al- II with the operators LSON and RSON, which, by
though the object t resides in the storage space of the rules rl and r2, can generate 7-objects. Note that these
user's program, it is still under the jurisdiction of the are the only ways to generate ft-objects. Even if 11
database. For example, the program would not be able manages to get a node n' E tree(N) from an outside
to multiply, compare, or print the object t unless such source, it cannot make it into an 7-object. Moreover,
operations are permitted by R_-. once an 7-object is created it cannot be modified in any

Before considering an example, we will introduce way; there simply is no rule which permits that.
some conventions and notation which will simplify the Now, since 7-objects are the only type of objects
subsequent discussion. which can be used as an argument for any of the oper-

ators LSON, RSON, and DATA, it is clear that an(a) For every brand 0 explicitly included in B:, we 7-object belongs to tree(N). (Note the correspondence
assume that there is a companion brand in B: which is with the two rules formulated in Section 2 for this
the brand of 0.variables (see Section 3.2). That is, a example.) Moreover, if 7-objects are stored only in
program written in L: should be able to generate (or -variables, then all these rules can be enforced at
declare) d -variables for every brand #l explicitly included omailes teninB:i uhtesm a ht"nee aibe" compile tine.
in B d in much the same way that "integer variables" Note that the only "printable" information that theare declared in Algol. user can get from all this is the outcome of the operator

(b) Because it is sometimes necessary to generate a DATA, which is I-branded and is, therefore, a "normal
copy of an object, assigning a different brand to it, we integer." (It is assumed here that every node in our tree

*Whenever there is no danger of confusion we will not dis- contains a single integer value as its data part.)
tinguish between the user's pn'grum and the process oJ computation As a further illustration, let us consider a smail vari-
generated by it; both wiU be denoted by It. ation of the above. Suppose that for some reason the

154 Communications March 1976
of Volume 19
the ACM Number 3

r

user is interested in examining the it-objects themselves. Rule rl in R. is intended to mean that every record
We can easily permit that without compromising our retrieved from E would be P-branded (GET, being a
security requirements. Suppose that an t-object is general-purpose retrieval operator.) By rules r2, r3, and
actually an integer number, which would be the case r4, the three given D-opcrators can be applied to such a
if it is some sort of pointer to a node. We can add to record, returning its three components. The outcome
RZ the rule of the first two operators is T-branded; namely, it

would be. treated as a normal text and can be freely
r4: = (CONVERT,) manipulated by 17. However, by rule r4, the company

using the standard operator COPY introduced by con- component would be c-branded and therefore is not
vention (b) above. In effect, r4 allows IT to copy the released from the control of 1. Rule r5 is intended to
value of any it-object into an integer variable, but it mean that c-branded data can be printed on j-branded
does not allow H to change the ti-object itself. files, which would presumably contain the desired

output of the program, and would be routed to appro-
priate -officials. Thus the names of the companies in-

5. Techniques for Intentional Resolution in volved can be printed on the final document, but they
Privacy Protection cannot serve as a basis for any analysis by the program

which produces this document.
In this section we will discuss several types of pro-

tection problems, and their proposed solution. What is 5.2 Hiding Intermediate Results of Computations
common to all these problems is that they cannot be Consider a user who is allowed to get certain statis-
solved by access control alone; or, at best, their access tical information from a database, but is not allowed
control solution is very difficult, to see the raw data. Suppose that the statistical infor-

mation can be produced by a procedure built into the
5.1. Preventing Undesirable Analysis of Data database, assuming that this procedure does not reveal

The power of the database as a source of informa- any confidential information to its users. The question
tion is due not only to the fact that there is a great deal is, how do we prevent the user from printing out the
of data stored in it which can be retrieved, but also to raw data which he feeds to the statistical procedure,
the ability to correlate various pieces of data with each particularly if the user has to select the data himself.
otner. This ability, which sometimes carries very sensi- This is an example of a more general situation where
tive information, can be denied to a user, as is illus- the user is allowed to get the final result of a sequence
trated by the following example. of computations performed in the context of a database,

Let D be a database maintained by a credit bureau, but he is not allowed to see the raw data or the interme-
and let E = Jel be a set of records about financial diate results. In order to show that access control tech-
transactions. Let the structure of such a record be niques may not be sufficient for such a situation we
e = (pname, trans, company) where pname is the name will analyze- in detail a sequence of related privacy
of the person involved; trans is the description of the measures, of increasing complexity, for a fairly general
transaction, and company is the name of the company class of problems.
involved. The main security problem in such databases Let E0 be a set of records in the database D, and let
is, of course, the individual privacy of the people; T1,.. ., Tk be D-operators. For a given e0 E E0 , let
However, here we will consider this problem solved el, ... , e, be defined by the following equations:
and deal with the privacy of the companies involved.

The problem is this: although the credit database is e1 = Tieo;e 2 = Te;...;eh= Tkek_
intended to provide information about people, it can and let E, be the set of all such ei for 1 < i < k.
be used for the analysis of the financial state of a com- First, suppose that U is allowed to see EA but is not
pany. Such analysis can usually be performed by any allowed to see the intermediate results E, (i < k) or
program which has access to the entire set E, simply by the raw data E-. This privacy measure can easily be
collecting all available information about a given corn- enforced by means of standard access control tech-
pany. To prevent a user from doing this kind of -nalysis niques, provided that U can define Eo to the d,;tabase
we will connect him to the following subschema: without actually examining it. All we have to do is to

Z (, B:, P:, R), permit the user to apply the composite operator

Sr - IE:if, Bz {, ,, c, j1, T - Tk*Tk-i*. . . * T"
Pz - (PNAME, TRANS, COMPANY, GETS, to E.

Rz - Iri: P ,= (GET, i) Suppose next that every one of the records e. is a
r2: T - (PNAME, P) pair: e, = (a,, b,), and that the user is allowed to
r3: T (TRANS, f) examine a,, but not b,, for i < k. (The situation is
r4: c , (COMPANY, I) illustrated in Figure 4, where the wavy arrows indicate
rS: (PRINT, c,J)l, which information should be released to H, and double

l1 Communications March 1976
of Volume 19 ILthe ACM Number 3

r

Fig. 4. Hiding intcrmediate results, the records e, using the primitive operators of the
-- . language L, it is clear that e, must be stored in the

.- •-. storage space of II. Since the secrecy of the component

">.Data oa . b, of e, must still be protccted, we must be able to
do (D) impose restrictions on I. Thus access control is, in

-- principle, not powerful enough for such a case. The way
, to handle this problem by means of our techniques is
T. Use- s left for the reader.

,0- ,. P-ogram
(CT) 5.3. The Need for Local Confinement

IWe now will consider a class of problems for which
the protection techniques of Section 4 are not sufficient
and would have to be refined. We will begin with a
very simple example.

arrows indicate information, including operators, de- Consider a database D and a highly confidential set
rived directly from the database.) of records F in it. Let U be a programmer who is com-

The situation now is more complicated because the missioned to program and apply a transformation T to
user might want to use his right to inspect a, in order every recordf E F and to store the transformed records
to select members of E, and to decide whether or not back into the database as a set F'. Suppose that due to
to continue with a particular sequence of transforma- the confidentiality of F we do not want its content to
tions. It is not possible anymore to replace the indi- be revealed to the programmer U himself, or to be
vidual transformations T, by the composite transfor- leaked in any form or shape to the outside world. (This
mation T, because the latter does not provide for any is an example of the class of problems mentioned in
user intervention. The user's program itself should be the Introduction. As was pointed out there, the solu-
able to generate the partially confidential records e, . tion of this kind of problem has great practical im-
Moreover, an arbitrary number of e,'s may be gener- portance.)
ated and maintained by H1 at any given time. Since these The difficulty with this case is that since our user
records are not part of D proper, it seems that they has to program, the transformation T himself, the con-
belong to the storage space of H1. Therefore to maintain fidential records f E F must be released to his program
their secrecy HI must be restricted as to what it can do so that they can be examined and manipulated. This
with these records. And yet, the situation can still be means, however, that the records retrieved from F
handled by means of access control, even if very in- would not be under the jurisdiction of the D-rules, and
efficiently, as follows: we are back where we s',cted.

Suppose that, when a record ej is generated by T, it One solution to our -;oblem is to confine the user's
is stored somewhere in the database (although it does program, in the sense oi" Lampson [71, namely, to block
not logically belong there). Only the nonsecret compo- all the "output channels" of IH so that it cannot com-
nent a. of e, is actually transmitted to Hl, together with municate to the outside world any information alout
a pointer to e,, to be denoted by pi. When II applies F while it is still allowed to write into F'. However,
the operator T... to the pair (a,, p,), the database will such a complete confinement of the user's program may
use pi to locate the complete record e, . Since the pointer not be desirable because the same program which
pi does not carry any meaningful information for the manipulates the confidential information may also be
user, it can be safely released to his program. Thus, doing other things which might require various output
although it would be very difficult and inefficient, it is channels. Thus instead of the confinement of the entire
still possible (at least in principle) to enforce the privacy program II, we would prefer a "local confinement"
restrictions at hand with access control alone, only of those parts of 11 which need a free access to F.

As a final version of our privacy measures we will For this we introduce a new linguistic construct to be
now consider the following situation: Suppose that called the confidence module.
although the value of the components b of e, should
not be released to the user, he is allowed to manipulate 5.3.1. Confidence modules. Let M be a module" of a

these components in various ways. For example, the program H1, such as an Algol block or procedure. The
user's program might be allowed to print the entire storage space of H7 can be divided into two mutually
record ej , including bi , on a certain file; (assuming exclusive parts with respect to M: the internal storage

that this file would be physically unavailable to the space of M, which is accessible only from within Mf,
user). Or he might be allowed to compare the various and the environment of M, to be denoted by E(M),
b,'s with each other, but not with anything else. (This which is all the rest. E(M) would include not only
capability might reveal to the user certain limited variables defined within H, but also files and those parts
amounts of information about b,.) Now, since IT is ,1The concept of "module," as well as some other standard
allowed to perform certain "normal" operations with concepts to be mentioned below, will not be defined here.

156 Communcations March 1976
of Volume 19
the ACM Number 3

I -

of the database which are accessible to 11. Normally a simply from the fact that one might he willing to let the

module has a variety of means by which it can affect user program see more of the database, but within a con-
its environment and thus paiss information to it. For Jidence module from which he cannot comiunicatefreely.
example, M may change a variable which is in its This is readily demonstrated by the following treatment
scope but is not internal to it;.it may write on a file, of the example which was given at the beginning of
etc. Informally we will refer to all such means that M Section 5.3.
has to affect its environment, as the output channels of Consider the subschcma defined by:
M. (Note that even the existence of multiple exit points = S , Bz, P: , Rfj,
out of the module should be considered as an output S1 = F: ., F': 'J, B_
channel.) Usually one does not have much control over P:_ = iGET, PUTI,
which output channels a given module will have. For R- = Ir: b1 (GET,f)
example, if a file is accessible to a program it is usually r2: I (CONVERT, b,) confidence(6)..)
accessible to all its modules. This brings us to the fol- r3: 6. (CONVERT, 1)
lowing concept. r4: (PUT,6., 2). .

Definition. A confidence module is a module which
has only a spegified set of available output channels. The program II written in L would be allowed, by

We will nosay how exactly output channels should rule rl, to invoke the D-function GET(F), which is

be specified, but an example might clarify the concept.. assumed to produce a record f F as its outcome;
Let F be a file name, and let b be a brand; then every such record would be 61-branded. The brand b1

appears only in one more rule, in r2, which permits the
confidence(F,b) begin.. end conversion of a b1-object into an integer, where for

would be a module whose output channels consist of simplicity it is assumed that F is a set of integer num-

the file F and any 6-branded variable that this module bers. Note, however, that r2 is applicable only within
can access. confidence modules whose only output channels are

Note that there are no restrictions on what a confi- 2-branded variables. Outside such a confidence mod-

dence module can "see," since we are concerned only ule" the recordsf F cannot be manipulated or exam-

with how a module can communicate information to ined. Let M be such a module (see Figure 5). Since M

its environment. Thus, for the purpose of read-only is able to transform any f to an integer, it is possible
to program an arbitrary transformation T(f) in M. At

access, a confidence module may have the normal scope
of an Algol block, say. the same time, M, being a confidence module, cannot

A systematic study of the concept of confidence affect its environment except by writing into b,-branded

modules and their implementation is outside the scope variables. By r3, any integer number can be converted

of this paper. The interested reader is advised to study into a &,-object. A 62-branded object, in turn, can only

Lampson's paper 17], which discusses the problems in- be written in F', according to r4. No other operation

volved in the confinement of programs. (It should be can be applied to it.

pointed out, however, that Lampson's paper is con- It is clear that our privacy requirements are fully

cerned primarily with the operating system aspects satisfied. The programmer can carry out an arbitrary

of confinement. Here, on the other hand, since we transformation on F, storing the results of his trans-

are talking about a linguistic construct, the compiler formation in F', but he has absolutely no way to see
should carry the main responsibility for enforcing the file F' itself or any information about it, or to leak
confinement.) such information to anybody else. At the same time

the program as a whole is not confined or limited in
5.3.2. Use of confidence modules. In order to use the any sense. (The reader may wonder why the brand 6, is

confidence modules for intentional resolution we will necessary; is it not simpler for the module M itself to
have to generalize our application rules. As was already writef on F'? This is indeed the case for the problem
pointed out, the scope of a simple rule, introduced in at hand. However, 6., would be necessary in the slightly
Section 3, is the entire program II. That is, operations more general case where the user is allowed to apply
which are legalized by a certain rule r can be carried certain D-operators tof', which he might want to do
out anywhere within it. We now introduce a restric- outside of M.)
tion of the scope of an application rule to a certain
type of confidence modules, as follows:

Let r be an application rule; then the rule 6. Scope of Application of Proposed Technique
r': n/confidence(c,,. . ., c) A major disadvantage of the method for user-data-

is identical to r but is valid only within confidence base interaction introduced in Section 4 is the strong
modules which do not have any output channels except requirements imposed by it oq the language in which
C, •, c'. (It is assumed here that c, denote "output ,, Note that the user can have any number of confidence
channels".) The usefulness of this generalization comes mcdules in his program.

* 57 Communications Mrrch 1976
of Volume 19
the ACM Number 3f I

Fi$. 3. The situation created by the subschema Z described in only rcquircment would be that the application pro-
Section 5.3.2. I he rccurds/ ,_ F which are retrieved by It are
enclosed in an opaque box)h, which shields them from II. (The box gram is writtcn in a languag of the type of Section 3.
represents the brand 6o. The only way out of this box leads into a Since such an application program is typically designed
confidence module, which in turn has only one output channel as an integral part of the information management
which leads into another coniinement, the box h,. Within the con-
fidence module t. the rmcords / Fcan be manipulated freely so system at hand, this does not seem to be an unreason-

that an arbitrary transformation Tcan be performed on them. The able requirement. It is quite common for an installation
single arros labeled uip illustrate the fact that there is no restric- to impose restrictions on the language and style of
tion on input channels to a confidence module. The labels

r.. ., r4 on the double arrows represent the D-rule which legal- programming which is used for its major systems.
izes the transmission of information represented by the arrow. There is another class of programs whose interac-

tion with the database should be controlled by the

------- ataase - techniques introduced in this paper. These are the pro-
Daas cedures built into the database itself Indeed it is a well-

f F known principle of design of large systems that the
interaction between every module of the system and
the rest of it should be carefully controlled. We believe

.. that this control should include intentional resolution.
_ 1' - r - haIn this case intentional resolution can be achieved if

-. the entire database is programmed in a single strongly
TTT1 -styped language. This aspect of database design is dis-

b2 cussed in 181.
22 Finally, it should be pointed out that the protection

technique proposed in this paper is applicable not only
lr'.". . - •' (f} for intentional resolution. It was shown in [10] that

.ri several other protection problems can be solved more
Ccnhfoe'ce c:u e M - efficiently by imposing control over the user programs

than just by means of access control. Our binary tree
' I .example (Section 4) is one such problem.

User-s programn

7. Conclusion

The main thrust of this paper has been the intro-
duction of intentional rr o/ution as an independent di-
mension of privacy prot :ion, which is complimentary

the user program is written. For example, neither Cobol to access control. This aspect of privacy protection is
nor Fortran can be used for this kind of interaction, either totally ignored in the database literature, or at
and certainly not an assembly language. An appropriate best it is listed as one of the unsolved problems [9],
"strongly typed" language can and should be designed, leaving a wide gap in our ability to protect the privacy
but it would be unrealistic to assume that the average of data. In particular, under most database systems
user would be willing to give up his favorite language the programmers who maintain an information system
in order to interact with a database. Indeed, this is have a virtually unrestricted access to all the informa-
not our intention. Our method for user-database inter- tion in it. This paper is intended to suggest an approach

. action is intended for the hopefully few cases in which for dealing with these kinds of protection problems,
intentional resolution is necessary. In this section we but it does not present a complete solution. This
will try to identify some of these cases. work should be completed and generalized in a num-

First, it should be pointed out that the term "user- ber of directions; the following two are particularly
database interaction" does not reflect correctly the way important:
in which databases are used in general. In practice, the (a) The "simple application rules" are much too simple
entity which interacts directly with a database is often and should be generalized.
some general purpose "application program," which (b) The problem of how subschemas are generated
in turn serves a number of "end-users." In such a case and maintained in the database was not addressed at
it may be sufficient to control the interaction between all in this paper. This problem can be treated only
the application program and the database so that the in the context of a comprehensive study of the struc-
formation, even it it can get it from the database. If it scope of this paper.

is not necessary to control the interaction between the
end-users and the application program, then the end-
users can use an arbitrary programming language. The Received June 1974; revised March 1975

ism Communications March 1976
of Volume 19
the ACM Number 3

1. CODASYL Data Base Task Group (DBTG) Rcport, April Proc. Courant Institute Symp. on Data B~ase Systems, 1971, PP.
1971. (Available from ACM.) 65-98.
2. Minsky, N. On interaction with data bases. Proc. ACM 7. Lampson, B.W. "A note on the confinement problem". Comm.
SIGFIDET Workshop on Data Description, Access and Control, ACM 16, 10 (Oct. 1973), 613-615.
1974, pp. 51-62. 8. Minsky, N. Another look at data bases. FDT Bull. (ACM
3. Summers, R.C., Coleman, C.D., and Fernandez, E.B. A pro- Newsletter) 6, 4(0974), 9-17.

Ill!gramming language approach to secure data base access. IBM 9. Owens, R.C. Jr. Evaluation of access authorization for on line
Tech. Rep. G320-2662, May 1974. data management systems. ACM SIGFIDET Workshop, Nov.

4, 9 SA....i "~ nd orga, ~1971, pp. 263-278.
atonwasciy, mesue in inorato Hyt. n mm the 10. Minsky, N. Protection of data bases, and the procehb of user- DB

taton f scurty easresininfrmaionsysems Com. CM interaction. Tech. Rep. SOSAP-TR-l I, Computer Sci. Dep.,
*IS, 4 (April 1972), 211-220. Rutgers U., 1974.

5. Wulf, W.A., et al. HYDRA: the kernel of a multiprocessor 11. Liskov, B., and ZLiles, S. Programming with abstract data
operating system. Comm. ACM 17, 6 (June 1974), 337-345. types. SIGPLAN Notices (ACM Newsletter) 9, 4 (April 1974)
6. Codd, E.F. Relational completeness of data base sublanguage. 50-59.

*PREVIOUS LISTINGS Army Research Office, and Office of Navat Re-PROFESSIONAL 17-19 March 1976 search in coop. with ACM. tEEE-CS. and IEEE
U Ninth Annual Simulation SYupelsau, Professional Group on Reliability. Contact:

ACTIVITIES Tampa. Fla. Sponsor; Society for Computer Sim- Jerome Fox. Polytechnic Institute of New York.
ulation 5SCS) with the cooperation of ACM and MRI Symposium Committee, 333 Jay Street.

Caen arIEEE-CS. Contact: L. Ed Gesa. Director. Corpo- Brooklyn, NY 11201.
Caledarrate Planning. Green Giant Company. Hlazeltine 20-23 April 1976

of Events Gates, Chsaska. MN 55555; 612 448.2823. Third European Meeting on Cybernetics
22-24 March 1976 ad Systems Research (EMCSR 76). Vienna.

This calendar aims to list scienstific meetings 21 Cofeece o Data: Absartlon. Deflal- Austria. Sponsor: Austrian Society for Cyber-
that are open to the computing public and that are lion, and Structure, Salt Lake City. Utah. Spon- netic Studies. Chin: Robert Trappl. Osterreichis-
held on a not-for-profit basis. Educational semi- sors: ACM SIGPLAN and SIGMOD. Chin: El- Cho Studiengesellschafl f~r Kybernetik. Schot-
nars, institutes, and intensive courses are not liott 1. Organick. Department of Computer Sci- tengaase 3. A-1010 Wien 1. Austria.
included. Submittals should be substantiated with ertce. Room 3160 Merrill Engineering Building. 22-23 April 1976
nae anf chairmansorng oranizion, addesch d Salt Lake City. UT 84112. Conference on Computer Law: The Stale of
nale ond heirponsornm anizllaiodress. e- 293 ach17 the Art. Mark Hopkins Hotel. San Francisco.0ctelphoe nmbr cntat tos Manch 176 Caif Sponsor: Computer Law Association. Con-Ore teephon numbr conact fr thoe in- a intrnatinal smposim on CLAutedoodEtJct:Grenier E.Jr.,eie SuiteS800.80.1166
terested in attending a meeting will be given 'when eling, Measurement. and Evaluation. Cambridge, tet ahntn C206
a number i eiied for this purpose in the news Mass. Sponsors: ACM SIGMETRICS and IFIP KSteWahno.DC20.
release text or in a direct communication to this Working Group 7.3 (Computer System Modeln) 22-24 April 19 16
periodical. Co-chin: J. P. Buren. Aiken Computation Lab.. a Annual ACM Southeast Region Conference.

Harvard University. Cambridge, MA 02138: and University of Alabama in Birmiinghaiiu. Alabamsa.
All requests for ACMI sponsorship or coop- Arnold Ockene. I'BM World Trade EIME/ A Sponsor: ACM Southeast Region. Chin: M.P.

eratton should be addressed to Chairman. Con- Cop.OeNrhBoda W N5;Dp. WiUnvstyfA1bm ox8,nvriy
ferences and Symposta Committee. Dr. .S. Cop. OnSot rawy(PNS et t. nirityaof ALam, Bo5294nierit

* ~Dorsey. Dept. 503/504 Rockwell International 465). White Plans, NY 10601. 2ta 24 Bir ilghm AL9 3294
Corporation. Anaheim, CA 92803. For European 30 March 1976 23-4mpilm 1976 mai OMU1011
events, a copy of the request should als) be sent a Fortran Forum 11t. Washington. D.C. Span- Smoimo uoai optto n
to the European Regional Representat~ve. Tech- sor: ACM SIGPLAN. Chtn: Frank Engel Jr.. 179 Control, Milwaukee. Wis. Sponsors: IEEE Mil-
nical Mteeting Request Forms for this purpose Lewis Road. Belmont, MIA 02175; 617 484.5911. waukee Section. IEEE Systems. Mtan and Cyber-

can e otaied romACM eaduarersor 1 Mach- Apil 976netics Society, and University of Wisconsin-
can e otaied romACM eaduarersor 1 Mach- Apil 976Milwaukee. Chin: D.D. Woen,. Contact: J.T.

from the European Regional Representative. Lead Consference on Information Sciences and~ Snedeker. Eneineering Dept., U \-Extension. 929
time should include 2 months (3 months if for Systeins, The Johns Hopkins University, Bati North Sit .. Mlake a 20,4424
Europe) for processing of the request, plus the more. VDi~. Contact: G.C.L. Meyer or W.J. Rugh. 4193. Mlake ~I533;4424
necessary months (minimum 2) for any publicity 1976 C1 '~. Electrical Engineering Dept.. The 413
to appear in Communications. Johns Hopkins University. Baltimore, MD 21218. 26-27 April 1976

Eighth Annual Southeastern S~mposinm on
Events for which ACM or a subunit of ACM 31 March-2 April 1976 System Theory, The University of Tennessee.

is aonsr r ollaborator are indicated by 11. ORSA/TIMS 1976 Joint National Meeting. Knoxville. Tenn. Sponnsors: The University of
Daltes precede titles. Sheraton Hotel. Phildlpi.P.Cna: 3

Burbridge. Publicity Chairman. 1976 Joint ORSA/ Tren esse and EE.~ S Gh e chnve sit WflTerneL.e
TIMS Meeting. Cetlege of Engineering, Rutgers GrenxviDe. of EE91. TeUiest fTnee

ints S issue the calendar is given to JaistiarY nvriy New Brunswick. NJ 08903.Kovle N396
University.ns r gtn irt ad hy r 26-27 April 1976

597. ewlititg ae it-itfist ud ~c u.~ 1-2 April 1976 a Symposium on Graphic Languages. M6iami.
not repeated in the second parr. a Coisiter Science and Statistics. Ninth An- Fla. Sponsors: ACM SIOPLAN and ACM SIG.

NE LSTNG nal Symposium on the Interface, Harvard Uni- GRAPH in coop. with Florida International
NEWLITIGSversity, Cambridge. Mass. Sponsors: ASA and University. Prog. Chin: Toby Berk. Dep. of

7-9 April 1976 Harvard U. in coop. with ACM6. Contact: David Mathenmatical Sciences. Florida International
Secnd Annual Government-lodustry, ADjP C. Hoaglin. Dep. of Statistics. Harvard Univer- University. Miami, FL 33144.

Conference: Federal Government Data Systems. sity. I Oxford St., Cambridge, MA 02138. 26-27 April 1976
1976-1"86. Sheraton Beltway Convention Center. 1-2 April 1976 Seventh Annual Pittsburgh Moifdelingf and
Washington. D.C. Sponsors: AIIE in coop. with in Third [CASE Conference on Scientific Cosm- Simulation Conference, University of Pittsburgh.
Federal Departments and Independent Agencies poting: Computer Science and Scientific Com-. Pittsburgh. Penn. Sponsor: U. of Pittsburgh
in the Wathington. D.C. area. Contact: Dept. poting. Quality Inn'Foil Magruder. Williams- School of Engineering in coop. with the Pitis-

* ~PR, AIIE Seminars. P.O. Box 2506,. Los Anft.- burg. VA. Sponsor: ICASE in cooperaon it burgh Sections of IEEE and ISA. Co-chm: Wl
lea, CA 90025; 213 826-7572. ACM. ACS. AIAA. ASCE, IEEE. SIAM. Prog. liam G. Vogt and Marlin H. Mickle. 231 Bene-

17-1 Ma 196 dm: James M. Ortega. ICASE. Contact: Robert dum Engineering Hall, University of Pittsburgh.
17-19 Ma Com76 e Gofrne eso . Voigt. ICASE. MS-132-C. NASA Langley Re- Pittsburgh. PA 15261.

76. S QuenEl mpetuHtel. Conrec. -Cesna. search Center. Hampton. VA 23665; 804 827-2513. 3-5 May 1976
76poensos CiPSandt CSAe. ontact: JanHdM. 7-9 April 1976 * Eighth Annual AC&M Symposiums on Theory
Wilonasr. Cnadiand Cata. Conatm: Serv-. Symoosium on Recent Resells and New D1- of Computing. Hershey. Penn. Sponsors: ACM~
ice&. Box 8100. Montreal. Quebec. Canada. reos IAloihsadC pliyaree- SIGACT and Penn State University. Ping. chin:

Mellon University. Pittsburgh. Pa. Contact:7J.F. A.K. Chaundra. T.J. Watson Research Center. P.O.
13.19 October 1976 Traub. Computer Science Dcp.. Carnegie-Mellon Box 218, Yorktown Heights, NY 10598.

a Fifth Texas Conference on Computing Sys- U3.. Pittsburgh, PA 15213. 3.7 May 1976
lams, Thompson Conference Center. Austin. 8-9 April 1976 141h Annual AssoclatIon for Fducatlionall6Texas. Sponuirs: The University of Texas in a Computer Management Symposium, Mar- Data Systems National Convention. Adais HotrI.
coop, with ACM and IEEE-CS. Contact: James tiott Hotel. St. Louis. Mo. Sponsor: ACM SIG- Phoenix. Ani,. Contact: Rick Meyer. Co~nvention
Saeri er. Dep. of Computer Sciences. Painter UCC. Contact: Ralph E. Lee. Univrrsity of Mi1s- Codntr hei no ihSho itit
Hall 3.28. The University of Texas. Austin. TX souri-Rolla. Computer Center, Rolla. MO 65401 2526 W. Osborn Road, Phoenix. AZ 85017.
781.12. 314 341-4841. 2-8My17

29 November- I December 1976 13-I5 April 1976 Ug 1976 international Symposium on Stultiple-
6 Bicentennial Conference on Maiattsattal 2ad International Symposium on Program- Valued logIc. Utah State University, togait. Utah.
P11regrammng. NBS. Giuthersbirg. hid. Spon- ninat. Paris. France. Organized by The Institut Co-sponsors: ACM. Utah State University, ONR.
noers: ACM SIGiNIAP and NBtS Applied Mathe- die Programmation. Sponsors: Centre National de and IEEE-CS. Contact: Stephen Y.H. Su. Dep.
matics Division. Canf. Chin: Hlarvey J. Green- Is Recherche (CNir) and Unrti . Pierre et of Electrical Engineering. Utah State U.. Logan.
berg VPI and SIt. 11440) Isaac Newton Square, Marie Curie. Contact: Secretariat du Colloqtue, UT 0432 1.6 Reson, VA 220905. Instilut de Programmatlon. 4. place Justleu. 75230

Pari Cees 5, rane; el. 25.2.2 z5.97 27May 1976
6-6 December 1976 PaSyCmposraciTe.32.2.1~ 7 um ons Trends and Applications

a Winter Simualation Conference. NBS. CGailh- 20.22 April 1976 1976: MICRO and MINI qystens. NRtS Gaithr-
eesburp. Mar land. sponsors ACMI Slt.SIM and Mal sympsisium on Computer Software burg. Md. Sponsors: IEEE and NOS. Chin: M.V.
NUIS. Chin: "ir"ild Highland,. Comiputer Science Finslaeering. karbi/on Pla,, a Hotel. New York. Zelkowit,.7U. f Maryland. 20740; 3011 454-4251.
Department, Newri York State Technicai College. N.Y. bponsors: Pl'oytechnic institute of New
Farmilngdale. NY 11735; 516 42G-2190. York. Air Fisrce Office of ScientIfic Research. Calendar con fiued on page 161.

159Communications March 1976
6Of Volume 19

the ACM Number 3

SOSAP-TR-17

March 1976

FILES WITH SEMANTICS

N. Minsky

Department of Computer Science

Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, New Jersey

This research was supported by the Advanced Research Projects Agency

of the Department of Defense under Grant #DAIICIS-73-G6 to the

Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the

0 author and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of the Advanced

Research Projects Agency or the U. S. Government.

FILES WITH SEMANTICS

K. Minsky

Rutgers University
Hill Center, Busch Campus

New Brunswick, New Jersey 08903

The conventional concept of file is reexamined, and found to be unsatisfactory, both
as a linguistic concept in a programming language and as a tool for data processing.
A new file concept is proposed which unlike the conventional file attempts to simulate
an intelligent archivist rather than a filing cabinet.

*INTRDUCT ION

The concept of file has an inportant role to play in two branches of computing: Data processing and
* programming language. Unfortunately, both roles arc poorly performed. The conventional file, as it is

provided by most programuing languages and supported by most operating systems, is a (software) storage
device which can be characterized by the following two properties:

*1. It handles an unbounded number of records without any explicit relations between them (by the term
"explicit relation" we mean a relation which is recognized and handled by the (software) device).

2. It has no "semantic content". That Is to say, as far as the conventional file is concerned, the data
*stored in it is devoid of any meaning; the interpretation of this data is entirely up to its users.

One can draw a close analogy between such a device and a filing-cabinet (which is the source of the name
"file"). However a filing cabinet is not what we need in data processing. If one has a large amount of
valuable and sensitive information to be shared by a number of people, one would rather have an intelligent
archivist-handle this data than dump it into a filing cabinet. An archivist who would have some general
knowledge about the records in his custody, should be able to validate the various transactions, thus pro-
tecting the semantic integrity and the confidentiality of the data; monitor the flow of data, reporting
various unusual events; etc.

The Importance of such capabilities is widely recognized, but they are mostly considered ()in the context
- - of database systems. However, since database systems are designed to handle large volumes of complex and-

interrelated data, they tend to be very large and expensive. Therefore, the scope of application of these
systems is somewhat limited. We maintain, however, that one needs the "intelli-gent archivist capabilities"
for the small business with its mini-computers and few files, as well as for the big integrated corporate
databases. Moreover, one should be able to get such capabilities, in this simple environment, without
paying the price of a mammoth database system.

One can, of course, design a mini-database system which handles only simple data. An example of such a
system is ASAP f 1). It is a well-designed system which satisfies many of our requirements. However, the
scope of applications of ASAP is limited by the fact that it is a stand-alone system to be accessed primar-
ily by a ;pecial purpose non-procedural language. Non-procedural query languages are very useful for large
Integrated database systems, but less so for the more modest file oriented applications. The reason is
that simple collections of data are usually accessed from within a program in the context of some computa-
tion. rather than in a query type of setup. Therefore, one has to have a convenient way for interaction
with such data by means of one's favorite general purpose language.

Ths brings us to the role that the concept of file plars in programming languages. We will find, in
section 2, that the conventional file as ti appears in most programming languages is most unsatisfactory,
even from the viewpoint of the host language itself.

The objective of this paper is to come up with a new concept of a file which Is consistant with modern
6 trends in programming languages and which behaves more like an archivist than like a filing cabinet. Ex-

oles are drawn from an implementation of such a file concept under the Sl'4ILA language.

(1) Unfortuately, due to the c-mplexity of database systems, many of what we call "Intelligent archivist
Capabilities" are rarely implemented, in spite of the widespread recognition of their importance.

(2) This work was partially supported by grant DAIICIS-73-G6 of the Advanced Pesearch Project Agency.

4

• LiRNGISTIC VIEW OF RILES

eh concept of file never enjoyed much popularity among programming language theorists. This was true at
the very beginning, as the case of AL.GOL [21 demonstrates, and it is still true today. Even the most
recent trends in programming Languages tend to leave the file in essentially the same form it had some 20

S years ago. As a result of this neglect most modern languages do not answer satisfactorily to the current
needs of data processing. Moreover as we intend to show in this section, the conventional file becomes a
liability to the language itself.

We will restrict our discussion to one-language files, that is. to files which are accessed only by means of
programs written in one given language. This exc !des all sorts of message transmissions, such as a file
which is to be printed out. Also excluded are files which serve as communication media between programs

* written in different languages.

Since a file is essentially a storage device, it is reasonable to expect it to have a total recall of
everything stored in it. This,unfortunately, is not the case under mdst programming languages. A data
item which is directly accessible to a computing process usually carries two types of information: The 5

value and the semantics of the item. The latter includes the tn of the item (e.g., "integer array"),
ZTupossibly a description of its structure (e.g., the dimensions of.the array). Such semantic information
might not be stored explicitly in the item; it is nevyytheless known to the language processor as long as
the item is stored in the internal storage space of the process. But once an obiect is written on a
file only the value part of the item being output is actually retained. The following quote

describes this phenomenon in ALGOL-68 ([3], page 298), but it could have been written aoout FORTRAN,
COBOL, PL/I and many other languages:

"In all these [1/0) procedures, the values are first straightened, and the straightened values are
transput. Thus all information as to how the original values are divided into structures... is lost."

If so. how are we to reconstruct the original items when we want to retrieve the information from the file?
Here is what our ALGOL-68 source has to say about it:

'"If the values output in this way are subsequently read back into a set of structures identical to that
from which they originally came, then the new set will be an exact copy of the old."

SThus, we must know the structure of the items stored on a file before reading them. This is, of course,
a major inconvenience, but it is even worse than that. If the content of a file is not read into suitable
structures, the result may be a bunch of meaningless "things", unrecognizable by the language. Thus, the
file becomes a kind of Trojan Horse which can inject illegal values into a process, violating the basic
rules of the host language. For example, the structure of many languages is designed to guarantee the
specified range of variables. For instance, an integer number in an ALGOL program should not find its way
into a real variable. Nevertheless, it can do so by means of a file: Just write the integer on a file and
read it back into a real variable. Although this possibility is clearly contrary to the spirit of ALGOL,
it may not seemnto be very damaging. However. a similar effect, if it happens to a data structure

with a richer semantic content, has very serious consequences. as tne case of "protected objects" shows.

A protected object is a term that we will use for a novel and important c9tqept in programming languages.
which appears, for example, in some versions of SIMLA [41 and in CLU [51s . A prote~.ted object, or
just "object", is an information item which can be manipulated only in a preiefined way. Such an object
is an instance of a data type defined by a module called "class" (because it serves as a template for a
class of objects). The class contains a description of a structure, together with a set of procedures
defined on such a structure. Some of these procedures are labeled as the operators associated with the
class, the others are called internal 2rocedures. The objects which are instances of a class are protected
in the sense that they can be manipulated only by means of the operators defined on them; the internal
structure of an object, as well as its internal procedures are not visible from the outside. Consider,
for example, the following class which defines stacks:

I. Even if this space is virtual.

2. We will take some liberties in describing this concept, borrowing from both SIJI.A and CLU. and using
our own terminoloy. The class concept as described here, actually exists only in the PDP/lO version
of SIMJLA.

CLASS STACK (N); INTEGER N;

STSUCTURE: INTEGER ARRAY AJI:NJ;
INTEGER TOP;

OPERATORS:
PROCEDURE PUSH (V); INTEGER V;

IF TOMt N TIEN (TOP:=TOP.l;A(T0P):-V;
INTEGER PROCEDURE POP;

*IF TOP.O THEN
iPOP:-A(TOP); TOP:-TOP-l);

INITIALIZATION:
IF NtO THEN ERROR;
TOP:tO

END;
An instance of this class can be generated by

SoNEW STACK(lOO).

The stack S would consist of an integer N, equal to 100; an array A of length 100; and an integer TOP
which is initia?.ized to zero. These attributes of S are not visible from outside, as the only way to
manipulate S is by means of its operators PUSH and POP. For example. S.PUSH (7) pushes the number 7 on
top of the stack, modifying the attribute TOP accordingly.

Because the internal attributes of protected objects are inaccessible from the outside, it is possible
to design a class of objects which have some inherent properties that are invariant to the way a particular
object is actually used. For example, the reader can easily satisfy himself that our stack does "behave
like a stack". It is clear that the'ability to generate information objects which have a well defined
structure and behavior can contribute immensely to the reliability of programming, to our ability to prove
correctness of programs, and to well structured programming in general. The reader is referred to (S] for
further discussion of this important concept. Here, we will use the concept of protected objects in two
ways: First, we will show that it is not compatible with conventional files. Later on we will suggest, as
a solution to this problem, that the file itself can be viewed as a kind of protected object.

1'ere are essenttally two ways to store and retrieve a composite structure on a file:

Tr We can take the structure apart, storing (retrieving) each of its components separately.

2) We can treat the structure as an indivisible entity, expecting the language processor to do the actual

work for us.

Both these methods are not suitable for protected objects. The first method is not available because the
attributes of the object are not accessible from the outside, and therefore cannot be output one by one.
As to the second method, suppose that there is a stack of size N'stored in the "current" position of a

file F. Following the standard procedure (of, say, ALGOL-68), and supposing that N is known, we can
retrieve the stack as follows: First, we generate a suitable empty structure by writing

5#141 STACK(N).

Next, we can write something like

READ FRCI F INTO S,

expecting S to be filled with information from the file. The problem here is: What if in fact the content
of the file is not a stack of si:e N, or not a stack at all? S would then he'filled with arbitrary infor-
mation, which may not satisfy the "inherent properties" of a stack. For example, the attribute TOP of S
may well be negative, or greater than N. Obviously, our expectations as to the behavior of S would not be
satisfled.

Thus, the only available method to store and retrieve protected objects from a conventional file destroys
the very essence of the concept of protected objects.

Oe can, of course, legislate tha'. protected objects should not be stored on a file at all, but this
would be a most unreasonable restriction. For example, such a restriction introduces an unjustified
semantic distinction between an internal linear-linked-list of objects, and a sequential "intraprocess
filie". Such a file behaves essentially as a list. The only real difference between these two structures
is one of speed, similar to the difference between a page on a disk and one in core memory, under a vir-

__ts memory system.

.he inevitable conclusion from all this is that the conventional semantic-less file is inconsistent with
te mWderlining philosophy of many programming languages.

step towards a I lnguistical ly consistent concept of file has been taken In the language PASCAL 161: If RT
Some PASCAL type, then the declaration

TYPEFT - FILE OF RT

defines FT to be a file-type. An instance of FT can be generated by

VAR F:FT.

F Is a file in which only records of type RT can be stored. Thus. the domain of a PASCAL file is restrict-
ed, just as the domain of internal variables, by type specification.

The PASCAL file concept, just described, leaves a serious problem unsolved: Suppose that a file F of type
FT was generated by a process P and is to be read by another process P'. How can P' handle the records
of type RT, retrieved from F, if the type RT is defined in P? The structure of these records would be
Illegal, indeed meaningless in P' because the definition of their type is not available to it.

This problem, and its solution, are best viewed in the context of block structured languages. It is a
basic principle of such languages that if an object q is an instance of type T, the "life time" of q
cannot exceed that of the type T itself. The life time of a type in turn, is identical to that of the
block in which it is defined. Our problem, now, is the following: The file F which is to be used by two
processes may outlive both of them. Therefore, the file-type FT, as well as the record type RT, must be
defined in a block which is outer to both processes. The problem is that under most languages such a
block does not exist, because a program, and any process induced by it, is commonly considered to he
linguistically autonomous. This problem can be rectified by the following natural extension of the block
structure concept:

Every program (in a given language) is to be viewed as if it operates within a unique outer block, of
indefinite life time, to be called "the external environment", or E. E would contain, among other things
the definition of various types of records, such as RT above, and of various file-types, such as FT.
Obviously, there should be a way to introduce such definitions into E. It is also necessary to establish
some protocal by which a program gains access to desired parts of E. (The ALGOL-like scope rules under
which the entire block is visible from all its inner blocks is clearly unsuitable here). Such protocal,
and the techniques which might be used for the maintainance of E, are beyond the scope of this paper, but

-wn example will be given later.

Thus, for a file to outlive the process which generates it. it is necessary that the type definition of
this file resides in the external environment E. Some standard file-types should reside in E permanently.
such as a file whose records are character strings. But if one wants his file to contain records of a user
defined type, and if this file is to outlive the prozess which generates it; then the record-type, along
with an appropriate file-type,should be first defined into E.

6.

ir r . -. -.. . . .

A DATA PfOCESSI:G VIEW OF FILES

The PASCAL-like file-type, with the elaboration discussed above, is quite satisfactory from the vieupoint of

programing languages, but it does not answer the needs of data processinf. When designing a file which is

to carry valuable and sensitive information, it is not enough to specify the sturcture of the records to be
stored in it. One would like to determine some ground rules under which it is to operate. A linguistic
tool which is suitable for this purpose is, again, the SIP'LA "class", (or rather, the protectable class as
in1 the POP/10 version of SIMILA). In the following section we will describe the main features of an imple-

mtation of our file concept, where a file-type, or rather, a file-class is defined by means of a SIMULA
class. The file itself would be a protected object which is an instance of such a class.

The Content of a File

As was pointed out in the introduction, one of the main features of a file, which distinguishes it from a
database, is the simplicity of the data stored in it. It should be simple enough not to require a complex
system to handle it. To see what this means, observe that the complexity of databases is due primarily
to the fact that they have to handle data which is both large and structurally complex. There is no great
difficulty in dealing with large numbers of non-related records: the conventional file does that. Nor is
there any real difficulty in dealing with structurally complex data, if it can be kept in main memory. It

qtis the combination of these two properties that is difficult to handle, and which we must avoid when dealing
vith files. would

We propose, accc-dingly, that the content of a file~nconsist of two parts, to be called the "record space"
CR), and the "global space" (G), defined as follows:

(2) The Record Space (R) is an unbounded (usually large) number of records without any interrecord
relations. As in the case of conventional files, only one record of P will be handles by the file
at any moment in time; it will be called the "current record" of the file, to be denoted by C.

(2) The Global Space (G) is a relatively small data structure, of an arbitrary structural complexity,
It should be small enough to be wholly contained in the main memory, if necessary.

The record space is of course the counterpart of the entire content of the conventional file. The new ale-
mt here is the global space. As we will see later, all of G is to be accessible during any interaction
with the file. This should not contribute significantly to the complexity of the file system, due to the
assumed stall size of G. The global space contains-information which pertains to the fVle as a whole, as
well as information which is common to all records in R. As we will see later, G can be viewed as a kind
of environment in which all the records in 0 arc defined. The role of G in our model is best explained in
the context of the dynamic behavior of a file, which is discussed next.

The Dynamic Behavior of Files

he dynamic behavior of a file is determined by the procedures built into the file-class of which it is an
Instance. During interaction with a file, these procedures have access to the entire global space (G) and

to just one record of R. This is the "current record". C, which serves as a window that moves across R.
Since G is constantly available, it can be examined and updated both by e.-ilicit user's instructions, and,
behind the scenes, by various file procedures. (see figure 1).

The file procedures can be classified into the following categories:

1. The Operators of the file. This category includes the conventional file operators such as OPEN. FIND,

TSOME. DELkTE. etc.. as well as less familiar ones to be mentioned later.

2. The Internal Procedures which are not visible from the outside and which perform various activities

Slad the scenes, as described below.

The role of the internal procedures of a file and of its global space can be illustrated by the following
classification of the activities which might be performed by the file without the explicit knowledge of its
users.

a) Protection of the Interrity of a File: Various validity checking routines can be coded as internal pro-
.* cdures of the file-class, and invoked by the operators whenever appropriate. These procedures would usu-

ally, depend on parameterssuch as the permissible bounds of various components of a record. Since such
parameters are relevant to all the records in the file they should be stored in G. The role of G here is
crucial. In a system like ASAP (11, for example, which does not have any global space, the information
which is necessary for validity checking is stored in the local space of the validity-checking-routines.
This is unsatisfactory on two accounts. First, the same information item might have to be repeated in
several routines. The second, more serious, problem is that such information is not subject to convenient
update/retrieval procedures. In our case, on the other hand, the information in G can be manipulated by
qualified users just like the rest of the file.

b) tionttoring: The importance of monitoring the activity of a file is aptly explained by Conway, Maxwell,
and organ in (7). Here are two examples borrowed from that paper:

(1) In an accounts receivable system someone could be responsible for monitoring the activity of a
certain subset of accounts (perhaps because they are especially good customers, or because they
are especially bad credit risks) and want to be informed of any transaction that affects the
balance of any of these accounts.

(2) In an inventory system a particular item might be depleted and back-ordered and a user might wish
to be notified as soon as replenishment takes place.

Of course, such monitoring must be done without the explicit knowledge of the users who interact with the
file. In our system, the monitoring will be perfomred by special objects called demons which are activated
by the file system under a specified set of circumstances. The procedural part of these demons must be pre-
defined (as part of the definition of the file), but demons can be activated and deactivated by qualified

-users during the lifetime of the file.

'c) Maintenance of the File Status and History: The global space can be used to carry information about
the current status of a file and about its history. Such information can be computed routinely by the
various operators and by some of the demons mentioned above. Examples of informatin that one may want to
maintain in G are: the total number of records in the file; various aggregates such as the current bal-
ance in an accounting file; some statistics about the past activities of the file, etc. The only limit
hiere is the size of G which must stay fairly small.

d) Access Control: G can be used to store information about the access rights of various classes of users,
grouped Into structures called "user profiles'. When a file is upened, an appropriate user profile is
selected to be later consulted by the various operators. In our current design there is a standard access
control mechanism based on security levels and compartments (as in ADAPT-SO 181). In addition, there are
built-in hooks on which one can hang procedural access control of arbitrary generality, as in [9]. Note
that the manipulation of G as well as that of R should and can he under access control, this is true, in
particular, for the manipulation of the user-profiles themselves.

a) Transformation of Data: Several types of data transformation may be necessary. Here are the most in-
portant of them:

1. Enciphering and deciphering of stored data for security purposes. The keys which are necessary for
this transformation can be stored in G and would be subject to user interaction under the restriction of
the access control mechanism.

2. A transformation between the logical and physical representations of the records in R. Such a trans-
formation may, in particular, save space by performing data compaction and by eliminating redundancy.

3. Transformations between an actual record in the file and users' views of it (these are the schema-.
subaschema transformations, as in the DBTG proposal).

To illustrate the use of our files, suppose that there is a file class PAYROLL In the environment E. Also
in E, there is a class EMPLOYEE, which defines the structure of the records in payroll-classes; and the
class SUMMAPY which defines one of the structures in the global space C of payroll-files. (G may have
eUer parts hich will not concern us here.) Suppose also that there are in the system two "payroll files"
called "part-time" and "full-time". (The term "payroll files" mans that these files are instances of the
class PAYROLL).

Now. a user who wishes to interact with any payroll file must have in his program the declaration

tI

EXTERNAL PAYROLL, EMPLOYEE, SUONARY...

which incorporates these classes into the user's program. j
An internal data structure which can be used for the interaction with a payroll file can now be generatedby

P - NEW PAYROLL

F will be called a "file anchor". To associate F with a specific payroll file, the file "full-time" say,
ne writes:

F.CEN("FULL-TIIE" ,USER-PROFILE ,PASSWnRD).

This operation opens the named file, if an appropriate password is provided for the requested user-
profile.

The file "full-time" can now be manipulated and interrogated by applying various file operators to the
anchor F. For example, assuming that F is an indexed file, and that the index is the name of an employee.
me can retrieve a specific employee record by

• F. FIND("name")

The record e would be an instance of class E'PLOYEE and can be used as such. (Recall that the definition
of class EMPLOYEE is included in the user's program).

An employee record e which is generated by the user can be stored in the file by

F.STOPE (e).

Let us use the STORE operation to illustrate the behind-the-scenes activity of the file. The following
a the actions which might be invoked by the STORE operator:

(a) The validity of e is checkqd, as well as the right that the current user has to store such a
record.

(b) The various "demons" which are supposed to monitor the store operation are invoked.
V (c) The record e may be transformed into an internal representation, which is. presumable, more

economical.
(d) The record is enciphered.
We) Finally, the transformed and enciphered record is stored, using the key defined in it, if any.

Of course, the nature of these activities, and whether they exist for this particular file, depends on
the class PAYROLL, (see also next section).

The global part of the file can also be retrieved and updated. Here is an example. We already assumed
that our G includes a record which is an instance of class SU NARY. This record may have an attribute
such as #employees, which is to be maintained by the various "demons" of the file. The summary record
can be retrieved by

5 - P.GET-GLOBAL("summary"),

where the returned object 's' is a smmary record. The number of employees in the file are now accessible
by s.femployees.

Until now we discussed only the standard file operators, which exist for any file. One can also define
operators which are specific to a certain file-class. For example, it may be very convenient to define
into our employee file an operator REP(PT which prints a report about an employee, or an operator PRINT-
OECK(k) which prinLs a paycheck for Sk, for the current employee. The incorporation of such data depen-
dent operators into the file itself may save a lot of coordination efforts between programmers and pro-
raS. It is a key to "data independent" file processing.

As a final example let us show how a new payroll file can be generated. The first step is, again, a
generation of an anchor

F NEW PAYROLL

Now we have to. load F with the desired initial 6, a step which will not be described here due to lack of
.4 space, Next we write

P.GENFILI (filename, access-mode...).

'rhqs operator generate% a new payroll file whose name is the first parameter and whose access-mode is
.tified by the second parameter. It is assumed here that we have arepertoireof access modes ;ivailabte

tu us, such as "sequential", "ISAfl, etc. The specific access mode of a file must be determined when the
Sfile Is generated. Note. however, that to a large extent, the interaction with an existing file .ay,and

should, be independent of its access mode.

On the Definition of a File-Class

As was already pointed out, a file class is defined by means of a module which determines both the struc-
. ture of the file's content and its behavior. The problem here is that some of these characteristics are

peculiar to a given file, while others are common to all files and should be defined once and for all, for
a given language. Thus. a file-class should be defined jointly by the language and by an individual user.
Fortunately, there is in SIMJLA a ready made tool for such joint definitions. It is the ability to extend
a class as follows: A given class Cl can be extended by the module

Cl CLASS C2 BEGIN.. .END

The resulting class, C2, consists of all the attributes of Cl together with all those defined inside the
DEGIX...END bracket. C2 is thus an "extension"(1) of Cl, while Cl is. called the "prefix" of CZ. We will
also refer to CZ as a "Cl-class".

Two properties of this linguistic device of SIMLA are important for us here. First, a class can have any
amber of different extensions. Secondly, certain parts of a prefix can be redefined in its extensions.

The class-extension capability of SIMLA suggests the following approch to the definition of files:
First, there should be, in the environment, a standard class called FILE which contains all the structures
and procedures that are common to all files. For example, operators like FIND, STORE, OPEN.. .would be
defined in FILE. Also in FILE. there would be various default procedures which could be redefined later.
A specific file-class would be defined as an extension of the class FILE, to be called a "semantic exten-
sion" of FILE. This extension would contain everything which depends on the identity of a specific class
of files. The only mandatory part in the semantic extension is the specification of the type (class) of
the records in R. Indeed, a conventional type of text-file can be defined simply by the following module:

FILE CLASS TEXTFILE;

BEGIN TEXT RECORD END;

Note that the G part of this file is empty. Optionally, however, one can put many more details into the
semantic exten-ion of IILE. For example, the specification of G, various validation routines, access con-

trol procedures, enciphering procedures, etc. All that can be done in a very modular way since the general
framework and the control structure are already defined in FILE. Unfortunately, space limitations
do not allow us to present a complete example of a definition and use of a file.

CONCLUSION s

The current state of the art of information processing tends to link capabilities such as protection of
data integrity and its confidentiality, monitoring the interactions of users with the data, etc., with
large database systems. This is most unfortunate since such capabilities are frequently vital for modest
applications which do not hsve the degree of data complexity to justify the use of large database Systems,
and which may not be able to afford them. In this paper we tried to demonstrate that what we called
"Intelligent archivist's capability" can be implemented as a standard feature of a programming language,
without the large overhead associated with database systems.

The paper Is based on an actual implementation under the SIMLA language. It is still an open question.

however, as to how to implement an equivalent file system into a more common language, like COBOL.

ACKNOWLEDGFM4ENT

I wish to thank Professor Irving Rabinowit: and Professor David Levine for reviewing this paper and for
their very helpful suggestions, and to Mss. tiarti and Trudi for typing this manuscript, and for correcting
a lot of spelling mistakes.

(1) We are taking some liberties with the SIMUJA concepts and terminology. For example. in SIILA, CZ is
called a subclass of Cl.

* . - .----

Data part
* of the

ile Global Record Space

G7 C,

Validity Procedural part

check encipher of the file

"ecord record

User's program

Pigure 1: An Illustration of the file structure

A user coamunicates with a file by means of its operators. These, and the other
ftle procedures have an access to the "current record", which moves across R like
a window, as well as to the entire "global space" of the file.

REFERENCES

1. R.N. Conway. W.L. Maxwell, H.L. Morgan; ASAP 2.0 system ref. man. Compuvisor Inc.. Ithaca N.Y.(1971).

2. 1. Maur, "Revised Report on the Algorithmic Language ALGOL 60", CAOf 6,1. (1963).

3. "Informal Introduction to ALGOL 68", Lindsay and Vander Ieulen, North lolland.(1972).

4. J. Palme, "Protected Program Hodules in SIMULA 67". Tech. Rep.. Res. Inst. of Nat. Def. Stockholm,

(July, 1973).

S. S. Liskov. S. Zilles. "Programing with Abstract Data Types", proceeding of the ACM SIGPLAN Conf. on

very high level languages, (April 1974).

6. N. Wirth, "The Programming Language PASCAL", Acto Informatica 1 (1971).

7. 3.3. Conway, W.L. Maxwell. H.L. Morgan, "A Technique for File Surveillance". IFIP Congress (1974).

8. C. Weissman. "Security Control in the ADAPT-SO Time Sharing System",
proceeding of the FJCC. (1971).

*. L.J. Hoffman, "The Formulary Model for Flexible Privacy and Access Controls". Proc. of the FJCC (1971).

10. O.J. Dahl, B. ?fyhrhaug, K. N Saaril, "The SIMULA 67 Common Base Language", pub. s-22. Norwegian

Computing Center. Oslo (5#70).

"U

SOSAP-TR- 24

May 1976

A SEMI-LATTICE MODEL FOR SECURE INFORMATION FLOWV

N. Minsky

Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, New Jersey

6 Tis research was supported by the Advanced Research Projects Agency
*of the Department of Defense under Grant #DAIICl5-73-G6 to the
Rutgers Project on Secure Systems and Automatic Programming

'The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S. Government.

A Semi-Lattice Model for

Secure Information Flow.

by

N. Minsky

Abstract

The Lattice model for secure information flow proposed by

Dorothy Denning is found to be unjustified in a number of cases.

A modification to this model is proposed, which allows for

controlled violations of the lattice discipline.

Key words and phrases: protection, security, information flow,

security classes, enciphering, lattice

CR categories: 4.35

• -- -.- ..

In a recent paper, [1] Dorothy Denning proposed a very attractive

lattice model for "secure information" flow. Although this model

successfully handles many aspects of the problem at hand, it fails to

represent certain important flow patterns of information, which do not

behave like a lattice. These non-lattice properties will be identified,

and a way to modify the original lattice model to cover them wil I be

proposed. We start with a brief summary of the lattice model, assuming

that the reader is familiar with Denning's paper.

The information flow model, FM, is defined by

FM = <N,P,SC, + , > , where:

P is a set of processes (which will not concern us directly here),

N = {a,b is a set of objects, and SC a set of security classes.

..... Every object acN is bound to a security class acSC, although the binding

is not necessarily permanent.

" " is a relation defined on SC, called the flow relation. It has

the following meaning: For A,BESC, the relationship A B means that

information in class A is allowed to flow into class B. The algebraic

structure <SC, > is assumed to be a partially ordered set.

"@" is a binary operator defined on SC. The following is assumed

about it: Let a,b be objects in N, and let a, b be the security classes

associated with them. It is assumed that the security class associated

with f(a,b), for any function f, is aCb. (We will find below that this

assumption is not always justified).

a

-2-

Now, it is claimed in [1 that under a set of assumptions which

follow from the semantics of secure information flow, the algebraic

structure <SC, ,) > forms a lattice in which "&" is the "least-

upper-bound" operator. One of the assumptions which supports this claim

is the following:

For any A,BeSC the following relations are satisfied (in the "real

world" of secure-information-flow, that is).

A A 0 B and B A B

"Without this property", it is said, "we would have the semantic absurdity

that operands could not flow into the class of the result generated from

them". This, however, is not absurd at all, as the following example

illustrates.

Consider the function encipher (plaintext, code). The two para-

meters of such a function would usually have high security classification

while the security level of the outcome of the encipher function is

relatively low. Indeed the whole purpose of enciphering is to generate

an image of a confidential plaintext which can be sent via public channels,

or be stored on loosely protected files. The outcome of encipher must

therefore have a lower security classification than its arguments. Thus,

we do not have in this case the relation

plaintext + plaintext Co code

Moreover, this example shows that one cannot expect the security level

of f(a,b) to be the same for all functions of f.

[

1r

-3-

The crux of the matter is that the lattice discipline does

not allow any reduction of the security classification, where such a

reduction is frequently vital and justified. For instance, our enciphering

example is based on thebeliefs that it is impossible, or very difficult, to

figure out the plaintext from its coded version, there is thus no

reason for the latter not to have a lower security class then the

former. As another example of reduction, consider a function summarize(f)

which produces a summary of the content of a file f. Even if every

record of f may be of high security classification, the function

summarize may be carefully programmed to produce only an insensitive

summary of it. There is no reason not to give this summary a low

classification. As a final example, there should be somebody in

any organization who has the power to declassify items of information.

Such power must be reflected in the computerized information system,

but it is not compatible with the lattice discipline.

In spite of all this, the lattice remains an eminently suitable

model in many ways, and should be retained whenever possible. I am

proposing, therefore, a "semi-lattice" model for secure information

flow, which is based on Denning's lattice, but accommodates sonic, controlled

violations of it. The permitted lattice violations are defined by

rules of the form

..- *O <f,cl,....,C >,

where f is an identifier of a given n-ary function, such as our encipher

function above. c., for i=l,...,n arc the security classes of the

c.,fori.

0

4

parameters of f, and cO is the security class of the outcome of f. There

is no ap.iori relation between co and c1, ... Pc. cO is determined arbi-

trarily by the rule above. Consider, for example, tile case illustrated

in Figure 1. Suppose that A2 is the class associated with the enciphering

code and A is associated with the plaintext to be enciphered. In

addition to the flow permitted by the lattice, represented by solid lines

in Figure 1, suppose that there is the rule:

A0 - <encipher, A1,A2>.

This rule means that the outcome of encipher, when applied to parameters

of classes A1 and A2, should be associated with the lowest class,A0.

(In Figure 1 such rules are represented by diamond shaped figures, and

the corresponding lattice-violating flows by dashed links). Another

violation, in this example, is permitted by the rule

A 0 <declassify, A >.
03

Clearly, the use of some of these lattice-violating functions, such as

declassify, must itself be restricted, lest it be abused. Therefore,

a model such as this must reside in a tightly controlled computing envir-

onment. For example, the formalism proposed in [2] is based on rules which

are very similar to the ones used here and might provide a suitable

environment for the semi-lattice model.

Finally, it should be pointed out that the various enforcement

techniques proposed in [1] are still valid for the semi-lattice model

described here.

- -

Scode

nc~h A d eclassify

I2
text -

Figure 1: An example of a semi-lattice

The solid links between the security classes A1 ... ,A4 form

a lattice. The diamond shaped boxes represent lattice-violating

functions, and the dashed links represent lattice-violating flow

of information.

References

1. Denning, F.D. "A Lattice Model for Secure Information Flow"
Comm. ACM 19, 5(May, 1976), 236-243.

2. Minsky, N. "Intentional Resolution of Privacy Protection in
Database Systems" Comm. ACM 19,3 (March, 1967) 148-159.

,S

S

SOSAP-TR- 27

September 1976

PROTECTION IN PROGRHI1ING LANGUAGES BY OPERATION-CONTROL

N. Minsky

Department of Computer Science
Hill Center for the Mathematical Sciences 7

Busch Campus
Rutgers University
New Brunswick, New Jersey

This research was partially supported by the Advanced Research
Projects Agency of the Department of Defense under Grant #DAHiC1S-73-G6
to the Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the
author arnd should not be interpreted as necessarily representing the

* official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S. Government.

4 • Page 2

PROTECTION IN*PROGRAMMING LANGUAGES BY

r+ OPERATION-CONTROL

Abstract

Protection in programming languages has to do with dispersion of
privileges among the various modules of the program. This is being
aone in most languages by means of scope rules. Recently it has been
proposed to incorporate into languages, an access-control facility
which is moiieled after the capability-based-protection mechanism
provided by some operating systems. This paper proposes a further
enhancement of our ability to disperse privileges, by the introduction
of, a new control-object called activator, which represents privileges
with respect to an operator. The resultg protection scheme, to be
ca--led operatlon-icontrol,-is based on the access-control facility, but
it is more general and often more efficient than the latter.

PI

Page 3

1: INTRODUCTION

By the term "protection" we mean, the ability to impose

A restrictions on a program, restrictions which cannot be violated by the

program itself regardless of the actual code in it. These restrictions

may be imposed on a.program-module from the outside; or, they may be

voluntary restrictions introduced by declarations, say. Such

restrictions are the basis for effective modularization, and they

facilitate program-verification, either manual or automatic.

q Protection is therefore essential for the production of reliable

software. It is particularly crucial for the design of large systems

with many modules, where the controlled sharing of information is

imperative.

One may distingwish between two types of restrictions, to be

called *semantics-based-restrictionsm and

"privilege-based-restrictions". The objectives of the former type of

restrictions is to guarantee the semantic integrity of the various

data-structures manipulated by a program, and to prevent meaningless

operations from being carried out. The privilege-based-restrictions,

on the other hand, have to do with a dispersion of privileges among the

various modules of a program, in order to limit the set of legal

operations which can be carried out by any given module. Although the

boundery between these two types of restrictions is not sharply

defined, the distinction between them would give us a convenient frame

of reference. This paper, in particular, is concerned primarily with

the second type of restrictions. But before we get to that, a brief

review of the current state of the art of protection in languages is in

order.

Page 4

Most of the semantics-based-restrictions facilitated by

programming languages are associated with the concept of type. A

notable example is provided by languages like CLU [Lis74], ALPHARD

[Wu175J and some versions of SIMULA (Dah72,Pal73]. In these, and other

languages, the type definition, of a given type t, in addition of being

a template for all instances of t,(which we will call t-objects), also

contains a set of procedures to be called t-operators (*). These

operators have the exclusive direct access to t-objects. That is to

say, the only way to observe or update a t-object, from any place in a

program outside of the module which defines t, is indirectly, by means

of the t-operators. The great usefulness of this concept for

reliability of programming was aptly described by Liskov and Zilles

[Lis74].

Turning now to the privilege-based-restrictions, the best known

examples of these, are the "scope-rules" which form the block-structure

in many languages. The effect of these, and other more general

scope-rules [Wul74, Dij76], is to restrict the set of objects which are

accessible to a given module. Note, however, that the accessibility of

an object, as determined by the scope rules, is usually an

all-or-nothing matter. Namely, if an object b of type t is accessible

to module M, then every t-operator can be applied by M to b. In order

to facilitate controlled sharing of informatin, it has been recently

proposed, by Jones, Liskov, Wulf and others [Jon76, Wul76J, to

introduce into programming languages an access-control facility which

is based on the capability-based-protection technique, originally

developed for operating-systems. Here are the essentials of this

(*)We will use the terms "procedure" and "operator" interchangeably.

~i-

L _ - - ! ' . . | | | ' t - l ' l - | l i ! "

Page 5

* technique:

'z -. A sharable-object (usually allocated on the heap) can be accessed

* only by means of a special type of object which w~e will call a ticket,

* (the more common name, "capability", would not be appropriate in the

context of this paper). A ticket for an object of type t is

essentially a pair (b:t;r) where b is the identifier of the object,

and r is a subset of a finite set of symbols

* rights(t) ={rl,...,rn)

associated with the type t. These symbols are called the "rights" with

respect to t-objects. Now, the point is that the set of operators

which can be applied to an object, depends on the rights contained in

the ticket which is used to address the object. Thus, a ticket (b:t;r)

contained in module M, represents the privileges that M has to object

b. (For more details about this protection scheme, and about its

incorporation in a programming language, the reader is referred to

[Jon76J.)

In this paper we will argue that tickets are not always sufficient

for the representation of privileges. In particular, they are not very

suitable for the representation of value-dependent privileges, or for.

the control of interaction between objects. In order to make up for

* these and other limitations of the tickets we will introduce an object

0. called, activator to serve as a reference to an operator, and to

represent privileges with respect to this operator. By the phrase

"privileges with respect to an operator" we mean, loosely speaking, the

conditions under which the operator, addressed by the given activator,

is allowed to be invoked. The essentials of a protection scheme under

Page 6

which both activators and ticket are used for the representation of

privileges is introduced in the next section. Being based primarily on

activators, which are anchored on operators, the proposed protection

scheme will be called "operation-control" (or OC); as opposed to the

term "access-controlo (AC) , for the protection facility based on

tickets, which are anchored on objects. The two facilities are

compared in section 3. The rationale for the introduction of

activators is also discussed there.

2: THE PROPOSED PROTECTION FACILITY

2.1: The Activator

Definition: Let o be an operator of degree k (with k

formal-parameter). An activator for o, or an "o-activator" is the

following construct:

<o, nl:pl,...,nk:pk>-- po

Here o is an identifier of the operator; Pi, for i=l,...,k is a

condition on the i-th operand of o, to be called "operand-pattern";

and po is a condition on the outcome (result) of o to be called

outcome-pattern" () (if o does not have an outcome, then the part

*.-'to" does not appear in the activator). The symbols nl,...,nk are

names of the respective operands; these names are optional. (A more

general concept of activator is introduced in [Min76B, section 3.61).

(*) Whenever we would not wish to distiguish between these two types
of patterns, we will use the term "activation-pattern", or Just
*pattern", for either of them.

r

Page 7

Now, it is assumed that in our language, an operator is invoked by

the phrase

A(ql,...,qk),

where A is an o-activator for some operator o, and qi are the

actual-parameters for o. This phrase is to be evaluated as

follows: First, the conditions pi of the activator A are evaluated on

qi for i=l,...,k. (Namely, the condition pi has one free variable,

which is to be bound to qi). If all these conditions are satisfied, in

which case we will say that "the operands match the respective patterns

of A", then the operator o is applied to ql,...,qk. Upon return, the

outcome (value) of o, if any, is checked. If it does not match the

outcome-pattern po of A, it will not be communicated to the program,

and an error condition may be raised. (This checking, or

pattern-matching, may be performed either at run-time or at

compile-time, depending on the structures of the patterns as well as on

other properties of the language).

Thus, the availability of a specific o-activator to a

program-module determines the conditions under which the operator o can

be invoked by this module.

Note the similarity between an o-activator and the

formal-parameters-specification (or FPS) of the procedure o: Both

determine the legal set of operands of o. There is, however, an

important difference between these two. While there is just one FPS

per operator, we will see below that there may be several different

o-activators for the same operator o. In this sense, our activators.

are similar to the "procedure-closure" in EL1 [Weg74]. However, unlike

" " i "• J i : i " - "

Page 8

the Ell procedure-closures, our activators differ from each other not

in the degree of binding of free variables, but in their activation

S patterns.

Before committing ourselves to any specific structure of the

activation patterns, we will first discuss some general properties of

the activators.

Let p be an activation pattern. We define range(p) to be the set

of all possible objects which can be matched to p, namely, which

satisfy the condition p. Let p and p' be two activation-patterns. We

will say that p' is weaker than p or, equivalently, p is stronger than

p', if

range (pu) !S range(p)

We will say that p' is strictly weaker than p if

range(pl) C range(p)

A pattern p' which is weaker than p will also be referred to as a

reduction of .

Let A be an activator of order k. We define range(A) to be the

set of all possible (k+l)-tuples (ql,...,qk,qo).of objects, such that

qi matches the activation patterns (or satisfies the condition) pi, for

* i-l,...,k, and for i=o.

Let A and A' be two o-activators for a given operator o. We will

say that A' is weaker than A (or, equivalently, A is stronger than A')
6

- ff

Page 9

range(A')o range (A).

We will say that A' is strictly weaker than A iff

range(A') range(A),

such an A' will also be called a reduction of A. It is clear that this

last relation is satisfied between A and A' iff all the

activation-patterns of A' are weaker than the corresponding patterns of

A, and at least one of the patterns of A' is strictly weaker than that

of A.

As to the generation of activators, the following is assumed: A

new activator can be generated in the following two ways:

a) When a new operator o is created, an o-activator is generated

with it. It will be called the primary o-activator.

b) Given an activator A, one can generate from it an activator

A' which is weaker than, or equal to, A. A' will be called a

derivative of A.

The following properties of the activators follow immediately from the

above:

a) The set of all o-activators, for a given operator o, is

partially ordered with respect to the relation "stronger'.

4 b) Every activator is stronger then all its derivatives

c) The primary o-activator is the strongest o-activator.

Note that the generation of new activators, and their distribution

among the various modules of a program, may be performed either at

Page 10

compile-time or at run-time depending upon the general architecture of

the host language. In the former case, activators are declared. They

serve primarily as a self imposed restriction, on the part of %.he

programmer, as to the use which he intends to make of the operator in a

specific module. In the latter case, one would have "activator-values"

which can be stored dynamically in "activator-variables", much in the

same way as some languages have procedure-values and

* procedure-variables. one would also need special operators which can

generate a derivative of a given activator, and transport activators

* from one place to another, at run-time.

2.2. The Activation Patterns

* As defined above, an activation pattern pi is a condition which

must be satisfied by an object, which is either the i-th operand, when

i-1l....,k; or the outcome of the opeain hni0 For the most

parts there will be no need to distinguish between these two cases, and

we will be talking simply about an "activation-pattern' p and the

object which matches it. Whenever necessary, however, we will

distinguish explicitly between an "operand-pattern" and an

* outcome-pattern". We will now describe a specific structure of

activation patterns.

An activation pattern p, to be denoted by

[I IR;Vl

is a conjunction of the following three predicates, to be called the

components (sub-patterns) of p:

Page 11

I- the identitbse pattern, is a condition on the type and

identity of an object to be matched with it.j

R -the privilee-based pattern, is a condition on the

privileges, or "rights", represented by the operand-ticket.

(This sub-pattern is applicable only if the operand is a

sharable object).

V -the value-based pattern, is a condition on the value, or the

state, of the operand itself.

The only mandatory part of p is-I. Each of the other components may be

* empty, in which case it will be assumed to be identically TRUE. The

* reduction of the pattern p, namely, the reduction of range(p), is

performed by a reduction of at least one of its subpatterns.

We will now discuss the structure of each of these three

sub-patterns, and the ways by which they can be reduced.

2.2.1 Identity-based *patterns: I, which is the only mandatory

component of a pattern, has one of the following two forms.

t - which matches any object of type t.

b -which matches only a specific object b of type t, b being an

object-identifier. This form is applicable only when t is a

sharable type and only in the case of operand-pattern.

A subpattern t can be reduced in two ways:

a) It can be changed into b, where b is an identifier of a

U specific object of type t.

* ... L -. -. :-z- .*---. . - -- 7--.-.-. -. - - .---

Page 12

b) If there is a type t' such that t includes t', then t can be

changed to t', ("type-inclusion" exists in a number of

languages, for example in Simula- [Dah72]. "Inclusion" in

meant here in its set theoretical sense).

The sub-pattern b connot be reduced any further..

The type t, identified by I, determines the structure of the other

two components of the pattern which will sometimes be denoted by V(t)

and R(t).

2.2.2. Value-based patterns: V, which is the third component of a

pattern, is a condition on the value of the operand. Although we

consider value-dependency to be a vital aspect of protection, one

cannot always expect to be able to base the decision as to the legality

of an operation on the value of an arbitrary attribute of an object.

This is due to the following reasons:

a) It happens that an attribute of an object is not directly

observable. Such are the items stored inside a stack, for

example.

b) It may happen, in certain types of objects, that the mere act

of observation of an attribute of an object introduces a

change in the object itself. As an example of this "quantum

mechanical effect", the only way tb observe the top of a

stack may be to pop it up. Obviously, we cannot base our

pattern matching on such a "volatile attribute".

For these, and other reasons which include efficiency, we now introduce

Page 13

I -I

the notion of "facade";

The component V (or rather V(t)) of a pattern, can depend only on
S a set of attributes, called the facade(t), which are explicitly

declared (as part of the type-definition) to be useable for this

purpose.In particular, for a given type t, if facade(t) is empty then

V(t) must also be empty. By convention, the facade of a primitive

scalar type , such as real and integer, will be its value. We are

ready now for the definition of the functional form of V.

V(t) is a conjunction vl&v2&...&vn, where each vi is an arbitrary

predicate over the set of attributes in facade(t) of the operand.

The reason for the conjunctive form of V is that it allows the

following simple reduction technique: V is* reduced b appending

conjunct to it.

One may want to impose various additional restrictions on the

functional form of V, for efficiency reasons. Such restrictions will

not concern us here.

Example 1: Let doc be a type of sharable objects which carries

documents in a military information system. Suppose that a document is

represented by a triple: (data:text, security;integer, cat:text),

where the phrase data:text, for example, refers to an attribute called

0data" of type "text". Here, "data" stands for the body of the

document, while "security" and "cat" are the security-class and the

category associated with the document. The latter two are the

traditional security parameters in military establishments, [Wei 69).

In order to use these attributes for protection in our system, we

| It

Page 14

define:

facade(doc) = [security:integer, cat:text}

Now, let read be a doc-operator which, when applied to a document

displays its contents. Suppose that the primary read-activator is

READ = <read, [doc]>.

which can be applied to any documents The following derivatives of READ

are less powerfull: The activator

I READ1 = <read, [doc; ;cat="navy"] >

can be used to read any Navy-document. (Note that the extra semicolon

in READI indicates a missing R part in the pattern). The following

reduced derivative of READI:

READ11 - <read, [doc; ;cat="Navy" & security < 3] >

can be used to read only Navy documents whose security level is not

higher than 3. Finally, the activator

READ12 = <read, [d; ;cat="navy]>

can be used to read a specific document d, provided that it is a

Navy-document. Of course, a module may have access to several

read-activators, which would allow it to read several such subsets of

documents. Note however, that the availability of an activator is, in

itself, not sufficient to read any specific document. For this one has

to have tickets for the appropriate documents.

2.2.3: Privilege-based patterns:

To support the type of access-control mentioned in the introduction,

I

Page 15
ai

the remaining component of the activation pattern, R, is a codition on

the rights which are contained in the operand-ticket. More

T 4specifically, let the type t identified by the I-coponent of the

pattern be a sharable type, then R (or R(t)) has the general structure

R - sl&s2&...&sk

where each si is a right with respect to type t, i.e. all si are

members of rights(t). As to the interpretation of this sub-pattern, we

will have to distinguish between the case of an operand-pattern and

that of an outcome-pattern, starting with the former.

Consider the operand-pattern

p [I; sl&s2&...&sk; V]

For an operand to be matched to p, it must be represented by a ticket

c - (b:t; r)

where b and t satisfy the sub-patterns I and V, and r includes all the

rights sl,...,sk which appear in p. Thus R is a set of rights which

are required from the matching ticket. The reduction of the

sub-pattern R is performed by adding rights to it, thus imposing

stronger requirements on the corresponding operand.

As an example, consider again our document case. Let

rights(doc) = (observe,update)

We will now assume that there are two doc-operators: read and

update. The primary-activator of read is now

S!

Page 16

READ = <read, [doc;observe]>

that of update is

UPDATE = <update, [doc;update],[text]>

where the second operand, which must be a text-object, is to be

inserted into the document. Consider a module M which has these

two activators in its domain, together with the tickets:

(dl:doc; ALL), (d2:doc; observe), (d3:doc)

The document dl can be both observed and updated by M; d2 can

be only observed, because it cannot be matched to the first

activation pattern of UPDATE; and the document d3, which has no

rights in it, can be neither read nor updated by.M.

Note that the above activators may be reduced as before.

For example, the following derivative of READ

READ1 = <read, [doc;observe;security<2] >

allows its holder to read any document whose security level is

smaller than 2, provided that he has a ticket with the "observe"

right in it.

Next, let us discuss the case of outcome-patterns. Consider the

activator

A - <...>---* [t; sl&s2&...&sk; V]

where t is a sharable type.

The outcome-pattern of A means, first, that the outcome of an operation

T,

Page 17

A(ql,...,qn) must be a ticket c = (b:t; r) of some object b of type t,

where the object satisfies condition V. Secondly, the set of rights

S-,{sl,...,sk) acts as a filter on the returned rights, r(c), in the

following way: Any right returned by the operator o which is not

represented in {sl,...,sk} would be erased from r(c). Thus, R serves

as an upper limit for the rights which might be returned with the

outcome of A(ql,...,qn). The reason for this interpretation of R is

explained in [Min76B]. (A note: it is possible to have a more strict

interpretation of the outcome-pattern, requiring that exactly the

rights {sl,...,skj are present in the outcome-ticket. Such

interpretation would facilitate compile-time checking but it has some

disadvantages, not to be discussed-here).

The reduction of the R component of an outcome-pattern is

performed by deleting rights from the sequence sl&s2&...&sk. This has

the effect of reducing the set of possible rights which can be

associated with tickets returned as an outcome of a given operation.

(Note the contrast between the reduction of operand-patterns and that

of the outcome-pattern).

As an example, let gen-doc be an operator which generatesa

documents. Let its primary activator be

GEN-DOC - <gen-doc, content:[text],security:[integer],

cat:[text] >-10 [doc;update,observe]

The three operands of gen-doc determine the initial state of the

generated document: its content, security-level and category. A

module which has this activator can generate documents with arbitrary

ir

Page 18

security-level and category, and gets a ticket for the generated object

with all its possible rights. Suppose now that a certain module M is

to be allowed to generate only documents with the category "navy", and

that these documents should be unchangeable. For this purpose M should

have the following reduction of GEN-DOC.

GEN-DOC-l = <gen-doc,...,cat:[text;;value = "navy"]>-0- [doc;observe]

Note that documents generated by GEN-DOC-I can never be changed because

t here can be no tickets with the "update" right for them. (This

observation is based on the assumption that there is no way to add

rights to a ticket, as it is the case under the protection scheme

proposed in [Min76b], and it is almost the caseunder the scheme

proposed in [Jon76]).

2.3: The control-objects

We can summerize the proposed scheme as follows: the dispersion

of privileges among the various modules of a program is represented by

the distribution of two types of objects, the activators and the

tickets. We will refer to both ascontrol-objects. There is a certain

symmetry between these two types of control-objects: Just as a ticket

represents privileges with respect to an object, an activator

represents privileges with respect to an operator. Although. the term

*privilege" has different conotations in the two cases.

Note the complementary nature of the activators and the

tickets: An activator is in a sense, the means which one has to carry

out an operation, while a ticket represents the opportunity to apply an

* operator to a specific object. One need both in order to actuly

4

Page 19

perform an action. For example, the activator

<read, [doc;;cat="navy"] > is the means to read Navy documents, but

in order to read any specific document, one must have an access to it,

via a ticket, in our case.

Since the distribution of the control-objects determines what

every module of a program can do, it is vital to have a tight control

over the generation and transport of these objects. The essentials of

such controls are discussed in [Min76b], but they are yet to be adapted

to a programming language environment.

3: DISCUSSION

There are two dimensions along which a protection facility should

be evaluated: The ease of its enforcement, and its contribution to our

ability to impose a desired policy. (By the term "policy" we mean a

certain distribution of privileges among the various modules of a

program). In order to have a specific frame of reference for our

discussion we will compare the operation-control (OC) facility in which

both activators and tickets are used for the representation of

privileges, with the access-control (AC) facility which is based

primarily on tickets.

3.1: The enforcement mechanism

The enforcement mechanism whiclh is necessary for the OC facility

is essentially identical to the checking of procedure-parameters

performed by most languages. The only difference is that the

Page 20

conditions built into an activator may be more complex than those

allowed in the formal-parameter-specifications of a procedure. In

particular, we are allowing for value-dependent conditions, which in

most cases could not be-evaluated at compile time. Obviously, there is

a price to be payed for the evaluation of more complex conditions.

However, this price is incremental. In particular, the enforcement

mechanism which is needed for activators which have no value-dependent

patterns is no different than the enforcement mechanism needed to

support the AC facility.

.3.2: Why activators?

In this section we will discuss the limitations of tickets alluded

to in the introduction. We will also see how the use of activators

makes up for these limitations.

3.2.1: interactions and their control: The privileges which are

represented by a ticket determine which operators can be applied to the

object addressed by it. This, however, is not always sufficient to

characterize all possible manipulations of objects: There may be

operators which involve several objects, and which cannot be decomposed

into a sequence of legal operations on the individual objects. Such an

operator will be called an interaction. Now, it has been shown in

[Min76b] that in a system with interactins there are policies which

cannot be imposed purely by means of tickets. To illustrate this

difficulty consider the following example:

--

Page 21

Let appoint(e,j) be an interaction defined in a corporate

information-system, which appoints employee e to job j. Let El and E2

q e two sets of employees, and let 31, J2 be sets of jobs. Suppose that

a module M is to be allowed to appoint only employees from El to jobs

from 31, and employees for E2 to jobs from J2. suppose also that this

restriction is specific to M and does not necessarily apply to other

modules. A moment of reflection would *reveal the difficulty of

conferring exactly this privilege on M purely by means of tickets.

There is no such difficulty under the OC scheme, however. It would be

sufficient to give M the two activators.

<appoint, (employee;;vel], (job;;vjl] >

<appoint, [employee;;ve2], [job;;vj2J >

provided that vel and ve2 are predicates which are satisfied only by

.members of the sets El and E2 respectively. Similarly, vjl and vj2

should ientify J and J2 respectively.

3.2.2: Value-dependent restrictions: The access-control protection

scheme was never intended for value-dependent restrictions [Jon75].

Indeed, the only way to impose such restrictions, strictly by means of

access control, is by a suitable value-dependent distribution of

tickets (see [Min76b]). As we will demonstrate later by an axample,

such an implementation is very costly and error-prone , particularly

because this distribution must be changed with the values on which the

policy depends. Of course, value dependency is very natural under our

OC scheme, as was demonstrated by the examples in section 2, and will

be illustrated again by another example,below.

Page 22

3.3: The complementarity of tickets and activators.

The rationale for using activators is not just to make up for

limitations of the tickets. As was mentiond in section 2.3, the

representation of authority structures requires two types of

control-objects , to represent 'means" and "opportunities", both of

which are necessary in order to perform an action. These complementary

roles are played by the activators and by the tickets.

3.4 An example:

In order to compare our operation-control with the access-control

* scheme, we will now discuss the implementation of a specific policy by

means of both. The example to be discussed is a generalization of an

example which has been used in [Jon75] to demonstrate the featurs of

the AC scheme. Here we will show that the same situation can be

handled much easier and more efficiently under the OC scheme.

Let memo be a type of objects which carry memoranda. Suppose that

in addition to the text itself, which can be retrieved by the operator

read*, every memo-object has a set of attributes

X = (xl,...,xn}

associated with it, where all xi are boolean variables. We will say

that a memo m "satisfies a certain attribute xi" if xi(m) = TRUE.

Suppose also that for every subject(*) S there is a set

'Y(S) = fyl,...,yk}CX of memo attributes which determine the set of

(*)Following the terminology used in the operating system protection
literature, we will use here the term "subject" as a synonyme for a
module".

Page 23

memos which should be readable by S, according to the following policy:

S should be allowed to read all memos, and only such, which satisfy all

yxi in Y(S).

An OC-implementation of this policy is the following.

Let

facade(memo) = {xl,...,xn}

rights(memo) = NULL

and let the primary read-activator be

READ = <read,[memo]>

Suppose that a subject S is given only the following reduction of READ.

READ1 = <read,[memo; ; yl&,...,&yk]>

Suppose also that the set of tickets {(m:memo)}, one for each

memo-object in the system, is stored on a file dir from which all

. -subjects can copy tickets . It is obvious that the desired policy is

satisfied under these conditions.

The salient feature of this implementation is that the various

subjects have effectively different "power" with respect to

memo-objects, due to the different read-activators in their domains.

That is why they can safely share the same set of tickets, contained in

file dir, and still have different privileges. As we will see next,

the situation is quite different in the access-control case.

Under the AC scheme, we assume that the operator read demands that

the right OreadO is in the operand-ticket. Since all subjects involved

must have the right to invoke read, the difference between the subjects

can only be in terms of the memo-tickets, each with the "read" right,

Page 24

which are available to them. Thus, the desired policy can be

established as follows:

For a given memo-object m, let:

Z(m) = fzl,...,zj) CX

be the set of boolean attributes satisfied by m. Let target(m) be the

set of subjects S such that for each of them Y(S)C Z(m). This is

exactly the set of subjects which by our policy should be allowed to

read m. Therefore, the ticket (m:memo;read) should be available to

these subjects and to none other. In order to establish such a

distribution of tickets, we suppose that every subject S in our system

has a directory file, dir(S), which is readable only by him. Whenever

a new memo-object m is createdf a non-copyable ticket (m:memo,read)

should be stored in dir(S) for every S in target(m), and in nowhere

else. This is essentially the solution given by Jones and Wolf to a

similar problem [Jon75I.

Let us now compare these two implementations of our policy, along

two dimensions: the number of control-object, which are needed for the

implementation of the policy, and the coplexity of the distribution of

-. these objects.

As to the number of control objects, suppose that there are NS

subjects in a system which are to be allowed to read memos, and let

there be M memo-objects. Let K be the average number of subjects which

are allowed to read a memo-object. The AC implementation requires K*M

memo-tickets to be stored in the system, while under the

OC-implementation only M tickets are required.

. . .S. -. : ; :

Page 25

Even more important than the number of the control objects, is the

complexity of their distribution. The AC-implementation requires a

- very specific distribution of the memo-tickets among the NS files

dir(S). This distribution of tickets is itself a formidable task.

Moreover, every file dir(S) must be well protected, and readable by the

specified subject S only.

The situation under the OC implementation is much simpler: Once

the NS different read-activators are correctly distributed among the

various modules, we can store all the M tickets in one file, which is

readable by everybody and does not have to be especially protected.

This is obviously much less complex than under the AC-implementation.

Page 26

References

[Dah72J Dahl,O.J. and Hoare, C.A.R. "Hierarchical program
structures," in Dahl, Dijkstra and Hoare, Structured
Programming. New York: Academic Press, 1972.

[Dij]76 Dijkstra, E.W. "A discipline of programming", Prentice Hall,
1976.

(Jon75] Jones, A.K., Wulf, W.A., "Towards the design of secure
systems", Software practice and experience 321-336 (1975).

[Jon76] Jones, A.K. and Liskov, B., "An access control facility for
programming languages", Carnegie Mellon U., Tech. Report,
1976.

[Lis74] Liskov B. and Zilles S., "Programming with, abstract data
types." Sigplan notices, April 1974.

[Min76a] Minsky, N., "Intentional resolution of privacy protection in
database systems", Comm. ACM, March 1976.

[Min76b] Minsky, N., "An activator-based protection scheme", Rutgers
Tech. Rep., July 1976.

[Mor73] Morris, J.H. Jr, "Protection in programming languages, CACM,
Vol. 16, no. 1, (Jan. 1973).

[Pa173] Palme, J., "Protected program mudules in Simula 67", Res.
Inst. of Natl. Defense, Stockholm 80, Sweden.

[Weg74] Wegbreit, B., "Procedure closure in Ell", The computer Journal
Bol. 17, no. 1, 1974.

[Wei69] Weissman, C., "Security controls in the ADEPT-50 time-sharing
system," in 1969 FJCC, AFIPS Conf. Proc., vol. 35, 119:133.

[Wul74] Wulf, W.A., A note in SIGPLAN Notices.
[Wul76] Wulf, W. , London r.l. , Shaw M. , "Abstraction and

verification in Alphard"i CMU TR 1976.

i

r

| .

- - r .

To be published in the "Int. Journal of Computer and Information
Sci."

SOSAP-TR-33

April 1977

AN OPERATION-CONTROL SCHEME FOR AUTHORIZATION IN COMPUTER
SYSTEMS

N. Minsky

'7

Department of Computer Science

Hill Center for the Mathematical Sciences

Busch Campus
Rutgers University
New Brunswick, New Jersey

This research was partially supported by the Advanced Research

Projects Agency of the Department of Defense under Grant #DAHCIS-73-G6

to the Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are
those of the

* author and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of the
Advanced

Research Projects Agency or the U. S. Government.

"" ~Pge 2

The access-control authorization scheme, which is being used for the
protection of operating systems, is found to be inadequate in other areas, such
an in databases and information systems. A new authorization scheme, which is a
natural extension of access-control, is proposed. The new scheme, which is
called "operation-control", is shown to be superior to the access-control scheme
In a number of ways. In particular: it facilitates more natural and efficient'
representations of policies, particularly the type of complex policies which
appear in information systems; it facilitates enforcement by compile-time
validation due to a greated stability of authority-states; and it reduces the
need for revocation.

29y words and phrases: protection, access-control, operation-control, authorization,
ioperating systems, information systems. 7 .

MI Catagories: 1.29, 4.33, 4.35

Page 3

i: Introduction

2: The access-control (AC) appr.acb to protection

3: The operation-control (OC) scheme

3.1: Terminology and conventions

3.2: Activators and the enforcement mechaniam

3.3: The activation patterns.

3.4: Control over the generation of objects

3.5: The control-objects: their role and behavior

3.6: The structure of domains and their dynamic behavior

3.7: The global condition of activators

3.8: On the kernel of the protection mechanism

i '7 . Discussion

4.1: Conceptual simplicity

4.2: Expressive power

-. 3: Efficiency

5; Conclusion

* Page 4

-I,- J 1. MODlCTI

Authorization In computer systems is a discipline undgtr which an action on

the system can be carried out by a user , or by one of the modules of the

system, only If the actor is authorized to perform this action. Such a

discipline is necessary for the protection of the security and of the semantic

integrity of systems.

Most current protection techniques are based on the so called

access-control approach to authorization. This approach has been developed by

Laupson [Lam71], Graham and Denning (gra72], ulf and Jones [WulTI, and others,

mostly in the context of operating systems, and it enjoys a considerable degree

of success in this area. Unfortunately, however, this success has not been

matched In other areas, such as databases and information-systems. It is our

contention that this failure is due to some fundamental limitations of

access-control as a scheme for representation of authority-structures. These

lImitations are discussed in section 2. A generalization of the access-control

authorization scheme is suggested in section 3, and its merits are discussed in

section 4.

ACCESS-CONTROL OAPP OACHK AUITHORZATOIQ

The access-control approach to protection and authorization is well

docmented in the literature. In particular, the reader is refered to the

* excellent review articles by Saltzer (Sal75] and Linden (Lin76J. Here -we will

outline only the essdntial features of this approach, and we will discuss some

of its limitations.

S

r

r, . •
Page 5

The system to be protected is formally viewed as a four-tuple (B,OJU),

where: B is a set of objects; 0 Is a set of rar; J is a set of

subjets , which are the a that actually apply operators to objects, and are

thus responsible for the dynamic behavior of the system; and U is the

authority-state of the system. The authority-state is formally defined as a set

((S,b,o)), where a triple (Sbo) is the permission for subject awhich belongs

to J, to apply operator o to object b. In other words, (S,b,o) is a permission

for S to have access £. to object k". Of course, the system must be supported

. by an enforcement mechanism which guarantees that only operations which are

permitted by the authority-state U are carried out.

There are a number of ways to represent the set of permissions {(S,b,o)).

A method which is particularly relevant to this paper in called the

- eanabilitv-based-nrotection [Wu17l, Lam76]. Under this version of the AC-scheme

the authority-state of a system is represented by a distribution of special

-control-obJects" which we call tickets. & ticket is a pair c=(b;r) , where It

.is an identifier of an object, and Z is a subset of a finite set of symbols,

called *rightsO (or access-rights), which identify, in some way, the operators

that can be applied to object b. That is to say, the subject S who possesses

the ticket (b;r) is allowed to apply to b the operators identified by r. The

generation and transport of tickets is tightly controlled so that the mere fact

that a subject S has the ticket c=(b;r) is taken as uncontestable proof that S

is authorized to have the specified access rights to object b.

Thus, under the AC-scheme (or, rather, under the capability-basedO version

() The phrase Ocapability-basedm used for this version of the access-control
protection is appropriate, even though we are using the term "ticketm for what
Is usually called 'capability', because the set of tickets owned by a given
subject determines his capabilities with respect to the system. (In this paper
te tern capability will be used in its colloquial sense).

Ir

K4 Page 6

of It) the tickets are used as the elementary Al cka At

authritv-structures, kind of *elementary-partiolesO of authority.

Unfortunately, tickets are not suitable to serve as the gZM1 elementary

particles of authority, for a number of reasons:

First, every ticket represents privileges with respect to a g~cific

ohiact, the one addressed by it. These. privileges are independent of the value

(or state) of the object. The problem is that authority structures are

frqnuently based on the value of the objects involved, and are independent of

their identity. To demonstrate the difficulty here, consider the following

example. When a highway patrolman is sent to his duty he has to be given the

authority to cite traffic violators. This authority is not given to him in the

fbrm of tickets, one for each violator. Indeed, the patrolman's authority

cannot be defined in this form because at the time that the patrolman is sent to

his duty the traffic violators do not exist, and the identity of the future

violators is not known, so that it Is impossible to construct individual tickets

for the violators at that time. The point is that the patrolman's authority has

to do with the behavior of motorists, not their Identity. Tickets are too

* specific for this purpose, and at the same time, they are not sensitive enough,

being independent of the properties (.values) of the objects addressed by them.

Another problem with tickets is due to the uJit af ±xJvz which they are

designed to authorize. Every ticket represents a permission to apply certain

operators to the object addressed by it. However, the activity of a subject may

not be expressible purely in terms of operations on Individual objects. One may

have to use intractio between objects, where by "interactionW we 'mean. an

operation which involves several objects, and which cannot be decomposed into a

sequence of legal unary operators on the individual objects. Te problem Is how

pageT7

to express privileges with respect to an interaction purely by means of tickets,

which represent permissions to perform operations on individual objects. When.

the interaction itself cannot be decomposed into such operations. (This

difficulty will be demonstrated by an example in section 4.2.2).

Our conclusion from these observations is that there is a need for a now

type of control object which can authorize directly interactions between

objects, and which would not be based exclusively on the identity of the objects

involved in operations. Such a control-object, which we call an actiatr, is

the basis for the protection scheme proposed in this paper.

3: THE OPERATION-CONTROL IQ=

• The protection scheme to be introduced in this section is
'.7

Ocapability-basedO in the sense that it associates with every subject a set of

control-objects which determine its capabilities. However, our scheme differs

from the access-control scheme by the nature of these control-objects. 10

addition to the tickets which, as under the C-scheme, represent privileges with

respect to objects, we have control-objects called activatora, which represent

-rivle .1= respect t 2 ral=, in the following sense: Every activator A

Identifies an n-ry operator o (for n 0 0), specifying the conditions under

which o can be invoked by the subject who possesses A. There may be several

such activators for the same operator Q, which may impose different

pro-conditions on the activation of a, representing different privileges With

respect to o. We are using the name gnera n control (OC) for this scheme

because the activators possessed by a subject determine directly the type of

operations which he can perform, not Just the waccesses M that he has to various

objects.

Page a .

TeLXarino1lq flm d1~li

To set up the stage for our discussion we now Introduce our interpretation

..f. r ame well known terms such as a sub 1M= and I=.

.. O t d t types: We base our approach towards -types on the

type-concept used in Hydra [JonT5], which is briefly as Tollows:

The set of all objects in a system is described in terms of the three-level

tree in Figure 1. The root of this tree is a prIlmtIve and unique object called

fteplateu. The objects at the second level are Ja= of this Otemplate',.

and are called temnlfte-obients, or .tgnk-ziXcA. Each of these type-objects,

such as the object 1, serves as a template for a set of objects in the third

level, which are said to be *objects of type tu, or 't-objects. A template t

Is supposed to contain the structural definition of all Its instances.

6 Fig 1

In order to impose some *bhaxJvorg al on objects, we introduce the

concept of Optotected type". This is a type t for which there is a fixed set of

operators (procedures) which have the exclusive ability to manipulate and

observe t.-objects directly. We will say that such an operator is privileged

with respect to t". The set of all these operators, for a given ., is denoted

by aR.Civilzsm1L±1. Thus, a t-object for a protected type t can be manipulated

either directly, from within one of the privileged(t) operators, or indirectly

by Invoking these operators. An Important special case Is an operator which is

privileged with respect to only one type t: such an operator will be called a

.~n o (Note that the existence of a tixed set of t-operators is the

6L

Page 9

basis for the notion of 'abstract-data-type' as it is defined In CLU

(LLATl) (e)).

31LZ Abarable object Ad t tickets: We distinguish between two broad

classes of objects, to be called "sharable objects and *concrete objects. A

concrete o is one which is physically contained in one's Odomain*(6). For

example, the integer 7 and the symbol 'seven' are concrete objects. A shaable

object, on the other hand is not contained in any private domain, but it can be

shared, or accessed, by several subjects, by means of a concrete object called

ticket (which is essentially identical to the ticket of the access-control

~~secheme)."•

With every type t of sharable-objects we associate a (possibly empty) set

S of symbols:

-~ahtsnt) a (rl,...,rn1

Bach of these symbols, ri, will be called a wright' with respect to type t.

(M) It should be pointed out that our scheme is not based on the concept of
Oprivileged-operatorsm. It is the other way around: we will see later that
privileged operators can be implemented under our scheme. This concept is mentioned
at this point to accomodate some of our examples in the following sections.

(9e)The concept of domain will be defined later; for the moment It Is enough to
ae It as the workspace of some user.

S

,e

page 10

£M tie £ for an object I of type 1 is defined to be a concrete object

olich, will be denoted by:

a a (b:t; r)

where r, or r(c), is a subset of ightst. If a given right ri is in r(c),

we wll say that Tathe ticket c has the right ri m . Since the content of a ticket

depends on its Jt component we will use the phrase t-ticket to identify all

tickets which address t-objects. A t-ticket which has all its possible rights

ill be denoted by (b:t; ALL). Note that the syMbols ri have been called

OrIghtsM in anticipation of their role in our protection scheme, which will be

discussed later. (Note: the ut" part of . signifies that bk is the identifier

of an object of type t. Whenever the type of b can be understood from the

otet we will use the simplified notation (b;r) for a ticket.)

In general, there way be several tickets which point to the same object b. .-

ye will say that such tickets are related. Let cl, 02 be two related tickets.

Vs will say that cl is iMaker, or les= pemiss., than 2 if

rKoi)C r(c2)

Also, we will say that cl is str retly weker than 2 if

Pol) C r(c2)

As to the stenrratn .and Mt- tickets, the following is assumed.

Tickets cannot be changed, and they can be generated only in the following two

gays:

a) When a new sharable object k of type L is created, a ticket for it is

also created, with all of rigs1h. in it. This ticket, (b:t; AL),

will be called the Ztlma ticket of object b.

Page 11

b) Given a ticket q It may be possible to generate a new ticket Q9 which

annot k1 stroner than g.. Such c', which addresses the same object

as a, will be called a derivJ i. of c. (Later we will see when it is

actually possible to generate derivatives of a given ticket).

1 1he facade 9f objects: One of the objectives of our scheme is to enable

value-dependent authorization. However, one cannot always expect to be able to

base the decision as to the legality of an operation on the value of all the

attributes of an object. This is due to the following reasons:

a) It may happen that an attribute of an object is nt directly

gbser abl. As an example consider the hidden components of

Oabstract-data-types'.

b) It may happen, in certain types of objects, that the mere act of

observation of an attribute of an object introduces a change in the

object itself. An example of this 'quantum mechanical effect*, is a

record on a tape, which cannot be observed without repositioning the

tape.

a) One may not 1= to allow the use of certain attributes for

protection, because such a use may itself reveal confidential

information about the object.

* For these, and other reasons which include efficiency, we now introduce the

concept of the "facade" of an object, -ahich is = DAM 91 In object which 1A

usabl& fr RratctzZ l nuCagAU. More formally, with every type I we associate

the set:

facade(t)

Page 12 -

:aich is the set of attributes of t-objects which are usable for authorization

purposes. By convention, the facade of primitive scalar objects, such as real

and interter numbers, is their value.

.b1j.t. san theirdomains: A computing system changes in time in

response to isruton submitted to a processor for executione , where an

lustruction is a request to apply a speciftic operator to a specific sequence

of operands. We will distinguish between two types of instrucgjca sources:

a) ha eernal V =, such as a human user sitting at the terminal.

. b) hA iner .J which is a Eroogure maintained as an object in

the system.

One Important ditfference between these two types of instruction-sources is that

an external source is totally unpredicatable, as far as the system is

concerned; while the behavior of a procedure can be at least partially

predicted ahead of time.

We define a subhect to be a pair

(IESD)

where INS is an instruction-source, and D is the collection of objects which are

directly addressable by INS. D will be called the doguIn Of S. We will later

me that the domain of a subject determines its capabilities, and also serves as4[
Its workspace.

*for simplicity, we assume that there is Just one processor in the system.

4.

lwr

Page 13

Corresponding to the two types of instruction-sources, we distinguish

between two types of subjects. A subject (INS,D) whose INS is an external

source will be called a A=er, and a subject who.-,e INS is an internal-source will

be called an onerator.

D22r&ra: Operators are the dynamic components of a system. Every

sequential process in the system can be described as a sequence of operjjguaa,

each of which is the application of an operator to a sequence of zero or more p

-: operands. An operator may have various side effects on the system, but only one

value which is called the outcome of the operator. The outcome is 'a concrete

object which is stored in the domain of the subject which invokes the operator. P

We will distinguish between two types of operators. First there is a fixed
r.

set of primitiv opra whose internal activity would not be subject to the

control of our protection mechanism, For example, the set of

machine-instructions may be considered the primitive operators of an operating

System. Secondly, an operator may be a subject (INS,D) whose source of

instruction is a proce- .e maintained by the system. Note the recursive nature

of the operator concept: A procedure, which is the INS component of some

operator, has been defined to be a source of instructions, while an instruction

is a request to invoke an operator.

1-1.6: Authorization scheme n olicies: Following Jones and Wulf [ul 74] we

distinguish between the concept of "authorization-scheme' and that of "po~licy".

A .DQUC is a s 'tfic discipline which one would like to impose on a system.

It will occasionally be called 'authority-structure'. An aut.iorization (or

protetion) .AJf? is a framework which should be general enough t: ac .modate a

variety of policies, as efficiently and conveniently as possible. Such a &rew

* Page 14

cofsists of two main components: A 'languagem which can be used for the

specification of policies, and an enforcement-mechanism which guarantees that no

illegal operations are carried out.

An maBZ.1xao Is a oonorete object which we.denote by:

A m (0, 0pl...,pk I G>-- p

Here A Is the name of the activator; A is an onerator-identlaer; pi, for

lzl,.o.,k Is a SondiL=n An othe I oerand ore, to be called "operand

pattern'; fL Is a condition deflned on all operands, and possibly on. other
objects In the system, (It will be called the "global condition* of A); and pa

Is a condition on the outcome (result). of the operator, to be called the

goutcome pattern"*. (Whenever we do not wish to distinguish between operand

patterns and outcome patterns we will use the term mactivation pattern or just

"pattern'.)

The existence of an o-activator A in the domain of a subject S represents

the authority for S to apply the operator a to any objects ql,...,qk in the

domain of S, provided that for every i:1,...,k the operand qi matches the

operand-pattern pi of A (Satisfies the condition pi), and that the global

onedition 0 of A Is satisfied. The activator A also gives S the authority to
S

(*)If the operator A does not have an outcome then the part *--*pow will not
appear In our notation. Also, the condition fL may be absent. Thus, an
activator may be denoted simply by A a (o9plgesepk>

I .

I'- L. L , ./ . . _ _ . -, .

4t
Page 15

Introduce into its own domain the outcome of -the operator g, thus invokedq

provided that this outcome "matches" the outcome-pattern po of A (that Is,

satisfies the condition po). To support this interpretation of the activators

the following enforcement mechanism is proposed.

Let us define an insruction to be the construct

A(ql,...,qk)

where .A is an o-activator for some operator o and qi are its operands. It is

also assumed that a subject can form such an instruction only from concrete

objects A,ql,...,qk which exist in its own domain. Thus, the set of

instructions which are expressible by a subject is directly determined by the

%'7 content of his domain. Moreover, such an instruction is carried out only if the o

operands "matchu the activation patterns as described above, and if G Is

satisfied. It is the responsibility of the enforcement mechanism to perform

this upattern matching* and to guarantee that no illegal operations are carried

out. Once an operation is carried out, its outcome, if any, is checked. If it

matches the pattern po it will be added to the operating-domain; otherwise, the

value of the operation is lost, and an error procedure may be invoked.

Note that an operand qi may be of two types: it may be a concrete object,

uch as an integer number, which stands for itself; or it may be a ticket that
AS
S" addresses a u -arable object, which is the real operand. Even in the latter case

ue will usually refer to qi as an operand, relaying on the context to determine

whether qi itself is meant or the object addressed by Lt.

6

-q Page 16

rhus, it Is clear that the content of the domain D of a subject S, at a

given moment in time, determines the set of operations which can be carried out

by 3 at this moment. We can say therefore, that th& gnan .QZ at A bje=

diterine its cLapabliti, or its &.

There is an Instructive analogy between the role of the activators in our

scheme and the role of en.zXUn as the control devices of the living cell. The

function of every enzyme is to facilitate a certain chemical reaction. Such a

reaction takes place if there are enough substrates in the cell which fit the

- fativation-sites on the enzyme, in some analogy to the function of our activator

(see figure 2). Although this analogy between activators and enzymes should not

be carried too far, it does provide an interesting viewpoint of the proposed

scheme.

F Vig2'

e4666e*6

Note the similarity between the activators and. the

enal-parameters-soecifigation (or FPS) of procedures In programming

languages: Both determine the legal set of operands of an operator. There is,

however, an important difference between these two. Our activator is an

independent object, disconnected from the operator which it activates.

Noreover, while there is Just one FPS per operator we will see below that there

my be several different 0-activators for the same operator o, which have

different strength. The concept of 'strength of activators' is defined below.

|1

[-

Page 17

Let A be an activator of order k (with k operand-patterns). We define

nna:,(A to be the set of all possible (k+l)-tuples (ql,...,qkqo) of objects,

which can be matched with the corresponding activation-patterns of A, and which

satisfy the condition G of A.

Let A and A' be two o-activators for a given operator o. We will say that

A' is weaker than A (or, equivalently, A is stronger than A') ift

range(A')! range(A).

Vie will say that A' is strictly weaker than A it"

range(A') c range(A),

such an A' will also be called a reducton of A.

As to the ggra A npa a a ctivat ., the following is

assumed: First, there is no way to change an existing activator, except to

erase it. Secondly, new activators can be generated only in the following two

Ways:

a) When a new operator o is created, an o-activator is generated with it.

It will be called the RIM= o-activat.

b) Given an o-activator A, it maybe possible to generate a new activator

A'. which is called a derivativ of A. A' cannot be stronger than A.

(Later we will see when it is actually possible to generate such a

derivative.)

Te following properties of the activators follow imediately from the above:

a) The set of all o-activators, for a given operator o, is Mzrk.IUZ

ordered with respect to the relation 0strongerO.

b) Every activator is stronger then all its derivatives

Page 18

a) The primary o-activator is Ma starngest o-activator.

* 3.a.Ui JI actulao patterns

To be more concrete about the activators and their use we have to suggest a

specific structure for the activation-patterns. The structure to be described

below is designed to support many of the-known authority structures in computer

Systems. Note that the run time overhead due to the enforcement mechanism which

Is necessary to support our scheme depends on the complexity of the activation

patterns and that of G. In this paper we do not impose any restriction on this

complexit3, because ouch restrictions should depend on the nature of the system

to be protected.

3.1t Oerand-natterns: An operand pattern P, to be denoted by

[I;3;V]

is a conjunction ot three predicates I,R,V, which are called components, or

ib-patterns of P. They are defined below.

The sub-pattern (which is the only mandatory part of P) is called the

Identity-based subattrn. It is either a type identifier, "t", which is meant

to be satisfied by any object of type J; or It is the phrase Ob:t" which is

satisfied only by the particular object k of type t. The entire pattern P whose

I component identifies a type t will be called a t-pattern. The structure of

the two other components of a t-pattern depends on t. If a subpattern R or V

does not appear in P, It would be interpreted as identically TRUE, which means

S tt It does not impose any restrictions on the object matched to the pattern.

* --

Page 19

The sub-pattern R, called the nrivilee-based subpattern, is applicable

only in the case that t is a shared-type. R has the general form:

i z rl&r2&,...,&rk

where each ri is a symbol which belongs to rights(t). R is meant to be

satisfied by any ticket of a t-object which contains al least the right

rl,•.. ,rk.

The sub-pattern V, called the vanluas subpattern, is a predicate

defined on the IaCade of the object being matched with it.

An eample: Let d be a type of sharable objects which carry documents in a

military information system. Let the facade of doc-objects be defined by.:

facade(doc) - (slevel:integer, category:text)

where .ajge is an integer which specifies the "security-level" of the document,

and cat gorz specifies its category, such as "navy" or Oarmy. These two

attributes are the traditional security parameters in military establishments

(Vei69]. Let

rights(doe) a (0,E)

An Ve will see below, the symbols *Us and 0L0 stand for the rights to update and.

erase a document, respectively.

P..e 20

Suppose now that there are three doe-operators:, read- Mia t and SM,"

%bich are the only operators able to manipulate a document directly (see section

3.1.1). The primay activators of these operators are as follows:

READ (read, [doe] >

UPDATE . <update, Cdoe;U], (text] >

ERASE a <erase, Edoc;E] >

The activator READ can be applied to any doe-ticket, displaying the content of

the document. The activator UPDATE can be applied to a doe-ticket which

contains the "UN right. The second operand of UPDATE, which can be any

text-object, specifies- the nature of the desired update. The activator ERASE

can be applied to any do-ticket which contains the O"B right, erasing the

content of the document.

The right "U* can properly be -considered an Oupdate-right" due to the

following reason: 6U* is required by the primary update-activator, which means

that it would be required by al update-activators. Thus, the update operator

can never be applied to a doe-ticket which does not have the "U" right. A

similar argument would show that OE, is the Oerase-right".

As has already been explained, the primary o-activator, for any given

operator o, allows for the most general use of o. In order to provide for a

oe limited use of a one creates weaker derivatives of the o-activator. For

•* example, the activator

ERAS <erase, [doc;E,U])

0-°'

Page 21

is weaker than ERASE because it can be applied only to a doe-ticket which has

both OU" and OE rights in it. The following activator

ERASE' <erase, [d:doc;E] >

is also weaker than ERASE, because it can erase only a specific document d.

Note, howitzer, that there is no ordering relation betwe-n ERASE' and ERASE*.

Neither of them can be a derivative of the other.

To illustrate the use of value-based sub-patterna consider a subject S

whose domain D cortains the following activators.

* READ' ((read, (doc;; slevel _. 2])

UPDATE' = <update, (doc;U; slevelS2 & categorynavy"], [text] >

which are reduced derivatives of READ and UPDATE, respectively. S has the power

to read any document whose security level is smaller than or equal to 2 and

whose ticket he can get. S an also update "navy" documents whose slevel _. 2,

provided thAt he has a ticket with the 'U' right for such a document. However,

S .Ann erase any document because he does no; have any erase-activators.

. he2 outcome-pttern: The outcome-pattern po of an activator

A a (o,...>O pO

in a condition on the outcome of the operator o, when invoked by means of r .

Tis means that only an outcome which satisfies po can be added to the operating

domain by using A. The structure of the outcome-patterns is identical to that

L----. 2 2

* Page 22

of the operand-patterns. However, the interpretation of the k-cmonent of the

pattern is different. Let po be the pattern (I; rl&r2&...&rn; V]. The

riht-symbols rl,...,rn in this pattern are not treated as conditions on the

rights .Ul contained in the. ticket - returned as the outcome of the operation.

Rather, they serve as a III= on r(c), in the following sense: Any right in

r(o) which is not represented in rl,...,rn would be erased from the outcoming

ticket q. Thus, t=e-m onent RqnCZ= A&eft 3= = In=r -IJ ;lr.barights

WhicZLh t= k returne U& result oL anaXia1 th& actiator. This means, for

oezmple, that the activator

(opl >- [I1;rl;V1].

is weaker than

(o,pi) -- (I;rl ,r2;Vl]

Returning to our document example, consider an operator Ketdoc which

retrieves documents from files. Let the primary activator of zetdoc be

GiT a <getdoc, (file], [text] >--p [dod;ALL]

The first operand of retdoC must be a file of documents, in which Sletdoc is

supposed to locate a document identified by the second parameter, returning the

ticket for the document as its outcome. Note that the outcome-pattern Edoc;ALL]

would match any document-ticket. Consider now the following, weaker, derivative

of G tTt

OSTI <g~etdoc, (fI:flle], (text] > [doc;U;3levelzI]

Page 23

ET' can get documents only from a specific file £1; moreover it can produce

only tickets for documents whose security-level equals 1, and these tickets can

have no more than the 0U* right in them.

ontrol over the neratiof obj ests

As we saw in the last section, one can control the use of individual

existinx sharable objects by the distribution of their tickets. We will now

show how the generation of new objects can be controlled. (Only the essentials

of such control are discussed, leaving some details unspecified). This will

serve as a farther illustration of activators and their patterns.

First, we assume that there is a primitive operator £aD-DZ. which is able

to generate new type-objects (the objects in the second level of the tree in

7 Figure 1). Let the primary activator of this operator be:

GEN-TYPE - <gen-type,....>--.P template;ALJ.]

This activator has a sequence of operand-patterns not specified here, which

determine the type of arguments which are required by gen-type. Invocation of

GEN-TYPE would generate a template-object returning a ticket for it with all its

possible rights. Obviously, only a subject who has the GEN-TYPE activator, or

some derivative of it, can generate new types.

Ve now assume that together with a new type-object t, the fbllowing

"1nstantiation-activator" is generated

<gen-t ,pl, ...-pk-.-p Ct;A1l],

-..- , ., op

Page 211

were men-t is an operator which generates Instances of type t, and pl, ... ,pk

determine the arguments required by &W Application of this activator to an

appripriate sequence or operands returns a ticket to the newly formed t-object,

with all the rights(t) In it. For example, the primitive

imatantiation-activator for the type g= may be:

GE-DOC <gen-doc, content:[text], slevel:[integer],

category:Etext] >)- doc;ALL]

U (To distinguish between the various operand-patterns we use labels such as

content: ...]). The three operands of gnana determine the Initial state of

the generated document: its content, seeuritv-level and category. A subject

who has this activator can generate documents with arbitrw-y security-level and

category, and he gets a ticket for the generated object with all its possible

rights. However, a subject who has the following derivative of GEN-DOC

OEN-DOCI x <gen-doc,...,ategory:[text;;valueawnavy'- > [doc;E]

can generate only documents whose category Is wnavy", getting for them tickets

without the OUO right. Note that documents generated by GEN-DOC' can never be

changed, because there can be no tickets with the OU" right for them.

An to the control over the distribution or the instantiation-activators,

the following is assumed: The primair instantiation activator of a type t is

Stored inside the template-object t Itself. It can be accessed, and copied or

moved to other places by a subject who has an access to an appropriate ticket of

the template object t. (See section 3.8 for inform-tion about the transport of

activators and tickets.)

ha type s a]tn n eontrel-obteats! their re and JkbA1i

Page 25

Our protection scheme is based on two primitive types of objects,

aciators and tickets, which we call, collectively, "control-objects'. The

distribution of control-objects throughout the system serves to determine its

authority-state, namely, such distribution determines who can do what in the

system. The roles of the two types of control-objects is reviewed in this

section, and their transport is discussed.

There is a synmetry in the function of activators and tickets in our

scheme. A ticket for object b which resides in the domain D of a subject S

represents the privileges that S has to b, in the sense that the ticket

determines the set of operators which may be applied by S to b. Analogously, an

o-activator which resides in D represents the privileges that S has to the

operator o, in the sense that it defines the set of objects to which o can be

SIrapplied by S. Tickets and activators also play comnlementarv roles in our

scheme: neither one of them alone 1s sufficient for the application of an

. operator to a sharable-object. For thL, one needs both an activator and a

ticket (or several tickets) which fit the activator.

The complementarity of activators and tickets allows us to alf t te

ooati. qr the right-symbols. Let the symbol rl belong to rights.L) for a

given type .- We define the priilegsaa iated _V=r3X to be the set of

t-patterns of the various activators in the system which require £1. Moreover,

for a given domain D we define the r 1vges a iatd X= ZI to 6e the

set of t-patterns In D1 which require £1. Note, for example, that this set may

be empty, rendering lI useless in the context of D, even if the set of global

privileges of r1 is non-empty. For instance, the right "Uu of section 3.1 would

be Useless within a domain which has no update-activators.

* Page 26

bhe two types of control-object3 exhibit some similar structural and

bebavioral characteristics, which are best seen by comparing the following two

- ieU: the set T(b) of all tickets for a given object b, and the set Aco) of all

4-activators. T(b) and A(o) are partially ordered sets vith respect to the

relation stronger, defined for tickets and activators respectively. Every

ticket in T(b) is a direct, or indirect, derivative of the primary ticket of b,

which is created together with the objict b itself. Likewise, every activator

In A(o) is a derivative of the primary a-activator, which is created together

with the operator o. A control-object, whether it is an activator or a ticket,

le btronger than all its derivatives.

Control-objects are to be distributed by* means of two primitive

Otransport-operators": k-cany and k-wove. ("k" stands for "kernel", as these

operators should belong to the kernel of the system, to be discussed in section

3.8). Each of these operators when applied to a control-object o generates a

new control-object so! in some other place In the system, such a co' cannot be

stronger than cc. The difference between the two transport operators is that

k-copy does not affect the original contro>-object while k-move erases it.

bTus, k-move, in effect, moves a control-object from one place to another,

u ,ossibly reducing it in the process.

6

* n order to get a degree of control over the transportability of individual

ontrol-objects, the following facility is introduced. The JaCAd of a

eantrol-object of either type, Consists of two boolean components, *copy* and

Oe", to be called the *intrinsic rights* of the object. The operator k-copy

am be applied to a control-object co only if "it has the copy right", namely,

* L1 the "copy* component of co Is TRUE. Likewise, k-Anove can be applied onry to

-a eantrol object which has the "move" right. Thus, a control-object. with

* i

age 27

* neither intrinsic-rights is untransnortable. Of course, the control-object co'

generated from co by one of these operators cannot have more intrinsic-rights

than co, but it can have less.

It is obviously vital to have some control over the use Of the

transport-operators. Such a control can be achieved by the distribution of

their activators. These activators will be discussed in section 3.8.

_Uk i isructure 91 domains, 1n their dvnamac behavior

As has already been explained, the content of a domain D at a given moment

in time, T, determines the set of operations which can be carried out at time T

by the subject S associated with D. But what can we say about the 1tur=

capabilities of the subject S? To answer this question one Must be able to

W predict the future content of D. This In turn, requires an understanding of the

dynamic behavior of domains.

1.. External And internal changes .1o. We will distinguish between

two types of domain change, to be called "external changes" and "internal

changes". An external chanie of a domain D associated With subject S s a

change caused by an operation invoked by a subject, SO. In particular, it

is such a subject S' which created D in the first place. In order to predict

the dynamic behavior of a given domain D under external changes one must be able

to tell which subjects have the capability of changing D, and what are they up

to.

An internal shanm of a domain D is one which is caused by an operation

Invoked by s n subject 3, as follows: Let

~F

Page 28

A > ...>-4-P-
r

be an activator in D, and let A(ql, ...,qk) be an operation invoked by s.

The outcome of this operation, if any, i added to D. Mhis matcn la a

conrete obiectwich atif i go. (Note that depending on p, the outcome

ihich is added to the domain may be a primitive object such as integer, a ticket

fbr a sharable object, or even an activator). Thus, the nature of the possible

Internal changes of a domain D are determined explicitly by the content of D

itself.

now, it seems reasonable to assume that in a well-designed system there

%3uld usually be only a small number of subjects S' which are able to change an

eisting domain D. Moreover, even these subjects are not likely to exercise

their ability to change D very often, so that an external change of a domain is

likely to be a relatively rare event. Therefore, we continue our discussion of

the dynamic behavior of domains taking only internal domain-changes into

account.

q-6.2 M ofs. ructura Lomlin: Until now, domains have been presented as

monolithic structures. We will now distinguish between two parts of a domain,

to be called 'permanent' and stransient' parts. The nermanent-nart of the

domain of a subject S is created .with the subject, and is attached to it

throughtout its lifetime. We will sometimes refer to this part simply as *the

domain* of the subject. The transient-part of the domain, to be also referred

to as the 'workspace' of the subject, exists only for the duration of a single

%etivity-period' of the subject. In the case of a user an activity-period is a

mingle 'session' of user-system interaction. An empty workspace is attached to

the domain of the user at the beginning of a session, only to disappear when the

•Seiion terminates. An activity-period of an operator is the period between its

4T

Page 29
1*

invocation and Its return. then an operator is invoked, a new workpace, which

contains all the operands, is-attached to Its domain, to be deleted when the

operator returns control.

Ve nov introduce the convention that unless specified otherwise, an

Internal-change of a domain effects its transient part only. This means that

the outcome of an operation is usually stored, in the workspace of the subject,

leaving the permanent part of the domain invariant of the activity of its own

subject. An example will clarify all that.

1.. An. sxamnl: Consider a subject S whose domain, or rather, the

permanent-part of its domain, is given in Figure 3. This domain contains two

. file-tickets, for files fl and f2, which are assumed to contain documents. The

domain also contains five activators: The activators GET' and GET a

reductions of the activator GET (cf. section 3.9.1). Each activator gets a

doc-ticket identified by its second operand, from the file identified by its

first operand. GET* can be applied only to a ticket of one file, fl. Namely,

GET' can be used to generate tickets, with the 000 right, for documents stored

In fl. We will denote the set of all such tickets by F1. The activator GE,

which can be applied to the ticket c2 of the file f2, can generate a set, F2, of

tickets of documents stored in f2 whose alevelzl. These tickets would have only

the 'r right in them.

eeig 3

.. .-

ini-

-- -- - - - - -- - - - -

1zSe 30

2ho activators READ', UPDATE' and ERASE, alreidy discussed In eotion 3.3,

cn be applied to the doe-tickets generated by GET" and GETO. READ' can be

4pplied to any docment Msea slevel2. ote, %bere1tre, that some of the

dociments whose tickets may be generated by GET' m be read by S. UPDATE'

o~n be used to update any *navy docnent, provided that its ticket has the Oue

right. This means that none of the documents V 12 can be updated by S, and

-only same of the documents on fl, the Onavy documents, can be updated. J

Finally, usin ERASE, S can erase all the docuents be gets from fl, but none

fros f2. (Note that our subject cannot generate mew documents, because he does

ztf. have a gen-doc activator).

Note that all the doe-tickets generated by our subject would be Inserted

Into its Oworkspce, which i3 the transient-part of the domain that disapperas

at the end of the se-sion. That Is to say, the subject S cannot have any

dzo-tickets for extended periods of tine. This property of our scheme is very

kportant as It reduces the need for revocation.

A e : The domain In Figure 3 Is incomplete In the sense that it contains

I activators for basic operations such as integer-addition or manipulations of

text variables. Such activators are necessary because, by our definitions, A2

@eration can be carried out by subject without having the proper activator in

his domain. However, follwoing [in76], we assume that all control-objects

-%bich are necessary to authorize the use of operators and objects which we do

-mot ish to restrict are Incltded, by default, In al domains.

~'|

Page 31

We define the condition G of activators by the following two properties:

a) G is a conjunction of predicates: gl&g2&...&ik -

b) The reduction of a global condition can be performed by adding a conjunct

to it, not by a change of existing predicates.

At th s point, no restrictions are Imposed on the individual predicates gi. In I:

particular, gi can be defined on all the operands of the activators, as well as

on other objects in the system which are not otherwise involved in the

operation. Moreover, we will allow gi, to have side effects. Here are some

applications of the global-condition.

1.7.1 Correlaion between o22rana: The operand pattern, pi, has been defined

to be a condition on the i-th operand. Since G can be defined on all operands,

it can correlate them. For example, let cd be an operator which copies the

content of one document (doe-object) into another. Consider the following

copyd-activator

(oopyd,dl :doc],d2:[doc;u] dl.catesoryad2.category &

di.slevel I d2.slevel,

The only restriction Imposed by this activator on the individual operands is

that d2 must have the 3UO right, (without which the update of d2 would not be

possible). However, the G part of the above activator requires the two operands

to be of the same category, and that the second operand should not have a lower

security level then the first. (This is a very common type of restriction In

military information systems.)

1- ! n stAtu-yariables: Suppose, for example, that there

-

Pase 32

is a global variable T in the system which represents the raa-t as The

fbllowing activator

can be used only in the time period (ti,t2) because its G part would return

FALSE at any other time. In a similar way one can construct activators which

are conditioned on other global variables In the system.

q-7.1 ZsJ IA U tive cltiatr a: Consider a predicate fl9Jm-goNa of the form

UWIN OVY N;

IP ,N 0 RETURN FALSE;

If this predicate Is used as a component of the f part of an activator A, it

* would limit the number of times that A can be used. If, for example, the own

variable N of such a count-down predicate is initialized to 2 when the activator

Is created,- then after two applications of A It will return false, preventing

further use of A.

q..L Re.aion,1Q of £ntivatoraM: One of the classical problems in

capability-based protjotion is how to revoke a privilege already granted.

(*)I am indebted to Dorothy Denning for suggesting this Important application of
the global condition of activators.

- °r

ag 33

Revocation of tickets has been studied extensively by ledell ERed743 , Cohen

[Cohl5J and others. Here we vil see how activator3 can be revoked.

Consider a subject Si who has an activator

A1 g ")

In his domain Di. Let ml be a boolean variable local to Di. Suppose that S1

generates a derivative A2 of Al

A2 g ... | & al >

storing it in the domain D2 o subject S2 (see figure 4). It is quite obvious

that £2 can be used only as long as the boolean variable al Is TRUE. Thus,

VV although A2 belongs physically to 32, It is still controlled by SI which can

prevent the activation o A2 simply by turning off the variable al. Moreover,

every derivative of A2 would be controlled by Si in the same way because it Is

Impossible to remove a conjunct from G. Moreover, one can add additional

controls in a similar way. For example, let a2 be a boolean variable In D2, and

suppose that S2 generates a dervative

A3 <*...I g & al &a)

of A2, storing it in the domain D3 of S3 (see figure 4). Now, Si can deactivate

and reactivate both A2 and A3 by turning al off and on, while S2 can control A3

*In a similar way by means of its own variable a2.

0 Fig 4 a
* *eee...eeelll;

a. .

Page 3

Note that in a similar way one can construct a variety of revocation patterns.

In particular,, the variables Al and aZ above may be stored inside some shared

object whose tickets are distributed in a certain way.

14.7-L Mnitoring J.MI= aactvtos Using the ability, of G to produce side

effects, one can monitor the use of activators, as follows. Suppose that a

subject SI has the activator

A. =<...i £>

un Us domain D1. let

£2 <..*I & m >

be a derivative of Al where & is a predicate which always returns TRUE, and

Vwich is prograimed to write a record into a file accessible to 31, reporting

about each invocation in which'it participates. Thus, 31 would have an

audit trail of all activations of A2 and of any derivative of it, because i

cannot be removed from an activator. The users of A2, or of its derivatives,

may not be aware of such audit trail being formed, and they certainly cannot do

anything about it, because no part of 0 can be removed from an activator.

3.8: nW the na of thp rotection nekhantam (a)

This section can be skipped on first reading.

Page 35

The purpose of this section is to clarify and support some of the

assumptions made in previous sections. In particular, it has been assumed that

for every type t there is a set of ivilestd.ogerators with respect to t, which

bave the exclusive ability to modify and observe t-objects directly. Here we

Will show how this exclusiveness can be imposed by means of the basic protection

mechanism. This discussion will bring us down to the foundations Of the

protection mechanism, which is frequently called its kernel. However, only some

aspects of such a kernel will be discussed here. Its complete study is beyond t

the scope of this paper because the kernel is likely to be strongly dependent on

its context. For example, the kernel would surely be very different in the case

of operating systems, databases, and programming languages. Therefore, the

following discussion should not be viewed as a proposal for a specific

implementation.

e.m. k n an= Thir Operator: In an attempt to find a uniform

Implementation for all types of sharable objects, we first define a primitive

type called se ent which is to serve as a host for sharable objects of all

types.

& SeZat is essentially a chunk of storage divided into a sequence of

slQo each of which can host one concrete object of a given primitive type. For

sample, there may be integer-slots, text-slots, ticket-slots and

aftivator-slots. The various slots in a segment will be addressed by their

relative position with respect its origin. This division of a segment into

aLats will be called the AtE=&= of the segment. A segment is allocated, to

boat an object of a given type t, by the sten-t operator (defined in Section

3-). The structure of this segment is determined by t, and is fixed for the

l]fe-tme of the object.

Page 36

Ve will treat the set of all segments as a type. It is a special kind of

type as it include (0) all other types of sharable objects. since, by our

definition, an object of any type is also a segment. As any other type of

sharable objects, the type *segment* has its own rights, which, following Hydra,

will be called wkernel rights*. We assume that

right(segments) a (k-read,k-writel.

A ticket (b:t; r) of a sharable object b can be viewed also as a ticket for the

segment which hosts an object b, provided that we generalize the r-component of

a t-tiCket as follows:

rC riChts(tA/rights(segment).

That is to say, the kernel-rights are common to all types, and may appear in any

ticket.

We now introduce two operators which operate on segments: the already

montioned transport-operators, k and Lomove. The primary activator of

k-copy is:

K-COP! - (k-copy,s1:(segment;k-read],locl:[integer],

.2: Csegment;k-write],loc2: (integer], reduction: [text] >

The operator k-copy copies a concrete object from slot igrI of segment Al into

slot =Z. of 12. The fifth parameter, reucio, specifies the reduction to be

(M)The concept of Itype-inclusion" could have been introduced formally in

seOtion 3.1.1. We avoided this for the sake of simplicity, and we are using

type-inclusion,in an ad-hock manner, only in this case.

kgr

Pase 37

applied to the copied object, if it happens to be a ticket or an activator.

Namely, it specifies in what way the new object is weaker than the original (The

syntax of the reduction specification will not be discussed here). The

conditions for the copy operation to be carried out, are of two types: explicit

and Implicit. The conditions which are explicit in the activator are that the

ticket for al must have the "k-read" right, and the ticket for JZ must have the

tk-writew right. In addition to these explicit conditions we assume that the

following restrictions are built into the operator itself.

-1) The concrete-object in slot lool of 31 must fit the type of slot _?2 of

ma. This simply means that the k operator does not violatt type

specification of the structure of segments. Thus, only a ticket can be

stored in a ticket-slot, only an activator can be stored in an

'i activator-slot, etc. Moreover, a ticket-slot may be earmarked for ticket

of a certain type of objects only and there may be a limit imposed on the

rights which may be contained in the slot. All such specifications must be

honored by k-copy.

2) If the content of the loci-slot of s is a ticket or an activator, it must

have the intrinsic-right 'copy'.

The second transport-operator, k-move, has a similar activator, K-MOVE. The

only differences between these two operators are:

a) k-move erases the content of slot 1.1 of a1.

* b) In the equivalent of restriction (2) above, the intrinsic-right "move*

(rather than 'copy') is required.

Note that because of (1) above, a slot behaves like a variable in a typed

* language, namely, it has a specified range of objects which may be stored In it.

A particularly important case is that of a 'ticket-variable' which can contain

tickets only for a given type of objects, and with a mnectfig mazLaUh VJ of

Page 38

rlghts. Such a facility, which is similar to the ticket variables introduced by

Jones and Liskov in [Jon76], can contribute greatly to proving correctness of

policies.

Aa we will see next, the activators K-COPY and K-MOVE are too powerful to

be contained in any domain. We will have to use restricted derivatives of them.

'-.2- M he .i lementaton r Privileged-Onerators:

For a given type t consider the following derivative of K-COPY:

READ-t < (k-copy,s: [t;k-read] ,locl :[integer],

s2: [myself],loc2: [integer], reduction:[text]>

This is a reduction of K-COPY in two ways. First, the Si pattern can be matched

only to tickets of t-objects (which is a smaller set than all segments, which

are allowed by the pattern sl in k-copy). Secondly, the phrase "myelfr, in the

s2 pattern, is a context dependent pattern which matches only the

oneratinz-domain. This allows a subject which has this activator in its aomain,

together with a t-ticket:

o a (b:t; k-read,...),

to copy information from object b addressed by c, into its own domain. Or, in

other words, READ2- allows reading2 o e . In a similar way, the

activator

VRIT-t x <k-copy,sl: [myself],...,s2:(t;k-write],...>

allows one to copy information from the operating domain into t-objects, that

la, to write Jn= t-o ct. One can also construct a pair of similar

derivatives of K-MOVE, which move data into, and from t-objects.

Pass 39

We thus have four activators for a given type , which can be used for

reading from, and writing into t-objects. AssuMing that the primary activators

of k-copy and k-move are not themselves available, only a subject which has in

its domain one of these four activators is able to manipulate or observe

directly t-objects. Thus, an operator a privilege wXt resnect to t if and

only if it has at least one of the above four activators in its own domain;

Jge that an o erator .an &C .nr iJ .y .thresec toa number L difrmnt ti

tVle. This is not possible under the implementation of mabstract-types" in

CLU, for example.

The purpose of this section is to evaluate the proposed operation-control

- (OC) scheme along a number of dimensions, such as conceptual adequacy and

aimplicitly, efficiency, and expressive power. To keep the discussion in

perspective we will compare our scheme with the capability-based access-control

(AC) scheme, specifically the Hydra [JON73, WUL74, COH75] version of it. Such

comparison is appropriate because, as we will see next, the OC scheme can be

viewed as a natural extension of the capability-based version of the AC scheme.

In comparing our scheme to the access-control one it may seem that we are

sacrificing a great deal of conceptual parsimony by adding another type of

control-object. This, however, is not the case. We will show next that the

proposed scheme can be viewed as a natural extnsion J the A, which

results from the removal of an unwarranted restriction in it.

Page 4O

Note that the enforcement mechanism which is necessary to support the OC

scheme is essentially identical to that of the AC scheme. Under the AC scheme,

an operation o(ql,...qn) is considered legal if the tickets of the operands

qi, ... ,qn satisfy the requirements imposed by the formal-narameter specification

(FF8) part of the operator o (this part is ci-sed itemplatew in Hydra). Thus,

the FPS of an operator is functionally equivalent to our nrJmarv-aCtivator.

Mreover, having the right to call an operator o, under the AC scheme, is

equivalent to having the primary o-activator, under the OC scheme. Thus, the OC

scheme can be viewed essentially as a AC scheme with the . degree gL

freedom which allows the formation of a whole set of o-activators of different

strength. These activators represent varying degrees of authority with respect

to the operator o, just as the set of tickets of a given object b represent

varying degrees of authority with respect to b. This symmetry in the treatment

of objects and operators, which does not exist under the AC scheme, is important

because it reflects a common feature of authority-structures. The capabilities

of an actor (subject) in computer systems, as well as in the real world, is

frequently due to the type of operations which he can perform, not only to the

privileges that he has with respect to specific objects. Thus, our scheme is

conceptually cleaner and more complete than the AC scheme.

LZx nressv powr

te will say that a policy is expr iblr. in a given scheme if it can be

specified and enforced by means of the formal devices provided by the scheme.

(Note that expressbility, so defined, is a stronger concept than

Implementability. Indeed, any policy can be implemented on any kind of system,

simply by programming it into an interpreter which carries out every operation

oan the system.) The difference in expressivA power between the AC and the OC

-F

Faso i1

schemes is primarily along two dimensions: value-dependencv and the abii t

hanle i jtractons. It is not that value dependent policies and policies with

respect to interactions cannot be expressed in the AC scheme (although this is

true for some such policies). The main problem is that the implementation of

such policies tends to be cumbersome and inefficient to the point of being

impractical.

4.2.1. Value-Dependent policies: We define a *value-dependent policyO to be

one under which the legality of an operation depends on the value (or state) of

the operands. In particular, we will be interested in the case where the

value-dependency itself depends on the subject which invokes the operation.

Such policies can be represented in our scheme by the distribution of activators

with appropriate value-based patterns. On the other band , the only way to

represent such a policy under the AC scheme, is by a suitable value-dependent

disriuiofn .2r tickets. That is to say, the laeAn of tickets depends on

the values of the objects a'dressed by them. As we will demonstrate later by an

example, such a representation may be so costly and error-prone that it becoms

completely impractical.

.2.2 iandlin& 2L interactions! The concept of *interaction", mentioned in

section 2, is defined, more rigorously as follows:

For a given subject 3, an .in raction is an n-ary operator, for n>1, which

0 cannot be expressed by S as a sequence of legal unary operations on its

individual operands.

Note that by this definition an operator which is an interaction for one subject

my not be an interaction for another. Consider, for example, a procedure

*ntn t). which appoints employee e to job I in a corporate information

system. Suppose that this appointment is actually done by planting a pointer to

~~I

Page 42

I, in the record which represents e, and vice versa. Suppose also that such

tinkering with pointers is not allowed outside of the procedure abnont, for

obvious reasons. Thus, for any subject other than the procedure annn itself,

the operator Jnoint(ej) is an ineato because there is no way to decompose

it into a sequence of (more primitive) operations on & and I seperately.

Now, consider the following policy with respect to the interaction angno2X.

Lot El and E2 be two sets of employees and let J1, J2 be sets of jobs. Let S be

a subject who is to be allowed to appoint employees in El to jobs in J1 and

those in E2 to jobs in J2, but is not allowed to appoint employees In El to jobs

in J2, etc.

Under the OC-scheme, let psi, pe2, pjl, pJ2 be patterns which match members

of the sets El, E2, J1, J2 respectively. The desired policy is realized by

giving S the activators <appoint, pel, pJl >, and <appoint, p.2, pJ2 >.

To see the difficulty under the AC-scheme we now consider several attempts

to represent this policy. First, suppose that the operator annoint requires the

right rl from its first argument and r2 from the second. Now, S can be given a

ticket with rl for every member of El,E2; and a ticket with r2 for every member

of J1 and J2. The problem is that this would allow S to make cross

appointments, of members of El to jobs in J2, etc.

The desired policy can be na ented in a system such as Hydra, as

follows: One may maintain a table inside the operator appoint, which identifies
0

the set of triples (S,..,J) such that S is allowed to appoint et to job .1. The

operator appoint may be programmed to obey such specificati6ns. However this is

not a representation in terms of the AC-scheme, and, it is quite contrary to its

underlying philosophy of the capability-based approach to authorization.

rr'!

Page 43

A correct but unnatural and very inefficient representation of our policy

In terms Of the AC-3cheme is the f'ollowing: For every "appointable" paiLr (o,J)

we create an object Aj which represents the pair. The operator annoint can be

considered as a unary operator on such pair-objects. The authority of our

subject can be defined by giving him a ticket for every pair-object &I which 3

is allowed to appoint. Such representation of authority apart of being highly

artificial and inconvenient, may be extremely inefficient. For example, if the

cardinality of each of the sets E1,E2,JlJ2 is N, then S will have to maintain

2NO92 tickets, as opposed to .j activators which are necessary under our

scheme. oreover,if the membership of an employee j in one of the sets El, E2,

is determined by the value of A, then the maintenance of the authority-struCture

* is very difficult. Whenever A stops to be a member of El, say, one has to

*revoke all existing tickets for appointable pairs &I.

The efficiency of a protection scheme should be measured along two

* dimensions: efiincy o the representation of policies, and the efficienc of

sgu mnt. To explain what we mean by efficiency of representation we now

introduce a number of concepts:

We will use the term "control-material for the overall dintr±ia on ga-

control hroughout For a given policy P, we will be

Interested in the following properties of the control-material which is

necessary for the representation of P.

a) The xnIm of the control material, which is the number of control

objects in it.

b) The e or the gj r jgi, of the control material. We will say

* that the distribution of the control material is more complex, if therei' "

Page 44

are more rigorous requirements as to the aucaLm or the various

Oontrol objects.

o) The iniatintL of the control material. ar the term *vlatility we

mean 1 loosely speaking, the amount ot Change in the control material

whiob is necessary in order to maintain a given poliAy during normal

operation of the system, or to support incremental-changes In the policy

itself. (The term "stability* will also be used, as the opposite of

Ovolatility").

These aspects of a protection scheme, and their relevane to the eticiency of

the representation of policies, are discussed In the next two sections.

Efficiency of enforcement is discussed In section 1-.33.

T.h. e volume == and th uit r the ent-mter1,1 ; In this section

we will argue that

the volume of the oontrol-material which Is necessary for the

Implementation of a given policy under the OC $theme tends to be

maller, and less complexly distributed than under the AC-scheme.

An Important reason for this tendency Is that activators can have various

oerreaa f stenral it iLr.b Anee i f i , which can be adapted to the nature of

the policy at hand. For example, the activator <read, (do*]) can be used to

read any document, while the activator <read,(d:doc] > can be used only to read

the specific document d. Tickets on the other hand have fixed degree of

specificity: every ticket represents privileges with respect to one specific

object. Thus one may need many tickets to represent a capability which, under

the OC scheme, can be represented by a single activator. We will now

demonstrate this tendency by an example, which Is a generalization of an example

used by Jones and Wulf In [Jon?75.

4L

Page 45

An Example: Let memo be a type of object which carries memoranda. Suppose

that in addition to the text itself, which can be retrieved by the operator

" ad, every memo-object has a set of attributes

K a (xl, ...,zn)

associated with it, where all xi are boolean variables. We will say that a memo

* 'satisfies a certain attribute xi" if xi(m) = TRUE (e). Suppose also that for

every subject S there is a set T(S) = {yl,...,yk)CX of memo-attributes which

represent his privileges with respect to memoranda, as follows: £ shouIba

allowed I& Zread AU _e=os, A nJ such, ybJ i satisfy Aty Y(S),

An OC-reoresentation of this policy is the following.

Let

facade(memo) = {xl,...,xn}

w-w and let the primary read-activator be

READ x <read,[memo]>

Suppose that a subject S is given only the following reduction of READ.

READ I <read,[memo;; yl &,...& yk]>

Suppose also that the set of tickets ((m:memo)), one for each memo-object in the

system, is stored on a file A= from which all subjects can copy tickets. It In

obvious that the desired policy is satisfied under these conditions.

The salient feature of this implementation is that the various subjects

have effectively different "power with respect to memo-objects, due to the

different read-activators in their domains. That is why they can safely share

A)a possible interpretation of this is the following: There are a non-disjoint
categories of memo objects. An object n beongs to the i-th category if xi=TRUE.

pW

Page 46

the ame set of tickets, contained in file di, and still have different

Privlleges. As we viii see next, the situation is quite different under the AC

came

Under .ib s heme, we assume that the operator read demands that the

right *readm is in the operand-ticket. Since all subjects involved must have

the right to invoke Zea, the difference between the subjects can only be in

terms of the memo-tickets, each with the wreadm right, which are available to

them. Thus, the desired policy can be established as follows:

For a given memo-object m, let:

Z(-) 2 (zl,...,zj)C X

be the set of boolean attributes satisfied by m. Let taCgeLm). be the set of

subjects S such that for each of them

Cs)V Z(m).

This is exactly the set of subjects which by our policy should be allowed to

read m. Therefore, the ticket (m:memo;reid) should be available to these

subjects and to none other. In order to establish such a distribution of

tickets, we suppose that every subject S in our system has a file, memos(S),

which is readable only by him. Whenever a new memo-object m is created, a

nonnvable ticket (a;memo;read) should be stored in memos(S) for every S in

target(m), and in nowhere else. This is essentially the solution given by Jones

and Wolf to a similar problem [Jon5].

Let us now compare the control-material which is necessary for these two

implementations of our policy:

0

r

Page 47

As to the volm e .control ma.t ,ril,, suppose that there are US

subjects in a system, and H memo-objects. Let K be the average number of

* subjects which are allowed to read a memo-object. The AC implementation

requires KOM memo-tickets to be stored in the system, while under the

OC-representation only M tickets are required. (Also, the AC implementation

needs NS tickets for the operator read, which is comparable to the HS activators

needed under our scheme).

Even more important than the volume of the control material, is the

oit _.fa= distribution. The AC-implementation requires a very specific

distribution of the memo-tickets among the NS files memos(S). This distribution

of tickets is itself a formidable task. Moreover, every file memos(S) must be

well protected, and readable by the specified subject 3 only.

The situation under the OC implementation is much simpler: Once the NS

different read-activators are correctly distributed among the various domain, we

can store all the 1. tickets in one file, which is readable by everybody and does

not have to be especially protected. This is obviously much less complex than

under the AC-implementation.

4.3.2 Sabilit f he control mateial: Stability is a very desirable property

of the control material, for a number of reasons:

a) The maintenance of highly volatile control-material may take a lot of

effort, particularly whenever it is Involved with revocation.

b) The probability for making mistakes in the distribution of

control-objects Increases with their volatility.

F.

Page 518

O) Stability of the control-material facilitates compile-time checking.

Ve will argue that the control-material tends to be more stable (less volatile)

tder our OC-scheme. This is due mainly to the following reasons:

a) Volatility clearly increases with the complexity and the volume of the

Oontrol-material, which tends to be higher under the AC scheme.

b) There is a difference between the J= _tia of tickets and activators.

A ticket (b;r) cannot exist prior to the creation of object b, or after its

destruction. An activator <o,[t]>, on the other hand, can live as long as

the operator o and the type t exist; the meaning of this activator does

not depend on the existence of any particular t-objects. Thus, an

Implementation of a policy under a AC scheme, which is based entirely on

tickets, has an a pror temporary nature, and is therefore likely to be

relatively volatile.

Noreover, the variations in control-material which do exist under the OC-scheme

tend to concentrate in the transient part of domains, while their permanent

part, which contains mostly activators, is relatively stable. This is important

because it is mostly the permanent part of the domain of a subject which

determines his authority (cf. section 3.6). We will now illustrate some of

these observations in the context of our memo-example. We start by examining

S 1 tAM1 y MjA=ner fqdh j g1g.Z, the one presented in section 4.3.1, when the

o Ipopulation of memoranda is changing.

Under our OC scheme, each subject S has an activator which determines the

type of memo-objects which can be read by him. This gives S a general authority

with respect to memoranda, which is independent of the particular memo-objects

Page 49

in the system. Indeed, no change is necessary in the domain of S when new

memo-objects are generated or when existing ones are deleted or changed. The

authority makeup of S is stable under such changes. On the other hand, under

the AC-implementation of this system, whenever a new memo-object is created its

tickets must be given to all 'subjects who are allowed to read it. Even worse,

when some of the attributes xi of m are changed, the tickets of m may have to be

revoked from those subjects which are not to be allowed to read it any longer.

Thus the control material must be constantly changed to maintain the given

policy.

• . " .Next, let us consider volatility ungr an incemntal RoliZ cIanfe. Using

aga in the memo-system, suppose that in addition to ZAA there is another

operator, upda, whose primary activator under the OC mechanism is:

'V7
<update,[memo], [text]>.

-Suppose, also, that the set of memoranda that a subject is allowed to read may

be different from the set he is allowed to update. For example, S may have the

following two activators:

<read,Ememo;x]>

<update,[memo;;xl], [text]>

This means that S can read and update memos which satisfies xl.

Now, suppose that we wish to change this policy allowing S to update only

mamos which satisfy both xl and x2. All we have to do is to replace his

update-activator with

<update,(memo;;xl&x21, [text]>

F'

q.Page 50

For the AC case, suppose that all the subjects have tickets which allow

them to call both rua, and undate, and that the operator unda e requires the

rihbt supdate" from its argument just as read requires- the right wreads.

Idtially S must have access to the set of tickets

((;read,update) I m-satisfies-xlJ

for all memos which satisfy xl. To change the privileges of S as above Ie

relceA his tckt XL the JU sets&

C1 * (Cm; update)l m-statisfies-xl-and-x2)

C2 a 1(m; read) I m-sat1sfies-xlJ

Thus, the same policy change which requires the replacement of a single

activator under a OC scheme requires the replacement of many tickets under AC

scheme.

4AL officienca f e nfrcehent,: Two factors effect the enforcement

efficiency:

a) The complexity of the computation which is necessary for the validation

of a given operation.

b) The degree to which validation can be performed at compile-time.

Ve already saw that the enforcement mechanism which is necessary to support the

OC scheme is essentially identical to that of the AC scheme. In both cases, the

operands must bechecked against the operand-patterns of the given activator,

which is the Otemplatem in the case of Hydra. Of course, the complexity of such

parmeter checking depends on the complexity of the activation patterns. Our

scheme AJIM for essentially arbitrarily complex patterns, but it does not

* rmain such complexity. If the OC scheme is used for the protection of

operating systems, one would probably Impose severe restrictions on the syntax

Page 51

and semantics of activation-patterns and of G. Much more general patterns can

be used in the context of information-systems, without a significant relative

increase in the overhead due to protection.

As to the second factor which affects efficiency of enforcement, we claim

that our scheme facilitates compile-time validation, due to the greater

stability of its control-mterial. In particular, it appears that the compiler

can do much of the necessary checking by analyzing the relatively static

"permanent-partu of the domain of a subject. However, more study is necessary

to substantiate this claim.

The operation-control (OC) scheme introduced in this paper is a natural

-- generalization of the capability-based version of the access-control (AC) scheme

developed for operating systems. This generalization is achieved by the

introduction of the a which play an analogous role to that of the

tickets under the AC scheme, and which do not require any new enforcement

effort. The use of activators together with tickets has a profound effect on

the authorization scheme: The representation of complex policies becomes easier

and more natural. The control-material which is necessary for the

representation of policies tends to be less voluminous, less complex and more

stable. The stability of the control-material reduces the need for revocation,

and facilitates compile-time enforcement. It is also believed that this

stability and simplicity of the control material would facilitate the proof of

policies. It should be pointed out, however, that the proposed scheme has yet

to prove, itself in the context of a real system. There is work in progress

which attempts to base the protection of information systems on this scheme.

Page 52

ACKNOWLEDGEMENTS

I wish to thank Joseph Stein from the Hebrew University of Jerusalem, David

Levine and Matthev Horgenstern from Rutgers, Dorothy Denning from Purdue, and an

anoymous reviewer; for reviewing this paper, and for their very useful

onrent3.

U

Page 53

ECoh75] Cohen E. and Jefferson D., 'Protection in the Hydra operating systemi
Proc. of the 5th Symp. on Op. Sys. Principles, Nov. 1975.

(Dah72b. Dal,0.J. and Hoare, C.A.R. "Hierarchical program structures," in
Dahl, Dijkstra and Hoare, Structure Proramming. New York: Academic
Press, 1972.

[Gra72] Graham, G.S. and Denning, P.J., OProtection-principle and practicew,
Proc. 1972 SJCC, AFIPS Press, 1972.

(Har75] Harrison, M.H., et.al., "On protection in operating systems*.
[Jon75] Jones, A.K., Wulf, W.A., NTowards the design of secure systems*,

Software practice and experience 321-336 (1975).
[Jon76] Jones, A.K. and Liskov, B., "An access control facility for

programming languages", Carnegie Mellon U., Tech. Report, 1976.

-- :-cfLare71] Lampson, B., "Protection," in Proc. 5th Princeton Symp. Information

Science and Systems (Mar. 1971) pp. 437-443.
fLam76] Lampson, B.and Sturgis, S. "Reflections on an Operating-System

Design", CACM May 1976.

ELinT6) Linden, T.A., "Operating system structures to support security and
reliable software", to be published in the surveys of the ACM.

[Lis74] Liskov B. and Zilles S., 'Programming with abstract data types.*
Sigplan notices, April 1974.

(Min76] Minsky, N., "Intentional resolution of privacy protection in database
systems", Comm. ACM, March 1976.

[Min 76a] Minsky, N., "An Activator-based protection scheme', Rutgers Tech.
Rep., July 1976.

(Ros 76] Rosenblit, M. and Minsky, N. 'On the decidability problem of the
safety of protection systems", Rutgers U. Tech. Rep. February 1076.

[Pop74] Popek, G. and Kline, C.S., "Verifiable secure operating system
software" LAFIPS (1974 NCC), 145-151.], Proc. 1974 NCC, AFIPS Press,
1972, pp. 145-151.

[Red74] D. Redell, "Naming and protection in extendible operating systems,'
Ph.D. dissertation, Univ. of Calif., Berkeley, 1974.

(a175] Saltzer, J.H., and Schroeder, M.D., "The protection of information in
computer systems', Proc. of the IEEE, Vol. 63, No. 9. Sept. 1975.

EWe169] Weissman, C., "Security controls in the ADEPT-50 time-sharing system,'
in 1969 FJCC, AFIPS Conf. Proc., vol. 35, 119:133.

[Wul74] Wulf, W., HYDRA: The kernel of a multiprocessor operating system,*
Commun. ACM, vol. 17, 337:345, June 1974.

(Wul75] Wulf, W. A., OALPHARD: towards a language to support structured
programs, CMU Tech. Rep. (April 74).

file document ••-t ojc -

6-

i

instance-off

b instances

Figure 1: The Hydra approach to types

The object b is an instance of the-object t (or a t-object). t in

turn. i , instance of the distinguished object template, and thus

it is a temriate-object (or type-object).

.r- - ,, -.- -- \ r.--

2-2". Al .

Figure 2

Activators ini a domain are portrayed here as kind of enzymes in the living
cell. lie activator Al is depicted as if it is attached to the objects
ql, q2 which match its operand-pn.tterns. The object qo, which matches the
outcome pattern po of Al is being generated. Note that qo can he attached
to the operand pattern of A2 and that the outcome of A2 would fit the
pattern p2 of Al. 1le small circles represent various objects in the
domain and the small patterns attached to them represent their type, facade
and rights.

ci =-(fl:fllC)

c2 a (f2:file)

GET' - 4ctdoc,[flj,[text > (doc;u]

GET" a 4etdoc,[f2],[text]> * [doc;E;slcvel=1]

READ' = ead,[doc;;slevel<2]>

UPDATE' - <pdate,[doc;u;category=navyh],[text]>

ERASE < vrase,[doc;EI>

Figure 3: The permanent part of a domain

It contains two file tickets and five activators. GET' and

GET" can operate on the file tickets, generating doc-tickets _-

into the transient-part of the domain. The last three

activators operate on these doc-tickets.

I I

K, C

r~

13 <..1 4914 42 >

4Zf

I_" /

!'"" /

I //

Figure 4: Revocation off Activators

The solid arrows represent seqluence off derivation of activators. The

dashed al rrows rep~resent dependency off the activator on the boolean

i:: variables al a2.

,/ /

b -.--
I-O-

vaiale a, 2

To be published in the Assoc. of the COMPSAC 77 Conference, November, 1977.

SOSAP-TR-34

May 1977

I"

L

COOPERATIVE AUTHORIZATION IN COMPUTER SYSTEMS

N. Minsky

Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, New Jersey

I*
This research was partially supported by the Advanced Research
Projects Agency of the Department of Defense under Grant #DAHCS-73-G6
to the Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S. Government.

S'

Page 2

IRMACI

-Ue emerging technology of distributed computing, and the growing trend of

Smpterization of large systems necessitates a technique for distributed and

faperative authorization and control. For example, a large financial

tansaction in a distributed electronic-fund-transfer (EFT) system may require

the independent approval of several subjects. an authorization scheme which

can support such a cooperation is descried. It is based on the

qeration-control scheme recently developed by this author.

-Ii

C

K"

Pae 3

1: INTRODUCTION

Authorization in computer systems is a discipline under which an action on

the system can be carried out by a user , or by one of the modules of the

system, only if the actor is authorized to perform this action. Such a

discipline facilitates the reliability of computer systems and is the basis for

their protection. Coonerat. authorization has to do with actions which have

to be authorized by several subjects, independently. There are many real world

situations which require such authorization. For example, the transfer of

large sums of money from one account to another, or the release of sensitive

Information frequently requires the approval of several subjects. Another,

unpleasant example for the need of cooperative authorization is the launching

of nuclear weapons.

Cooperative authorization is essential in computer systems due to the ever

%-Mreasing trend of computerization of large systems, such as

informatin-systems, financial systems, medical systems, etc. The Importance of

such authorization is further enhanced due to the emerging technology of

distributed computing, which facilitates applications such as the welectronic

fund transfer*. Unfortunately, in spite of the considerable interest in

authorization and protection, cooperative authorization has not been studied

-0 systematically.

The purpose of this paper is to introduce the issue of cooperative

authorization, and to suggest soame techniques to support it. Our discussin

will be in the context of the operation-control (OC) scheme recently developed

by this author 1,2]. We start with an informal and partial overview of this

scheme, its use for cooperative authorization is discussed In section 3.

r

Page 4

2: THE OPERATION-CONTROL (OC) SCHEIE

The OC scheme for authorization is a generalization of the

capability-based version of the access-control scheme [3 ,]. We start-4uith a

brief review of the OC scheme Some extentions to it, which are necessary for

cooperative authorization are introduced towerds the end of this section.

A computer system changes in time due to instructions issued by subect,

where an instruction is a request to apply an operator to a sequence of

objects-its operands. The a tzitl of a subject is defined as the set of

* Instructions which can be carried out by him. In our scheme this authority is

determined by the content of the 0doaain" of a subject. A dgmajn D(S) is an

object uniquely associated with the subject S which serves as the address-space

of S. Namely, objects contained in D(S) are directly addressable by S, and

these are the only such objects. However, a domain may contain special objects

called "tickets" which serve as pointers to *sharable objects" which do not

reside in any domain, but can be shared by several subjects (0). In contrast

to such sharable objects, the objects which physically reside in a domain are

called 'concrete objects". These include in particular tickets of sharable

objects.

The main building blocks of authorization under the OC scheme are objects

of type aivatr. An activator has the form()

()Our tickets are equivalent to the "capabilities' of the access-control
scheme 13,4]. Note that in addition to an object identifier, a ticket usually
contains *rights" with respect to this object. However, for simplicity we will
not use such rights in this paper.

(96)This is a simplified form of activators, see (1] for the complete form

-S.

Page 5

(0pt too* ,pk)

Mbere g is an operator identifier, and pi for 1:1 ,... ,k, are conditions on the

opernds of o, which are called the *operand patterns' or the activator. The

emistance of such activator in the domain D(S) serves as a permission for S to

apply operator q to a sequence of objects ql ,... ,qk in D(S) , which *match" the

respective activation patterns (or satis y the conditions) pl ,... ,pk . As a

notational devise, we will give a name, say 9A", to an activator by writing

A (0,pl ,...,pk)

Mlen an activator A is used to authorize the invocation of o(ql,... ,qk) we will

say that the activator A is XRRIJed to the objects ql ,.. ,qk, denoting such an

application by (ql,...,qk).

An operand q which is matched with an operand-pattern, may be either a

ooncrete object which stands for itself, such as an integer number, or it may

be a ticket of a sharable object, which is the real operand. In both cases, we

will refer to q as an operand, relying on the context to resolve the ambiguity.

An operand pattern p of an activator has the fore

Cl;;vJ

wMere I is a condition on the type and identity of the operand, and I is a

oadition on its value. Instead o Afnbg, these components(*) of a pattern

we will give a nwuber of examplee:

(#)The pair *;;* Indicates a missing part In the more general torm ot the
pattern introduced in [I].

4,

* --. '- -.- ',-...-1 . . . - -.---

Page 6

Let AMc be a type of objects which carry documents in a military

Information system. Suppose that in addition to the document itself a

doe-object has two components: "slevel", which represents the "security level"

ot the document, and *category* which represents its category, such as "navy"

or "army". Let rea be an operator which displays the contents of a document.

Consider the following activators for read, or, "read-activators":

Ia4ead,[docj>

i 111 I (read,[d:doc >

111 a read,[d:doo ;; slevel<3]-

]12 < (read,[doc ;; slevel<2 >

121 a (jead,[doc ;; slevel<2 & categorya"navyr])>

The activator R can be applied to any document; RI can be applied only to the

specific document d; R2 can be appljid to any document whose slevel(2; R21

can be applied to any "navy" document whose slevel<2; finally, R11 can be

applied only to document SL, provided that its slevel is smaller than 3.

Note that all these read-activators are different from each other. In a

e, they have different power. In order to compare the power of different

0-activators for a given operator o, we now introduce a number of concepts.

Let A be an actvatr of order k (with k operand-patterns). We define
ramze(A) to be the set of all possible k-tuples (ql,...,qk) of objects, which

can be matched with the corresponding activation-patterns of A.

Let A and A' be two o-activators for a given operator .o. We will say that

V' Is weaker than A (or, equivalently, A is Atronster than A*) iff

ranse(A') Crange(A).

*6[

r. "m o .. .

Page 7

such an A' will also be called a redution of A.

Note that the relation 'weakern defines a partial order on activator. For

Instance, in the example above, R1 and R2 are weaker than R, but not of each

other. Also, R11 is weaker than R1, and R21 is weaker than R2.

Here is a summary of the main properties of activators, which are

discussed in greater detail in [1].

a) When a new operator g is created, an o-activator is created with it. It is

called the aria= o-activator. We will see below that all other

o-activators are derived from the primary one.

b) The only legal change of an activator is its reduction.

a) An activator can be t from one place in the system to another by

means of two utransport-operators" k-cony and k-move(). When one of these

operators is applied to an existing activator A, it generates a new

w- activatc.r A' which is either identical to or weaker than A. A' is called a

deriative of A. (The main difference between these two operators is that

k-copy does not affect the original activator A, while k-move erases it.

'Thus, in effect ,k-move 2M an activator A from one place to another).

The following corollaries follow directly from the above:

1) Every activator is stronger than all its derivatives

2) The primary o-activator is the strongest a-activator.

4) Every activator has two boolean attribute 'copy" and "move" which control

Its transportability. An activator A can be copied only if its "copy"
.0

attributes is true and it can be moved only if its 'move" attribute is true

* Ir any one of these attributes of an activator A is false, it will be

Mae in all its derivatives.

%&)The letter k indicates that these two operators belong to the Nkernel" of
the authorization scheme (1l.

Page 8

e) An activator A may have a usage(44) attribute u(A). If this attribute

exists it sets a limit on the number of applications of A. (An activator

whose usage component is MnM will be called a non-reusable activator). In

OonOlusin we would like to reiterate that in a system based on the OC

scheme no action can be performed without an appropriate activator.

Moreover, it should be emphasized that the generation and transport of

activators is tightly controlled so that the ownership of an activator A by

a subject 3 can serve as an uncontestable proof that S is authorized to

perform any action enabled by A.

So much for the oc scheme, as it is defind in (1]. We will now introduce

two minor extensions to it.

fttensio.nL The appicaio of an activator A is a complex indivisible

operation which consists of the binding of operands to the operand patterns of

L, and then the invocation of the operator g addressed by A. We will now allow

for the separation of these two parts of the application of activators, as

follows:

frist, we Introduce the operator

bind(A ,i ,q)

which binds the object q to the i-th pattern pi of activator A, provided that q

matches this pattern. This operation has a permanent effect on A and on q, in

the following sense: Once an object q is bound to ua activation pattern pi by

(C*)The *usage" facility has been introduces in (1] but in a different form.

Ie

Page 9

the operator ind, it cannot be removed from it. This means that q is not free

for use, and that the pattern pi of A cannot be bound to any other object.

This Is in contrast to the indivisible application of an activator, which

leaves the patterns free to be bound to other objects on successive

applications of the activator. Accordingly, binding by means of this operator

will be called "permanent binding".

Now cosider the activator

A 6Oo1i,.. &k,...,pn >

whose patterns pl ,... ,pk are permanently bound. (To distinguish between bound

and unbound patterns we underline the formers). Such an activator can be

applied to objects q(k+l),... ,qn which will be bound (not permanently) to the

still unbound patterns p(k+l),... ,pn. In the special case of k=n, namely when

all the patterns are permanently bound, the application of the activator is

simply the invocation of the operator g on the already bound operands.

For the purpose of permanent binding we will allow for limited 3haring of

activators as follows: An activator A which resides in a domain D(S) may be

shared by several subjects who can bind operands to it. However, only the

subjeot S who has A in his domain can actually apply it.

~st in .Z Given an activator

A a (o9P 1 ...,fpk >

b will allow for the following derivative of A:

L,.

Page 10

At <o,pi ,... ,pkp(k+l)... ,pn >.

A# is identical to A except that it has n-k new operand pattern. A' will be

cosidered weaker than A because it imposes stronger requirements on the

Invocation of the operator o, namely, the availability of objents q(k+l),... ,qn

whi ch match the new patterns.

3: CO0PERATIVE AUTHORIZATION

Consider a subject S1 who has the o-activator

A z <o,pl,...,pk >

in his domain but who does not have a complete sequence of objects ql,... ,qk

Vtich fit the respective patterns pl,...,pk of A. Suppose , however, that such

* . a sequence exists in the union of the domains of the subjects S1,...,Sn. It is

clear that S1 by himself cannot apply A, but A can be applid by means of

cooperation between all the subjects S1,..., Sn. One can think of two basic

modes of. such a cooperation:

First, the subjects S2,...,Sn may give S1 the objects he needs for the

application of A. Unfortunately, this simple mode of cooperation has the

following serious drawback: Let S2 be a subject which gives S1 the object q2

Which is necessary for the application of A. The problem is that S1 may have

several activators which can be applied to q2, so tht S2 has no way of knowing

how would his object q2 be actually used by S1. Such a cooperation may

therefore be dangerous for 32.

Page 11

The second mode of cooperation which does not suffer from the above

problem, is the following: S1, who wishes to apply the o-activator A, first

creates the weakest reduction A' of A which still sutts his purpose. A' is now

given to each of the subjects S2,...,Sn who are asked to make their

oontribution by binding(*) one or more operands to the operand-patterns of A'.

This binding is pemanent, which means that an object q bound to a pattern p of

£ cannot be misused by S1 since it cannot be freed from this binding and cannot

be used for any other purpose. Moreover, each of these subjects can examine

all the patterns of A' and the operands already bound to them, if any, so that

he has a way to know the nature of the action in which he cooperates. Note

that the degree of knowledge that each of the cooperating subjects has about

this action depends on the degree of specificity of the oprand-patterns of A'.

That is why it is important for S1 to create the wekest possible, the most

specific, activator A'. If A' is not weak enough some of the subjects

w-S2,... ,Sn may refuse to cooperatie in its application. This mode of

cooperation will now be illustrated by means of two examples.

Let a= be a type of objects which represent accounts in a computerized

financial system. Suppose that the only operator which can change the amount

of money in an account is the operator me whose primary activator is (m)

MOVE a <Move,amount:(int], from:Eacc] ,to:(accl].>

()Note that this binding can be done in parallel, if the subjects S2,...,Sn

*share" the activator A'.

(#*)The phrase mamount:Eint]', gives the label Amount* to the associated

pattern. Such a label, which is used only for discussion, is optional.

- age 12

The operation MOVE(k,al,a2) moves k dollars from account al into a2, (thus

preserving the total amount of money in the system(*')).

The activator HOVE is very powerful, since it can be used to move money

between any two accounts. We assume, however, that there is Just one copy of

HOVE in the system, contained in the domain of the account-generator. It is

also assumed that together with an account IL, the account-generator creates

the following derivative of HOVE:

MOVE-al x move,... ,from:(al :acc)

The only difference between HOVE and MOVE-al is that the "from" pattern in the

latter can be matched only to the specific account al. Thus, MOVE-al, which is

weaker than HOVE, can be used to move money from al to an arbitrary account.

NOext, let us introduce the type signature. A signature-object, or simply

signature, is an object which co than = identofer gt The sub tect hich

zg.ratd J1. A signature can be generated only by means of the operation

aign(A ,i)

which creates a new signature and binds it to the i-th pattern of activator A,

thus,in effect, "signing" the activator A. Of course, this can be done only if

* the l-th pattern of A matches the signature of the subject who invokes the

operation above. Note that a signature thus defined has no free existance in

(CIO)To represent flow of money into and out of the system dnc: an introduce
special "source" and "sink" accounts (see [2]).However, we will not be
ooncerned with this issue here.

0

Page 13

the system because its generator always binds it permanently to some activator.

Nov, suppose that the subject S, who generated a certain account Al,

decides that every removal of money from al must be approved by two subjects S1

and 32. This policy can be enforced as follows. Suppose that S replaces his

HOVE-al activator with the following reduction of it.

MOVE-al = 4ove ,int] ,[al:acc] ,[acc],

(signature; ;S1] ,(signature; ;S2]>

This activator contains two new patterns which match only signatures of SI and

2, respectively. Thus, every removal of money from al, which requires the i

apelication of MOVE-alt or of one of its derivatives, must be endorsed

explicitly by the signatures of S1 and S2. One can imagine the following

sequence of events which leaG to the application of MOVE-all: A subject 5' who

wishes to move k dollars from al to a2, generates the following nonij.a-la

reduction of MOVE-al'

MOVE-alw = <move ,[int; ;valck] ,[al:acc] ,(a2:accJ,

[signature; ;Sl] ,[signature;;$2 >

which can be used only to move X dollars from Al into a specific account A2 .

This activator is nov sent to SI and 32 for approval. Each of these subjects

can examine this activator, and if he approves of the implied transaction he

would endorse it by "sgni fg the appropriate pattern. Once the activator is

Signed by both subjects it can be applied to the operands k,al, and a2. Note

that S1 and 32 can sign the activator in parallel, if they share it.

A number of variations of this approval process are possible. we will

mention two of them. First, the subject 51 and S2 may be ready to approve a

more general transaction than the move of k dollars from al to a2. For

oeample, they may be ready to sign the activator

ow

L '

Page 14

4.ve,int;;vai:k ,(a ce] acc,...>

Ii
which can be used to move k dollars from al to any account. The point is that

S and 32 can examine the activator before they sign it, so that each of them

knows what kind of action he approves.

A second variation of our example is the following. Suppose that every

signature-object created by a subject S is a pair (S ,l) where S is the

identifier of the subject, as above, and I is its 0signature-levelw. the

signature-level is a number associated with a subject which reflects, in some

sense, his importance as an officer in the corporation. Now, one may require

that a transaction be approved by the signature of one or more subjects with a

given signature-level, which is a very common requirement in banking. For

example, the activator.

<8ove,... ,[signature ;; level .]

cannot be applied without a signature Whose level is at least 2.

32Z Jj medial-orescriotion euanleM

(e)This example has been chosen for its intuitive appeal. Unfortunately the
example implies a iomewhat unrealistic degree of computarization of health
management. However, it is easy to find more realistic examples which have
almilar authorization structure.

Page 15

The act of selling a drug to a patient is involved with a fairly complex,

ooperative authorization procedure. Three subjects actively cooperate in this

Wt. First, there is a doctor , who gives a prescription for a specific drug 4

to patient Z. This prescription serves as an authorization for P to buy the

drug d. Moreover, the prescription may serve as an authorization to charge the

drug-prescription-program of P for the prescribed drug. Next, the patient can

bring the prescription to a pharmacy of his choice. The pharmacist, who has

acces to drugs but no rights to sell them to specific people, is thus

authorized to sell to patient P a drug which fits the doctor's prescription.

(Note that the doctor may specify the chemical name of a drug, leaving it up to

the pharmacist to choose a brand name).

For the sake of this examle, imagine that there is a robot in every

computerized pharmacy, which actually gives drugs to customers. This robot can

be activated only by means of the operator aMU whose primary activator is

A-,

SELL a sell,[drug] ,Epatient] ,[acc] >

As we Will see below, this activator is equivalent to a blank prescription

fbum, and we assume that only doctors have copies of it.

Now, a doctor creates the equivalent of a prescription by generating the

fbllowing reduction of SELL

SELL' a <sell,[drug;;cnamel,[J,[acc] >

The first operand-pattern of SELL' matches only drugs whose' chemical name is

aemeo, while Its second pattern is bJud to a ticket p of a specific patient P.

* * -. - -. ,-.

Page 16
6I

This *prescription" is now given to P who binds its third pattern to the ticket

of some account .. This may be a general purpose accont, such as

Bankamericard, or, it may be the patient's prescription-program accont. The

resulting activator is now given to some pharmacy. There, finally, SELL' is

app i ed to a drug whose chemical name is cname, giving P his drug and charging

the account a for it.

Note that the real-world policies with respect to selling of medicines

Impose some additional restricions. First the "prescription" SELL' given by a

doctor to his patient, must be uncopiable, although it should be transferable.

?rreover, it should be unreusable, or at least it should have a finite usage,

Which is equivalent to the number of refills allowed by the doctor.

4: CONCLUSION

This paper discussed the issue of cooperative authorization purely in the

context of the OC-scheme. It would be more difficult, if at all possible,

to base such authorization on the conventional access-control scheme, as it

appears in Hydra [4] for example. However, some recent generalizations of the

capability-based scheme E5,6], which features more complex tickets structure

appear to facilitate at least a certain degree of cooperative authorization,

although the authors of these schemes did not discuss such authorization

explicitly.

£knowledgments: I would like to thank M. Morgenstein from Rutgers and J.
Stein from Harvard for thier constructive criticism of the ideas expressed in
tin paper.

6p

-E

Page 17

REFERENCES
1. Minsky, N., "An operation-control scheme for authorization in comopter

*Systems", Rutgers Tech. Rep., April 1977.
2. Minsky, N., "An Activator-Based Protection Scheme", Rutgers Tech. Rep.,

July 1976.
3. Saltzer, J.H. and Schroeder, M.D., The Protection of Information in

Computer Systems," Proc. of the IEEE, Vol. 63, No. 9, Sept. 1975.
4. W lf, W., et. al. "HYDRA:EEthe kernel of amultiprocessor operatin

system", Comm. ACM 17,6, (June 1974), 337-345.
5. Saal, H.J. and Gat, I., "A hardware architecture for controlling

information flow", IBM Res. Report, RC 6414 (Feb. 1977,.
6. Ekanadham,'K., and A.J. Bernstein, "Access control using contexts", Stony

Brook Tech. Report. 1976.

I

SOSAP-TR- 35-A

July, 1977

AUDITING OF COMPUTERIZED FINANCIAL SYSTEMS

N. Minsky

Department of Computer Science
* Hill Center for the Mathematical Sciences

Busch Campus
Rutgers University
New Brunswick, New Jersey

This research was partially supported by the Advanced Research
Projects Agency of the Department of Defense under Grant #DAHCl5-73-G6
to the Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the

* official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S. Government.

Page 2

7e internal control of a financial entity is based on complex,

.wmetimes subtle, system of authorization and capabilities which we

.call the wauthority structure" df the entity. The computerization of a

fInancial entity carries with it a danger of the breakdown of its

-authority structure, which might endanger the internal control of the

-entity, and its auditability. It is our thesis, however, that with a

proper use of authorization and protection techniques developed for

•cmputer systems, it is possible to impose a desired

"authority-structure on a computerized financial entity. The'

feasibility of such computer based authorization and its ramification

--_for auditing are the subjects of this paper.

* a..

p.

A!

I

Page 3

jIntroduction

The auditor's analysis of a system depends to a large extent on

his knowledge, or beliefs, about its "authority structure". By this we

* mean the authority and capabilities of the various actors, or subjects,

which play active roles with respect to the system. For example, the

reliance of the auditor on any documentary evidence, such as the audit

trail,' depends on his belief that the subjects who might have any

interest in forging documents, did not have any access to them.

Indeed, the authority structure of *a system is the linchpin of its

*internal controln and it provides the basis -for concepts such as

segregation o-- duties-, and for tools such as the aui tal

The nature of the authority structure of non-computerized

-:financial systems is well understood. The authority structure of a

gwoen system can be determined by means of questionnaires, interviews,

*observation of personnel and review of documents pertaining to

corporate structure, such as organization charts, etc. There are well

established means for the enforcement of adherence to authorization;

they include physical limitations, legal codes, social pressures, and

the psychological makeup of people. There is even some knowledge about

the ways in which humans are likely to err or otherwise commit

improprieties, as well as the circumstances under which these events

can take place. Actual compliance to authorization can be determined

g to a great extent by observing people and inspecting records using the

audit trail.

Page 4

The issue which will concern us in this paper is that the

computerization of a system brings with it the danger of a breakdown of

Its authority-structure, as well as the o for tightening it

up, making the system safer and more auditable. In the next section we

will explain briefly why computerization endangers the authority

structure of systems. Our approach for avoiding these dangers, and for

capitalizing on the opportunities of computerization are discussed in

section 3.

L. Ihe breakdown gL the a structure o9 ofventionl

coptrzdsystems !..

The prime effect of computerization is that much of the activity

of the system is performed by program modules (procedures, subroutines,

etc.) rather than by people. This might seem only to improve the

situation because one can rely on a program to do exactly what it is

programmed to do. Unfortunately, it is virtually impossible to know

exactly what every one of the hundreds of program-modules of a system

will do under all conceivable circumstances, even under the

(unrealistic) assumption that these modules themselves are not being

changed during the time period studied by the auditor. Thus, the

auditor must treat the various modules of the system as blak boxes

whose internal structure, their code, is partially or completely

unknown.

Now, the problem is .that if we do not know exactly how a given

module is programmed, there is nothing we can say about what it might

do. Potentially, every program-module has unli with respect

Page 5

to the data-base maintained by the system. For example, a module that

L. - designated to update the personnel file, might actually be

programmed, inadvertently or maliciously, to reach the accounts

receivable file, changing it in some unpredictable fashion. As another

example, the auditor may be told that certain types of transactions

leave an audit trail, stored on a given file F. He might even be able

to validate this claim by a careful study of the module which carries

out the transaction. But how does he know that the file F has not been

Uchanged by some other module of the system? In a manual system, the

auditor is usually able at least to identify a small set of people who

are physically able to get to a filing cabinet, but in the computerized

case every module is able to update F. Ths he credibility

aui thtr ail. jjnn tool the &U = J4detoyd

~,A similar problem exists in the case of a user, which is a person

who interacts with the system: He is not restricted by many of the

- physical restrictions which may limit his power in a manual system.

Unless something is done about it, the user would-have virtually

unlimited power with respect to the system at hand. Moreover the

* probability of sinister use of this power is enhanced due to the

* following two reasons: First, a user who interacts with a computer is

not inhibited by the normal social pressures which exist in interaction

between people (unless he suspects that his interaction with the

* computer is recorded). Secondly, the incentives for fraud are stronger

in a computerized system due to the high degree of centralization of

resources. The procedures that would inhibit a person from stealing

$ 500 are likely to be less effective when an opportunity to steal

JO,OO0 presents itself.

k Page 6

These remarks lead to the conclusion that one must be able to

impose *a priori limitations on the power of the various subjects

(actors) of the system, whether they are program modules or people

-. which interact with them. For example, a program module P which ist

* supposed to update the personnel file should be invested with

sufficient authority to do so. However, P should no be able to access

the accounts receivable file, or any other part of the system which is

irrelevant to its function, regardless of the actual code in P. The

discipline which allows one to impose such restrictions on the subjects

of computerized systems, is called "authorization mechanism", to be

discussed next.

3: Authorization Ln, computerized sytes an .aUse for auditi.Ung

*Conceptually, an authorization mechanism consists of two

parts: First, there is the athria.Qo scem which is a formal

l anguage which allows us to specify the authority of each and every

subject in the system, whether it is a program module or a person.

Secondly, we need an enforcement-mechanism to protect the system

against unauthorized operations.

The following example illustrates a way in which authorization

could impruve the auditability of *systems. We will be using the

"operation control" authorization mechanism (1,2] recently develped by

* the author. This mechanism and its possile applications will be

* discussed in some detail in the full paper.

exampl: One of the most important types of entities in any

Page 7

financial system are accounts. An account might represent various

items like assets, liabilities, revenues (all in dollar units) and 2

it should be accessible only by a specified set of subjects.

Under a computerized information system. The accounts would be

represented simply by records on a file, and in the absence of

authorization, every subject would be apable of changing the

content of every account, in an arbitrary way. This state of

affairs must raise some doubts in the auditors mind as to the

authenticity of the accounts which he reviews, particularly,

because erroneous or malicious changes of accounts are not likely

to leave any audit trail. However, using the OC mechanism it is

possible to establish the following type of discipline, (see (1]

section 2.8).

1) The only module in the system which can update accounts is the

- procedure a2. k which moves k dollars from account al

to a2, leaving the total amount of money in the system

unchanged. To represent the flow of money into the system we

will have a special procedure gen-account(k) which generates a

new account with k dollars in it. To represent outflow of

money, we will have a special type of accounts called sinks

which have the property that money can flow into them but not

back. It is assumed that the procedures move and ten-account

are correctly programmed, and that they are designed to leave

an audit trail of their actions.

2) The use of the procedures move and zen-account by the various

subjects in the system can be regulated in such a way that it

is possible to specify who can move money between which

[-:

6

Page 8

accounts and who can generate new accounts.

From the fact that the procedures move and £en-account are the

only subjects which can effect accounts directly. We can derive the

rollowing conclusion: Xth total inflow oQL mo ney iyto inutm

k l outflow, is egualt thetotal m QL moneyin _=esstem

(the sum of all non-sink accounts). This "law of conservation of

money" can be of enormous help for auditing. One knows that the money

in the system cannot appear from nowhere,nor can it disappear into thin

air, and that every generation or movement of money is properly

documented in the audit trail. Moreover, the auditor phould be able to

tell who can move money from a given account, and he should be able to

predict possible routes of money flow. For example, if there is a

suspiciously large sum of money in a given account, the auditor knows

at least that this money has been moved from some other account in the

system, and is not due to some wild update of the record which

represents the account. Moreover,the auditor should be able to

identify the set of subjects who might be responsible for such a move,

even without looking on the audit trail. [end-of-example]

4J

9.

Page 9
I!

REFERENCES V

1. tMinsky, N., "An operation-control scheme for authorization in

comopter systems",o be published in the "Int. Journal of Comp.

and Inf. sci."

2. Minsky, N., "An Activator-Based Protection Scheme", Rutgers Tech.

Rep., July 1976.

. o

To be presented at the workshop on "Foundation of Secure Computation"
October 1977

THE PRINCIPLE OF ATTENUATION OF PRIVILEGES
AND ITS RAMIFICATIONS

N. Minsky

7Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, New Jersey

0
This research was partially supported by the Advanced ResearchProjects Agency of the Department of Defense under Grant #DAHC15-73-G6
to the Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the
• author and should not be interpreted as necessarily representing the

official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S. Government.

0r

Abst.ract

This paper argues that an authorization scheme should, and can, be based on

the *principle of attenuation of privileges". It is shown that the well known

.eoes-control scheme is incompatible with this principle, due to its failure to

4ditinguish between "privileges" and *abilities". The operation-control scheme,
0

ftich is based on the principle of attenuation, is described. The issue of

type-extension is discussed from the point of view of Hydra and of the proposed

operation-control scheme. The implications of the principle of attenuation to

the formal protection models introduced by Harrison, Lipton and others are

briefly discussed.

-°

!I

[.:.

age 3

Authorization in computer system is a discipline under which it is possible

to Impose restrictions on the kind of action which can be carried out by the

various actors, usually called *subjects", of a system. One can distinguish

between the "statics" and the "dynamics" of an authorization scheme. By the

terms statics we mean the method used for the representation of the authority of

the various subjects, as well as the technique for the enforcement of such

authority. What we call the "dynamics" of the authorization scheme is the

techniques used for the manipulation of the "authority-state" itself.

* The traditional approach to the design of authorization schemes seems to

start with its statics and then design a suitable dynamics for it. In

particular, the well known access-control AC scheme started from the observation

that one needs in operating systems is to specify for ecah subject which

operation, if any, he can apply to each object in the system. This led to

Laupson'z access-matrix model [Lam 69], and to the theoretically equivalent

goapability-based" model [Fab 68]. Studies of the dynamics of authorization

followed these developments, and have been mostly based on the access-control

approach previously formulated. These include the work of Graham and Denning

[Gra 72], Jones [Jon 73], and recently the more formal studies of dynamics by

Harrison at.el. (Har 76], and by Lipton at.el. [Lip 77]. These studies

revealed - some serious difficulties such as the revocation problem, the

unideoidability of the safety problems, and, what will concern us in this paper,

the apparent need to perform amplification of privileges. This situation

Suggests to this author that some of the difficulties with the dynamics of

authorization is due to the choice of statics on which it is based.

* I

-- - ~ -rr-- rr Cr r- rr rr r-r -- Page 4

The approach of this paper is to start with some basic principles of the

dynamics of authorization, which would lead us to certain conclusions about its

statics. More specifically we will take the principle of "attenuation of

privileges" as our basic premise. Informally speaking, this principle means

that privileges should not be allowed to grow when they are moved from one place

In-the system to another. This principle has been suggested by Denning [Den 77]

and has been recently the subject of some controversy. We believe that this

principle is vital for our ability to prove correctness of policies, and we will

show that the access-control scheme is inherently incompatible with it. The

wish to satisfy the principle of attenuation will lead us to a new scheme called

operation-control (OC), which has been previously introduced [Min 77] for a

number of different reasons. The operation-control scheme, which is squarely

based on the principle of attenuation, can be viewed as an extension of the

capability-based version of the AC (access-control) scheme.

In the next section the capability-based version of the AC scheme is

described. The principle of attenuation is formally defined, in the context of

this scheme, and the inability to satisfy it is demonstrated. The underlyirg

reasons for the incompatibility of the access-control scheme with the principle

of attenuation is discussed in section 3. In section 4, some aspects of the OC

(operation-control) scheme are introduced, Just enough to show its compatibility

with the principle of attenuation. A comparison between the OC scheme and the

Scheme used in Hydra system is made in section 5, and the implementation of

8type extension" under the two scheme is discussed-in section 6.

0

Page 5 .

2. Jh Access-Control S uheme

The access-control approach to authorization is Well documented in the

literature. In particular, the reader is referred to the work of LaMpson [Lam

69,Lam 71], Graham and Denning [GRA 72], and to recent review articles by

8altzer [Sal 75], and Linden [Lin 76]. Here we will outline the main features

of & class of AC schemes called capability-based [Fab 68,Wul 74], using a

somewhat non-standard terminology which is more suitable for the rest of the

paper. We start with the statics of the capability based scheme. (The scheme

to be described above differs in an assential why from the scheme used in Hydra.

Hydra is discussed in section 5).

The objects to be protected by the system are classified into types. For

the moment we will assume that every object belongs to a unique type. An object

of type T will be called a T-object. For every type T there is a fixed set of

or nrator (procedures)

op(T)={Pi)

called T-operators. It is assummed that T-operators are the only subjects in

the system which can directly manipulate and observe T-objects. For all other

subjects the only way to manipulate or observe T-objects, is indirectly by

applying to them T-operators. (We will see later how this rule can be enforced

by the protection system itself, for all but a fixed set of primitive types.)

Also, for every type T there is a fixed set of symbols

rt(T)z(ri)

called T-rixhts, or simply rights. Objects of type T (T-objects) are addressed

by special kind of objects called tickets ('), which have the form

* (6) We are using the term "ticket" for what is more commonly called "capability".
T reason for this deviation from the, more or less, standard terminology will be
elarified later.

Page 6

(b;R)

Where k is the identifier of a T-object and 11 is a subset of rt(T). There may

be several tickets in the system with the same component b, they will be called

b. The right-symbols contained in a b-ticket t serve to determine which

T-operators can be applied (e) to b, when the ticket t is used to address it.

It-is In this sense that a ticket represents privileges with respect to the

object addressed by it For the rest of this section we assume the following one

to one correspondence between T-rights and the T-operators which they authorize:

The T-operator Pi can be applied to a ticket (b;R) of a T-object

b,only if R contains ri.

In such a case ri may be called "the right for Pi". Although the correspondence

between rights and operators may be more complex than that, it is always

monotone, in the following sense:

If an operator (V can be applied to a ticket t=(b;R), then it can be

applied to any ticket t'=(b;R') such that RI includes R. --

This monotone property suggests the following relation which defines a partial

* order between tickets.

Df iniio: A ticket t:(b;R) is weaker than t:(b;R'), if R' includes

-,. () Since objects are always addressed to by their tickets we will frequently use the
phrase "application of an operator to a ticket", to mean the application of the
operator to Jhe object which is addressed by the ticket.
(7) We frequently use the terms "operator" "object" and "right", for OT-operator",
OT-object" and "T-right" when the identity of the type T can be understood from the
context, or is not important.

0

r

' l

Page 7

Clearly, a weaker ticket carries less privileges.

Now,, every s (actor) in the system is associated with a special kind

of object which we call domain (in Hydra [Wul 74] it is called the LNS, for

*Local Address Space", of the subject). The domain D of a subject S contains

tidkets of various objects in the system, and it is assummed that a subject can

operate only on tickets in his domain. In this way the domain of a subject

determines his authority.

The distribution of tickets through the system is called the a

state of the system. The dynamics of the authority state is discussed below.

2.1..on MMe Dyamc tf AQ chm

Although there is no general agreement as to the ways in which the

Sauthority state of the system is to be changed, the dynamics of most AC scheme

Is governed by the following rules. (Even if these rules are not explicitly

stated, or stated in a different form.)

Rule 1: An existing ticket cannot be modified.

Role 2: When a T-object J1 is created, a ticket (b;R) is created with it,

with all its possible rights. (Namely Rrt(T)). We will call it the

inarx b-ticket.

Rule 3: There is an operator, d, which when applied to a b-ticket

1,, creates another b-ticket U in some other place in the system. T'

will be called a diret drivtiy. of t. (We will use the term

*derivative" of a ticket t for a direct or indirect derivaive of t.)

Page 8

To these, praotically standard rules, we now add another rule which turns

out to be controversial.

Rule 4: The direct derivative of a ticket t cannot be stronger than t.

This means, in particular, that the primary b-ticket is the strongest
L.

b-ticket, for every object b.

.4.
* This last rule is essentially what Denning [Den 76] called the od prini gr

attenuation 2re. Although, as we will see later, this is an

enormously useful principle, it is violated by some AC schemes, notably by Hydra

(Vul 74, Cah 75]. One of the main features of Hydra is an operator amplify

which when applied to a ticket t, creates a ticket t' which is stronger than

t(O). Even Denning who was the first to suggest explicitly the principle of

attenuation, qualifies himself by requiring it only "under normal circumstances"

[Den 76, p. 372] (see also the debate between Denning and Levine in the June 77

Issue of Computing Surveys [Den 77, Lev 77].

Indeed, it turns out that the pri e at tin Jin pai =

MM AQscheme. To see this consider the following example.

lxamle 1: Let rl,r2 be T-rights, for a given type T, and let P1,P2 be

T-operators such that Pi can be applied only to a ticket with the right ri, for

1.1,2. Now, consider the following policy with respect to two subjects S1,S2

and a T-object b.

1) 31 Is allowed to apply P1 but not P2 to b.

() Actually, Hydra allows only a restricted use of the operator amplify. We will
'ltscuss Hydra specifically in a later section.

4

Page 9

2) With the approval of Si, S2 would be allowed to apply P2, but not

Pig to b.

V.Will now see that without amplification these simple requirements cannot

be satisfied under a AC scheme, as it has been described above.

*To Satisfy requirement 1, S1 Must be given a ticket t=Cb;rl). Note that t

cannot contain r2 because this would allow Si to apply P2 to b. Now, how does

31 approve the application of P2 to b by S2? The Most he can do is to give to 4I5

32 a derivative t' of the ticket t which he has himself. However, due to the

principle of attenuation t' cannot contain r2, which is necessary for the

application of P2. Moreover, S2 himself cannot have a ticket for b with r2 in

it because this would allow him to apply P2 to b, without the approval of Si.

Thus, our policy cannot be realized.

* This is the kind of problems which prompted.Jones [Jun 73] to introduce the
MW

* amplification operator violating the principle of attenuation. In this case

amplification would allow S2 to add the right r2 to a ticket for b given to it

be S1. Our approach to this dilemma is the Opposite: taking the attenuation of

privileges as a fundamental principle of an authorization scheme, we conclude

from this example that the AC scheme itself is unsatisfactory and should be

replaced by a scheme which is compatible with this principle. But first we Must

* gain a deeper understanding of the source of the difficulty demonstrated above.

3L Prilegs xnr=ab~±i~lie

Authority structures such as in example 1 are very common in the real

(0) In the real world, ability also depends on such things as skill and stamina of
Sthe subject, which we have no intention to model.

A

Page 10

world, and it would be instructive to see how they are handled. Let us consider

V2uch real-life example.

E2:flc ZL When buying a car one automatically gets the right to drive and to

sell it. These rights can be formally represented by a ticket-like structure

(o;drive,sell) which stands for the ownership document for the car c. Now,

consider a subject S1 who owns a car c, but who does not have a driving license.

This person cannot exercise his right to drive his own car. However, S1 can

hire a driver, who does have a driving license, authorizing him to drive the car

0 by giving him the ticket (c;drive). No prccess which even remotly resembles

amplification is takink place in this real-life situatin. The driver S2 can

drive the car owned by Si not because he has more privileges for it, he actually

has less, but because he has another independent privilege, a driving license.

The crux of the matter is that in the real world there is a distinction t

between the concept of p, or right, and the concept of ability. The V

ability to perform a certain action may depend on the availability of several

privileges(*). In this case: the ability to drive a certain car is formed by

the availability of a driving license as well as of the right to drive this

particular car. The problem with the access-control scheme is its failure to

recognize this difference between privileges and abilities. Under this scheme

the availability of a b-ticket with the right rl in it is sufficient to give a

subject the ability to apply the operator P1 to b. Thus, rights are being

(e) In the real world, ability also depends on such things as skill and stamina of

the subject, which we have no intention to model.

4p

Page 11

equated with abilities.

We maintain that to satisfy the principle of attenuation of privileges one

must d1stinauish between p gs auilits. Such a distinction is being

made by the operation-control (OC) scheme to be discussed next. The

protection-scheme of the Hydra system [Wul 74] also makes this distinction, but

in a less fundamental, and not quite satisfactory way. The Hydra scheme will be

discussed in section 5.

.L h Operation-Control .Q.bScheme

Under the OC scheme [Min 77] the ability to. perform an operaion

P(el,...,ek) is formed by the availability of two kinds of privileges: a

privilege with respect to the operator P, and compatible privileges(*) with

respect to the objects el,...,ek which serve as the operands to P. Privileges

with respect to objects are represented by means of tickets, just as under the

AC scheme. However, to represent privileges with respect to operators the OC

scheme is using a new device called activator. In this paper only a simplified

version of the activator is described.

An t is a (k+1) tuple

(P,c1,.o.,ck)

where P is an identifier of a k-ary operator and ci, for izl,...,k, is a

condition defined on the i-th operand of P. The conditions ci are called the

onerand-catterns of the activator. The existance of such activator in the

C'. The phrase "compatible privileges" will be clarified later.

Page 12
r

domain D(S) serves as a permission for S to apply operator P to a sequence of

objects ql,...,qk in D(S), which "match" the respective activation patterns (or

satisfy the conditions) cl,...,ck. As a notational devise, we will give a name,

say *Al, to an activator by writing

A a (Pqci,...,ok>

When an activator A is used to authorize the operation p(ql,...,qk) we Will say

that the activator A is applied to the objects ql,...,qk, denoting such an

application by A(ql,...,qk).

An operand-pattern has the form (0)

(T;R]

where T is a type and R is a set of T-rights. This pattern matches (is

satisfied by) any ticket (b;Rl) where b is a T-object and R1 includes R.

7t
In order to illustrate the authorization role of the activators, and their

relevance to our subject matter, we now return to example 1, giving it the

Interpretation of example 2.

ExamDle 2: Let the type T, of example 1, be CAR. Let rt(CAR)z(sell, drive)

where "sell" is intended to be the right to sell a car, and "drive" is intended

to be the right to drive it. Let op(CAR)=(SELL,DRIVE), which represent the

corresponding actions on cars. Now, consider the subjects S1 and S2 whose

domains D1,D2 are described in Figure 1. S1 who owns the car bl has the ticket

tl:(bl;sell,drive) for it. However, he has no DRIVE-activator in his domain,

iFP) This is a simplified form of the operand-patterns introduced in (Kin 771.

U..i

0

I

S

#pf:~ km*A(s,)

- (S(LL)CcAi~;re43? <SELLf44~;1df.3,>

<,,tXVEgA4' k~~ve3 ,

0

*

p.-

Page 13

representing the fact that SI does not have a driving license. Thus, SI is

unable to drive his own car although he has the "drive" right with respect to .

it. This fact does not make the "drive" right useless. It can be used by S to P

authorize somebody else, S2 in this case, to drive his car. This is done by

giving 32 a derivative tl=(bl;drive) of his ticket tI. S2 who has the

DRiVE-activator <DRIVE,[CAR;drive]>, representing a driving license, would now

be able to drive the car bl. Thus the requirements of example 1 are satisfied,

without amplification.

Note also that although both subjects have the SELL-activator <SELL,

[CAR;sell]>, which means that both are allowed in principle to sell cars, the

driver S2 is unable to sell the car bl because his bl-ticket does not contain

the "sell" right, which is required by his SELL-activator lEnd-of-example].

Just as there may be several different b-tickets which are to represent

different privileges with respect to a given object b, we allow for several

different P-activators which represent different privileges with respect to a

given operator P (see example 3). We now introduce a partial odear between

Let A be an activa of order k (with k operand-patterns). We define

* rana(A) to be the set of all possible k-tuples (ql,...,qk) of objects, which

can be watched with the corresponding activation-patterns of A.

Let A and A' be two P-activators for a given operator P. We will say that

A* is weaker than A (or, equivalently, A is 3 than A') if

range(A) Jjcludes range(A'). Such an A' is also called a reduction of A.

rm

Page 14l

clearly, the relation weaker between activators defines a partial order,

wbich is analogous to the partial order defined by the relation weake between

tickets.

Due to the similarities between tickets and activators we will refer to

both kinds of objects by the common name "control-objects", or "cobjects", for

Whort. Every cobject represents privileges with respect to the object addressed

by Its which may be either an operator (in the case of an activator) or a

*passive object" (in the case of a ticket).

Note that the two types of cobjects play complementary roles in our scheme.

Neither a ticket nor an activator alone represent an ability to perform any

action. Such an ability is formed by the availability of an activator, and one

or more matching tickets. To emphasize this complementarity we will use the

following terminology.

w Let D(S) be the domain of a given subjec S. We will use the phrase

"power of S" for the set of activators in D(S), and the phrase "range

of 8' for the set of tickets in D(S).

Thus, the ability of a subject depends on its range', which' defines his access

rights to various objects, as well as on his power which defines the kind of

operations which he can use.

Im spite of the (hopefully) intuitive appeal of these terms they do not

mean much without specifying the dynamic behavior of the control objects. This

Issue is discussed next.

na M dynamics of the oneration-control scheme

4r

Page 15

Here are the rules which govern the dynamics of cobjects, which are a

generalization of the rules previously formulated for tickets.

iktleI: An existing cobjects cannot be modified.

.ul.Z: Whenever an object o is created, a cobject is created for it, to be

called the primary o-cobject. (It would be the primary b-ticket if o

la the passive object b, or the primary P-activator, if o is the

operator P.)

Itule: There is an operator AJ.ate which, when applied to a cobject c

creates another cobject-c' in some other place in the system. c' is

called a diret drivat v of c. (By the phrase "derivative of c" we

mean direct or indirect derivative of c.)

RJ&lA: The derivaive c' of a cobject c is weaker than or identical to c.

Rule 4 is the p 2f attnation oC prilSIj, now extended to

activators. An important corollary of this, principle is that a cobject is

stronger than, or identical to, every one of its derivatives. In particular,

the primary o-cobject is the strongest o-cobjct.

Note that the above rules do not define completely the dynamics of our

authorization scheme. In particular, one must define the operator "duplicate"

and Its activators, which is done in [Min 771. To facilitate the following

discussion we will make the simplifying assumption that the set of activator in

a given domain is fixed. In other words: the "power" of a subject is asammed

to be fixed while its range may vary. Although this assumption cannot be

strictly correct for all the domains in a system, it is likely to be correct in

many, if not in most cases (see [Min77]). In particular, the "power" of a

procedure is likely to be fixed while its range varies from one invokation to

another.

Page 16

P Dn b~ BIfffl menis theM right-symbols

The meaning of a given right symbol r is best understood in terms of the

affect that the absence of r from a ticket t has on one's ability to apply

operators to the object addressed by the ticket. We will see in section that

su6h effect depends on the principle of attenuation. To facilitate our

discussion we start with an example.

Jk#ai" _L harin mem~ran

Let MEMO by a type of objects which carry memoranda in an information

system. Let

op(MEMO)=(READ, ADD, DELETE)

rt(MEKO)={d,rl,r2}

Let the following be the primary activators of the MEMO-operators:

(READ, [MEMO]>

(UPDATE, [MEMO], [TEXT]>

(DELETE, (MEMO;d]>

* Note that the rights ri and r2 are not used by any of these activators.

The significance of this will be clarified later.

(0) The second operand of the operator UPDATE should be a TEXT-object which serves to
Mdate the memo.

10

Page 17

Now, consider a group of subjects G=(S,S1,S2,S3) who are working on the

=me project but have different responsibilities and authority. They

communicate with each other by means of pool of memoranda whose tickets are

. contained on a file f. A ticket of a memo may be stored in f by members of the

, group G as well as by other subjects in the system. All the subjects in G are

to be allowed to read all the iemos on f (namely, all the memos whose tickets

are stored on f). However, not every subject is to be allowed to update all

documents, or to delete them. Figure 2 gives part of the domains of the

subjects in G as well as a sample of the file f. The description of the domain

In Figure 2 is incomplete in the following sense. We did not try to adcount for

the assummed ability of the four subjects in G to read the file f and write into

it. The ability to read f means that every one of the subjects in G can get

v.. 4-tickets from f into his own domain. (This ability can be formulated by

- means of the complete OC scheme [Min77).

- Now, note that all the subjects of G have a copy of the primary

READ-activaor which enables them to read all memos on f. However they have

different versions of the UPDATE-activator: The UPDATE-activator of S does not

require any rights in the MEMO-ticket it is applied to. Thus, S can update all

the memos on f. On the other hand, the UPDATE-activator of S1 can be applied

only to tickets with the right rl, which means that, given the current content

of f, 3 can update only the memos ml,m2,m3,m4. Similarly, S2 can update only

m2 and m3, which have the right r2. Finally, S3 whose UPDATE activator requires

* the rights rl and r2, can update only the memo m3. Note that m cannot be

updated by anybody in G.

< Ler if~eel u'~ oAL.er3

(.±; At~)

F'

wwj

Page 18

Also, only S has a DELETE activator, so that he is the only one who can

delete memoranda. Not all of them, however. Given the content of the file f I
k

described in Figure 2, S can delete only m4 whose ticket has the d right. J

Thus, the four subjects in group G have different "power" with respect to L

the. MEMO-tickets, which is formed by the activators in their domains. Knowing

about the power of the various subjects in G, the originator S' of a memo can

control its disposition, as follows: When S' creates a new memo m',he-gets the

primary ticket t=(m';d,rl,r2) for it. If he wants to allow every body in group

0 to update m', but he does not want them to delete it, he would insert the

reduction (m';rl,r2) of t in the file f. If he wants only S and S1 to update

m', then he would insert (m';rl) into f, etc. [end-of-example).

The main purpose of this example is to demonstrate that a right-symbol

might have different meaning for different subjects, which allows our four

subjects to share the same MEMO-tickets and still have different abilities with

respect to the memos. In order to formalize this phenomena we will define the

concept of the "authority content", or Just "authority" of a right-symbol. In

fact, two related concepts of authority- content will be defined.

Definition: The absolute a cntent of a given right-symbol r,

to be denoted by U(r), is the set of operators whose primary-

activators require r.

For instance, in example 3 U(d) (DELETE).

The significance of U(r) is due to the principle of attenuation: First,

because of the attenuation of activators, if the primary P-activator, for a

given operator P, has a pattern which requires r, then all P-activators in the

system would require r. Thus, the= fro =& ticketk inhibits the

n1tJcattJon2 iX&1Iii ticket. Moreover, because of the attenuation of

Page 19

tckets, if t does not contain r then no derivative of t would contain r.

Threfore, we can make the following statement:

The absance of a right r from a ticket t inhii the application of

operators in U(r) to t itself as well as to all its derivatives.

Foc example, consider a MEHO-object m and an m-ticket t which does not have the

right d. One can put t in the public domain and remain confident that this

Ucket cannot be used, neither directly or indirectly, to delete the object m.

Note that by the above definition the MEMO-rights rl,r2 contain no

authority. Indeed, the absence of rl from a MEO-ticket t cannot inhibit the

applicaion of any MEO-operator to it. Yet, it is the existance of rl which

alOWs S1 to apply APPEND to a ticket. In order to cover this phenomena we now

introduce the concept of content of a right-symbol.

Defnition: The authority of a right symbol r, relative to a domain

D, to be denoted by U(r/D), is the set of operators for which there is

a an activator in D which requires r.

For example, U(rl/D1)=APPEND) although U(ri) is empty. The meaning of the

concept of relative authority is summerized by the following statement:

The absence of r from a ticket ts(b;R) in D=domain(S) inhibits S from

applying the operators in the set U(r/D) to t and to its derivatives.

To understand the significance of this statement note the following: First,

auppose" that P belongs to U(r/D) but not to U(r). Let t=(b;R) be a ticket in

hdomain(S) which does not contain the right r. It is clear that S himself

cannot apply P to t. However, S may be able to cause the application of P to

the object b, by giving a derivative of t to some other domain D' such that P is

not contained in U(r/D').

-

Page 20

Secondly, consider an operator P which belongs to U(r) but not to U(r/D)

(Which can happen only if D contains no P-activators). Obviously, the absence

of r from a ticket t=(b;R) in D:domain(S) has no effect on the ability of S to

apply P to object b ,because anyway D has no P-activators. However, this

absence does prevent S from causing the application of P to b by giving a

derivaive of t to a subject which does have a P-activator. For example, suppose

that the domain D1 of example 3 contains the tickets tl=(ml;d), t2:(m2). Since

U(d/D1) is empty, the right d does not provide S1 with any direct ability.

Izdeed, exactly the same set of operators can be applied by S1 to tl and t2.

Bowever, S1 can enable S to delete ml,.by placing tl in the file f, which he

cannot do for m2.

In conclusion note that the OC scheme makes a much more versatile use of

the right-symbols than is possible under the AC scheme. One of the benefits

which accrue from this use is a more economical utilization of tickets. In

example 3, for instance, all the subjects in G were able to use the same

directory file. To implement a similar authority structure under the AC acheme

one would need four separate directory files, which would result in larger

number of tickets and additional complexity in their distribution (see also [Min

77,3ection 4]).

UL AmnliricatL= n jfl a

Although the authorization scheme of the Hydra system (Wul 74, coh 75] is

usually considered to be an access-control scheme, it differs from the AC-scheme

outlined in section 2 in one important way: Under Hydra, the availability of a

ticket (capability) for an object is not, by itself, sufficient for the

~I
IL

Page 21

application of an operator to it. One must also have the permission to call the

operator. This permission is represented by a ticket for the operator with the

* Ooall" right in it. Thus, in Hydra the ability to apply an operator P to an

object b is formed by the availability of two kinds of privileges: a privilege

With respect to the object A and a privilege with respect to the operator P.

However, Hydra recognizes Just one type of privilege with respect to an

operator, an unqualified right to call it which is represented by a ticket

(P;oall) with the "call" right. This is to be compared with the varying degree

of privileges which can be represented by our activators. This high resolution

of privileges with respect to operators, apart of its general usefulness

demonstrated by example 3, turns out to be necessary if the authorization scheme

is to satisfy the principle of attenuation of privileges. Indeed, the designers

of Hydra were forced to violate this principle by the introduction of

- ~mlification.

Recognizing the harmful effects of amplification Hydra restricted its use

" to the subsystems which implement type-extension [coh 75]. Unfortunately,. this

restriction is both too strict and not sufficient. More specifically we argue

that:

a) The restricted use of amplification in Hydra

leaves a class of policies unsupported.

b) The Hydra's restriction on the use of

amplification does not eliminate all

its harmful effects.

The second claim will be discussed in the next section where we also show that

under the OC scheme type-extension can be implemented without amplifications.

* To substantiate our first claim let us return to example 2'. We will show that

*" although the authority structure of example 2 'can be supported in Hydra,

6r

Page 22

without amplification, a simple modification of it cannot be so supported.

The owner-driver situation of example 2' can be implemented in Hydra simply

by representing a driving license by a ticket (DRIVE;call) for the operator

DRI3VE. This ticket should be given to the driver S2 but not to S1.

What makes this case manageable in Hydra is that S1 is not allowed to drive

any car. But what about a situation where S1 is allowed to drive some car, but

not his own? For example, suppose that S1 is a disabled person who needs a

special permission to drive any specific car, permission which may be based on

the safety features of that car.

The Hydra solution for example 2' does not work here because both subjects

must have the right to call the operator DRIVE. This shows that amplification

is necessary in Hydra outside of the modules which implement type-extension.

Under the OC-scheme this authority structure can be represented as follows:

Supposed that S1 has the following DRIVE-activator

<DRIVE, [CAR;drive,sd]>

which means that S1 can drive only such a car c' for which it has a ticket

(o';drive,sd...), "sd" being this special driving permission. If S1 does not

have the *sd" right for his own car c he cannot drive it. The driver, S2, on

the other hand, not being disabled, has the more powerful DRIVE-activator

(DRIVE,[CAR;d]> which can be used to drive the car c.

Finally, it should be pointed out that there is a way to simulate in Hydra

the limited version of the OC scheme described in this paper, as follows: Given

a set of P-activators for a given operator P, under the OC scheme, one

constructs in Hydra a set of operators whose body is identical to P. These

operators differ from each other only in their formal-parameter-specifications

Page 23
.4i

which must be identical to the operand-patterns of the activators which they

simulate. The tickets (P';call) for these operators represent varying degrees

of privileges with respect to the original operator P, just like our activators.

Indeed, if this is done systematically in a system like Hydra, no amplification

would be necessary.

. hL issue f tvDe-extension

In this section we show how type-extension can be achieved under the

OC-scheme, without violating the principle of attenuation. Moreover, we will

argue that the Hydra implementation of type-extension has some drawbacks due to

the amplification on which it is based. But first let us define the concept of

type-extension. D Consider a type T' such that op(T')={Qi} and

rt(T')=si). Let T be a type with OP(T)=fPi), T is called an extni±o f U' if

the following conditions are satisfied:

w 1) Every T-object is also a T'-object. (Note that this violates the

assumption made in section 2 that every object belongs to a unique

type).

2) The only subjects which are able to apply T'-operators to a T-object

are the T-operators Pi. (Thus, outside of the T-operators the only

way to manipuLate and observe T-objects is indirectly by means of the

T-operators which have the exclusive ability to "see the bare

representation of T-objects".

.3) The set of T-rights is

rt(T)zrt(T')Ufri

We will refer to T' as the representation t= T. The set OP(T') are called

the representation operators. Note that every T-ticket may carry T'-righ~s, to

*4 be called repres. 'ation-rights, as well as the symbols ri which we call the

IT-ights.

Page 24

In Hydra [coh 75], all extended types are extensions of a single primitive

type T'=SEGMENT. The SEGMENT operators in Hydra are called "generic operators,"

which includes such operators as GETDATA and PUTDATA. The rights rt(SEGMENT)

are called "generic rights". The module which contains the definition of OP(T)

and rt(T), for a given type T, is called the T-subsystem..

The main difficulty in the implementation of type-extension is requirement

(2) in the definition above. Here is how the designers of Hydra see this

problem ([cob 75] p147)

*Hydra must somehow guarantee that ordinary users cannot access or

manipulate an object's representation.. .= imlies oa r.nar.l

users dq =o have capabiities rtces cntaining = various

generic rrihts ...Yet a subsystem procedure must be able to gain these

rights when a capability for an object of the type it supports is

passed to it as an argument" (The underlying is mine).

Hydra's solution to this dilemma is an exclusive ability of the

representation-operators of a type T to amplify T-tickets (or capabilities, in

Hydra's terminology) by adding to them desired representation (generic) rights.

We will argue later that even this restricted use of amplification is harmful,

but first we will show that uder the OC scheme amplification is not necessary

for type extension.

The implementation o2 type-extension under tWO scheme

Consider a type T' which, like the type SEGMENT in Hydra, serves as a

representation-type for a set of extended types. Let'

Page 25

AQa(Q,[T'1>

be the primary Q-activator of one of the T'-operators Q. AQ is very powerful as

It can be applied to any T'-object, regardless of the extended type it hosts.

We assume, however, that for every T'-operator Q the primary Q-activator exist

only in the module which generates new type-subsystems. Only reductions of

these activators are distributed among the various type-subsystems, as follows:

Let T be an extension of T' and let P be a T-operator which needs to a| ly

a representation-operator Qi to its argument. We insert in the domain of P the

following reduction of AQI:

AQT=<Q,[TJ>

AQT is weaker than AQ because it can be applied only to T-objects. Namely, to a

TI-object which hosts a T-object.

Now, since the activators AQT1 exist only in the domains of T-operators,

iW only these operators can apply T'-operators to T-objects, as is required by the

definition of type-extension. The dilemma which forced Hydra to use

amplification does not exist here since ordinary users do not have any

representation activators.

Of course, the invocation of the T-operators themselves is controlled by

their own activators. For example, the primary P-activator for a T-operator P

may be:

<P,[T;r]>

where r is one of the T-rights. This means that one needs the right r in a

ticket in order to apply P to it. In general, the authority to apply

T-operators to a T-object can be represented by the intrinsic T-rights (ri).

r I

W . W.

Page 26

Note that this suggests that there is no need to have the representation

rights (si) in T-tickets. Because, the only way for ordinary users to cause the

Invocation of T'-operators is by invoking T-operators, and such invocation can

be controlled by the intrinsic T-rights. And yet, as we will see below, there

ia a role to be played by the representation rights in T-tickets.

The rle of the reDresentation-riahts

Consider a T-operator P whose primary activator is <P,[T;r>. Suppose that

P is designed to use a certain T'-operator Q n n some gof its .flXnvyc_ n§.L

under some special circumstances, say. In this case one may want to allow a

subject S to apply P to a T-object b, but g= ufder hcn t hat A= An

applicatn would anppu the tion _ o IQ How can that be

accomplished? The problem is that the rights ri can only control the ability of

a subject to apply T-operators to b, they cannot control the internal operation

of the T-operators themselves. We propose the following solution to this

problem.

Recall that previously we assumed that a T-operator P would have in its

domain an activator <Q,[T]> for every T'-operator Q which he might have to use.

Ve now suggest that if an operator Q does not have to be used by P on every

Invocation, then P should have the following activator for it

<Q,[T;a]>

where a belongs to rt(T'). This means that P cannot apply Q to its argument
nless he has a ticket for it with the right 3 in it. Therefore, if the subject

S has a ticket t=(b;r) he can apply P to it, but this application can not reslt

in the application of Q to b because t does not contain 3. If however, we do

I

Page 27
:: I

not wish to prevent the application of Q to b to result from the application of

P to it, then we should give S a ticket t'z(b;r,s), although the T'-right s is

not explicitly required by the P-activator.

Thus, the T*-rights can be used in the tickets of T-object as a means to

control the internal operation of T-operators. The absence of such a.right can

prevent a T-operator from applying a certain T'-operator to its argument.

Note that this important use of the representation-rights would be disabled

by amplification. If an operator P has the ability to amplify its argument by

* adding representation-rights to it, as is the case in Hydra, then it does no

matter if the operand ticket did not have such a right originally.

It should be pointed out that the designers of Hydra recognized this

problem, but only with respect to certain representation-operators (see (coh 75]

p152). Indeed, their solution has been effectively, to cancel the amplification

for the representation-rights which control these operators. However, they

failed to see the more general nature of the problem which requires the complete

elimination of amplification.

a) Summery •

b) Other aspects of the OC scheme * * .

a) Implications of the principle of attenuation to the formal protection

model ntroduced by Harrison, Lipton and others

9 r

iip.

Page 28

REFERENCES

CCoh 75] COHEN, E.; AND JEFFERSON, D.
"Protection in the Hydra operating system," in Proc.

Fifth ACM Symposium on Operating Systems Principles;
ACM Operating System Review 9,5, (Nov. 1975), 141-160f
ACM, New York, 1975.

(FAB 68] FABRY, R.S. "Preliminary description of a supervisor
for a machine oriented around capabilities," ICR

18 Quarterly Report 18, Univ. of Chicago, Chicago, Ill.,
1968.

(ORA 72] GRAHAM, G.S.; and DENNING, P.J. "Protection--principle
and practice," in Proc. 1972 AFIPS Spring Jt. Computer
Conf. Vol. 40, AFIPS Press, Montvale, N.J., 1972
p. 417-424.

(JON 73] JONES, A.J. "Protection in programmed systems," PhD
Thesis, Carnegie-Mellon Univ., Pittsburgh, Pa.,
June 1973.

(LAM 69] LAMPSON, B.W. "Dynamic Protection Structures," in
Proo. 1969 AFIPS Fall Jt. Computer Conf., Vol. 35
AFIPS Press, Montvale, N.J., 1969 pp 27-38.

(LAM 71] LAMPSON, B.W. "Protection," in Proc. Fifth Annual
Princeton Conf. on Information Sciences and Systems
1971, pp 437-443. Reprinted in ACM Operating Systems
Review (Jan. 1974).

ELAM 76] LAMPSON, B.W.; and STURGIS, H.E. "Reflections on an
operating system design," Comm. ACM 19, 5 (May 1976),

*251-266.

CLIP 77] LIPTON, R.J. and SNYDER, L. "A linear time algorithm
for deciding subject security" in J. of the ACM,

- July 1977 pp. 455-469.

CLIS 75] LISKOV, B.; and ZILLES, S. "Specification techniques
for data abstractions," IEEE Trans. on Software
Engineering 1, 1 (March 1975), 7-18.

S HIN 77] MINSKY, N., "An operation-control scheme for
authorization in computer systems," to be published
in the Int. J. of Computer and Information Sci. 1978.

(NEU 75] NEUMANN, P.G.; ROBINSON, L.; LEVITT, K.N.; BOYER, B.S.;
and SAXENA, A.R. A provably secure operating system,

"tanford Research Inst. Final Report, Menlo Park,
Calif., June 1975.

(RED 74a] REDELL, D.R.; and FABRY, R.S. "Selective revocation
of capabilities," IRIA Internat. Workshop on Protection
in Operating Systems, Institut de Recherche d'Informa-

* *- - - - - - -- - - - - - - -.

* * -. . ~ - ~ L

Page 29

tique et D'Automatique, 19741 France, pp. 197-210.

[3AL 75] SALTZER, J.H.; and SCHROEDER, M.D. *The protection of
information in computer systems," in Proc * of the IEEE
639 9 (Sept. 1975), 1278-1308.

EWUL 74la] WULF, W.A.; et al. "HYDRA: the kernel of a multi-
processor operating System," Comm. ACM 17, 6 (June 19741),

.337-3415.

SOSAP-TR-35

August 1977

ON THE USE OF LICENSES AS A PROTECTION MECHANISM

M. Ruschitzka

Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, New Jersey

This research was supported by the Advanced Research Projects Agency
of the Department of Defense under Grant 0DAIIClS-73-G6 to the

Rutgers Project on Secure Systems and Automatic ProgrammingI
The views and conclusions contained in this document are those of the

4 author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S. Government.

'4 Page 1

ABSTRACT

A license is a protection mechanism which is affiliated

with an access (algorithm). It specifies by which subject

and with what parameters the affiliated algorithm may be

invoked. Conceptually, licenses are equivalent to

capabilities and access control lists, but many of, their

properties differ. We discuss several applications of

lieanses, including network access control rnd flow control.

Licenses may also be used* for several of the different

checking processes which are typical of contemporary

systems. The efficiency of the mechanism is given special

consideration, and hardware features for its support are

suggested.

- .Key Words and Phrases: protection, security, access

control, flow control, protected subsystems, data types,

computer system design.

4 Page 2

The ultimate goal of current research in protection and

security is the certification of a secure computer system.

This goal is approached on several fronts, including system

architectures, program certification, protection models,

fault tolerance, authentication methods, etc. The ultimate

goal may not be achieved for a while, but a number of

research systems have been successful with respect to

limited security or in locating major obstacles to system

security [And,Neu,Pop,Sa4,Wu4). Since many claims of

security have been proven wrong by penetration teams, it is

clear that automatic systems must be employed to certify a

system [De7,Pop,Wu6]. Several steps are needed to prove a

complete implementation correct. These steps include the

choice of security a .rtions, their correspondence to the

design of the protection system, the program formulation,

the compilation, and the hardware aspects. We are

interested in the design aspect of a protection system and

how such a system may be supported by the underlying

architecture and mechanisms.

It is presumed that the reader is familiar with the

basic concepts of access control and the refinements of the

standard protection mechanisms [c.f. Sa5). For the

purposes of access control, all information in a system is

considered to consist of disjoint objects. Making use of an

information object is termed an access, and the active

agents performing accesses are defined to be subjects.

Accesses to objects occur after being requested by a

'4 Page3

subject, and we ski1, us the triple <subject, object,

access> to denote such a request. The task of a protection

system is to prevent all unauthorized requests from being

performed. For this purpose, the protection system

maintains a data base which specifies for each request

whether it is authorized or not. Lampson (Lail has modeled

this data base as an access matrix A such that columns are

labeled by object names j and rows are labeled by subject

names i. Element A[i,j) of the access matrix contains the

names of all authorized accesses which subject i may perform

on object J. Since the access matrix tends to be sparse,

more efficient ways of encoding the protection data base are

required. Two ways of encoding, namely those resulting from

%W compaction of rows and columns respectively, have attained

widespread use. After considerable refinements, they

evolved int-o today's capability and access control list

schemes.

Both the capability and the access control list scheme

have intrinsic advantages and disadvantages. In fact, they

appear to complement each other in this respect.

Capabilities have a simple intuitive interpretation

("tickets"), can be checked efficiently, and allow

0flexibility in their manipulation (storing, copying,

passing). They pose problems with respect to revocation,

propagation, access review, and a'ccumulation. Access

0 control lists, on the other hand, .are quite suitable for

auditing, access review, and revocation. They suffer from

. .. Page 4

limited efficiency, allocation problems, and complexity in

the search during the check. Many of the problems of both
I

schemes have been alleviated [Red,Sa4], but often at the

cost of losing some of the intrinsic advantages.

Capabilities tend to excel when they are exercised very %

frequently while the opposite is true for access control

lists. This property can be exploited by using both schemes

in the same system (e.g. Multics [Sa4]), but special

attention must be paid to conversion problems.

The access matrix can only be compacted in two

dimensions, but the protection data base may be represented

by two other matrices, the object matrix and the subject

matrix. Either one of them is labeled by access names along

*one dimension, thus suggesting a third protection scheme in

which the protection data are distributed over accesses.

(The term algorithm will be used interchangeably

henceforth.) The basic datum affiliated with an algorithm is

a <subject; object> pair; we refer to it as a license.

The subject specifies an authorized requestor, the object

specifies the parameter which this requestor may use for the

algorithm. Multiple parameters are acknowledged by

replacing the term object by the term object-list. Note

that this allows the authorization of the composite request

COPY(B,A) without necessitating the authorizations of the

requests GET(A) and PUT(B) for the same subject. Like

capabilities and access control, lists, licenses offer

advantages and problems. A decade ago, when the only access

- - -- --i

Page 5

attributes of interest were READ, WRITE, and EXECUTE,

licenses would not have had much appeal since the degree of

distribution of the protection data base would have been

negligible. However, with data types playing an

increasingly important role and with program verification

techniques maturing, the license mechanism offers several

novel features for the support of sophisticated protection

systems.

LICENSES

A license is a <subject; object-list> pair affiliated

with an algorithm. It authorizes the specified subject to

invoke the affiliated algorithm with the specified

object-list as parameters. At any one instant in time, the

set of licenses in the system completely specifies all

currently authorized operations. Although the licenses

affiliated with a partic -.r algorithm could always be

expressed as a set of individual <subject; object-list>

pairs, efficiency considerations will often dictate a

compressed encoding of the protection state. For instance,

if the object-lists of a large number of licenses are

identical, these licenses may be replaced by a generalized

license with the same object-list, but with an appropriate

subject class identifier in the subject field. The

compression of licenses is quite similar to those techniques

which are used to compress access control lists (c.f.

[Sa4l).

Page 6

From a user's point of view, the protection mechanism

follows the conventional notion of licensing. Two aspects

of licensing are crucial. First, licenses must be issued by

- . an appropriate authority. Second, before the licensee (the

operator) may proceed to act upon a request, it must be

checked that the request is authorized by the license issued

to the licensee. This check of the request (the mediation)

may be performed by the licensee or by some other trusted

agency. Driver licenses and liquor licenses are typically

mediated by the licensee, but airline pilot licenses are

also tho~roughly mediated by the airline for which a pilot

flies. While a license intrinsically implies a right, it

also defines this right quite narrowly. A liquor license

* iq ~ implies the right of selling liquor, but it also limits this

right to certain types of liquor, certain ages of customers,

certain hours of the day spelled out by state laws, etc..

As a protection mechanism, a license is issued to

(affiliated with) an algorithm by consensus of the

controllers of all quantities involved in a request. In

particular, the consensus of the controllers of the

algorithm, of all objects in the object list, and of all

subjects listed in the license, are required. The

verification of the consensus and the attachment of the

corresponding license(s) to an algorithm is referred to as

* licensing. Licensing of algorithms is performed by the

protection system which stores the new license(s) in the

license-part of the algorithm.

A Page?

When the execution of an algorithm is requested, the

* identifier of the requesting subject and the parameters

(identifiers of all objects in the object-list and parameter

values) are compared with the license-part of the algorithm.

A protection fault occurs if no match is found. We delay

discussion of the format of licenses since it depends

strongly on the type of algorithm with which a license is

affiliated. Algorithms are defined in terms of other

(lower-level) algorithms and efficiency considerations

demand that the complexities of an algorithm and the

corresponding mediation mechanism are somewhat related. In

particular, the overhead involved in mediation should be

small compared to the execution of the algorithm. Thus,

licenses of hardware algorithms will often consist of only a

few bits, while the licenses affiliated with a complex

procedure may well occupy an entire secondary storage block.

THE TECHNOLOGICAL HIERARCHY OQF ALGORITHMS

Algorithms are static descriptions of clerical

procedures which may be invoked for execution or

interpretation. We shall refer to the interpretation of an

algorithm as an operation. The form of the static

description depends on the complexity of the algorithm and

may be implemented in hardware or software. An algorithm

for a register-register transfer will often be implemented

as a micro instruction; the static description is then

provided by a specific gate configuration. Conversely, the

Page8

algorithm for a compilation is typically represented by a

procedure, a sequence of machine instructions. In general,

we may conceive of algorithmic descriptions as a partial

ordering with the relation "is a sequence of". This partial

ordering defines an algorithmic hierarchy: commands,

procedures, machine instructions, [micro instructions, [nano

instructions,]] logic control lines. Applying the concept

of levels of abstractions [Dij], procedures may further be

subdivided into different levels of procedures. (We defer

for the time being the case of a procedure calling another

one of the same level.) Note that every algorithm in the

system is uniquely identified by a level number and an

algorithm number of that level. (The algorithm number of a

_ machine instruction is simply the operation code.) The

algorithmic hierarchy is depicted in Figure 1. Other

aspects of this figure will be discussed below.

An operation, i.e. an interpretation of an algorithm,

proceeds according to the static description of that

algorithm. Every system provides the necessary controls for

fetching the algorithm number and the parameters of the

algorithm to be invoked next, and for executing it. A

different interpreter (level interpreter) is provided for

I this purpose on each level of the hierarchy. In particular,

control lines are interpreted by gates, nano instructions by

the nano control unit, micro instructions by the micro

* control unit, machine instructions by the control unit, and

commands by the command level interpreter (command

ALGORITHM LEVEL INTERPRETER DATA BASE

Command Command Level

Interpreter Secondary

Procedure Storage

Operating System

(several levels Modules

of abstraction) (scheduler, CALL, Primary

interrupt system) Meoy or

Procedure Registers

Instruction Control Unit

Micro Instruction Micro Control Unit

Nano Instruction Nano Control Unit Registers

Logic Control Line Gates)

Fig.l. Correspondence between the hierarchies of algorithms,

* level interpreters, and protection data base media.

Page9

processor). Portions of the operating system, like the

scheduler, the interrupt system, and the CALL, interpret

procedures on the various levels. Note that each level

* interpreter is itself a sequence of lower level algorithms.

* For example, the command level interpreter is a sequence of

procedures and the control unit (unless it is hard-wired) is

implemented as a sequence of micro instructions.

The protection mechanism for mediating an operation is

closely related to its corresponding level interpreter. The

level interpreter of any level loops over the two phases

fetch; execute;

thus controlling the sequence of consecutive operations.

Mediation may be performed between these two phases:

V7 fetch; mediate; execute;

- - Mediation involves a comparison of the identifier of the

* currently active subject and the parameters (object-list)

with the license(s) affiliated with the algorithm. The

overhead is a function of both tne type of comparison

(simple match, associative search) and the access time of

the storage in which the licenses reside. For a command, an

associative search of licenses residing on secondary storage

is satisfactory since most likely the command itself must be

paged in. For a machine instruction, however, all

quantities involved in the mediation must be in high speed

storage or at least in primary memory. In the next section

we shall discuss various encodings of licenses on different

levels as well as their lifetimes.

Page 10

The implication of a verified algorithm on the form of

level interpreters deserves some attention. The current

state of the art allows the verification of short

procedures, but fails with respect to complex software. On

the other hand, hardware algorithms can readily be verified

by standard testing techniques. Thus, the form of a

hardware level interpreter

fetch; mediate; execute;

is typically replaced by

fetch; mediate while executing;

This form is more efficient since the mediation does not

have to-apply to all algorithms of the particular level, but

may be specialized for one or more algorithms. Privileged

instructions in which the mode is checked during the

execution of the instruction represent a trivial example of

this specialization. The Multics access checking logic for

the implementation of rings in hardware represents a more

involved example [Sh2J. Similarly, procedures of low levels

of abstraction which tend to be more easily verified, may be

trusted to perform their own mediation. On a higher level,

both forms may coexist by slightly modifying the

7 corresponding level interpreters:

fetch; if verified mediate while executing

V else mediate before executing;

For efficiency reasons the protection checking

74 mechanism in capability systems is tightly coupled with the

addressing mechanism (Sa5]. Quite analogously, the license

Page 1 1

mechanisms for mediating requests are closely coupled with

level interpreters. It follows that these mechanisms are

distributed over the algorithmic hierarchy and can be

designed to minimize the cost/performance characteristics of

the protection system. Furthermore, while efficiency

considerations are used in the design of the mechanism of a

particular level, the conceptual framework applies-to all

levels independent of their technological characteristics.

Note that the same mechanisms are used for access control

and parameter checking; the latter aspect has proven

particularly troublesome in attempting to verify

- - commercially available systems. In all protection systems

the CALL governing transitions between procedures plays an

important role. The notion of level interpreters

generalizes this primitive for all types of algorithms.

THE HIERARCHY Q. LIENE

In a pure licensing scheme, the protection state, i.e.

the collection of triples encoding authorized operations, is

distributed over the algorithmic repertoire of the system.

* Dynamic mediation is performed when an operation is invoked

*by a level interpreter. In order to keep the overhead

* tolerable, the access times of all quantities involved in

the mediation must be comparable to the fetch time of the

algorithmic specification. When a procedure must be fetched

from secondary storage, it is sufficient to have its

licenses resident on secondary storage. On the other hand,

Page 12

the licenses of a machine instruction must be readily

accessible in high speed storage. Consequently the

protection state itself is distributed over a hierarchy of

storage media which is related to the algorithmic hierarchy.

Figure 1 illustrates. We refer to the licenses of one

algorithmic level as the (protection) data base of that

level. Conceptually, the data base of a level is organized

around the algorithms of that level, i.e. <subject;

object-list> pairs are grouped and affiliated with their

respective algorithms. In an implementation, algorithms of

the same level may often have identical licenses affiliated

and duplication of the contents of their license-parts may

be avoided by merging them.

Some of the existing hardware protection features may

be viewed in this light. The processor state bit is an

example of a (rudimentary) subject class identifier used on

the machine instruction level. Here all subjects are

divided into two groups (user and system). Let us also

assume for the moment that the object-list field in all

licenses will match any parameters. Thus, the set of all

possible licenses reduces to the following three: <user;

ALL>, <system; ALL>, <user or system; ALL>. Accordingly,

0 all machine instructions may be partitioned into three

groups each of which shares an identical license. In a

hardwired control unit these licenses are wired into the

0 instructions and mediation involves a simple comparison with

the processor state bit. n-state architectures with n>2,

Page 13

like ring structures, allow for further discrimination among

subjects.

A standard paging map as depicted in Figure 2 may be

considered part of a micro instruction data base. it

contains the licenses for the micro instructions read,

write, execute (i.e. read during the fetch phaze of the

machine instruction interpreter), and map. Objects are

identified by virtual page numbers., The license of read,

for example, is of the form <ALL; any virtual page number

with R-bit set>. The column of invalid bits forms the

license of the micro instruction map which performs the

mapping of virtual into physical page numbers. In tnese

examples of existing hardware protection features the

object-list fields in machine instruction licenses are

degenerate and so are the subject fields of the licenses of

the four micro instructions. Degenerate licenses are more

efficient in the mediation process, but more complex formats

are justified in the case of more complex algorithms like

operating system support instructions.

The hardware examples served to demonstrate the

necessity of updating protection data bases at lower levels

dynamically in order to keep the cost (in terms of both

complexity and storage) of the mediation process reasonable.

We generalize this notion to all levels. Upon successful

mediation of an operation on one level, licenses are

converted and added to the data base of the next lower

virt. page no. R W E I phys. page no.

0

1

2

n-1

R, read bit; W, write bit; E, execute bit; I, invalid bit.

Fiq.2. A standard paging map viewed as a micro'instruction

data base.

Page 14

level. (In implementations, depending on the nature of a

particular system, a higher level interpreter may cause the

data bases of several lower levels to be updated with

* - licenses.) In essence, the new licenses on the lower level

* are derived from the licenses involved in the mediation

process. The newly created licenses on the lower level

reside there until the operation responsible for their

creation terminates. This scheme is motivated primarily by

the desire to avoid the longevity problem of capabilities

with all its consequences while retaining most of their

efficiency characteristics.

Procedures and commands differ form lower level

algorithms in that they may be defined in terms of

V7 algorithms of the same level. This does not change the

basic scheme for creating and deleting licenses at the

procedure levels. Similarly to the CALL stack employed in

contemporary operating systems for control purposes, a stack

Is used to link the saved licenses of the data bases of

procedures and lower levels when control passes from one

procedure to another of the same level. Upon RETURN from a

procedure, the licenses in the top element of the stack are

deleted. It is instructive to compare this method with the

* handling of templates in HYDRA [Coh]. Before a procedure

may be invoked, the triple (calling subject; procedure;

parameters> must be mediated. In HYDRA, the mediation is

* split into two indepedent steps. First, the calling subject

must present a capability for executing the procedure.

'4 Page 15

Second, the parameters (the passed capabilities) are

compared with the templates which are affiliated with the

procedure. A positive outcome results in the creation of

new capabilities for the lifetime of the procedure. Like

templates, licenses are affiliated with procedure. The

mediation, however, is performed in one step by comparing

the licenses with the identifier of the calling subject in

the context of the passed parameters.

ON THE ENCODING OF LICENSES

Contemporary hardware architectures offer only minimal

support for protection systems. This support includes

processor modes, memory maps, and descriptor mechanisms.

However, even tag bits for capabilities or capability

registers are rare (c.f. [Eng] as an example). In fact,

most commercially available processors lack the necessary

features to aid in the implementation of a secure system

[Sad]. The increase in cost-effectiveness of hardware

features and microcode over software in the past few years

has resulted in the enhancement of hardware architectures

with operating system support features (e.g. virtual memory

mechanisms, special purpose instructions). A similar trend

is to be expected for protection features. In particular,

we suggest a feature which would allow the labeling of

information containers (page frames, register sets, tapes)

in a uniform manner across an entire system, including

periphery. Any physical storage unit should feature a

q Page 16

string of bits describing its current contents. For a

primary memory page this string would be stored in an

affiliated register. On secondary storage this string would4

precede (and/or accompany and/or trail) the corresponding

information block. These strings would aid in the design of

memory management systems which are so closely related to

protection systems that they are often included in the

system kernel. The contents of these strings is twofold: a

unique identifier of the virtual object contained in the

physical storage unit and a semantic description of its

contents (e.g. security class, type).

The unique identifiers for algorithms are given by a

level number and a unique algorithm number. For pV-ocedures,

the latter is the procedure segment number which corresponds

to a pathname in the procedure directory starting with the

name of the controlling user. Operations (invoked

algorithms) are identified by the algorithmic path name,

* i.e. the sequence of algorithms which define their current

context. Thus, a machine instruction in execution is

identified by the sequence: command identifier - procedure

identifier(s) - operation code. Subjects are uniquely

identified by the name of the invoking user concatenated

* with the current operation identifier. Note that part of

the subject identifier changes with every instruction.

Semantic information about a subject includes a security

class and a privilege class, The, mapping between virtual

and physical objects is maintained by the 7--mory management

Page 17

system. The contents of any physical location is always

part of a virtual object (segment). The mapping of bits,

words, pages, and segments defines an object hierarchy which

is utilized in the conversion of licenses when they are

added to the data base of the next lower level. Segments

are identified by segment numbers; they correspond to

pathnames in the object directory starting with the name of

the controlling user. Semantic information about an object

includes a type and a security level.

The design of a protection system based on licenses

depends on the concrete specific.ttions of the formats of

identifiers (including semantic information). These

specifications, in turn, depend as much on the hardware

architecture as they depend on the specific operating system

structures. We have simulated both a hardware configuration

and an operating system to investigate the properties of

licenses. Due to its specific nature, our design is beyond

the scope of this paper and we refer the reader to [Shi] for

details. A general comment about our effort is in order

though. The set of licenses affiliated with an algorithm is

conceptually a list and there are many analogies to access

control lists as far as compression techniques are concerned

[c.f. Sa4]. What distinguishes a license from an access

control list entry is the fact that mediation involves a

context-sensitive comparison of a subject identifier

consisting of many subfields with several parameters

(especially object identifiers with again many subfields).

* Page 18

The subfields help since often only one of them has to be

consulted to make a decision. The context-sensitive nature

results in the notion of identifier variables in the

-*licenses. Consider the case of a procedure which the

* - controller would like to make available to all users under

the condition that they may pass only objects under their

own control. Assigning the variable x to denote any user

name, the compressed license can be represented as <x;

x.ALL, x.ALL, .. x.ALL>. If x denotes the name of the

* controlling user, the above license specifies a no-sharing

situation and illustrates the economy of the scheme for

simple policies.

The components of a license do not only contain

identifiers, but also semantic information about the

involved objects and subjects. When the mediation process

can be based on the semantic information alone, it is

usually considerably more effective. In the next two

sections we discuss several applications for which the

license scheme seems to be particularly suited.

DATA TYPES. PROTECTED SUBSYSTEMS AND NETWORKS

A data type defines a class of objects by specifying

*its internal data representation and the externally

invocable access procedures. It is a predominant feature of

data types that the internal data may only be accessed via

* the specified access procedures. The notion of data types

evolved in a number of programming languages, like Simula

Page 19

[Dahl, CLU (Lis], and Aiphard (Wu6], to support the

discipline of structured programming. It has since become

an important operating systems notion too [c.f. Cob). Data

types may be created by a user by obtaining a unique type

identifier from the system. In doing so, this user becomes

the controller of the new type. After the appropriate

access procedures have been coded, they are licensed such

that a passed parameter specifying the new data type must be

U of that type. The subject fields in the licenses of the

access procedures need not be identical, thus allowing for

discrimination among subjects with respect to different

accesses to the same type. No further steps are required.

Other users may make use of the new type if they have been

included in the licenses of the access procedures.
'7

Otherwise, they may create data objects of the new type, but

cannot access them themselves. An attempt to circumvent

this restriction by coding new access procedures would fail

at the time of licensing since the consensus of the

controller of the new type is required. (This consensus may

be given under special circumstances, e.g. when a type

controllership is passed from one user to another.) The

internal data representation of a new type must be defined

in terms of existing types and the descriptor to a data
6

object of this type maps its name into a set of descriptors

of objects of the defining types. Note that the access

procedures of the new type must be coded in terms of
0

accesses to the defining types,* thus necessitating the

Page 20

consensus of their controllers. A data type is a unique

abstract description according to which an arbitrary number

of concrete objects may be created. Related to this concept

is the concept of a protected subsystem of which only one

instance may be created.

A protected subsystem is a collection of procedures and

data objects that is encapsulated in such a way that the

data objects may be accessed only by the procedures of the

protected subsystem. Protected subsystems are instrumental

in the implementation of sophisticated security policies.

Many cases of such policies have been discussed in the

literature, in particular the handling of mutual suspicion

[ShD, Sa5], confinement [La9, Sa5], and user-defined access

control like access to student grade records [Gra, Sa5].

The '.asic license mechanism supports the implementation

of protected subsystems. Since all procedures have

license-parts which specify the subjects that may invoke the

procedure with certain parameters (including objects), any

procedure is potentially part of a protected subsystem.

Suppose data objects D and E are to be encapsulated with

procedures P and Q. At the time of creation of P and Q they

are licensed to access D and E (i.e. <S; D, E> pairs are

affiliated with them where S specifies tbe authorized

callers). As long as no other procedure is ever given a

license including D or E, the two procedures and the two

data objects form a subsystem.

Page 21

Figure 3 illustrates an example concerning the policy

that physicians (PHYS) should have complete access to

patients' records while statisticians (STAT) should be

constrained by privacy considerations. We assume first that

patients' records are kept in two separate data objects,

with the personal data stored in object PERS and the medical

ones in object MED. The procedure PPHYS is coded to service

all physicians' accesses and is licensed with <PHYS; PERS,

MED>. Similarly, the procedure PSTAT serves statisticians

and is licensed with <STAT; MED>. Note that the licenses

do not only determine which data objects may be accessed,

but also which subjects may invoke the particular procedure.

Of course, the data objects PERS and MED could be merged

l into a single object. In this case, the procedure PSTAT

would have to be verified to ensure that no personal data

are returned to statisticians. If statisticians were

allowed to obtain averages of personal data, but not the

personal data themselves, verification is unavoidable since

this case subsumes the general case of data transformations.

The operating systems of most computer systems may be

viewed as protected subsystems. User programs rely on

accesses to system-maintained data, but these accesses must

be performed via (more or less) verified system procedures.

Conceptually, the notion of a protected subsystem may be

further extended to computer networks. Figure 4 shows a

network configuration with several hosts. A message

arriving at a host represents a request for a specific

II

[<PHYS; PERS, MED>

PHYS J PERS

<STAT; MED>

SA STAT MED

Fig.3. A protected subsystem for a privacy policy.

II
I\

4- a- ~ - - - ~ ~ L - - - -\

SHOST HOST

S H

<SOURCE; PARAMETERS>

HOST LEVEL

INTERPRETER

HOST

Fig.4. The level interpreter on the network level.

0

q Page 22

operation on that host. We extend the hierarchy of level

interpreters to include a host level interpreter and anj

affiliated mediation mechanism. This mechanism mediates by

matching the relevant message portions (source subject,

requested operation, and parameters) with the licenses in

the host protection data base. Of these relevant message

portions only the identifier of the source subject must be

unforgeable. The integrity of' this identifier can be

assured by a simple and efficient scheme based on Lampson's

model of the Message System [Lal]. Modifications of other

portions of the message en route does not jeopardize the

security of the license mechanism; in the worst case, it

would result in an unnecessary, but still authorized,

__ operation.

FLOW CONTROL

Access control mechanisms are designed to support the

dynamic mediation of requests concerning the accesses of

objects by subjects. Authorized requests are denoted in the

protection data base. To a large degree, the encoding of

this data base determines the nature of the access control

mechanism. In the capability scheme, the access control

list scheme, and the license scheme, the protection data
46.

base is organized along subjects, objects, and algorithms

respectively. Owing to the distributed nature of' the data

base in all three schemes, it is often difficult to account

for all possible data movements (with possible

Page 23

transformations on the way) in a global sense. Flow control

concerns itself with this problem. A secure system must

provide mechanisms to support the control of both accesses

and information flow.

An appealingly simple model for flow control [De6] has

resulted in a certification mechanism for verifying

information flow through a program [De7]. In this model,

objects (and processes) are bound to disjoint security

classes which serve to define authorized information flow.

Briefly, the result of a procedure which takes data from

several input objects may only be stored in an output object

of a given security class if information may flow from all

security classes to which any input object is bound to the

security class of the output object. Note that authorized

flow is defined independent of the particular procedure

which controls the transformation of the flowing

information. This property simplifies the necessary

mechanism. It also implies that the security class of

* derived information must not be less than the security

classes of information used in the derivation. On the other

hand, a procedure-dependent mechanism would increase the

versatility of the model. In particular, it would be

Possible to decrease the security class of selectively2

extracted portions of an object. For example, the

statistical data extracted from a medical data base should '
have a lower security class associpited than the medical data

themselves. Similarly, the output of an encyphering

Page 24J

procedure is intrinsically less sensitive than its input.

For access control, the object-l'ist field of a license

* already contains an encoding (including type and security

*class) of all authorized input and output objects. Thus, if

the security class of the output object passed by the caller

does not match the security classes of the input objects, a

protection fault will result. (The same holds true for the

case of several output objects.) Thus, the license mechanism

requires no changes in order to implement

*procedure-dependent flow control. The valid range of

security classes of output objects is statically determined

at the time of licensing. To implement dynamic binding of

objects to security classes, we add to the license-part of a

procedure a description of the mapping of the security

classes of the input objects to those of the output objects.

Furthermore, the mediation mechanism affiliated with the

procedure level interpreter is enhanced to evaluate this

napping and to update the security classes of the output

objects. By default, all procedures would have the standard

least upper bound mapping assigned and the consensus of the

protection system is required to specify a decreasing

security mapping.

Licenses derive many of their characteristics from the

fact that object identifiers and the affiliated semantic

information are viewed like parameters. This property

allows context-sensitive access control with respect to

* Page 25

object combinations, in particular combinations of input and

output objects. The same property aids in the

implementation of flow control. Thus, licenses appear to be

a suitable mechanism for the implementation of both access

and flow control.

SIMULATION ASPECTS

We have designed and simulated an integrated hardware

and operating system configuration to investigate the

properties of a protection system based on licenses. Our

design is strongly influenced by an educational system which

is being simulated as part of a course in operating systems

[RuA]. In this course, special emphasis is put on the

interactions between hardware and software, and the major

components of the system - the machine architecture (COS

[Rul,Ru2]), the implementation language (CAL [RuL]), and the

operating system (COSMOS [RuM]) - have been designed

accordingly. While we adopted many architectural features

of this educational system, the internal structure was

completely redesigned to lend support to the implementation

of the protection system.

The simulation is coded in SIMULA [Dah] and documented

in project notes [Shi]. The hardware configuration consists

of nano programmable and micro programmable central

processors, primary memory modules, disk systems (each one

consisting of a controller and a drive), and terminals. The

various components are represented by SIMULA classes and

'4Page 26

their number is parameterized. The virtual address space is

segmented and segment numbers are absolute. Segments are

referenced via descriptors and are also paged. The major

operating system procedures handle initialization,

scheduling, CALL's, interrupts, terminal 1/O, disk I/O,

memory recognition, and command recognition. The protection

system consists of the mediation algorithms affiliated with

the four level interpreters, the data structures for

identifiers and licenses, and the routines for updating

these data structures. Various formats of licenses and

6- identifiers have been tried out, but further research is

needed in this area.

The low level of the simulation (SIMULA code is used

exclusively for the interpretation of nano instruotions) has

focussed our attention on the lack of hardware support

features for the implementation of a protection system. The

periphery is particularly weak in this respect. Along these

lines, we have begun the design of a protection device which

is to be interfaced with the UNIBUS of a PDP-11/60. This

device is meant to act as an extension of the protection

system (typically located in the CPU) for the purposes of

mediating operations on the I/O bus.

CONCLUSION

Licenses are equivalent to capabilities and access

control list entries in the sense that each of them is an

encoding of the protection state, where the encoding

A Page 27

consists of two of the three quantities subject, access

(algorithm), and object (or object-list). In the case of

licenses - <subject; object-list> pairs -,the protection

state is affiliated with algorithms. Mediation involves a

* context-sensitive comparison of licenses with the requesting

subject and its parameters. Thus, the same mechanism serves

* for access control and parameter checking. (In special

cases, authentication may be viewed as an instance of

parameter checking, e.g. LQGIN(user name, password or

* . fingerprint).) Licenses support the implementation of data

types and protected subsystems and are particularly suited

as a network protection mechanism. Furthermore, they serve

as a mechanism for monitoring information flow, thus

unifying the concepts of access control and flow control.

The notion of the algorithmic hierarchy serves as a

design criterion for the specification of licenses on the

various levels. The hierarchical organization of licenses

provides a unifying framework which allows efficiency

considerations to dictate the design on each level. Some of

the existing hardware protection features have been shown to

be consistent with the license mechanism. Since the

hierarchy blurs the distinction between hardware and

software, manageable hardware techniques suggest themselves

as remedies to some of the more intricate software problems.

Le

q Page 28

Our simulation has proven the feasibility of

implementing licenses in a controlled environment. Further

research is needed for the design of an operational system

based on this mechanism. In particular, the relation

between the hierarchies'of objects (bits, fields, words,

records, pages, segments) and subjects (processors,

processes, computations), which vary considerably from

system to system, deserves careful attention. Furthermore,

more hardware support will be needed for licenses on the

lower levels. In any event, licenses offer several

advantageous properties and may readily be applied on the

network and command level, possibly in conjunction with

capability and/or access control mechanisms on the lower

__ levels.

Page 29

.REFERENCES

[And] Andrews, G.R. COPS - A mechanism for computer
protection. Proc. Workshop on Prot. in Op.
Sys. IRIA, Rocquencourt, August 1974, pp. 5-26.

[Coh] Cohen, E., and Jefferson, D. Protection in the HYDRA
Operating System. Proc. Fifth Symp. on Op.
Sys. Principles, U. of Texas, Austin, November
1975, pp. 141-160.

[Dah] Dahl, O.J., and Nygaard, K. Simula - An Algol-Based
Simulation Language. Comm. ACM 9, 9 (Sept.
1966), 671-678.

[De6] Denning, D.E. A Lattice Model of Secure Information
Flow. Comm. ACM 19, 5 (May 1976), 236-243.

[DeT] Denning, D.E., and Denning, P.J. Certification of
Programs for Secure Information Flow. Comm. ACM
20, 7 (July 1977), 504-513.

[Dij] Dijkstra, E.W. The Structure of the "THE" -

Multiprogramming System. Comm. ACM 11, 5 (May
1968), 341-346.

[Eng] England, D.M. Capability Concept Mechanism and
Structure in System 250. Proc. Workshop on Prot.
in Op. Sys. IRIA, Rocquencourt, August 1974, pp.
63-82.

(Gra] Graham, G.S., and Denning, P.J. Protection -
Principles and Practice. Proc. AFIPS 1972 SJCC,
Vol. 42, AFIPS Press, Montvale, N.J., pp.
417 -429.

[La9] Lampson, B.W. Dynamic Protection Structures. Proc.
AFIPS 1969 FJCC, Vol. 35, AFIPS Press, Montvale,
N.J., pp. 27-38.

[Lal] Lampson, B.W. Protection. Proc. Fifth Annual
Princeton Conf., Princeton U., March 1971, pp.
437-443.

[Lis] Liskov, B. An Introduction to CLU. Comp. Str.
Group Memo 136, Lab. for Computer Science,
M.I.T., Cambridge, Mass., Feb. 1976.

[Neu] Neumann, P.G. et al. On the design of a provably
secure operating system.. Proc. Workshop on Prot.
in Op. Sys., IRIA, Rocquencourt, August 1974, pp.
161-176.

Page 30

(Pop] Popek, G.J., and Kline, C.S. Verifiable Secure
Operating System Software. Proc. AFIPS 1974 NCC,
Vol. 44, AFIPS Press, Montvale, N.J.

(Red) Redell, D.D. Naming and Protection in Extendible
Operating Systems. PH.D. Diss., U. of
California, Berkeley, 1974.

[RuA] Ruschitzka, M. An Operating Systems Implementation
Project for an Undergraduate Course. Proc.
Seventh Tech. Symp. on Computer Science Ed.,
Atlanta, Georgia, Feb. 1977, pp. 77-84.

[Rul) Ruschitzka, M. COS-Model 1 Reference Manual. CS
416/18 Class Notes, Dept. of Computer Science,

Rutgers U., New Brunswick, N.J., 1977.

[Ru2] Ruschitzka, M. COS-Model 2 Reference Manual. CS
416/18 Class Notes, Dept. of Computer Science,
Rutgers U., New Brunswick, N.J., 1977.

[RuL) Ruschitzka, M. CAL-CAROL Reference Manual. CS
416/18 Class Notes, Dept. of Computer Science,
Rutgers U., New Brunswick, N.J., 1977.

[RuM] Ruschitzka, M. COSMOS Reference Manual. CS 416/18

Class Notes, Dept. of Computer Science, Rutgers
U., New Brunswick, N.J., 1977

[Sa4] Saltzer, J.H. Protection and the Control of
Information Sharing in Multics. Comm. ACM 17, 7
(July 1974), 388-402.

[Sa5) Saltzer, J.H., and Schroeder, M.D. The Protection of
Information in Computer Systems. Proc. IEEE 63,
9 (Sept. 1975), 1278-1308.

[ShD] Schroeder, M. Cooperation of mutually suspicious
subsystems in a computer utility. Ph.D. Diss.,
M.I.T., Cambridge, Mass., 1972.

[Sh2J Schroeder, M.D., and Saltzer, J.H. A hardware
architecture for implementing protection rings.
Comm. ACM 15, 3 (March 1972), 157-170.

[Shi] Shiao, M.-D. Secure Operating System. Project
Notes, Dept. of Computer Science, Rutgers U., New
Brunswick, N.J., 1977.

(Smi] Smith, L. Architectures for Secure Computer Systems.
ESD-TR-75-51, The MITRE Co., Bedford, Mass., April
1975.

[Wu4] Wulf, W. et al. HYDRA: The Kernel of a
Multiprocessor Operating System. Comm. ACM 17, 6

I Page 31

(June 19714), 337-.3415.

[wu6] Wulf, W.A., London, R.L., and Shaw, M. An
introduction to the construction and verfication
of Aiphard programs. IEEE Trans. on Software
Eng. SE-2, 14 (Dec. 1976), 253-265.

Proc. Seventh Tech. Symp. on Computer Science Education, Atlanta, Georgia, I
4 February, 1977. SIGCSE Bulletin 9, 1 (Feb. 1977), pp. 77-84

AN OPERATING SYSTEMS IMPLEMENTATION PROJECT
FOR AN UNDERGRADUATE COURSE

M. Ruschitzka

qW

Department of Computer Science
Rutgers University

New Brunswick, New Jersey

0-

S,

S,

Proc. Seventh Tech. Symp. on Computer Science Education, Atlanta, Georgia, Feb. 1977.

SIGCSE Bulletin 9, 1 (Feb. 1977), pp. 77-84.

AN OPERATI1G SYSTEMS IMPLEMENTATION PROJECT
FOR AN UNDERGRADUATE COURSE

Manfred Ruschitzka
Rutgers University

November 1976

ABSTRACT overall operation of a computer system. But we
were also painfully aware of the price which would

While the adoption of an implementation pro- have to be paid to achieve this goal. Clearly,
Ject for an operating systems course is certainly this project could only be successful if the price
beneficial, non-trivial projects are inherently could be kept affordable and if the benefit to
demanding in terms of student efforts and com- students was outstanding. We settled on a number
puter costs. This paper reports on a project of necessary criteria for keeping the price/
which has been designed to keep the effort for benefit ratio low. (1) The project should involve
an extensive simulation of a contemporary system an entire, though simple, system to illustrate
within acceptable limits. The project involves both the overall operation and the implementation
both a hardware simulator and an operating system, details. (2) Computing costs should be kept
and a considerable reduction of the overall reasonable, although it was clear from tne beginning
effort could be achieved by enhancing the hardware that they would be high. (3) The system snould
withoperating systems support featL.-es. The be representative of conterporary ones, but it
design criteria as well as the characteristics should not be based on any particular orand. This
of the resulting hardware configuration and would allow the use of advanced effort-saving
operating system are presented, and the value of architectures and also simplify the introduction
the project as a teaching tool is discussed of implementation-independent concepts. (4) The

opportunity should be used to introduce students
INTRODUCTION to the intrinsic management problems of largesoftware projects which are typically absent in

Since the introduction of multiprogramming, academic courses.
operating systems have become a respectable
discipline within computer science and most From the first criterion we concluded that the
computer science programs now include at least project should involve both a hardware simulator
one course on their design and implementation. and an operating system. This decision, which
While the theoretical material of such a course resulted in an integrated design methodology for
Is generally agreed upon [1,2], the question both hardware and software, allowed us to design
of whether or not such a course should stress a machine which is particularly suited for the
an Implementation project, and what its nature implementation of operating systems. It is
should be, has continued to be a much debated termed COS for Computer for Operating Systems
issue [3,4,5,6,7,8]. It is not the value of and exists in two versions [9]. COS-l consists
such a project which is being debated. Clearly, only of a processor and primary memory; it serves
the experience gained from an implementation to get the project started fast. The downward
cannot be substituted by even the most illumi- compatible COS-2 includes tihe periphery, but its
mating lectures or homework problems. But the processor is also enhanced with hardware features
price for a non-trivial, representative opera- (instructions, interrupt system, registers) which
ting systems project in terms of student efforts support the operating system. In view of tne
and computing costs is formidable. What is increasing availability of microcode, it is felt
being debated is whether the experience gained that the integrated design methodology is also
from such a project is worth the price, very promising for connercial systems. In any

event, it cut the effort for irpleienting the
During the academic year 1974/75, an under- operating system in half ,ithout appreciably com-

graduate operating systems course based on an plicating the hardware simulator for COS-2. To
Implementation project was developed, carefully cut computing costs, it was decided that the
studied, and adopted at Rutgers University. system should not process symbolic information;
The juniors and seniors taking this course have we estimated that. symbolic programs would require
considerable applications programming expertise, about 20 times more storage than their object
but have had little exposure to systems pro- code equivalents. Instead, a crossassembler was
gramling and system organization. Under these developed and made available to students in order
circumstances, it appeared futile to attempt to ease their workload. The third criterion
to convey operating systems principles without resulted in an operating system whose mode of
first providing an intuitive understanding of the operation is similar to the "THE"-lultiprograimning

System [10]. This system is written in assembly

language, but the assembly language has the The simulator consists of four major modules:
appearance of an ALGOL-derivative in order a subroutine for the instruction execution cycle,
to relate to the notation of most textbooks on a main driver which corresponds to the console
operating systems. The system is named COSMOS, and repeatedly calls the execution cycle subroutine.
an abbreviation for COS Multiprogramming Operating a common module containing the storage declarations
System L11]. CUS4OS spools user jobs froh a card- and constants like masks and fields, and another
reader to a drum. Whenever there is sufficient subroutine simulating the combined cardreader and
primary memory available, a job is loaded for crossassembler (see below). The drum system is
execution. Operating systems calls are avail- simulated by the instruction cycle subroutine which
able for I/O operations and termination. After counts real time in tenns of the number of instruc-
the latter, a job's output is printed on the line- tions executed. The simulator may be written in
printer with performance statistics. In satisfac- any high-level language. In the past two years,
tion of the fourth criterion, COSMOS is structured FORTRAN was chosen for reasons specific to our
in levels of abstraction and the entire project is environment, but also because this lowest of all
assigned incrementally. Students work in teams of high-level languages quite appropriately reflects
two and often experience for the first time that the nature of hardware operations. In fact, many
they have to live with code which they wrote two of the FORTRAN statements may be interpreted as
months earlier. microinstructions, thus lending themselves to the

introduction of firmware. The final versions of
The project was successfully completed by the COS-2 simulator without the cardreader/cross-

most students who took the course during the last assembler subroutine (which was written in PL/I)
two years. Except for the crossassemabler, the consisted of about 500 FORTRAN STATEMENTS.
entire system is implemented by a team of two stu-
dents, but detailed design specifications in terms CPU AND PRIMARY MEMORY

. Iof reference manuals and flowcharts are handed
out. The project is structured in the form of six The CPU contains many of the standard features
assignments, each of which build on all previous for its task of instruction execution and system
ones: supervision. Four registers, program counter,

instruction register, accumulator, and index regis-
!. Simulation and testing of COS-l. ter, serve the obvious purposes. For simplicity,
2. Simulation and testing of COS-2. a fixed, single-word instruction format has been
3. Run of a stand-alone periphery test program. adopted. In addition to the operation code and
4. Testing of the COSMOS spooling system. four addressing modes (indexing and indirection
5. Run of a single user job under COSMOS. in any combination), an instruction contains two
6. Evaluation of runs of batches of user jobs. address fields. The addition of a second address

field to the originally contemplated single-
The first three assignments represent the hardware address format (a seemingly unimportant detail)

flo simulator and are completed after about one month. had a considerable impact on both code compactio'non
The last three assignments representing the operat- (about 30%) and code legibility. The latter is

inq system require another month for completion. due to the fact that, in assembly language, many
Ouring the last third of the semester, advanced quantities can be referred to be meaningful
concepts are presented as solutions to the inade- symbolic names, rather than by the semantically
quacies of the implemented system. Due to the irrelevant names of the registers in which they
expertise gained from the irr:lementation, students reside. The operating system is aided in its task
tend to appreciate the value of more abstract by four more CPU registers: interrupt and trap
principles which can thus be dealt with at a rapid register, arming register, mode register, and state
pace. It is this third phase of the course which pointer register. The latter contains a pointer
indicates that the benefits derived from the pro- to the process state record (PSR), the data struc-
ject more than justify its price. The feedback ture describing the state of the currently running
and the entnusiasm of students corroborate this process (Figure 2). Interrupts and traps are ser
indication. viced by a multi-level priority interrupt system

which saves the entire state of the interrupted
process and loads the initial state of the inter-

THE HARDWARE AND ITS SIMULATOR rupt service routine. This control transition is
performed completely in hardware and makes use of

The configuration of the simulated COS-2 both the state pointer register and an interrupt
hardware complex has been designed to support transfer vector in standard low core locations.
the operation of the COSMOS system. It is
illustrated in Figure 1. Only essential devices Virtual memory is supported by apaging map.

4 have been included, but both modes of direct The virtual address space covers IK words con-
I/O (cardreader and lineprinter) and indirect sisting of 8 pages of 128 words each. Words,
I/O (Orum controller) are represented. Primary both primary memory locations and registers, are

* memory assumes the central position for data 36 bits long; they have been dimensioned after
transfrs, while the CPU (and its console) the integer size of the IBM 370 system on which
serves as the system's control center. While this the simulator is developed and run. Primary
configuration is representative of contemporary memory consists of 2K words or 16 pages of 128
minicomputer systems, its restriction to c sential words each. It is accessed from the CPU via the

* devices also allows for the implementation of a paging map. Page 0 contains a number of standard
detailed simulator within a reasonable period of locations ("low core") for communications among

" time. the various devices. These standard locations
are used for bootstrapping, timers, the drum
queue pointer, and the interrupt transfer vector.

78

Figure 1. COS/2 system configuration.

drum 7

controller

cross primary
assembler memory clock

central
card- processing line-

reader unit printer

Figure 2. The format of a process state record (PSR).

linkage pointer

process status word

interpreted central registers
by hardware

and software
map

accounting data length of
system PSR

interpreted
by software file directory

__ length of user PSR

Figure 3. The standard format for COSMOS queues.

tlinkage pointer I - linkage pointer -f---- negative pointer

status word status word
head of queue

79

The role of the console has been stressed for system call instruction (OS CALL) which causes a
pedagogical reasons. First, its switches and indi- trap. Traps as well as interrupts save the state
cators allow for a completely manual operation of of the current process in its PSR and load the
the entire hardware complex. Aided by a break- state of the next process from its PSR. An iden-
point facility, a student can thus slow down the tical operation is performed by the instruction
operations of the system and inspect its state via SWITCH PROCESS, but it obtains a pointer to
the indicators (printed out by the main driver), next PSR from a register rather than low core.
In this "hands-on" mode of operation, the student Since this operation provides the only means of
can debug his/her programns (including the simula- setting the paging map, it constitutes a central
tor, i.e. his/her hardware configuration) and gain part of the protection mechanism in COSMOS.
familiarity with the system in a manner compar-
able to a systems prograncier or a programmner/ Peripheral Devices
operator of the 1950's. On the other hand, no real
hardware must be provided, thus avoiding scheduling The complexity of the peripheral devices has

problems as well as hardware failures. Second, been reduced to a minimum. The cardreader con-
the bootstrap mechanism which loads stand-alone tains a hopper which is filled with the decks of
programs (including the operating system) from the a number of jobs. Each deck consists of a JOB
cardreader into primary memory can be activated card, followed by program cards, a DATA card and
from the console. Since most students' know- input data cards (optional), and an END card.

pledge about operating systems is restricted to The information on a card is encoded in 32 bits
external characteristics like command language and corresponds to a machine word. Upon execution
and operating systems call,,, the concept of how a of the instruction READ CARD the contents of the
system is brought up often challenges their next card in the hopper are transferred to the
imagination. We found that the simulation not only accumulator and the instruction skips a variable
reduced the effort for conveying this concept, but number of times depending on the type of card
also illustrated the functional equivalence of (or lack thereof). The cardreader also serves as
hardware and systems software. This equivalence the input device for bootstrapping.

0 is an important notion, since it lends itself to
the introduction of microcode. Microcode, in turn, The lineprinter can be activated via two
justifies the implementations of a number of instructions. PRINT LINE prints the contents of
operating system functions as instructions. The the accumulator as an eight-digit hexadecimal
inclusion of these functions in the instruction integer after the printout paper has been advanced
set resulted in a considerable simplification of one line. Thus, printout will typically consist
the COSM'OS code and, thus, aided in keeping the of a single column of integers. A special pur-
programming effort within reasonable bounds, pose instruction, HEADER, is provided to print

the header preceding the output of a user job.
In addition to a fairly standard complement of HEADER prints several lines of symbolic and

about 40 instructions for data mvements, arithmetic numerical information which is extracted from a
and logic operations, branching, and input/output, process state record. The information contains

*the instruction set contains 13 operating systems job statistics and possibly indications of an
support instructions. The criteria for their abnormal termination.

* inclusion were high execution frequency and/or
potential for code compaction. Neither the instruc- The drum system represents an indirect I/O
tion set nor the instruction format were frozen device. The storage capacity is 16 pages of 128

* until a version of COSM4OS had been coded in a hypo- words. Transfers are on a page basis and are
thetical open-ended language which eventually con- controlled by the drum controller which is started
verged to the assembly language. This approach from the CPU by executing a START DRUM instruction.
allowed for a frequency analysis of instructions The controller obtains the transfer parameters
and resulted in the deletion of superfluous ones from a drum transfer record pointed to by a stan-
as well as in the adoption of the operating dard location in low core. The controller informs
systems support instructions, the CPU about the completion of a transfer by

issuing an interrupt.
According to Werkheiser's classification

[12], miniprimitives (equivalent in power to
conventional machine instructions) and midiprimi- THE COSMOS OPERATING SYSTEM
tives (equivalent to the system macro) evolved.

* . The former were designed to support the manipu- Most contemporary definitio~is identify
lation of the COSMOS data structures, in parti- operating systems as programs, i.e. software.

pcular bit-tables and queues. Two instructions We feel that these definitions are too narrow,
inspect and conditionally update bit-tables that they stress an implementation aspect rather
and indicate their action upon return. They than concentrating on functional aspects. We
are used for the allocation of drum and core prefer to think of an operating system as a system'Ipages. A standard format for queues was adopted of components which operates a computer system in
which includes both linkage pointers and status a user-oriented and efficient manner. Whether
words (Figure 3). Operations to get, return, certain functional components are represented by
append, insert, and find a record are supported. hardware, microcode, software, or even a human
They are used primarily to manipulate process operator, will be dictated by the current state

4 state records and drum transfer records (DTR's, of technology. An alternative to the traditional
describing requests for -rum I/O).- Midiprimitives software overlay techniques has long been offered
are included to support level crossings. User in hardware supported virtual memories, and in
processes enter system processes via an operating trillion-bit memories mechanical devices now cost-

4 80 I

effectively' perform the traditionally human task of the output data page on the drum. After termina-
mounting removable storage media. In view of the tion of a user job, its output is printed on the
seemingly unsurmountable difficulties encountered lineprinter together with some statistics. This
in large software systems, it appears worthwhile default sequence renders an explicit command pro-
-to reconsider the assignment of operating systems cessor unnecessary; its function is performed by
fupctions to specific implementation media, the input spooling system. After spooling in the

last user job, COSMOS will continue to process the
Compared to commercial systems, our educa- resident jobs and halt after the last one has

tional COSMOS system may well be characterized as terminated.
a toy system. But there is at least one thing
which they have in common: the effort required Crossassembler
for their implementations approaches the limit of
the available manpower. OS/360.devoured 5000 COS40S is written in the assembly language
man-years for its design, construction, and docu- of COS [14]. Thus, there is a one-to-one corres-
mentation[13]. This must be compared to a couple pondence between assembly language statements
of man-months which can be put in by a team of two (except pseudo operations) and machine instruc-
students registered for a normal load of four tions which have been implemented in detail in the
courses during one semester. Clearly, this simulator. On the other hand, the language has
analogy must not be pushed too far. But it been given the flavor of an ALGOL-like system pro-
vividly demonstrates the effect of measures gramnming language by using meaningful mnemonics
which result in cutting the required effort in and by enclosing the address fields in paren-
half. Since the implementation project includes theses, much like parameters in a subroutine call.
both a hardware simulator and C040S code, one See Figure 5 for a sample program. The syntax of
important design parameter concerned the distribu- the assembly language has been adopted for purely
tion of functional capabilities over hardware and pedagogical reasons, since many textbooks use some
software. We believe that the successful comple- sort of ALGOL-derivative for the illustration of
tion of this project within one semester by almost algorithms. During the first year, when the cross-
all students is a direct consequence of our inte- assembler accepted the standard three-letter
grated design methodology and the resulting sim- mnemonics, many students found it difficult to
plification of the overall system. relate textbook examples to their own machine

language code. The simple change in the syntax
COSMOS is coded in assembly language and its apparently resoled that problem during the last

loadmodule fits into a single virtual address semester.
space (1K words). The actual code, as opposed to
data structures and buffers, consists of less than If programs were entered via the cardreader

.500 -instructions. in symbolic form, they would require about 20
times more storage space than machine code. To

Mode of Operation keep the cost of a simulation run down, it was
decided to enter only binary information via the

In many respects, the mode of operation in cardreader. This is accomplished by providing a
COSMOS is similar to Dijkstra's "THE"-Multi- crossassembler whose output is coupled with the
programing System. Unnecessary sophistication cardreader. Students are provided with a load-
has been sacrificed in order to keep the imple- module of the crossassembler which is written
mentation effort manageable. For instance, user in PL/I. It is written as a subroutine which,
Jobs cannot leave information behind them in the when called, returns the next word of the pre-
system after termination. For the same reason, viously assembled job as well as an indication
no symbolic information can be processed; the about the nature of the corresponding card (instruc-
system relies on a crossassembler, which is coupled tion, control card, etc.). If no more object code
with the cardreader, for symbol manipulation. words are available, crossassembler reads in the
Furthermore, only one language processor (for next job (symbolic program, input data, and control I
assembly language) is available, and a standard cards), assembles it, and returns the first word,
coimnand sequence is implied (rather than pro- the JOB card. To the hardware simulator, the cross-
viding a more versatile command processor). assembler subroutine appears to represent the card-

reader, since it returns the equivalent of one card
COSMOS is brought up by bootstrapping from upon each call. In a simulation run, the input

the cardreader. After initialization, it enters data to the cardreader/crossassembler subroutine
the stationary mode in which it accepts user consists of the COSMOS job (which will be boot-
jobs from the cardreader for processing. A job strapped) followed by an arbitrary number of user
nst be submitted in the following order: JOB jobs.
card, program, DATA card and input data (optional),
and END card. Syntactically incorrect jobs are COSMOS Structure
flushed by the crossassembler and are not passed
on to the cardreader. At any one time, several COI.MOS is structured in levels of abstraction
jobs may be in the system at various stages of which are depicted in Figure 4. The assignment of
completion. Any one job, however, will be pro- functions to particular levels evolved from a
cessed in the following sequence. After being number of considerations. The mode of operation
spooled to the drum, a job's program is loaded determined the high-level functions of spooling,
into core and then given control of the CPU. I/O, loading, termination, and printing. The
For input, the program may execute an OS CALL concept of multiprogramming is implemented by the
which will provide it with the next input word SCHEDULER one level below so that the high-level
from the input data page on the drum. Another functions can be scheduled like a user job. The
OS CALL causes the transfer of an output word to interrupt routines in level 4 provide real-time

SA
81

edependence for all higher levels. Drum-multi- pointer in the index register; its address field3 progranmming, realized by manipulating drum trans- denotes the address at which the process relin-
~* Ifer records in the drum queue, is real-time depen- guishing control will start execution at its next

dent and thus one level below, the notion of a activation. If no processes are ready, the SCHEDU-I .process may be defined abstractly, but in any im- LER checks whether there are any blocked ones; if
plementation it is simply the quantity described not, the simulation run is terminated by executing

jby the corresponding operating system data struc- a HALT.
ture, e.g. the PSR. In manipulating these data
structures, level 2 provides the process notion. The Drum Interrupt Process cleans up after a
Finally, data structures must be allocated before transfer and restarts the drum if more requests
they can be manipulated. Thus, storage alloca- are pending. It also supports the FILE SYSTE4 in

I'tion has been assigned to the lowest level in the performing user I/O. The Trap Process handles OS
hierarchy. CALL's much like OS/360 as well as protection vio-

lations. User programs exceeding their time limits
The assignment of functions of the hier- (set by the SCHEDULER) lose control to the Timer

archy in Figure 4 evolved gradually during the Interrupt Process when the timer goes off.
course of several top-down and bottom-up design
iterations. This design methodology also involved A double-buffering scheme with dynamic buffer
decisions about the implementation media for the allocation is used for spooling jobs from the
various modules. All modules in levels 1 and 2 are cardreader to the drum. The two processes RCARD and
implemented as instructions, thus considerably sim- WCARD read a page into core and write it to thejplifying and compacting the COSMOS code. Sema- drum respectively. They synchronize each other and
phore operations were not included since they also initialize a PSR for the arriving job. After
are not representative of commiercial systems which a job has been spooled in, the LOADER will trans-
are graduates are most likely to deal with. fer its code to primary memory as soon as thereIInstead, they are introduced at the end of the are enough pages available. A simple statis pre-
semester as elegant me--hanisms for handling synchro- loading scheme is used. User jobs read input data
nization problems. The latter are emphasized by and write output data sequentially by executing the
level 3 which is implemented as a shared (and appropriate OS CALL's which in turn cause an activa-
interruptible) subroutine. All modules above tion of the FILE SYSTEM. Buffers required for theIlevel 3 are implemented as processes, i.e. programs input or output page are allocated dynamically and
whose execution state is described by a PSR. their locations as well as the access indices are

maintained in the PSR of the requesting user. The
The SWITCH PROCESS instruction passes control end of execution of a user job is signaled to

among processes. A similar operation is performed COSMOS by another OS CALL. The TERM4INATOR WILL sub-
j- by the interrupt system for passing control to sequently release all allocated resources except

processes in level 4. These interrupt processes, for the output data page. Jobs may also terminate
however, use the standard SWI TCH PROCESS instruc- abnormally by executing an illegal instruction, by
tion to return to the interrupted process. causing a memory violation, or by exceeding their
Interrupt processes may be interrupted by an quanta. A user job's output is preceded by statis-

4interrupt of higher priority. The SCHEDULER in tics and printed by the PRINT process which finally
7level 5 initially obtains control from the boot- returns the job's PSR to the freelist.
P strap mechanism. Thereafter, the control transfer

to a schedulable process in level 6 and the return Conclusion
to the SCHEDULER is accomplished by SWITCH PROCESS
INSTRUCTIONS. With respect to scheduling, we The COSMOS project has proven itself as a
followed the basic guideline that mechanisms should viable teaching tool. Its scope is modest, yet it
be implemented in hardware while policy aspects are is representative of contemporary systems, and
more flexible in a software implementation [15, 16]. its structured and integrated design utilizes
The task of activating, deactivating, blocking, and advanced concepts. While the implementation of the
unblocking processes, accomplished by setting and/ hardware simulator provides insight into the under-
or resetting bits in the status words of the cor- lying mechanisms, the coding of the operating systemr
responding PSR's, is distributed among the COSMOS stresses the interrelationship of these mechanisms
processes. For example, since loading of a job in forming an operational computer system. The per-
depends on the successful completion of the formance of this system can be evaluated as a

*spooling operdtion, the spooling process which function of hardware and software parameters by
finishes this operation will activate the loader running batches of user jobs. Thus, the project
on behalf of this job. provides a framework for the study of both design

and system behavior.
0 Processes and Their Functions

Despite its numerous benefits, the project
After system initialization, the SCHEDULER could not have succeeded without the extensive

loops scanning the process state record queue and design and documentation efforts which focussed* Ipickino the ready (i.e. active, but not blocked) on a reduction of the implementation effort with-
job with the highest priority for execution. The out trivializing the system. The applied inte-
search is performed by the FIND RECORD instruction grated design methodology, which resulted in an
which compares the second parameter under a mask enhancement of the hardware for operating systems
in the accumulator with the status words in the support, appears to be applicable to real systems.
queue (Figure 5). FIND RECORD skips if a match At a time when it is not uncommon that 50 percent
is found and returns a pointer to the matching of the cycles of a "general-purpose" system are
PSR in the index register. SWITCH PROCESS trans- consumed by operating systems code, it may well be

fers control to the process specified by the justified to replace the general-purpose processor0I 82

Figure 4. Levels of abstraction in COSMOS.

LEVEL ABSTRACTIONS FUNCTIONS MODULES DATA STP.

7 user problem
execution

6 virtual user user support RCARD,
memory, (spooling, I/O, WCARD,
files, loading, termi- LOADER,
OS CALL's nation, FILE SYSTEM,

printing) TERMINATOR,
PRINT

S CPU multi- CPU allocation SCHEDULER
programming

4 real-time service of Timer Interrupt
independence interrupts Process,

and traps Drum Interrupts
Process,

_Tran Prnc _ _ _ _

3 drum multi- allocation of PUTDRQ
programming drum controller

CPU and drum accesses of Queue instructions, PSR queue,
processes PSR's and DTR's SWITCH PROCESS, drum queue

START DRUM

1 storage accesses of ALLOCATE, core and drumallocation allocation DEALLOCATE allocation
words words

Figure 5. Assembly language code for the COSMOS scheduler.
* SCHEDULER *

* INITIALIZATION (GETS CONTROL FROM BOOTSTRAP LOADER)
*

S$INIT: XR LOAD (LC$SCH);
SP-XR; INITIALIZE SP
IT RESET (NEGONE); CLEAR IT
AR RESET (NEGONE); CLEAR AR
AR SET (INTBITS); ENABLE AND ARM LEVELS
AC LOAD (ABIT); INIT PATTERN FOR MATCHING

*

* SCHEDULING
*

SSENTRY: MOVE (LC$RTC, SSQUANT); SET TIMER
FIND RECORD (PSRQ, ABBITS); FIND READY PROCESS
GO TO (S$ACHECK); NO PROCESSES READY
SWITCH PROCESS (S$ENTRY); PASS CONTROL TO READY PROC

* CHECK FOR BATCH COMPLETION

S$ACHECK: FIND RECORD (PSRQ, ABIT); FIND AN ACTIVE PROCESS
HALT; HONE, BATCH COMIPLETED
GOTO (S$ENTRY); OBVIOUSLX BLOCKED, KEEP

SCANNING PSRQ WHILE WAITING FOR ANY* PROCESS TO BECOME READY

- t LOCAL VARIABLES

$$QUANT: CONSTANT ('FFFFEFFF); LARGE NEGATIVE QUANTUM

83

Sby a special-purpose operating systems processor. Jersey, 1976.
Microcode technology is ready for this application.

15. Lampson, B. W. "A Scheduling Philosophy for
Students have responded quite positively to Multiprocessing Systems," Comm. ACM., 11, 5,

the adoption of the project. Several extensions 1968.
have been designed and partially implemented in
independent study projects. A further, interactive 16. Levin, R. et al. "Policy/Mechanism Separa-
derivative has been written in SIrULA on a POP-10 tion in HYDRA," Proc. Fifth Symp. on Opera-
and currently serves as the framework for graduate ting Systems Principles, University of Texas,
research in the area of protection. Austin, November 1975.

References

1. ACM Curriculum Committee on Computer Science, The project reported in tis paper was supported
"Curriculum 68," Com. ACM, 11, 3, March 1968. in part by the Advanced Research Projects Agency

2. Cosine Committee of the Comission on Educa- of the Office of the Secretary of Defense under

tion of the National Academy of Engineering, grant DAHCIS-73-G6. Author's address: Department
"An Undergraduate Course on Operating Systems of Computer Science, Rutgers University, New
Principles," Washington, D.C., June 1971. Brunswick, NJ 08903

3. Madnick, S. E. and Donovan, J. J. Operating
Systems. McGraw-Hill, New York, 1974.

4. Shaw, A. C. The Logical Design of Operating
Systems. Prentice-Hall, Englewood Cliffs,
New Jersey, 1974.

5. Tsichritzis, D. C. and Bernstein, P. A.
Operating Systems. Academic Press, New York,
1974.

6. Habermann, A. N. Introduction to Operating
System Design. Science Research Assoc.,
Chicago, Illinois, 1976.

7. Lamie, E. L "Using GPSS to Teach Operating
Systems Concepts," Proc. ACM Tech. Symp.
Computer Science and Education, Anaheim,
California, February 1976.

8. Hughes, C. E. and Pfleeger, C. P. "Assist-V-
A Tool for Studying the Implementation of
Operating Systems," Proc. ACMTech. Symp.
Computer Science and Education, Anaheim,
California, February 1976.

9. Ruschitzka, M. "COS - Model 1 Reference
Manual," "COS - Model 2 Reference Manual,"
CS 316 Class Notes, Dept. of Computer Science,
Rutgers University, New Brunswick, New Jersey,
1976.

10. Dijkstra, E. E. "The Structure of the
"The"-Multiprograrming System," Comm. ACM,
11, 5, 1968.

11. Ruschitzka, M. "COSMOS Reference Manual,"
CS 316 Class Notes, Dept. of Computer Science,
Rutgers University, New Brunswick, New Jersey,
1976.

12. werkheiser, A. H. "Microprogrammed Operating
Systems," Proc. 3rd Annual Workshop on Micro-
programming, October 1970.

13. Brooks, F. P., Jr. The Mythical Man-Month.
Addison-Wesley, Reading, Massachusetts, W75.

14. Ruschitzka, M. "CAL-CAROL Reference Manual,"
CS 316 Class Notes, Dept. of Computer Science
Rutgers University, New Brunswick, New

84

Best
Available

Copy

RUTGERS UNIVERSITY - Department of Computer Science CS 416/18
M. PIuschttzka
Sprlng 1977

C 0 S M4 S

R E FE PE NCE MAN UA L
ioq

LI
.,

4

4..C S 0

I INTRODUCTION

The COS 1ultiproqramminn Operating System (COS!flS) is thp product of an
in'tegrated design methodology which emphasizes the functional structure
of the system modules as well as their implementation in the most suitable
technology. The complexity of the design and the coding effort can be con-
siderably reduced by moving basic operatinq systmis functions which tradi-
tionally have been implemented in softwiare into microcode and/or hardware.
In particular, access functions for the major system data structures and
the transfer of control from one process to another have been included in
the instruction repertoire. The overall oroanization of COSnS is defined
in terms of levels of abstraction.

The mode of operation of the system is similar to Dijkstra's "THE" "ulti-
programmino System. Unnecessary sophistication has been sacrified in order
to keep the implementation effort manaqeable. For the same reason, COS"n.S
processes only binary information. It relies on a crossasserbler (CARnL)
for symbol manipulation.

COS4OS is designed to run on a COS-2 configuration. This configuration in-
cludes a CPU, primary memory, a drum controller, a drum, a card reader, and
a line printer. lemory is paged. The CPU features a priority interrunt sys-
tem, a clock, a timer, and a console. Special features of the console in-
clude a breakpoint facility and a bootstrap mechanism ,..hich is counled with
the card reader.

2 -I40DE OF OPERATION

COSMOS is brought up by bootstrapping from the card reader. After initiali-
zation, the system enters the stationary mode in which it accepts user lobs
from the card reader for processing. A job must be submitted in the following
order: JOB card, program, a DATA*card and input data (ontional), and
another END card. Syntactically incorrect jobs are flushed by the cross-
assembler and thus not passed on to the card reader.

At any one time, several jobs may be in the system at various stanes of
completion. Any one job, however, will be processed in the followino se-
quence. After being spooled to the drum, a Job's nroqram is loaded into core
and then given control of the CPU. For input, the program mai execute an
OS CALL which will provide it with the next innut word from the input data
page on the drum. Another OS CALL causes the transfer of an outnut word to
the output data page on the drum. After termination of a user job, its out-
put is printed on the line printer tooether with some statistics.

*W

3 COS:lOS DATA STRUCTURES

COSMOS maintains the state of a process in a Process State Record (PSR). User
PSR's are longer than system PSR's because they also contain spoolinn infor-

* mation and the state of the input and output data pages. Except for the PSR's
of the scheduler and the interrupt processes, ali system and user PS's are
chained in increasinq order of process numbers (decreasino order of nrioritv)
on the queue PSRQ. Figure I shows the format of a PSR and its initial values
for a spooled-in user process. Figure 2 illustrates in detail the bit allo-

-I 0 = PSR$PT pointer field
LBIT + U$JOBIIR I = PSR$ST status word

-1 2 = IPS, $AC accevnulator value
- 3 -PSR$X! index reqister value

W$STLOC 4 - PSR$PC nrocaram counter value
ABIT 5 = PSSID11 mode register value
-1 6 - PSR$RO

short -1 7 - PSR$Rl
system -1 8 = PSR$R2

PSR -1 9 = PSRR3 values of the

-1 A = PSR$R4 relocation renisters
-l B = PSR$R5
-I C = PSRSR6
-1 0 -- PSRSR7
-1 E = PSR$CP CP! instruction count

0 F = PSR$10 IM0 transfer count

W$ARRTM 10 = PSR$AR time of arrival
drum page number 11 - PSR$PO

drum page number or -1 12 - PSRSPI
drum page number or -1 13 = PSR$P2
drum page number or -1 14 = PSRSP3 drum paces
drum page number or -1 15 = PSR$P4 for nroqram
drum page number or -1 16 = PSR$P5
drum page number or -1 17 = PSRSP6
drum page number or -1 18 = PSRSP7

dru pge umerr 19 18- PSR$P7
drum page number or -1 19 - PSR$DI drum innut paqe

0 1A = PSR$IX drum input pace index *

W$WDCT IB = PSQ$1B drum input pace bound **

drum page number IC = PSR$D0 drum output pace
0 10 = PSRSOX drum outnut paqe index *

• displacement of next access; * total number of input data words

Figure 1: Format of a Process State Record and its initial values.

0 1 2 3 4 5 6 7 18 19 20 21 22 23 24 31

A B L T P I VU ON F process# PSR$ST

Scheduling bits: Abno)nal termination bits:
A active V memory violation
B blocked U illegal inst.jction in user mode
L to be loaded 0 ,iuantum overflow
T to be terminated N io more words in input page
P to be printed F Full output page

I input
0 output

Figure 2: Bit allocation in a PSR status wo-d.

0 = 0TR$PT pointer field
1 = lTR$DA drum pace number
2 = DTR$CA physical core address
3 = DTR$RW read/write specification
4 = DTR$SP pointer to PSR of renuestinn

process

Read/write specification:

DTR$RW specification

60 read from drum to core
>0 write from core to drum

-2 read requested by system process
-1 read drum input page of user process
0 read drum output page of user process
I write drum output page of user process
2 write requested by system process

Figure 3: Format and encoding of a Drum Transfer Record.

0 1 2 3 29 30 31 bit and paqe number

The status of a particular page Is indicated by its corresponding bit:

a zero bit indicates an allocated or non-existing page,
a one bit indicates an available, unallocated page.

Figure 4: Format and encoding of an allocation word.

cation of the status word in a PSR.

Drum processes are described by Drum Transfer Records (OTR's) which are
chained on the drum queue LC$DRQ and serviced in FIFO fashion. In addition
to the three DTR entries required by the drum controller, COSMYIS uses the
first word as a queue linkaqe nointer and the last word as a nointer to the
PSR of the process requesting the transfer. Figiure 3 illustrates.

With the exception of its own code, which is core-resident, COSMOflS allocates
all core and drum storage dynamically on a naie basis. FIqure 4 depicts the
forttat and the encoding of the two words which are used to keen track of the
allocation state of core and drum pages.

4 COSMOS STRUCTURE

Two global functions of an operating system concern the efficient mananement
of the hardware components and the provision of a convenient interface to
the users of a computer system. According to this rough classification, thp
COSMOS modules may be separated into user support modules and hardware
support modules.

The choice of the functional modules for user support is, of course, strongily
influenced by the desired mode of operation. For COSMIOS, the followino
functional modules evolved and have been implemented as processes:

Function: Process name:

Input spooling RCARD and WCARD .
Loading LOADER
Input/output FILE SYSTE!
Termination TERVINATOR
Printing PRINIT
Scheduling SCHEDILER

Input spooling makes use of double-buffering and conseauentlv two processes
evolved for its implementation. Except for the SCHEDULER, all of the processes
named above as well as user processes are given control of the CPU by the
SCHEDULER; the term schedulable processes refers to this set of nrocesses.

Since the concept of a process is not known to the bare hardware, not all
hardware support modules can be implemented as processes. In fact, three
different module types have been adopted: processes, subroutines, and in-
structions. The different technologies of these types are a consenuence
of the integrated design methodology adopted for COS:1ns. It should be
pointed out in this context that the term hardware support has a dual meaninq.
It may refer to the support of hardware comnonents, but it may also mean
support of the operating system by a hardware function. The major hardware
support modules are listed below.

. .

Function: ilodule name and tyrie:

Service of timer interrupts Tirmer Interrupt Process
Service of drum interrunt: Drur. Interrunt Process
Service of traps Tran ProcessService of drum transfer renuests Shared Subroutine PUTORQ

Accessing of PSR's and DTR's Queue Instructioos, SIITCH Pr).CESS Instr.
Page allocation P.,location Instructions

The three module types form a technoloqical hierarchy since a nrocess tiay
contain several subroutines and since a subroutine typically consists of
several instructions. In addition., the modules themsnlves form a functinnal
hierarchy due to the nature of their operations. The term levels of
abstractions refers to this functional hierarchy.

It -vas pointed out that operating systems have two interfaces: to the hardware
and to the users. In a way, an operating system "maps" the hardware comnononts
such that they appear more convenient to the user. For instance, a user pro-
gram may reference a file by a symbolic name. Internally, the operatina svster
will map this name into a file number which is manped into a buffer which is
mapped into a drum page. Clearly, those modules of an operatinn system which
relate to files are organized in levels such that higher level modules are
defined and implemented in terms of lower level modules. This is not only
true for the concept of a file, but for all virtual concents (e.n. virtual
memory, operating system calls) provided by an oneratinq system. 'hile thp
existence of such levels of abstractions is obvious, it is often oulte

q difficult to draw the dividing lines between them. This task is difficult
because it requires a thorough understanding of all system aspects. Con-
sidering the size of contemporary operatina svstems, such a comnlete under-
standing is often impossible for any single individual. A number of basic
criteria aid in the definition of these levels:

.a module must not be defined in terms of a higher level module

.a data structure and its access modules should be in the same level

.a levll should implement a concept, i.e. nrovide an abstraction to
tht. higher levels

Figure 5 displays the levels of abstraction adopted for COSM'OS.

Control may be transferred between processes by either of two mechanisms:
the SWITCH PROCESS instruction and the interrunt mechanism. The latter serves
to forcefully transfer control to an interrunt process. The SWITCH PROCESS
instruction is used by the SCHEDULER to transfer control to a ready nrocess.
All other user support processes as well as the Trap Process and the Timer
Interrupt Process use it to return to the SCHEDULER. Finally, the Drum Inter-
rupt Process uses it to return to the interrupted nrocess. The SCHEDULER has
no knowledge of the function of the process it is givin(i control to; all it
checks is whether a process is ready (active and unblocked) to run. It is the
responsibility of the other system processes to maintain the schedulins hits
of all schedulable processes. Typically, a nrocess will activate another one
when it has evidence that the other process has work to do. At the same tine
an indication must be given as to what nuantitv (e.g. - user)roc(s,;) the
other process should work on. , process is deactivated by another oreccess or

4i by itself when it is evident that no more nroductive work can be done.

6 "

LEVEL ABSTRACTIONS FUCTIONS ODJLES DATA STR.

7 user problem
execution

virtual user user support RCA RD,
memory, (spooling, i/O, WCARD,
files, loading, termi- LOADER,
OS CALL's nation, FILE SYSEI,

printini) TER'eI NATOFR.
PRINT

0 CPU multi- CPU allocation SCHEDULER
programming

4 real-time service of Timer Interrupt
independence interrupts Process,

and traps Drum Interrupts
Process,

Trap Process

3 drum multi- allocation of PUTDRQ
programming drum controller

2 CPU and drum accesses of Queue instructions, PSR queue,
processes PSR's and DTR's SWITCH PROCESS, drum queue

START DRU I

storage accesses of ALLOCATE, core and drum
allocation allocation DEALLOCATE allocation

words words

Figure 5: Levels of abstractions in COSMOS.

- - -- -- - - -

. " COS.-')S SOFTW'ARE

T!e COSMSS software consists of the code of the ten sfster, nrocesses and
tlie subroutine PUTD, . In order to reflect the svster, structure in the codn,
nawming conventions for, variables and labels have hfen adonted. ,11 names of
local quantities are prefixed ith characters indicatirn the module to hich
they belong. Thus, names of shared alobal nuantities ar. characterized by
the lack of a prefix. Further particulars oF a nrccess module include a pro-
cess number, a range of PUNT numbers, and a global variable containino its
PSR address. The particulars of the various process modules are summarized
belom:

prefix oroc. # PUNT #'s PSP ptr.

Non-schedulable Processes:

SCHEDULER S$ ' '1O-'1F LC$Sr,
Trap Process TR,$ '0 '2,-'2F LC$TPP
Drum Interrupt Process 1'0 '30-'3F LC$S)IP
Timer Interrupt Process T!S ' 40-'4F LC$TIP

Schedulable Processes:

RCARD '8B '50-'5F AOPS"O
CD 1' 89 '60-'6F DPSnM!
(shared spoolino variables) d?,

LOADERL$ '87 '70-'7F ADPS7L
FILE SYSTE'I F$ '85 '80-'8F ADPr.1F
TERII IATOR T$ '5 '90-'9F PS T
PRJIAT PS '7 '0-W'!'F y)PSnP

Initially, the PSR's of the schedulable system processes are chained on tho
PSR queue PSRQ in increasina order of their process numbers, or enuivalentlv
in decreasing order of priority! (the enuivalence is due to the simrle sched-
uling strategy adopted for the SCIIE!)tLER which scans the PSI oueue, until it
finds the first orocess ready to run).

5.1 SCIEDULER

The scheduler serves two functions: dynamic initialization of the system
and scheduling. The initialization senuence is aiven control From the boots-
trap loader and involves completing the bootstran oneration and the proper

4 setting of the CPU registers.

The scheduinG sequence attempts to find a ready orocess in th,, PSR rfueue
and pass control to it after settin, the timer to prevent infinite loonine.
If no ready process is found, the scheduler iia~ps sure that there are still
active processes in the PSR queue and branches back to the beninninn of the

" scheduling sequence. When all processes are deactivated, the batch of user
jobs submitted to COSOS must hive ben. serviced te comnletion and thfe
scheduler IIALTs.

. - - ,+ _ " ' " " ' +il ' ,, + +

" .° ' . -" '-. ."r r-r;'' ."
'

. . . - . -. - •., - ,. .

'4

Code for SCHEDULER:

*** ************************t********************** ******************

• SCHEDULER *

* INITIALIZATION (GETS CONTROL FRO, BOOTSTRAP LOADER)

S$ir1": XR LOAD (LC$SCII) ;
SP-XR; IN ITIALIZE SP
IT RESET (IEGONE); CLEAP IT
AR RESET (NEGONE); CLEAR AR
AR SET (INTBIIS); ENABLE AND ARI LEVELS
AC LOAD (ABIT); IIT PATTEU!IJ FOR .4ATCIiIrG

* SCHEDULING

S$ENTRY: MIOVE (LC$RTC, S$QUANT); SET TI:IER
FIND RECORD (PSRO, ABBITS); FIP4D READY PROCESS
GO TO (S$ACiECK); NO PROCESSES READY
SWITCH PROCESS (S$ENTRY); PASS CONTROL TO READY PPOC

* CHECK FOR BATCH COMPLETION

S$ACHECK: FIND RECORD (PSRQ, ABIT); FIND AN ACTIVE PROCESS
HALT; NONE, BATCH CnPLETE!-

S*GOTO (S$ENTRY); OBVIOUSLY BLOCKE1, KEEP
SCANNING PSRO WHILE WAITING FOR ANY

• PROCESS TO BECOMIE READY

* LOCAL VARIABLES

S$QUANT: CONSTANT ('FFFFEFFF); LARGE NEPATIVE QUANTU .

5.2 PUTDRQ

The shared subroutine PUTDRQ serves as the central mechanism for submittinq
I/O requests to the drum system. When called, PUTDRO exnects in AC a nointer
to a 5-word I/O parameter table whose format is identical to a)TR. It
copies the I/0 parameter table into a PTR which it obtains from the freelist,
appends the DTR to the drum queue LC$DRQ, starts the drum if and only if the
drum queue was empty, and returns by sklpoinq. A no-skip failure return indi-
cates that currently there are no DTR's availhblp on the freelist.

4°I

Co(e for Pur'DRQ:

* SHARED SUBROUTINE PUTDRO(

PUTDRQ: ARRAY ('1); FOR qETtJRN ADDRESS
XR STORE (XRSAVE);
AC STORE (ADTABLE);
GET RECORD (DTRFRLS);
GO TO (PUTDRQ. I); FAILUPE RETURN
XR STORE (ADDTR); DTR An)9RESS
XR LOAD (ONE);

XFR: AC LOAD (ADTABLE.I.XK;
AC STORE (ADDTR.I.X);
LOOP (DTRSIZE, XFER);

* START DRUM CONDITIONALLY

XR LOAD (ADDTR);
AR RESET (DCBIT); WATCH OUT FOR DRUM INTER-

RUPT PROCESS, LC$DRO IS SHARED!
APPEND RECORD (LC$PRQ);
IF (0 GO TO (LC$DRQ.I, RESTORE);
START DRUM;

RESTORE: AR SET (DCBIT);
XR LOAD (XRSAVE);

w AC LOAD (ADTABLE);
ADD (PUTDRQ, ONE); IN ORDER TO SKIP
GO TO (PUTDRQ.I); SUCCESS RETURN

* LOCAL VARIABLES

XRSAVE: ARRAY ('1); SAVE LOCATION
ATABLE: ARRAY ('1); ADDR OF I/O PARAMETER TABLE
ADDTR: ARRAY '1); DTR ADDRESS

5.3 INPUT SPOOLING

A user job submitted via the card reader is transferred to the drum before
it is loaded for execution. COSMIOS employs a dynamic double-!,afferIn, scheme
for this spooling task. In this scheme, the process RCARD may fill a dynam-
ically allocated buffer A concurrently with the transfer of the previously
filled buffer B to the drum. The transfers are initiated and terrinated by
the process WCARD which also initializes a PSR for the enterinn job. A set
of shared variables prefixed by RW$ serves for cormunications between 'CARD
and WCARD. Via this set, RCARD informs 1.$CRI) ?bout the addre;s of the dynam--
ically allocated buffer as well as various job parameters ,Ietr ,,ined durn.-
reading (job number, starting location, buffer contents: pro.1rai;i or data,
number of input words, arrival time).

: I .: :, ,. .-

Consecutive activations of PCAPD and WCARD must necessarily concern an
alternating sequence of the two buffers: A, B, A, B, A, B, ... The current
buffer may be determined by local variables I$SWITCH and W$SWITCIH which
assume the values 0 and -1 (initially 0) and are flipped after every in-
vocation of the corresponding process. Since the Wo buffers may contain
parts of two different user jobs (e.g. the input data of one Job in one
buffer and the first program page of the next job in the other buffer),
the set of shared variables prefixed by RW$ should be duplicated. If two
consecutive words are allocated for each of these variables, indexing with
the value of R$SWITCH or W$SWITCH may be used to access the currently
relevant variable.

The indexed shared variables RW$TYPE describe the contents of the current
buffer. They may assume the values -1, 0, +1 for input data, an empty
buffer, and code respectively. RW$LAST indicates whether the current
buffer is the last one of a job (RI$LAST-I) or not (RW$LAST-O).

Another shared variable MR$NRBF indicates the number of buffers (0, 1, 2)
currently filled. It is used to control the activations of the two spooling
processes. RW$NRBF will effectively synchronize the activations such that
no more than two buffers can be allocated to input spooling at any one time.
Since the value of RW$NRBF is not related to the contents of the buffer(s),
RW$NRBF need not be duplicated.

5.3.1 RCARD

1 When Invoked, RCARD allocates a new buffer. Thereafter, it loops reading
cards into this buffer until either an END or DATA card is encountered,
the buffer is completely filled, or there are no more cards in the hopper.
Upon detection of a JOB card, RCARD notes the arrival time (R$APRTI) and
the job number (R$JOBNR) and initializes R$TYPE, R$LAST, the wordcount of
the input data (R$WDCT), and R$PROG. R$PR G is set to zero when a DATA card
is read in (contrary to the JOB card, the DATA card is not deposited in the
buffer). Reading an END card will cause the starting location (R$STLOC) to
be noted and, if input data were attached to the job (R$PROCWO), their
number is also remembered (P$WDCT).

A buffer is shipped to WCARD when it is full or when an END or DATA card
Is detected (a DATA card arrivina as the first card after an invocation
and an END card following exactly 128 input data are treated as special
cases). Before shipping, the shared variables prefixed with RW$ are up-
dated from local variables in order to inform WCARD about the nature of
the current buffer. Then P$SWITCH is flipped and RW$NRBF is incremented.
Before returning to the SCHEDULER, RCARD deactivates itself if both buffers
are filled or If there are no more cards in the hopper. If both buffers had
been empty before the current one was filled, WCARD is activated to work
on this current buffer.

Flowchart for RCARD:

R$ENTRY

Eget card buffer

note buffer address in R$BIJF, init. index to next buffer word (XRaO)

-R$READ

READ CAR~DIR$JOB REG R$END R$DATA R$EMPTY

note arrival time note starting IR$PRoruol deallocate
and Job number, location, card buffer,
Initialize set clAT~ eact. RCARD
R$WDCT-R$LAST=O RLA9u

no no
buffer and

7 GR$PROGul P$TYPEU-l

buffer full

= R$PROG=O

R$CLEAR

copy R$BUF. R$1IDCT, R$TYPE, R$LAST, R$ARRT4, R$STLOC, R$JOBNR to the
corresponding indexed shared variable% Drefixed by RW$..; flip the
buffer switch R$SWITCH

yes RWNB0 no

6WNR~

aciae0AD[e~ciaeRAD

,code for RCARD:

RCARD

R$ENTRY: ALLOCATE (PAWRD);
GO TO (RET);
XR STORE (R$BUF);
MULTIPLY (RBUr, PSSZ);
XR CLEAR;

RE~AD AND PROCESS NEXT CARD

R$READ: READ CARD;
GO TO (R$JOB);
GO TO (R$DATA);
GO TO (R$END);
GO TO (R$EMPTY);
GO TO (R$REG);

R$JOB: MOVE (R$ARRTh, LC$TOD);
AC STORE (1R$JOBNR);
MOVE (K$WDCT, ZERO)
MOVE (R$LAST, ZERO);
MOVE (R$TYPE, ONE)
MOVE (RPROG, ONE);

R$REG: PUT ABSOLUTE (R$BUF.I.X);
LOOP (PESZ, R$READ);
IF so (R$PROG, PSREAD);
GO TO (R$COPY);

R$DATA: MOVE (R$PROA, ZERO);
XR STORE (R$XR);
IF >0 (RXR, RCLEAR);

4-MOVE (P$TYPE, NEROt4E);
GO TO (RREAD);

R$EMPTY: DIVIDE (R$BUF, PGSZ);
XR LOAD (P$BUF);.
DEALLOCATE PI4WORD);
PUNT '50);
XR LOAD ADPSRR);
AND PSR$ST.X, CABIT);
GO TO M$PET);

*P$END: AC STORE R$STLOC);
M4OVE R$LAST, ONE);
XR STORE R$XR);
IF >0 RXR, RWHAT);
MOVE R$TYPE, ZERO);
GO TO R$COPY);

R$WHAT: IF >0 R$PROG, R$CLEAR);
*MOVE R$TYPE, NEGONE);

XR STORE R$WDCT),
R$CLEAR: SUBTRACT R$XR, PGSZ);

IF -0 RXR, RCOPY);
AC CLEAR;

P$CLLP: PUT ABSOLUTE (R$BtlF..I.X);
LOOP (PSZ, R$CLLP);

* UPDATE VARIABLES SHARED WTTH WCARD

RSCOPV:

-14-

l~e for RCARD (continued).
*R$COPY: XR LOAD (R$SWITCH);

MOVE (PW$B1fF.X, R$BUIF);
MOVE (PN$VWDT.X~ R$WflCT);
MOVE (RW$TYPE. X, R$TYPE);
MOVE (RW$LAST.X, R$LAST);
MOVE (RW$ARRTM.X- $RT)
MOVE (RW$STLOC.X, R$STLOC);
MOVE (PW$JOBNR.X, R$tJOBNR);
COMPLEMIENT (R$SWJ1TCI, R$SWITCH);

*SYNCHRONIZATION TO ENFORCE AT MOST TWO BUFFERS

IF =0 (RW$NRBF, R$ACTW);
R$DEACT: XR LOAD (ADPSRR);

AND (P$ST.X, CAI3IT);
GO TO (R$INC);

R$ACTW XR LOAD (PDPSRW);
OR (PSR$ST.X, ABIT);

R$INC: ADD (RW$NRBF, ONE);
R$RET: XR LOAD (LC$SCH);

SWITCH PROC (R$ENTRY);

* LOCAL VARIABLES

R$SWITCH: CONSTANT t
R$BUF: ARRAY
P$WDCT: ARRAY ~ !i
R$TYPE: ARRAY 1
R$LAST:. ARRAY 1
RSARRTM; ARRAYI
RSSTLOC: ARRAY :
R$JOBNR: ARRAYI
R$PROG: ARRAY 1
R$XR: ARRAY 1

* VARIABLES SHARED WITH W4CPRD

PIJ$NRB F: CONSTANT (')
ARRAY (1; THIS IS r)W$BUF[-lJ

PW$BUF: ARRAY (2);
PW$WDCT: ARRAY (12);
RW$TYPE: ARRAY El
RW$LAST: ARRAY2
PW$ARRTM: ARRAY 2
RW$JOBNR: ARRAY2
RW$STLOC: ARRAY 1

5.3.2 WCARD

When invoked to initiate the transfer of the first buffer of an enterina user
* Job, WCARD obtains and initializes a PSR for this user. This PSR is updated

during consecutive invocations until the comiplete job resides on the drum and
is ready to be loaded. WCARD supervises one buffer transfer per invocation.
If the current buffer is not mnpty, a drum page is allocated and its address

7

3

D.5 TRAP PROCESS

The execution of an illeg~al instructio~n, a rmerorx' viollation, or an fl CALL
(READ, URITE, STOP) results in) an invol'atiori of thie Tran Process. COS-I)S
itself should not cause any traps, and therefore the Trap, Process P !''Ts
if the trappng process is a s'isteii Process. For user nrocesses traps
represent the means by which control rti be nassr'd hac!k to tIP. .;stew,
which will perform~ somne task for this rirocnss. The Tran Process essential-
ly activates a systemn process to perform this task, sriecifles the nature
of the task in the status word of the user's PS7, and returns to the
SCHEDULER.

For, READ (14RITE), the scheduling bit IBIT (08IT) is set in the status %lord,
the user process is blocked, and the FILE SYSTEN is activated to initiate
the 1/O operation.

After an illegal instruction 'trap or a memoryI violation tran, an abnormil
termination bit is set in the status word of the user's PSR. Then, the
user process is deactivated, scheduled for termination, and the TE";rIV1ATt)R
is activated. The latter actions are also performeod when V'ie user rrocess
simoly STOPs (normal termination).

Flowchart for Trap Process:

Tif$ENrRY

<d id system process trap e

check trap p~aramneter LC$TPM -

0 se oupts2j5uN

TR$READ TR$WIITE T$LN RPE4

inp t inut et otputsetabnomal set abnormal
request request termination termination
bitIBIT bit OBIT bit UBIT bit VBIT

TR$BLOC K TR$STOP

set blocked bit BBIT reset activation bit ABIT
lactivate FILE SYSTEM set termination bit TBIT

activae TERINATO

4RRE

5.6 FILE SYSTE;i

The FILE SYSTEM is activated .'.v the Trap Process when a user Orocess exe-
cutes a READ or a WRITE. Since the Tra: Process also sets the schedulina
bits IBIT or OBIT, the FILE SYSTEM. can find the user process by scanninn
the PSR queue. The FILE SYSTE1 deactivates itself if none of these sched-
uling bits are set in any of the schedulable processes.

After the requesting user process has been found, a check is Performed to
make sure that the input data have not heen exhausted (for PEAD) or that
the output page is not full (4ITE). If such a condition exists, the
appropriate abnormal termination bit is set and the user nrncess is deac-
tivated, unblocked, and scheduled for termination.

If the I/O request is reasonable, an I/O parameter table is set un, an
IO buffer is allocated, and the transfer of the innut or output 1)are
is initiated by calline PUTDRr). Since the remaininn actions will be per-
formed by the Drum Interrupt Process, the FILE SYSTF1I has completed its
task and returns to the SCHEDULER.

74-i

Flowchart for FILE SYSTm:

scanPSri for use- nrocess reouestlnq output (OB IT)

C.S \yes (XR contains PSP pointer)

scan PSRQ for user process requestinq inout f BT)

yes (XR contains PSR nointer) L

reset IBIT; check reset OlIT; check
for excessive deactivateJ for excessive
input: FILE SYSTE"I output:

27 no i 7
PSR$IX<PSR$IB3 jjj P:SR$OX4PGSZ

set abnormal set abnormal
terminationi termination
bit ,1BIT bit FB IT

note user input set termination bit TBIT note user output
:. (direction=-l) reset activatiorn bit ABIT (direction--O)

and drum input reset blocked bit BBIT and drum output
page (PSR$DI) in pane (PSR$Dl) in
I/0 parameter /O Parameter
table F$SP table

- -zi__J

-note user PSR pointer (from XR) in I/ narameter table

LI
qiet 1/0 buffer

sucessjY

call PUTDRQ *J 7.~

success
-_

_
__

_
_

F$REToi

4A

4

5.7 LOADER

After a user job has been transferred to tie drum by the irnut-soolinq
system, WCARD schedules the user process for loadina and activates the
LOADER. When invoked, the LOADIFE finds the process to be loaded by scan-
nirg the PSR queue. The LOADER deactivates itself when there are no more
processes to be loaded.

COSAOS employs a static preloadinr scheme, i.e. all panes of a .user Process
must be loaded before execution may benin. I nartiallv loaded ,rocess will
therefore tie up core naqes without beinn able to proqress towards com-
pletion. In order to avoid such an unproductive drain on an imnortant
system resource, the LOADED ascertains that there are enouoh, corp nanes
available to load the entire program before it proceeds to load the first
program page.

The LOADER consists of three rajor loops. In the allocation loon, an
attempt is made to allocate all necessary core panes. If this attermnt
fails, those pages which were available and were allocated temorarilv
are returned to the freelist in the deallocation loon. The LOADER will
then return to the SCHEDULER with the intent to try aaain at a later
time.

If all necessary pages can be allocated, the load loon is entered. Herp,
the LOADER sets up an appropriate 1/0 parameter table, initiates the trans-
fer by callinq PUTDRQ, and blocks itself before returninq to the SCHEDULE.

. After the completion of the transfer, the Drum Interrupt Process unblocks
the LOADER which continues the load loop until all nroqram paqes are in
core. Thereafter, -.,e user process is activated (it is now ready to run)
and its LBIT is reset. Having successfully comnleted its task, the LOADE1
returns to the SCHEDULER.

0

Flowchart for LOADER,:

r L-ENTRY

PSQfor user proc~ess to be loadeci (LIT]
yes no-ye. success

oote PSR pointer in L$PSRPT
aind initialize the alloca- deactIvate
tion loop ,tI

L$ALLLP

<more pages to be allocated no

((nitalize load loop

i allocate next core page t l((L$LOADLP

success no
I - ~~o e pgs to be loadd

note page number in PSR$Ri note drum page and

Iaddress in I/0 parame-ter table L$1OTABLcoe

initialize deallocation loop I call PUTDRQ

L$DEALLP

more pages to be deallocated no

7 b lock LOADER

deallocate page andse1PSR$Ri back to -1

set activation bit ABIT
reset load bit LBIT

4ZL

p

5.3 TERMINATOR

The TERMINATOR is activated by the Trap Process which schedules a user nro-
cass for termination after a STOP, an illegal instruction trap or a mrmorv
violation trap. The TERM.1INATOR finds the job to be terminated by scannina
the PSR queue. It deactivates itself if there are no processes to be terminat-
ed. When a process to be terminated is found, all its core paces and all its
drum pages except for the drum output paae are deallocated. After its TBIT
is reset, the user process is scheduled for printinn and PINTi is activated.
The TERMINATOR returns to the SCHEDULER.

ree.T
$E I TRY

S scan PSRQ for user process to be terminated (TBIT)I

~~uccess n

activateat PRINT

.-. note PSR pointer in T$PSRPT, "
~initialize program page de-

allocation loop

T$DEALLP

more program pages to be deallocated

Sdeallocate PSR$Ri and PSR$Pi i

$ TDATA-

deallocate drum input page PSR$DI,
reset TBIT, set PBIT, -
activate PRINT

z$RET

5.9 PRINT

PRINT is activated by the TERMINJATOR w'hen it schedules a terminated user
process for printing. PRINT finds the user orocess by scannina the PSR
queue or deactivates itself in case there are no more user processes to
be printed. After finding a user process to be printed, PRINT allocates
a print buffer, sets up an IO parameter table, and initiates the trans-
fer of the drum output paqe by calling PUTDRQ. After blocking itself and
being unblocked by the Drum Interrupt Process, PPINT prints the user's
output preceded by a header on the line printer. Thereafter, the print
bujffer, the user's drum output page, and the user's PSR are released
and PRINT returns to the SCHEDULER.

P$ENTRY

scan PSRQ for user process to be printed (PBIT) I

success n

note PSR pointer in P$PsRPT deciaePIT
allocate print buffer P~

se up /0 parameter table as

I-

.. Iblock PRINT

. print output preceded by header, release
~print buffer, drum output page and PSR

"- $RET

5.10 TIMER INTERRUPT PROCESS

Undebugged user programs have the potential of executino an infinite loop
anci never relinquishing control of the CPU. To prevent such an occurrence,
the SCHEDULER sets the timer to some reasonably larqe interval every time
it gives control to a process. A timer interrupt will occur if the SCHED-
ULER does not regain control of the CPU within this interval.

No system process should execute excessively lon, and therefore the
Timer Interrupt Process will PUNT when a system process is interrunted
by the timer. An interrupted user process is deactivated, marked with the
abnormal termination bit QBIT, and scheduled for termination. After
activating the TERIINATOR, the Timer Interrupt Process returns to the
SCHEDULER.

Code for the Timer Interrupt Process:

* TIMER INTERRUPT PROCESS *

TI$ENTRY: XR LOAD LC$PIT);
IF <0 GO TO PSR$MD.X, TI$USER);
PUNT '40);

TI$USER: AND PSR$ST.X, CABIT);
OR PSR$ST.X, QBIT);
OR PSR$ST.X, TBIT);
XR LOAD ADPSRT);
OR PSR$ST.X, ABIT);
XR LOAD LC$SC4);
SWITCH PROC TI$ENTRY);

' . :Im **@k,.-....-....-.,'...*,.**-....................... I ** ** ,

A UNIFYING APPROACH TO SCHEDULING

M. Ruschitzka

Department of Computer Science
Rutgers University

New Brunswick, New Jersey

rm

illN

J9
,o

A

Computer G. Bell, D. Siewiorek,
Systems and S. H. Fuller, Editors

- A Unifying ApproachA U nify i g A pprThe grouping of scheduling algorithms according toto n common features and parameters [4, 10, 11, 161 has
S h d lnresulted in the definitions of classes of algorithms which

Manfred Ruschitzka aid in analyzing the resulting system behaviors. Owing
Rutgers University to their extended set of parameters, however, more
R.S. Fabry sophisticated algorithms which concern themselvesUniversity of California with system load 115], job delay [21, deadlock situa-Utions [51, working sets [8], and so on are beyond the

scope of those classes. In this paper, a classification
scheme is suggested which is applicable to arbitraryl This paper presents a scheme for classifying algorithms. This scheme is based on a model of a

scheduling algorithms based on an abstract model of a generalized scheduling system which manages the re-
scheduling system which formalizes the notion of

sources in a single multiserver system. Contemporary
priority. Various classes of scheduling algorithms are general purpose systems and computer networks which
defined and related to existing algorithms. A criterion involve the management of a number of different sys-
for the implementation efficiency of an algorithm is tem resources can be modeled as a set of interacting
developed and results in the definition of time-invariant multiserver systems [1]. Owing to its suitability foralgorithms, whichm includ Owisg of ths suitabinit 6o
algorithms, which include most of the commonly classifying algorithms, the model leads to the definition

-i implemented ones. For time-invariant algorithms, thei n s t a a mof novel classes of algorithms which are related to
dependence of processing rates on priorities is derived, existing schemes. Furthermore it provides a frameworkexitinThe abstract model provides a framework forThe bstact ode prvide a rameorkforfor comparing and evaluating different algorithms in
implementing flexible schedulers in real operating frealting differen orithmslin
systems. The policy-driven scheduler of Bernstein and queueing theoretical terms [17], by means of simula-

p is dtions, and in real operating systems. In an implementa-
Sharp is discussed as an example of such an tion, the overhead of the generalized scheduling system
implementation. is a function of the particular algorithm used. A crite-

, Key Words and Phrases: scheduling algorithms, rion for implementation efficiency is suggested, and the
scheduling models, priority, operating systems, class of algorithms satisfying this criterion is defined.
processor sharing, implementation efficiency

CR Categories: 4.31, 4.32, 4.34, 4.35, 8.1

Universal Scheduling System

A universal scheduling system (USS) is a general-
ized scheduler supporting the execution of arbitrary

scheduling algorithms for a job stream arriving at a
multiserver system. The characteristics, or states, of
resident jobs are represented by records which are
maintained by the USS. The arbitrary scheduling algo-
rithm may vary in time and is specified in terms of

-a decision mode.
-a priority function, and

* -an arbitration rule.
.7-. Copyright (1977. Association for Computing Machinery, Inc. Figure 1 illustrates the structure of a USS. At certain

General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is instants in time which are specified by the decision
given and that reference is made to the publication, to its date of mode, the USS evaluates the priority function for all
issue, and to the fact that reprinting privileges were granted by per- jobs in the system. The job(s) with the highest priorities

" . mission of the Association for Computing Machinery.
This research was supported in part by the Advanced Research is (are) given control of the servers; the arbitration rule

Projects Agency of the Office of the Secretary of Defense under is applied in case there are multiple jobs with the same
, P. grant DAHCIS-73-G6. Authors' addresses: M. Ruschitzka, Depart- priority.The USS is said to emulate an arbitrary sched-

ment of Computer Science, Rutgers University. New Brunswick, NJ
0890)3; R.S. Fabry. Department of Electrical Engineering and Coin- uling algorithm in the sense that it makes exactly the
puter Sciences. University of California. Berkeley. CA 9472). same scheduling decisions at exactly the same times.

469 Communications July 1977
of Volume 20
the ACM Number 7

Fig. I. Structure of a universal scheduling s(stcm. which this algorithm is emulated. In the less general
modes, it is sometimes possible to use simpler priority
functions because they are evaluated at discrete inter-

[] vals only. The three less general modes are included in
the classification scheme because they allow simple

job
sobb Fjo characterizations of many algorithms and their efficient

jo srea- m emulation on a USS.!_,eff The priority function is an arbitrary function of job
serr and system parameters. At any time, a job's priority is

defined as the value of the priority function applied to
the current values of the parameters. Following Coff-
man and Kleinrock 14]. we concentrate on naming

decision mo&e parameters of the priority functions, rather than trying
to elaborate on their forms. Some of the parameters on

sdx-lufng prioriy function which priorities can be based arealgorithn5i
-memory requirement,

orbitrotion rule -attained service time,
-total service time,
-external priorities.
- timeliness.

The decision mode characterizes the instants in
time, or decision epochs, at which job priorities are

The memor-, requirement serves as a major sched-
computed and compared and at which one or more jobs
are selected for service. The set of jobs being serviced uling criterion in batch processing systems. In interac-ano seleche borsetwiehe seti dbeion cep- tive systems, it is also important since it is a goodcannot change between two consecutive decision ep-

ochs. Depending on the decision mode, algorithms may measure of swapping overhead, but the attained service
be time is usually the most important parameter. Somesystems assume that the total service time of a job is

-nonpreemptive. known in advance. External priorities may be used to
-quantum-oriented, differentiate between various classes of user jobs.
-preemptive, or Timeliness takes into account the fact that the urgency
- processor-sharing, of completing a job may vary in time. The priority may

In nonpreemptive algorithms, jobs are allowed to increase in time [2, 131, or, as in deadline scheduling, it
run to completion; scheduling decisions are only made may decrease. Greenberger's cost accrual algorithm
when a job departs or when an arriving job finds the represents timeliness in its most general form I101; the
system empty. In quantum-oriented algorithms, deci- goal is the minimization of the accrued cost due to the
sions are also made upon completion of a quantum. For delay of all jobs in the system. System load is another
infinite quantum sizes, this mode degenerates into the important parameter owing to its adverse effect on
nonpreemptive mode. In preemptive algorithms, a de- system response. Under heavy load, some schedulers
cision is also made upon the arrival of a job. In other attempt to maintain good response to high priority jobs
words, the decision epochs of preemptive algorithms by discriminating more strongly according to external
are the set of all arrival and departure times as well as priorities [151. Others concentrate on reducing swap-
the quantum completion times. Finally, processor-shar- ping overhead by varying quantum sizes [7]. As op-
ing schemes 112] may be obtained from quantum-ori- posed to the other parameters we have listed, system
ented ones by letting the quantum size approach zero. load is not a job characteristic; its value is the same for

So far, only a few schemes, like round robin and all jobs in the system.
feedback [6, 181, have been studied in processor-shar- The arbitration rule resolves conflicts among jobs
ing mode. Theoretical results about processor-sharing with equal highest priority. Usually a first in, first out,
algorithms serve as a good approximation for schemes or FIFO, rule is adopted. Note, however, that the
with small quantum sizes. The decision modes are listed arbitration rule can make the difference between a
in increasing order of generality in the sense that the set FIFO and a last in, first out, or LIFO, policy. In the
of decision epochs of each mode is a superset of the quantum-oriented mode, tied jobs are often allocated
decision epochs of the previous modes. While these quanta in a cyclic manner. In the processor-sharing
four modes seem to suffice to characterize all interest- mode, all jobs with the highest priority are served
ing algorithms, additional modes are not ruled out. At simultaneously; the arbitration rule is irrelevant. The
any rate, any algorithm can be emulated in processor- arbitration rule is therefore not essential for the specifi-

* sharing mode, since it allows decisions to be made cation of an algorithm. As with the decision mode, the
,. continuously. However, the priority function for a par- advantage of specifying an arbitration rule is that it

ticular algorithm may vary with the decision mode in simplifies the priority function.

470 Communications Jul) 1977
of Volume 20
the ACM Number 7

S

Priorities and Policy Functions For algorithms which are both time-invariant and un-
biascd. we conclude

In the most general case. the priority of a job ma\' P(a, r + x) - P(a, r) = (x) (2)
be an arbitrary function of an arbitrary number of
parameters, including its attained processing time a, where v(x) is a function only of x since the difference
the real time r which the job has spent in the computer must not depend on either a or r. Equation (2) is a
system, its processing requirement t, an externally as- special case of the Hamel equation 191. If Pa, r) is
signed importance factor i, some measure of its mem- bounded in an) interval, the unique solution is
ory requirement m, and so on: P(a,r) Cr +f(a) (3)

P = P(a, r, t, i, m, ...)() where C is a constant andf(a) is an arbitrary function in

Together with a decision mode and an arbitration rule, a. Note that P(a, in, ,r ... Cr + fla. m, i ..

this prioritN function P defines a scheduling algorithm, denotes a more general class of time-invariant algo-
Of coL se any transforms of the priority function which rithms.
preserve equalities an inequalities emulate the same The constant C in eq. (3) plays an important role.
scheduling scheme. Such transforms are said to gener- For C < 0, a job's priority decreases in real time. Such
ate equivalent priority functions. Table I lists priority a policy might be used for jobs whose quick completion
functions, decision modes, and arbitration rules for a is important but whose timeliness decays in real time.
few scheduling algorithms. Deadline scheduling, LIFO. and some cost accrual

A large class of important scheduling algorithms schemes are examples of such algorithms. For C = 0,
can be defined by a priority function of only three priority is a function only of the attained service time.
arguments: P = P(a, r, t). Algorithms in this class This is the case for feedback schemes which use a FIFO
include shortest job first, shortest remaining service arbitration rule (Table I). Iff(a) is also constant, the
time first, longest job first, and longest remaining ser- operation of the USS is determined by the arbitration
vice time first. A subset of this class is independent of rule. For example, a quantum-oriented mode and a
the service time requirement t and can be characterized cyclic arbitration rule yield the round robin algorithm.
by a priority function of only two parameters: P = In the processor-sharing mode, the arbitration rule has
P(a, r). Algorithms in this class are called unbiased no effect and a constant f(a) results in the processor-
algorithms because they have no advance knowledge of sharing round robin algorithm. A positive constant C
the job's total service requirement t. Unbiased algo- assures that a job's delay is given special consideration.
rithms include FIFO, service in random order, LIFO, FIFO, the policy-driven scheduler 121. and some of the
round robin, feedback (61, and some cost accrual cost accrual policies belong to this class. As indicated
schemes 101. Unbiased algorithms are widely used in above, feedback schemes may be specified by a priority
real systems, and many of their properties have been function with C = 0 and a FIFO arbitration rule which
investigated. In particular. Kleinrock, Muntz, and Hsu serves to determine the priorities of jobs with the same
deriveu t:ght bounds and a conservation law 1141 for attained service time. Instead of a FIFO arbitration
exactl) this class of algorithms, rule, the real-time parameter r may be used to serve the

An "Igorithm is called time-invariant if the differ- same purpose. In this case. a more complex priority
ence between the priorities of two jobs does not change function with C > 0 results. This alternative priority
as long as neither of them receives service. Time-invar- function which does not require a FIFO arbitration rule
iant algorithms are particularly efficient to emulate, will be discussed under "Examples of Emulations.-

If C is nonzero, eq. (3) may be divided by C without
altering the emulated algorithm since equalities and

Table i. Constants: c,, c,; scheduling parameters: m (memory inequalities are preserved. We assume in the remainder
requirement). r (real lime in system), a (attained service time),
t (total service lime); decision modes: np (nonpreemptive), qo of this paper that ptorities are increasing in real time
(quantum-oriented). p (preemptive), ps (processor-sharing). (C > 0). Analogous results can be obtained with C < 0.

Thus eq. (3) reduces to:
Scheduling Priority Decision Arbitration
algorithm function mode rule P(a. r) = r - F(a), (4)
smallest memory c,/m + c., np arbitrary where the arbitrary function Fla) is called the policy

requirement first -m, etc. function of the unbiased time-invariant priority P(a, r).
FIFO r np arbitrary In general, time-invariant priorities are characterized
LIFO -r np arbitrary
round robin t qo cyclic by a policy function F of an arbitrary number of argu-
feedback -a qo FIFO ments (e.g. attained CPU time. working set size, exter-
preemptive shortest job -t p FIFO nally assigned user class, attained channel time, calls to

first
processor-sharing, long- I - a ps not Fa) is named after the poliv function Flr) in Bernstein and

e est remaining service applicable Sharp's policy-driven scheduler 161. Note, however, that Fai actually
first"corre, ponds to the inverse off(r). Physical interpretations of Fla) and_-.. ",,first

___"_its de-ivative will be presented.

471 Communications July 1977
of Volume 20
the ACM Number 7

the operating system. etc.). Note that the dimension of highest priority group. namely R + (b -m) -F(b) or
the policy function in eq. (4) is real time. We can R + (b - m) - F(m) or P(rn, R + (b - in)). Thus, after
therefore plot both the position of a job and the policy reaching b seconds of service, the test job will again
function in the same real-time / service-time diagram. share the facility with the other highest priority jobs.

Figure 2 shows the relation between the policy But exactly the same scheduling sequence would have
function and priorities for two jobs in the system. In been achieved if the valley of the policy function F(a)
this diagram. the priority of a job is given by its vertical between mn and b had been replaced by a horizontal
distance from the policy function. Independent of their line. This is due to the fact that all highest priority jobs
values of r and a. two or more jobs with the same remain on the same translation of the policy function

2- vertical distance from the policy function will therefore while the test job is being serviced over the horizontal
have the same priority. If the positions of a group of portion. Note that the equality of priorities would be

'7 jobs were plotted at some instant, they would lie on disturbed if any other job in the highest priority group
* some translation of the policy function in positive or were serviced.IF

negative direction of real time if and only if all jobs in Consider next the case of a policy function with a
*. this group have the same priority. Jobs with different countable number of local maxima as illustrated in

priorities will be positioned on different translations of Figure 4. Assume also that a number of highest priority
the policy function. and no job can be positioned above jobs have attained values of the service time which
the translated policy function which carries the group of correspond to local maxima of F(a). In this case, differ-
jobs (possibly just one) with the highest priority. Jobs ent scheduling sequences may result for different
below move upward at unit rate since they receive no shapes of the policy function between the local max-
service. They will receive service as soon as they catch ima. For continuously distributed interarrival times.
up with the highest priority group. the probability that two jobs reside on local maxima at

For the simple policy function FRa) = constant, the the same time is zero and such a possibility will be
priority of a job increases linearly with the time it ignored. Thus, assuming continuously distributed inter-
spends in the system. Independent of the decision arrival times, an arbitrary policy function may be re-
mode, the scheduling system will therefore service jobs placed by an equivalent monotonic increasing policy
to completion in the order of their arrival; this is the function, which emulates the same algorithm. It can be
FIFO algorithm. Similarly any monotonic decreasing shown that this result is true for arbitrary arrival proc-
policy function also yields the FIFO algorithm since for esses-A A unique normalized policy function can be
such policy functions the term - Fa) in eq. (4) in- obtained from this equivalent monotonic increasing
creases while a job is being serviced. Thus no other job one by adding a constant such that FRO) = 0. In the real-
can ever reach the priority of the running job. time / service-time diagram. the priority of all jobs

residing on the normalized policy function is therefore
equal to zero.

While normalization by adding a constant to a pol-
Equialent Policy Functions icy function will always preserve the scheduling se-

Fromtheexamle f th FIO alorihm, is quences of jobs passing through the system. a word of
explanation is in order about the scope of the equiva-

apparent that policy functions do not map one-to-one lneo oooi nraigplc ucin.Ti
into algorithms. Rather it has been argued that all euvlnewssont evldfrjb hc r
monotonic decreasing policy functions map into the continuously serviced in the highest priority group. If a
same algorithm. In general an arbitrary policy function given policy function assures that all jobs which have
can be replaced by a unique equivalent policy function. jie h ihs roiygopwl eani h

Consider the case of a policy function with a local highest priority group until they depart, it follows that
maximum as depicted in Figure 3 and assume the deci- theqiantm ooicnrasgplcyfcin

stonmod of rocssorshaing Suposethataftr R will result in identical scheduling sequences for all jobs.
*. seconds in the system a test job has reached m seconds O h te ad ftefr fagvnplc uc

of srvie, werem deote th locl mximu ofthe tion permits the priority of the highest priority group to
policy function. Suppose also that the test job is cur- asuevlslsstnF()thproiyfanriig

2rently being serviced. i.e. it is in the highest priority jobm the esta () the replocemen ofa vale ofrhirfnciong

group. and that the attained service times of all other aob hzntal rlem t deres a lo'ts riority bo
lobs in this group are outside the range [mn, b], where RO). This may lead to preemption of the highest prior-

F~b)= Fm).Thepririt of ll obsin he ighst- ity group by the new arrival and thus change the sched-
priority group at this instant is P(m, R) = R - FRm).
Owing to the decreasing values of the policy function uinseecewtrspttoheewaivlBt
above m. the test job gains priority faster than the other since a job cannot attain more service than real time in

jobs and seizes the server until it reaches b seconds of 2Ti eiainivle h ihrodrdrvi''so ~)
service. At that point, its priority is again the same as Since it is beyond the scope of this paper, it will not he' presented

*- that of the other jobs which have previously been in the here.

472 Communications July. 1977
of Volume 2t0
the ACM Number 7

Fig. 2. Priorities derived from a policy function: Mar)= r F(ai. the system (a !5 r), its priority, defined in eq. (4).
cannot be less than the priority F(O of an arriving job

Sreal unless F(a) > F(O) + a for some range of a. Conse-
time quently the replacement of an arbitrary polic) function

" . F(a) by its equivalent monotonic increasing one will
, '"preserve the scheduling sequences of all jobs passing
=IZ- "i1 through the system if all local maxima F(m) satisfy

.ri F(mi) :s F(O) + mi (cf. Figure 4). Otherwise preemp-

tion is possible and only the relative scheduling se-
quences of preempted highest priority groups are
preserved.

poicy function Fla)
Processor Sharing at Different Rates

For the processor-sharing case, the shape of the
normalized policy function lends itself to an interpreta-
tion of its physical meaning. As outlined in the previous

ri -section, a zero slope may allow a job to seize the
P (a) processor. Conversely a very steep slope causes a job to

lose priority quickly. In general, the processing rate of
a job is closely related to the derivative of the policy

a1 aj "ttained aervicetime function at the point corresponding to the job's at-
tained service time.

This result can be demonstrated as follows. Assume
that at time r the USS services n jobs with the same
highest priority P simultaneously on s servers and that n
is greater than or equal to s. Assume also that job i (i =

Fig. 3. Policy function with a local maximum and its equivalent. 1, 2, , n) has been in the system for r1 seconds and

has attained aj seconds of service. Then
real P ri - F(ai), i= 1,2, . n. (5)

After an infinitesimal time interval Ar, each of the n
b-rn jobs has gained Aa seconds of service, and the priority

of the n jobs has changed to

P P + AP r, + Ar - F(aj + Aai), (6)

functionwhere

sAr= Aa. (7)I I

/b attainedservice tirm A Taylor series expansion of F, cancellation of the term
P, dividing by &, and taking the limit yields an expres-
sion for the fraction of real time each job gained in
service:

Aai 1 -(AP/Ar) S1 n(I1/F'(aj))
Fig. 4. Policy function and its normalized equivalent. lim r = lim - s (Fa

ar-.o Ar r-o F'(ai) F'(ai)
Kreal _ -. . . K-

treF i = 1, 2 n, K -> 0, (8)0time '0• . __ / ! \ normalized

/ ivolt where K is a proportionality factor which depends on

the number of servers, the policy function, the number
poky of jobs in the highest priority group, and their attained
funcion service times. Equation (8) states that the service rates0:: -/, ,of a job in the highest priority group is inversely pro-

portional to the derivative of the policy function evalu-
. ___ ____ ____ ated for its attained service. This result is the micro-

rn0 b0 r, b1 m2 attaned service time scopic equivalent of the well-known fact that the aver-

473 Communications July 1977. . of Volume 20
- the ACM Number 7

age service rate of a job is identical to the inverse of the main inversely proportional to this derivative. At least
derivative of the response finction (the average amount two real systems utilize the notion of such a generalized
of real time a job spends in the system as a function of service in their schedulers; in the policy-driven schedu-
its service time) 114, 171. ler on the GE 635 of the General Electric Research and

The service rate involves the factor K, which can be Development Center 121, it is measured in terms of
interpre, "d with respect to the dynamic upward and "'resource units," and the System Resources Manager
downward motion of the translation of the policy func- in M's VS2/2 expresses the service rate in terms of
ttion carrying the highest priority jobs. Since the dis- "service units- per second 1151.
tance of this translation from the normalized policy
function is identical to the priority of the jobs it carries,
the rate at which this translation moves is given by the Implementation
quantity lim(AP/Ar) = 1 - K. Jobs with the same
priority are effectively in a group, and no job will leave A prominent feature of the USS is its suitability for
the group until it is completed. While the priority of the both theoretical and experimental approaches. Imple-
highest priority group changes at a rate of I - K, the menting a scheduler as a USS allows algorithms to be
priorities of all other groups change at unit rate since no changed easily over a wide range. Moreover, such
service is attained. A lower priority group may there- changes may be instigated either externally or inter-
fore merge with the highest priority group. On the nally. Of course, it is often unrealistic to emulate a
other hand, the highest priority group may be processor-sharing algorithm because of excessive over-
preempted by a group of newly arriving jobs with head. But even for algorithms which do not employ

higher priority. From eq. (8) it can be seen that not all processor sharing, the issue of overhead arises in the
iobs in the highest priority group need to receive ser- context of computing and comparing the priorities of all
vice simultaneously. First, if the derivative F'(a) is zero jobs at every decision epoch.
in.;ome region, one or more jobs may seize the proces- The importance of time-invariant priorities be-
sor(s). Second, if the derivative F'(a) is infinite for comes apparent in this context. While any time-invar-
some value of the attained service, one or more- jobs iant algorithm can be implemented in the way sug-
may relinquish the processor(s). On the other hand, gested below, we shall continue to use the example of
with a strictly monotonic increasing policy function unbiased time-invariant algorithms as an illustration.
with finite derivatives, all jobs which have ever re- Equation (4) shows that for such algorithms priorities
ceived service simultaneously will alkays be serviced change linearly in real time unless a job attains service.
simultaneously. Determining the real time r which a job has spent in the

The special case of a linear policy function whose system from its time of arrival e and the current real
slope approaches infinity deserves some attention. Un- time c,
der such an algorithm, jobs lose priority at a rate
approaching infinity as soon as they receive service. r c -e, (9)

Their priority increase due to the time they spend in 'he and subtracting the current time c from all job priorities
system becomes negligible. Thus the jobs with the least (which preserves equalities and inequalities) changes
amount of attained service have the highest priority. eq. (4) to
This is the strategy of the processor-sharing feedback P(a, c - e) - c = -e - F(a). (10)
(FB) scheme 161. In general any "vertical" policy func-
tion which is the limit of a monotonic increasing policy The priority measure in eq. (10) is particularly
function will emulate the processor-sharing FB suited to an efficient implementation. Since this mea-
algorithm, sure is independent of real time, job entries can be

In the general case, the policy function is a function ordered in a queue according to decreasing priorities.
of n arguments (service time, memory requirement, At a decision epoch, the USS therefore need not corn-
operating system calls, channel time, etc.), and its de- pute the priorities of all jobs but simply picks the job(s)
rivative is a weighted sum of n partial derivatives. The at the head of the queue for execution. The priorities of
display of such a policy function requires an (n + 1)- the preempted jobs are recomputed and their entries
dimensional space. An interesting case arises when the are inserted into the queue according to these new
policy function is a function of a linear combination values. Essentially this is the scheme implemented in
of its parameters: F(ca, + c2a2 + "" + Crar). If a the policy-driven scheduler [2]. There the policy func-

generalized attained service" a is substituted for this tion is a function of the user class and of a linear
combination of weighted parameters, the results about combination of attained services measured in resource
normalized policy functions and processor sharing at units. The queue is ordered in increasing order of the
different rates remain valid. The policy function can be negative priority measure of eq. (10), and special rules 4

displayed as in Figure 2, the sum of partial derivatives have been introduced to govern the swapping activities.
degenerates into a total derivative with respect to the The original implementation of this scheduler was not
generalized service, and the relative service rates re- time-invariant and required an excessive amount of

474 Communications July 1977
of Volume 2)
the ACM Number 7

Table II. Decision modes: np (nonpreemptive), qo (quantum- specification of either FIFO, processor-sharing round
oriented), pr (preemptive), ps (processor-sharing); scheduling robin, or processor-sharing FB for every level. As for
parameters: r (real time in system), i (user class). R (generalized
attained service). a (attained service), q (quantum size). the n-level feedback scheme, the job class on level i

may be assigned a range of priority numbers such that
Scheduling Priority Policy Decision Arbitra --iz -- P < -(i - 1)z. The priority function P(a, r) is, ofalgorithm function function mo.dtt tion rulea . _- - --- ---- course, a generalization of the priority function for n-
FIFO r 0 np random level schemes:
policy-driven r -f" ' U, R) "

1
(i, R) qo FIFO

scheduler[21 P(a ,r)
two-level r, for a -5 q, 0, pr FIFO - zi, for FIFO,

preemptive r - for a q. lim - zi, for psRR.
feedback for a >q X, ofa] r - 4i - (1/2)(1 -(a - qj)/(q ,I - qi))],

processor-shar- r - limh., ka ps not for psFB, (12)
ing feedback lim., ka applicable where qi _ a < qi, 1;

and i = 0, 1. n - Iq 0 = 0; q,, = c.

computation for its execution. A minor change in the If only FIFO and/or processor-sharing FB are specified
algorithm, which converted it into a time-invariant for the n levels, the policy function F(a) can be deter-
one, resulted in a significant improvement of system mined directly from the relation P(a, r) = r - F(a). If
behavior, processor-sharing round robin is also specified for one

or more levels, the constant C in eq. (3) is zero and eq.
(12) cannot uniformly be divided by C to yield F(a).

Examples of Emulations The priority measure of eq. (10) remains valid, how-
ever, if the time of arrival e is defined to be a constant

Many algorithms are based on the notion of job for all job classes on processor-sharing round robin
classes. Job classes serve to identify jobs with related levels.
priorities and can be defined in terms of arbitrary job The policy-driven scheduler [2] deserves special
parameters. Depending on the definition, a job may or credit for proving the feasibility of implementing a
may not change class membership during its lifetime in scheduler based on a functional parameter-the policy
the system. If the priorities of jobs in one class are function-in a production oriented system. In this in-
always to be higher (or lower) than the ones in a-other stallation, the policy function f-1(i, R) is a function of
class, independent of how long they have b, i the the user class i and of "resource units" R, a linear
system, the priorities of the two classes on a . must combination of various attained services. The specifica-
differ by an infinite amount. Conventional schedulers tions for this scheduler as well as for a number of other
typically maintain a separate queue for each class. The time-invariant algorithms are summarized in Table II.
most common example for these algorithms is the The selfish round robin (SRR) algorithms, which
group of n-level feedback algorithms [6], where class include FIFO and processor-sharing round robin, are
membership is based on the attained service. This defined in terms of two parameters a and /3, or equiva-
group can be emulated by using the policy function lently in terms of two job classes I111. The priority of

jobs in the highest priority group increases at a rate/3,
F(a) = lim~. iz, forq, -< a < qj,1 ; while all other jobs gain priority at a rate a, where
where/ 0.1. .n - 1; q0 = O.q,, !5. (1) 0 /3< a. Since an arriving job gains priority at a
Theoretically the limit in this equation is necessary to higher rate, it will eventually catch up with the highest
guarantee the correct emulation when the real time of a priority group, say after a waiting time W. Thereafter it
job in the system approaches infinity. For all practical will share the facility equally with the other highest
purposes. however, this limit can be approximated by priority jobs. SRR algorithms are emulated by the
using a large positive integer for z. Jobs which have priority function
acquired fewer than q seconds of service are treated in W ar, for r -< W,
a FIFO fashion. When a job has received q, seconds of P(r, W) a) for r W(13)
service, its priority jumps to r - z, thus effectively -aW + (r -W), for r < W,
preventing any service allocation as long as there are or, after dividing by a,
jobs with fewer than q seconds of service in the system. W r, for r -< W,
After the ith quantum q,, priority is reduced to r - iz, P(r, (/a)r - W(/a - 1), for r > W.(14)
delaying servt..e until all jobs have received i quanta.

The multilevel feedback algorithms [141 represent a Note that P(r, W) = r if /3 = a; this priority function
generalization of the n-level feedback algorithms, specifies the FIFO algorithm (policy function F(a) = 0).
While the latter treat all jobs on one level in FIFO If/3 = 0, the first job in a busy period will retain a zero
fashion, multilevel feedback algorithms allow for the priority because its waiting time W is zero. Since its

475 Communications July 1977
of Volume 20
the ACM Number 7

priority is also the highest priority in the system, how- mentations (cf. eq. (10)). To summarize, for every
ever, all new arrivals with priority P(r = 0, W) = 0 will algorithm P(a, r) = r - Fla) in subclass C > 0 there
immediately join the highest priority group. Thus a exists a dual algorithm P(a, r) = -(r - G(a)) in subclass
SRR algorithm with 8 = 0 specifies a zero priority C < 0, where G(a) = -F(a) and dual physical interpre-
function which emulates the processor-sharing round tations hold. In contemporary computer systems,
robin algorithm, scheduling algorithms with C < 0 are not common, but

Chua and Bernstein 131 have analyzed a parameter- LIFO is an important algorithm for many applications 4
ized model which lends itself to an analysis of a class of in operations research. Clearly LIFO is the dual algo-

feedback algorithms. This model is quantum-oriented rithm to FIFO, since it can be emulated with G(a) = 0
and makes use of a queue with numbered positions. or P(a, r) = -r.

Position I contains the job being serviced. After receiv-
ing its ith quantum. a job is fed back into queue posi-
tion 7r,. where the set of 1-,'s (i = 0, 1, 2,) specifies a Summary
particular algorithm. Special rules govern collisions
with new arrivals and ensure that all jobs in the system The model of a USS provides a unifying mechanism

* are placed in contiguous positions at the top of the for dealing with arbitrary scheduling algorithms. Some
queue. After a quantum, the new position of any job algorithms define priorities in terms of queue struc-
can be defined as a function of its previous position, the tures. while others base their decisions on priority num-
set of 7T,'s, the number of jobs in the system, whether bers. In 'ormalizing the notion of job priority, the USS
there is a new arrival or not, and the number of at- relates these two approaches and provides the basis forS tained quanta as well as the total service requirement of comparing and evaluating different algorithms. The

the job leaving position 1. Since the priority of a job is model suggests a rather natural classification scheme in
monotonic decreasing with its queue position, any terms of decision mode, priority function, and arbitra-
monotonic decreasing function of the function for the tion rule and leads to the definition of various classes,
new position will serve as the priority function emulat- including the unbiased and the time-invariant schedul-
ing the algorithm specified by the set of n- 's. In the i g algorithms. Algorithms which are not time-invar-
general case, such an algorithm will not be time-invar- iant can be specified in terms of priority functions.
iant since jobs being fed back may be inserted between Policy functions can be used to emulate time-invariant
two previously contiguous jobs in the queue. algorithms. The derivatives of normalized policy func-

The derivation of the policy function Fia) for time- tions are shown to control the relative service rate of a
invariant unbiased algorithms was based on the as- job as a function of its attained service. Furthermore,
sumption of a positive constant C in eq. (3). For algo- the duality among time-invariant unbiased algorithms is
rithms which cause a job's priority to decrease in real pointed out.
time, however, this constant must be negative. The The USS is more than a theoretical tool, however. 2

- . class of time-invariant unbiased algorithms actually It lends itself to an efficient implementation for time-

consists of three subclasses which are characterized by invariant policies. In such an implementation. the over-

C = 0, C > 0, and C < 0. head oc, irs at decision epochs and consists of comput-
ing priority measures for the preempted jobs and in-

The latter two subclasses contain the same number of serting them into an ordered queue. For some simple
algorithms and, moreover, form a duality. For any algorithms, this overhead may be slight', higher than
algorithm with C < 0, the priority function (cf. eq. (4)) for a conventional scheduler which does not use a
can be expressed as function as a priority measure. For more sophisticated

- P r-algorithms, a USS provides a flexible, efficient, and yet
P(a, r) = (r -G(a). uniform framework for implementation. Arbitrary pa-

In the real-time / service-time diagram, the priority rameters, including system load. job delay. and so on,
is still proportional to the vertical distance of a job from may be considered and the scheduling algorithm may
the "'policy function" 0a), but with opposite sign. be modified while the system runs, either dynamically

. Thus the highest priorit. jobs are positioned on the or by external intervention.
lowest translation of Gla), and all other jobs must Designed to conside. a minimum level of acceptable 6
necessarily reside above this translation. Normalization service specified via a policy function for each user
of an arbitrary G(a) results in a moniotonic decreasing group. the policy-driven scheduler 121 represents an
function, and the derivative of a normalized G(a) is implementation for time-invariant algorithms. The re-
inversely proportional (but with opposite sign) to the suits concerning emulation. equivalence of policy func-
service rate of a job in the highest priority group. The tions. and the relationship between policy functions
term and processing rates are directly applicable to this a

P(-)+ - (scheduler and demonstrate its potential generality.

* may be used as an efficient priority measure in imple- Received June 1975: re ,ised JulN 1976

476 (ommunications Jul% 1977
of Volume 21
the AMN1 Number 7

- . . -

References
1. Baskett. F.. and Mluntt. R.R. Oueueing network models with
different classes of customers. Proc. Sixth Annual 11!1-1- Int. (onf..
San Francisco. Sept. 1972, pp. 205-209.
2. Bernstein. A.J., and Sharp. J .C. A polie.-driven scheduler for a
time-sharing sstsen. (onun. ACM 14. 2 (Feb. 171). 74-78.

* " 3. Chua, N.S.. and Bernstein. A.J. Analsis of a feedback
scheduler. SIAM J. Comptg. 3, 3 (Sept. 1974), 159-176.
4. Coffman, E.G. and Klcinroek I.. omputer scheduling methods
and their countermeasures. Proc. AFIPS 198 SJCC Vol. 32.
AFIPS Press. Montvalc. N.J.. pp. 11-21.
5. Coffman. E.G., Elphick. M.J.. and Shoshani. A. Ssstem
deadlocks. Computing Surveys 3. 2 (June 1971). 67-78.
6. Coffman, E.G.. and Kleinrock. L. Feedback queueing models
for time-shared ssstems. J. AM 15,4 (Oct. 1968). 549-576.
7. Coffman. E.. Analysis of two time-sharing algorithms designed
for limited swapping. J. ACM 15, 3 (July 196$). 341-353.
8. Denning. P... The working set model for program behavior.
CoGnm. ACM 11. 5 (Ma. 198). 323-333.
9. Feller. W. An Introduction to Probability llteory and Its
Applications. Vol. I. Wile.. New York, Third Ed.. Rev. Printing,
1970.
10. Greenberger. M. The priority problem and computer time
sharing. Manage. Sci. 12. I1 (JulN 1966), 888-906.
I1. Kleinrock. L. A continuum of time-sharing scheduling

algorithms. Proc. AFIPS 1970 SJCC, Vol. 36. AFIPS Press,
Montvale, N.J., pp. 453-458.
12. Kleinrock. L. lime-shared systems: A theoretical treatment. J.
ACM 14. 2 (April 1967). 242-261.
13. Kleinrock. L. A delay dependent queue discipline. Nay. Res.
Log Quart. 11. 4 (1964), 329-341.
14. Kleinrock. L.. Muntz, R.R., and Hsu. J. Tight bounds on the
average response time for time-shared computer systems.
Information Processing 71, North-Holland Pub. Co.. Amsterdam.
pp. 124-133.
15. Lynch. H.W.. and Page. J.B. The OS/VS2 release 2 system
resources manager. IBM Systems J. 13.4 (1974), 274-291.
16. McKinney. J.M. A surve, of analytical time-sharing models.
Computing Surveys I. 2 (June 1969), 105-116.
17. Ruschitzka. M. System resource management in a time sharing
environment. Ph.D. Th.. Dept. of EEC'S. U. of California, Berkeley..
Nov. 1973.
18. Schrage, L.F. The queue M/G/I with feedback to lower priority
queues. Manage. Sci. 13.7 (1967). 466-474.

_.

'I

477 Communications July 1977
of Volume 20.

the ACM Number 7

7- -- -

To appear in the special issue "On Interfaces with Computer Science"
of Operations Research in late 1977 or early 1978.

AN ANALYTICAL TREATIENT
OF POLICY FUNCTION SCHEDULES

M. Ruschitzka

June 1977

IVYI

Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, New Jersey

This research was partially supported by the Advanced Research
.- Projects Agency of the Department of Defense under Grant #DAIClS-73-G6

to the Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the

.-. official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S. Government.

• 7 I,

.0

Page I

This paper presents an analysis of time-sharing

computer facilities with scheduling algorithms defined in

terms of priority functions. We consider the class of

algorithms In which a job's priority is defined by the

difference between the time it spent in the system and an

arbitrary function F of its attained service, where F is

called the policy function.

Our main result, the average response time for a job

conditioned on its service requirement, applies to a broad

class of policy functions. The derivation is based on the

model of a processor-sharing M/G/1 queuing system and does

w not use transforms. A method involving the decomposition of

a non-Markovian process is shown to simplify the analysis.

Properties of the average response time resulting from

policy function schedulers are discussed and related to

those of other known time-sharing scheduling algorithms.

For the exnrnpl o of' linear, exponential , and composite

p0.! c Y f 11irceIiors vie p I ct the responsec t iM CS. The

flexibility arnd the limitations of policy functions with

respect to the discriminatory treatment of short jobs versus

6 long ones are demonstrated, and the optimal selection of a

policy function with respect to a given overall performance

criterion is discussed.

Page 2

KANl ANALTICAL TREATMEN PQTC FUNCTIONWiSUQIL UDIL

Bernstein and Sharp [3] designed and implemented the

* first policy function scheduler in 1969. This scheduler

attempted to avoid unnecessary system overhead, in

particular swapping, by specifing (and adhering to) a

minimal level of acceptable service to users. Parameterized

scheduling algorithms have allowed system designers and

installation managers to tune systems before, but the use of

*arbitrary functions, rather than discrete parameters,

permits a more flexible specification of the desired system

behavior. It is an indication of their usefulness that

variations of policy function schedulers have since been

adopted for production systems, e.g. IBM's OS/VS2 Release 2

* [8], as well. as research oriented systems like HYDRA [6].

- The implementations of these schedulers have not been

without problems. It is tempting to increase the level of

* sophistication of a policy function to a point where the

incurred overhead exceeds the gain in the quality of

service. [a'11, "t.r r. .:re , with few theoretical results

available, the choices of the forms and of the arguments of

policy functions are often based on intuition.

Consequently, the process of tuning a system tends to

proceed in an ad-hoc fashion and little insight is gained

* with respect to the intrinsic characteristics of policy

14 function schedulers.

Page 3

Any scheduling algorithm can be exp'essed as a priority

scheduling algorithm. In the latter, the scheduler

evaluates a r functioQn P(p1 ,p2 ,p3, ...) of an

arbitrary number of job parameters pL (service time, memory

requirement, system calls, channel time, external job class,

etc.) for all competing jobs and allocates the resource(s)

to the job(s) with the highest priority value(s). We shall

review some of the general properties of such priority

functions. For a more comprehensive treatment as well as a

general introduction to priority scheduling algorithms the

reader is referred to Ruschitzka and Fabry [10]. It was

shown there that the overhead for evaluating the priority

function can be considerably reduced if the priority

function is of the form

P(r,p2,p 3 , ...) Cr- f(p2,p j, ...), (1)

where the first job parameter, r, is the real time a job has

spent in the system, C is a constant, and the arbitrary

function f of the remaining job parameters is called the

*2X1f1_1 I Un fiQr . Note that equation (1) defines the

relat ion)e tw cn I)o1. 1y fuiit, io ri and the notiont of

priorities.. The choice of the instants in time at which the

priority function P is evaluated characterizes a scheduling

algorithm as non-preemptive, preemptive, quantum-oriented,

processor-sharing, etc.. Processor-sharing algorithms are

the most general in that they can be used to simulate all

others [10]. Because of this generality and also because of

4

Page

the appealing simplicity of the analytical results, only

processor-sharing algorithms will be considered henceforth.

If the constant C in equation (1) is negative, a job's

priority decreases in real time. Such a priority function

would be used to implement deadline scheduling or LIFO. If

C=O, the priority is independent of real time. We are

interested in the case C>O, i.e. those algorithms in which

a job's priority increases with the time it spends in the

system. In this case, the term on the right hand side of

equation (1) can be divided by C without changing the

algorithm, since equalities and inequalities of the

priorities of any two jobs are preserved. Furthermore, if

the policy function is a function of only the attained

service time, a, the priority function specializes to

P(r,a) = r - F(a), (2)

where the new Doicy fun_.t~j9 .ia is simply f(a)/C. In

this paper, we consider only the class of algorithms defined

by pr i Io t y rinet ion v+,f tile form of equation (2).

i)fferent foris of the ,I il y function F(a) define dJff'erent

algorithms, and for a variety of conventional time-sharing

algorithms the defining policy functions are known. For

example, F(a)=d, where d is any constant, specifies the FIFO

algorithm since the priority of a job will increase linearly

with the time it spent in the system. We briefly summarize

two results concerning the equivalence and the normalization

of policy functions [10). Policy functions are called

Si

A Page 5KL

guivalent if their evaluations result in identical

scheduling sequences. Thus, the policy functions F (a)=O

and F2 (a)=d (d*O) are equivalent since both yield the FIFO

scheduling sequence. However, any set of equivalent policy

functions (F) can be represented by a unique normalized

policy function which is (weakly) monotonic increasing and

satisfies F(O)=O [10]. For FIFO, the normalized policy

function is F(a)=O. Without loss of generality, policy

functions are assumed to be normalized in the sequel.

1_.. MODEL AU APPROACH

It is our goal to derive the relationship between a

given policy function and the resulting system behavior. We

shall use the response function, the average time a job

spends in the system conditioned on its service requirement,

to describe the system behavior in equilibrium. The system

is modeled by an M/G/1 queuing system, i.e. a system with

Poisson job arrivals, a general (arbitrary) distribution of

job service times which are mutually independent, and one

server. In addition to processor-sharing mode, we assume

that the system is work-Wj. rIn, I.e. that preemption

and resumption of a job will not require additional service

time. In sum, we model a time-sharing computer facility as

a work-conserving, processor-sharing M/G/1 queuing system

driven by a policy function F(a).

S

" Page 6

When a job arrives at the system, it adds its service

time to the unfinjshpA work, the work (in units of service

time) which the system has yet to perform on resident jobs.

Between job arrivals, the unfinished work decreases in time

at unit rate until it reaches zero. Thereafter, the system

is free of jobs, the unfinished work remains zero, and the

system is said to be idle until the next job arrives. At

this epoch the unfinished work jumps to the value of the

next job's service time. It will then decrease linearly

until either another job arrives or the job is serviced to

completion, whichever occurs first. Periods during which

the unfinished work is positive are called buy periods. In

equilibrium, every busy period is followed by an idle period

and vice versa. For our analysis, we shall study the system

over a large number of such periods until equilibrium is

reached.

We begin to observe the system at the beginning of an

arbitrary busy period at time zero and number jobs in the

order of thoir nrrval (JO,1,2, ...). Their arrival

epo-h9 and .4*,rv ce ti. mr requtremeltt.! will be denoted by the

random variables T and Sj respectively (To=O). 13 stands

for the time between the arrivals of jobs J-1 and J, i.e.

Ij=Tj-Tj_ (J=1,2, ...). We express delays and other

random variables of interest for a particular (but

arbitrary) job, say job number n, and refer to this job as

the et Job. Introducing special symbols for its arrival

epoch t=T, and its service requirement x=Sn, we denote its

Page 7

residence time in the system (the time between arrival and

departure) by R(t,x). This residence time consists of the

test job's service time x and its waiting time W(t,x):

R(t,x) W(t,x) + x. (3)

It often proves advantageous to relate the waiting time of a

job to the amount of service (work) performed on other jobs.

With this method, the author (9) obtained considerably

simplified derivations of the response functions of such

algorithms as the processor-sharing round robin and feedback

schemes. Using this approach, we distinguish between two

groups of jobs: the early arrivals (j<n) which arrive

before the test job and the late arrivals (j>n) which arrive

VW after it. We define the early work VE(t,x) late work

VL(t,x)) as the total service performed on all early (late)

arrivals during the test job's residence time. Clearly, an

early arrival which departed prior to the test job's arrival

at time t cannot benefit from the early work. Similarly, a

job arriving after the test job's departure cannot

contribute to the lat, work. With these definitions,

equation (3) may be rewi'ttten as

R(t,x) = VE(t,x) + VL(t,x) + x. (4)

Note that the residence time, the early work, and the late

work are stochastic processes defined for any job n

(n=O,1,2, ...) arriving at time t=T n . Equilibrium values

are obtained by letting n (and, thus, t) approach infinity.

*

Page 8

The response function R(x) can now be expressed as the

time average of the residence time in equation (4). With

the definition of the time average Q(x) of a stochastic

process Q(t,x) with a constant parameter x,

Q(x) lir (1/T) J E[Q(tx)) dt, (5)

0

we obtain

R(x) v E(x) + VL(x) + x. (6)

Unfortunately, the early and the late work processes are not

Markovian. However, a method involving a further

decomposition of the early work process will be shown to

yield to an analytical treatment for all policy functions of

the form F(a)(a.

The significance of the constraint F(a) a on policy

functions deserves some attention. Since the attained

service, a, of a job is included in the time it spent in the

system, r, we always have r-a>O. It follows from equation

(2) and F(a).an that a job's priority cannot be negative,

since I'(a,r) rI.-F(a) > r.-a > 0. The priority loss due to

attaining service always dominates the priority gain due to

spending time in the system. A newly arriving job has zero

priority and will not be serviced until its priority becomes

equal to that of the highest priority job(s) in the system.

After joining the highest priority group, a job will remain

in the highest priority group until it departs. The policy

function scheduler assures this by processing the members of

=

4 * Page 9

this group at (possibly) different rates [10]. Note that

jobs join the highest priority group in the order of their

arrival. Thus, a resident job is either waiting with no

service attained, or it is a member of the highest priority

group and, thus, being serviced. Just prior to its

departure, the test job is being serviced and has the same

(highest) priority as all early arrivals which are still

resident. Similarly, all resident late arrivals which have

attained any service at all also have this same highest

priority. These properties play an important role in our

derivation. If the policy function is not constrained by

F(a)ja, the priority of the highest priority group may

become negative. Thus, a new arrival with zero priority may

preempt the highest priority group. Furthermore, the

priority of a resident early arrival may be lower than that

of the test job when the test job departs. In this paper,

we shall adhere to the constraint F(a)Sa.

In terms of notation, \ will denote the job arrival

Srat e. Tho random variabl S and the functions G and g stand

for the s"rvivte t in t: retqupirewicit of a job, the service time

distribution function and its probability density function

respectively. Ge denotes the complement of G:

GC(x)=1-G(x). A glossary at the end of the paper summarizes

the symbols and notation used in the analysis. It also

contains a useful identity for the moments of the truncated

service time S<x, Sc, =min[S,x], which is frequently used in

the derivation. The analysis does not make use of

I

Page 10

transfor's and, thus, illustrates the physical behavior of

the system in time.

2 DECOMPOSITION QU IU EARLY WORK PROCE

The early work is the amount of service which early

arrivals (jobs j<n) attain during the test job's residence.

Equivalently, it may be defined as the service which early

arrivals attain prior to the test job's departure minus the

service they attain prior to its arrival. There are two

types of early arrivals: those which are serviced to

completion and exit before the test job departs, and those

which are still resident at the test job's departure epoch.

We consider the latter type first.

As noted in the preceding section, the priority of the

test job equals that of the resident early arrivals at the

departure epoch of the test job. Thus, with aj denoting the

attained service of a resident job j, and using L=R(t,x) for

the residence time of the test job, we have

P(|,,x) 1 |..F(x) L+t -T.;-F(aj) P(L+t- T- ,,j)

Note that T <t=T,, since j<n. Solving for aj , we obtain

aj = F-'(F(x)+t-Tj), (7)

where F-1 denotes the inverse of the policy function F.

6i

Page 11

Equation (7) specifies the attained service a3 of a

resident early arrival at the test job's departure epoch.

Early arrivals of the other type will already have departed

after receiving their service requirement Si. However, had

the service requirement Si of such a departed early arrival

been larger than aj , this job would still be resident with

exactly aj seconds -of attained service. Therefore, a

early arrival will have attained the minimum of Si and aj

respectively when the test job departs. The total amount of

the early work, which is to be performed during the test

job's residence time, can now be expressed as the sum of the

individual minima minus the service performed prior to the

test job's arrival at epoch t. The latter is simply the sum

W7 of the durations of all busy periods up to epoch t, or t-H,

where H denotes the sum of the durations of all idle periods

preceding t. Thus, we have

fl-I

VE(t,x) Z min[Sj ,F'(F(x)+t-T)] - (t-H). (8)
i.o

By expressing t and Ti as sums of interarrival times and

subtracting SJ from the minima we get

,t-I t -I

VE(t,x) Y --lj,. I + H m a ax[OCS0-F'1 F x)+ t -T1 9
j=0 .j~o

In the first two terms of equation (9) we recognize the

expression for the unfinished work U(t), also called the

virtual delay [11). It is identical to the actual delay of

the test job under FIFO. Naming the third term V,(t,x),

vL(t,x) m :F- -t T (10)
jio

, !

Page 12

we decompose the early work by rewriting eouation (9) as

VF(t,x) = U(t) - VA(t,x). (1

As an aid to intuition, this decomposition is depicted in

Figure 1. Assuming some fixed value for the test job's

service requirement x, Figure 1.a illustrates how the

minimum in equation (8), i.e. the attained service of job j

at the departure epoch of the test job, is obtained via the

inverse F- of the policy function. The minima of four jobs

forming the first busy period have been superposed in Figure

1.b. The shaded areas represent the maxima in equation

(10), i.e. the individual contributions to the process

V&(t,x). Summing up the individual minima and subtracting

S r the work t, which has already been performed, yield the

total for the early work. Figure 1.c shows that this total

is identical to the unfinished work U(t) minus the work

VA(t,x). A continuation of this diagram over several busy

periods consists of probabilistic replicas of the first one

separated by idle periods.

The foim o f c uat J11 (11) suggests t hat the time

average VE(x) can be obtained as the difference of the time

averages U and V(x). However, we must first verify that

the expression for V&(t,x) does not cause VE(tx) to become

negative. In that case, equation (11) would have to be

replaced by V,(t,x)=max[O,U(t)-V6(t,x)), since the early

work is a nonnegative process with busy periods defined

analogously to those of the unfinished work. However, the

--

pol i cy
function min[S ,F'(F(x).t-Tj)]
inverse

I

F"(y) ,

S I i

" . - - 'r e a l t i m e

t" • F(x) Y T t

r(x)4t-Tj

(a) Contribution of job i to the early work VE(tlx).
I I S

" I -- ISI

x ... [Sz

, I -• II

To T, T TI real time t

(b) Superposed contributions to VE.(t,x) and Vt,(t,x)

v(t,xx

x -F- " vE(t'x)
-. T real time t

VEU(t)

(c) The difference between unfinished and early work.

Figure 1. Decomposition of the early work.

Page 13

already adopted constraint on the policy function, F(x) x,

also assures the positivity of VE(t,x) throughout any busy

period of U(t). This is no coincidence. Since this

constraint assured a nci-preemptive mode of operation, a

test job which arrives during a busy period and has a

non-zero service requirement must always wait for some work

to be done on resident early arrivals, i.e. VE(tx)>O. We

formalize this result in the following theorem.

Theorem: The busy periods of the processes U(t) and

V,(t,x) are identical for all positive values of t and x if

and only if F(x)Sx.

Proof: By definition, the early work is a subset of

*7 the unfinished work and, thus, a busy period of the early

work cannot be longer than the corresponding busy period of

the unfinished work. It could be shorter though. On the

other hand, equation (11) shows that VE(tx) cannot become

zero (and terminate its busy period before U(t) does) as

long as U(t)>VA(t,x). The expressions for U(t) and V,(t,x)

are given in equation (9). Since all busy periods are

probabi listic replicas of each other, we]imit our- attention

to a single one, say the first one, and set H=O. A

sufficient condition for U(t)>V,(t,x) is obtained by

requiring tbe individual J-terms in equation (9) to be

positive:

S-1j+ > S-F-1(F x)+t-T) Ojjn-1

*' Page 14

After cancelling Si and expressing t-T3 as a sum of

interarrival times, this condition can be rewritten as

4-1 < F_'(F(x)+Ij +Ij*+2 + +In).

Clearly, the constraint F(x)_x assures this sufficient

condition for all x>O. If n=1, j assumes only the value 0,

and the j-term with J=O is identical to U(t)-VA(t,x). This

special case shows that the constraint F(x)Sx is not only a

sufficient, but also a necessary condition for the identity

of the busy periods of U(t) and VE(t,x).

With the positivity of equation (11) assured throughout

any busy period, the time average of the early work is

indeed the difference of the time averages for U(t) and

~Va(tx) :

VE (x) = U - V6(x). (12)

The time average of the unfinished work is well-known (see

Wolff [11] for a derivation which does not use transforms),

U

where ,=),ES denotes the system load, and VA(x) is defined by

equation (5):

T

V6(X) lim (I/T)J EV,(t,x) dt. (13)
"r-J. ¢C.0

For Poisson arrivals, the contributions of the various

arrivals to EV,,(t,x) are equal to the integral of the

expected contribution of a job arriving at epoch times the

S

U Page 15

probability of the occurrence of such an arrival. From the

definition of VA(t,x) in equation (9) we get

to0

EVjt,x) Sf[s-F-'(F(x)+t-1)) g(s) ds Adg.

Before this expectation can be substituted in equation (13)

to obtain the time average, the lower integration boundary

for must be adjusted. If the policy function F(x) assumes

a finite value for x-#-c o, the inverse F-(F(x)+t-1) is not

defined for arguments larger than F(oO). In that range, the

flatness of the policy function prohibits contributions of

arrivals which occured too far in the past. Thus, the lower

boundary 0 should be replaced by max[O,F(x)+t-F(co)] to

handle the two cases of finite and infinite values of F(O).

However, by solving the two cases separately, it can be

shown that the two boundaries max(O,F(x)+t-F(OO)l and

F(x)+t-F(Oo) are interchangeable under the limit of equation

(13). Chosing the simpler boundary, we have

V (x) 11mn (/T) [n-FI'(F(x)+t-I)]g(S)dsdc-dt.

Substituting y=F-'(F(x)+t-S) and evaluating the innermost

integral yield

7'00
Vb,(x) = lira (X/T) F'(y)[ES-ES4.) dy dt

0 X

and the final expression is obtained by taking the limit and

integrating by parts:

Page 16

VL(x) -XF(x)[ES-ESJ + ?\J F(y)GC(Y) dy. (14)
x

Rather than deriving this time average from the

defining equations, the method of triangular arrays [4] can

be adopted. Starting from the definition of V,(t,x) in

equation (10), we get

00
V6(x) X E~max[O,S-F-'(F(x)+t)]] dt.

Again, the upper integration boundary must be adjusted to

handle finite values of F(oo). We replace it by F(oO)-F(x)

to handle the general case. Substitution of y=F(x)+t yields

VL(x) = J E(max[O,S-y)] F'(y) dy,
• x

* and expressing the expectation of the maximum as ES-ES,,

followed by an integration by parts results in the

expression given by equation (14). This method offers an

intuitive interpretation. Each job contributes a certain

area (the shaded area in Figure 1) to VA(t,x). The time

average VA(x) is simply the expected value of this

contribution mul tip] led by the arrival rate (the number of

contributions pt~r anit timne).

3-, U- L A TE WORK PRCS

The lat- work is the amount of service which jobs

arriving after the test job will attain during the test

job's residence time. Together with the early work, it

represents the delay encountered by the test job. Recall

Page 17

that the test job's priority remains non-negative for policy

* -functions of the form F(x)Sx and that the initial priority

of an arriving job is zero. To attain its first service

allocation, a late arrival must gain priority by waiting

until it catches up with the highest priority group.

Thereafter, it will remain in the highest priority group

until it departs.

Similar to the approach used to determine the early

work, we shall relate job priorities at the departure epoch

of the test job in order to determine the late work.

Assuming again that the test job n remains in the system for

L seconds and that its service requirement is x:Sn, we

observe a job j>n which arrives i seconds after the test job

V7 (i<L) and attains A seconds of service by the time the test

job departs. Note that a late arrival will attain no

service at all unless it catches up with the highest

priority group. Equating the priorities of the test job and

a resident late arrival,

P(L,x) L-F(x) L-J-F(A) P(L-.i,A),

we obtain the amount of attained service as

A F-'(F(x)-i). (15)

For A to be positive, i.e. for the late arrival to catch up

with the highest priority group before the test job exits, i

wust be less than F(x). Thus, no job arriving F(x) seconds

after the test job will receive any service during its

Page 18

residence time L. Note that the constraint F(x)Sx assures

that L is not less than F(x), since the test job's residence

time L cannot be shorter than its service requirement x.

Consequently, there exists a deterministic upper bound F(x)

-; on the interval during which late arrivals may occur and

still get serviced to some degree. This implies that the

late work does not depend on the early work which the test

job encountersl

Departures of late arrivals are handled like those of

early arrivals. If a late arrival departs before the test

job, its service requirement S must have been less than the

value of A in equation (15). Thus, any late arrival will

contribute min[S,A) to the late work, provided it arrives

within F(x) seconds after the test job's arrival. Making

use of Poisson arrivals, the expectation of the sum of the

contributions of the late arrivals may again be replaced by

an integral. The time average for the late work therefore

amounts to

roV)

V(x) P[min(F"-'(F(x)-t)]] Xdi.

Expressing the expectation of' the minimum in terms of the

expectation of the truncated service time, we have

4 F(x)

VL(x) f f ES<F-,()F(,_L) di.

0

Substituting y for F-'(F(x)-i) and integrating by parts yield

the final expression

4

Page 19

VL(x) AF(x)ES<×- F(y)GC(y) dy. (16)

0

It is quite common among scheduling algorithms that the

expressions for the early and the late work are more

complicated than the response functions themselves. The

class of policy functions F(x)<x is no exception. We

proceed by presenting the overall result.

PROPERTIE RESPONSE FUCIN

With the time averages for the early and the late work

established, we obtain the response function from equation

(6) by substituting equations (12), (14), and (16) and using

the symbol g for the load XES:

00

*- R(x) U - AJ F(y)GC(y) dy + SF(x) + x. (17)

0

This result is valid for work-conserving, processor-sharing

M/G/1 systems driven by arbitrary policy functions whose

normalized equivalents satisfy the constraint F(x) x. The

average waiting time W(x) of a job with a service

requlremrnt of x .,-v'rrA is equal to W(x)=R(x)-x:

F

W(x) U - , F(y)(: (y) dy + gF(x). (18)
0

Note that only the last term is a function of x. The first

two terms are constant and have the value W(O). Thus, the

shape W(x)-W(O)=,F(x) of the average waiting time is

independent of the shape of the service time distribution;

in fact, it is simply the policy function multiplied by the

load . The values of W(O)=R(O) have bounds determined by

• i

Page 20

the constraint O<F(x)<x. By evaluating equation (18) for

x=O and the policy functions F(x)=O and F(x)=x these bounds

can be expressed in terms of the average waiting time U of

the FIFO algorithm:

u R(O) = W(0) < U.

The lower bound is obtained with F(x)=x which tends to

increase the response of long jobs. Conversely, F(x)=O, the

FIFO algorithm, maximizes the response for short jobs and

favors long jobs.

Using the overall average residence time R as a

performance criterion, where R is defined as

0o

R__ R(x) g(x) dx,

0

the optimal form of F(x) can be determined as a function of

the service time distribution by minimizing R. From

equation (17) we obtain

00 00

R U + ES - A[J F(y)Gc(y) dy - ES g F(x)g(x) dx].

0)

Not.ing that. only LIe term ha ving brackets involves the

policy function F, we call this term -ALM] and attempt to

maximize M. For the policy function F(y) we substitute an

integral over its derivative and integrate the second

integral in M by parts to get

000

M = f F'(x)dx GC(y)dy - ES J F'(x)G"(x) dx.

00 0

Finally, reversal of the order, of integration of x and y

Page 21

yields the expression to be maximized:

00

M J F'(x) [J GC(y)dy - ES GC(X)) dx. (19)

o

The bracketed term plays an important role in reliability

theory [2). It is used to characterize the distribution

function G of a random variable S with respect to its

ri.dual life (5]. In particular, a distribution function G

is said to be g-MRLA (g-MRLB), i.e. it has its mean

residual life bounded above (below), if and only if

00

GC(y) dy (Gc(X).

The mean residual lives of a large class of distributions

are bounded with respect to =ES. For ES-MRLA distributed

service times S, it follows from equation (19) that F'(x)=O,

i.e. F(x)=O or FIFO, maximizes M and thus minimizes the

average overall residence time. This is not surprising

since Wolff [12] established the superiority of FIFO over

both the round robin and the feedback algorithms for the

more general work-conserving G/G/i systems. Consider the

case whrvyi the sorvice time is not ES-MRLA distributed.

Since I'(x) nc:ed iiot be continuous, the derivative F'(x) may

contain Dirac pulses. Then, the optimal policy function can

be obtained from equation (19) via simple optimization

techniques [1]. It is not difficult to show that optimal

" policy functions satisfying the constraint F(x) x consist of

sequences of a constant portion, a jump to the identity

function, and a portion equal to the identity function. As

aI

Page 22

an example, the composite policy function in Figure 4 (to be

discussed later) illustrates such an optimal policy function

consisting of a single sequence of the three portions.

Returning to the expression for the response function

in equation (17), we note that it may Le viewed as a

transformation of policy functions into response functions.

The inverse transformation is obtained by a simple

differentiation and the application of the boundary

condition F(O)=O for normalized policy functions:

F(x) (R(x) - x - R(O) / .

Of course, not any arbitrary response function can be

*obtained by a policy function. First of all, we are limited

by the constraint F(x)Sx which implies

R(x) R(o) + x 1+g).

But there are at least three more constraints which are

generally valid for any scheduling algorithms which base

their prJoritius sol(ly on at.tained service time and time in

SY.em. F rst, tIe resinence time cannot be sjualler than

the service time which it includes:

R(x) 2x.

Second, an intrinsic constraint on response functions,

regardless of the scheduling algorithms used, limits the

discriminatory treatment of short jobs versus long jobs.

This constraint is referred to as a conservation law

Page 23

[5, p.197]:

J R(x) GC(x) dx ES /2(1-). (20)

0

Since the integral of the response function weighted by the

(decreasing) complementary distribution function must be

constant, a favorable treatment of short jobs (small R(x)

for small x) implies delays for long jobs and vice versa.

It is easily checked that our -esult in equation (17)

satisfies this conservation law. Third, tight upper and

lower bounds [5, p.1993 have been established on response

functions:

XES<U/2 XES2 /2 x
+ x R(x) + (21)

1-/ES<x (1-Y)(1 -ESX) I-AES(x
V-7

Applying Little's theorem [7) to an infinitesimally

small service time interval dx, he response function R(x)

and the average density n(x) of resident jobs with x seconds

of ttiL_-jjLq~. service, can be related [5, p.1643:

n(x) X R'(x) GC(x)

A subtitution (if the derivative l'(x) from equation (17)

yields

n(x) X[1+gFI(x)]GC(x) + AR(O)S(O), (22)

where the Dirac pulse &(O) denotes a unit mass at the

origin. The steeper the policy function is for a given

attained service x, the more jobs on the average will be

S.

Page 24

found with that much service attained. This result is

corroborated by the fact that the service rate of a job with j

x seconds of attained service is inversely proportional to

F'(x) [10].

A variety of performance criteria may be obtained from

the average density of resident jobs. The integral of n(x)

over x from zero to infinity yields the average number N of

jobs in the system. Clearly, the minimization of N and the

minimization of the overall average residence time R result

in identical policy functions since N=XR [7].

Discriminatory policies with respect to the treatment of

short jobs versus long ones are obtained by minimizing

(maximizing) the integral of the average density over a

specified range of attained service. Of course, the

conservation law in equation (20) still applies.

aE L=J_. _QU&LJCJ FUNCTIONS

In this section we discuss the system behavior

resulting from linear, exponentia] and composite policy

funet io11:. Wh i(! the respor,:,, Futiet. ions are presented for

arbitrary service time distributions, exponentially

distributed service times have been assumed for the

diagrams. Note that the mean residual life of an

exponentially distributed service time is equal to its mean.

Consequently, the term M in equation (19) is zero

independent of the shape of the policy function and the

overall mean residence time is equal to FIFO's.

SI

-_ ..

Page 25

The response function resulting from a linear policy

function F(x)=Cx, where C is a constant, is given by

R(x) U -XES
2 C/2 + x(1+3C). (23)

Note that it is linear in x and that it depends only on the

first two moments and not on the shape of the service time

distribution. Due to our constraint F(x)_x, the validity of

equation (23) is limited to CS1. Thus, FIFO which is

defined by C=0 is included. The response functions for

C:0,.4,1 are shown in Figure 2 for an M/M/i system with a

load of 75%. It is easily shown that the value of

R(ES2 /2ES) is independent of C (ES'/2ES is the mean residual

life of the service time S). Although policy functions with

C>1 are not covered by our result, it is known that the

feedback scheme is defined by C-i-oo [10]. Its response

function [5, p.174],

11(= x/(1-XES.) + X Es. 1X2(1-ES<),

is also depicted in Figure 2. Varying C from 0 to (x, we

note thW1t a 1r e.,kpoInt o ecurs at C=1 where the response

fun.tion loses its linearity and its invariant v aIte at

x=ESZ/2ES. The intuitive explanation, namely that the

breakpoint separates the non-preemptive from the preemptive

algorithms, has been provided by our t..eorem.

It is instructive to compare the linear policy function

algorithms (linear policies) with the selfish scheduling

algorithms [5, p.188]. In these algorithms, all jobs in the

67

response
R(x)

C=oo (processor
sharina

policy feedback)
15 function

F(x)=Cx

9.75

ES= 1

10

c= 1

C.4

C=O (FIFO)

5

service time x

1 2 3

* Figure 2. Response functions of linear policies for M/M/l, S=.75, ES=l.

Page 26

system are divided into two groups: those in a "queue box"

waiting for service, and those in a "service box" sharing

the facility according to a given algorithm which is

referred to as the raw scheduling algorithm. An arrival

enters the queue box where its age (a numerical value)

increases from zero at rate X. Similarly, the age of a job

in the service box increases at rate where (X> >0. A job

passes from the queue box to the service box when its age

equals that of the jobs in the service box. When round

robin and feedback algorithms are used as the raw scheduling

algorithms, the selfish round robin (SRR) and the selfish

feedback (SFB) algorithms result. Linear policies and SFB

cover a (different) continuum of algorithms ranging from

FIFO to feedback by varying C, 0 C(OO, and (C!o 1 >0,

respectively. But while SFB permits preemption of the

highest priority group by a new arrival throughout the

entire range except for /0y=1, linear policies are

non-preemptiie for C!1. Interestingly, the response

functions in this non-preemptive range are identical to

thonf! of, SPH, wi Lh 1. / /< 1O/(i ,) Of course, SIiH is

non-preemptive and approaches the round robin algorithm with

/03--O. The linear policies thus form a hybrid between SFB

and SRR. Furthermore, a linear policy with parameter C may

itself be used as the raw scheduling algorithm for a selfish

scheduling system with parameters (X and , thus defining a

selfish linear policy. As it turns out, such a selfish

linear policy with parameters cX, , CI results in a

Page 27

response function identical to that of a linear policy with

parameter C(1-0/). It can be shown that there is a good

reason for this identity; the two algorithms are actually

equivalent.

Next consider the class of exponential olicy -functions

with F(x)=C[1-exp(-kx)]. From the constraint F(x).x we have

Ck(1 and equation (17) becomes

R(x) U + XC exp(-ky)GC(y)dy + x - gCexp(-kx).

0

The forms of the response functions for k=1/3 and C=0,2,3

are given in Figure 3 for a 75% loaded M-M/1 system. The

density can be obtained from equation (22):

n(x) = \[l+?kCexp(-kx)JGC(x) + AR(O)J(O).

The expression in brackets demonstrates that these

exponential policies tend to keep waiting those jobs with

little attained service. Holding kC constant, this tendency

can be weakened by choosing a smaller value of k.

The ;:A[vi..y fi'. of the form F(x):O for

x<m and t(x)=K for x2m are representative of the set of

optimal policy functions which are obtained by* minimizing

the average overall residence time. The corresponding

response functions,

00

R(x) U - y GC(y) dy + SF(x) +

are depicted in Figure 4 for m=0,1,2 and an H/H/i system

A

policy
F(x)

F(x)=Cr.l-exp(-kx)]C=

C= 2

C=o
bservice time x

12 3

response
R(x)

8 M/M/l C= 3

9=.75C=2

ES~l C=o (FIFO)

6-

4"

2-

I I ~ service time x

1 2 3

4

Figure 3. Exponential policy functions and their response for M/Mll/, 8=375, ES~l.

" pol icy

F(x)

2-

I O0, x 4.m

m=l F(x) : {
X, x1m

I !) service time x

1 2 3

response
R(x)

m=2j, m= 1

8 M/M/l m=O

ES=l
6

4

2

I -+--- - service time x

1 2 3

Figure 4. Composite policy functions and their response for M/M/l, 9=.75, ES=l.

Page 28

with a load of 75%. The jump of the response function at

the value m of the service time is reminiscent of the jump

resulting from the 2-level feedback algorithm [9]. This

similarity does not come as a surprise when one considers

that the defining policy function for 2-level feedback

algorithms is given by F(x)=O for x<m and F(x):z for x~m,

where z---OO [10]. This (infinite) step function is itself

closely related to a composite policy function. However,

due to its height, it is not covered by our analysis which

is constrained to functions of the form F(x) .x. The

difference between the two algorithms can be explained in

terms of the derivatives of their policy functions. A

detailed discussion of policy function derivatives and their

relation to processing rates is contained in £10).

Due to the parameters, each of the linear, exponential,

and composite policies represents a (different) continuum of

scheduling algorithms. In each case, the continuum includes

F(x)=O (FIFO) and F(x):x. Linear policies, F(x)=Cx, cover

this r;angr with C varving from 0 to 1. Exponential

polI'ica, F()CII. 1exp(- x) , have two paraineters , C and k.

C=O results in FIFO. For Ck:1, the limit of k.-OO approaches

F(x):x. Composite policies, F(x)=O for x<m and F(x)=x for

x>m, cover FIFO through F(x)=x when m is varied from

infinity to zero. The choices of a particular policy and

its parameter(s) should be guided by some optimization

criterion and will strongly depend on the given service time

distribution. Current practice often ignores the dependence

Page 29

of response on the service time distribution, possibly

because of the lack of meaningful measurements. The FIFO

end of a continuum is of interest for ES-MRLA distributed

service times when the overall residence time is to be

minimized. A policy close to F(x):x will treat short jobs

more favorably. Composite policies satisfy both of these

criteria when the mean residual service time is not bounded

above.

The validity of the response functions in equation (17)

is limited to policy functions constrained by F(x).jx, but

the definitions of linear and exponential rolicies are not.

{Neither is the definition of composite policy functions if

multiplied by a constant C.) This constraint limits the

favorable treatment of short jobs by assuring that the

priority of a job cannot be higher than that of an earlier

arrival. Without this constraint, the degree of

discrimination is governed by the conservation law in

equation (20) and the bounds in equation (21). In fact,

linear policies result In the most discriminatory scheduling

algorithm in favor of shti't jobs, the feedback algorithm,

when the slope C of the policy function approaches infinity.

4 P

I p

Page 30

In this paper, the system behavior resulting from a

broad class of policy functions is analyzed. The analysis

is based on a work-conserving, processor-sharing M/G/l

queuing system and the system behavior is described in terms

of the response function. To provide the necessary

background, some basic properties of policy functions,

including equivalence and normalization, have been briefly

reviewed. Our analysis addresses the class of algorithms

which are defined by F(a) a, where the parameter a of the

normalized policy function F is the attained service time.

-" (Policy functions which have not been normalized belong to

the same class if they satisfy F(a)SF(O)+a.) The main

result, equation (17), gives the response functions for this

class of algorithms. As expected, these response functions

satisfy the conservation law and the tight bounds which have

been established for time-sharing systems [5]. Linear,

exponential, and composite policy functions are presented as

exnmplen for our gFeneral rriiult. Criteria for the selection

of a par't icutar pI icy f ti,,Aion are also di JeI .ed J. If the

overall mean response time 1v used as a performance meiasure,

it is shown how the optimal policy function can be obtained

as a function of the service time distribution. Of course,

other performance measures, like the average number of

resident jobs with less or more than a certain amount of

attained service, may be chosen, but the closed form

expressions of our results permit the solution of a variety

Page 31

of different optimization problems.

The derivation of the response function involves the

non-Markovian early work process. Its analysis was

simplified by a decomposition method which is adaptable to

other models. Due to this method, the derivation does not

depend on the use of transforms and, thus, amplifies the

details of the internal system behavior. The constraint

F(a)<a on the policy functions arises from a comparison of

the busy periods of the unfinished work process and the

early work process. Our theorem illustrates how the notion

of preemption can be related to the busy periods of these

two processes.

The mathematical simplicity of the main result is

especially appealing. Nevertheless, policy functions which

are not constrained by F(a)!a should be analyzed since they

behave differently with respect to preemption. Also, the

consideration of memory requirements in the definition of a

policy function would extend the applicability of the model

to working set. mariagement problems. In any event, the

rel atinship betwven policy functions F(a)a, service time

distributions, and system response has been established and

can readily be used to optimize the response with respect to

a given performance criterion.

Page 32 p

GLOSSARY NOTATIO

F policy function, a (weakly) monotonic increasing

function of attained service, F(O)=O, F may be

discontinuous.

F' its derivative, a non-negative function which may

include Dirac's delta pulses.

: F - the inverse of F. For constant portions of F, i.e.

F(x)=c for yjx~z, the inverse is defined as

SF-'(c) z.

EX,E(X] the expectation of a random variable X.

I interarrival time, an exponentially distributed

random variable having mean 1/A.

A job arrival rate, X =1/EI.

j job number, J20. Jobs are numbered in order of

arrival.

I3 time between arrivals of jobs J-1 and J (JI),

Ij is exponentially distributed with mean 1/x.

' TJ arrival epoch of job j, T=Tj_, +Ij , To=0, Tj =ZI,.
k=l

* S service time, a random variable with distribution G.
se'v t. Lem zoquirement of' job J. Sj has

S.

distribution G.

G cumulative distribution function of S,SJ.

4 g density function of S,Sj ; g(s)=dG(s)/ds.

g may include Dirac's delta pulses.

Gc complement of G, Gc(s)=1-G(s), dGC (s)/ds=-g(s).

i| Sx truncated service time, S,:=min[S,x).

n job number of the test job.

.

Page 33

x service requirement of the test job, x=S, .

t arrival epoch of the test job, t=T n .

L residence time of the test job, L=R(t,x).

aj attained service of a resident job J<n at the test

job's departure epoch.

i time between arrivals of the test job n and a late

arrival (a job J>n), i=:T-t.

A attained service of a resident job j>n at the test

job's departure epoch.

system load, .=AES.

-U(t) unfinished work in system at time t, a stochastic

process.

U time average of the unfinished work in system,

~u=XEs2 /2(1-f) •

R(t,x) residence time of the test job, R(t,x)=W(t,x)+x.

W(t,x) waiting time of the test job, W(t,x)=R(t,x)-x,

W(t,x) V E n(t,x)+VL(t,x).

VL(t,x) early work encountered by test job.

VL(t,x) late work encount%-,ed by test job.

VA(t,x) difference between unfinished work and early work,

Vt-(t ,x) ((t) -V (t x .

Q(x) time average of a process Q(t,x) conditioned on x.

Q overall time average of process Q(t,x).

n(x) average density of jobs with x seconds of attained

service.

N time average of number of jobs in the system.

* - Page 34

The following identity for the rn-tb moments of the

* truncated service time can be derived by an integration by

* . parts:

x x
ESm f 8 g(s) ds + x'c (x) Jms G'(s) ds.

0 0

By definition, ES;,ES,, and ES., approaches ES for x-o.oo.

1. Athans, M., and Falb, P. L., Opia Cotrl

McGraw-Hill Book Co., New York, 1967.

2. Barlow, R. E., and Proschan, F., Mathematical Theory of:

Reliability, John Wiley and Sons, New York, 1965.

3. Bernstein, A. J., and Sharp, J. C., "A Policy-Driven

Scheduler for a Time-Sharing System," Comm. ACM, 14, 2,

74-78 (1971).

4. Feller, W., AEj Introduction 12 Probability Thor -an.

I" Applications, Volume II, Second Edition, John Wiley and

Sons, New Yo"k, 1971.

5. K Ie in ro ck , L ., Qu~q~inA& 1&m AjQZ, Volume II: Computer

Applications, John Wiley and Sons, New York 1976.

6. Levin, R. et al., "Policy/ Meehan ism Separation in

HYDRA," Proc. Fifth Symposium on Operating Systems

Principles, University of Texas, Austin, 132-140 (1975).

7. Little, J. D. C., "AProof for the Queuing Formula:

L=AW," Opns. Res., 9, 3, 383-387 (1961)..

*8. Lynch, H. W., and Page, J. B., "The OS/VS2 Release 2

System .Jour(es Manager," IBM Sybtems J., 13, 4, 274-291

(i9) Page 35

(1974).

9. Ruschitzka, M., "System Resource Management in a Time

Sharing Environment," Ph.D. dissertation, University of

California, Berkeley, November 1973.

10. Ruschitzka, M., and Fabry, R. S., "A Unifying Approach

to Scheduling," to appear in Comm. ACM in July 1977. Also

available as Report SOSAP-TR-14, Dept. of Computer Science,

Rutgers U., New Brunswick, New Jersey, June 1975.

11. Wolff, R. W., "Work-conserving Priorities," J. Appl.

Probability, 7, 2, 327-337 (1970).

12. Wolff, R. W., "Time Sharing with Priorities," SIAM J.

Appl. Math., 19, 3, 566-574 (1970).

7..

To be published in IEEE Transactions on Computers

* a.

REALIZATIONS OF SEQUENTIAL MACHINES
USING RANDOM ACCESS MEMORY

E.J. Wilkens

-7

Department of Computer Science
Hill Center for the Mathematical Sciences
Busch Campus
Rutgers University
New Brunswick, New Jersey

0

This research was partially supported by the Advanced Research
Projects Agency of the Department of Defense under Grant #DAJ-ClS-73-G6
to the Rutgers Project on Secure Systems and Automatic Programming

The views and conclusions contained in this document are those of the
* author and should not be interpreted as necessarily representing the

I: "

official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U. S. Government.

* I ,

TO BE PUBLISHED: IEEE TRANSAC..TONON COMPUT.ERS - .. .

REALIZATIONS OF SEQUENTIAL MACHINES
USING RANDOM ACCESS MEMORY

Abstract

Modern large scale integration techniques, microcomputers,

and programing techinques have made the classical realizations

of sequential machines obsolete. These applications of sequential

machines all occur in environments where random access memory,

whether read-only or writable, is an extremely cost effective

device. This paper presents a realization of a sequential machine

-which preserves the multiport branching characteristic of a

sequential machine. A structure theory and a design technique

are presented which allow an optimal memory size realization to

be found.

i,•

!.

Kd- --- --

1. INTRODUCTION

Among the many facets *of system design, one which has been and will

*continue to be a fruitful area of study is the implementation of control.

Control may be considered on various levels. Several examples are micro-

* programmned control of a central processing unit, microcomputer control of

heardware systems, and logical control of programmed systems. This paper

examines efficient realizations of sequential machines implemented as.

tables stored in random access memory, which makes application to any or

* all of the above control examples possible.

Sholl [1] has studied the application of a sequential machine to

control of a microprogram, that part which determines the next address of

the microprogram, as opposed to optimization of the control information

I field, which has been studied by Grasselli and Montanani [2). (Unfortunate-

- ly the word control is used at two levels here since in fact we are dis-

*cussing the internal control of a microprocessor which in turn is being

used to control the larger CPU.) Sholl developed a representation of a sequen-

tial machine used in place of the conventional next address field and branching

* operations in microprocessors to achieve a speed advantage. The representa-

tion to be presented here fits into Sholl's model, retaining the speed

advantage but having different implementation and memory space characteristics.

A rapid rise in the use of microcomputer control of hardware systems is

J a result of an ever decreasing crossover point in the costs of microcomputers

compared to TTL controllers. This crossover occurs in the range of 30 to 50

ETTL circuits in today's technology [3]. As a result, the predominant users of

microcomputers are electronic design engineers (4]. Therefore, the use

of sequential machines as a programming technique for microcomputers fits

* in quite well with the backgrounds of the typical users. Provision of a

good specification language and an automatic optimizer provides a "higher

WA level language" with inefficiency problems removed, since optimization of

a sequential machine is easier than compiler code optimization..

Many authors have applied sequential machines to the logical control of

u large programs. For example, fillenson [5] describes their application to the

control of psychological experiments. The realizations considered here are

applicable to such programmed control.

The problem of assignment of binary variable codes to the internal

states of a machine to allow its realization to approach some measure of

optima-lity has received considerable attention, especially for implementa-

*tions using combinational circuits and Flip-Flops [61-[9].. Sholl (1] intro-

* duced the use of memory in the implementation of a sequential machine.

This paper continues the investigation of the use of memory in the

implementation of a sequential machine, but with a representation with very

different properties than Shall's. The task is to code a reduced sequential

machine into a format capable of being loaded into a random access memory.

A table representation will be used since tables may be stored in random

access memories efficiently.

* Figure I shows a conceptual interpreter and table implementation of a

of a sequential machine. An input causes the present state to be read from

state storage. The input and present state form an index into the table

* containing the next-state and output functions. The next-state is read

from the table and written into state storage, while the output is used

appropriately.

-3-

In Sholl's realization, the interpreter is an address computation

combinational network, with state and input as network inputs, and the

address of the next-state, output pair as the network output. The state

assignment has an effect on memory redundancy and network complexity.

His approach sacrifices a small amount of redundancy in order to achieve

a low level of network complexity. This is done by using a "minimum address

variable assignment", which has one table entry for each defined state table

cell. He has achieved a speed advantage over programmed or microprogram

branch implementations since this technique may be considered a "multiport

branch"[l].

The method considered in this paper decomposes the sequential machine

into a sub-table per input, with an additional table of pointers to these

sub-tables. Although the sequential machine is reduced, there may be

pairs of states with identical entries in a single input sub-table. In

addition, there may be some don't-care entries. It is assumed that the

next-state and output entries are either both don't-care or both specified.

Such a don't-care occurs when the input is externally constrained not to

occur while the sequential machine is in a particular state. The output

is never specified without the next-state since, if the transition can

* never occur, neither can the output, and conversely, if the transition

occurs, an output is always significant. The output can be null, or no

operation, which is distinct from don't-care.
0

Output or next-state only don't-cares are widely treated in the switch-

ing theory literature. However, in the state table applications mentioned

above and others, such-don't-cares were not used. Since these single
ddon't-cares give added complexity to the problem, they are not treated here.

S

-- .. - - . . - - , . -- -,. ,- . - -_ . -. -t_ _ , . _

-4-

If the input is known, then there is redundancy in the information

provided by the state. For example, it is never necessary to identify a

state whose entry is don't-care, nor is it necessary to distinguish between

two states with the same entries. Providing memory locations for this

redundant information is wasteful. A state encoding scheme that

allow identification of a unique entry in the table is desirable. That

is, the original sequential machine is transformed to a table with

only one occurrence of each distinct entry in each input sub-table.

Consider Figure 2. The input sub-table corresponding to input 1

must contain four entries, one for each of 1A, 3A, 5A and 5B. Similarly,

the input 4 sub-table must contain two entries. The state number no longer

V provides a direct index to the sub-tables. For example, if the machine

is in state 7 and input 1 is received, there is no 7th entry in the input

1 sub-table. A mapping algorithm from the state to the input sub-table

indices is needed. The method adopted here for its simplicity of use is

to encode the states using binary variables yly 2 ...Yn such that for each

input there exists a substring of these binary variables which can be

used as an index into the corresponding input sub-table. Figure 3 shows

an appropriate encoding of the states of Figure 2. Since the I, sub-table

has four entries, the I, substring should have four distinct codes, which

are 00, 01, 10, and 11 under variables y2y3. Note that the 12 substring

Y|Y 2 has exactly three values. In addition, values of yy 2 for any two

states are the same if and only if the entries of those two states are the

same or one or both is don't-care under input 2 in Figure 2. Thus states 1

and 4 have the ylY2 value 00. Under input 2 state 1 is don't care

and state 4 is 5A. Figure 4 shows the tables which ultimately realize the

machine of Figure 2.

Sr

I-"I

4 -5-

As an example, consider the machine to be in state 5. Thus 1010 is in the

state storage. If input I. is received, the yly 2 variables are read and used

to index the 12 sub-table. The binary 10 is equivalent to decimal 2,

thus 2 is added to the sub-table pointer for input 2, and TABLE +6 is read.

The entry 0001 A is the encoding for 4A, which is the proper state 5, input

2 entry. If input 14 is received, bit y1 is 1, 1 to be added to the 14
sub-table pointer, TABLE +11. Thus, TABLE +12 is read, giving 1010 A, which

is equivalent to 5A. In each case, the state portion of the entry is written

in its entirety back into state storage. The output might be the address

of an output routine or an index into a branch table, etc. The assump-

tion made here is that the interpreter for the substring encoding is either

software or a circuit which for each input masks the appropriate bits,

shifts them to the right, and uses them as an index into the sub-table. By

using such a circuit or software, there is less custom designed circuitry,

none in the case of the software interpreter, and a circuit amenable to

possible LSI integration with only the final mask and shift quantities to

be determined for the individual state table, perhaps to be loaded into a

Read Only Memory. Figure 5 shows a possible hardware implementation, while

Figure 6 shows a PL/I implementation. Note that this implementation re-

tains the same "multiport branch" capability as the Sholl realization.

A technique used in the work presented here, which is general enough

to appear applicable to other problems, is the method of treating don't-

care conditions. The approach followed is to formulate representations of

information by means of constructs called partitions-with-don't-cares

(PDCs) which include all specified information, but allow nonspecified In-

formation (don't cares) to take on all possible values. These constructs are

constrained to be compact (nonenumerative) and to possess a set of rules

to allow enumeration of the set of fully specified entities represented by the

4 -6-

construct. Rules are also provided for generation of such constructs by

operations on other such constructs. Such a technique, if utilized fully,

would prevent enumeration as a synthesis technique. In the work presented

this technique is extensively used, but it has not been applied to all the

synthesis steps.

The PDC construct is used throughout the synthesis procedure. In

places, operators produce only a single PDC as a result. In other places,

use must be made of limited enumeration. These techniques make possible e

the optimization of larger state tables by a programmed version of the

procedure than has been previously reported. A program, which does not

yet incorporate all the features of the procedure presented here has

successfully optimized a 9 state, 5 input machine in 2.3 seconds, and the

7 state, 4 input machine shown in this paper in 1.5 seconds in an IBM

370/168.

Introduction of all the features presented here should speed it up

considerably. This program does, however, contain some enumeration prun-

* ing techniques which are not presented here in order to allow a sufficiently

small example whose solution may be completely described to serve as an

expository vehicle. The techniques not presented would not prune the

present example to any significant degree. They will be presented in a sub-

* sequent paper dealing with such techniques for computer implementation of

the synthesis procedure.

, -7--

II. PARTITIONS WITH DON'T-CARES

This section introduces concepts that will be used in finding the

state encoding introduced in Section1. These concepts are extensions of

partition theory [6], and with which reader familiarity is assumed.

Definition 1. A partition with don't-cares (PDC) of a set S is a collection

of disjoint subsets of S whose set union is S, one subset of which is dis-

tinguished and may be empty.

Conventions used in denoting PDCs are that blocks

are enclosed in parentheses and the distinguished block is enclosed in < >.

For example (l,2)(3,5)(4,6)<7,8> is a 3-block POC on S = [1,2,3,4,5,6,7,8)

with a distinguished block <7,8> and blocks (1,2), (3,5), (4,6). Blocks of

a PDC v are also denoted by Bi(r). Bd(w) denotes the distinguished block.

A PDC with an empty distinguished block is a partition. # (i) is the number.

of non-distinguished blocks in w. The motivation for this definition

of a PDC is the fact that many problems involving don't-care conditions

induce equivalence relations on sets, with the exception of those members

of the sets designated by don't-cares. Since a true partition would

specify information about the members to be considered don't-care, it is

desirable to define i structure with the ability to leave some elements

unspecified. Furt , ore, it is considered that the equivalence relation

on the specified members of the set determines the maximum of information the

PDC should generate. That is, the distinguished block is to be treated not as

a true block, but as a subset which may be distributed arbitrarily over the

specified blocks. Thus the PDC i in reality defines a set of partitions,

4denoted by G(r), generated by distributing the.distinguished block over the

-. -

-8-

other blocks of the PDC in all possible ways.

Definition 2. A PDC I is less specified than a PDC f2 OrI !s52) if and

only if

1) Each nondistinguished block of rl is contained in a nondistinguished

block of w2 and

2) Every nondistinguished block of v contains exactly one non-

distinguished block of w,.

Definition 3. The set of partitions generated by w, G(r), is

{TIT is a partition and w s-0.

6* -Thus, if wl = (1,4)(2)<3,5> then G(wl) is the set of partitions (1,3,4,5)(2),

(1,4)(2,3,5),(l,3,4)(2,5), and (1,4,5)(2,3).

In general, problems with don't-care conditions generate PDCs initially.

Good encodings for the problem under consideration can then be achieved by

assigning don't cares judiciously, without interfering with the original in-

formation content. Thus the specification ordering gives a method of assign-

ing don't-cares without destroying original information. If w1 5s w2 then

G(T2) a G(w]). Thus, specifying additional elements reduces the size of the

set generated.

Definition 4. The relation less than or equal to holds between two PDCs

T1 and 1F2 (wl : w2) if and only if 1) for every Bi(wi), i f d, there

exists a B (2) such that BI(, I) £ BJ(w,) u Bd(w2), and 2) if there exists

a set (BJ(w 2)tJ t d and BJ(W 2) £ Bd(wl)} then there exists a set

(Bi(w 1)lI # d and Bi(nl) £ Bd(2) of equal or greater cardinality than

(Bj

r

If the w, and are partitions, this definition reduces to the conven-.

tional ordering relation between two partitions.

The following theorems show that w, if and only if in the sets

G(iI) and G(n2) of fully specified partitions there exists at least one pair
(TIT2)9 T1 e Gicl) and 2 z G(w2) such that T,1 TV

Theorem 1 If T, and T2 are partitions and v, and w2 are PDCs such that

- 1 s '29 T1 c G(), and T2 e G(72), then v, 5 '2.

*Proof: Condition 1:

i " 2 implies that for every Bi(T 1) there exists a B (.2) such that

* B 1 s(r1) B2 Terefor (vry BB(r t e u
BIIT Bj(T2)1. Therefore B i(Wl 8 il) S Bj(T 2) c Bj(12) u Bd(, 2).

Condition 2: Consider'Bj(i 2) £ Bd(i1). '1 • '2 implies that for every
(Bjl2) there exists a Bi(-rl) such that B(rI) _T B (T2). Then B (r1)_ Bi(l)

-" £,(T2) - Bj(w 2) u Bd(2) £ Bd(11) u Bd(v2). Therefore Bt(wI) E Bd(w2).

Since Bi(n1) and Bi(2) are both contained in B (T2) and no other block of

w '2 is contained in Bj(.2), there are at least as many Bi(7r1) contained in

Bd(12) as there are B(ir2) contained in Bd(i1).

.: Theorem 2 If 1 and '2 are PDCs such that ,1 s 2 ,then there exist -

partitions T, and '2 such that T, a '(i1)* T2 2 G "(). and r1 :9

Proof: Consider BJ(w2) such that B(w 2)), Bd(il). There is a non-empty

set A = {(Bi1) 1 Bti1 11) n B P, 2) f 41. Let B(r2) =uA Bi(w 1). Let Bi(..

BitI) for all B(w 1) C A. Finally, add each s t B.j(w 2) n Rd(i1) arbitraril y- ---
to one of the blocks B 1(-r) formed from A. Bi(- 1) E .(T 2) for all blocks of

A- TI and '2 formed In this manner.0
_ _ _- _

-10-

Consider Bj(i 2) such that Rli 2) E B(wl). For each such B.(w 2)

choose'a different block BI(11) such that Bi(. l) E Bd(n2). There are always

more such Bi (Iri) than B (1r2) since w, < TV" Let Bi(.r) = Bj(r 2) =Bl~ I) u

BJ(12). Obviously Bi(- l) S Ri(r 2) for all blocks thus formed.

Some blocks Bi (Yl) may remain which have not yet been in-

cluded in a block of T, and such that Bi(7rl) E Bd (lr2. Add each such Bi { I
)

to any existing block of T. and let Bi(Tl) = Bi{rl). Thus there exists a

B j(r2) such that Bi(TI) Bi(T2).

Finally, only members of Bd(ll) n Bd(n 2) remain to be assiqned to a

block of T, and T2 . Add each s c Bd(N1) n Bd(12) to any block Bi(T 1) and

to the block B (T2) which contains B(TI). Thus the resulting block of TI

is still contained in the block of T

Each block of T, and T2 contains, by the method of construction, only

a single block of 1 and 2 respectively Plus elements of Bd(1) and Bd(1r9)

respectively. Thus, T, c G(w1) and T2 G(2). Since for each block

B(T 1) there exists a Bj(T 2) such that B(T1) _£ Bj(T2)9 T1 < T2.

The next theorem shows that condition 2 of the definition of w, : 12

* iis necessary for the existence of the generated partitions for which

s holds.

Theorem 3 If w, and 12 are POCs such that for every Bi(11), i / d, there

* exists a B such that Bi(11) _c Bj(2) u Bd(.), and if the set

(BJ(w2)I B3(w 2) E Bd(7l)} is of greater cardinality than the set

(Bi(wl)I Bi(wI) E Bd(w2)}, then there is no pair (T1,12) such that

* (1 • it)"1 G() 2 r2) and (1 ,9 T2"

*'

-J - . - ~.. ..

Proof: Each of the blocks of the set (Bj(w 2)} mentioned above must be com-

bined with a block of the set (B1(rl mentioned above in both I1 and T2 so

that B1(c1) s B.(r However, there are more such blocks of T2. Thus, at
r least one block of T2 has no block of v1 contained in it. Since each block

of T, GI) contains one block of wI" no block of T, is contained in that

block of Tc. Thus T, X T2 for all 1 I G(r1) and T2 c G(v2).

Theorem 4 If I1 <s S2 then v2 S 1.

Proof: Wl < 1 2 implies that for every Bi-(wl) there exists a unique

BJ(w2) such that Bi(r 1) ' Bj(N2). Since Bj(w)2 is unique, Blw2) (w

B (w1)U Bd(7l). The sets' {Bi (7,)I Bi(w 1) €_ Bd(7 2)} and (BJ(W2)I

Bj(w 2) E Bd(l)) are empty. Therefore T2 s via

-4

1--- --. -~ -~ " " -- --_... j _,

-12-

III. FORMALIZATION OF TABLE REALIZATION

In this section the concepts of a table realization are formalized.

A "don't-care" will be denoted by "-" and a null output by 6.

Definition 5 A sequential machine is a 5-tuple <S,I,O,6,X>, where S is 0

a finite set of states, I is a finite set of inputs, 0 is a finite set of

outputs, a is a function from S x I into S u (-}, and X is a function from

S x I into 0 u {-}, with the restriction that, for all s S and i c I,

8(s,i) = - if and only if x(s,i) = -.

The restriction on 8 and X reflects the informal discussion of the

previous section which stated that transitions and outDuts should be specified

*. or unspecified together and not independently.

Definition 6. A table realization of a sequential machine <S,I,O,6,XL> is a

triple <J,&,T>, where J is a set of index sets, Ji each of which is a

finite subset of integers, for each i c I, & is a set of state mapping

functions &i for each i e I from S onto Jl, and T is a set of input sub-table

functions T. for each i c I from J into S x 0, subject to the constraints

that 1) for any I, {i(sj) ' Ci(sk) implies that either 6(sil) = 6(sk,i).

and (sj,) =X(Sk-) or one of the a's is a don't-care, and 2) for all

Sa I and all j e Ji9 Ti(j) - (a(si), x(s,i) where s is such that

CI{$) .j and 6(s,i) is not a don't-care.

4 The set T is the set of input subtables, each entry of which is a

next-state.and an output. Thus the functipn T from J into S x 0 is simply

the natural function from a table index onto the table entry. The J are

r

-13-

the sets of indices used for each input subtable and Ci is a function from

1iJ the state of the sequential machine onto the proper index to be used for

that state under input i. Figures 3 and 4 illustrate a table realization

of Figure 2. J= 3 = (0,1,2,3,1, J2 = (0,1,21 J4C {0,11 as can be seen

from either the state encoding or the input subtables. The Ei functions are

given by the state encoding by reading the proper substring of the state for

i. Thus &1(1) = EI(3).= c1(4) = OCl(5) = c1(6) = 1. EI(2) = 2, t1(7) = 3.

The usual state table specification of a sequential machine is a table

realization in which Ji = S for all i, the &i functions are identity functions,

and each Ti is simply the i'th column of the state table. It is clear from the

example given that the T. function is intended to be realized by a table, while

the c is intended to be realized by an algorithm. The reading of a substring

of the state variables is such an algorithm.

Definition 7. Each indexing function Ci induces an input table partition Ti

on the state set S of a sequential machine such that sj,sk c Bt(Ti) if and only

if (sj) = Sk)-

Definition 8. For each input i of a sequential machine, 6 and X induce an

4 input PDC ni on the state set S such that

1) sPs k c Bt(w i) if and only if 6(s~ii) and 6(sk,i) are both spec-

fied and 6(s3 ,i) = 8(s k#) and x(siI) = X(skul)9 and

2) sj c Bd(wi) if and only if 6(sji,) - -

4'

(- ,',

Input table partitions are a means of analysis of table realizations. P

of sequential machines by giving an algebraic characterization of the

realization. On the other hand the input POC introduce a synthesis re-

quirement, as will be shown below. That is, the wi's are PDCs to which a

realization's Ti's will have to conform. It is shown below that any

table realization must have ri ! wi, while for a minimal table entry table

realization wi 5s Ti.

Theorem 5 A partition Ti is an input table partition induced by Ei of a

sequential machine <S,I,0,6,X> if and only if Ti 5 wit where ni is the

input PDC generated by 6 and x under input i.

Proof: If Ti is an input table partition then sask E BY-ri) implies

(sj) - S.This in turn implies that either S(s.,i) = s and

(S;).)- X(S ks i). in which case sit sk c Bm(ni) for some m j d or

s(sj~l) or a(sk,i)'is don't care, in which case s5j or sk is in Bd ni). Therefore

B (i) Bm(iri) u Bd(ri) and, since Bd(Ti) , Ti

If i s i then, for every J, there exists a k such that Bj(-ri) S

Bd(iJ. If (Ti) then either 1) both sL, sm c Bk(i1)

in which case 8(s.i) 6(smi) and X(s,,i) = A(sm.)l; or 2) one or the

other or both st ors. c d(t), in which case 6(s ,A) a - or 6(s.,i) = -

Therefore rT is generated by a Ct component of a table realization.

Theorem 6 The number oftable entries in T to realize a sequential machine

is minimum if and only if, for every i. vi ss Ti.

Proof: The number of table entries in T is the sum of the number of blocks

of the Ti partitions. Each TI and wi are only dependent on 6 and X restricted

to input i, and are therefore independent of other T's and v's. Thus the

number of blocks of each TI may be minimized independently.

If Is an input table partition then -i s wi. Therefore Ti has at

least as many blocks as wi" If vi Ss i then Ti has exactly the same number of

blocks as wi, which is the minimum possible. Also, wi ss i Implies T t 9 Wi,

and TI-results in a minimum entry table.

If Ti s vi and vI has a minimum number of blocks, then the number of

blocks of Ti and vi are the same. Also, for each B,(Ti) there exists a Bk(TI)

such that B.(T.) 8 u Since the number of blocks are the same,

the J-k correspondence Is unique. Therefore for every Bk(!r) there exists a

B,(T-) such that Bk(i) £ B.(T i) and each B.(T.) contains exactly one block of
*j I 3k 31

1W i. Thus vt ss T"

Theorems 5 and 6 show that in order to find a partition Ti to give a'

minimum size table T, any member of G(vi) may be chosen for each input PDC wi.

Definition 9. An encoding E(p) of a partition p on S is a binary matrix of

dimensions #(S) x e, such that si and s are members of

Bk(p) if and only if row i and row j of E(p) are identical.

The encoding E(S) is a particular case of E(p) where p Is the trivial

zero partition of S (each s c S is in its own block). "

Definition IQ An encoding of a string of partitions E(plP 2...pk), is formed

* from the encodings E(pi) of the individual partitions ;s follows:

1) E(pl...pk) - E(pl) if k I

2) E(PlP2...pk) , E(PlP2... Pk-) augmented by E(pk).

-16-

S------By-convention, a string PlP2...Pk will be informally referred to as an

- encoding, while what is meant is E(PlP 2...pk).

A minimum table entry realization may be easily constructed for any

*- sequential machine. Arbitrarily choose a Ti E G(wi) for each i c I. Choose a
1

minimum bit E(Ti). The number of bits needed for each row of E(Ti) is

Flog2(#(wi))l. Let E(S) = E(TIT2...r#(1)). The substring contributed by

each Ti is used to index each input subtable Ti.

Figure 7 shows such an encoding applied to the machine of Figure 2.

The machine which was encoded in four bits in Figure 3 has been encoded

in seven bits in Figure 7 because no sharing of bits was used. Finally,

Figure 8 lists the input table partitions for Figure 3.

Since each i of Figure 7 is less specified than the corresponding i

of Figure 8, the table realization of Figure 3 is a minimum entry table

realization. The primary means of reducing the number of bits in the

encoding, and consequently in each entry of the table, is to share the bits

of the encoding among several inputs. It may also be noted that the Ti 's

of Figure 3 are very different from those of Figure 7. It is the judicious

choice of the Ti's that allows the sharing of bits. The following sections

describe , ethods of choosing Ti's to give maximum or near maximum sharinq of bits.

By using the concepts developed thus far, several bounds on the result-

ing table realization may be easily calculated:

_0

0

.... I

Size of E(S) with
Table size min. table size

Maximum #(S)X#(I) r Flog 2(#(i))1ici

Minimum i rlog2(#(s))1

iI .

Te

_ic

W-7

Q
-

-18-

IV. SHARING OF CODE BITS BETWEEN INPUT PDCS 2

So far, sharing of code bits has been mentioned, but only informally.

Sharing of code bits between input PDCs must be done at a finer level

than input partitions, and so a suitable algebraic structure is needed.

In order to analyze and synthesize the sharing of partitions in the en-

coding of two or more -' s, operations on partitions must be defined.

It is assumed that conventional partition operations and properties are

understood by the reader [61.

Definition 11. An encoding of a string of partitions E(plp 2...pk) is

said to be a minimum table-size subset encoding of a sequential machine if

and only if for each input PDC i there exists a subset Ri of {PI"""Pk}

called a row set such that niTs R pj.
SeR

Definition 12. A subset encoding Plp2."'Pk of input PDCs 71 through -on'

where n is the number of inputs, defines k sets of PDCs, called column

sets (Cj,l~ij:k) such that C = {WiljcRi}.

A row set R. is simply the set of ps used to encode a specific n i, and a

column set Cj is simply the ws in whose encoding p. is used.

In the example of Figure 3, p1 through p4 are each induced on the state

set by each of the bits of the encoding yl through Y4 respectively.

- (1,2,4.6,7)(3,S)

P2 ' (1,3,4,S,6)(2,7)

0 P3 ' (1,2,3,4)(5.6,7)

P4 (1,2,3,S)(4,6,7)

S[

-19-

R= {o2, 3 } I 5 sP 2 'p 3 CI = {Z 2 ,l4}

R2= {pl'"2) 7r2sPI*P2 C2 = {W1*t2)

3 = {03,Q4} 73 sp3 "p4 C3 = (1 ,vr3)

R4 = {Pl) r4<s 1 C4 W (= r31

Definition 13. A minimum bit, minimum table-size subset encoding of a

sequential machine is a minimum table-size substring encoding such that

I) r log2 #(Pi)l is less than or equal to the same summation for all
i

other minimum table-size substring encodings of the same machine, and

2) for all !r' rlog2 # ()1 = . R log2 #(pj).
pjei

. Lemma I[6]. If p = p 1 p 2 then p 5 pit p S P2.

j Any subset of an encoding may be used for an Ii. For example, in p1 2p 3p 4 ,

if p1 -P2 = T then p1P2 may be used for II. A possible use of p102304

may be shown diagramatically as:

p1 P2 P3 04

10 1 1 0

I2 1 1 0 0

" 3 0 0 1 1

1 0 0 0

The concatenated partitions of the encoding are listed across the top, the

input table partitions on the side.-4nd the subset corresponding to each

input table partition has-T FUndrach ised for it. This diagram is

called an encoding profile. .. w -, - -

-20-

I Lemma 2[6]. The sum of two partitions p1 + P2 is the least upper bound

of P, and

Theorem 7. If a partition p can be shared by input partitions Ti and T.

then i + T p.

Proof: Since the sharing of p implies there cxists T.' and r.' such that

T. W '.p and T = r'p, it follows that T. ! p and rj < p. Since

ST + -r. is the least upper bound of T. and -r, T. + r. < p.

Theorem 8. Consider a minimum table-size subset encoding E(plp 2... k).

Let T P. for every i in the set of inputs. For eachI- pj R. 3

component partition p1 of the encoding,

Tii :5 P
j

Proof: Since Pj appears as part of the encoding of all Ti where 1:TCj,

r Ti. for all %cC.. Since the sum of partitions is the least upper bound

of the partitions, and pj is an upper bound.on all the ri for s cCj, I T Sp..
1 Ji~.'C1 i*

The theorems of this section thus far have primarily dealt with partitions

induced by an encoding, and the properties of these partitions. They give

little help in finding such an encoding from the input PDCs. Operations that

lead toward such an encoding are considered next.

In order to discover the ways in which two PDCs, I and w2' may share a

partition p in an encoding, enumeration of every p greater than or equal to

Mon-
• . _+

-21-

the sums rk+I for all (Tk,s) in G(-a) XG(2) may be performed. How-

ever, a "closed form" of this set of partitions, just as a PDC w. is a
1

"closed form" of the set G(7i), is of greater value. It is this set of

partitions that is considered the sum of two PDCs. This sum must pre-

serve the characteristics which are considered essential in the encoding

desired. Specifically, minimum table size is to be preserved. The major

problem is that each of the two PDCs to be added have, in general, different,

distinguished blocks. Because of this fact, every block of wl + v2 must contain

at least one block of wl and one block of '2 " This requirement arises from

the objective of minimum table size. If, by taking the sum of two PDCs, a

block is introduced in which no block of one PDC is contained, then no matter

what partition the sum is combined with by the product operation, that block

will stay distinct, since the product operation tends to split blocks, not

join them. Therefore, in the final encoding there will be a block which is

entirely don't-care for that input, and a table entry will be wasted. Stated

more formally, w Js T since one block of T has no block of = contained in it.

The definition of the sum of two PDCs is a simple extension of the sum of

two partitions.

Definition 14. The sum of two PDCs, P = + v on a set S is a PDC such that

1) si and sj are in the same non-distinguished block of ' if and only if there

exists a sequence in S, si = S0Sl,...,sn = sj for which, for 0 s L s n-1, s,

and s +1 are in the same non-distinguished block of either v or 2 and 2) st

and s are in the distinguished block of If and only if they are in the dis-

tinguished blocks of both w, and w2 .
.... -

-22-

St V

Example: v1 = (1,2)(3)(4)(5)(6)<7,8,9>

'2 a (l)(2)(3,4)(7)<5,6,8,9>

* (1,2)(3,4)(5)(6)(7)<8,9>

This definition of the sum brings together in one block any states that

are in the same blocks of either w or '2' but it does not achieve the other

requirement for preserving minimum table size, since every block of , does not

contain a block of both il and 72" In the example, (7) contains no block of

WV and both (5) and (6) contain no block of '2* By the method of computing

the t relation will never hold between , and w1 if i 2 has blocks contained in

Bd(=l). The . relation between PDCs holds if and only if there exists a pair

of partitions in the sets generated by the PDCs between which the : relation

holds. In order to share code bits between two inputs, the 5 relation must hold

between the Ts used for those inputs and p. Thus it is essential that if a sum

is to be used in finding sharing qpportunities, then the 5 relation must be made

- to hold. In order to achieve this the concepts of quotients and block size sets

* are now introduced.

Definition 15. The relation weakly less than or equal holds between two PDCs

_-- .w and. 2(w1 i ,w) If and only if for every si(wl), i I d, there exists a Bj(w 2).

such that Bt(i 1) Bj(r 2) u Bd(12).

o- The weakly less than or equal relation does not require any relationship

.* between the blocks entirely contained in the other PDC's distinguished block.

As Theorem 3 has proven, this relation does not guarantee the existence of

generated partitions between which the less than or equal relation holds.

6~

-23-

Theorem 9. If i 1 and 712 are PDCs on S and , = % 2 then v, ! w and w2 : w

Definitirin 16. If it and ' are PDCs on S and w < then j defines a quotient PDC

'/i on the. blocks of 1t and the members of the distinguished block of it such that

if a and B are either Bi(IT) or {si Isi c Bd(w)} then a and a are in the same

block of */w if and only if a and B are contained in the same block of '.

Example: w3.= (l,2,3)(4,5)(6)(7)(8)<9,l0,ll>

w4 = (l)(3)(4,6)(9)<2,5,7,8,10,11>

1 = (l,2,3)(4,5,6)(7)(8)(9)<l0,11>

/,3 = 2,3))((4,5)(6))((7))((8))(<9>)<10,11>

f/4 = ((1)(3)<2>)((4,6)<5>)(<7>)(<8>)((9))<10,11>

The notation used simply breaks up each block of ' into its component

blocks and don't-care states of w3 or i 4 Thus, the block ((l)(3)<2>) of

'/t4 shows that the non-distinguished blocks (1) and,(3) plus the member <2>

of the distinguished block of u2 are contained in block (1,2,3) of 0.

Definition 19. If 7r and are PDCs such that v < then the block size set of

the quotient PDC, BSS (*/7), is an array of integers ai such that a is the

number of non-distinguished blocks in B,(*/fi).

Example: (continued)

BSS(,/7 3) E 1,2,1,1,0

-SS(, / 4) 2,1,0,0,1

t -4

S

-24-

Theorem 10 If = + w2 9 5 ,' and Bd(W') BdW(), then wI P if and

only if BSS('/f1) includes no zeros. (Similarly for 2)"

Proof: There are no non-distinguished blocks of w1 contained in Bd(p) by the

method of construction of '. Since Bd('') c Bd(') there are no non-distinguished

blocks of w1 contained in Bd().

If 51 ' then, by the definition of 5, since no non-distinguished

blocks of w are contained in Bd{''), no non-distinguished blocks of p' are

contained in Bd(wl). Therefore, for each B(W') there is at least one B(W l)d .1
such that B.(1 I) c Bj('') u Bd(P'). By the method of constructing ' and the

fact that ' P 0' it follows that B.(n) c Bie'W) and thus the ith element of

BSS('/rl) is at least 1. Thus no element of BSS('/wl) is zero.

If BSS(O'/irl) contains no zeros, no non-distinguished block of , is

contained in Bd(l). The construction of = i + W2 assures that for each

Bi(i) there exists a.j such that Bi(i l) .Bj(l). Since 5 s ', and

Bd(*') E Bd() there exists a B (W) such that Bi(irl) cBj(',). Therefore,

'1 s '.

TheoremlO provides a method of constructing PDCs {1) from a sum of two

PDCs w1 and w2 such that 'l and w2 are less than or equal to the PDCs, allowing

the potential sharing of partitions generated from (*,' between partitions

generated from T1 and w2" Since w1 + '2 =' 'P 4", and B G E B G)
2* 1 2d -d

we.must construct 4' by joininq blocks of toform blocks of '' such

that no block of *' has a zero in the block size'set of the quotient of

*- either I or '2" This joining can be done by considering only the block

size sets of w and w2' treating their elements as pairs, and adding together r

*I
-. - *

,I

-25-

elements of the block size sets in order to eliminate zeros from the resulting

block size sets. For example, it can be seen from BSS(*/n3) and BSS(O/w4)

that if the fourth and fifth elements are joined and the first and third

elements are joined, the resulting BSSs have no zeros. Thus BSS(*'/n 3) = 2,2,1
and BSS(4'/ 4) = 2,1,1. By Joining the corresponding blocks of p, the result

(1,2,3,7) (4,5,6) (8,9) <10,11> is realized. Figure 9

sunmmarizes all of the upper bounds on such Ih for w and 74 " Every other

with similar properties can be shown to be greater than one of those

listed, while the less than or equal relation does not hold between any
pairs of 0' given.

By means of sums of pairs of input PDCs,all those PDCs which can

be shared by each pair can be found. An additional constraint must be

applied to these POCs to guarantee that the second condition of minimum

bit, minimum table size definition is not impossible to satisfy. This

condition is that the number of bits needed to encode the substring

used for each input must be equal to the smallest number of bits required

to encode that input partition. Consider the w3 ' r4 example as an appli-

cation of this constraint. Since 3 has 5 blocks it needs three bits to

encode.

Similarly 4 needs 2 bits. The number of bits needed in the shared

encoding is the log of the number of non-distinguished blocks in the

0 shared PDC plus the log of the maximum block size set element in the

quotient. Figure 10 summarizes these statistics for the t's found for

3 and 4

m'

--2-

Note that the fact that one of the lower bounds doesn't satisfy

condition 2 does not preclude a larger PDC from satisfying it. The BSS

provides enough information for deciding. For example, the first ',

(172,3) (4,5,6) (7,8,9)<10,11> does not satisfy condition 2.

The BSSs are 1,2,2 and 2,1,1. The number of bits used for w3 and w4

by this PDC are 3 and 3 respectively. W 4 must use only 2. The quotients

each use 1 bit. Producing a larger PDC can only join blocks. Thus the

quotients remain the same or larger. However, if the number of blocks in p is

reduced to 2, the number of bits in the quotient may become 2 for w3

and remain 1 for w4. Thus the problem becomes one of combining elements

of the BSSs in such a way that the BSS(p/w3) elements do not go above 4

and the BSS(G/n4) do not go above 2. There is only one way in which

this can be done, by combing the second and third blocks, giving

(1,2,3) (4,5,6,7,8,9) <10,11> , and BSS(P'/T 3) = 1,4, BSS(W/7 4) = 2,2.

The follcving definition formalizes the constraints on PDCs shared

between two or more input PDCs. The extension from two to more than two

is a simple generalization. PDCs which are themselves sums of input PDCs

may be added to give PDCs which may be shared between all components of the

sum, provided a suitable encoding string can be found.

n
Definition 1A. Let 0 = 7wi. Then * is compatible with i for 1 : i !5 n

i--I

if and only if there exists a *' such that, * ! *', Bd(') c B d(J), and, for

1 r -i r1all I rog(#() + log2(max(BSS('/vi) = 1og 2#(Ni) and no element

of BSS(*'/ 1) = 0. Any such *' is said to be completely compatible.

The definition of compatibility leads, in the general case, to ar!

enumerative search for a ' with the properties listed. This search, while

- *---....

! " -27-

t

difficult in general, may be eliminated if the existence or impossibility
4I

of such a ' may be established by the application of several theorems.

Consider l + w2 and let S,2 be the set of blocks of 0 with

both non-zero BSS elements, Sl the set of blocks with zero elements in

BSS (*/I2), and S2 those with zero elements in BSS (*/rr). The largest

number of blocks a p' which satisfies compatibility may have is #(S2) +

min(#(S1),#(S2)) since no elements of the BSSs may be zero. It is an easy

task to find if a *' with that many blocks exists. Let c = Flog2 ((#(S 12) +

min(#(S1), #(S2)))l be the number of bits used in common between 7t and i2 with

such a *'. Then r1 = rlog 2(#(7l))1-c is the number of bits which remain to

encode ni, while r2 = Flog2(#(w2))1-c is the number of bits which remain to
encode r2" Assume without loss of generality that #(Sl) #(S2). Then the blocks

of i with non-zero elements in BSS(/w 1) are not combined at all, and blocks of

S, are each combined with a block of S2 Only blocks of in excess of #($1)

remain to be combined with other blocks. These blocks all have elements in

BSS(*/7 1) of zero, and therefore do not effect compatibility with w1. In

addition, they have elements of 1 in BSS(/ 2), and therefore are arbitrarily

distributable in any blocks of ip with room for more n2 blocks. The amount

of room in each block B. is simply 2r2 - the ith element of BSS(*/w2). If the

total amount of room over all the blocks of S12 and S1 for blocks of 12 is

larger than the number of excess blocks of S2 , then i is compatible with w1 and.

112.

Theorem _. Let * = 1l + 112. Assume #(Sl) s #(S2). * 'is compatible with w1

and w2 if every element bf BSS(O/wl) 5 2rl, every element of BSS(O/w2) s 2r2,

and (#(S12) + #(SI)) • 2r2 z BSS(0/12).

Proof: From above discussion.

-28"

n

Theorem 12. Let p = vi is not compatible with "l, I n if there

exists ani such thatlog 2(#(wi))- = 'Tog 2(max(BSS(*/wi)))-

Proof: If the number of bits available for vi is equal to the number

of remaining bits other than the common bits to encode wi then there

must not be any common bits. Hence wi is not compatible with .

Other theorems may be developed to improve the search for a com-

patible *'. However, these are only necessary for automating these

techniques in a computer based optimization program. These will be

described in a subsequent paper. Examples to be described in this

paper may be easily done by hand without large searches.

In the discussion of analysis techniques it was seen that a p, of

a subset encoding is greater than or equal to the sum of Tis for

which it is used, while each ri is the product of the pjs encoding it.

The sum has been generalized to a sum of PDCs such that a PDC *j may be part

of an encoding if and only if it ,bears a specified relationship to the

sum of the wis for which it is used. A similar generalization of product

is needed to judge whether a subset of *js may be used to encode a specific

iei The following product operation is defined to provide a necessary con-

dition for the set of *is to ultimately yield pjs whose product Tt is in

G(vt). The distinguished blocks of the os plus possible combining of blocks

may subsequently destroy this possibility.

Definition 19. The product of two PDCs (1.02) is' the PDC v such that

1) s and sj are in the same non-distinguished block of * if they are in

the same non-distinguished block of both and 2* and 2) st is in Bd()

If sj Is In 8d(*l) or s, is in Bd(*2).

• U

-29-

Theorem 13. In a partially specified subset encoding 1 *2 "k of

input PDCs w,1 through wn" .such that each is completely compatible

with all i c ..,a necessary but not sufficient condition for the existence of

a minimum table Size subset encoding Pl P2"".k' such that

Pi c G(*i) for all i, with identical row and column sets R and C,

is that for all wi,

Proof: None of the non-distinguished blocks of i are contained in

the distinguished block of n-*j. This arises from the fact that Bd

of each P is contained in Bd of the sum of all wk in Cj, which is

the intersection of the Bd(rk)S. Therefore no non-distinguished

block is contained in any Bd(*j) -for ojR i.

The requirement for a minimum table size subset encoding is

that wi -5s(HRiP) for all i. Since all the blocks of i already

appear in the blocks of *HCR *J the assignment of states in Bd(lt)

in the various *js cannot cause the blocks of wi to either be split apart

or joined together in the product. Thus v - R:*5) is a necessary

condition for v - R if P, G(yp).
j

This-condition is not a sufficient condition because some don't-care

states of the *js may be already assigned in such a way as to cause them

to form a block or blocks of their own in the final product of P s9

* while they are in the don't-care block-of the product of S.

The following example illustrates-the-insufficiency of Theorem-13.
Let i = (1)(2)(3)(4)(5) <6,7>,

, s ,,atv-

46 - -30--
. -•

Rt i. C(T2, 3 ,7)r.3) (4)= (1,35)(2,46,7), (1,2,5) (3,4)<6,7>)

It (1) (2) -(3) (4)1)<67 = i"

However, note that the product of the first two *js = (1.3)(2,7)(4)(6).

No matter where the 6 is assigned in the third j, it will not bring 6 into

a block with another block of w Therefore no (p1TR i) exists in which

P G(.Pc .

Note that the 7 is not a problem, since it may be assigned with the

(1,2,5) block of the third *j and still remain within the block (2,7) of

the product, which contains the (2) block of wi.

V. PAIRWISE COMPATIBILITY AND POSSIBLE PROFILES

Compatibility concepts are now used to form a strategy for finding

an optimal encoding. In the process of determining compatibility, a search

is made for the largest c such that the number of blocks 2 c, may contain

the elements of the BSSs without violating any of the constraints. If

c > 1, the PDCs considered are compatible. If this is done for all pairs

of input PDCs, then the maximum pairwise overlap of input PDCs is found.

In addition, new upper and lower bounds on the total number of bits may

be obtained.

Theorem 14. Let cij be the maximum bit sharing between input PDCs i and j.

The largest t1 j = rlog2(#(wl))1 + rlog2(#(w2))1 - cij over all i and j where

Ii' J is a lower bound on the number of bits in the encoding. The smallest

E tlj + z #(Wk) such that every input appears at least once as an ij, or k

is an upper bound on the number of bits in the encoding.

Proof: t1j is simply the total number of bits required to encode 1I and w

if they are allowed to overlap to the largest degree possible. No encoding

-31-

may be smaller than the required number o-isnecessary to encode any two

of the input POCs.

An upper bound is found by assuming that no further sharing of bits

than pairwise can take place. Then we may. choose pairs (and any remaining

single input PDC) to cover all the input POCs with the least total number

of bits.

The strategy for choosing an encoding will be illustrated with the

example state table given in Figure 2, with input PDCs given in Figure 7.

The following PDCs are the pairwise sums of the input PDCs of Figure 7

and their compatibility status. Details are shown in some cases only.

I, 1f 2 (1.3)(2.7)(4)(5)(6)

1~,2/ir, = ((1,3)) ((2)(7))(<P~) (<5>)((6)) BSS(. 2/w1) =1.2,0,0,1

*l92/w2 = (<l.3>)((2.7))((4))((5))(<5s>) BSS(0 11 2'r 2) 0,1,1,1,0

Icompatible: r 1,2 = l, 2 =1, r1'2 .1 , BSS becomes 2,2
1 2 1,2

*1,3 1 l~3 (1.3)(2)(4)(5)(6,7)

compatible: r1' c,3 =~ 1, r1'3 I BSS becomes 2,2
1 133 2,2

-1*1,4 = '1w4 (1,2,3,4)(6)(7)-c5> incompatible: Theorem 12.

12,3 2 '23 (1.3)(2,6,7)(4)(5)-

compatible: r2 '3 ecms-I '
ri 2,2

- --.-• ..r-.

#24 w2 lr4 = (I,2,47)(3)(5)<6> .

compatible: r2'4 1 24 OF Theorem 11. BSS becomes 2,
2 c2 4=1" r4 1,1

13,4 U 3+4 = (1,2,3,4)(5)(6,7) Incompatible: Theorem 12.

The largest t.i of these is tl,2 3. Therefore, the smallest

possible encoding is three bits. Since t1,3+t2 ,4 5, five bits is an

upper bound. The search for the optimal encoding begins with the *i,j

of the lower bound, and overlaps the other PDCs on this in all possible

ways, subject to the maximum overlaps computed in the above sums. Only

when no encodings of the smallest size are shown to be possible are encodings

of larger sizes considered. A possible profile is a binary matrix with

one column for each bit in the encoding and one row for each PDC included

in the encoding. Ones in the matrix indicate which bits are assigned to

the PDC. The input PDCs are first ordered in descending rlog2(#(vi))1 order

in order to insert the more difficult PDCs first. The first two PDCs are

those giving the lower bound. The resulting order for this example is

The subset encoding to be Illustrated is further constrained to be a

substring encoding, which is a subset encoding in which each subset is

contiguous. This constraint is used in order to produce encodings that

can be easily implemented by a single shift operation followed by a single

AND operation on many conventional computers, whether large, mini, or micro.

It Is not easy, in general, to assemble an arbitrary subset into a table

7 index. All methods illustrated hold for a subset encoding as well, there-

fore the Illustration does not lose generality.

" "1. - 4i- -I

-- -33-

The first partial possible profile is shown in Figure 11, and

labeled ppl. PDCs are assinged from left to right. w, may be assigned

anywhere in the three bits. must then satisfy the overlap constraints. Thus

the leftmost position in which it can be assigned starts at bit 2,

since it can only overlap I in one bit. (c,2 " 1).

When w3 is added to the profile, it is found that it must either

overlap %I or w2 in two bits, which is impossible since both cl- 3 and

c2,3 are 1.

Since w3 cannot be added to the partial profile, we must backtrack,

to see if we can modify w, and v2 to allow insertion of N3 in three

bits. Since i2 cannot move to the right and moving w, to the rightN 2-

will only produce mirror images of previous profiles, i 3 cannot be added in

W three bits.

Four bit profiles are generated next. We obtain pp2 and pp3 by insert-

ing ff,, w2 , and w3 at their leftmost positions. Since v4 is incompatible

with l and n3 and w, or w3 are in every position, w4 cannot be inserted

into this partial profile. -We therefore backtrack to pp2, move w2 to the

right, and insert w3 in its leftmost position. We are then able to insert

1'4 in the last bit, for pp6.

This profile includes all PDCs and satisfies the overlap conditions

generated above. The overlap conditions tell us that if the two PDCs

overlap, there exist partitions such that a minimum entry encoding can

be achieved. However, we have no guarantee that the partitions used

for the wl, v3 overlap above are also useful for the w2, v3 overlap,
- - . ~. .

for example. --

At this stagewe must then test thi-s "possible profile" to see.if

in fact we can-flnd- rinIMM-try encoding (by our method of

finding It, it is already minimum bit-" ... _ ...

.- .- . .- . .-

-34-

VI. EVALUATION OF POSSIBLE PROFILES

Each bit of the possible profile of an encoding must satisfy several

constraints in order that it will eventually yield a partition in a

minimum bit, minimum entry encoding. What is tested is whether the

several constraints can be met simultaneously. Let us label the

columns of the encodings as *l' 02' *3, and 44
*4.

Each must satisfy the constraint that it is completely compatible

with all vi in C. In addition, the constraints wi s ('n s.) must hold

for all wi"

In the example under discussion, is only used for I, and not shared

with anything else. We therefore defer consideration until later.

*2.must be a 2 block PDC, greater than *,,3 since it is shared

between %, and i3" and must have BSS elements I or 2. (None may be
1,3= 1,3=i);-

0, and r1 =r 3 1.)
1 3

1,3 = (1,3)(2)(4)(5)(6,7) ; BSS =I 1 0 0 2
10111

Since no BSS element may be greater than 2, and there may be only

two blocks in 02' the (1,3) and (2) blocks must be combined. All

resulting w3 BSS elements are 1, allowing the blocks (4) and (5) to

be assigned to either of the other two blocks, but not together. Therefore,

,1. (1,2,3,4)(5,6,71 or = (1,2,3,5)(4,6,7).

2 2

In either case, BSS = 2 2.

22

Thus there are only two choices for @2 43 is examined next.

#3 performs two functions. It must be greater than or equal to *2,3'

_ _ U-

-35-

since it is shared between 2 and. 3 " In addition, together with *2

it must give it3" In order to satisfy these constraints, we use the

following information.

= 13)(267)(4)(5) ; BSS -0 1 1 1

1111

r2" 3 = 1, c2 3=1, r "3 =1

From these numbers we can see that any two blocks may be brought

together in one block of *3 with the remaining two blocks brought

together in the second.

We also know that

1 2'w*213 = ((l,3)(4)<2>)((5)(6,7)) and 2

Each of these quotients tell which blocks of 3 must be separated

by *3 in order that the product '2 "'3 will give N3"

1Let us arbitrarily choose 4, . Then there are two choices for *3
2

I (1 ,2,3,6,7)(4,5) or *'2 (1,3,5)(2,4,6,7).

3 3

Each of these separate (13) from (4) and (5) from (6,7) and are

greater than *2,3 with BSS elements of 1 or 2.

Next, we examine *4 " *4 must be greater than *2,4"

*2,4 = (1,2,4,7)(3)(5)<6> ; BSS Z'2 0 1

1 1 0 "-

Since all BSS elements must be 1 or 2, there is a unique compatible--. ..

*4 (1.2,4,7)(3,5)<6>. ..

The product of the two possible 03s and o4 are now checked.

. -36-

2 12,7)(4)(5.)<1,3,6> 4 = (127)(3)(4)(5)<6>.

2
'2 s*3 -*4 (1)(3,5)(2,4,7)<6>.

Failure of these products with respect to w2 means that we must

backtrack to any previous choice. Thus we must consider €2 = (1,2,3,5)(4,6,7).
2

Using *2 /w3 and *2,3 found above, we have two choices for

* 3 (1,3,4)(2,5,6,7) or 04 a (1,3,2,6,7)(4,5).
3 3
Only one 4#4 is available from the above computation. Thus we again

copr tepodcs3 4
compare the products € "04 and o3 *4 with 12, and again find

*3 '2 1D 4 and4• 2 As 3 4 w2" is4 *4
No other choices were made in the evaluation of this possible profile.

Therefore there is no minimum table entry substring encoding with this

profile.

The next step is to backtrack in the formation of a possible profile.

None of 4 , 13, or 2 can move further to the right under the pairwise

compatiblity constraints, therefore 1 must be moved. The possible

profile pp7 in Figure 11 is obtained by placing w2' 73' and 7r4 in the

leftmost permissible position. This possible profile must be evaluated

next.

First must be formed from *,,4' which was observed above to have

a single completely compatible PDC, *1 = (l,2,4,7)(3,5)<6>. Since w4 s Sq "

no further product check needs to be done on the fourth row. *1 =

((2.7)(4)<l>)((5)<3>).Therefore there are four choices for

-37-

=(l,2j3,5,7)(4),6 * (1,.2,7) (3,4,5)<6>

2
-2 = (l,4)(2,3,5,7)<6> *4 = (l,3,4,5)(2.7)<6>.

2 2

is also constrained by 01,2"

#1,2 (1,3)(2.7)(4)(5)(6) BSS 1,20,00,1

(1,3) and (2.7) must be in different blocks of *2. Therefore, only

4 satisfies both the product and sum constraints, with <6> added to

2
(1,3,4,5) to satisfy complete compatibility.

-4= ?2 = (1,3,4,5,6)(2,7).
2

-'.':].. *3 is found next. *2/i1 = ((l.3)(6)<4.5>)((2)(7)). Therefore *3 must

be either:

1 (l,2,3)(6,7)<4,5> or 2 =1,3,7)(2,6)<4,5>.
3 3

.3 must also be completely compatible with *13"

V1. 3 * (1.3)(2)(4)(5)(6,7) ; BSS 1.1,0.0.2
i i f " i --. 1,0,1,1.,1

From V1,3, blocks (1,2,3) and (6,7) must be in different blocks of

*3, leaving only tp. However, (4) and (5) must be assigned to make

#3 completely compatible with *1.3"

The posslbilltii sare:

-38-

(1,2,3,4)(5,6,7) or (1 €,2,,5)(4,6,7).

Finally, 4need only satisfy the quotient of '3/3. There are a

number of choices since

=3 : ((1,3)(4)<2>)((5)(6,7)) and €4/w3 : ((l,3)(5)<2>)((4)(6,7)).

* Let us chose one possibility,oi and *4 = (1,2,3,5)(4,6,7). L
Summarizing the 's obtained:

1= (1.2.4.7)(3,5'<5> *3 (1.2,3,4)(5,6,7) j

#2 = (l,3,4,5,6)(2,7) *4 (1,2,3,5)(4,6,7)

There still remains one don't-care in *l" This must be placed in such

a way that it does not become a block of its own in any product involving

#,. (Remember that a product check is a necessary
but not sufficient condi-

tionfor a solution. The only product in which *1 is.involved is

'2 's 1"2" For a solution w2 <s Pl'2 P2 = *2 since there

are no don't-cares in 42"

- ((4)(5)<l,3,6>)((2,7)). Therefore the <6> must be

placed either with (4) or (5) in P, to prevent a separate
block (6)

In the product. Since (4) or (5) are in both blocks of '1" '
6>

can go into either block. Let us choose the first block.

Our final results are

P p1 (1,2,4,6,7)(3,5)

P2 (1.3,4,5.6) (2.7)

S(1,2,3.4)(5.6.7)

04 * (1,2,3,5)(4,6,7).

.- -" "... . . ---*.'2,

-39-

. To produce a state encoding and a set of tables, binary values

must be assigned to the blocks of the ps. One arbitrary choice is

1l 02 P3 P4' '

1 0 0 0 0

state 2 0 1 0 0

3 1. 0 0 0 encoding

4 0001

5 1010

6 0011

7 0 1 1 1

Input 1 0 1 1 0

Input 2 1 1 0 0 profile

Input 3 0 0 1 1

Input 4 1 0 0 0

From the above and the original state table, the tables of Figure 4

are built in a straight forward manner.

'1

m, ," lii - - .. - ...-

• 27AW,

REFERENCES

El) H. A. Sholl,"Direct Transition Memory and its application

in computer design," IEEE Trans. Comput., C-23,

pp. 1048-1061, Oct. 1974.

[2) A. Grasselli and W. Montanari,"On the minimization of

READ-ONLY memories in microprogrammed digital computers,".

IEEE Trans. Comput., (Short Notes), Vol. C-19,

pp. 1111-1118, Nov. 1970.

[3) A. J. Nichols, "An overview of microprocessor applications,"

'Proc. IEEE, Vol. 74, pp. 951-953, June 1976.

[4] C. Bass and D. Brown, "A perspective on microcomputer

software," Proc. IEEE, Vol. 64, pp. 905-909, June 1976.

(5) J. R. Millenson,"Language and list structure of a compiler

for experimental control" Computer J., Vol. 13, pp. 340-343,

Nov. 1970.

[6] J. Hartmanis and R. E. Stearns, Algebraic Structure 1heory

of Sequential Machines, New York: Prentice-Hall, 1966.

[7] P. Weiner and E.' J."Smith, Optimization of reduced

dependencies for synchronous sequential machines,'

IEEE Trans. Elec. Computers, Vol. EC-16, pp. 835-147.

Dec. 1967

nu nuUl - -I - _- - . . - . ~. m_. " . . -

[8J C. Harlow and C. L. Coates,"On the structure of

realizations using flip-flop memory elements,"

Inform. and Control, Vol. 10, pp. 159-174, Feb.

1967

[9) H. A. Curtis, "Systematic procedures .for realizing

synchronous sequential machines using flip-flop

memory: Part I IEEE Trans. Comput., Vol. C-18

pp. 1121-1127, Dec. 1969

0"

,.0

6'_

I .°

Figure Captions

Fig. 1. Conceptual state table representation.

Fig. 2. Example state table.

Fig. 3. State encoding and input substrings for example.

Fig. 4. Realization for example.

Fig. 5. Hardware implementation of interpreter.

Fig. 6. PL/I implementation of interpreter.

Fig. 7. Input PDCs, input table partitions, state encoding and

input substrings using encoding algorithm I.

Fig. 8. Input table partitions of Fig. 3.

Fig. 9. Upper bounds of w3 + 4 .

Fig. 10. Compatibility statistics for the upper bounds of 1T3+u4.

Fig. 11. Possible Profile Search Trees.

4I

4i

TABLE LAYOUT OF FSM

PRESENT STATE

'--

... . .

..,; TABLETALE.U O S

NREXET STATE

STTESTRG. 1.CNETA TT AL RERSNION-l

w .I

1 2 3 4

STATE I 3A - L 2A

2 1A EA - 2A

3 3A - 4JA 5A
4 2A

LI - 5A 3B3 2

5 - 4 4B -

6 5A - 3A -
.. 7 513I: - :

Fie. 2, vLE STATE TABLE.

"-.~ .- - - -. -

" 1.

'1 '2 "3 Y4
1 0000
2 0 1 00 11: y2y3

3 1 0 0 0 12: Y1Y2

4 0 0 01 13: Y3y4

5 1010 14 : Y

6 00 1 1 smRIrts
7 011]1

STATE EMDREIf

FIG. 3. STATE ENCODING AND INPUT SUBS-TRINGS FOR DLE

. .

N EXT STATE aTPT

TABLE +0 Io00 A
1010 A

0000 A Ii S

1010 B

0011 A 12 SIBTALE

0001 A

+7 o0 A

1000 B

0001 B 13 SLOME

1000 A

+11 0o0 A

I= A 14 SI3TABLE

NIIT 1 TABLE

2 TAME+4

3 TABLE +7
4 TAE +11

FIG. 4. REALIZATION FOR EXAMPLE.

,.-i+ '-

,.F"

]DRESS

TABLE$) ADE

TAEE4
TABLEV ITU
TABLE+UlFT2=

MlSK(2)=1X

'lASK(3)=0O11

FIG. 5. HRh avE iPPLEENTATioN OF INTERPRETER$

-- --.- = -*--*---t-- -- - - - - - -~7

-FSM: PROCEDURE (1);
DCL FIRST BIT (1:4) BINARY (16) INIT (2919391)9

LENGTW (1:4) BINARY (16) MIlT (2,2,2,1)9
SUBTABLE (1:4) BINARY (16) INIT (0,4,7.11).
NEXTSTATE TABLE (0:12) BIT (4) INIT

1110B, .0011-B, '0001'B,
10001-B, '1000-B, '0001-B. '1000'Bs
10100-B, -1010-B),

OL.TPUT TABLE (0:12) LABEL MfIT
TAA,AB.
AAA,
A,B,B,A.
A,A.)

STATE BIT (4)9
INDEX BINARY (16),
I BINARY (16);

INDEX aSUBTABLE (I) + SUBSTRIN(G(STATE,FIRSTBIT(I). LENG3TH(I));
STATE -NEXT STATE TABLE(INDEX);
GOTO OUTPUTTAB-E(INDEX);
A: /* output routine A *

B: RETURN;
9:/* output routine B *

RETURN;
END;,

Firs. 6. P1/I iI'Pe- mAToN OF INTERPRETER

A b1

'1 (l,3)(2)(6)(7)<4.5>

'2 - (2,7)(4)(5)<l,3,6>

1T3 = (1,3)(4)(5)(6,7)<2>

w 4 = (l,2,4)(3)<5,6,7>

input PDCs

, = (1,3,4)(2,5)(6)(7)

T2 - (1,2,7)(3,4)(5,6)

T3
= (1,2,3)(4)(5)(6,7)

r4 = (1,2,4,5)(3,6,7)

input table partitions

S E(rT T "T

" Yl Y2 Y3 Y4 Y5 Y6 Y7

• L_1 0 0 0 0 0 0 0 I11: YlY2 E(T1)

50110100

2 10 :,0'01 y3,y4 El'T,

.3 0 0 0 1 0 0 1 13YY y E (T 3)

4 0 0 0 1 0 "1 0 14: y7 "(Ell4)

5 0 1 1 0 1 0 0

6 1 0 1 0 1 1 1

71 1 001 1 1

state encoding

FIG. 7. INPUT M)Cs, INPUT TABLE PARTITIONS, STATE ENCODING

AND INPUT SUBSTRINGS USING ENCODING ALGOme1 I.

. .---- ..

*(1,3.4)(2)(5.6)(7)

(1 ,4,6) (2,7) (3,5)

3 (1.2,3)(4)(5)(6,7)

T4 (1,2.3.5) (4.6.7)

Firs. 8. INPUT TABLE PARTITIONS oF FIG. 3.

_ Bs

4' 8SSs

1 (1,2,3) (4,5,6)(7,8,9) <10,11> 1,2,2
2,1,1

2,2,1
,2 (1,2,3,8) (4,5,6) (7,9) <10,11> 2,1,1

3 (1,2,3) (4,5,6,8) (7,9) <10.11> 1,3,11
2,2,1

4 (1,2,3,7) (4,5,6) (8,9) <10,11> 2,1,1
2,1,1

5 (1,2,3) (4,5,6,7) (8,9) <10,11> 1,3,12,1,1

3,2
6 (1,2,3,7,8) (4,5,6,9) <10,11> 2,2

7 (1,2,3,9) (4,5,6,7,8) <10,11> 1,4

3,1

FIG. 9. UPPER OUS OF w.,
3:4

- -() (2)satisfies
'1i A=#(*') B=max(BSS(*'/r)) rilog2A1 + riog 2BI constraint 2

13 3 2 3 no
'142 3

23 2 3 no,
_ _ _2 3 __

3 13~ 3 3 4 no

'1 __ _ _2 3

4 r3 3 2 3 no

'f42 3
5 w3~ 3 3 4 no

24 3

6 w3 23 yes

4 3
7 '31 23 no

'143 3

*FIG. 10. C%4PATIBILITY STATISTICS FOR THE UPPER BOUNDS OF w+

110 1100 0110

ppl: 110 pp2: 1100 pp4: 1100 .0110
011 0110 0011 1100

a bitIII
pp3: 1100 pp5: 1100 0110

0110 0011 1100
0011 0110 0011

pp6: 1100 pp7: 0110
0011 1100
0110 0011_.0001 1000

° b) 4 bit

4 FIG. Id. POSSIBLE PROFILE SEARcH TREES.

4.

Proceedings of the Tenth Hawaii International Conference on System Sciences
1977

FINITE STATE TECHNIQUES FOR SOFTWARE ENGINEERING SYSTEMS-
APPLICATIONS TO MICROCOMPUTER AND LARGE SCALE SYSTEMS

E.J. Wilkens

Department of Computer Science
Rutgers University

New Brunswick, New Jersey

.0

PROCEEDINGS OF THE:

TENTH HAWAII "

INTERNATIONAL CONFERENCE

• .- ON

SYSTEM SCIENCES

1977

FINITE STATE TECHNIQUES FOR SOFTWARE ENGINEERING SYSTEVIS -

APPLICATIONS TO MICROCOMPUTER AND LARGE SCALE SYSTEMS

Edward J. Wilkens
Livingston College. Rutgers University

New Brunswick, New Jersey

Abstract
Finite-state techniques are applied to the specification of the control-portion
of a program. A language, an implementation representation, and an optimizationare described.

1. INTRODUCTION language is to enhance the user's ability to spec-

'm The problem of software design and engineering is ify a finite state machine naturally and efficient-
with us at all levels of system size, from the *i- ly, and to understand its operation once specified.

crocomputer to the complex megacoirputer system. An intermediate representation of the machine is

One facet of software system design that seems to stored on disk to serve as input to the optimizer
lend itself to a similar solution regardless of and other system programs.

size is that of control. At the microcomputer The language is interactive, in which statements
level, control of a hardware system or peripheral are interpreted line by line to modify the finite
is often the primary function of the microcomputer state machine as so far described. The language
as a result of an ever decreasing crossover point interpreter responds either with a diagnosis of
in the cost of a microcomputer compared to a TTL error, or to obtain clarification of allowable am-
controller Ill. At the other end of the size biguities. For example, the use of a non-existent
spectrum large systems often contain significant state would be an error, but the respecification
control programs or executives in addition to of a table entry may or may not be intended by the
their host operating systems, as well as lower user, so that clarification must be requested.
level 1/0 control routines 12,3). This paper ex- The main features of the language are as follows.
mines the application of finite state techniques Numbers in parentheses indicate line nuikers in
in a set of programs designed to form the nucleus Figures 1, 3, and 5. There is a declaration state-ment to provide FISSL with disjoint sets of namesof a software engineering system to allow "high- for the inputs, states, and outputs of the finite
level" specification of control programs and auto- state machine (1, 2. 3). The ;ets of nines are

kept disjoint in order to avoid ambiguity withoutmtc conversion to efficient program. demanding an ordering of nam s by type or use of

2. FINITE STATE SPECIFICATION LANGUAGE type identifying keywords in the language state-

A Finite State Specification Language, FISSL, has This work was supported by Grant *DAIiCIS-73-G ofFinie Sate pecfictionLanuag, FISLhas the Advanced Research Projects Agency.been implemented. The primary objective of this I
224

.__ _ _ _ _ _ _ _

ments. The stdtements for the specification of shows the resulting state table.

the finite state machine's table entries are com- A quite significant extension is the addition of

pact yet logically clear. The primary Statement is procedure-like statements. The term procedure-like
FOceRr-lk stctedentsn list DOr procedre-trye

FO .condition list' DO <table entry> is used because they do not specify a procedure

The condition list indicates in a very flexible that is used at run time, but at compilation time

way which entries in the table are to be specified to build the state table. It is primarily built

by this statement. A single entry (4), an entire ao und a Ce state ment. I . is a seili
around a CASE statement. Fig. 5 gives a specifi-

row or column (5), a set of entries produced by cation that is easily seen to be structurally iden-

taking the cross product of a suhset of states and tical to a decision process in a typical branching

a subset of inputs (6), or the union of several of

program.
these (11) may be easily specified. In addition

an ALLBUT operator (9) allows easy specification Note that statement grouping is achieved by DO and

of very large subsets. DC (5,7) indicates that an OD, and all CASE statements have explicit ELSEs.

entry is to be left unspecified. The table entry The state may be modified anywhere, and output may

Part of the statement may be a state (10), an out- be specified anywhere. Outputs become more corplex

put (11), or a state and an output (6). If the if more than one output is encountered in reaching

state or output is onaitted, it is left unspecified the lowest level of nesting. ERROR indicatesthat

or with any previously specified value. Fig. 2 an error indication should be put in the state

shows the state table specified by (1) to (13). table and no further processing should be done on
this path throug. the specification. Only the sub-

Another important feature of FISSL that allows com- states encountered with an explicit next state are
pact specification is the ability to specify com-poud satenams. stte ay e dvidd ito specified. If a subst~te is not encountered in

pound state names. A state may be divided into the table entry part, it remains unspecified, un-
several substates (16), each of which has a set of less listed as a parameter of SAME. In (73) SAME

names declared for it (17,18). The cross product REMAINING specifies that any substates not changed

of these sets of names is the machine s state set. in the scope of the DO in (46) is to remain the
Therefore, S1 becomes twelve states, named H.ST, i

H.TX ... T.T, ... T.SN2.same as it is specified in the condition-list. For

example, the entry at 11, A2.B2.C3.DI.E2 receives

If one or more of the substate names is omitted in explicit next state specification of Al.83.C2. D

specifying the state in the condition list, then and E remain to be specified, therefore they be-

all possible values are used for the omitted sub- come DI.E2.

states in determining the table entries to be spec- The state table is built by the compiler by repeat-

itled. For example~in(21). (TX,ST) specifies ed execution (simulation) of the specification.

states H.TA, T.TX, TT.TX, H.ST, T.ST, and TT.ST.

In the table entry part, TX indicates that the D

substate becomes TX. If the P substate is unspec- The STATE set Is the only one broken into sub-
ified in the table entry then no change in its states here. Similar methods may be used for the

specification is made. If SAME P is specifledhow- INPUT set. Note however that the OUTPUT set has

ever, P is specified to remain the same in the been implicitly changed by allowing more than one

next-state as In the present state. Thus In (21) output to appear on a path through the nested CASE

N.ST has a next state of H.TX, while T.ST has a statements. For example, state A4.B?.C3.D2.E2 has

next-state of T.TX. an output of 04,05,02.. Thus the actual outputs are
ordered subsets of the specified OUTPUT set.

Fig. 3 specifies the state behavior of a Half Du-

plex Non-switched Multipoint Data Communication 3. REPRESENTATION OF A FINITE-STATE MACHINE.

System originally presented by OJorner 13). Fig. 4 This section assumes that a finite-state machine

225

has been produced and has been reduced so that no contain 2 entries. The state number no longer pro-

states are equivalent. The task is now to code vides a direct index to the sub-tables. For exam-

this machine into a format capable of being loaded ple, if the machine is in state G and input 1 is

- into a random access or read-only memory. An ef- received, there is no 7th entry in the I sub-table.

ficient storage consuming coding for the machine A mapping algori'thm from the state to the input

is desired. A table representation will be used sub-table indices is needed. The method adopted

since tables may be stored in random access mem- here for its simplicity of use is to encode the

ories efficiently and because multi-way branching states using binary variables yly 2... yn such that

can be easily achieved. Fig. 7 shows a conceptual for each input there exists a. substring of these

interpreter and table implementation of a finite binary variables which can be used as an index into

state machine. An input causes the present state the corresponding input sub-table. Fig. 8 shows an

to be read from state storage. A mapping function appropriate encoding of the states of Fig. 2. Since

on the input and prescnt state form an index into the 1 sub-table has four entries, the 1 substring

the table containing the next-state and output should have four distinct codes, which are 00, 01,

functions. The next-state is read from the table 10, and 11 under variables y2y3. Note that the 2

and written into state storage, while the output substring yIy2 has exactly 3 values. In addition,

is used appropriately, usually as an address or values of yIy 2 for any two states are the same if

routine to be called, for a large system, or as a and only if the entries of those two states are the

" binary word to be placed on a peripheral bus in a same or one or both is don't-care under 2 in Fig.2.

. micro-computer system. Thus states A and 0 have the YIY2 value 00. Under

V .,W The method considered in this paper decomposes the input 2 state A is don't-care and state 0 is EX.

finite-state machine into a sub-table per input, Fig. 9 shows the tables which ultimately realize

with an additional table of pointers to these sub- the machine of Fig. 2.

tables. The decomposition of the table into input The interpreter for the substring encoding is ei-

sub-tables gives an opportunity for memory savings, ther software or a circuit which masks the appro-

It is assumed that the next-state and output en- priate bits for each input, shifts them to the

tries are either both specified or both don't care. right, and uses them as an index into the subtable.

If the input is known, then there is redundancy in By using such a circuit or software, there is little

the information provided by the state. For exam- custom designed circuitry, none in the case of the

ple, it is never necessary to identify a state software interpreter, and a circuit amenable to

whose entry is don't care, nor is it necessary to possible LSI integration with only the final mask

distinguish between two states with the same en- and shift quantities to be determined for the indi-

tries. Providing memory locations for this redun- vidual state table, perhaps to be loaded into a

dant Information is wasteful. A state encoding Read Only Memory. This implementation has the im-

scheme that would allow identification of a unique portant property that the input sub-table lookup

entry in the sub-table is desirable. That is, the constitutes a multiway branch to the output routine,

original finite-state machine should be trans- which gives good real-time characteristics,ardis in

formed to a table with only one occurrence of each fact a major reason for the representation chosen.

distinct entry in each input sub-table. 4. STATE TABLE OPrIMIZATION PROGRAM

Fig. 2 is a finite-state machine with four inputs, A State Tadl1e Optimization Program (STOP) has been

* 1 through 4, seven states, A through G, and two written which compacts a state table into a set

outputsX and Y. The input sub-table correspond. of minimal input sub-tables. The optimization de-

Ing to 1 must contain four entries, one for each fends on the finding of an appropriate encoding

AX,CX,EX and Y. Similarly, the 4 sub-table must having a substring for each subtable. Such an en-

226

Proceedings IEEE COMSAC 77

FINITE STATE TECHNIQUES IN SOFTWARE ENGINEERING

E.J. Wilkens

Department of Computer Science
Rutgers University

New Brunswick, New Jersey

0
-

Proceed i ncas

IEEE COMSAC 77

FINITE STATE TECHNIQUES IN SOFT'WARE ENGINEERING

Edward J. Wilkens

Interdata, Inc.
106 Apple St.

Tinton Falls, N.J. 07724

lDjorner [6], teleprocessing device control and

protocols. Each of these papers. describes a

This paper examines the use of finite state specific use of a finite state machinc, and
techniques in a general, rather than application explains to some extent the characteristics that
specific, context. It discu=cLs applicability, make a finite state machine suitable.
benefits, and trade-offs, as well as techniques
for enbcddrg then in an overall system. It A primary motivation in these papers for the
presents a specification languige and a table use of finite state cachines is thcir convenience
optimization progran which are tools for the use for describing cc=plex processes. Each v s thtn
of these techniques, transformed into the implementation that the

author had determined was the cost efficient
*accordin; to the application's objectives. In
most cases the specification of the finite state

%Introductin machine was an exact and reasonably understandable
one.

The problem of software design and
engineering ib with us at all levels of System It is the purpose of this paper to consider
size, from the microcomputer to the complex the use of finite state machines from a mcre
meacomp ter system. One facet of software system general point of view. In taking this point cf
design that seems to lend itself to a similar view, the paper concentrates on the ben-fits,
solution regardless of size is that of control. trade-offs, and practical considerations involved
At the microcomputer level, control of a hardware in order to make the usefulness of the finite
syste or peripheral is often the primary function state cachine in a given application merc
of the vicrocomputer as a result of the ever generally answerable than simply matching the
decreasing crossover point in the cost of a application against the examples previously
microcomputer compared to a TIL controller [1). presented in the literature.
At the other end of the size spectrum, large
systems often contain sIgnificant control programs The paper presents a high level, compact,
or executives in addition to their host operatIng efficient language for the specification of a
systems, as well as lower level I/0 control finite state machinc, as well as an optimIzation
routines (2,3]. This paper examines the program for a broad class of implementations.
application of finite state techniques In several
progras designed to form part of a software A recent paper by Salter [7] presents another

engineering system to allow high level general approach to the use of finite state
specification of control functions and automatic machines as part of a decomposition methodoloFy.
ecoversion to efficient programs. This paper takes a similar approach to Salter, but

describes it from a different point of view,
Many papers have appeared In the literature including more specific language and

In the past decade describing the use of a finite implementation detail.
state machine as an Integral part of a computer
program. Among the authors and applications were Applieabilitv Finie Stte chine
eistand 12], an executive system with a complex
onatrol and decision structure, Johnson et. &I. Many stored program systems are programmed to
(41, lexical analysis, Villenson [5, the control respond to an input frem a single source or from
of psychological experiments, and Birke (33 and one of a clais of sources in the follo:ing canner.

A stored indication of the past history of the
"Its input source and the pre:ent input are used to
This research was supported by the Defense determine some action to be taken and en
Advanced Research Projects Agency under grant appropriate -updating of the historical record to
DAHCIS-T3-G6 tu the Rutgers project on Secure be mmde. In many cases the historical record ha2
Syste.s and Automatic Programmlng he author was fixed size, and does not grow with the length of
formerly with the Department of Computer Science, the input string, (number of inputs received over
LIvingston College, Rutgers University.

time) leading to an informal charactcrization of machine will oe automatically transforzed into its
such a system as a finite state machine. implementation, a high level of confidence- If--the

implementation is possible after the simulation

Such systems are often Implemented by has been thorouehly tested. Of course, this

assigning variables to various facets of the confidence does not extend to the subroutines

historical record, usially in a manner that is unlens they too are specified in a manner auto-

pricarlly understood by the programmcr rather than matically translatable into their implementation.

efficiently utilized by the machine. The entire
historical record, or ztate if we apply finite |
state machine tcrminology, is contained in many DI

such variables. For a problem of $ay corplexity, /
the program to respond to the receipt of an input D2 D3
does not decide on the action to be taken in a
single K-ary decision, but usually branches) D5 D6 D7

through a sequence which examincs one variable or / \ /\ I \
relationship between variables at a time, making1 N2 N3 N4 N5 N6 N7 K8
binary decisions alon:. the way. On the other 0102 03 04 05 0601708
band, an N state finite state machine may be IL s
considered to make a single N-ary decision on each
input received. FIG. 1

REGULAR DECISION STRUCMURE
If only a finite amount of historical record

must be kept regardless Of the length of the input The primary implementation efficiency to be

sequence, then the historical record may be gained by these techniques is reduced decision
considered to te a state Initialized to some time. The sequential decision process described
initial value SM0). At each input or event the above requires rany binary decisions. Consider a
next state (the new value of the state to be very regular program graph, Figure 1, with k
recorded) is a fu;nction of the current event and decisions in each path through the program.

the present state, NVX,S). Sirilarly, the output Assume that this program is run in response to one

at each event becomes a function of the current of the inputs to the system. Then this program is

event aod present state O(X,S). These event equivalent to one input column of a state table.
oriented characteristics may te inherent in the Each node in the graph labeled with a D represents

system or they may be imposed by choice in a a decision, or branch, while updating of the state
4lecoposition process. For example the and output, marked with Ns and Os, are done after

application to lexical analysis [4] breaks up the all decisions have been made. In Figure 1, k is
Input string into discrete characters, between
which a state is stored. The decomposition of a
problem into discrete sequential steps in this
manner allows virtually any program to be cast as Di
* finite state machine or a set of finite state f
maehines. p=O D2

I tivation fr te s e t inite StateZ eehnioues
D3 D4I

The benefits derived from the use of finite
state techniques fall into two classes, those that pO p=O D5

contribute to the case of specification and

testing of a system, and those that contribute to pao \b4

implementation efficiency. D6

- Finite state techniques contribute to the D7
Case of specification since they enable the
description of the control of a system at a higher ;I W2 W3 H4
level than a direct prograrmed implementation of 01 05 06 07
the control. They are at least one level of

abstraction above a programmed specification. In L5
addition, it is possible to carry over most Iv
techniques of the multiple levels of abstraction
methodologies (81 into finite state techniques. K6
Tbis carryover is not described here, but is

the
DK

subject of continued work. V
The behavior of a finite state machine is

easy to simulate prior to the availability of the .02

detailed Implementation of the machine itself and
the subroutines which it calls. Therefore

- simulation testing of the system at a high level FIG. 2

- may begin as soon as the finite state machine(s) TYPICAL DECISION STRUCTURE

has been specified. Since the finite state

A

4. If a constant tine expenditure Is assoied for executivc synten t2] the finite state cachine was

both the decision of the program and the N-ary the higher level decision rakcr, and the resiinng
decision (state table lookup) of the finite state rystro procc=:ca were called a3 subroutines by the

machine, then the finite state machine uses tire a finite state machine. The approach here is clcfer
factor of k less than the binary decision to the latter.
structure. In a program not so regular in
structure, there 1' azLe average number of Finite state machines, with appropriate
decisions rer entry into the prceram. In such a supporting* programs and algorithms, form tr:e

case the time savings is this average number. h1ghest level of decision r3kors. The .titp
Figure 2 snZws a typical graph, actually produced -should includP sufficient Information for the
by the author as part of a commercial. telephone decision made to be a slgnificant part of t-e
system. In ad!ition to points of branching, it system's decision process. The finite state

also Incluipr points of Joining. Some of the exit macr.ir.e calls -peaif'ic prograLs as output.

points are rarked p:O, rcanin. that this exit is of these output progrsna ray be finite ztate
provided a% a defen'ive technique, and not mahines as well, resultinEi in a hierarchilcl
o. ally Uri. If all other psth a:-e equally system. As an example, Hleistlands executive could

likely, there is an average k of 6 2/3. call Birke's device control. In addition, should

the system coMplexity be such thit a sEinle finite
Time may also te savrd in recording the next state machine becomes too large, then several

state, since there will be only one udatingn of comunicatinE finite state machiies at the sarc
the state, usirnr the value read from the state level of hierarchy ray be used. Such a
table. A tulti;le variable state will usually be decomposition often arises naturally alo,;F the
updated at several different points in the usual system module divisions.
program. The U's and 0's in Figure 2 indicate

points of updating the state and perfomir. g The classical definition of a finite state
output, respectively. Thus the state is updated machine includes:

in 2 2/3 places on the average entry into the

-progra. a finite set of states, S,

a finite set of inputs, X,
The rcmaining arpect of the entire process Is a finite set of outputs, Z,

the output. No tire can be saved here, since the a next-state funtticn, !Sfx,r), zapping

output nust be performed regardles of the decision I and S onto S, and

structure. an output function, C(X,s), Mapri'.3
*X and S onto Z.

The final benefit obtained is the potential
use of formal techniques in the coding and In order to allow the use of suuh a mic!,ine

optimization process. Techniques are available in a programmir.ng context, several additions o:t
from the current bray of switching theory or may be made to this definition. The fir.t at iti¢.

be newly developed for the special characteristics arises fron the fact that all infor-.atan used ty
of prcraz, embedded finite state machines. These a program should not be co:.sidcr'ed nt:e
techniques arc all decidable, although costly, information. State inform-ation shoui.d be
which is not the case for general program schema, restricted to that needed for the next-store and

output decisions to be made. Information needof
As an example, existing techniques include by the system, but not for these functions, shouid

state reduction [9]. The techniques which exist not be allowed to expand the satet net. Tnis

must be tempered by practioality. Fost seek an information is referred to as Ta-k rata, n.
optimal solution at the expense of computation represented by the set D. An exazpl C task *dra
time and in general may not handle machines as is the identification of a spesiflc dev:.
large as the ones which will result from the use Without such information, no communicaticn to tir:

3f finite state techniques in programmin!. specific device could be performed. However, it
However, modifications which produce "good" is not needed to decide what actions to rerforz 3:,

reductions with moderate expenditure of response to an input from that device.

omputation time should be achievable.

The addition of task data allows the rer77v-]
I newly developed technique described below of part of a system's function fron the cls:ial

1103 finds an optimal memory consuming finite state machine definition for re:.s cf
implementation which still preserves the N-ary efficiency. Further removal may I!C achieved by

branch property of a finite state machine, allowing the finite state machine tu u!e

Oalgorithmic processes" where there :re icre-
efficient in specifying and perforcir. the

. Svsten system's function. For example, consldtr a

counting function, as in resource allocatic::. I
3ome previous work involving finite state large numter of a resource nay be availat-le,

maehines in the programming process may bet Iftlacie i t rtheir number stored as part. of the state. If thi•
described as the replacement OT specific is done, a large number of stntcs reboltN, zinc.
subroutines at a relatively low level. I rk0 each possible r unb..,r ur resources must be c .n.. .3
device control proaras t3], Djorncr's protocols with every other facet of the state. F..,eh tire ;,:,

[6), and Johnson's lexical processors 4] may be Input cOusCS ore Of these resources to t
so described. On the other hand, in Heiztand's allocated, the next-state Is one that indic ct-.

L
6 -.-- '

a finite set of inputs, I,
co less of the resouce than the present state. a set Of task data, D,

As an alternative, the number of the resource a finite set of codified inputs, X1,

availablc may be recorded as task data. However, a finite set of Input algorithms, IA,

* - this numbcr does play a part in the next-state and uaping X and i onto V',D and 3,
output decisions whcncver it is zro, and must be ucet-state function, K3(x',s), mapping

changed each time one of the resource is allocated 11 and 5 onto 5,

or returned. To make this possible, two sets of a finite set of output algorithms, OA,

algorithms, Input and output, designated IA and mapping S, D, and Z

OA, are added to the finite-state machine onto S, D, and Z.

definition. An input algorithm, is used upon a finite t of outputs, Z

receiving an input, but before applying the an output function, O(x',s), mapping

next-state or output functions. The output 1' and S onto Z and QA.

algorith=3 are called by the output function. An
input algorit!,= has access to the input and task Note the difference in the use of decision

data , and may modify the input, the task data or tables and finite state machines above. Decision

the state. The output algorithm has access to the tables are used where the decision is to be made
state and task data, and may codify state, task on the basis of new and unencoded data (for table
data, or output lookup). Decision tables are converted into

programs which avoid interpreting all fields of

The resource counting exa=ple-may be handled the record if pocsible to provide either cez::ry or

with an output algorithm. Whenever a state change time efficiency. However, when the data upor:

occurs that euses an allocation of one of the which a decision is to be made is state datG,

resource, an output algorithm is called which already interpreted at earlier events, decision
decrements the counter in task data, and tests it tables lose their usefulness, since an encodcddecemets he outerin askdaa, nd est I state may be saved and Used directly in a table
for zero. If It is zero, the algorith =ust
change the state to itdicate none of the resource lookup sche=e.

remains. Thus the possible states of the system The objective in formulating these chanzes in
include a substate with values of resource-present the oefeniti e o a finite tte hne i
/ resource-absent, but not with values of each the definition of a finite state machine is to
possible number, achieve a structure which allows sufficient

flexibility to preserve practicality in diverse
The fact that an input algoritm may change situations. With this definition, the classical

the input leads to the definition of an additional finite state machine core may be completely

input set, the Ydified Input, X'. The input to a overshadowed by the input and output algorithns.
program may have thousands of possible values, but Obviously, this is not the intent. The input and

_ only a small nu=ber of equivalence classes of output algorithms should be used only wrere

these values cause distinct system reactions, necessary, and the next state and output functionsshould beti c usete as thap im ry de is onsain
These equivalence classes are then considered to should be used as the primary decision makir
be members of the modified input set, while the tool.

actual value of the input may be kept in task data
if there is further need for it. FinLte State Specification fLa 'r

For example, an Input may be a value from an A Finite State Specification Langu:ge, FISSL,

analog to digital converter. The occurance of an has been Implemented. The primary objective of

input from the converter is in the input set, this language is to enhance the user's ability to

while the value itself is task data received with specify a finite state machine naturally and

the input. If there are three meaningful ranges efficiently, and to understand its operation once

of the value, say less than 10, from 10 to 100, specified. An intermediate representation of the

and greater than 100, these three ranges are sachine is saved to serve as input to the
members of the modified input set. An input optimizer and other system programs.

algorithm is called each time a value is received,

which produces one of the modified inputs. The The language is interactivie, in which

modified input is used for the next state and statements are interpreted line by line to modify

output functions, the finite state machine as so far described. The

language interpreter responds either with a

A second example is that of an input which is diagnosis of error, or to obtain clarification of

a eoplex, multi-field record. X should not allowable ambiguities. For example, the use of a

Include all possible values of this record. An non-Cxistent state would be an error, but the

appropriate and efficient input algorithm may be respecification of a table entry may or may not be

pecified by a decision table, where the actions intended by the user, so clarification must be

of the decision table are the values of modified requested.

Input and task data to be used. In the description to follow, numbers in

The definition of a finite state machine as parentheses indicate line numbers in Firures 3. 5.

extended here is su-arized as follows: end 7. The line numbers are not part of ISSL.

but are used for reference only. Disjoint sets of

names are declared for the input, state and output

a finite set of states, S, sets (1), (2), and (3). The sets of names are

P.1

•

kpt disjoint in order to avoid ambiguity without example, in (11) 3,(D,E):I,G specifies the entries
demanding an ordering of names by type or use of 3,D, 3,4, and 1,G.
type identifying key words in the language
statecents. The declaration of the input and The ALLYnUT operator provides easy
state sets cause an-array to be set up of the specification of large subsets by telling what 15
proper dimensionlality to hold the next ztate and not in it. For example, in (9) 1,(Q1F'U_ D,E.G)
output functions. specifies 1,A, 1,B, 1,C, and 1,F. (Tnis exa-;,le

was for Illustration rather than for any

The statements for the specification are. specification advantage.)
compact, yet logically clear. The primary
statement is of the form The table entry part of the FOR stateent

FOR (condition list) DO "(table entry) specifies the next state or the output or both to
The condition list indicates which entries in the be filled in at the positions specified by the
table are to be specified by this state=ent. The condition list. In (10) only the next state C is
condition list 2,G in (4) specifies a single specified, in (9) the output X, and in () the
entry. Omission of an input or a state, as in pair F,X. An entire entry may be explicitly =ade
(5), indicates that an entire row or colu=n don't care by using the keyword L as in (7).
respectively is being specified. By enclosing a Statement (7) is restoring 2,A and 2,C to don't
subset of inputs or states or both in parentheses care after they were given other values in (6).
It is indicated that the cross product of these This is an example of where a request for
subsets is to be specified. For exarple (6) shows clarification would be made.
the condition list (2,3),(A,C,E) which spe,.ifies
entries 2,A, 2,C, 2,E, 3,A, 3,C, 3,E. The union If the condition list consisted of a single
of several of the above entry specificatione may row or a single column only, then the table entry
be achieved by separating then with a colon. For may be a list of the same length as the row or

S02 A SY, T'F %I X ITS FTS rAX

(I) INPUTS 1.2.3.4 START tr._M -V - _. _7 . _:

(2) FUMES A.ft*C.0.E.F.G ,a.T' Tir,'X
(4) -- -f- Yj H.SY"41

CS) FOX1 I M C AC .3 .U.E.E H.SVN2 5! ALT :7
(6) - (2.3),(A C.!T iAC:75 -T.ST- S : +. : '-:

(7) F 2. A.CA i , IM T. S8 I T . .' ..1
(5) .1A . . ,) rTsYN - T1-. ". : "
(TO)).3. .. E. f .(F.r) 00 X ..STT -.- .r v .

(10) F\a V1Ii~. ,) -C T5T 2 -T r,(7-1 -7 7.1%_______il1) rw 1.Pr : ,; Y TrT1 T _.;! 3,; .-- 7:.-.% --=.7-
'

(32))0_." (.2j,),A TTS,." - .IT.T(13) P-R 2.0:4.C O -n .A n.sS L- .. t " : ",,o, : .,
FIG. S. E AILE SPLCIFICATIO. -INUT

Si A. I.
1I23 110. 4. SIM 1ASE SPECIFIED SY FIG. S. ASCE

S12111 &1R35A l .. e_ -(36) INPUTS 11.1 12 2 Rl::,;.F

8 Alt V I
-
P, (373 MAff_ SI

C % A * ' \ (38) VART-SI - A.D.C.D.E

- ~ (39) 3=ASTArrS A *AI.i. AS.A4232 ac

, A * (40) SIST 8 SI .S: 2212 1
C 9X .- - (41 SU -STATFS C C21.C2.C3 111 11:1:11:

FX (42) SL i. 0 - D.[22112 13:1"'1:

(1443 Lid:-r E 2 121Y4.V.13ST.111S7.3T

FIG. 4. SATE 41 , '. ,. 2!12 13i:11;1.:

T(8LE SMLCIFIED (44) - IVI 1.0
(FIS 3 n(4S) CA ASU I .;L, FO R 2 211 13:11;1'

(4 6) 1 1 S, :0 2 2 2 1 21)-'1.1 1
(47) C A rot 22221 13.11/15

1 4 3) I M U M 8 O l I . A .S Y 4, E .S T ,SY A T 9 . r k (4 N) --A0 2 2 2 1 5 -1 : , :

(I S) j I L S EALT :;Sv A: .A jC---8 %- 2 2 1 1 1 1 3 "1 11 1 :

16) VA0 IP.O C$0 A.1 I0R 22312 12:1:,.:
1 7) 9' -TATE$ P-H.TIT (S)Ai.02 D O A .CZ,0] WO 2.13.1 13:li;.11"

(18) . ,T .ST'.TX.IytI.SY .' 02) A4. 1 r 2212. 13 , :

) MR SIA . S0 ! W H.ST (S3 1 04 31111 Lk . J

(20) e.T .SToS,t-.ST. ($4) CASE C FOR
(21) M yTx..T).A-) Ty.S,!r r (3S)1 CUO 4 22.2.D1.07 0(22) Wif" Tx.sr:; it, k,%! . t.T-P (S6) C2 WJ AIX.0.0.o N; '322
(23) E R (PT T3 0.S0 . .S ,,E-).4 0b X (. 00 -"3 2 2 2 2 T ; k/ A .
(2 4) R (S1V 17* r t .AIJ ,(-O I . . S T1. 2 3 E 5(O S) - . -4 1 1 13 : 3 2 1 1 /Ji :

(25) TT. (49) oil 4232 :sis:

(2I) EX: (60) ELS["(703O 4121 13"13,J/iZi % Tl, x (6 1) • 3 4 1 1 1 1 3 3 1 / 4t
(' r? (HTI;HS . I;f.S . '<TaeT. T (62) CASE. It [OR111 1.ll

11) T.ST (03 DID OU 41212 '133;,1"4!;(32) Mit 157r%.s4.TTsM .- -C (44) 02 id 222

(333 R (ni.s"r. . (.';.2... IIT T.r1)(7S) 0 -422 %$./

(343 h13 I'3'l i (!'o lT.T1 CASE 9r '.f FOR 11 23l;4.

(M5) PI 17.S X2 T.SV.%2 ST f .sr F (67) - -I T ot -

l(TSTAtT (I8) 2L2E M 20. 4 11411,'AM*

1321) frI TLF rmI0 TT.$(342 , '

4) St"ll" lfhLN ')r.SVU2IAIr PAI 311925126. SPCICI.SF 1*250 CA S&1112,S !kAl. -

I!1 Kra MI".SY%t.Ti--.;,%:-,.rtL mV rrT% 'l O . .

31 ---) 12

3$41 "uil" lrr.iI.P'LI in| r'T.siN: -- (72) 00

(IS) iok ?T.$ vi.$i:%-rw r.sT (73) lAM!-klVilliNiG 411 r(
(74) Do 43..

PIC.. S. IT M Il W1%.f*iCHlF" (75) If'wltt. FIG- S. PARITIAL S ialf jlil
Wil-l'MO liM l~ OVA ll I(MNICAIMt FIG. 7P. SPECIFICATION USINIG Mf . SPIClIt10 111 tit. "

SMM-PCII"~O OfSAE5HVO

column. This allows specification of a whole row a structure quite close to that of Figure 2,

or column conpisting of arbitrary, rather than except that the case statements may 'branch" In

Identical, entries in one statement. For example, more than two ways. The outputs 01, 02, etc. are
* idntialentres n oe sttemntthe same as those shown in Figure 2.(5) specifies the next states for all of input 1.

" t Any table entries not specfied in any S statements may be nested, and compound

statements remain don't care. Figure 4 shows the statements grouped by JL and Q2. The form of the

Smplete finite state machine specified by Figure £&S statement is

3. CSM<condftion> FOR

Compound States. A feature of FISSL that _value1> j <table entry> OD

allows coapact specification is the ability to <value2>DQ (table entry> OQ
specify cocpound state names. A state may be
partitioncd into several substates, each of which
bas a set of names declared for it. In Figure 5 valueN D (table entry) 01)
the state set is initially declared to have five < (table entry>

elements in (15). Then (16) partitions state SI Z= P2 <table entry> OD
Into P and D. Elenerits of compound names areintoF ad D Elmens o copoud nnesare<table entry> may be either a table entry as

connected by a dot. (17) and (18) declare the d i abe or a nother a aement.

elements of P and D respectively. Si is replaced described above os or CAE statement.

In the state set by the cross product of P and D.

Since none of the otner states declared in (15) i condition In a FOR statement, but with a substate

partitioned, they remain as simple states in the name rather than a substate element name, and

state set. INPUT rather than an input nzme. The keyword
INPUT causes the values expected in the CAeF;

A compound state name may be used in a FOR statement to be input values. (45) shows a nested

statement In the sane manner as a simple state, case statement that uses INFUT. Only the 11 table

Thus (20) illustrates the use of state H.ST in entry part is shown. Figure 7 therefore shows the

both the condition list and table entry. The spccification of one column of the state table.

usefulness of cc=pound states is found in the (47) causes values of substate A to be used.

ability to specify multiple states by leaving out (value> is a value which <condition> may take
one or more of the substates. This is interpreted on aT ue (i f A ha th value A t a n
in a condition list as the specified names witb on. Thus in (8), if A has the value Al then an
all possible names of the unspecified substates. error routine should be executed. This routine
In (21) TX means H.TX, T.TX, and T-.TX. ST is would be provided by the urer. If the value of

similarly combined with all eleuents of P. the present state is not Al, then the table entry
is specified by the CAS= statement at (50). This

When one or more substates is specified in condition expects values from A.B. Finally in

the table entry part, only the values of those (51) if the present state has the value A2.B2 then

substates are recorded in the next state. The the next state has Al specified for A and C2
remaining substates retain any previously specified for C. In addition output 01 iS
specified value. In some cases, the desired state specified. That completes the evaluaton of th
change consists of changing only one of the S at (51). (61) is the next statement grouped
substates, and leaving the other(s) unchanged from in the (49) LS. Therefore, to the values of A
their present state value. Leaving such substates and C is added the specification of B3 for B.

unspecified does not accomplish this. The keyword Then the .q.F statement of (62) uses values of P.

SE followed by a list of substates cpuses those To illustrate the complete operation of Figure 7,
2 ubatates to have the same value in the next state I1,A4.B1.C2.D2.E3 results in a next state of

as It has in the present state for each entry A1.B3.C3.D1.E3. The E3 is not explicitly
specified by the condition list. (21) uses S=Y.E P specified, but is copied from the present state by

In the table entry part. The condition list SAME REAIN!';G in (73), which completes the next
specifies all states with TX or ST as values of D. state in any positions not yet specified in an
These states are to have a next state of TX In outer CASE statement. Note that the output has
substate D. Thus U.ST,A has a next state of TX, resulted in a string of uutputs, namely 04,C6,02.

wIle T.ST,A has T.TX. Thus the C45E statement gives the ability to
specify ordered sequences _f outputs as the result

Figure 6 shows the complete state table of one state chanfo. Figure 8 shows the column ofspecified by Figure 5. This state table specifies the state table built by repeated execution of the

part of the state behavior of a Half Duplex SM statement.

Uon-switched Multipoint Data Communication System
* originally presented with a flow graph by Bjorner FIS L as described here only allows compound

(6]. states. Compound inputs are •another useful

feature that is not included here. As mention'i

a Sltatement. The final feature of FISSL above, the statement provides compound
is a procedure-lIke CASE statement. It is called outputs.
procedure-like because It Is not executed at run
time, but at compile time to build the state table
such in the manner of Parnas (11). Figure 7 gives
an example of the use of a case statement. It has

6

State Table 0pt1itliton Program backtracking search. It is based on an extension
to the partition methods of Hartman1s and Stearns

A technique recently developed (10] is a [121 which allows don't cares to be specified as

method of encoding a finite-state machine to allow part of the partition. This algorithm is

a minimum storage expenditure without sacrificing described in detail in (10).

Mal time advantages. A State Table Optimization

Program (STOP) his been written which compacts a References

state table Into a set of minimal input subtables.
(I] Nichols, A.J.., An Overview of

The actual choice of implementation Microprocessor Applications.PrOc. IUr£
characteristics to be optimized are not as 7k, (June 1976), 951-953.

Important as the ability to produce an optimizer
which will work on state tables of a more useful [21 Heistand, R.E., An Executive System

size than may be handled by most switching Implemented as a Finite-state Automaton,

theoretic techniques. I believe that useful state Com. AO1, (Nov. 1964), 669-677.

tables will have a numbier of inputs X number of

states product in the range 50 to 1000. Above [31 Birke, D.M., State-transition Programaing

1000, the complexity of the function being Techniques and Their Use in Producing
realized calls for codularization, just as large Teleprocessing Device-control Prorra=.

programs must be modularized to keep complexity F Trans. Com7-j. Q,. (June 1972),

manageable. 569-575.

The characteristics chosen for optimization (] Johnson, W.L., Porter, J.H., Ackley, S.I.,

are real-time, total number of table entries, and Ross, D.T., Automatic Generation of

number of biLts per table entry, in that order. Efficient Lexical Processors Usir Finite

The table look up speed of a two dimensional array State Techniques. Co=. AQ1 _U, (Dec.
Is not to be sanrificed for memory. Any 1968), 805-613.

optimization technique to reduce memory usage
should preserve the inherent speed of this [51 Millenson, J.R., Language and List

technique by allowini; at most a simple Structure of a Compiler for Experimental
transformation of the state to a table index, so Control. Computer JL1, (Nov. 1970),
that the columns may be reduced in size. 340-343.

The approach taken reduces each column of the (63 Bjorner, D., Finite-State Automation -

state table to an input sub-table having one -Definition -f Data Communication Line
mnique entry for each distinct specified entry in Control Procedures. Pro c . F 1070,
the original column. Note that don't-cares 477-491.

- (denoted by -) are eliminated, as well as

redundant occurances of entries in a single [7] Salter, K.G., A Methodology for

column, such as CX in column 1. The input 1 Decomposing System Requirements into Data

column in Figure 3 has four distinct entries, as Processing Requirements. Prc. Z Cn

well as several don't-cares and a duplicate entry. Sof t, (Oct. 1976), 91-101.

The resulting input sub-table produced by this
approach has exactly four entries. In the example [8] Liskov, B.H., and Zilles, S.N.,

of Figure 3, a 28 entry table is condensed to four Specification Techniques for Data

sub-tables with a total of 13 entries. Abstractions. IEU Trans. Soft . .1!
(March 1975), 7-18.

The method used to map the state onto a
sub-table index is to assign a substring of the (91 Paull, M.C., and Unger, S.H., Minimilng

state code to each input. These substrings should the Number of States in Incompletely

overlap as much as possible to keep down the total Specified Sequential Switching Functions.

number of bits in the state encoding. The In Trans. Elect,. Cori) , (sept.
aubstring is used directly as the index to the 1959).

input sub-table associated with that input. Such

a mapping is easily performed on computers with (101 Wilkens, E.J., Realizations of Sequential

logical and shift Instructions. Machines Using Random Access Memory. J±E-
Trans. Como., to be published.

The optimization depends on finding an
encoding having a substring for each subtable. [11] Parnas, D.L., State Table Analysis of

3uch an encoding always exist, but it may have Programs in an Algo-like Language. fno.
more than the minimum number of bits necessary to A E etn (1966), 391-400.

uniquely encode the state set. The minimum bit
encoding which will yield 13 entry sub-tables for [12] Nartmanis, J., and Stearns, R.E..

Figure 3 uses 4 bits rather than the 3 needed to h1rebrae Structure. Theory DI S -1 l.

uniquely specify 7 states. Machines. New York: Prentice-Hall, 1966.

STOP has been Written to find the minimum bit
encoding for minimum entry input sub-tables. The

algorithm employed is a highly pruned,

7

