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Statisticians, economists, and system engineers are becoming aware

that to identify models for time series and dynamic systems, information

theoretic ideas can play a valuable (and unifying) role. This paper discusses

how models for a univariate or multivariate time series Y(t) can be formulated

as hypotheses about the information divergence between alternative models

for the conditional probability density of Y(t) given various bases

involving past, current, and futu-e values of Y(.) and related time series

X(.). To determine sets of variables that are sufficient to forecast Y(t),

and thus to determine a model for Y(t), an approach is presented which

estimates and compares various information increments. These information

numbers play a central role in studies of causality and feedback. Approximating

autoregressive schemes are used to form estimators of the many information

numbers that one might compare to identify models for a time series.
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0. Introduction

In applications of statistical theory, it is important to distinguish

between the problem of parameter estimation (which belongs to confirmatory

statistical theory) ad the problem of model identification (which belongs

to exploratory statistical theory). The modeling problem arises in conven-

tional (static) statistics whenever the researcher's goal is to screen

variables (that is, to determine which variables (for which measurements

exist) are most associated with specified variables which we seek to

explain, forecast, or control). Researchers are becoming aware [see IFAC

(1982)] that to identify models for time series and dynamic systems,

information theoretic ideas can play a valuable (and unifying) role [see

Akaike (19'77)]. The thrust has been clearly articulated, but how to carry

it out has not been clear. That entropy ideas have a role in spectral

estimation is being widely stated; however, in my view the nature of the role

is not well understood by most users of spectral estimation techniques.

This paper does not discuss entropy-based spectral estimation [see Parzen

(1982)]; it is concerned with identifying time domain models for univariate

and multivariate time series by estimating suitable information measures.

Most of the calculations proposed are in the time domain. But spectral

density concepts and calculations are also used.

Section 1 states the definition of various information measures for

probability densities and for random variables. The conjectured ease of

calculating significance levels for tests of hypotheses by estimating

information increments is illustrated for the problem of testinq independence

of normal random variables using sample correlation coefficients.
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The formulation of tests for white noise and ARMA models in terms of

information measures is discussed in sections 2 and 3. Multiple time series

identification is discussed in section 4, and illustrated by an example in

section 5.

Analysis of empirical time series using the information measures

discussed in this paper has been implemented in our computer subroutine

library TIMESBOARD of time series analysis programs which is the creation

of Professor H. J. Newton. I would like to express my appreciation to

Dr. Newton for his close collaboration in this research program. The

work of Parzen and Newton (1980) provides a foundation for section 4 of

this paper.

4

I.

It
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1. Role of Information Measures in Model Identification

The concept of information theory most familiar to statisticians is the

entropy, denoted H(f), of a continuous distribution with probability density

f(x), --<x<-, defined by [log is taken with base e]

H(f) : f" {- log f(x)} f(x) dx.

A more general concept is information divergence I(f;g) of a density

g(x), usually representing a model, from a density f(x), usually

1I representing the true density. We define

I(f;g) = f'{-log I X)}I f(x) dx.

To express information divergence in terms of entropy, define the cross-

entropy H(f;g) of f(-) and g(-) by

H(f;g) = f {-loq g(x)} f(x) dx.

4Information-divergence has the important decomposition

(*) 0 < I(f;g) = H(f;g) - H(f).

There is an important relation between entropy and measures of deviation

(scale parameter) denoted a. A location-scale parameter model for a density

I f(x) is



f (x) foX0

where fo(.) is a known density, and p and a are parameters to be estimated.
0

One may verify that

H(f) = log a + H(fo)

0
For a normal distribution, the standard density f (x) is usually defined by

f ==-11 2fo(x) = (x -1 exp - 7 x;

then H(f) z log a + l { + log 27). A new standardization of the normal

distribution proposed by Stigler (1982) is the density

fo(x) = e

Then H(f ) = 0.5, and H(f) = log a + 0.5.

One of the aims of this paper is to point out that many familiar

statistics for testing hypotheses about the models fitting data can be

formulated as entropy-difference statistics. Thus an F-test forms

-F ;2
1 2

where a is an estimator of a variance u2 of a normal distribution.J

4 Instead of F, consider Fisher's original proposal to form

4
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Z log F = log i log 02

We can write Z : HI - H2 .where H. is an estimator of entropy based on .

In words, Z is a difference of two different estimators of entropy. Our

aim in this paper is to systematically develop statistics for testing model

identification hypotheses which can be interpreted as entropy-difference

statistics. The entropy-difference statistics that arise in time series can

be further interpreted as measuring information. We outline various facts

which justify a conjecture that information-based test statistics have

similar distributions.

We next define information measures for random variables and time

series. For a continuous random variable Y with probability density fy(y),

the entropy of Y is defined by

H(Y) = H(fY)

For a continuous random variable Y and continuous random vector X the

conditional entropy of Y given X is defined

H(YIX) = H(fyj X) = Ex H(fyiX)

Explicitly, when X is a random variable,

Ex H (fy = - H(fyix=x) fx (x) dx

where
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H(fylx= x ) = -log fyX=x(y)J fyx=x (y) dy

The information I(YIX) about a continuous random variable Y in a

continuous random variable X is defined by

I(YIX )  = I(f yIx; f Y)

= Ex I I fy)

= Ix=x; fy) fx(x) dx

A fundamental fact is that

(**) I(YIX) = H(Y) - H(YIX)

Proof: I (fyX=x; fy) = H(fyX=x; fy) - H(fyx=x)

Take expectation with respect to X and verify that

•N(fYIX=x fy) fx(x) dx

{-log fY(Y)}fXY (x,y) dx dy H(Y)

The most fundamental concept used in identifying models by estimating

information is I(YIXI; X1 , X2), the information about Y in X2 conditional on XI;

it is defined, by analogy with equation (* ),



I(YIXi; X1 , X2) = H(fyjX ) H(fyjxl '  X2)

= H(YIX 1 ) - H(Y!X1 , X2).

A fundamental formula to evaluate I(YIXi; X1 , X2 ) is

(****) I(YIXI; X1, X2) = I(YIX1, X2) - I(YIX 1)

When X and Y are jointly normal random variables, f yX=x(y) is a normal

distribution whose variance (which does not depend on x) is denoted

E(YIX). The variance of Y is denoted E(Y). The entropy and conditional

entropy of Y are

H(Y) : log E(Y) + (I + log 27)

H(YIX) = log (YIX) + (1 + log 27)

* The information about Y in X is written

I(YIX )  = log E-I(Y) E(YIX)

* When Y and X are jointly multivariate normal random vectors, let E

denote a covariance, matrix. One can show that

* I(YIX) = (- ) log det -1(Y) z(Ylx)

= (- ) sum log eigenvalues E (Y) E(YIX).
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To make the foregoing formulas concrete, and to describe the general

approach of this paper, consider the general problem of testing the

hypothesis H0: X and Y are independent. One could express Ho in any one of

the following equivalent ways:

H: f (x,y) = fx(X) fy(y) for all x and y;

Ho: (y) = fy(y) for all x and y;

Ho: I(f xy; fxfy) = 0;

H0 : I(YIX) 0

The information approach to testing H is to form an estimator i(YIX)

of I(YIX), and test whether it is significantly different from zero. One can

distinguish several types of estimators of I(YIX): (a) fully parametric,

(b) fully non-parametric; (c) functionally parametric which uses functional

statistical inference smoothing techniques to estimate I(YIX) [see Woodfield (198

In this paper we consider only fully parametric estimators based on

assuming multivariate normality of Y and X. When X and Y are bivariate

normal with correlation coefficient o,

I(YjX) - log (10).

Given a random sample (X1, YI),... ,(Xn,Y n ) the maximum likelihood estimator

of I(YIX) is

0
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I(Y(X) o- log (l-p2)

where p is the sample correlation coefficient. A test of H0 based on p

would reject Ho at the 5% level of significance if is greater than the

threshold given in the following table:

Sample
Size n Threshold for pJ_ Threshold for I(YJX)

20 .444 .11
40 .312 .05
50 .279 .04
80 .220 .025
100 .197 .02
150 .160 .013
200 .139 .01
n ? 2/n

In the foregoing table one sees a remarkable regularity in the 5% significance

levels for the estimated information; they are approximately given by the

simple formula 2/n. Test statistics based on entropy have 5% significance

levels obeying the approximate rule m/n where n is the sample size and m is a

constant which varies with the statistic used. At this time this perceived

regularity is mainly an empirical fact; its theoretical basis is the conjecture

that asymptotically 2n I(YJX) has a Chi-squcred distribution with a suitable

number m of degrees of freedom. If one transforms the 5% significance levels

of the multiple correlation coefficient to significance levels for
_ _R2

I I -2 log (l-R 2 ), one discovers that the transformed critical values

approximately obey the formula (1 + k)/n, where n is the sample size, and k

* is the number of regression variables. These empirical facts support the

recommendation that statisticans should in their thinking replace R2 by

information I.

0 1 .. .. .- .... "



2. Information Formulation of Tests for White Noise

Let {Y(t), t=O, +1,...) be a zero mean stationary Gaussian time series.

The information about the value Y(t) at time t in the m most recent values

Y(t-l),. .. ,Y(t-ni) is denoted

It is more convenient to write henceforth

Im = I(YIYis*... Y-M)

Introduce now the following notation for predictors (conditional

expectations):

Y"'m (t) = E[Y(t)IY(t-l),...,Y(t-m)] (YIY_1 9...SY-M)(t;

0= E[IY'"'m (t)12] *EEjY(t)1
2]

m

The information I m about Y in Y-,, ... $Y satisfies

I = -log 02

m 7 m
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Next, let Y denote the irFinite past Y(t-l), Y(t-2),..., and let

I = I(YIY-).

One can show that

I Ilog 02( fl log f(w) dw

where f(w) is the spectral density function of the time series Y(t) satisfying

p(v) = E[Y(t) Y(t + v)] E[y 2 (t)]

I exp (21.ivw) f(w) dw, v = 0, +l,...

One of the powerful properties of information is that I can be

evaluated as a limit of Im:

lim Im = I

m-+w

The value of I (in the Gaussian case, the value of 02) is used to

classify the memory type of the time series as defined by Parzen (1981); a

4 stationary (Gaussian) time series Y(-) is defined to be:

no memory if I = 0 (a2 = 1)

short memory if 0 < I < . (0 < 02 < 1);

long memory if I = (a2 = 0)
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To estimate Im for m=l,2,..., and also I., from a sample Y(t),

t=l,2,...,T, one uses the same estimators as if one were fitting an auto-

regressive scheme of order m to the time series:

Y(t) + am(l) Y(t-l) +...+ cm(m) Y(t-m) = C(t)

where c(t) is a white noise time series with variance denoted

= EjE(t)j2 EIY(t)1 2°m

We do not explicitly write the formulas for the estimators 2
m

The hypothesis

H : Y(t) is white noise
0

can be formulated in terms of information measures as

H0 : Im = 0 for m = 1,2,...

For any fixed m to test the hypothesis that Im  0 one forms a test statistic

of the form4

1 m log a2Im 2 m

A 95% significance level for Im seems to be approximately equivalent to one

of the form
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j<m*

m -T

where T is the time series sample size and m* is a suitable constant which

depends on the order m (of the predictor) and the sample size T. Two

widely used formulas for m* are [see Shibata (1981) for references]:

(1) m* = m, Akaike criterion;

(2) m* = m (log log T), Hannan-Quinn criterion.

The optimal value of m* for a given order m could be determined by

Monte Carlo simulation. However we need a sequence of thresholds m so

that the test region

< I for m = 1,2,...

provides an "optimum" test of the hypothesis that the time series is white

noise. In choosing the critical values I' one will undoubtedly use random

walk theory since one can represent

I~ m I
= - log 02 1 - Y log {lP 2  ...

m j=1

where p (jll,...,j-l) is the partial correlation coefficient of Y(t) and

Y(t-j) conditioned on Y(t-l),...,Y(t-(j-l)). The sample partial correlation

coefficients p(jll,...,j-l) are asymptotically independent N(O,(l/n)) under

the hypothesis H0 : Y(-).is white noise. The important work of Anderson (1971),

p. 270,on the model order determination problem should be related to the

random walk approach.

4
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3. Information Formulation of ARMA Models

A white noise time series is characterized by the fact that the past

has no information about the present. An autoregressive of order p, or

*AR(p), time series can be defined as one for which the most recent p values

has as much information as the infinite past. In symbols, the following two

hypotheses are equivalent:

H o: Y(-) is AR(p),

H0: I(YIY-,""Y-p; Y- ) = I. - Ip = 0

An ARMA (p,q) scheme is usually defined by the representation

Y(t) + ap (1) Y(t-l) +.. .+c(p) Y(t-p)

= E(t) + q (1) E(t-l) +...+q(q) E(t-q)

where the polynomials

0 gp(z) =l + p(1) Z +'..+p(p) zp

hq (z) = 1 + aq(1) Z +...+ aq(q) zq

are chosen so that all their roots in the complex z-plane are in the region

{z:lzl>l} outside the unit circle.

* To give an information characterization define the innovation time series
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YVJ(t) =Y(t) -Y11(t) urn YV'm (t)

Y"(t) =E[Y(t)IY(t-l), Y(t-2) .... ..] (YjY-) (t)

The following hypotheses can be shown to be equivalent:

HO: Y(-) is ARMA (p,q).

H: I(I l..'_,Y V ;V Y-) =0o - -q

H:(I_1 .**,y-P9 yV Is * ... Y (t M (vYy)(t)

To compute the information one needs to compute the conditional variance

z(jYl1.. YIYVi.. 9Y" ). To do this in practice we propose the

following procedure:

1. Fit an AR(p) of order p determined by an order determination

criterion.

2. Invert the AR(p) to form its MA(-), infinite moving average

representation,

Y(t) = Y 'dt) + 61 YV(t-l) + 2 Yv(t-2) +

* which is a non-parametric estimator of the MA(-) representaiton. Note that

I = CvT fl + 2 +6 2 +..1
10 2

and that the correlations p(v) = Corr [Y(t), Y(t+v)] are estimated by
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p(v) = 02 {v + 81Bv+l + "

3. Form the joint covariance matrix of Y(t), Y(t-l)...,Y(t-p),

YV(t-l),...,YV(t-q) for suitable values of p and q. By using matrix sweep

operators one can form the desired conditional variance a2 = (y
p ,q

E'(YJY-I" ".. Y-p I -1' ... .

Note that

I(YIY- ..."Y- "YVl " iq; . -) = I - Ip q,

I - ~logoG2

p,q 2 p,q

We illustrate this procedure by stating the conclusion for an ARMA(l,l):

I(YIYI,YvI;Y) log l-P4(1) _

One can verify that this information number equals 0 if the time series obeys

any one of the schemes AR(l), MA(l), or ARMA(l,l). The information numbers

for an AR(l) and MA(l) are respectively

I(YIY 1 ;Y-) - log { J-p2(l)~

" I(YIYV;Y-)= 7 log {o-7

We do not discuss rigorously the method by which one chooses the best

fitting ARMA (p,q). The method introduced by Akaike can be regarded as
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computing for each p,q an estimator I of information from which one
pq

-. subtracts its significance level (a multiple of expected value) I
p~q

under the hypothesis of white noise. Analogues of subset regression methods

also seem to work in practice, and are used in our time series programs

ARSPID and TIMESBOARD.

U

*o

0
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4. Multiple Time Series Model Identification

Let Y = {Y(t), t=O, +l,...} be a multiple zero mean Gaussian stationary

time series. One seeks to model Y(t) in terms of its own past values, and

values of multiple time series X = {X(t), t=O,+l, ... } A model begins

with a representation

Y(t) = Y (t) + yV(t)

where YP(t) is the linear predictor of Y(t) given specified variables in

the set {Y(t-l), Y(t-2),...,; X(s), s = 0, + 1,

One always defines Yv(t) = Y(t) - Y'(t). The probability law of the

zero mean Gaussian multiple time series {Yv(t), t=O, +1, ... } is described

by the sequence of prediction error covariance matrices

E (v) = E[YV(t){YV(t + v)}*]yV

where * denotes the complex conjugate of a matrix. The zero lag covariance

z (0) is used in the evaluation of information. This matrix is written

z(Ylpredictor variables)

0 to indicate clearly which variables are used. We now describe various

important information numbers and how they are computed (sample analogues of

the following formulas are used for estimation). The information numbers

* we form are of the form I(YIX) or I(YIX1 ; XI, X2) where X, XI, X2 are sets

of predictor variables. I(YIX) = 0 means that there is no significant
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dependence of Y on the variables in X; I(YIX) > 0 means that one can predict Y

from the variables in X. I(YIXI; XI, X2) 
= 0 means that there is no

information about Y in X2 in addition to the information about Y in X1 . For

each information number we list two hypotheses H0 and H, which the

information number can be used as a test statistic to distinguish. We

write: X- to denote past X (the set X(t-l),...); X+ to denote past and

present X (the set X(t), X(t-l),...); X to denote all (past, present, and

future) X (the set X(s), s = 0, + 1, ...).

To decide which explanatory variables to use in modeling Y one computes

estimators of the information numbers I(YIY-), I(YIX-,Y-), I(YIX+,Y-),

I(YIX,Y-), I(YIX) which one compares with their respective expected values

to determine which information number most exceeds its expected or threshold

values.

(1) I(YIY-), the information about Y in the infinite past of Y, is

determined by computing (using Yule Walker equations) for p=l,2,...

I(YjY_I, ...,Y p (- -) log det C (Y) z(YIYI,... ,Y p)

and determining an order p such that the value of the information about Y(t) in

the p past values Y(t-l),... ,Y(t-p) is used as an estimator of the information

about Y(t) in Y(t-l), Y(t-2),..... This estimator statisfies the general

formula

log det E(YIY-) = f1 log det fy( ) dw

if the spectral density matrix of Y(.) is estimated by the autoregressive

spectral density estimator of order p.
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For use in (5), we also compute at this stage I(XIX-).

(2) I(YIX-,Y-), the information about Y in the infinite past of X and Y,'

is determined by fitting multiple autoregressive schemes of order p = 1,2,...

to the joint time series [X(t)] which are used (for a suitable order p)
IY~t)I

to estimate the mean square prediction error matrices E(X,YIX-,Y-). It is

represented as a partitioned matrix

I E(X,YJX-,Y-) =

where E = (XJX,Y-), Ey = E(YX-,Y-), E is the conditional covariance

matrix of X and Y, given X and Y-. Then

I(YfX-,Y-) (- )log det E (Y) E(YIX-,y- )

We also compute at this stage I(XX-,Y-) which is used in (5).

The approximating autoregressive scheme is also used to estimate

the spectral density matrix

fa fXX M f XY M )

Sfxy(W) = (

Lf Yx M f yyM

4 which is used in (3), and coherency C(w) = fy(1 M fxM fx1(w)fxy().

Several important identities can now be stated. The determinant of a

partitioned matrix can be evaluated

4

0
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log det E(X,YIX',Y-) = log det E + log det E - E E - XY

However E E(XIX-,Y-), and Parzen (1969), p. 402 shows that

x(YIX+,Y - ) =y - EYX EX 

Thus we have the identity:

(I) log det E(X,YIX-,Y-) = log det E(XIX-'Y-) + log det E(YIX+,Y-)

Next

log det fxy(w) = log det fX(w) + log det fyy(W) - fyx(W) fx (W) fxy(W)

Integrating with respect to w over O<wl, we obtain the identity

(II) log det E(X,YIX-,Y-) : log det E(XIX-) + log det E(YIX,Y-)

since the spectral density of the error time series (YjX)'(t) = Y(t)-(YIX)(t)

is

(YIX)v= f YY  - fYX fXY

Identities (I) and (II) play an important role below in stage (5); their

importance may have been first pointed out by Geweke (1982), Theorem 1.

-(3) I(YIX), the information about Y in all of X, is computed by

I(YIX) = (- -) log det E-l(Y) E(YIX)

62
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where E(YIX) = f, fyy) {I-C(w)}dw

f ffy (W) - fY (W) f- (W) f~ (w)} dw

(4) I(YIX+,Y-), the information about Y in the past and present of X

and the past of Y is given by

I(YJX+,y) = (- )log det E-(y) (ylx+,y)

where E(YIX+,Y-) E - E EX E in terms of the partitioned

submatrices appearing in E(X,YIX-,Y-) computed in (2).

(5) I(YIX,Y-), the information about Y in all of X and the past of Y,

is computed in an ingenious manner developed by econometricians in their study

of feedback measures [See Geweke (1982)]. First

4 I(YIX,Y-) = I(YIY-) + I(YjY-;X,Y-)

Next

I(YIY-;X,Y-) = I(YlY-;X+,Y - ) + I(YIX+,Y-;X,Y- )

* The first conditional information on the right hand side is computed
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I(YIY ;X" Y-) I(YIXY-) - I(YjIW)

in terms of the information determined in (4) and (1) respectively. The

second conditional information, defined by

I(YIX~ ,K;X,Y-) = I(YIX,Y-) - I(Y(XY-)

U is computed by

I(YIX~Y - ;X,Y-) = I(XlX-;X,Y-)

= I(XIx-,W) - L(Xjx_)

in terms of information computed in (2) and (1) respectively. A proof of

equation (*****) is based on the identity

log det E(X,YX,Y)

= log det z(YjX +,Y-)+log det z(X jXY_)

0
=log det E(YIX, Y-)+ log det F(XIX-)

which follows from (I) and (II) in stage (2). Therefore

log det EiY1X+ ,Y-)- log det E(YtX,Y-)

=log det E(IXX) - log det E(XIX-,Y-)
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Summary. A method of summarizing the various information numbers is

provided by reporting each of the terms in the following information

decomposition:

I(YlY';X,Y-) = I(YX,Y-) - I(YY-) =

I(Y1Y-;X-Y) + I(YIX-,Y-;X+Y-) + I(YIX+,Y-;XY-)

which enables one to construct the information numbers in (1), (2), (4),

and (5). One also reports I(YIX) and I(YIX;X,Y).

The difference between measures of information is illuminated by

expressing them when possible in spectral terms:

I(YIY-;x,Y-) f o (I log det {I-C(w)} dw,

I(YlX;X,y-) 1 log det f 1 fy(W) {I-C(w)} dw
2 de f YfYw){-~w1d

- o log det fyy(w) {I-C(w)} dw

Causality and Feedback. It should be noted that notions of feedback

and causality studied by econometricians [see Gewerke (1982)] can be easily

defined in terms of information numbers:

measure of linear dependence is I(YIY-;X,Y-)

measure of linear feedback from X to Y is I(YIY-;X-,Y-)

measure of instantaneous linear feedback is I(YIX-,Y';X+,Y-).
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5. Information Summary and Example

To summarize the relations between two multiple time series X(.) and

Y(.) one estimates

I. Memory Measures

I(XjX-), I(YJY-)

II. Feedback Measures
F I(XlX-;X-'Y-)' I(yly-;x-,Y-), I(YlX-,Y-;X+,y- )

III. Information Increment Measures

I(YIY ;X ,Y )

I(yjy-;x+,y -

I(YIY-;X,Y-)

I(YIX;X,Y-)

As an example, let us consider univariate time series X and Y which

are given as Series J by Box and Jenkins (1970); X is gas furnace data, and

Y is CO2 in output gas. The time series sample size is T = 296. The means

and standard deviations are given by

X Y

Mean -.057 53.51

Standard deviation 1.07 3.20

The ratio of standard deviations of Y to X is about 3; it can be regarded

as a gain factor by which a change in X is multiplied into a change in Y.

The multiple covariances R(v) of the standardized time series (Y,X)

are computed for v = 0,1,...,24; we list R(O), R(l), R(2), R(3), R(4), R(5):

* 1.00: -.485] [971 -.394] :89: -.329]

-.485 1.000 -598 .953 [-*725 .834
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r.793 -.2861 F 680 -.260] .575 -.2431
-.843  .682 [-.925 .531j -.950 .408

The order determined AR schemes are: for X; order 6, Z(XIX-) = .0302;

for Y: order 4, E(YIY-) = .0183.

The order determined joint AR scheme for the standardized time series

(Y,X) has order 4 and E = .0095, EXX = .0306, E = -.0021.

Then Eyy - EYX Ex 1  XY = .0093.

The spectral regression of standardized Y on all of standardized X has

E(YIX) = .0618.

The memory measures are (formulas apply to standardized X and Y)

I(X)X-) = -.5 log E(XIX-) = 1.75,

I(YIY-) = -.5 log E(YJY-) = 2.00;

one concludes that each time series has long memory.

The feedback measures are

I(YIY';X-,Y') = .330

I(YIX-,Y';X+,Y-) = .008, not significantly different from zero,

I(XIX;X-,Y') = -.008, not significantly different from zero.

The information increment measures are
I
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I(YfY;X-,Y) = .33

I'I,;'Y) 3

I(YIYf;X,Y) =.33

I(YI;X,Y) .93

One interprets these measures to mean that adding Y to X adds much more

information than adding X to Y-. Further adding X- to Y- is as informative

as adding all X to Y.
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