
I D-Ai29 724 TURBULENT BOUNDARY LAYERS DEVELOPING OVER COMPLIANT Ini
SURFRCES(U) GEORGIA INST OF TECH ATLANTA SCHOOL OF

UI A AEROSPACE ENGINEERING S G LEKOUDIS ET AL. 86 MAY 83

UNCL7SSIFIED N88814-82-K-827i FG 28/4 N



0

+3W

E

S1.0 , I2 1.

-I111____III _ . ~ III~~

MICROCOPY RESOLUTION TEST CHART
NAIONAL BUREAU OI STANDA1DS ,9 ,3

490

0 0 0 0 0 0 0 0 0 0 0 0 0 .0 ".0 0 :



FINAL REPORT

-F4

TURBULENT BOUNDARY LAYERS
DEVELOPING OVER COMPLIANT SURFACES

~By 3
.. S. G. Lekoudis and T. Sengupta

p

Prepared for

THE OFFICE OF NAVAL RESEARCH
COMPLIANT COATING DRAG REDUCTION PROGRAM

Under QTI _
Contract ONR N00014-82-K-0271
(Georgia Tech Research Institute E-16-699) 2 4 '983

May 1983

GEORGIA INSTITUTE OF TECHNOLOGY
A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
SCHOOL OF AEROSPACE ENGINEERING

>- ATLANTA, GEORGIA 30332 - .

o 0 10



Final Report

on Contract ONR N00014-82-K-0271
(Georgia Tech Research Institute E-16-699)

TURBULENT BOUNDARY LAYERS
DEVELOPING OVER COMPLIANT SURFACES

By

S. G. Lekoudis and T. Sengupta
School of Aerospace Engineering
Georgia Institute of Technology

For

The Office of Naval Research
Compliant Coating Drag Reduction Program

May 6,1983 /

0
S.i

S/



-rat

SUMMARY

This report summarizes work done under the ONR Contract No. N00014-82-

K-0271 to Georgia Tech, between March 1, 1982 and March 1, 1983. The objective of

this research program was to develop prediction techniques for high Reynolds

number turbulent flows over compliant surfaces. This objective was pursued by

evaluating the wall induced Reynolds stresses using solutions of the linear

I9 momentum equations.

One graduate student, Mr. Tapan Sengupta was the research assistant in

this program. He is currently a Ph.D. candidate at the School of Aerospace

4 Engineering at Georgia Tech.
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1. INTRODUCTION

The problem of reducing drag due to skin friction remains of interest. This

is the case because of the significant benefits that would result from an application

of a drag reducing scheme on airplanes, ships or underwater vehicles. One of the

techniques that have been proposed for such a scheme is wall compliance. Wall

compliance could, in principle, work in two ways: either it could delay transition,

*g or it could modify the inner part of a turbulent boundary layer so that reduced skin

friction would result.

The Office of Naval Research supports an ongoing program in compliant

surfaces for drag reduction. The program consists of analytical and experimental

studies with the goal of inventing a working system (Reference 1). The prime

candidate for such a system is the turbulent boundary layer developing on a surface

with desirable properties. Therefore, the center of attention in this research is the

interaction of the turbulent boundary layer with a compliant coating.

Any prediction method that attempts to compute high Reynolds number

flow over compliant surfaces aims at predicting unsteady turbulent flow.

Therefore some credibility of the method must be established by using it to predict

steady turbulent flows over rigid wavy surfaces. There are measured data for such

flows (References 2, 3, 4, 5). Such flows do not show any beneficial drag reduction.

The reason is that although the average skin friction is lower than that for the

equivalent flat plate flow, the phase shift of the pressure results in a net drag

increase.

The developed prediction technique and results for both stationary and

moving wavy surfaces are presented and discussed in the next sections of this

report.
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2. THE TWO-DIMENSIONAL TURBULENT BOUNDARY LAYER OVER

A STATIONARY WAVY WALL IN INCOMPRESSIBLE FLOW

The coordinate system used (Figure 1) is boundary-conforming. This is very

important because the linearized wall boundary condition (transfer at the mean

interface) presents serious errors for wave amplitudes that are large compared to

the turbulent sublayer thickness, if a cartesian system is used (Reference 6). This

error was numerically verified by working with a cartesian system and predicting

turbulent separation for the unseparated flow of Reference 5. The coordinate

system is frozen in space, if one moves in the positive x-direction with the wave

velocity c (zero for the rigid wall case). Contrary to the coordinate systems used

in References 6 and 7, the present system has no singularities away from the wall

and approaches a cartesian system far from the wall. The normalizing parameters

are the local boundary layer displacement thickness 6 and the local freestream

velocity U . The nondimensional wave amplitude E is supposed to be small for the

analysis to be valid. For the data of Reference 5 it is more than 1, but this did not

seem to invalidate the calculations. It was found, by trial and error, that for the

same data the integration normal to the wall has to extend about 18 6 before the

freestream boundary conditions are appropriately applied.

.4 The velocity (Figure 1) components u, v in the S, N, directions respectively

are decomposed into three parts: a mean time-independent part, a random part and

a periodic in space and time part. For example, the u-velocity component is

4 written as
' [ (N~eik(s-ct) (e-ik(s-ct)]

u = (N) + u (s, N, z, t) + +(N)e (I)

In Equation (1) stars denote complex conjugates. Time-averaging the

Navier-Stokes equations for incompressible flow results into stresses due to the

6
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random component and to the periodic component of the velocity (References 9,

10). The last stresses are termed wave-induced stresses. Taking a phase average of

the Navier-Stokes equations, subtracting the time-averaged equations, neglecting

terms of order E 2 and assuming that the difference between the time-averaged

stresses due to the random velocity component and the phase-averaged stresses due

to the same velocity component is small, we obtain an Orr-Sommerfeld system for

the periodic part of the flow.

The Orr-Sommerfeld system is nonhomogeneous because of the terms due

to curvature, with homogeneous boundary conditions (References 8, 9, 10). The

numerical difficulties associated with such systems are taken care of with the useI
of standard methods (Reference I1). It was found that, in general, the Orr-

Sommerfeld problem for a turbulent mean profile is stiffer than the same problem

for a laminar profile. The reason is not the Reynolds number but the profile shape.

The mean turbulent flow is solved using a finite-difference technique, the Keller-

box, for two-dimensional incompressible flow with arbitrary pressure gradients.

The computed pressure and skin friction variations were compared with

measured data. A point has to be made about the stresses from the random

component of the velocity. If these stresses remain unexpanded in the perturbation

scheme, the agreement with measured data is not as good, especially for the skin

friction distribution (References 8, 9). The model used in References 2, 3 and 6

proved adequate. Navier-Stokes simulations of these steady turbulent flowfields

(References I and 12) indicate that the algebraic eddy-viscosity is adequate. This

model is used for the mean flow calculations.

Comparisons for pressure and skin friction distributions are shown in

Figures 2, 3, and 4. The measurements are from Reference 5 for the Figures 2 and

3 and from Reference 4 for Figure 4. No detailed skin-friction measurements are

4
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available for the flows described in Reference 4. The agreement between

calculations and measurements is good. It should be emphasized that good

agreement with measured pressures is not very hard to achieve, even simpler

theories show good qualitative agreement. The skin friction is a much more

difficult quantity to predict for such flows.

The linear theory can provide estimates of the pressure drag, but not of the

skin friction drag. This is because to 0() the periodic variation of the skin friction

.produces no net effect on the drag. However it is experimentally established that

the mean skin friction of these flows is lower than that of the flat plate (Reference

4). This is the reason such flows were examined. To predict the average skin

friction, we used a nonlinear theory (Reference 9). The boundary layer equations

used to obtain the mean flow 0(N), contain wave-induced stresses. These stresses

are:

2 (a1 + iV)(2)

and they are functions of N only. Stars in Equation (2) denote complex conjugates.

The wave-induced stresses described in Equation (2) represent essentially a

streaming effect. The boundary layer equations were solved including these

stresses in an iterative fashion. The iterations were between the meanflow solution

and the solution of the Orr-Sommerfeld system (Reference 9). No more than 5

iterations are needed to obtain a converged solution. The following observations

can be made from this solution.

The mean flow is slightly modified only close to the wall with a resulting

reduction in the skin friction. Figure 5 shows the skin friction distribution for the

experimental setup of Reference 4. The calculations predict that the skin friction

is lower than that of the flat plate, in agreement with experimental observations.

The iterative scheme has a very small effect on the amplitude and the phase shift

6
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of the pressure and the shear on the wavy wall. The predicted drag was compared

with the data from NASA-Langley (Reference 4). For the wave with h/X = .015

(Reference 4), the ratio of the pressure drag over the flat plate drag was computed

to be 0.234 and the same ratio for the skin friction drag was 0.985. The agreement

is comparable with the one obtained from solutions of the full Navier-Stokes and in

excellent agreement with the measurements (References 4, 9). The code used to

generate these predictions takes about one hour of CDC 6600 time for the 35

sinusoidal waves of the experimental setup of Reference 4.

I
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3. THE TWO-DIMENSIONAL TURBULENT BOUNDARY LAYER
OVER A MOVING WAVY WALL IN INCOMPRESSIBLE FLOW

For simplicity, a cartesian system was used to solve the Orr-Sommerfeld

system for the case of a wall translating in the flow direction with nondimensional

velocity c. Details from this calculation are given in Reference 8. Because of the

coordinate system, the wavy wall of Reference 5 was reduced to 1/10 of its

amplitude, and then used in the moving wall calculations. The Orr-Sommerfeld

system predicted flow separation for the original wave by calculating a periodic

skin friction with amplitude larger than the mean skin friction. Very little change

in the phase of the shear and the pressure variations resulted from the wall motion.

Therefore the linear theory indicates that the only favorable effect from a moving

wall is the reduction of the pressure drag because of the reduction of the amplitude

of the oscillating pressure (Reference 8). The calculations were repeated for a

boundary layer with a pressure gradient. Again no significant changes from the

stationary wall case of the phase shift of the pressure and the shear variations were

found (Reference 8).

Solutions for the nonlinear problem were also computed. The skin friction

distriDution, for the experimental setup of Reference 4, for nondimensional wall

velocities, of 0.1 and 0.2 are shown in Figure 5. The wavy wall skin friction is

slightly lower than that for the flat wall that moves with the same velocity, as

expected. The pressure coefficients are shown in Figure 6.
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4.. THE COMPLIANT WALL PROBLEM IN

TWO AND THREE DIMENSIONS

The previous two sections in this report deal with the case of stationary

wavy walls, or walls that translate with uniform velocity. In this section the use of

the coordinate system for the calculation of compliant wall motion is described.

For the two-dimensional problem, the absolute velocities u, v in an inertial

cartesian (x, y) coordinate system, on the surface of the wave, N = 0, are

(Reference 9):

U = -+u'+c+teik(s-ct) [5 -k(O+u)=ikv] (3)

V = V e + e i- V-kv'+ik(O + u')] (4)

where the velocities in the RHS of these equations are all relative to the

curvilinear S, N, Z coordinate system. For the case of a translating wall, u c and
I I

v = 0, as it should be, because 0 = v v = u = v = 0 on the wavy surface.
I I

For a compliant surface 0 = -c, u = v 0, and therefore

u - ik(-ct) - kc (5)
Ee

- v +ikc (6)
((6

e ik(s -ct)

For a compliant wall that admits traveling wave solutions u and v are multiples of

e ik (s -c t ) with coefficients that are related with the wall compliance. Since we are
4

not solving the eigenvalue problem (i.e., material properties of the wall are

neglected) we can prescribe u and v at will. In this case the Orr-Sommerfeld

system has inhomogeneous boundary conditions as well. Calculations for such a

system will be reported in Reference 9.

The three-dimensional problem can be more complicated than it appears.

The reason is that the direction of the wave motion and the direction of the phase



of the wavy surface do not have to coincide (Figure 7). A coordinate system that

moves with the wave and has all the desirable properties of the one used in the

two-dimensional problem is constructed in Figure 7. Then the velocity components

in the S, N, Z curvilinear system can be expanded as follows:

u = 13 (N) + u + E [ eik(s -c+t) i* e- ik(s-c l t)] (7)

v = v+ E IVieik(s
- cIt)+V * e - ik(s - ct)] (8)

w - W(N)+ w + E [ eik(s ct) +w e cJt (9)

where 0 and W are the projections of the two-dimensional mean velocity profile on

the xy and yz axis, respectively. The Navier-Stokes equations and the Equations

(7), (8) and (9) give another nonhomogeneous Orr-Sommerfeld system, because of

the terms due to curvature. For the case of a wavy wall, translating with velocity

c in the x-direction (8 = 900) the boundary conditions are homogeneous. The

nonlinear problem can be solved by finding the wave-induced stresses in the plane

of the mean flow, which is not specified in Figure 7 and is also arbitrary. This can

be done by velocity decomposition once the solution from the Orr-Sommerfeld

system is known.

For the case of compliant walls, equations analogous to (6) and (7) can be

derived. The equations and calculations of such flows will be reported by the

* authors of this report.



5. CONCLUDING REMARKS

Two-dimensional turbulent boundary layers, in incompressible flow, over

wavy surfaces have been investigated. The solution of the linear momentum

equations, reduced to a nonhomogenous Orr-Sommerfeld system, have been

obtained. They have been used to modiel the wave-induced stresses in the time-

averaged boundary layer equations. The calculations predict a small reduction of

the mean skin friction, in agreement with experimental observations, for the case

of stationary wavy walls. This reduction persists when the wavy wall is translating

downstream with uniform velocity, while the pressure drag is decreased.

L
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6. PUBLICATIONS AND PRESENTATIONS

Based on work supported from this contract, the following publications and

presentations resulted:

1. "Calculation of Turbulent Boundary Layers Developing Over Compliant
Surfaces," by T. Sengupta and S. Lekoudis, presentation at the Drag
Reduction Symposium, in the National Academy of Sciences (Washington,
D.C., September 13-17, 1982), sponsored by ONR, NASA, AFOSR and NSSC.

2. "Calculation of Incompressible Turbulent Boundary Layers Over Moving
Wavy Surfaces," by T. Sengupta and S. Lekoudis, AIAA Paper 83-1670 (16th
Fluid and Plasma Dynamics Conference, July 12-14, 1983).

.
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