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SECTION 1

INTRODUCTION

l.l. Motivation and Qbiectives

A newv methodology for generation of the wake geometry for
the computational aerodynamic analysis of a helicopter rotor is
presented in this report.

The availability of such a methodology would enhance
counsiderably the present computational capability in this area.
This capability is needed for instance for:

(1) performance and structural analysis
(2) evaluation of generalized forces for flutter analysis

(3) evaluation of the outer potential velocity field for
the boundary-layer and separated-flow analysis.

In the classical rotor-wake formulation, the wake is
described as & spiral (helicoidal) surface which is obtained from
the assumption of uniform vertical flow. This method is not
sufficiently accurate for the aerodynamic analysis of helicopter
rotors. This yields the need for the development of a
methodology for fully-automatic or semi-automatic wake
generation.

The fully automated waske generation (commonly referred to as
‘free wake' analysis) is obtained step-by-step by celculating
from the location of a vortex point at s given time steop the
socation at the next timestep: the drawdback with this approach
is that the free~wake analysis is quite expensive in terms of
computer time,

On the other hand, a semi~sutomatic wake generation
(commonly referred to as ‘generalized wake') may be obtaimed by
expressing the analytical description of the wake geometry in
terms of fewv parsmeters which are evaluated by fitting
experimentsl results. The generalized—-wake analysis is accurate
and not more expensive than the classical-wake analysis, but
currently requires the use of expensive wind tunnel experiments
for the generation of the generalize~wake model. On the other
haad, the free—wake analysis is more expeasive than the
goeneralized-wake analysis but less expensive than the wind tunnel
experiments.

The objective of work presented here is the development of
an efficient and general method for free~waks potential




serodynamic snslysis which then can be unsed (instead of the more
expensive oxperimental approach) to gemerate the generalized-wake
model for use in a prescribed~wake analysis, The role of the
experimental work would them be limited to the validation of the
free—wake analysis,

1,2, Relatjon of Work with State of the Art

An excellent review on aerodynamic techmology for advanced
rotorcraft was presented by Landgrebe, Moffitt, and Clark in
Refs. 1 and 2. Additional reviews are presented in Refs, 3-7.
(Compressibility effects in particular are reviewed in Ref, 7.)
Therefore only works which are particularly relevant to the
objective and the motivation of the proposed work are included in
this brief review, which is not to be considered, by any means,
complete.

Ve feel that the unsteady analysis is the main strength of
the method presented here over other existing methods (accurate
pressure evaluation for compressible unstesdy flow is badly
needed for flutter analysis, see Ref. 3: & correct and
efficient formulation for such a problem is not available at
present time even for an isolated rotor). Therefore particular
emphasis is given in this review to the unsteady flow analysis.
Another important festure of the methodology proposed here is the
capability of amalyzing rotor—fuselage interaction: this is the
nain advantage of so—called panel methods over lifting-surface
methods (see below). Therefore this aspect is also emphasized in
this review, A third advantage of the methodology proposed here
is that it can be extended to give an exact integral equatiom for
nonl inear compressible unsteady flows with moving shock waves.
The extension of the present formulation to compressible flows is
briefly outlined in Appendix A,

It is interesting to examine the Concluding Remarks made in
Reference 2 in 1977:

'As with any review of a rapidly chamging subject,
the conclusion that must be drawn from this review is
that, slthough much has been achieved in terms of our
understanding the aerodynamics of the rotor, much
remains to be accomplished. In recent years, there
have been large advances in the capabilities of the
helicopter with today’s machines flying faster,
farther, higher, heavier, smoother and quieter than
their predecessors. However, the gains possible with
today’s sdvanced technology are becoming smaller as the
state of the art approaches goals set using
yesterday’s ground rules, and the available techniques
must be worked harder to achieve even modest
improvements., Unfortunately, these techniques,




reflecting with a growing complexity an increased depth
of understanding of the rotor behavior, are beginning
to straian the capabilities of the computing facilities
available. If further advances are to be made, some
simplification (without loss of precision) is required.
This is especially true if the methods are to be made
available to the engineer and the designer at a
working, as opposed to a research, level.

More specifically, based on this review, several
areas which require more attention as the industry
enters another decade of the development of our
technology include: the definition of the inflow
distribution in forward flight using a generalized wake
approach similar to that developed im hover, the
combingtion of the effects of unsteady and skewed flow,
s rosolution of the limits of applicadbility of the
basic lifting—line assumption, the development of an
economic 1lifting surface analysis, and a representative
aerodynamic model of the rotor/airframe interaction,
All of these (and other important elements not covered
in this review) should be combined in a tractable, well
correlated analysis, which will be used in combination
with an improved appreciation of the role of the blade
seroelasticity to develop designs for tomorrow’s
advanced rotorcraft.’

The work presented here addresses most of these issues. As
mentioned above, the objective of this work is to develop an
efficient and general methodology for free—~wake potential
serodynamic analysis of helicopters in hover or forward flight.
This methodology may be used to gemerate s gemeralized wake which
is now obtained from very expensive wind tunnel results. (The
availability of such a method and corresponding computer program
would enhance considerably the present computational capability
for an accurate ovaluation of pressure and flow fields for
performance and structural analysis. Such evaluation is also
required for instance for the problem of drag-reduction as a
prerequisite for the boundary-layer analysis.) Also mentioned
sbove is the fact that the possibility of analyzing compressible
unasteady flows and rotor-fuselage interference makes theintegral
method presented here quite unique among the ‘integral equation’
methods which are well known to be much faster and much simpler
to use than finite—difference or finite—element methods.

Three items which are relevant to this report and which need
a discussion deeper than the ones presented in Refs. 1 to 7 are
advanced computational methods (lifting-surface and panel
methods), wake roll-up and compressibility. These items are
briefly examined in the following.

1-3
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Consider first advanced computational methods. Lifting-
surface theories are preseunted in Refs. 6 to 7. Both methods are
of interest here. The first (Summa, Ref. 6) introduces an
incompressible time—domain analysis (the wake-dynamics analysis
of this paper is covered later in this sectiom) while the second
one (Rao and Schatzle, Ref. 7) introduces in a simplified form
(local Prandtl-Glauert, chordwise transformation) the effect of
compressibility for rotors in unsteady flow. This paper is very
relevant here because it clearly demonstrates the importance of
an sccurate evaluation of the wake geometry for the calculation
of the section lift distribution acting on the blade. A third
lifting— surface method was developed by Suciu, Preuss and Morino
(Ref. 8) for windmill rotors and yields results whick are in
excellent agreement with those of Rao and Schatzle (Ref. 7). An
important development which requires special attention is the
work by Dat and Costes (Refs. 9-12), who start from the
acceleration potential due to a doublet and develop a 1ifting-
surface equation for compressible rotor aerodynamics.

Next consider panel methods, s new methodology recently
introduced in zircrsft zerodynamics. This methodology (also
called boundary—element method) consists of the finite-element
solution (over the actual surface of the body) of integral
equations for potential serodymamics. Typically, the surface of
the aircraft is covered with source~panels (doublet-, vortex—,
and pressure-panels are also used on the surface of the body and
of its wake). The intensity of the sosrce distribautiom is
obtained by assuming that the flow does not penetrate the surface
of the body. (Note the difference with respect to the lifting—
surface formulations, in which the integral equation is over the
mean-surface of the rotor blades. By panel methods we indicate
only those methods in which the actual surface is used: their
main advantage over the lifting-surface methods is the capability
of analyzing rotor—fuselage interaction.) An early work on the
flow field around three~dimensional bodies by Hess and Smith
(Ref. 13) uses constant strength source—elements to solve the
problem of steady subsomic flow around nonlifting bodies. This
method has been extended to lifting bodies (Refs. 14-18) by
including doublet, vortex, and lifting~surface panels. Work in
panel method for unsteady flow around complex configurations
include extensions of the doublet~lattice method (Refs. 19 and
20) and, more recently, the work of Morino and his collaborators
(Refs. 21-28),

This methodology has been recently extended to helicopter
aerodynamics. For instance, the work by Dvorak, Maskew and
Woodward (Ref. 29) present a method for calculating the complete
pressure distribution on a helicopter fuselage with separate flow
(the method uses YBAERO for the potential flow solution, the
boundary layer is calculated up to the separation line, separated
flow is modeled by strr:amwise panels of uniform vorticity).
Additional results are presented in Ref, 30, Straightforward
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spplications of panel methods to helicopter aerodynamics are slso
presented by Soohoo, Morino, Noll, and Ham (Refs. 31 and 32: &
formulation for compressible flows is presented in Ref. 31).

The above remarks indicate that panel-serodynamics methods
are becoming available for the analysis of the complete
configuration. The availability of such methods (and
corresponding computer programs) emhances comsiderably the
present computationsl capability for am sccurate evaluation of
pressure and flow fields. This evalustion is becoming more and
more important because of recent trends ian the field of
belicopter aerodynamics. VWiad tunnel experiments are very costly
whereas computers are becoming less and less esxpensive.
Therefore, the use of computers is becoming wmore attractive for
the aerodynamic analysis of helicopter coafiguration, For
instance, items such as higher performance (lower drag, higher
speed, higher [ift, higher reliability) require more theoretical
anslysis: im particular, as mentioned above, reduction of drag
requires a very accurate evaluation of the potemtial flow field
as & prerequisite for the boumdary—-layer and flow separation
snalysis (Ref. 29). Thersfore panel-—aserodynamics methods deserve
further attention and are expected to becoms s standard design
tool for airplane aad helicopter serodynamics within this decade.

Next consider the issue of wake dymamics. An excellent
review of the problem of the wake roll—-up is given in Refs. 1 and
2 (where additional works not included here are esxtensively
roviewed). The essence of the state of the art in this ares is
briefly summarized hers. The various asrodynamic analysis of the
rotor fall into ome of the three following types :

A. Classical wake. i.e., 2 wake geometry described bY
a8 helicoidal spiral with pass obtained froa
uniform flow assumption.

B. Geperalized wake, i.e., s wake geometry obtained
by interpolating experimental data in terms of few
parsmeters.

C. Fres 23ks., i.e., s wake geometry obtained
computationally as an integral part of the
solution.

Analytical models for predicting the geometry of the rotor
wake were developed from experimeatal data by Landgrebe (Ref. 33
snd 34), Crews, Hohenemser and Ormiston (Ref. 35) and Kocurek
(Ref, 36). Landgrebe’s model was used by Rac and Schatzle (Ref.
7 is their lifting=-surface theory, and shows that s comsiderable
improvement in the comparison with sxperimental results of Ref.
37 can be made simply by using s genmeralized wake geometry

1=-5




instead of the classical wake geometry. Automatic generation of
the wake is considered for instance by Scully (Ref. 38), Suvama
(Ref. 6) ,and Pouradier and Horowitz (Ref. 39). All these works
indicate that the algorithms used are unstable unless special
constraints (such as specified comtractiom ratio) are imtroduced.
Another important issue is the ome of simplified algorithmas which
can be used for instance for modeling the far wake: several
models are available for the hover case (see e.g., Ref, 40-42),
However none of these models is spplicable to the case of
arbitrary motion considered in this report.

As mentioned above, it is a generally accepted opinion in
the helicopter-serodynamics community that the classical-wake
analysis is insufficient (see for instance Ref. 7) to obtain
accurate results and that the free-wake analysis is too expensive
and that, consequently, all the effort should be devoted to the
general ized-wake analysis. WVhile we basically agree with this
sssessmont, we would like to point out again that in gemerating
the generalized-wake geometry it is not necessary to use the
- costly wiad—-tunnmel results: one can use the free—wake analysis
which is more expensive than the generalized-wake analysis bdut
slso much less expensive than the experimental approach.

Next consider the issue of compressibility. As mentioned
sbove, the analysis for compressible flows is examined in
Appendiz A. Hence for completeness, the issue of compressibility
is reviewed here. The importance of compressibility was clearly
demonstrated by Friedman and Yuan (Ref. 3) for the problem of
aeroelastic stability (i.e., flutter and divergence) of rotor
blades. The work is based on simple aerodynamic strip-theories
(Refs. 43-49). FHowever, the same e¢ffect is expected from mors
sophisticated unsteady three-dimensional compressible theories.
As meationed above, compressibility effects are included in the
lifting-line theory by JYohansson (Ref. S5), in the lifting-surface
method by Rao and Schatzle (Ref. 7 which is based on the work of
Rao and Jones, Ref. 50) and in the works of Dat and Costes (Refs.
9-12) and in the work by Morino snd Soohoo (Ref. 31). A possible
alternative approach is the numericsl solutiom of the
differential equation using for instance the finite~difference
technique (Caradonna et al., Refs. 51-54): this method however
requires considerable amounts of computer time. Therefore the
development of a methodology based on the integral equation
presented in Appendix A appears to be an attractive alternative
to other oexisting methods for the analysis of uansteady
compressible flows around complex coufigurations (the validation
of this integral formulation is limited to the particular case of
incompressible flows: the results are presented in Section 6 of
this report).




1,3, Summary of Vork ;

The work presented here includes two aspects: (1) the 1
developmont of a formulation for the time-dependent free-vake

serodynamic analysis of helicopters in hover and forward flight
and (2) validation of the formulation, for the psrticular case of
incompressible flows, by developing a computer program and
comparing the results against selected existing computational and i
experimental data.

Regarding the first aspect of the effort, the formulation !

is very genmeral: the main restriction is the assumption of
potential aerodynamics. This implies in particular that viscous
(sttached and separated) flows are not included here. For the
sake of clarity, compressible flows are dealt with in Appendix A:
the main body of this report deals with incompressible flows. The
formulation is based upon an integral method developed by Morimo
(Refs, 21 to 23, see also Section 3 and §) for the exact
compressible three-dimensional unsteady velocity-potential
equation for lifting bodies having arbitrary shapes and motionms.
(For incompressible flows with prescribed wake, the formulation
has been applied to rotor-fuselage helicopter configurations,
Refs. 31-32, and to time—~domain analysis of unsteady flows around ;
windmill rotors, Refs. 8.) New theoretical results are included !
in this report. The formulation for wake dynamics, presented in
Section 2, is considerably different from that of our preceding
poblications (which did not make ezxplicit use of the primciples
of conservation of mass and momentum across the wake): we
believe it is clearer, more convincing and more rigorous than any
wake-dynamics formulation of which we are aware. Also new sre the
results presented in Section 4 which deals with the issues of
wake generation, uniqueness of solution, Kntta condition,
Joukowski hypothesis and trailing edge comdition.

Regarding the second aspect of the effort, the validation
of the formulation includes time—domain free—wake analysis of the
unsteady velocity-potential equation for flexible rotors in hover
or forward flight. The validation involves the implementation of
the numerical formulation into a computer program and comparison
with existing experimental and numerical results. This
validation is l1imited to an isolated rotor in hover. However,
the formulation and the numerical algorithm used in the computer
program are time accurate (i.e., they yield a steady state
solution via an sccurate time-domain analysis) and therefore are
in theory applicsble to time dependent flows (of course,
validation for this application would be required). The computer
algorithm is general in that only the geometry and the motion of
the surface of the rotor is needed as sn input. The issue of the
sumerical stability for the automatic generation of the wake is
also discussed.




SECTION 2 1

WAKE DYNAMICS IN INCOMPRESSIBLE POTENTIAL FLOVWS

A general formulatioa for the problem of the wake dymamics
for potentisl flows is presented in this section. Fundamental
issues related to the wvake dynamics have been clarified during
the effort reported here. These issues (such as the boundary
conditions on the wake and at the trailing edge) are quite subtle
and have never been discussed in our preceding publications,
Therefore the theoretical foundations of the wake dynamics are
presented here (see Sections 2.2 and 2.3), we believe for the
first time, (Trailing—edge issves are dealt within Section 4.)
For the sake of simplicity, the formulation is presented for
incompressible flows (compressible flows are dealt with in
Appendizx A).

In this report we will assuome that the frame of reference is
connected with the undisturbed air. We assume the fluid to be
inviscid and incompressible. Hence the motion is governed by
the Euler equations (conservation of momentum)

Dv 1
— R = - d 2‘1
Dt p graa p

and the continuity equation for incompressible fluid
(conservation of mass)

div ¥ =0 2.2
where V is the velocity vector with respect to a prescribed frame

of reference, p is the pressure, p is the density (constant for
incompressible fluid), t the time, whereas

D d
-— R a— + v
pE " ot Vgrad 2.3

is the material or substantial derivstive. Equations 2.1 and 2.2
form a system of four partial differential equations for four

uvnknowns v_, v_, v_, and p.

x* 'y’ 2

Ia order to complete the formulation of the prodblem, the
boundary conditjons at infinity, om the body and on the wake must
be obtained. :

it he o




Since the frame of reference has been assumed to be
connected with the undisturbed air, the boundary condition at
infinity may be written as

p*p, snd V=0 (for Patw) 2.4

On the body (rotor im our case) it is assumed that the
surface of the body is impermeable. This implies that the norsmal
components of the velocity ¥V of the fluid, and of the velocity ¥,
of the rotor blades coincide at point P on the surface gy of the
rotor:

(v - 'v'b)-'i =0 (for Pon agy) 2.5
where B is the normal to o, at P.

The. boundary condition on the wake are discussed in Section
2.4 after iatroducing the concept of potential wake.

22, Potentia] Flows: Potential ¥skes

The basis of the discussion on the wake dynamics is the well
knowa Kelvin’s theorem which states that the circulation

r -36:.4: 2.6

over & material contour C (i.e., a contour which is made up of
material particles) remains constant in time. This theorem is an
jamediate consequence of the definitiom of I, of Buler equatioms
(Eq. 2.1) and of the fact that the demsity is constant (oz, in
general, that the fluid is barotropic).

Nexzt assume that the flow field is irrotational at time 0.
Then according to Stokes theozrem .

? v.ds -J] curl V.8 do 2.7
C a

(wheze C is the contour of o), is initially equal to zero for
any path conmected with s surface ¢ fully inside the fluid
volume., Hence, for all these paths,{” remains ideatically equal
to zero. This implies that

curl v = 0 2.8

for slmost all the fluid points at all times: the oaly poiats to
be excluded are those materisl poiats which come ian comtaot with
the so0lid boundaries (since for these points,Kelvia’s theoream
does not apply). In order to simplify the discussios of this
issue, let us foous on the case of ss isolated dlede witk & skarp




trailing edge and consider only those flows such that the fluid
leaves the surface of the blade at the trailing edge (this issus
is further discussed later in this Section 4). We call these
flows gttached flows. Hence the points which come in contact
with the rotor are only those emanating from the trailing edge
and therefore form a surface: such 2 surface is called wgke.
Kelvin's theorem does not apply to the points of the wake. [Note
that if the trailing edge is fixzed with respect to the frame of
reference, the wake is a ‘strosk surfsce’ (Ref. 52). Since the
trailing edge in genersl moves, we say that the waske is s
‘generalized streak surface.’]

We may conclude that for sm inviscid and incompressibdble
fluid, if a flow field is initially irrotational, it remains
irrotational at all times except for those points which come in
contact with the surface of the body. If the flow is attached
(i.0., by definition if the fluid leaves the body only st the
points of a line which is called ’'trailing edge’) thea the locus

of these points forms a generalized stresk surface which is
called a wake.

It may be worth emphasizing that as shown above the fact
that for attached flows the wake has zero thickness does not
require futher assumptions but is a direct gonsequence of the
hypothesis of incompressible (in general, barotropic) invisecid
flow and of the definition of attached flows (the assumption if
initially irrotational flows is not essential for the presence of
zero-thickness wakes).

23, Potentisl-Flow Formulation

Next consider a well known theorem from vector field theory
which states that i{f a vector field ¥ is irrotatioumal then there
exists a fuetion.?. called velocity potential such that

Vegrad ¥ 2.9
Hence our results may be restated as follows: for an iaviscid
incompressible fluid, & flow field which is attached and
initially izrotationsl is potential at all times and at all
points except at the point of the wake.

If the flow is potential, i.e.,, if ¥ ig given by Eq. 2.9,
Eq. 2.1 may be integrated to yield Bermoulli’s theorem

ap 1 s P 1
T zlgnd?l ﬂ-p alibe B 2.10

(The z-derivative of Eq. 2.10 yields the first component of Eq.
2.1: the constant on the right hand side of Eq. 2.10 is obtained
from the doundary conditions st infimity.)




Furthermore, Eq. 2.2 may be revritten as

vy =0 211
where ¥’ is the Laplaciam operator.

Similarly, Eq. 2.4 may be rewcitten as

p=0 (for P at =) 2.12
snd Eq. 2.5 becomes
)
et ?b.i 2.13

2.4, DBoundary Conditions on Yake

In order to be able to solve the mathematical problen, we
need & boundary condi*ion on the wake. This condition may be
obtained from the principles of conservation of mass and momentum
acrass s surface of discontimunity.

Indicating by subscripts 1 and 2 the two sides of the wake,
let T be the outward normal on side 1 and let

Af = f‘ - f' 201‘

denote the discontinuity of any function £ across the wake
surface. (For the classical wing-wake, 1 and 2 correspond to
upper and lower sides respectively, T is the upper normal and Af
| d ‘ - f o)

s 1

The equatiom of comservation of mass and momentum across a
possible surface of discontinuity (e.g.., & shook wave or a waks)
aze given by (Ref. 58)

Alp(vy-v,)] = 0 215

A(p(v‘-v.ﬁ +pil = p (vy~v ) AV + Apid =0 2.16

where v, = v.u is the normal compoment of the velocity ¥ whereas
ve is the velocity of the surface (by definitiom, ia direction of

the sormal 6). In the case of incompressible flows, Ap = 0 and
therefors Eq. 2.15 yields

Av, = 0 2.17

(since vy 13 the same for both sides of the wake). Thken tkhe




normal component of Eq. 2.16 yields

Ap = 0 2.18
Hence using Bq. 2.15, Eq. 2.16 reduces to
p(vn-v,)AV = 0 2.19
which implies either AV = 0 (that is the surface under
consideration is not a surface of discontinuity) or if there is a
discontinuity (wake surface)
vV, = v 2.20
that is the flow does not penetrate the surface of the wake.
Note that Eq. 2.20 implies in particular that oanly the
tangential components of the velocity are discontinuous across

the surface of gn wake, that is (using a local frame of
reference T;. i3, iy with i; in the direction of the normal 1)

Av = A(v;i; + v;ig + vna)

-2l L X
A(axxi; +ax.i’)

aAf - aA:ﬁ -
iz, iy + 3za ii stnth(f 221
where
ar=201, .45 222
a B e ——
sr t a!; * dx, :

is the 'tangential portion’' of the vector grad f. (It is
important to note that grad Af is a meaningless expression since
Af is defined only over the surface of the wake.)

Mext consider Bernoulli’s theorem Eq. 2.10 with the wake
condition, Ap = 0, Eq, 2.18, This yields

i | 2& + 1(6,.63 -~ ¥3:¥3) = 0 223
at at 2

Bl cndh oot




that is

] 1 - -
-a—t(‘f’; - Pa) + 5(91 + 73)(vy - ¥3)

] 1 _ - -
=3f ty T v AT =0 224
L or, introducing the velocity of a wake point, Py
F ol
V' .‘2'(73 + V;) 2.25
and using Eq. 2.17,
(a + v_-grad,) ]
30 ¢ Vwisrad, Agp = 226

The above equation is the desired boundary condition on the
wake, and may be rewritten as

Dw
—pg = 0 2
De L 4 27
where
D
w 0 - 3 d d
-_— -t . .- — — —_— 2.28
Dt at ¥ srad, it wm ax, Ywy ax, 2

is the material time derivative for a function defined only over
s surfsace: in a frame of reference moving with (constant)
velocity equal to ¥ at a given time and a given point, the
substantial derivative coincides with the partial time
derivative. This implies that

A¢ = constant 2,29
following a point P, which has velocity ;' given by Equation
20250
7 Note that v and v are the average values of the

components 1 ul 2 respectively of Vv, and ¥v; (which are

discontinuous asocross the wake), whereas Ven ® Vg = V (see
Equation 2.16) since v_ is continuous across the wake, The above




it APt B G S e i = 2
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results can be restated in more physical terms saying that a
poist of the wake has s veloeity ¥V equal to the sverage between
the velocities, ¥; and V;, on sides 1 and 2 of the wake
respectively, The valuwe of Ap(P.) is time independent and equal
to the value that it had wvhen the poinmt P, left the trailing
edge.

It may be worth moting that Yen does not appear in Equation
2.24. However the fact that P, has normal velocity equal to v,
stems from the fact that the points of the surface have velocity
equal to vy = vp,.= "Q (Equation 2.20). This is in agreement

.

with the results of cstion 2.2 that the wake surface is a
goneralized streak surface.

2. Summary
Ia summary, if the flow field of an inviscid incompressible
fluid is isitially irrotatiomal, it remains irrotatiomal at all
times and therefore may be given as
Ve srad @ 2.30
Then (see z.u).qu:unu Laplace equation
Vi =0 231
with condition at infiamity, (Eq. 2.12)
¢= 0 (for P at @) 2.32
On the other hand (see Eq. 2.13), the bounadary condition on
the rotor blade is given by

2 - YeoB
r™ Vpo 2 233

whereas on the wake (see Eq. 2.29)
A&g(P.) = constant ia time 2.34

Equations 2.30 to 2.34, with the addition of Joukowski's
hypothesis (see Section 4), may be vsed to obtain ths solution
for ¢. Omece ¢ is kamowa, the perturbation velocity may be
evaluated using Eq. 2.30. Then the pressure may be evaluated
using Bermoulli’s theorem

%151 42 L2 235
it 2 p P




SECTION 3

INTEGRAL FORMULATION

The integral equation used in this work is a particular
case of that introduced by Morino (Refs. 21-23) for the general
case of potential compressible flows for bodies having arbitrary
shapes and motions. For the sake of completeness and clarity the
derivation of such an equation is briefly outlined here for the
specific case of interest, incompressible potential flow around a
helicopter rotor having arbitrary shape and motion. The integral
equation is based on the classical Green’s function method. This
requires the use of Green's formula and Green's theorem which are
presented first.

3.1 Green's Formula for Laplace'’s Equation

Consider two arbitrary functions f and g and note that

div(f gradg) = gradfegradg + f Vg 3.1 ,
and . i
div(g gradf) = gradg°gradf + g V f 3.2
or
div(f gradg - g gradf) = f V’g -8 v 3.3

Also, according to Gauss theorem, for any arbitrary vector a !

I, ao o, 22 |

v'

where o surrounds V' and © is the inward directed normal,
Combining Eqs. 3.3 and 3.4 yields

-'UJ‘ (f V’g -8 v'e)av = # (f gradg - g gradf)-n do
' c

0 af
’# (f—s-g —) do 3.5
. n n

Next, assume that both f and g satisfy the Laplace equation,
that is

Ve =Vlg =0 (in V). 3.6




Then Equation 3.5 yields
JI (f —— -z -—) de = 0 3.7

which is the desired Green’s formula for the Laplace equation.

Next choose the function g to be the simplest function
which satisfies the Laplace equation with the conmdition

g =0 at infinity 3.8

If g is a function of the distance r from a specified point P,
then the most general function that satisfies the Laplace
equation is

g =A/c +B 3.9
where
r= 1P - P, 3.10

Using Equation 3.8 yields B = 0. Note that g = A/r represents the
velocity potential of a source. It is comnvenient to choose A
such that g represents a unit source, that is, a source with flux
equal to one. The flux through a spherical surface of radius R
is given by

- = ) A
# v.n dc=# £ do = = =, 4R’ =1 3.11
c o 9T =p R
which implies A = -1/4n and
1
g = = — 3.12
4nr

Combining Eq. 3.7 and 3.8 yields the desired Green formula
for the Laplace equation

af -~1
e () = e { 6 =0 3.13
J [t an‘4n:) on ( 4nr )] d 1

Note that P, must be outside the volume V, otherwise Equation 3.6
is not satisfied at P,

O




i 3.2, Ggeen's Theores for Incomoressible Potential Aerodvmsmics

In order to obtain Green'’s theorem for incompressible
aerodynamics, let the function f in Eq. 3.13 be the velocity
potential . Hence the volume V must exclude the volume Vb of
the rotor blades as well as a thin laycr.:v » which includes the
wake surface o (because the equation V ¢=0 is oot valid in Vy
and on c') In addition, the volume V must exclude a slull
volume around P, because the equation V g = 0 is not valid at P,.
Finally, the volume V must be bound. Ilence let the surface o be
the boundary of the volume V. This surface is the sum of three
surfaces: the surface o, (which surrounds the rotor blade
volnne, Vy, and the wake volume, V,: note that the inward normal
for o is outward to oy ), the surface g, (which is a spherical
surface of radins ¢ and center P,) and the surface g, (which is a
spherical surface of radius R and center P,).

Then Eq. 3.13, for £ = ¢, reduces to

L PR 3
ﬁ"b roq+s [ & Tawm! 14
v .

Note that, as the radius s of o, goes to zero,

lin ﬁ (222 - «(-—(-—-)1 do
Ge 4nr

¢+0 dn 4nr ]

1im [ 1 ﬁ do + ! 3 do] ‘}

Be ———— ——— — !
ce0 s 4ne Jlae 9% wnetlos 3 °°

a"(f. 3.15

whereas, as the radius R of g, goes to infinity

i H —) - — — d
1{:,, . [ on (4nr) fan( )] da
:mwu-i)m-o 3.16
Roe

vnder the condition

lim y= 0 3.17
R®

B P

[y
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unsix-o 3.18

Rore

(It is verified a posteriori (Eqs. 3.35~3.36) that these
conditions are satisfied.]

Therefore, as ¢ tends to zero and R tends to infinity, Eq.
3.14 becomes

- 8 1y gl
Qe #c [an 4" 4 5205 do 3.19

bw

It may be worth noting that if the point P, is inside oy,
then there is no need for the surface L In this case, Eq. 3.14
yields simply

- 2, -2 L 20
0 #c lan (41!:) ({an(4 1 de 3.
bw
Equations 3.1% and 3.20 may be combined by writing
9 ~1
E ik QIR P b 2R S R 3.21
.‘f. i} #"b [an 41:: ?an(«tt)] c
where
Eq = E(P,) = 1 (Py outside ay,)
= ( (P. insid’ cb) 3.22

3.3. ¥Make Comtribytiop

Next let o become infinitesimally close to the surface of
the wake. Note that in this process, the closed surface, L
the wake is replaced by the two sides of an open surface o., Let
o be the mormal on the side 1 of Oy In the limit onme obtains

o= H A(-‘f)- do = 0 3.23
an T

%w

[(since (see Eq. 2.20) A(%E) = Av, = 0] vhereas




9
a—(l) do = A —-(i) do 3.24
. 4y
. dn r p édnr
v w

Therefore, in the limit, Eq. 3.21 reduces to

- ilogid H 3
4nEq4fs g 32— - 57(0)) do #), &f 5=(2) do 3.25
b Ow

where o) is the (closed) surface of the rotor blade and c; is the
(open) surface of the wake of the rotor blade. Furthermore (see
Eq. 2.14), A¢= ¢, - ¢¥,, whergas T is the normal on the side 1 of
the wake, Note that A4 on a_ is evaluated from Eq. 2.34. Note
also that the vortex~layer va‘ie of the rotor is represented as a
doublet layer. The proof of the equivalence of doublet layers
and vortex layers is given, for instance, in Reference 57.

3,4, Integral Equatijon

Equation 3.25 may be used to obtain the value of yat any
point in the field if the value of ¢ and 3¢/9n on the surface
of the rotor and the value of A9 on its wake are known, Note
that 3¢/3n is known from the boundary condition on the rotor, Egq.
2,33, whereas A¢ may be calculated from the boundary condition
on the surface of the wake, Eq. 2.34,

Hence, in order to be able to use Eq. 3.25 one must have an
equation to evaluate«y on the surface: such an equatiom is
obtained by noting that if P, approaches a point on the surface
of the rotor, then the value of «f, approaches the value of ¢ on
the surface of the rotor. 1In order to perform this limit, it is
convenient to interpret the doublet integral in terms of solid
angles. Note that (see Figure 3.1)

[ 4560 e - 5ll0s
Hl g o

= - 3.26

In particular, for a closed surface and ¢f= 1, Eq. 3.26 becomes

LEE.]]
(-7
Q
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Figore 3.1. Geometry for Definition of Solid Angles
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# a(-1)d lﬁn 1
g ou 4nr % ﬂd 2;9' 3.27

Note that, as is well known

Qe =1 for Py ingide %y 3,28
=0 for Py outside %

Comparing Equation 3.22 and 3.28 yields

E¢ =1 - Q,/4n (P, ingide and outside o) 3.29

Using Equations 3.29, Equation 3.25 may be rewritten as

ang, = -ﬁ % ) 4o

cb Jn b o
 ,1 9 1
+ ﬁ (ff- (f.)s;(;)dc + J] ; A‘f (Pdo 3.30
Cb Ow

The advantage of Equation 3.30 over Equation 3.25 is that
each term is continuous (as P, crosses cb) and therefore is valid
in particular even if P, is on O

Having established this, ome can now go back to Equation
3.25 with E4 given by Equation 3.29 which is valid also for P4 on

(and coincides with Equation 3.22 if Ps is not on o). In
particular if P, is a regular point of op (i.e., a point 'hore c
has a unique tangent plane ) then O, = 2n and E, = 1/2. Equation
3.22 may thus be generalized as

E. = 1 - Q./zﬂ = 1 P‘ ontside cb
=1/2 P4 on oy (regular point)
= 0 Py inside oy 3.31

In any event, for Py on o4, Equation 3.25 (with E, given by
Equation 3.29, or Equation 3. ?1 if Py is a2 regular point of oy)
is an integral equation relating the unknown values of the
velocity potential on the surface of the rotor, to the values of
d¢/an (prescribed by the boundary condition on the surface of the
blade) and the values of the potential discontinuity on the wake
(known from the preceding time history).

The time evolution described by Equation 3.25 and its
interpretation in physical terms is presented im Section 4 along
with & discussion of the trailing edge condition.




s b i .

3.3 Conditions at Infiaity

Ia this subsection Equations 3.17 and 3.18 are verified.
Note as r goes to infinity, Equation 3.43 yields

4 -1
Yo = # [;f oo ) -¢@ a—-(z;;)]dc
L.

..‘t -1 iz

‘"g do ypme g ' S do) 3.32
bw
Since the flux through Opy i3 squal to zerxo, i.e.,
3¢
ﬁ om0 3.33
%bw

a
(this condition must be satisfied by s 4 and is obtained by
nsing g = 1 in Equation 3.7), whereas n

j’ ‘f — dc = finite, 3.34
P‘o.

Equation 3.32 implies
¢ =0(r™) at e 3.35

aand

M eo(r?) ate 3.36
an




SECTION 4

WAKE GENERATION

In this section the issue of the wake generatiom is
analyzed. First the analytical results of Section 3 are
interpreted from a physical point of view, Next Joukowski
hypothesis (of smooth flow at the trailing edge) is introduced
and then the wake generation and the trailing edge condition are
discussed.

We believe in particular that the issue of the trailing
edge condition (i.e,, Kutta condition, Joukowski hypothesis) is
not well understood and quite confusing in the existing
literature (and it may be a source of error in the numerical
formulation). Whereas this issue is discussed in greater details
in Reference 55, the major conclusions reached there are
suommarized here in the hope of shedding some light on this aspect
of the foundations of potential flows.

4,1 Sudden Stagt

In order to discuss the problem of wake generation it is
convenient to consider the problem of a rotor subject to sudden
start, that is the case of a rotor which for t <0 is at rest
and is surrounded by a fluid which is also at rest. At time ot
the rotor is subject to a motion (which for simplicity we will
assume to be of rigid-body type) with finite velocity,

Since for time t (0 the fluid wasg at rest, the wake has
aot yet had time to form. Therefore Ay = 0 everywhere in the
field and the solution to the problem at time 0% is obtained by
solving Equation 3.25 with Atf = 0, that is

do 1 a 1
471Eq Py = - ['a-f i ¥ 5;(;)] do 4.1

with E, = 1 - Q,/4n (Eq = 1/2 on regular points of oy, see
Fq. 3.31). This corresponds to the solution of Laplace equation
without wake contribution and, as well known (for instance from
conformal mapping solution in two dimensional flows), this yields
a separation point which is different from the trailing edge and
hence infinite velocity at the trailing edge. In turn this
indicates the presence of a vortex at the trailing which is
manifested by the fact that

AYee ™ 0 4.2

ad .




[{This can be seen from the fact that according to Stokes theorenm

A‘Pte-i:v'd' = [ 4.3

where C is a contour around the trailing edge whereas [ is the
intensity of the vortex at the trailing edge.]

4,2 Unigueness of Solution: Kutta Condition

Perhaps less well known is the fact that the solution for
the problem is unique (the proof of uniqueness is given for
instance in Batchelor, Ref.57). More precisely it may be shown
that if the solution to exterior Neumann problem for Laplace
equation is single~valuwed then it is also uvnique, HMulti-valued
solutions cannot occur in simply connected regions. This is in
sharp conflict with the classical two dimensional results in
which an arbitrary vortex can be added inside an airfoil to
obtain smooth flow at the trailing edge. The mathematical reason
for the difference is that the flow region around an airfoil is
doubly connected, whereas that around a rotor (as well as most
three dimensional shapes of aerodynamic interest) is simply
connected, From a physical point of view we can say that it is
possible to add a vortex of arbitrary intensity inside an airfoil
(or inside a doughnut-shaped object, which also yields a doubly
connected flow-region): then, adding & suitable single-valued
solution one obtains a nontrivial solution to the homogeneous
Neumann exterior problem for Laplace equation. This solution can
always be added to the solution of the airfoil problem, which is
therefore nonunique. (From a mathematical point of view it may be
noted that the field caused by the vortex is multivalued and the
proof of uniqueness fails for multivalued potential functions).

In the case of a rotor it is possible to add a vortex inside
the rotor-~surface: however it is not possible to have a contour
which is ‘interlocked’ with the vortex without penetrating the
rotor surface (this is true, by definition, for any simply
connected region). The potential flow is then single-valued and
is impossible to generate a nontrivial solution. The solution to
the rotor problem is thus unique.

In order to clarify the issue of the trailing edge
conditions we will call Xutta condition as that trailing edge
condition which is used to eliminate the issue of a2 nonunique
solution. This condition is required for two-dimensional flows,
but not in three~-dimensional flows {unless the region is multiply
connected) in which the wake is responsible for the elimiration
of singularities at the trailing edge. From a mathematical point
of view the Futta condition requires that the vorticity




distribution over the airfoil does not go to infinity at the
trailing edge. This is different from the condition that
discrete vortices cannot remain at the trsiling edge: such »
condition is a consequence of Joukowski hypothesis discussed in
Section 4.3,

4.3 Joukowski Hypothesis

The assumption introduced here is that the physical behavior
of the fluid is such that the ‘flow is smooth at the trailing
edge.” Such an assumption is connected with the works of
Joukowski (Ref. 59) and Kutta (Ref. 60). In order to avoid
confusion with the EKutta comdition discussed in Section 4.2, we
will refer to the above assumption as Joukowski hypothesis (for a
historical sccount on the works of Kutta and Joukowski see Pefs,
57 and 61).

In particular we sssume that if concentrated vortices form at
the trailing edge (this may happen because of a suddea start, as
discussed in Section 4.1, as well as any other time-discomtinuity
in the velocity distribution on the surface of the rotor), then
these vortices are immediately shed. At any other time there are
no concentrated vortices at the trsiling edge: the implication of
this assumption is that the value of Aq is continuous at the
trailing edge, i.e., if P, is a point on the wake and Py, is 2
point on the trailing edge,

lim Aq(P') = A, 4.4
Py*Pse

vhere 4@, is the difference of the values of the potential as
the points on upper and lower two sides of the rotor blade
spproach a point of the trailing edge.

4.4 Tgailing Edge Flow

In order to appreciate the Joukowski hypothesis as it relates
to the issue of uniqueness of the solution, let us examine in
detsi] the flow at the trailing edge. In particular we want to
examine the limiting case of the wake boundary condition, Eq.
2,16, as a wake point approaches the trailing edge. This
snalysis is an extension to unsteady flows of the work by Mangler
and Smith, Ref. 62, but the interpretation of the results is
quite different from theirs., Let ¥ be a unit vector tangent to
the trsiling edge and §,be ¢ unit vector in the plane of the
wake and normal to & (see Figure 4.1). Let v, and v, be the
components of v, in directiom 3 and 3,




Figure 4.1. Vectors &, and 8,




- b -
Yy = 3 (Vv + v3) = v

e, + v, 0 4.5

T v

The sense of &_ is arbitrary, but the sense of E,is away from
the rotor, so that

v, z ] 4.6

Also let 6' and 5i be the compomnents of

A;-;l-;"st;f+6i';v 4.7

With these definitions, Eq. 2.26 may be written as
AG+ v 5 +v,5, =0 4.8

It may be worth noting that Eq. 4.6 is the limiting case of
Eq. 2.26 which may be integrated to yield Eq. 2.29, which
describes the fact that Ag is convected by the flow. Therefore
we believe that Eg. 4.6 is not an additional condition to be
imposed but is a relationship that is satisfied since the
solution satisfies Eq. 2.29. However such a relationship has
interesting properties that help clarify the issue of Joukowski
hypothesis.

The case of interest here is that of a rotor with a finite
trailing-edge angle. Considering Figure 4.2, there are five
cases of interest here. In the first two cases (a and b) the
velocity is infinite at the trailing edge: according to Joukowski
hypothesis, a concentrated vortex, located at the trailing edge,
is immediately shed. Therefore this case occurs only at a
discrete number of times and thus the other three cases are the
only ones which need further discussion. Consider first the case
{c): the velocity on both sides of the rotor must have zero
components at the trailing edge (in a frame of reference having
the velocity of the trailing edge point 0) slong the normal to
the rotor, because of the body boundary comditioans, Eq. 2.5 (this
is obtained automatically with the integral representation given
by Eq. 2.25) and must also have zero components (in that same
frame of reference) in direction normal to the wake (which is a
generalized streak surface). If two components are equal to zero
then the whole vector of the cross-flow velocity (velocity of the
flow yield in the plane of the figure, i.e., normal to the
trailing edge) is equal to zero., Hence

viy= 0 4.9

whereas v,;,> 0. Note that according to Eq. 4.4,




Figure 4.2. Vake Geometry at Trailinmg Edge
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1
vy, >0 4.10

2(
v,-zvzyvbv;,)-z v

whereas
5v"’1w’viv""lv<° 4.11

Therefore case (c) can occur if and onmly if

AP+ v 8. > 0 4.12
Similarly, case (d) implies v,, > 0, Va, =0, and hence

vy = %v;v) 0

§y= v 0 0 4.13
and therefore such case is possible if and only if

Ag+ v 8. <0 4.14

Finally consider case (e): in this case v, and v, are both
zero. Hence both v,and 8, are equal to zero and Eq. 4.6 reduces

to
A + veb, = 0 : 4.15

The flow moves parallel to the trailing edge, and the vorticity
is perpendicular to the trailing edge. [Note that for two-
dimensional flows v, = 5 = 0 which implies Ay~ 0: hence for
two-dimensionsl flows, cnso (e) occurs if and omnly if Aq- 0
(e.g., steady state), Case (c) occurs if Ay) 0 and case (d)
occurs if Af( 0.]

4.5 Phvsical Intespretation

Let us go back to the case of impulsive start. A vortex is
generated at the trailing edge and immediately shed. Then the
wake is continuously shed from the trailing edge and convected
with velocity V. = (J; + ¥3)/2. The wake is typically tangent to
one of the two sides of the rotor. This causes a cross-flow
stagnation point (high pressure) on one side and a low pressure
noint on the other side.

It may be worth enphasizing that in deriving the above
formulation we have used only the principles of conservation of
mass anrd nomentum, plus the assumptions of inviscid,
incompressible and initially irrotational flows and the Joukowski
hypothesis. The correct 'amount and distribution’ of vorticity

d=7




(as doublet layers) is predicted by these basic assumptions. It
may b2 said as the viscosity goes to zero the solution to the
Navier Stokes equations is that of Euler equation with the
addition of Joukowski hypothesis. (As mentioned above, Zutta
condition of finite vorticity distridbution at the trailing edge
is needed to insure the uniqueness of the solution only for two—
dimensional flows: the nonuaiqueness arises only for multiply-
connected regions, as the ome of a two-dimensional airfoil.)




SECTION 5

COMPUTATIONAL ALGORITHM

The computational algorithm used to obtain an approximate
solution of Eq. 3.25 is presented in this section. The surfaces
of the rotor and of its wake are divided into small surface
elements, o., The potential and the normalwash are assumed to be
constant wfth each element. This yields a set of equations
relating the values of the potential . at the centroids of the
elements, o., to the values of the normilwash at the centroids of
the elementg. o. and to the values of A@, at the centroids of the ,
wake elements, o' . The wake geometry 1s evaluated step—-by-step i
as follows: the velocity of the fluid at the cormers of each
element is evaluated and from this the location of the element at
the new time step is obtained.

$,1, Theoretical Algorithm
The results of the preceding sections may be summarized as
follows: assume that at time t = t, the wake geometry and the

potential-discontinuity distributions are known, then the value
of the potential is obtained by solving Eq. 3.25

4nr on 4nr

Eafe = # [y =—-¢ (2] ¢o l
%

9 -1
-ﬂ AP —(—) do 5.1
o' on 4nr
w
with

qa=a—‘f 5.2

dn ]

and E, given by Eq. 3.29. Once {4 is known, Eq. 5.1 may be used
to calculate the veloci.y at any point in the fields as Vv, =
grade ¥+ (where grad, indicates differentiation with respect to
P,). Noting that .

1 T
de(~ - 5.3
gra ‘(r) = ot
where
;s P- P‘ 5.4




one obtains

v [‘f? a(f)]d
* p 4nr’ ‘f on 4nr’ @

3 t
+ —(——
J]c A* an(4ﬂr’) do 5.5
w

This equation may also be used to calculate the velocity of the
points of the wake if the contribution of the wake integral in an
infinitesimal neighborhood of the wake point is excluded from the
calculation (such a contribution is responsible for the velocity
discontinuity across the wake and its exclusion automatically
yields the semi-sum between the two values on the two sides of
the wakes).

Once the velocity ;w (of a wake point P.) is evaluated, the
new position of the wake-point Pw may be evaluated as

P (t,+ dt) = P (ty) + ¥ (P, te) dt 5.6

Note that a new infinitesimal strip of wake surface has been
added (between the trailing edge and the locus of the points
which were on the trailing edge at time t,). Note also that
according to Eq. 2.34, Ay(P ) does not change in time (i.e., A¢
is 'convected' with the wake point Pw) and therefore Aq does not
require any additional calculation.

Now the wake geometry and the potential discontinuity are
known at time t, + dt and the process may be repeated.

3.2 Space and Time Discretization: First Time Step

For the sake of clarity, consider first the case of
impulsive start, i.e., assume that for t { 0 the rotor was at
rest in a fluid also at rest. Hence at time t = 0 there is no
wake surface (the potential is continuous throughout the fluid
region). Equation 5.1 (without wake integral) may be discretized
by dividing the surface of the rotor into Nb surface panels o,
and assoming that ¢ and ¢ are constant within each pamel.

Ny

2E(P,,0) @(P,,0) = Z B, (Py,0) ¥

n=1

Ny
+ E C;(Pe.0) §; 5.7
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where ? and . are the values of and ‘f on the j~th panel at
time t = 0, whéreas

-1
Bj‘P.tt) 'Ic i"—r do

a1
= — .8

By imposing the condition that Eq. 5.7 be satisfied at the
ceatroids Pk of the elements o one obtains (note that according
to Eq. 2.29 E(Pt) = 1/2, sincetP is s regular point of ay)

Ny
Z By;(0) ¢ + E Cpj(0) f; (k=1,....8) 5.9

j=1

where
Bkj‘” = Bj(Pk.t)

ij(t) - Cj(Pk.t) 5.10

It should be cmphasized that if the rotor moves with rigid
body motion, the coefficients B and Cy. are time independent?
Zquation 5.9 is a system of “b alﬂebrgxc equations with 'y

unknowns @; (the values of §; are known from the boundary
conditions):

3.3, YWake Generstion During First Time Step

As mentiomed above, the frame of reference is assumed to be
connected with the air., This is particularly coavenieat to
discuss the wake generation. (The actual formulatiom used in the
computer program is for a frame of reference connected with the
blade: the two are related through a rigid body rotatiom. This
point is discussed later in this section where it is indicated
that unstable results may be obtained if this issue is nmot
handled carefully.)

Between time ¢t = 0 and time t = At, the fluid points which
were at the trailing edge at time t = 0 move into a new position,
which (in our frame of reference, i.e., a frame of reference
connected with the undisturbed air) is given by (see Eq. 5.6)

At
P'(At) - P“(O) +Io 'v'(P'(t).t) dt 5.11

" .
An anmalytic expression for the coefficients is aiven in Tef, 25.
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From a discrete (i.e., finite element) point of view, the new
geometry is defined by the location of the wake point emanating
from the trailing edge nodes as shown in Figure 5.1. The

location of these points may be is obtained by approximating the
above equation as

P,(At) = P, (0) + F(P_(0),0) At 5.12

However, the calculation of ¥(P,(0),0) cannot be based on the use
of Eq. 5.5. The reason being that because of the time
discretization, the motion history is actually replaced by a
sequence of sudden starts (see Section 4.,1). This implies that
in the time-discretized formulation a discrete vortex is formed
at each time step and therefore the velocity as given by Eq. 5.5
goes to infinity at the trailing edge. In order to circumvent
this problem, we made use of the results of Section 4.4 and
impose that the relative velocity is tangent either to the upper
or the lower side of the rotor blade depending upon the sign of
the expression in Eqs. 4.12 and 4.14., Then we used standard
finite~difference expressions to determine the components of the
perturbation velocity along the trailing edge (central-
difference) and over the appropriate side of the blade (e.g., the
two-point backward difference approximation of a*g/ax if the wake
is tangent to the upper side of the blade).

It should be noted that as mentioned above, the new
locations of the wake points are within a frame of reference
connected with the undisturbed air., Therefore while the wake
points move, the blade also moves into its mew position. Eence a
row of wake elements, an, has been generated (see Figure 5.1):
these elements have two cornmers on the trailing-edge points A and
B whereas the other two corners coincide with the location at
time t = At of the fluid points that coincided with the blade
points A and B at time t = 0, Hence, at time t = At, we have a
r9w of wake elements: the value of Af assigned to the elements

is the difference of the values (evaluated at time t = 0) of
tge potential ¢ at the centers of the upper and lower blade
elements that are in contact with e

5.4, Generic Time Step

Now, at time t = At, the wake geometry and the values of A¢
on the wake are known, The values of §. are also known. Hence,

Eq. 5.1, discretized as (see Eq. 5.7) J
Nb N
?-:; (8y; = Cpj) ¥ JZ BV + E FnAPy 5.13

may be used to evaluate ?j at time At. In Eq. §.13, Bkj and ij
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Figure 5.1.

Wake Generation Between Times ty = 0 and t; = At
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are given by Eq. 5.10 whereas

(t)-ff vy -—-) dcl 5.14
Pe=Pp

is a constant-doublet integral over the wake element a;.

Once the values of 4. are known, the same procedure
described in Section 5.3 hay be repeated to calculate the
geometry of new wake slements (and corresponding values for A¢,)
generated between At and 2At. In addition, the new location of
the old row of elements (those generated between 0 and At) is
obtained as follows: evaluate the velocity at the wake points
which are not omn the trailing edge using Eq. 5.5 whick is

discretized as
N'
Zb i¥; Ta Yyt T A 5.15
ot U i qj fi Zn_ qn Afa

where q spans over all the nodes of the wake surface which are
not on the trailing edge, whereas

il
- = =
qj 4 Uj T lp“P

~1 3 T
it H ;—(5,) dol
aj B ‘P. = Pq
- -1 9 T
i Z;II a-—('a) dd' 5.16
Uj 8 r _P. = Pq
Then calculate the new locations as
Pq(t + At) = Pq(t) + vq(t)At 5.17
Now all the nodes of the wake surface are known., Note that if
the node numbering of the wake elements is not changed from time
At to time 2At then, according to Eq. 2.34
Ag = constant in time 5.18
Hence, the new wake geometry and the corresponding values
for AP, are known st time 2At (as mentiomed above, the geometry

and tlu values for Mp for the row of elements generated between
At and 2At is determined using the procedure presented in Section




Figure 5.2.

Wake Generation Between Times t, = At and t; = 2At




$.3) and the process may be repeated: the same procedure used in
the time step between At and 2At may be used for the time step
between t = nAt and t .4 =t +At,

5.5, Numerical Stability

Issues related to numerical instability are discussed in
this section. A large portion of this research effort was
completely devoted to this issue: after the formulation had been
completed and incorporated into a computer program, the results
consistently indicated the presence of numerical instability. It
was not clear at that time whether the instability correctly
represented a physical instability (experimental results indicate
that the wake of a helicopter rotor in hover oscillates and
eventually the tip vortex breaks down), or was caused by the
numerical algorithm (or evem more trivial, a bug in the program).
In order to examine the possibility of a bug in the progranm, a
second code was written using a different frame of reference,
i.e., a frame of reference connected with the undisturbed air (in
the first code the frame of reference is connected with the
rotor). In spite of the equivalence of the two formulations, the
two codes gave different results. The source for the difference
was traced to the fact that in the first code the new location of
the wake point was evaluated as

P (t + At) = P (t) + (V, + ¥ )At 5.19

where ;w is the perturbation velocity whereas V, is the velocity
of the undisturbed fluid

i.’o“ﬂxf
Unfortunately,

AP, =0 x T At 5.20
does not correspond to the correct rigid-body displacement (see
Figure 5.3). This error (which goes to zero as At goes to zero)
seems to have been the origin of the instability: the results
obtained with the second code have beem consistently stable. For
the hover case, it is actually convenient to use a frame of
reference connected with the blade, The original code was
therefore modified as follows: the displacement caused by the
perturbation velocity is calculated then the whole wake geometry
is rigidly rotated (around a vertical axis, i.e., 0 = Qk) as

L = X, cos A® - yo sin AO

Yy = Xo sin A9 + yo cos AO

z = 2, 5.21

Loin el




Qrat

Figure 5.3,

Analysis of Rigid-Body Motion




where AO = QAt whereas, X,, Yo, zo are the coordinates before
rotation.

5,6, Finite-Core Vortex

Before the cause of the instability had been traced to the
issue discussed in Section 5.5, the concept of finite-core vortex
was introduced in an attempt to eliminate the instability. (This
concept is often referred to as artificial viscosity:  we believe
that this name is misleading and prefer the name finite-core
vortex.)

The essence of the idea is that concentrated vortices are
introduced in the process of spatial discretization of the
formulation. The integral formulation describes the wake as a
doublet layer which is fully equivalent to a vortex layer. Vhen
the wake integral is divided into quadrilateral panels and Ay is
assumed to be constant within the element, we are in effect
replacing a continuous distribution of vorticity with
concentrated vortices located at the edges of the panels. Such
an approximation therefore introduces infinite induced velocities
in the vicinity of the panels edges, If the wake spirals come
too close to each other, this may be a cause for instability.

In order to avoid this problem, the velocity distribution
induced by constant—doublet panels (i.e., concentrated vortices)
is replaced with those induced by a finite-core vortex. Note
that we considered this only as a convenient expedient to
eliminate instabilities, not an effort to improve the model by
making it closer to physical reality (in order to get closer to
physical reality we would rather introduce a2 higher—order finite-
element representation for the distribution of the potential
discontinuity in place of the constant-doublet approximation).

In order to accomplish that, the following scheme was used
in our computer code. The velocity induced by the edge P,P; of a
constant doublet panel is

_ 1 dixqa 01:301-31-02 TG Q-di-ds
T o= — ¢ - ) 5.22
2n |Q1lq:| la,l lq, !

where q; = P; - Ps (see Figure 5.4).
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92 = ~x ] k
i+ 2.
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This is exactly equal to the expression obtained from the Biot
and Savart law for the velocity 'induced’ by a vortex line.
Introducing a frame of reference such that the vortex-line
coincides with the z—axis and that the x-axis goes through P,
Eq. 5.22 yields (see Figure 5.2)

[N §

v L (zalx® +22) P g (x*+2 )" 213 5.23
2nx

As P, approaches the vortex line (i.e., as x tends to zero), this
oxpression yields

- 1 . :

Vo= — § 5.24 5;

2nx

(which is the velocity induced by an imfimite vortex) if P,
spproaches a point between P; and P, (i.e., z3 < 0 and z, > 0) ‘
and

ve= 0 5.25

if P, approaches s point of the linme PiP; outside the segment
PP, (i.0., if 23 ¢ 23 C 0O or za > 21 > 0). An infinite vortex
with a finite core of radius ¢ yields a velocity

- 1 - :
Ve =a—j 5.26 '
)
2nx
.where |
] a=1 )¢ ‘[
= x'/¢? x <s 5.27 ]

Hence, going back to vector notations, Equation 5.26 may be i
rewritten ss

1 @1xq, @ q%-Gds  Ga'da-qa°ds

Vy = 5z —— ( - - ) 5.28
2n l‘hﬂlzr I‘h' lis'
if x> s and
1 _ 1 1 daxqs QL q@-U'ds $G6°B-0'q
v = 37 3T ( - - ) 5.29
T ¢® 1qa~qal lqa ! lqsl
if x ( &, where 4
'aa X ia'
- 5.30
"h - Qsl
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3.1, Comments: Wake Izuncetjon

For the sake of clarity, the formulation has been presented
for the case of start from rest, that is, for time t < O, the
rotor has been assumed to be at rest and surronnded by fluid slso
at rest.

It should be apparent at this point that such an assumption
is not essential to the formulation., The method of solution
requires only that the geometry wake surface and the potential~
discontinuity distribution over the surface of the wake to be
known at time t Then, the potential distribution may be
evaluasted using %q, 5.13. Once the potential distribution is
known, Eq. 5.15 may be used to calculate the velocity of the
nodes of the wake and hence their new location (the row of the
newv wake elements generated between t_ and ta + At is obtained
with the procedure givem in Section 5.3).

As mentioned above, the frame of reference connected with
the undisturbed air is more convenient from a conceptual point of
view even though the calculations are more conveniently presented
in a frame of reference connected with the rotor. Also, the
issue of artificial viscosity discussed in Section 5.6 does not
appear to be essential to the formulation: small values of ¢ give
the same results as e=0.

The last major issue to be discussed is that of the wake
truncation: as the number of time steps grows, the length of the
wake also grows., This implies that the computer time per time
step also grows, In order to keep computer time within
reasonable bounds, it is necessary to obtain a simplified model
for the remote element of the wake. While sophisticated
intermediate—and far—wake models have been introduced for the
hover case (Refs. 40 and 41), these models require ad-hoc
assumptions based on empirical data. Since the objective of the
present work is to develop & method which may be nsed to study
problems for which such data does not exist (such as
maneuvering), it would have been inappropriate to introduce any
of the above far—wake models or, for that matter, any model based
on experimental data. For this reason in the results presented
here, the wake is simply truncated after a cortain number of
spirals. The implication of this procedure is that the last
few spirals are to be considered as modelling of the far wake
effects. As indicated by the results presented in Sectiom 6, this
is an expensive approach to the problem (the case presented in
Section 6 requires approximately eight hours of CPU time on an
IBM 370/168). There is need to develop a less expensive approack
to the far wake modelling. However, such a model should be based
on first principle rather than empirical data, if the methodology
proposed here is to be used independently of the experimental
anslysis.
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SECTION 6

NUMERICAL RESULTS

In order to validate the theory presented above, the
numerical algorithm was implemented in a computer program. The
results obtained with this program and the comparison with
existing data are presented in this section,

6.1. Choice of the Test Case

It is a generally accepted opimior in helicopter-rotor
aerodynamics that the wake roll-up problem is harder to solve for
hover than for forward flight: this is because the wake spirals
are closer to each other in the hover case. Also the hover case
seems to be the only one for which satisfactory results exist.
Therefore, in order to test our formulation we have started by
studying a hover case. In order to validate the time—-domain
algorithm the hover case was studied through a time—-accurate
transient response analysis. These steady state results are the
only ones presented here. We believe that the validation of the
formulation will be satisfactory only if more extensive results,
(including forward flight results now under consideratiom) will
confirm the results presented here,

In particular, we chose the case studied by Rao and Schatzle
(Ref. 7) for several reasoms, the most important of which is that
their formulation (lifting surface with prescribed wake) is based
on first principles (no ad-hoc assumption is used except for the
wake geometry and zero—thickness blade) and yields results which
are in excellent agreement with the experimental ones of Bartsch
(Ref. 37). Also important in Ref.7 is the comparison between
classical~ and Landgrebe-wake analysis: the latter shows a
marked spike near the tip in the section l1ift distribution, in
full agreement with experimental reswvlts (the spike is absent in
the classical wake results)., These results not only demonstrate
the importance of the wake geometry for the prediction of the
section lift distribution, but also are important in the
interpretation of our comvergence scheme.

6,2, Description of Test Case

As mentioned above, all the results presented in this
report for a case considered by Rao and Schatzle: an isolated
rotor, with tip radius RT = 17,5', cut-out radius xco = 2.,33°’,
chord ¢ = 1.0%3', collective pitch angle 8 = 10.61 and twist
angle 6, = -5 , The a- ‘ular speed is 2 = 355 r.p.o,

For all the results, the initial wake geometry is a
classical wake




™
|

= X4 cOs O — y, sin 6

Yy = vo sin © + x4 sin ©

z z, + kRO
where k =/ Cp/2 and Cp = 0.00186 (this is the value obtained by
Rao and Schatzle).

All the results were obtained using three elements in the
chord directions and seven in the span directions for a total of
twenty-one elements on each side of the blade. A convergence
analysis presented in Ref. 32 indicates that this is sufficient
to obtain relatively converged results. For the classical wake
analysis the time step is At = T/12 where T is the period: this
yields twelve elements in the ‘circumferential’ direction per
each wake spiral (there are seven elements in the radial
directions because that is the number of elements on the blade in
the spanwise direction).

These data are summarized in Table A.

6,3 Numerical Results

In order to illustrate the type of problems encountered in
the effort presented here, consider Figures 6.1.a to 6.1,p which
depicts the vertical displacement, z, as a function of the
azimuth angle 6, (for different time steps, more precisely for
tn/At = 15 and 21 through 35) for the last vortex line, i.e., the
vortex-line emanating from the tip point of the trailing edge (as
clarified later it would be misleading to refer to this vortex as
the tip vortex).

It may be noted that at time—step 15 the vortex line appears
to have the expected behavior. However at time step 20, the
vortex line shows a hump which becomes more marked as in the
following time steps but it seems to be pushed downward in time,
The phenomenon is more clearly illustrated in Figure 6.2.a to
6.2.d which depicts the vertical displacement, z, as a function
of the radial position (for different time steps, tn/At =15, 22,
23, 25) also for the last vortex line, It is apparent that the
last spirals tend to move outward. This is caused by the fact
that the wake is truncated (the ‘following’ spiral would have a
‘restraining’ effect on the last spiral: imn its absence the last
spiral tends to move outward, this point is clearer after
discussion of Figure 6.5).




Single Rotor Blade
Geometry and Flight Conditions of Rotor:
Number of Spirals 5 or 7 as indicated in captions
Number of Elements on Blade (3 x 7)(one side)
Number of Elements per Spiral (12)

R = 17.5 ft, (span)

¢ = 1.083 ft. (chord)

Y = 2.33 ft. (root cut-~out)

co

0, = 10.61° (collective pitch angle)
0, = -5%  (twist angle)
C, = 0.00186 (thrust coefficient)

2 = 355 r.p.m,

e e e e
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' As mentioned in Section 5.8, the reason no far-wake model
was introduced is because suck a model does not exist for
arbitrary motiom (slthough the far-wake model introduced in Ref.
40 and 41 for the hover case could have been used here in order
to improve these specific results).

In spite of the fact that the wake geometry does not seem to
have reached convergence, the 1ift distribution appears to be
converged: no appreciable changes occur between time ateps 40
and 50. This is shown in Figures 6.3.a and 6.3.b for the five-
and seven-spiral models respectively: the converged five— and
seven—spiral results are compared in Figure 6.4, We believe that
the explamation for this seemingly inconsistent behavior can be
understood from the results shown in Figure 6.5 which shows the
vertical displacement of the last vortex line as a function of
the azimuth angle at the last time step considered here (that is,
at time step 50): the three lines correspond to the three-,
five-, and seven—spiral models respectively., It may be seen that
the first two spirals are very close for all three cases (whereas |
the first three spirals are in good agreement for the five- and
seven—spiral models). Since the first one or two spirals have
the strongest impact on the section lift distribution, it is no
surprise that the five— and seven—spiral models are in good
agreement on the sectiom1lift distribution,

Finally, the results obtained with the seven—spiral wake are
compared against existing data in Figures 6.6, 6.7, and 6.8.
Figure 6.6 shows a cross section of the wake (first two spirals
only) at 90° behind the trailing edge. Also shown in Figure 6.6
are the location of the tip vortex and of the vortex sheet as
predicted by Landgrebe’s gemeralized wake model. Note that ,
Landgrebe’s model comes from the experimental data and therefore r
the tip vortex is not necessarily the location of the last
vortex, but rather the ’‘center of mass’ of the rolled-up portion
of the vortex sheet. Taking this into account, we do consider
this comparison to be very satisfactory especially if one
considers the low number of oelements used to describe the blade
and its wake: much stronger roll-up is expected if a higher
nomber of elements is used. (It may be worth noting that
Landgrebe model is only an approximate interpolation of the
experimental data.) Similar good agreements are shown in Figure
6.7 in which the radial location of the last vortex as a function
of the azimuth © is compared to the radial location of the tip
vortex in Landgrebe’s model.

Finally, Figure 6.8 shows a comparison of our results with
those of Rao and Schatzle (Ref. 7). As mentionmed in Section 6.1,
their results for a four-bladed rotor are in excellent agreement
with the experimental results of Bartsch (Ref. 37). Agein, we
consider that the agreement is satisfactory if ome comsiders the
low number of elements used in the snalysis and that Rao and
Schatzle results are obtained with a prescribed wake, (It may be
worth noting that our results are in excellent agreoment with
their results for classical-wake analysis, see Ref. 32.)
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6.4, Comments: Numerjcal Stabjlity

From the numerical results presented in this Section one may
conclude that the algorithm is capable of reproducing the correct
trend in wake rollup and pressure distribution. The discrepancy
between our results and the existing ones may be due to either
the physical spproximation (i.e., inviscid flow) or numerical
approximation. An analysis of convergence is mneeded in order to
di:crilinlte between the two. (The irregular behaviour at 6 =
60 is probably due to the trailing edge condition discussed in
Section 5.3 and deserves further attention).

The main accomplishment however, is that the numerical
results indicate that the algorithm appears to be free of
numerical instabilities, even though no ad-hoc assumption (such
as prescribed radial contraction) has been used.

More precisely we believe that the instability in the last
few spirals on the wake is due to the truncation of the wake and
should not be thought of as a numerical instability in the
classical sense: in such a case the vortex line would depart from
a8 smooth-behavior spiral with a disturbance that oscillates and
grows in space and time such as that reported by Summa (Ref. 6).
All of our results are very smooth: an illustrative example of
such smooth behavior is presented in Figure 6.9, which shows the
geometry of the vortex—line emanating from the tip point of the
trailing edge for all the spirals (for the five-spiral case) at
time step n = 45,

We believe that this is the first time that such an
accomplishment has been reported.
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SECTION 7

CONCLUDIIY, DEIANTS

A general formulation for the aerodynamic analysis of the
unsteady incompressible potential flow around a helicopter rotor
has been presented (the extension to compressible flows is
outlined in Appendix A). 1Mew theoretical results incorporated in
the formulation include a thorough discussion of the wake
dynanics (Section 2) and of the wake genmeration (Section 4), both
examined from very basic principles. In particular the trailing
edge condition is examined in detail. It is shown that Dutta
condition (that the vorticity distribution does not gzo to
infinity at the trailing edge), necessary to insure uniqueness of
the solution for two dimensional flows, is not needed for
three dimensional flows (in simply connected regions). On the
other hand Joukowski hypothesis (that concentrated vortices, if
formed, are immediately shed off the trailing edge) is used in
the discussion of the wake generation, The numerical algorithm
is also presented: it is shows how the time-discretization of the
problem yields a series of ‘sudden starts’ with the consequence
that discrete vortices are generated (and shed) at the trailing
edge. :

Mumerical results are them introduced. The main conclusiors
which may be drawn from these results are that

1. the algorithm appears to be numerically stable

2. seven spiral wakes are needed to obtain ’good behavior'
for the first two or three spirals

3. the finite-core assumption (artificial viscosity) does
not seem to affect the results

4, the wake~geometry results are in good agreement with the
empirical analytical model of Landgrebe (DRef. 33)

5., the section lift distribution is in good agreement with
the results of Rao and Schatzle (Ref, 7)

The most important new development is that to our knowledge
this is the first time that results have been obtained without
the need for an empirical inpant to avoid numerical instability.

Although the validation has been obtained only for a rotor
in hover, the formulation is quite goneral (the main limitations
being irrotationability and incompressibility) and applicable, in
particular, to a rotor in forward flight.




Additional work is recommended in the following areas:

1. Convergence anslvsis: it is expected that a stronger
roll-up would be obtained by using a larger number of
eloments in the radial direction (this in tura would
affect the section—lift distridbution).

2, Nake truncation: it is recommended that some
intermediate— and far—~wake model be introduced for
the purpose of reducing the number of wake spirals
(and hence the CPU time), However, as mentioned in
Section 5.7, such models should be based on first
principles rather than on empirical dats, if the
objective of the methodology is to use it for the
calculation of generalized wakes,

3. Yalidation: continue the validation of the formulation
by applying it to additional hover cases and then to
forward flight cases (it is hoped that comprehensive
experimental results for forward-flight become
available in the near future).




10.

11.

12,

REEERENCES

Landgrebe, A.J., Moffitt, 2,C., and Clark, M.7.,
'Aerodynamic Technology for Advanced Notorcraft, Part I,’
Journal of American llelicopter Society, Vol. 22, Mo. 2,

April 1977, pp. 21-27.

Landgrebe, A.J., offitt, R.C., and Clark, 0n.I,,
'Aerodynamic Technology for Advanced Rotorcraft, Part II,'
Journal of American MNelicopter Society, Vol. 22, No. 3, July
1977, pp. 2-9.

Friedmann, P., and Yuwan, C., 'Effects of !"odified
Aerodynamic Strip Theories on Rotor Blade Aeroelastic
Stability,’” AIAA Journal Vol. 15, Mo. 7, July 1977, pp. 932~
940,

Van Holten, Th., 'On the Validity of Lifting Line Concepts
in Rotor Analysis,’ Vertica, 1977, Vol. 1, pp. 239-254.

Johansson, B.C.A., 'Compressible Flow about Melicopter
Rotors,’ Vertica, 1978, Vol. 2, pp. 1-9.

Summa, J.!i., ‘Potential Flow about Impulsively Started
Potors,' Journal of Aircraft, Vol. 13, No. 4, April 1976,
pp. 317-319, AfK-

Pao, DB.M., and Schatzle, P.R., 'Analysis of Unsteacy
Airloads of Melicopter Rotors in lover,’ AIAA Paper 77-159,
AIAA 15th Aerospace Sciences Meeting, Los Angeles,
California, January 1977,

Suciun, LE.0., Preuss, R,D., and Morino, L., 'Potential
Aerodynamic Analyses of Horizontal-Axis Vindmills,’ ATAA
Paper No. 77-132, January 24-26, 1977,

Dat, R., 'Representation d’une ligne portante animee d’'un
mouvement vibratoire par une ligne de doublets
d’accelerations,’ La Reserche Aerospatiale, MNo. 133, Nov.-
Dec. 1969, English translation NASA TT.F12952 (1970).

Dat, R., 'La theorie de la surface portante appliquee a
1’ajle fixe et a 1'helice,” La Reserche Aerospatiale, Mo.
1973-4, English translatjon ESRO-TT.90 (1974).

Costes, J.J.., 'Calcul des forces aerodynamiques
instationnaires sur les pales d’un rotor d'helicoptere,’ La
Reserche Aerospatiale, No. 1972-2, Englisk Translation
NASA-TT.F15039 (1973).

Costes, J.J., 'Application of the Lifting Line Concept to
felicopter Computation,’ presented at the 'Fourth European
Notorcraft and Power Lifted Aircraft Forum,’ Stresa, Italy,
Septendber 13-15, 1978.

-1

S




13.

14.

15.

1e.

17.

18.

19,

20,

21.

22,

23,

24.

NMess, J.L., and Smith, A/M.0,, 'Calculation of Nonlifting
Potential Flow about Arbitrary Three Dimensional Podies,’

Report Mo. ES 40622, Douglas Aircraft Company. Long Reach,
Calif,., 1962,

Rubbert, P.E., and Saaris, G.R., 'Review and Evaluation of
Three-Dimensional Lifting Potential Flow Analysis !Method for
Acbitrary Configurations,’ AIAA Paper No. 72-188, Jan., 1972.

Hess, J.L., 'Calculation of Potential Flow about Arbitrary
Three-Dimensional Lifting Bodies,’” Report Mo. MDC J5679-01,
Douglas Aircraft Company, Long Beach, Calif., 1972.

Labrujere, T.G., Loeve, V., and Sloof, J.W., 'An Approximate
Method for the Calculation of the Pressure Distribution of
Wing-Body Combinations at Subcritical Speeds,' AGALD
Specialist Meeting on Aerodynamic Interference, Silver

Spring, Maryland, September 1970, AGARD Conference
Proceedings MNo. 71.

Woodward, F.A., ’'Analysis and Design of Wing-Body
Combinations at Subsonic and Supersonic Speeds,’ Journal of
Aircraft, Vol, 5, No. 6, Nov.-Dec, 1968, pp. 528-534,

Fox, C.H., Jr., and Breedlove, W.J., Jr., 'Application of an
Improved Unified Subsonic—~Supersonic Potential Flow !ethod
for the Aerodynamic Analysis of Aircraft Configurations,'
ATAA Paper Mo, 74-186, Jan.~-Feb. 1974.

Albano, E,, and Rodden, W.P., 'A Double Lattice !fethod for
Calculating Lift Distributions on Oscillating Surfaces in

Subsonic Flows,” AIAA Journal, Vol. 7, Mo. 2, February
1969, pp. 279-285.

Giesing, J.P,, Kalman, T.P.,, and Rodden, V.P,, ’‘Subsonic
Steady and Oscillatory Aerodynamics for !Multiple Interfering
WVings and Bodies,’ Journal of Aircraft, Vol. 9, tlo. 10,
October 1972, pp. 693-702,

Horino, L., 'Unsteady Compressible Potential Flow Around
Lifting Bodies Naving Arbitrary Shapes and !Motions,’ Doston
University, College of Engineering, TR-72-01, June 1972.

Morino, L., ‘Unsteady Compressible Potential Flow Around
Lifting Bodies: General Theory,” AIAA 11th Aerospace

Sciences Meeting, Washington, D.C.,, ATAA Paper Mo, 73-196,
January 1973,

Morino, L., ‘A General Theory Of Unsteady Compressible
Potential Aerodynamics,’ NASA CR-2464, December 1974,

Morino, L., and Kuo, C.C., 'Subsonic Potential Aerodynamics
for Complex Configurations: A General Theory,’” AIAA J., Vol.
12, No. 2, February 1974, pp. 191~197,

R=-2

t
l
|
f




—

25. Morino, L., Chen, L.T., and Suciu, E.O., ’'Steady and
Oscillatory Subsonic and Supersonic Aerodynamics Around
Complex Configurations,’ AIAA J., Vol, 13, No. 3, Narch

1975, pp. 368-374.

26. Morino, L., and Chen, L.T., 'Indicial Compressible Potential
Aerodynamics Around Complex Aircraft Configurations,’ NASA
Conference on Aerodynamic Analysis Requiring Advanced
Computers, NASA Langley Research Center, Hampton, Virginia,
March 4-6, 1975.

27. Morino, L., and Tseng, X., 'Steady, Oscillatory and
Unsteady, Subsonic and Supersonic Aerodynamics (SOUSSA) for
Complex Aircraft Configurations,’” AGARD Symposium on

Unsteady Aerodynamics, Ottawa, Canada, September 26-28,
1977.

28. Morino, L., and Tseng, K., 'Time-Domain Green'’s Function
Method for Three-Dimensional Nonlinear Subsonic Flows,’ AIAA
Paper No. 78-1204, AIAA 11th Fluid and Plasma Dynanmics
Conference, Seattle, Washington, July 1978.

29. Dvorak, F.A., Maskew, B., and Woodward, F.A.,, 'Investigation
of Three-Dimensional Flow Separation on Fuselage
Configurations,’ Analytical Methods, Inc., USAAMPDL
TechnicalReport 77-4, Eustis Directorate, U.S. Army Air
Mobility Research and Development Laboratory, Fort Rustis,
Virginia, !March 1977.

30. Clark, D.R,,'The Use of Analytic Tools in the Design and ,
Development of Rotorcraft,' presented at the 'Fourth i
European Rotorcraft and Powered Lift Aircraft Forum,’
Stresa, Italy, September 13-15, 1978.

31, Morino, L., and Soohoo, P., 'Green’s Function !lethod for !
Compressible Unsteady Potential Aerodynamic Analysis of !
Rotor-Fuselage Interaction,’ presented at the 'Fourth L
Furopean Rotorcraft and Powered Lift Aircraft Forunm,' T
Stresa, Italy, September 13-15, 1978,

32, Soohoo, P., Noll, R.B., Morino, L., and Mam, N.D., 'Green's
Function Method for the Computational Aerodynamic Analysis
of Complex Helicopter Configurations,’ AIAA 17th Aerospace

Sciences Meeting, Ne Orleans, La., ATAA Paper No. 79-0347,
January 15-17, 1979.

33. Landgrebe, A.J., ’'An Analytical !ethod for Predicting Potor
Wake Geometry,’ Journal of the American I'elicopter Society,
Vol. 14, No. 4, October 1969, pp. 20-32.

34. Landgrebe, A.J., 'An Analytical and Experimental
Investigation of Melicopter Notor NMover Performance and "ake
Geometry Characteristics,” USAAMRDL Technical Report 71-24,
Fustis Directorate, U.S. Army Air !Mobility Nesearch and

rwrs et ne s St et




35,

36.

37.

38.

39.

40,

41,

42.

43,

44,

45,

Development Laboratory, Fort Eustis, Va., June 1971, AN
722835,

Crews, S.T., Fohenenser, T.I'., and Crmiston, T.A.,, ‘'An
Unsteady Wake 'lodel for a Yingeless Rotor,’ Jourmal of
Aircraft, Vol. 10, Mo, 12, December 1973, pp. 752-760,

Rocurek, J.D., 'A Lifting Surface Performance Analysis with
Circulation Coupled Wake for Advanced Configuration lovering
Totors’, Ph.D., Dissertation, Graduate College, Texas A+!'
University, llay 1978,

Partsch, T.A., ‘In-Flight !MNeasurement and Correlation with
Theory of Blade Airloads and Pesponses on the YN-51A
Compound Velicopter Rotor-Volume I: Ileasurement and Cata
Peduction of Airloads and Structural Loads,’ USAAVLARS
Technical Report 68-22A, U.S. Army Aviation !aterial
Laboratories, Fort Eustis, Va,, ''ay 1968, AD 674193,

Scully, ILD., ‘Computation of Helicopter Rotor ‘ake Teometry
and it's Influence on Rotor Harmonic Airloads’, !IIT ASIL-TN-
176-1, MMarch 1971,

Pouradier, J.!!., and Forowitz, L., 'Aerodymamic Study of a
Movering rotor’, Sixth European Rotorcraft and Powered Lift
Aircraft Forum, Paper MNo. 26, Pristol, England, Septermber
1930,

Sunma, J.!., and Clark, D.B,, ALifting-Surface !"ethod for
lover/Climb Airloads,’” 35th Annual Forum of American
Telicopter Society, VYashington, D.C., MMay 1979,

Summa, J.!f., ‘Advanced PRotor Analysis !Method for the
Aerodynamics of Vortex/Plade Interactions in fover,’ Fighth
Furopean Rotorcraft and Poweredé Lift Aircraft Forum, Paper
Mo, 2.8, Aix-en Province, France, August 31-September 3,
1982.

Miller, R.I., 'Application of Fast Free Yake Analysis
Techniques to Motors,’ Fighth European Notorcraft Forun,
Aix—en-Provence, France, August 31 through September 3,
1982,

Loewy, R2.G., 'A Two-Dimensional Approximation to the
Unsteady Aerodynamics of Notary Yings,' Tournal of the
Aeronautical Sciences, Vol., 24, 1957, pp. 81-92, 144,

Yammond, C.E.,, and Pierce, G.C., 'A Compressible Unsteady
Aerodynamic Theory for Tlelicopter Rotors,’ ACATD Specialists
eeting on the Aerodynamics of Notary Tings, "arseille,
France, Leptember 1972,

Jones, V.P., arnd TNao, P.!l., 'Compressibility Tffects on
Cscillating Notor Nlades in [llovering TFlight,” AIAA Journal
Vol. 8, February 7, 1970, pp. 321-329,




46.

47,

49,

50,

53.

54,

55.

56.

59.

Jones, Y.P.,, 'The Influence of the YVake on the Flutter and
Vibration of Potor Nlades,’ The Aeronautical Cuarterly, Vol.
IX, August 1958, pp. 258-286.

Isaacs, D., ‘Airfoil Theory for Totary "ing Aircraft,’
Journal of Aeronautical Sciences, Vol. 12, January 19245, pp.
113-117.,

Isaacs, M., 'Airfoil Theory for Rotary Ving Aircraft,’
Journal of Aeronautical Sciences,Vol. 13, April 1946, pp.
218-220.

Greenberg, J.!!., 'Airfoil in Sinusoidal '"otion in a
Pulsating Stream,’ MACA TN 1326, 1947.

Nao, B.!M., and Jones, Y.P., 'Application to Potary “ings of
Simplified Aerodynamic Lifting Surface Theory for Tnsteady
Compressible Flow,’ Proceedings of the AI'S/MASA-A!TLS
Specialist’s !leeting on Rotorcraft Dynamics, February 1974.

Caradonna, F.X., and Isom, !l.P,, 'Subsonic and Transonic
Potential Flow over Telicopter Rotor Elades,” AIAA Journal,
Vol, 10, Mo. 12, December 1972,

Caradonna, F.X., and Ison, !N.P., 'Numerical Calculation of
Unsteady Transonic Potential Flow over elicopter Totor
Nlades,’' AIAA J., Vol, 14, MO, 4, April 1976,

Caradonna, F.X., and Phillippe, J.J., 'The Flow over
Nelicopter Dlade Tip in the Transonic Regime,' Vertical,
1972, Vol. 2, pp. 43-60,

Caradonna, F.X., 'The Transonic Flow on a Helicopter lotor,’
Ph.D. Thesis, Stanford University, farch 1978,

‘lorino, L., Foundations of Computational Acrodvnamics, Dart
I, Inviscid Flows, in preparation.

Lamb, M., DIydrodynamics, 6th ed., Cambridge University
Press, 1932.

Batchelor, 6G.,7., An Introduction to Fluid Dynanmics,
Cambridge University Press, 1967,

Serrin, J., 'Mathematical Principle of Classical :luid
Mechanics’ in Encyclopedia of DPhysics Fd. S. Fluegge, Vol.
VII/1, Fluid DPynamics I, Springer Verlag, 1959,

Yutta, M.V., 'Auftriebskraefte in stroemeuden
Fluessigkeiten,’ Illustrierte Aeronautische !‘itteilungen, &
(1902), 133-135,'Ueber einc mit den Grundlagen dcs
Flugproblems in Neziehung stehende zweidinensionale
Stroenung,’ Sitzungsberichte der Tayerischen Akademie der




50.

61,

2.

64.

65.

"issenschaften, mathematisch— physikalische Tlasse (191n),
1-z2, *Ueber ebene Zirkulationsstroemungen nebst

Flvogtechnischen Anwendungen,’ ibid. (1911), 65-125,

Joukowski, M., 'Cn thke Adjunct Vortices’ (in Russian),
Obshchestvo liubitelei estestvoznaniia, antropologii i
etnografee, oskva, Izviestiia, 112, Transactions of the
Physical Section, 13 (1907), 12-25, 'NDe 1la chute dans l'air
de corps legers de forme allongee, animes d'un mouvement
rotatoire,’ Pulletin de 1'Institut Aerodynanmique de
Youtchino, 1 (1912), 51-65, 'Ueber die Tontouren der
Tragflaechen der Nrackenflieger,’ Zeitschrift fuer
Flugztechnik und otorluftschiffahrt, 1 (1910), 281-284, 3
(1912), ©51-56, Aerodynanmique (Paris, 19216 and 1931),

Von Yarman, Th., Aerodvnanics, '‘cGraw Till, 1963,

fangler, 7.". and Snith, J.I.D,, 'Behaviouvr of the Vortex
Sheet at the Trailing Bdge of a2 Lifting Ying,' Journal of
the DNoval Aeronautical Society, Vol. 74, Mov. 1970,

pp. 906-908,

Deutsch, Navid J., 'An Integral Dquation for the Solution of
the Monlinear "Tave Fguation,’” Ph,D. Dissertation, Toston
Yniversity, College of Tngineering, in preparation.

Sipecic, S.N.,, Ph.D. Nissertation, University of Nelgrade,
Yugoslavia, in preparation.

Y“fowcs-Yilliams, J.C., and Tawkins, DN.C., 'Sound fMeneration
by Turbulence and Surface in Arbitrary "otion,'
Philosophical Transactions of the "oyal Society of London,
Series A, Vol. 264, May 8, 1969, pp. 321-342,

~=§

N A
N oI

NSO Wt ) S

B P

AT men o s



APPENDIX A

FORMULATION FOR COMPRESSIBLE FLOWS

The integral formulation of Section 3 is extended here to
the case of compressible flows, The frame of reference is
assumed to have arbitrary motion, The surface is assumed to be
moving with respect to the frame of reference in order to
accommodate structural deformations as well as wake roll-up.
However, for the sake of simplicity, such motion is assumed to be
small. The general case is considered in Refs, 63 and 64. The
formulation is an extension of that introduced in Ref, 65 for
acoustics.

B va t Problems

The equation for the velocity potential in a frame of
reference connected with the uadisturbed air is given by

3
1 3y
Ve - — —L =A A.1
f a: 81’
where contains 2ll nonlinear terms., The boundary conditions
represent the zero flow at infinity

Y= 0 at e A.2

- - —

and the no-flow-through condition on the surface bocundary

d - -
;f = Yy n on oy A.3
In addition,
Dy
— A =0 k A.4
D 7] on wake

In order to simplify the derivation af the Green's theorem for a
frame of reference having arbitrary motion, it is convenient to
oxtend the problem to the whole space by introducing the fuanction
?'- B*)whora. for a surface o surroundimg both body and wake

E=1 inside o
= 0 outside o A.S

80 that

? =4 ingide o
= 0 outside ¢ A.6




< At Lt A by ot b

e s mrtmen cr R

et o

A
Mote that ¢ is defined in the whole space and satisfies the
equation

V$ - i—a_‘ﬁ:: Rx+ ‘7*)-63': + f?.(‘fV:)

=]

2
-]

1 dgp 37 3k

DI Gt AT
22 2t o< ac?
(=)

The presence of the YE and 3T/3<T terms introduce source lavers
which act only on the surface o (which is not to be considered as
a boundary of the cdomain of validity of the equation which is the
infinite space). The only boundary is at infinityv where we
specify $=0. Dy denoting the right hand of Dquation A.7 by ¥,
Tq. A.7 may be rewritten as

1 3% .
Vzl%— — _CP= X. A.R
a; ar’

whereas, according to Tg. A.2, the boundarv condition at
infinity, is

g =20 at « A9
Equation A2 subject to boundary condition A.2 is equivalent to
Tquation A.1 to A.4 in the sense that if a function satisfies

Eqs. A.% and A.9, it also satisfies Cgs. A1 to A.4. The
solution to Zgnations A.8 and A.0 is

¢ Govor =[[[7 cates A.10

where

5(Te-1-6)

G(E,T) A.11

4np

(with p = !€~f4! and 8 = p/a,) is the well known Greer's Tunction
for the wave operator,

Transformation t he '"oving Frame of Neference

lere we introduce a coordinate syster (X,t) movine in rigid=-
body motion (e.g., connected to the rotor if the rotor noves
with ripgid body motion)., "e make use of a transfornation fro=
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the fixed frame of reference (E.t) to the moving frame of
reference (3,t)

¢ - _
at = \(x.t) A.12
¥(£,0) = X A.13
Then
t
E(x,t) = x +.[ V(x,ty)dts A.14
o
T =t A.15
From Equation (6) we have
.. Ze L(x,t) 8(t-teso(z,t))
¢ (Xo,te) =_UH Ry % dt A.16
- 90
where - -
P(int) = Ig(;ot) - &(;.'t‘)! A.17

(Since the velocity v corresponds to rigid body motion, the
transformation is a length preserving and hence the Jacobian is
equal to one.) Pecalling a result from theory of distributions

If(t) & [g(t)] dt = Z[f/!g'!l A.13
KA i t=ti

(where t. are the roots of g(t) = 0) and integrating with respect
to the time variable, one obtains

4ﬂ¢?(§-.t.) -ZJ-J' [’i (X, t5)/r, (x,t4)] dz A.19
FRRAA

where Ty(x,t;) = p(x,t;) !g’(t;)], whereas the values of t; are
the solutions of
g(t) =0 A.20

where
g(t) = ty - ¢t ~ 1%(%,t) - E(Ze,te) ! /20 A21

7e note that the Eq. A.19 is the desired integral representation
for the velocity potential in the frame of reference moving with
the body.




Intearal Sguatijon for Mon-Liftins Tizid Totor

Mote that if X = C (i.e., if the nonlinear terms in the
differential equation for the velocity potential, Eq. A.1, are
negligible) then the right hand side of Za. A.7,%, is equal to
zero except on the surface ¢ (since E is constant both outside
and inside o). HNence, if A= 0, the right hand side of [q. A.19
can be rewritten in the form of the surface integrals.

For the sake of clarity, consider first the case of a non-
1ifting rotor in rigid body motion. Let the coordinate system &
coincide with the Cartesian coordinates of a Cartesian frame of
reference rigidly connected with the rotor. In this frame of

reference

oE
— =0 A.22

at

In addition, assume that the rotor speed is always subsonic so
that Eq. A.20 has only one root, t=T.

lMlote that, for any function f

Hf\'n-:dv-# £ 1 do 4,23
and - -
IHG B(LTE) qv = v.~f”cﬁs dv

= V.-# Gfn do A.24

6
Performing the calculations, one obtains (see Nef, 63 for
details)

1 8q
-4xE = - d
.‘f. ﬁ [l'!! an]T ¢
1 1 ¢
+ V.'ﬁ (-¢nly do + x qP[- — VIt do
‘s rn 8, s r." ot
. 19 [1 Vi d
e P, f sl e A.25
4 !

In Bq. A2S, [ Ir indicates evaluation at retarded tine t=T (such
that g(t) =t - t, + |&(%,t) - §(i..t.)'/a. = 0), Equation A.2S§
is the desired integral representation. In the limit, as P.
approaches the surface o, one obtains an integral equation for
(see Section 3). The numerical solution of such an equation is
similar to that given in Section 5.

A=4




Botor/Fuselage Configzazation

Next coasider the case of rotor/fuselage configaration in
which both the rotor amd the fuselage move in arbitrary but
rigid-body motions. Also for simplicity, assume that the wake
remsias whezre it is gemerated: this is a reasonsble assumption
whea (in a frame of referemce coamected with the undisturded air)
the velocity of the fluid is small compared to that of the rotor
fuselage configurations (this assumption is removed in the
saslysis of Ref, 63). Hence the surface o can be brokea into
three surfaces: the surface of the rotor, 0., the surface of the

fuselage d¢, and the surface of the wake, o, For each of these
sarfaces there oxists a frame of reference which is rigidly
connected with the surface.

Next consider the volume on the right hand side of Eq. A.18
sad ocoasider three ’‘thin’ volumes coataining o,, g4 and ay
respectively (the portion of the integrand containing derivatives
of E is equal to zero in the rest of the volume). Next assume
that © ia each volume coincides with the frame of reference
connected with the corresponding surfece., Following the same
procedure outlined adove (but locating each surface integral
independently), one obtains an expansion similar to Bq. A.25 with
each integral replaced with the sum of three integrals over

%y, 0g and o, respectively.

If the motion of the surfaces with respect to 'their frame
of reference’ is small, Bq. A.2S is still valid but such motion
‘shows up’ in the dboundary conditions for 3y/3n. The case of
completely arbitrary motion is discussed in Ref. 63 (including
nonlinear terms and removing shocks): the derivation of the
equations is very complicated but the final results are slightly
more complex than the ones presented here,




