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SZION 1

INTRODUCTION

Ngiail And Obisctives

A new methodology for Soneration of the wake geometry for
the computational aerodynamic analysis of a helicopter rotor is
presented in this report.

The availability of such a methodology would enhance
considerably the present computational capability in this area.
This capability is needed for instance for:

(1) performance and structural analysis

(2) evaluation of generalized forces for flutter analysis

(3) evaluation of the outer potential velocity field for
the boundary-layer and separated-flow analysis.

In the classical rotor-wake formulation, the wake is
described as a spiral (helicoidal) surface which is obtained from
the assumption of uniform vertical flow. This method is not
sufficiently accurate for the aerodynamic analysis of helicopter
rotors. This yields the used for the development of a
methodology for fully-automatic or semi-automatic wake
generation.

The fully automated wake generation (commonly referred to as
'free wake' analysis) is obtained step-by-step by calculating
from the location of a vortex point at a given time step the
Location at the next tinestep: the drawback with this approach
is that the free-wake analysis is quite expensive in terms of
computer time.

On the other hand, a semi-automatic wake generatiou
(commonly referred to as 'generalized wake') may be obtained by
expressing the analytical description of the wake geometry in
terms of few parameters which are evaluated by fitting
experimental results. The generalized-wake analysis is accurate
and not more expensive than the classical-wake analysis, but
currently requires the use of expensive wind tunnel experiments
for the generation of the generalize-wake model. On the other
hand, the free-wake analysis is more expensive than the
generalized-wake analysis but less expensive than the wind tunnel
experiments.

The objective of work presented here is the development of
an efficient and general method for free-wake potential

1-I



aerodynamic analysis which then can be used (instead of the more
expensive experimental approach) to generate the generalized-Vake
model for use in a prescribed-wake analysis. The role of the
experimental work would then be limited to the validation of the

free-wake analysis.

A1 ., Relation 2. 12Ar MiW State oi 1Xe AXIt

An excellent review on aerodynamic technology for advanced

rotorcraft was presented by Landgrebe, foffitt. and Clark in
Refs. 1 and 2. Additional reviews are presented in Refs. 3-7.

(Compressibility effects in particular are reviewed in Ref. 7.)
Therefore only works which are particularly relevant to the
objective and the motivation of the proposed work are included in
this brief review, which is not to be considered, by any means,

complete.

We feel that the unsteady analysis is the main strength of
the method presented here over other existing methods (accurate
pressure evaluation for compressible unsteady flow is badly
needed for flutter analysis, see Ref. 3: a correct and
efficient formulation for such a problem is not available at
present time even for an isolated rotor). Therefore particular

emphasis is given in this review to the unsteady flow analysis.
Another important feature of the methodology proposed here is the

capability of analyzing rotor-fuselage interaction: this is the
main advantage of so-called panel methods over lifting-surface

methods (see below). Therefore this aspect is also emphasized in

this review. A third advantage of the methodology proposed here

is that it can be extended to give an exact integral equation for
nonlinear compressible unsteady flows with moving shock waves.
The extension of the present formulation to compressible flows is
briefly outlined in Appendix A.

It is interesting to examine the Concluding Remarks made in
Reference 2 in 1977:

'As with any review of a rapidly changing subject,
the conclusion that must be drawn from this review is
that, although much has been achieved in terms of our
understanding the aerodynamics of the rotor, much
remains to be accomplished. In recent years, there
have been large advances in the capabilities of the
helicopter with today's machines flying faster,
farther, higher, heavier, smoother and quieter than
their predecessors. However, the gains possible with
today's advanced technology are becoming smaller as the
state of the art approaches goals set using
yesterday's ground rules, and the available techniques
must be worked harder to achieve even modest
improvements. Unfortunately, these techniques.
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reflecting with a growing complexity an increased depth
of understanding of the rotor behavior, are beginning
to strain the capabilities of the computing facilities
available. If further advances are to be made, some
simplification (without lose of precision) Is required.
This is especially true if the methods are to be made
available to the engineer and the designer at a
working, as opposed to a research, level.

More specifically, based on this review, several
areas which require more attention as the industry
enters another decade of the development of our
technology include: the definition of the inflow
distribution in forward flight using a generalized wake
approach similar to that developed in hover, the
combination of the effects of unsteady and skewed flow,
a resolution of the limits of applicability of the
basic lifting-line assumption, the development of an
economic lifting surface analysis, and a representative
aerodynamic model of the rotor/airframe interaction.
All of these (and other important elements not covered
in this review) should be combined in a tractable, well
correlated analysis, which will be used in combination
with an improved appreciation of the role of the blade
aeroelasticity to develop designs for tomorrow's
advanced rotorcraft.'

The work presented here addresses most of these issues. As
mentioned above, the objective of this work is to develop an
efficient and general methodology for free-wake potential
aerodynamic analysis of helicopters in hover or forward flight.
This methodology may be used to generate a generalized wake which
is now obtained from very expensive wind tunnel results. (The
availability of such a method and corresponding computer program
would enhance considerably the present computational capability
for an accurate evaluation of pressure and flow fields for
performance and structural analysis. Such evaluation is also
required for instance for the problem of drag-reduction as a
prerequisite for the boundary-layer analysis.) Also mentioned
above is the fact that the possibility of analyzing compressible
unsteady flows and rotor-fuselage interference makes theintegral
method presented here quite unique among the 'integral equation'
methods which are well known to be much faster and much simpler
to use than finite-difference or finite-element methods.

Three items which are relevant to this report and which need
a discussion deeper than the ones presented in Refs. 1 to 7 are
advanced computational methods (lifting-surface and panel
methods), wake roll-up and compressibility. These items are
briefly examined in the following.

1-3
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Consider first advanced computational methods. Lifting-
surface theories are presented in Refs. 6 to 7. Both methods are
of interest here. The first (Summa. Ref. 6) introduces an
incompressible time-domain analysis (the wake-dynamics analysis
of this paper is covered later in this section) while the second
one (Rao and Schatzle, Ref. 7) introduces in a simplified form
(local Prandtl-Glauert, chordwise transformation) the effect of
compressibility for rotors in unsteady flow. This paper is very
relevant here because it clearly demonstrates the importance of
an accurate evaluation of the wake geometry for the calculation
of the section lift distribution acting on the blade. A third
lifting- surface method was developed by Suciu, Preuss and Morino
(Ref. 8) for windmill rotors and yields results which are in
excellent agreement with those of Rao and Schatale (Ref. 7). An
important development which requires special attention is the
work by Dat and Costes (Refs. 9-12). who start from the
acceleration potential due to a doublet and develop a lifting-
surface equation for compressible rotor aerodynamics.

Next consider panel methods, a new methodology recently
introduced in aircraft aerodynamics. This methodology (also
called boundary-element method) consists of the finite-element
solution (over the actual surface of the body) of integral
equations for potential aerodynamics. Typically, the surface of
the aircraft is covered with source-panels (doublet-, vortex-,
and pressure-panels are also used on the surface of the body and
of its wake). The intensity of the source distribution is
obtained by assuming that the flow does not penetrate the surface
of the body. (Note the difference with respect to the lifting-
surface formulations, in which the integral equation is over the
mean-surface of the rotor blades. By panel methods we indicate
only those methods in which the actual surface is used: their
main advantage over the lifting-surface methods is the capability
of analyzing rotor-fuselage interaction.) An early work on the
flow field around three-dimensional bodies by Hess and Smith
(Ref. 13) uses constant strength source-elements to solve the
problem of steady subsonic flow around nonlifting bodies. This
method has been extended to lifting bodies (Refs. 14-18) by
including doublet, vortex, and lifting-surface panels. Work in
panel method for unsteady flow around complex configurations
include extensions of the doublet-lattice method (Refs. 19 and
20) and, more recently, the work of Morino and his collaborators
(Cefs. 21-28).

This methodology has been recently extended to helicopter
aerodynamics. For instance, the work by Dvorak, .askew and
Woodward (Rof. 29) present a method for calculating the complete
pressure distribution on a helicopter fuselage with separate flow
(the method uses WBAERO for the potential flow solution, the
boundary layer is calculated up to the separation line, separated
flow is modeled by strsamwise panels of uniform vorticity).
Additional results are presented in Ref. 30. Straightforward
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applications of panel methods to helicopter aerodynamics are also
presented by Soohoo, orino, Noll. and Ran (Refs. 31 and 32: a
formulation for compressible flows is presented in Ref. 31).

The above remarks indicate that pouel-aerodynamiss methods
are becoming available for the analysis of the complete
configuration. The availability of sush methods (and
corresponding computer programs) enhances considerably the
present computational capability for an accurate evaluation of
pressure and flow fields. This evaluation is becoming more and
more important because of recent trends in the field of
helicopter aerodynamics. Wind tunnel experiments are very costly
whereas computers are becoming less and less expensive.
Therefore, the use of computers is becoming more attractive for
the aerodynamic analysis of helicopter configuration. For
instance, items such as higher performance (lower drag, higher
speed, higher rift, higher reliability) require more theoretical
analysis: in particular, as mentioned above, reduction of drag
requires a very accurate evaluation of the potential flow field
as a prerequisite for the boudary-layer and flow separation
analysis (Ref. 29). Therefore pael-aerodynamics methods deserve
further attention and are expected to become a standard design
tool for airplane sad helicopter aerodynamics within this decade.

Next consider the issue of wake dynamics. An exelleot
review of the problem of the wake roll-up is given in Refa. 1 and
2 (where additional works not included here are extensively
reviewed). The essence of the state of the art in this area is
briefly summarized here. The various aerodysmnic analysis of the
rotor fall into one of the three following types

A. Cl ul _%&" ie., a wake geometry described by
a helieoidal spiral with pass obtained from
uniform flow assumption.

3. ~Ializ4 jJLM, i.e.. a wake geometry obtained
by interpolating experimental data in terms of few
parameters.

C. Lre ljL&. i.e.. a wake geometry obtained
computationally as an integral part of the
solution.

Analytical models for predicting the geometry of the rotor
wake were developed from experimental data by Landgrobe (Ref. 33
snd 34). Crews, Iohenemser and Ormiston (Ref. 35) and Zoeurek
(Ref. 36). Landgrebe's model was used by Rao and Schatzle (Ref.
7) in their lifting-surface theory, and shows that a considerable
improvement in the comparison with ezperimental results of Ref.
37 can be made simply by using a generalized wake geometry
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instead of the classical wake geometry. Automatic generation of
the wake is considered for instance by Scully (Ref. 38). Summa
(Ref. 6) and Pouradier and Horowitz (Ref. 39). All these works
indicate that the algorithms used are unstable unless special
constraints (such as specified contraction ratio) are introduced.
Another important issue is the one of simplified algorithms which
can be used for instance for modeling the far wake: several
models are available for the hover case (see e.g., Ref. 40-42).
However none of these models is applicable to the case of
arbitrary motion considered in this report.

As mentioned above, it is a generally accepted opinion in
the helicopter-aerodynamics community that the classical-wake
analysis is insufficient (see for instance Ref. 7) to obtain
accurate results and that the free-wake analysis is too expensive
and that, consequently, all the effort should be devoted to the
generalized-wake analysis. While we basically agree with this
assessment, we would like to point out again that in generating
the generalized-wake geometry it is not necessary to use the
costly wind-tunnel results: one can use the free-wake analysis
which is more expensive than the generalized-wake analysis but
also much less expensive than the experimental approach.

Next consider the issue of compressibility. As mentioned
above, the analysis for compressible flows is examined in
Appendix A. Hence for completeness, the issue of compressibility
is reviewed here. The importance of compressibility was clearly
demonstrated by Friedman and Yuan (Ref. 3) for the problem of
aeroelastic stability (i.e., flutter and divergence) of rotor
blades. The work is based on simple aerodynamic strip-theories
(Refs. 43-49). However. the same effect is expected from more
sophisticated unsteady three-dimensional compressible theories.
As mentioned above, compressibility effects are included in the
lifting-line theory by Yohanssou (Ref. 5). in the lifting-surface
method by Rao and Sohatzle (Ref. 7 which is based on the work of
Rao and Iones, Ref. 50) and in the works of Dat and Coates (Refs.
9-12) and in the work by Morino and Soohoo (Ref. 31). A possible
alternative approach is the numerical solution of the
differential equation using for instance the finite-difference
technique (Caradonna et al., Refs. 51-54): this method however
requires considerable amounts of computer time. Therefore the
development of a methodology based on the integral equation
presented in Appendix A appears to be an attractive alternative
to other existing methods for the analysis of unsteady
compressible flows around complex configurations (the validation
of this integral formulation is limited to the particular case of
incompressible flows: the results are presented in Section 6 of
this report).
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The work presented here includes two aspects: (1) the
development of a formulation for the time-dependent free-wake
aerodynamic analysis of helicopters in hover and forward flight
and (2) validation of the formulation, for the particular case of
incompressible flows, by developing a computer program and
comparing the results against selected existing computational and
experimental data.

Regarding the first aspect of the effort, the formulation
is very general: the main restriction is the assumption of
potential aerodynamics. This implies in particular that viscous
(attached and separated) flows are not included here. For the
sake of clarity, compressible flows are dealt with in Appendix A:
the main body of this report deals with incompressible flows. The
formulation is based upon an integral method developed by Morino
(Refs. 21 to 23, see also Section 3 and 5) for the exact
compressible three-dimensional unsteady velocity-potential
equation for lifting bodies having arbitrary shapes and motions.
(For incompressible flows with prescribed wake, the formulation
has been applied to rotor-fuselage helicopter configurations,
Refs. 31-32. and to time-domain analysis of unsteady flows around
windmill rotors. Refs. 8.) New theoretical results are included
in this report. The formulation for wake dynamics, presented in
Section 2, is considerably different from that of our preceding
publications (which did not make explicit use of the principles
of conservation of mass and momentum across the wake): we
believe it is clearer, more convincing and more rigorous than any
wake-dynamics formulation of which we are aware. Also new are the
results presented in Section 4 which deals with the issues of
wake generation, uniqueness of solution, Eutta condition.
Youkowski hypothesis and trailing edge condition.

Regarding the second aspect of the effort, the validation
of the formulation includes time-domain free-wake analysis of the
unsteady velocity-potential equation for flexible rotors in hover
or forward flight. The validation involves the implementation of
the numerical formulation into a computer program and comparison
with existing experimental and numerical results. This
validation is limited to an isolated rotor in hover. Rowever,
the formulation and the numerical algorithm used in the computer
program are time accurate (i.e.. they yield a steady state
solution via an accurate time-domain analysis) and therefore are
in theory applicable to time dependent flows (of course,
validation for this application would be required). The computer
algorithm is general in that only the geometry and the motion of

the surface of the rotor is needed as an input. The issue of the
numerical stability for the automatic generation of the wake is
also discussed.

1-7
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SECTION 2

WAKE DYNAMICS IN INCOMPRESSIBLE POTENIAL FLOWS

A general formulation for the problem of the wake dynamics
for potential flows is presented in this section. Fundamental
issues related to the wake dynamics have been clarified during
the effort reported here. These issues (such as the boundary
conditions on the wake and at the trailing edge) are quite subtle
and have never been discussed in our preceding publications.
Therefore the theoretical foundations of the wake dynamics are
presented here (see Sections 2.2 and 2.3). we believe for the
first time. (Trailing-edge issues are dealt within Section 4.)
For the sake of simplicity, the formulation is presented for
incompressible flows (compressible flows are dealt with in
Appendix A).

2L1L Incomnresuible Inviscid Flows

In this report we will assume that the frame of reference is
connected with the undisturbed air. We assume the fluid to be
inviscid and incompressible. Hence the motion is governed by
the Euler equations (conservation of momentum)

D; 1
.. - grad p 2.1
Dt p

and the continuity equation for incompressible fluid
(conservation of mass)

div V - 0 2.2

where f is the velocity vector with respect to a prescribed frame
of reference, p is the pressure, p is the density (constant for
incompressible fluid), t the time, whereas

D 0
5 - j- + Vg1rad 2.3t

is the material or substantial derivative. Equations 2.1 and 2.2
form a system of four partial differential equations for four
unknowns v. , Vy, v., and p.

In order to complete the formulation of the problem, the
boundary conditions at infinity, on the body and on the wake must
be obtained.
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Sinee the frame of reference has been assumed to be
conaected with the undisturbed air, the boundary condition at
infinity may be written as

P . aadvinO (for Pat-) 2.4

On the body (rotor in our case) it is assumed that the
surface of the body is impermeable. This implies that the normal
components of the velocity ; of the fluid, and of the velocity Vb
of the rotor blades coincide at point P on the surface ab of the
rotor:

(- vb).-0 (forPonOb) 2.5

where i is the normal to ob at P.

The, boundary condition on the wake are discussed in Section
2.4 after iatroducing the concept of potential wake.

The basis of the discnssion on the wake dynamics is the well
known Kelvin's theorem which states that the circulation

"- a -d 2.6

over a material contour C (i.e.. a contour which is made up of

material particles) remains constant in time. This theorem is an

immediate consequence of the definition of I. of Euler equations

(Eq. 2.1) and of the fact that the density is constant (or, in

general, that the fluid is barotropie).

Next assume that the flow field is irrotational at time 0.
Then according to Stokes theorem

+C .di -ufo url Vi do 
2.7

(where C is the contour of ),ris initially equal to zero for
any path connected with a surface a fully inside the fluid
volume. Hence, for all these pathert remains identically equal
to zero. This implies that

curl v = 0 2.8

for almost all the fluid points at all times: the only points to
be exeluded are those material points which eome in contact with
the solid boundaries (since for those points.1olvin's theorem
does not apply). In order to simplify the discussion of this
issue, let us focus on the ease of an isolated blade with a sharp
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trailing edge and consider only those flows such that the fluid
leaves the surface of the blade at the trailing edge (this iss
is further discussed later in this Section 4). We call these
flows attached fLLw. Henc, the points which come in contact
with the rotor are only those emanating from the trailing edge
and therefore form a surface: such a surface is called Xwe.
Kelvin's theorem does not apply to the points of the wake. [Note
that if the trailing edge is fized with respect to the frame of
reference. the wake is a 'streak surface' (Ref. 52). Since the
trailing edge in general moves, we say that the wake is a
'generalized streak surface.']

We may conclude that for an inviscid and incompressible

fluid, if a flow field is initially irrotational. it remains
irrotational at all times except for those points which some in
contact with the surface of the body. If the flow is attached
(i.e., by definition if the fluid leaves the body only at the
points of a line which is called 'trailing edge') then the locus
of these points forms a generalized streak surface which is
called a wake.

It may be worth emphasizing that as shown above the fact
that for attached flows the wake has zero thickness does not
require futher assumptions but is a direct consequence of the
hypothesis of incompressible (in general. barotropic) invisaid
flow and of the definition of attached flows (the assumption if
initially irrotational flows is not essential for the presence of
zero-thickness wakes).

;,L Polentin-Elow- FgmulatUM

Next consider a well known theorem from vector field theory
which states that if a vector field is irrotatioual then there
exists a function, ', called velocity potential such that

V - grad 2.9

Hence our results may be restated as follows: for an inviscid
incompressible fluid, a flow field which is attached and
initially irrotational is potential at all times and at all
points except at the point of the wake.

If the flow is potential. i.e., if T is given by Eq. 2.9,
Eq. 2.1 may be integrated to yield Bernoulli's theorem

Y+ -I rad 12 - 2.10
Ot 2 p p

(The z-derivative of Eq. 2.10 yields the first component of Eq.
2.1: the constant on the right hand side of Eq. 2.10 is obtained
from the boundary conditions at infinity.)
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Furthermore, Eq. 2.2 nay be rewritten as

V - 0 2.11

where Vs is the Laplacian operator.

Similarly, Eq. 2.4 may be rewritten as

(f- 0 (for P at.) 2.12

and Eq. 2.S becomes

i b- 2.13

In order to be able to solve the mathematical problem. we
need a boundary condtiion on the wake. This condition may be
obtained from the priaciples of consetvation of mass and momentum
across a surface of discontinuity.

Indicating by subscripts I and 2 the two sides of the wake.
let 1 be the outward normal on side 1 and let

Af- f, - fa 2.14

denote the discoatinuity of any function f across the make
surface. (For the classical wine-wake. I and 2 correspond to
upper sad lower sides respectively. S is the upper aormal and If

f f- f51.)

The equation of conservation of mass aad Ionestus aeross a
possible surface of discontinuity (e.g.. a shoek wave or a wake)
are lives by (Rat. 58)

A[p(vn-vs)) - 0 2.15

h[P(Vn-vs)i + piI - p (va-va ) A; + Ap i M 0 2.16

where va, ;-. is the normal component of the velocity V whereas
v is the velocity of the surface (by definitioa, in direction of
the normal i). In the case of incompressible flows. Ap - 0 and
therefore Eq. 2.15 yields

Ava - 0 2.17

(since v s is the same for both sides of the vwae). Then the
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normal component of Eq. 2.16 yields

Ap - 0 2.18

Hence using Eq. 2.15. Eq. 2.16 reduces to

P(vn-vs)Av - 0 2.19

which implies either AV- 0 (that is the surface under
consideration is not a surface of discontinuity) or if there is a
discontinuity (wake surface)

n = 2.20
that is the flow does not penetrate the surface of the wake.

Note that Eq. 2.20 implies in particular that only the
tangential components of the velocity are discontinuous across
the surface of the wake, that is (using a local frame of
reference Ta. la, IT with Ts in the direction of the normal i)

AV U A(vi 1 + vail + V n)

- 14fi1 a+ !Iis)

- !± -is gradtA T  2.21

where

of - Of-

gradtf i +i- i 2.22

is the 'tangential portion' of the vector grad f. (It is
important to note that grad Af is a meaningless expression since
Af is defined only over the surface of the wake.)

Next consider Bernoulli@s theorem Sq. 2.10 with the wake
condition, Ap = 0, Eq. 2.18. This yields

+ Ts.'is - 02.23
st at
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that is

+ 1

TAf+-0 + 3-i 2.24
at 2

or. introducing the velocity of a wake point. P.0

;wML, i + is) 2.25

and using Eq. 2.17,

at wg a t & C i 2.26

The above equatio* is the desired boundary condition on the

wake. and may be rewritten as

Dv
-Af 0 2.27

where

Dw aaaL22
Dt- i- + vw*gradt - + V wx ijz' Vw1  2.28

is the material time derivative for a function defined only over
asurface: in a frae of reference moving with (constant)
velocity equal to V. at a given tine and a given point, the
substantial derivative coincides with the partial time
derivative. This implies that

Acf - constant 2.29

following a point P.w which has velocity iw given by Equation
2.25.w

Note that v Iand v~ are the average values of the
components 1 an11 2 resp*"ctively of ;j and is (which are
discontinuous across the wake), whereas v w u av n a v 6 (see
Equation 2.16) since va is continuous across the wake* The above
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results $as be restated in more physical terms saying that a
point of the wake has a velocity TV equal to the average between
the velocities. Vs and vs. on sides 1 and 2 of the wake
respectively. The value of A,(Pw) is time independent and equal
to the value that it had when the point P, left the trailing
edge.

It may be worth noting that v v does sot appear in Equation
2.24. Nowever the fact that P, has normal velocity equal to vwn
stems from the fact that the points of the surface have velocity
equal to vs = v," v (Equation 2.20). This is in agreement
with th results of alection 2.2 that the wake surface is a
generalized streak surface.

a inmam
In summary, if the flow field of an invisoid incompressible

fluid is initially irrotational, it remains irrotational at all
times ad therefore nay be given as

; - srade 2.30

Then (se 2.11). f satisfies Laplace equation

Vs( - 0 2.31

with condition at infinity, (Sq. 2.12)

T - 0 (for P ate) 2.32

On the other hand (see Eq. 2.13). the boundary condition on
the rotor blade is given by

!I - -b. 2.33an av-

whereas on the wake (see Sq. 2.29)

A -P) - constant in time 2.34

Equations 2.30 to 2.34, with the addition of lonkowskils
hypothesis (see Section 4), may be used to obtain the solution
for I. Once y is known, the perturbation velocity may be
evaluated usain Eq. 2.30. Then the pressure may be evaluated
using Bernoulli's theorem

!1+ ifi, 4p .+ * 2.35
Ot 2 p p
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SECTION 3

INTEGRAL FORMULATION

The integral equation used in this work is a particular
case of that introduced by Morino (Refs. 21-23) for the general
case of potential compressible flows for bodies having arbitrary
shapes and motions. For the sake of completeness and clarity the
derivation of such an equation is briefly outlined here for the
specific case of interest, incompressible potential flow around a
helicopter rotor having arbitrary shape and motion. The integral
equation is based on the classical Green's function method. This
requires the use of Green's formula and Green's theorem which are
presented first.

3.1 Green's Formula fo Lanlace's Equation

Consider two arbitrary functions f and g and note that

div(f gradg) = gradfSradg + f V2g 3.1
and

div(g gradf) - gradg'gradf + g Vaf 3.2
or div(f gradg - g gradf) = f V2g - g V'f 3.3

Also, according to Gauss theorem, for any arbitrary vector a

fff div i dV i. do 3.4

where o surrounds V' and S is the inward directed normal.
Combining Eqs. 3.3 and 3.4 yields

-fffv (f V28 -g V2f)dV = c(f gradg - g gradf)ii do

(f LS -g E) do 3.5
an On

Next, assume that both f and g satisfy the Laplace equation.
that is

V f VS 0 (in V). 3.6
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Then Equation 3.5 yields

f !-g -) do - 0 3.7

Ja al an

which is the desired Green's formula for the Laplace equation.

Next choose the function g to be the simplest function
which satisfies the Laplace equation with the condition

g = 0 at infinity 3.8

If g is a function of the distance r from a specified point P..
then the most general function that satisfies the Laplace
equation is

g - A/r + B 3.9

where

r =Ii' - P.! 3.10

Using Equation 3.8 yields B = 0. Note that & - A/r represents the
velocity potential of a source. It is convenient to choose A
such that g represents a unit source, that is, a source with flux
equal to one. The flux through a spherical surface of radius R
is given by

qo r d9o do- a 4nR =1 3.11
#,alrR R=

which implies A -1/4n and

1
f=-- 3.124 wr

Combining Eq. 3.7 and 3.8 yields the desired Green formula

for the Laplace equation

L[f :- - - (-)I dS = 0 3.13

fe n47r an 47ir

Note that P. must be outside the volume V, otherwise Equation 3.6
is not satisfied at P0.
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3.2. Gren& Iesaecs A IgcoUressible Potential Aerodyuais

In order to obtain Green's theorem for incompressible
aerodynamics. let the function f in Eq. 3.13 be the velocity
potential . Bence the volume V must exclude the volume Vof
the rotor blades as well as a thin layer.1 Vw , which includes the
wake surface a. (because the equation Vt-O is not valid in Vb
and on 0.). In addition, the volume.V must exclude a small
volume around P* because the equation V g - 0 is not valid at P,.
Finally, the volume V must be bound. Deuce let the surface a be
the boundary of the volume V. This surface is the sum of three
surfaces: the surface obw (which surrounds the rotor blade
volume, Vb. and the wake volume, Vw: note that the inward normal
for a is outward to *bw)' the surface a. (which is a spherical
surface of radius a and center P*) and the surface a. (which is a
spherical surface of radius R and center p.).

Then Eq. 3.13. for f -e. reduces to

! (I.) - L:L) I do 3.14
w+ae+a,, an 4x n 4crr

Note that, as the radius g of a, goes to zero,

# 21(:L) - (a 2() do
an 4r an8u 4ur

-lim[?If*~ 0 a o ~f*~a

3.15

whereas, as the radius R of a. goes to infinity

l" [ (i-) - 5p() do
# " an 4nr ran 4xr

I im + (.Y) RI 0 3.16

under the condition

lim f 0 3.17
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Iin m± -0 3.18
an

(It is verified a posteriori (Eqs. 3.35-3.36) that these
conditions are satisfied.]

Therefore, as a tends to zero and R tends to infinity, Eq.

3.14 becomes

.. - q -L(L1  do 3.19
an4:: 'an 47i:

It may be worth noting that if the point P. is inside a
then there is no need for the surface cn. In this case. Eq. 3.14
yields simply

o (L) -do 3.20
ab n 4::: an a

Equations 3.19 and 3.20 may be combined by writing

Rof. C-f :) L f(-)]I do 3.21
an 4wrr an 4:::

whets

E- E(PO) - 1 (P. outside ob)

M 0 (Po inside a) 3.22

Next let aw become infinitesimally close to the surface of

the wake. Note that in this process, the closed surface, a w ,

the wake is replaced by the two sides of an open surface o,. Let

be the normal on the side 1 of ow . In the limit one obtains

#31 o 4mld 3.23

(since (see Eq. 2.20) A41) - Avn - 0] whereas
an a
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arn r

Therefore, in the limit, Eq. 3.21 reduces to

4nE.Cf.-- do , AY -(;) do 3.25an r nrf n

where ab is the (closed) surface of the rotor blade and o is the
(open) surface of the wake of the rotor blade. Furthermore (see
Eq. 2.14). Aj.= (p - 'fa, whereas S is the normal on the side 1 of
the wake. Note that A9 on a is evaluated from Eq. 2.34. Note
also that the vortex-layer wake of the rotor is represented as a
doublet layer. The proof of the equivalence of doublet layers
and vortex layers is given, for instance, in Reference 57.

3.4. Intearal Equation

Equation 3.25 may be used to obtain the value off at any
point in the field if the value of t and 8(f/an on the surface
of the rotor and the value of Alf on its wake are known. Note
that a /an is known from the boundary condition on the rotor. Eq.
2.33, whereas Af may be calculated from the boundary condition
on the surface of the wake, Eq. 2.34.

Hence, in order to be able to use Eq. 3.25 one must have an
equation to evaluatef on the surface: such an equation is
obtained by noting that if P. approaches a point on the surface
of the rotor, then the value of #f. approaches the value of tf on
the surface of the rotor. In order to perform this limit, it is
convenient to interpret the doublet integral in terms of solid
angles. Note that (see Figure 3.1)

f do - - u- d

f an41rr 4nJJq n; 7z

1 f rdo
q cos a

4 i f'a , dO 3.26

In particular, for a closed surface andS= 1. Eq. 3.26 becomes

3-5
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Figure 3.1. Geometry for Definition of Solid Angles
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o 4 d D no 3.27

Note that. as is wall known

, 1 for P. inside ob 3.28

= 0 for P* outside ab

Comparing Equation 3.22 and 3.28 yields

E* 1 - 00/4n (Pe inside and outside ob ) 3.29

Using Equations 3.29. Equation 3.25 may be rewritten as

4xwf. - ~~()do
ob an r

+(d +'&T ('r do 3.30

#b -- an r ffoff T

The advantage of Equation 3.30 over Equation 3.25 is that
each term is continuous (as P, crosses ob) and therefore is valid
in particular even if P, is on eb .

Having established this, one can now to back to Equation
3.25 with E0 given by Equation 3.29 which is valid also for Ps on
ab  (and coincides with Equation 3.22 if P* is not on eb). In
particular if P0 is a regular point of ob (i.e.. a point where ob
has a unique tangent plane ) then 11, - 2n and E0 - 1/2. Equation
3.22 may thus be generalized as

Es - I - 20/2n - 1 P0 outside °b
- 1/2 P, on ob (regular point)
M 0 P0 inside ob 3.31

In any event, for P0 on ab , Equation 3.25 (with E* given by
Equation 3.29. or Equation 31 if Ps is a regular point of ab)
is an integral equation relating the unknown values of the
velocity potential on the surface of the rotor, to the values of
aq/bn (prescribed by the boundary condition on the surface of the
blade) and the values of the potential discontinuity on the wake
(known from the preceding time history).

The time evolution described by Equation 3.25 and its
interpretation in physical terms is presented in Section 4 along
with a discussion of the trailing edge condition.
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LA Conditions Al Infliit

Is this subsection Equations 3.17 and 3.18 are verified.
Not* as r goes to Infinity. Equation 3.43 yields

16an 4sr am 4wr

V I""" 2Y d, 'sf ' daI 3.32
4xbk w an 4r Cbw

Sine* the fluz through %,w Is equal to zero, i.e.,

da 0d . 3.33

(this condition must be satisfied by U and is obtained by

using g - I in Equation 3.7), whereas 8

ii!.a ~ da finite, 3.34

Equation 3.31 implies

and I (r-2) at 3.35

-f 0(r) at *3.36
an
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SECTION 4

WAKE GENERATION

In this section the issue of the wake generation is
analyzed. First the analytical results of Section 3 are
interpreted from a physical point of view. Next Joukowski
hypothesis (of smooth flow at the trailing edge) is introduced
and then the wake generation and the trailing edge condition are
discussed.

We believe in particular that the issue of the trailing
edge condition (i.e., lutta condition, Joukowski hypothesis) is
not well understood and quite confusing in the existing
literature (and it may be a source of error in the numerical
formulation). Whereas this issue is discussed in greater details
in Reference 55, the major conclusions reached there are
summarized here in the hope of shedding some light on this aspect
of the foundations of potential flows.

4.J Sudden aru

In order to discuss the problem of wake generation it is
convenient to consider the problem of a rotor subject to sudden
start, that is the case of a rotor which for t < 0 is at rest
and is surrounded by a fluid which is also at rest. At time 0+

the rotor is subject to a motion (which for simplicity we will
assume to be of rigid-body type) with finite velocity.

Since for time t < 0 the fluid was at rest, the wake has
not yet had time to form. Therefore Ap - 0 everywhere in the
field and the solution to the problem at time 0+ is obtained by
solving Equation 3.25 with A( - 0, that is

4E. b )]n d 4.1

with E* - I - Q0/4 (E,- 1/2 on regular points of Ob' see
Eq. 3.31). This corresponds to the solution of Laplace equation
without wake contribution and, as well known (for instance from
conformal mapping solution in two dimensional flows), this yields
a separation point which is different from the trailing edge and
hence infinite velocity at the trailing edge. In turn this
indicates the presence of a vortex at the trailing which is
manifested by the fact that

Ahite = 0 4.2
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[This can be seen from the fact that according to Stokes theorem

Alte= .i-di - 4.3

where C is a contour around the trailing edge whereas rFis the
intensity of the vortex at the trailing edge.]

4.2 Uniaueness of Solution: Kutta Condition

Perhaps less well known is the fact that the solution for
the problem is unique (the proof of uniqueness is given for
instance in Batchelor, Ref.57). More precisely it may be shown
that if the solution to exterior Neumann problem for Laplace
equation is single-valued then it is also unique. Mlulti-valued

solutions cannot occur in simply connected regions. This is in
sharp conflict with the classical two dimensional results in
which an arbitrary vortex can be added inside an airfoil to

obtain smooth flow at the trailing edge. The mathematical reason
for the difference is that the flow region around an airfoil is

doubly connected, whereas that around a rotor (as well as most
three dimensional shapes of aerodynamic interest) is simply

connected. from a physical point of view we can say that it is
possible to add a vortex of arbitrary intensity inside an airfoil

(or inside a doughnut-shaped object, which also yields a doubly
connected flow-region): then, adding a suitable single-valued
solution one obtains a nontrivial solution to the homogeneous
Neumann exterior problem for Laplace equation. This solution can
always be added to the solution of the airfoil problem, which is
therefore nonunique. (From a mathematical point of view it may be

noted that the field caused by the vortex is multivalued and the
proof of uniqueness fails for multivalued potential functions).

In the case of a rotor it is possible to add a vortex inside

the rotor-surface: however it is not possible to have a contour
which is 'interlocked' with the vortex without penetrating the

rotor surface (this is true, by definition, for any simply
connected region). The potential flow is then single-valued and
is impossible to generate a nontrivial solution. The solution to
the rotor problem is thus unique.

In order to clarify the issue of the trailing edge

conditions we will call KutLa condition as that trailing edge
condition which is used to eliminate the Issue of a nonunique
solution. This condition is required for two-dimensional flows,
but not in three-dimensional flows (unless the region is multiply
connected) in which the wake is responsible for the elimination
of singularities at the trailing edge. From a mathematical point

of view the ,utta condition requires that the vorticity
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distribution over the airfoil does not go to infinity at the
trailing edge. This is different from the condition that
discrete vortices cannot remain at the trailing edge: such a
condition is a consequence of Youkowski hypothesis discussed in
Section 4.3.

You~fkowski Khmotheis

The assumption introduced here is that the physical behavior
of the fluid is such that the 'flow is smooth at the trailing

edge.' Such an assumption is connected with the works of

Youkowski (Ref. 59) and tutta (Ref. 60). In order to avoid

confusion with the Kutta condition discussed in Section 4.2, we

will refer to the above assumption as Youkowski hypothesis (for a
historical account on the works of Kutta and Youkowski see Refs.
57 and 61).

In particular we assume that if concentrated vortices form at
the trailing edge (this may happen because of a sudden start, as

discussed in Section 4.1, as well as any other time-discontinuity
in the velocity distribution on the surface of the rotor), then
these vortices are immediately shed. At any other time there are
no concentrated vortices at the trailing edge: the implication of
this assumption is that the value of A is continuous at the
trailing edge, i.e., if Pw is a point on the wake and Pte is a
point on the trailing edge,

is A(p) Ate 4.4

PwePte

where Aq te is the difference of the values of the potential as

the points on upper and lower two sides of the rotor blade

approach a point of the trailing edge.

1A4 Trailing 4 low

In order to appreciate the Joukowski hypothesis as it relates

to the issue of uniqueness of the solution, let us examine in
detail the flow at the trailing edge. In particular we want to

examine the limiting case of the wake boundary condition. Eq.

2.16. as a wake point approaches the trailing edge. This
analysis is an extension to unsteady flows of the work by M!angler

and Smith, Ref. 62. but the interpretation of the results is

quite different from theirs. Let FT be a unit vector tangent to
the trailing edge and lbe a unit vector in the plane of the

wake and normal to *v(see Figure 4.1). Let v. and vbe the

components of ;w in direction It and j,

4-3L .:., ., .. .. ... .". . . ..., ...... " ,. .--. -
--.t _ .-= ..L ..,: ... . .
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-W -w ( + ;2) V a + 4.5

The sense of i is arbitrary, but the sense of is away from
the rotor, so t~at

v- > 04.6

Also let 61C and 6)I be the components of

A '- ;X- 6 + 3 4.7

With these definitions, Eq. 2.26 may be written as

Ac + v%6 + v.61 - 0 4.8

It may be worth noting that Eq. 4.6 is the limiting case of
Eq. 2.26 which may be integrated to yield Eq. 2.29. which
describes the fact that AqP is convected by the flow. Therefore
we believe that Eq. 4.6 is not an additional condition to be
imposed but is a relationship that is satisfied since the
solution satisfies Eq. 2.29. However such a relationship has
interesting properties that help clarify the issue of Joukowski
hypothesis.

The case of interest here is that of s rotor with a finite
trailing-edge angle. Considering Figure 4.2, there are five
cases of interest here. In the first two cases (a and b) the
velocity is infinite at the trailing edge: according to Joukowski
hypothesis, a concentrated vortex, located at the trailing edge.
is immediately shed. Therefore this case occurs only at a
discrete number of times and thus the other three cases are the
only ones which need further discussion. Consider first the case
(c): the velocity on both sides of the rotor must have zero
components at the trailing edge (in a frame of reference having
the velocity of the trailing edge point 0) along the normal to
tho rotor, because of the body boundary conditions, Eq. 2.5 (this
is obtained automatically with the integral representation given
by Eq. 2.25) and must also have zero components (in that same
frame of reference) in direction normal to the wake (which is a
generalized streak surface). If two components are equal to zero
then the whole vector of the cross-flow velocity (velocity of the
flow yield in the plane of the figure. i.e.. normal to the
trailing edge) is equal to zero. Rence

V. 0 4.9

whereas v),> 0. Note that according to Eq. 4.4,
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v z + vV,) - vs > 0 4.10

whereas

6a - - V3., -va V 0 4.11

Therefore case (a) can occur if and only if

4,f+ vlaT > 0 4.12

Similarly, case (d) implies vo > 0, va - 0. and hence

v  1 vIt ) 0

6V  VI.) 0 4.13

and therefore such case is possible if and only if

A&4+ v'r& ( 0 4.14

Finally consider case (e): in this case v, and va are both
zero. Hence both V and 6, are equal to zero and Eq. 4.6 reduces
to

&4 + v6C a 0 4.15

The flow moves parallel to the trailing edge, and the vorticity
is perpendicular to the trailing edge. (Note that for two-
dimensional flows -v, 6- 0 which implies A4- 0: hence for
two-dimensional flows, case (e) occurs if and only if A4. 0
(e.g.. steady state). Case (a) occurs if A+) 0 and case (d)
occurs if At< 0.]

4. Thscal InU3lSa1123

Let us go back to the case of impulsive start. A vortex is
generated at the trailing edge and immediately shed. Then the
wake is continuously shed from the trailing edge and convected
with velocity 7w - (7 + is)/2. The wake is typically tangent to
one of the two sides of the rotor. This causes a cross-flow
stagnation point (high pressure) on one side and a low pressure
point on the other side.

It may be worth emphasizing that in deriving the above
formulation we have used only the principles of conservation of
Mass and momentum, plus the assumptions of inviscid,
incompressible and initially irrotational flows and the Toukowshi
hypothesis. The correct 'amount and distribution' of vorticit7
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(as doublet layers) is predicted by these basic assumptions. it
may bos said as the viscosity goes to zero the solution to the
Navier Stokes equations is that of Euler equation with the
addition of Joukowski hypothesis. (As mentioned above, !Kutta
condition of finite vorticity distribution at the trailing edge
in needed to insure the uniqueness of the solution only for twor-
dimensional flows: the nonniqueness arises only for multiply-
connected regions, as the one of a two-dimensional airfoil.)
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SECTION 5

COMPUTATIONAL ALGORITHMI

The computational algorithm used to obtain an approximate
solution of Eq. 3.25 is presented in this section. The surfaces
of the rotor and of its wake are divided into small surface
elements. a.. The potential and the normalwash are assumed to be
constant wth each element. This yields a set of equations
relating the values of the potential I. at the centroids of the
elements, a., to the values of the normilwash at the centroids of
the elementi, a'j and to the values of AorP at the centroids of the
wake elements, co' . The wake geometry is evaluated step-by-stepn
as follows: the velocity of the fluid at the corners of each
element is evaluated and from this the location of the element at
the new time step is obtained.

5.1. Theoretical Algorithm

The results of the preceding sections may be summarized as
follows: assume that at time t = t. the wake geometry and the
potential-discontinuity distributions are known, then the value
of the potential is obtained by solving Eq. 3.25

-(-)] do
Es. # 41tr - a n 4ir

ab

-ff Ac-(--) d 5.1
OF an 47ir

with

5.2
an

and E, given by Eq. 3.29. Once q'. is known, Eq. 5.1 may be used
to calculate the veloci,.j at any point in the fields as V, =
grad. ,f (where grads indicates differentiation with respect to

PO). Noting that

grad*(-) 5.3
r r

where
f P- P 5.4
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one obtains

- - a d

b

+ do 5.5

This equation may also be used to calculate the velocity of the
points of the wake if the contribution of the wake integral in an
infinitesimal neighborhood of the wake point is excluded from the
calculation (such a contribution is responsible for the velocity
discontinuity across the wake and its exclusion automatically
yields the semi-sum between the two values on the two sides of
the wakes).

Once the velocity ;w (of a wake point Pw) is evaluated, the
new position of the wake-point P. may be evaluated as

Pw(t,+ dt) = Pw(ts) + ;iw(Pwt*) dt 5.6

Note that a new infinitesimal strip of wake surface has been
added (between the trailing edge and the locus of the points
which were on the trailing edge at time te). Note also that,
according to Eq. 2 .3 4, Atf(Pw) does not change in time (i.e., AS
is 'convected' with the wake point Pw) and therefore AY does not
require any additional calculation.

Now the wake geometry and the potential discontinuity are
known at time t, + dt and the process may be repeated.

, Space and Time Discretization: First Time ...

For the sake of clarity, consider first the case of
impulsive start, i.e., assume that for t ( 0 the rotor was at
rest in a fluid also at rest. Hence at time t - 0 there is no
wake surface (the potential is continuous throughout the fluid
region). Equation 5.1 (without wake integral) may be discretized
by dividing the surface of the rotor into Nb surface panels cj
and assuming that 4 and c are constant within each panel.

Nb

2E(P*,O) T(P,.O) n Bj(P,,0) +j
n-1

Nb

+ E Cj(P..O) Tj 5.7
n-l
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where and fj are the values of 4 and on the j-th panel at
time t -0, whereas

Bj(Pe.t) - da

j
C (P.0t) *ffr L( dt 5.8

By imposing the condition that Eq. 5.7 be satisfied at the
centroids Pk of the elements ak; one obtains (note that according
to Eq. 2.29 U(Pk) - 1/2, since k is a regular point of ab)

Nb Nb

fk "Z Bkj(O) +j + Z Ckj(O) ?j (k - l.....Nb) 5.9
jal j-l

where

Bkjlt) a Bj(Pk, t)

Ckj(t) W CJ (Pk.t) 5.10

It should be emphasized that if the rotor moves with rigid
body motion, the coefficients Bkj and Ck4 are time independent!
!quation 5.9 is a system of ,b algebr- ic equations with !yb
unk-nowns Ifj (the values of +j are known from the boundary
conditions).

L hkaq Generation Dun Firs Mini&u

As mentioned above, the frame of reference is assumed to be
connected with the air. This is particularly convenient to
discuss the wake generation. (The actual formulation used in the
computer program is for a frame of reference connected with the
blade: the two are related through a rigid body rotation. This
point is discussed later in this section where it is indicated
that unstable results may be obtained if this issue is not
handled carefully.)

Between time t - 0 and time t -At. the fluid points which
were at the trailing edge at time t = 0 move into a new position.
which (in our frame of reference, i.e., a frame of reference
connected with the undisturbed air) is given by (see Eq. 5.6)

1At
Pw(At) - Pte(O) + 0 V(Pw(t).t) dt 5.11

IAn annlytic e-pression for the coefficients is Piven in "ef. 25.
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From a discrete (i.e., finite element) point of view, the new
geometry is defined by the location of the wake point emanating

from the trailing edge nodes as shown in Figure 5.1. The

location of these points may be is obtained by approximating the
above equation as

Pw(At) a Pte(0) + i(Pw(O).0) At 5.12

However, the calculation of i(Pw(0).0) cannot be based on the use
of Eq. 5.5. The reason being that because of the time
discretization, the motion history is actually replaced by a
sequence of sudden starts (see Section 4.1). This implies that

in the time-discretized formulation a discrete vortex is formed
at each time step and therefore the velocity as given by Eq. 5.5
goes to infinity at the trailing edge. In order to circumvent
this problem, we made use of the results of Section 4.4 and

impose that the relative velocity is tangent either to the upper
or the lower side of the rotor blade depending upon the sign of
the expression in Eqs. 4.12 and 4.14. Then we used standard

finite-difference expressions to determine the components of the
perturbation velocity along the trailing edge (central-
difference) and over the appropriate side of the blade (e.g., the

two-point backward difference approximation of afu/ax if the wake
is tangent to the upper side of the blade).

It should be noted that as mentioned above, the new
locations of the wake points are within a frame of reference
connected with the undisturbed air. Therefore while the wake
points move, the blade also moves into its new position. Hence a

row of wake elements, an# has been generated (see Figure 5.1):
these elements have two corners on the trailing-edge points A and

B whereas the other two corners coincide with the location at
time t = At of the fluid points that coincided with the blade
points A and B at time t = 0. Hence, at time t = At, we have a

row of wake elements: the value of AY, assigned to the elements
a is the difference of the values (evaluated at time t = 0) of

t~e potential q at the centers of the upper and lower blade

elements that are in contact with on -

5.. Generic Time S

Now, at time t - At. the wake geometry and the values of Ao
on the wake are known. The values of +j are also known. Hence,
Eq. 5.1, discretized as (see Eq. 5.7)

Nb Nb Nw

E (kj - Ckj) (fj = ' Bkj j + E FknAfn 5.13
j=1 j= n=l

may be used to evaluate Tj at time At. In Eq. 5.13, Dkj and Ckj
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two

Figure S.1. Wake Generation Between Timos to 0 and t, At



are given by Eq. 5.10 whereas

Fbn( t)= f 8 1 5)
Fkn

'n (0n- dalp.p 5.14

is a constant-doublet integral over the wake element an"

Once the values of SO are known, the same procedure
described in Section 5.3 lay be repeated to calculate the
geometry of new wake elements (and corresponding values for Af )
generated between At and 2At. In addition, the new location of
the old row of elements (those generated between 0 and At) is
obtained as follows: evaluate the velocity at the wake points
which are not on the trailing edge using Eq. 5.5 which is
discretized as

Nb Nw

-C E iqj +j cqfi +A 51

where q spans over all the nodes of the wake surface which are
not on the trailing edge* whereas

b q j S P 0 i t d p q

rr
qj- .-J- (-,) d o.l
qj an -

r P. uPq

fq J L() dl 5.16

Then c l ulate the new locations as

Pq(t + it) - Pq(t) + ;q t)At 5.17

Now all the nodes of the wake surface are known. Note that if
the node numbering of the wake elements is not changed from time
At to time 2At then, according to Eq. 2.34

A -n - constant in time 5.18

Bence, the new wake geometry and the corresponding values
for Af.| are known at time 2At (as mentioned above, the geometry
and the values for A for the row of elements generated between
At and 2At is determined using the procedure presented in Section

5-6
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Figure 5.2. Wake Generation Between Tines t 1  At and ta - Ut
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5.3) and the process may be repeated: the same procedure used in

the time step between At and 2At may be used for the time step
between t n = nAt and tn 1 =tn+At*

5.5. Numerical Stability

Issues related to numerical instability are discussed in
this section. A large portion of this research effort was
completely devoted to this issue: after the formulation had been

completed and incorporated into a computer program, the results
consistently indicated the presence of numerical instability. It
was not clear at that time whether the instability correctly

represented a physical instability (experimental results indicate
that the wake of a helicopter rotor in hover oscillates and

eventually the tip vortex breaks down), or was caused by the

numerical algorithm (or even more trivial, a bug in the program).

In order to examine the possibility of a bug in the program, a
second code was written using a different frame of reference,

i.e., a frame of reference connected with the undisturbed air (in
the first code the frame of reference is connected with the

rotor). In spite of the equivalence of the two formulations, the

two codes gave different results. The source for the difference
was traced to the fact that in the first code the new location of
the wake point was evaluated as

Pw(t + At) Pw( t)+ (VO + lw)At 5.19

where ;w is the perturbation velocity whereas VO is the velocity

of the undisturbed fluid

Unfortunately,

AP, = x At 5.20

does not correspond to the correct rigid-body displacement (see
Figure 5.3). This error (which goes to zero as At goes to zero)
seems to have been the origin of the instability: the results
obtained with the second code have been consistently stable. For
the hover case, it is actually convenient to use a frame of
reference connected with the blade. The original code was

therefore modified as follows: the displacement caused by the
perturbation velocity is calculated then the whole wake geometry
is rigidly rotated (around a vertical axis. i.e., DI k) as

z = Zo cos AO - yo sin Ae

y - ze sin AO + yo cos Ae

z = z, 5.21
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Figure 5.3. Analysis of Rigid-Body Motion



where AO = 1At whereas, Xo. ye, zo are the coordinates before
rotation.

5.6. Finite-Core Vortex

Before the cause of the instability had been traced to the

issue discussed in Section 5.5, the concept of finite-core vortex
was introduced in an attempt to eliminate the instability. (This
concept is often referred to as artificial viscosity: we believe

that this name is misleading and prefer the name finite-core

vortex.)

The essence of the idea is that concentrated vortices are
introduced in the process of spatial discretization of the
formulation. The integral formulation describes the wake as a
doublet layer which is fully equivalent to a vortex layer. When
the wake integral is divided into quadrilateral panels and 4  is
assumed to be constant within the element, we are in effect
replacing a continuous distribution of vorticity with
concentrated vortices located at the edges of the panels. Such
an approximation therefore introduces infinite induced velocities
in the vicinity of the panels edges. If the wake spirals come
too close to each other, this may be a cause for instability.

In order to avoid this problem, the velocity distribution
induced by constant-doublet panels (i.e., concentrated vortices)

is replaced with those induced by a finite-core vortex. Note
that we considered this only as a convenient expedient to
eliminate instabilities, not an effort to improve the model by
making it closer to physical reality (in order to get closer to
physical reality we would rather introduce a higher-order finite-
element representation for the distribution of the potential
discontinuity in place of the constant-doublet approximation).

In order to accomplish that, the following scheme was used
in our computer code. The velocity induced by the edge PIP 2 of a
constant doublet panel is

1 xqiaq-q"qa - q~' qs-qx"q2

( - ,) 5.22

where qi Pi - Pe (see Figure 5.4).
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This is exactly equal to the expression obtained from the Biot
and Savart law for the velocity 'induced' by a vortex line.
Introducing a frame of reference such that the vortex-line
coincides with the z-axis and that the i-axis goes through P*,
Eq. 3.22 yields (soe Figure 5.2)

_ I t I a a/ J'x z - + ax + z &--1/3' -

2xx tm 2 -- 
5.23

As P. approaches the vortex line (i.e., as x tends to zero), this
expression yields

- 1
v "- 5.24

21tz

(which is the velocity induced by an infinite vortex) if Pe
approaches a point between P1 and Ps (i.e., zL ( 0 and z2 > 0)

and

-0 5.25

if Pe approaches a point of the line PiPs outside the segment
PaPs (i.e., if z1 < zs < 0 or za > z1 > 0). An infinite vortex
with a finite core of radius a yields a velocity

1

vv a~ 5 .26

.where
a x> s

S/, x a< 5.27

Hence going back to vector notations, Equation 5.26 may be
rewritten as

1 xxqa 4S "qx-iL "qs 4s "qs-qx "q

vv a - ) 5.28

if x > a and

v'v ~~" 
1s I , 5.29

if z < a, where

3.30
iL- is51
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L3mentg YAM Truncation

For the sake of clarity, the formulation has been presented
for the case of start from rest, that is, for time t < 0, the

rotor has been assumed to be at rest and surrounded by fluid also

at rest.

It should be apparent at this point that such an assumption
is not essential to the formulation. The method of solution
requires only that the geometry wake surface and the potential-
discontinuity distribution over the surface of the wake to be

known at time t . Then, the potential distribution may be
evaluated using q. 5.13. Once the potential distribution is

known, Eq. 5.15 may be used to calculate the velocity of the
nodes of the wake and hence their new location (the row of the

new wake elements generated between tn and tn + At is obtained
with the procedure given in Section 5.3).

As mentioned above, the frame of reference connected with
the undisturbed air is more convenient from a conceptual point of
view even though the calculations are more conveniently presented

in a frame of reference connected with the rotor. Also, the
issue of artificial viscosity discussed in Section 5.6 does not

appear to be essential to the formulation: small values of e give
the same results as s0.

The last major issue to be discussed is that of the wake
truncation: as the number of time steps grows, the length of the

wake also grows. This implies that the computer time per time
step also grows. In order to keep computer time within

reasonable bounds, it is necessary to obtain a simplified model
for the remote element of the wake. Vhile sophisticated

intermediate-and far-wake models have been introduced for the
hover case (Refs. 40 and 41), these models require ad-hoc

assumptions based on empirical data. Since the objective of the
present work is to develop a method which may be used to study
problems for which such data does not exist (such as
maneuvering), it would have been inappropriate to introduce any

of the above far-wake models or, for that matter, any model based
on experimental data. For this reason in the results presented
here, the wake is simply truncated after a certain number of
spirals. The implication of this procedure is that the last
few spirals are to be considered as modelling of the far wake

effects. As indicated by the results presented in Section 6, this
is an expensive approach to the problem (the case presented in
Section 6 requires approximately eight hours of CPU time on an
IBM 370/168). There is need to develop a less expensive approach
to the far wake modelling. However, such a model should be based

on first principle rather than empirical data, if the methodology
proposed here is to be used independently of the experimental

analysis.

5-13
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SECTION 6

NUMERICAL RESULTS

In order to validate the theory presented above, the

numerical algorithm was implemented in a computer program. The
results obtained with this program and the comparison with

existing data are presented in this section.

6.1. Choice of the Test Case

It is a generally accepted opinion in helicopter-rotor
aerodynamics that the wake roll-up problem is harder to solve for

hover than for forward flight: this is because the wake spirals
are closer to each other in the hover case. Also the hover case

seems to be the only one for which satisfactory results exist.
Therefore, in order to test our formulation we have started by
studying a hover case. In order to validate the time-domain
algorithm the hover case was studied throngh a time-accurate
transient response analysis. These steady state results are the
only ones presented here. We believe that the validation of the
formulation will be satisfactory only if more extensive results,
(including forward flight results now under consideration) will
confirm the results presented here.

In particular, we chose the case studied by Rao and Schatzle
(Ref. 7) for several reasons, the most important of which is that

their formulation (lifting surface with prescribed wake) is based
on first principles (no ad-hoc assumption is used except for the

wake geometry and zero-thickness blade) and yields results which
are in excellent agreement with the experimental ones of Bartsch
(Ref. 37). Also important in Ref.7 is the comparison between
classical- and Landgrebe-wake analysis: the latter shows a

marked spike near the tip in the section lift distribution, in
full agreement with experimental results (the spike is absent in
the classical wake results). These results not only demonstrate
the importance of the wake geometry for the prediction of the
section lift distribution, but also are important in the
interpretation of our convergence scheme.

6 Description oL Test Case

As mentioned above, all the results presented in this
report for a case considered by Rao and Schatzle: an isolated

rotor, with tip radius RT = 17.5', cut-out radius co = 2.33',
chord c = 1.083', collective pitch angle 9 = 10.61 and twist
angle 9, = -50. The a- ular speed is 2. = 351r.p.m.

For all the results, the initial wake geometry is a

classical wake

6-1
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x =Xe o Se - Yo sine

Y = Yo sin 0 + Xo sin 0

z = Z0 + kRO

where k = CT/2 and Cr = 0.00186 (this is the value obtained by
Rao and Schatzle).

All the results were obtained using three elements in the
chord directions and seven in the span directions for a total of
twenty-one elements on each side of the blade. A convergence
analysis presented in Ref. 32 indicates that this is sufficient
to obtain relatively converged results. For the classical wake
analysis the time step is At = T/12 where T is the period: this
yields twelve elements in the 'circumferential' direction per
each wake spiral (there are seven elements in the radial
directions because that is the number of elements on the blade in
the spanwise direction).

These data are summarized in Table A.

6.3 Numerical Results

In order to illustrate the type of problems encountered in
the effort presented here, consider Figures 6.1.a to 6.1.p which
depicts the vertical displacement, z, as a function of the
azimuth angle 0x (for different time steps, more precisely for
tn/At - 15 and 21 through 35) for the last vortex line, i.e., the
vortex-line emanating from the tip point of the trailing edge (as

clarified later it would be misleading to refer to this vortex as
the tip vortex).

It may be noted that at time-step 15 the vortex line appears
to have the expected behavior. However at time step 20, the
vortex line shows a hump which becomes more marked as in the
following time steps but it seems to be pushed downward in time.
The phenomenon is more clearly illustrated in Figure 6.2.a to
6.2.d which depicts the vertical displacement, z, as a function

of the radial position (for different time steps, tn/At = 15, 22,
23, 25) also for the last vortex line. It is apparent that the
last spirals tend to move outward. This is caused by the fact
that the wake is truncated (the 'following' spiral would have a
'restraining' effect on the last spiral: in its absence the last
spiral tends to move outward, this point is clearer after

discussion of Figure 6.3).
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Table A

Single Rotor Blade

Geometry and Flight Conditions of Rotor:

Number of Spirals 5 or 7 as indicated in captions

Number of Elements on Blade (3 x 7)(one side)

Number of Elements per Spiral (12)

R - 17.5 ft. (span)

a M 1.083 ft. (chord)

To 2.33 ft. (root cut-out)

Or 10.61 0(collective pitch angle)

01 - S (twist angle)

-t 0.00186 (thrust coefficient)

0 355 r.p.m.

6-3



4 W

I 6
.n

00

'a

04

6a* M

o 6

-- ,4!'. "
! -

gO

• 
'a 'a

U • "a

SiU

6-0*



I

0...
U
.- 4~

4..

.0~

0 ~-

b.I
o *

- CI-.

a
U

~i
0.

a
4k. .

a

* ~ CI
a"

a

0
hhU4k

I
* 0~
-~ . (4
a. - ~
U'I
a..

ChA

a
4k

* *0
C

0 Ye
-,

U--
a

4.3
4-I h. *~

6-5



4d

40

b'lo

4J4b

6-6-



2~~

~0

U
~I.qI :
0.

-- q.
~ 0

0.4

1 00.0

9 A 6

U
4.- 893

0.
* hg

4.- .~

U
* ~0

093I C -q
U'.

6

~ a'U
- 0

5 0 4.i
o ~
* 0 w~
- ..- "
0.-a~b
a'

- U S.
*0~g

I .~ ~

-

IiI
h

*Sb.tm

* *0

- *0
-I--

4, 1 U
II a a 1- . s-i

gi 0-i
* -i-i

- *U.
- Uh

'4.4 mm *~

6-7



A

"A
.0

a a

II
gQ *

0 41 .0

6-8

U

Sa
U kg

40.0

* IU

"*,0

w O  
* 40

6--



A *

U4.
U

.- I-

No
a

4.

..~

4.

o
-- 4

4.

U ~*' -i
U

aa ace
4g~ ~

'.4
* M

U

* - B

am
*

4. U
U.
B.,.

* IN
o ~ -

a U ~i
- - (*4
0.- ~
a'

.~ 0*
4.4.

- ,4 a
*0*
U U

4. 4.
,.0

U

~4. U
I.

.0*
,.4 I..

*0

- * a

I.

-4

I. -4

* -- 4
* ~ a

-40k
- b. 04.

.1-D

~4.I

6-9



Uj

4'A
'4'
U

~0
a

6~I .0~*

4'

o

I
4'

* 4' .4'

'4' @0I .::
,g~ .4'

a
*

a.,
N 4 ' 0I . -

- a.
. U

eUli

* go3
- - r4

a'
.4'

0*I
.4'

4' S 4'

I ;4'4'a

~ 0

_________________ ~*0~*
S. .4'

- * U1' ti*-4U ~
41 U U.
~d.4 - Uk
- b. 64'

N

6-10



.0@
*I.nF04.1

£ 0 o

o *

m .0

I ~ .0

am

6-1au

U:

usa'U.-.



IO

~00

LAA



Meam
4- o

3 03

a "
a

a I

uI

-""
A. -

6-13

... .. .. ". . . 1, t -
w' --

. . . -L ' _ -. Ne -- 4" M-. .. . . . ., _



NO0
aI

ulb

0

So

/j , -
a 0t

* I.m

',4

Uo,
,.,

mO D .° UI .. . ' r-
,..... a I

,, UI
L' L I ,4-

6-14 •



.4.

U

.~ I..

NO
U

'a
.4-
'a'U

C.Ii~

C

I
~a. ~
U ~

U3
* ~4 -

~ 4...U

*
U

U
-- go

'a U'U
'US..
.me
* *4~g
o -
U -
a

-4

0.- ~
ml

-N..
a S
'a 'a

-4 S..
* §0

.- -g'a o'a

S..
~'aa

S..

* .5
- S

0 #4 U(1T ii '-4-4-4
atm.

.~ Uh
~ U'a

6-15



.A 0

0

"0
a

" II a

Q 1"

• O U

'4',
mf r' -,
*O .5 0

B •'

0 '

• i

q ", ~
- T , --..

,U * CI

*

I 6-16



a aI S Id

44'

NA

6-17



04

a

Iisle
46



A

4 I

Id

~0
Id

04
40

~.00

0010

4'. a 61h 4
6-19



N8 0 "-

0
rp N *

I N

0n.
* Ii

N *q

p0 '

N a v

- em•
* (4

I -C
* N

o..
0,

a

NI

6-2Ci



Otn

40

oj

La040

0

.........
0 e

NN

6a

* 0@

0

OMN

* f4

m~UN

-20i



K
.a 0-

"4
- ~

U 0~~
.
* as.,.

-. 9. a
U3 eel .9.
NOW
U.. *

~" a

0O

S S*he*

.jU
N ~9.@

0,,

* a
0I

4.J

4-4

as
as~~*
*

*~ N
*0~gp
U.
o

.9. 06

"'a
he. 0
S

S ~.0*
* ~,. U

C. *

*1i"w -
.9.

S0 ~wmm a u a
'T~TT a..

-. - U..

m. ~

6-22



A 0-

*, g.

a a i

0 ,g

el- S

a ,

3 -
•

- 0S, *
Sea Q
,. Saj

6-23.

... ..... .. .... . .. .- .. ... .. . ...' '" .. .. .. .. .II i i l I -4 . . ... -



As mentioned in Section 5.8, the reason no far-wake model
was introduced is because such a model does not exist for
arbitrary motion (although the far-wake model introduced in Ref.
40 and 41 for the hover case could have been used here in order
to improve these specific results).

In spite of the fact that the wake geometry does not seem to
have reached convergence, the lift distribution appears to be
converged: no appreciable changes occur between time steps 40
and 50. This is shown in Figures 6.3.a and 6.3.b for the five-
and seven-spiral models respectively: the converged five- and
seven-spiral results are compared in Figure 6.4. We believe that
the explanation for this seemingly inconsistent behavior can be
understood from the results shown in Figure 6.5 which shows the
vertical displacement of the last vortex line as a function of
the azimuth angle at the last time step considered here (that is,

at time step 50): the three lines correspond to the three-,
five-, and seven-spiral models respectively. It may be seen that
the first two spirals are very close for all three cases (whereas
the first three spirals are in good agreement for the five- and
seven-spiral models). Since the first one or two spirals have
the strongest impact on the section lift distribution, it is no

surprise that the five- and seven-spiral models are in good
agreement on the section-lift distribution.

Finally, the results obtained with the seven-spiral wake are

compared against existing data in Figures 6.6, 6.7, and 6.8.
Figure 6.6 shows a cross section of the wake (first two spirals
only) at 900 behind the trailing edge. Also shown in Figure 6.6
are the location of the tip vortex and of the vortex sheet as

predicted by Landgrebe's generalized wake model. Note that
Landgrebe's model comes from the experimental data and therefore
the tip vortex is not necessarily the location of the last

vortex, but rather the 'center of mass' of the rolled-up portion
of the vortex sheet. Taking this into account, we do consider
this comparison to be very satisfactory especially if one
considers the low number of elements used to describe the blade
and its wake: much stronger roll-up is expected if a higher

number of elements is used. (It may be worth noting that
Landgrebe model is only an approximate interpolation of the

experimental data.) Similar good agreements are shown in Figure
6.7 in which the radial location of the last vortex as a function
of the azimuth 0 is compared to the radial location of the tip
vortex in Landgrebes model.

Finally, Figure 6.8 shows a comparison of our results with
those of Rao and Schatzle (Ref. 7). As mentioned in Section 6.1,
their results for a four-bladed rotor are in excellent agreement
with the experimental results of Bartsch (Ref. 37). Again, we

consider that the agreement is satisfactory if one considers the
low number of elements used in the analysis and that Rao and
Schatale results are obtained with a prescribed wake. (It may be
worth noting that our results are in excellent agreement with
their results for classical-wake analysis, see Ref. 32.)
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6.4. Coments: Numerical Stability

From the numerical results presented in this Section one may
conclude that the algorithm is capable of reproducing the correct
trend in wake rollup and pressure distribution. The discrepancy
between our results and the existing ones may be due to either
the physical approximation (i.e., inviscid flow) or numerical
approximation. An analysis of convergence is needed in order to
discriminate between the two. (The irregular behaviour at e -
60 is probably due to the trailing edge condition discussed in
Section 5.3 and deserves further attention).

The main accomplishment however, is that the numerical
results indicate that the algorithm appears to be free of
numerical instabilities, even though no ad-hoc assumption (such
as prescribed radial contraction) has been used.

More precisely we believe that the instability in the last
few spirals on the wake is due to the truncation of the wake and
should not be thought of as a numerical instability in the
classical sense: in such a case the vortex line would depart from
a smooth-behavior spiral with a disturbance that oscillates and
grows in space and time such as that reported by Summa (Ref. 6).
All of our results are very smooth: an illustrative example of
such smooth behavior is presented in Figure 6.9, which shows the
geometry of the vortex-line emanating from the tip point of the
trailing edge for all the spirals (for the five-spiral case) at
time step n - 45.

We believe that this is the first time that such an
accomplishment has been reported.
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SECTION 7

CONCLUDiir nr!,%ns

A general formulation for the aerodynamic analysis of the
unsteady incompressible potential flow around a helicopter rotor
has been presented (the extension to compressible flows is
outlined in Appendix A). New theoretical results incorporated in
the formulation include a thorough discussion of the wake
dynamics (Section 2) and of the wake generation (Section 4), both
examined from very basic principles. In particular the trailing
edge condition is examined in detail. It is shown that rutta
condition (that the vorticity distribution does not go to
infinity at the trailing edge), necessary to insure uniqueness of
the solution for two dimensional flows, is not needed for
three dimensional flows (in simply connected regions). On the
other hand Xoukowski hypothesis (that concentrated vortices, if
formed, are immediately shed off the trailing edge) is used in
the discussion of the wake generation. The numerical algorithm
is also presented: it is shows how the time-discretization of the
problem yields a series of 'sudden starts' with the consequence
that discrete vortices are generated (and shed) at the trailing
edge.

Numerical results are then introduced. The . ain conclusiors
which may be drawn from these results are that

1. the algorithm appears to be numerically stable

2. seven spiral wakes are needed to obtain 'good behavior'
for the first two or three spirals

3. the finite-core assumption (artificial viscosity) does
not seem to affect the results

4. the wake-geometry results are in good agreement with the
empirical analytical model of Landgrebe (Mef. 33)

S. the section lift distribution is in good alreement with
the results of Rao and Schatzle (Ref. 7)

The most important new development is that to our knowledge
this is the first time that results have been obtained without
the need for an empirical input to avoid numerical instability.

Although the validation has been obtained only for a rotor
in hover, the formulation is quite general (the main limitations
being irrotationability and incompressibility) and applicable, in
particular, to a rotor in forward flight.
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Additional work is recommended in the following areas:

1. Cogjgjj analysis: it is expected that a stronger
roll-up would be obtained by using a larger number of
elements in the radial direction (this in turn would
affect the section-lift distribution).

2. .akJ truncation: it is recommended that some
intermediate- and far-wake model be introduced for
the purpose of reducing the number of wake spirals
(and hence the CPU time). However, as mentioned in
Section 5.7, such models should be based on first
principles rather than on empirical data. if the
objective of the methodology is to use it for the
calculation of generalized wakes.

3. Validation: continue the validation of the formulation
by applying it to additional hover cases and then to
forward flight cases (it is hoped that comprehensive
experimental results for forward-flight become
available in the near future).
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APPENDIX A

FORMULATION FOR COMPRESSIBLE FLOWS

The integral formulation of Section 3 is extended here to
the case of compressible flows. The frame of reference is
assumed to have arbitrary motion. The surface is assumed to be
moving with respect to the frame of reference in order to
accommodate structural deformations as well as wake roll-up.
However, for the sake of simplicity, such motion is assumed to be
small. The general case is considered in Refs. 63 and 64. The
formulation is an extension of that introduced in Ref. 65 for
acoustics.

Eauivalogt Problems

The equation for the velocity potential in a frame of
reference connected with the undisturbed air is given by

1 .a A.1

where contains all nonlinear terms. The boundary conditions
represent the zero flow at infinity

T= 0 at , A.2

and the no-flow-through condition on the surface boundary

an =b n on ab A.3

In addition.

Ae - 0 on wake A.4

In order to simplify the derivation if the Green's theorem for a
frame of reference having arbitrary notion, it is convenient to
extend the problem to the whole space by i;troducing the function
=E where, for a surface a surroundin, both body and wake

E - 1 inside a
- 0 outside a A.5

so that

inside a
= 0 outside a A.6
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"Tote that is defined in the whole space and satisfies the
equation

a, arP

-I a ,ar _F a
-(2 -) A.72 2-r Or Or2

ac
,

The presence of the VE and a/ai terms introduce source lay.ers
which act only on the surface a (which is not to be considered as

a boundary of the domain of validity of the equation which is the
infinite space). The only boundary is at infinity where re
specify = 0. By denoting the right hand of Equation A.7 by X,
!7q. A.7 may be rewritten as

V
2

/ X A .

whereas, according to Eq. A.2, the boundary condition at
infinity, is

p= at co A.9

Equation A.' subject to boundary condition A.9 is equivalent to

Equation A.1 to A.4 in the sense that if a function satisfies
Eqs. A.'; and A.9, it also satisfies Eqs. A.1 to A.A. The

solution to Eouations A.8 and A.9 is

(,r,) =ffff d.dr A.10

where -

f' (r,-rt-e)

4( ) A.1

(with p = !Z-i*, and e = p/a, ) is the well known Green's runctior
for the wave operator.

Transformation to the "oving 7rame of .eference

'Tere we introduce a coordinate system (.,t) rovin7 in ri iU-
body motion (e.g., connected to the rotor if the rotor moves
with rigid body motion). 'e make use of a transformation fro-
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the f ixed frame of reference (-4.0 to the moving frame of

reference (1.t)

Vu Vit) A.12

4U.0) -iA.13
Then

+ V(ti) dti A.14

' t A.15

From Equation (6) we have

~ it*) JJJJ 47xpUit0 di dt A.16

where

(Since the velocity V corresponds to rigid body motion. the
transformation is a length preserving and hence the Jacobian is
equal to one.) Pecalling a result from theory of distributions

ff(t) 6 [g(t)] dt - [f/Ig'! t A.13

(where t1 are the roots of g(t) - 0) and integrating with respect
to the time variable, one obtains

whee r?(xti) - p(X~t 1 ) 1g'(tifl, whereas the values of ti are
the solution of0

g(t) - 0 A.20

where

l1e note that the Eq. A.19 is the desired integral representation
for the velocity potential in the frame of reference moving with
the body.
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lute-al .ouation I=r on-Liftiujt %i :,oto

!'otc that if X- 0 (i.e., if the nonlinear terms in the

differential equation for the velocity potential, Eq. A.1, are
negligible) then the right hand side of Eq. A.7. , is equal to
zero except on the surface a (since E is constant both outside

and inside a). fence, if %- 0, the right hand side of Eq. A.19
can be rewritten in the form of the surface integrals.

For the sake of clarity, consider first the case of a non-
lifting rotor in rigid body motion. Let the coordinate system

coincide with the Cartesian coordinates of a Cartesian frame of
reference rigidly connected with the rotor. In this frame of
reference

81
-=0 A.22at

In addition, assume that the rotor speed is always subsonic so

that Eq. A.20 has only one root, t-T.

?ote that, for any function f

fffrfifrV fdo A.23

* and fff ~.f ~.) dVl ff = dV

#F0f dar A.24

Performing the calculations, one obtains (see !Ief. 63 for

details)

-q r1  19'r . I n T  d o

.I - (- Vs]T da

+ -a- E- [ 5] 1.da
a 8 n A.25

In Eq. A.25, I IT indicates evaluation at retarded time t=T (such

that g(t) = t - te + ?t(It) - t(.,ts)I/am W 0). Equation A.25
is the desired integral representation. In the limit, as P

approaches the surface a, one obtains an integral equation for

(see Section 3). The numerical solution of such an equation is
similar to that given in Section 5.
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Rotor/lhtselase CfiguratiionLt

Next consider the case of rotor/fusoelae eoat iguration in
whisk both the rotor and the fuselage move in arbitrary but
rigid-body motioaso Also for simplicity, assume that the wake
remains where it is generated: this is a reasonable assumption
when (in a frame of reference connected with the undisturbed air)
the velocity of the fluid is small compared to that of the rotor
fuselage configuratioas (this assumption is removed in the
analysis of let. 68). Rese the surface a can be broken into
three surfaces: the surface of the rotor, or, the surface of the
fuselage Of, and the surface of the wake, e v . For each of these
surfaces there exists a frame of reference which is rigidly
connected with the surface.

Next consider the volume on the right hand side of Sq. A.18
and consider three 'thin' volumes containing a r. f and aw
respectively (the portion of the integrand containing derivatives
of 2 is equal to zero in the rest of the volume). Next assume
that I in each volume coincides with the frame of reference
connected with the corresponding surface. Following the same
procedure outlined above (but locating ech surface integral
independently), one obtains an expansion similar to Sq. A.25 with
each integral replaced with the sun of three integrals over
fr. of and Ow respectively.

If the notion of the surfaces with respect to 'their frame
of reference' is small, Sq. A.iS is still valid but such notion
'shows up' in the boundary conditions for Sy/On. The case of
completely arbitrary notion is discussed in Ref. 63 (including
nonlinear terms and removing shocks): the derivation of the
equations is very complicated but the final results are slightly
more complex than the ones presented here,
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