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A NEW GENERALIZED CROSS - CORREIATOR

.4fred Hero and Stuart Schuartz

Department of Electrical Engineering and Computer Science
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ABSTRACT

new Generalized Cross-Correlator (GIC1 C) for the passive

time delay estimation problem is presented. The interpreta-

tion of this G,C,CJ is that of estimating the cross-correlation

function by cross-correlating the least mean square esti-

mates of the signal component in each of the observed

waveforms. The implementation is simply a GC with the

weighting filter equal to the magnitude coherency squared.

Numerical evaluation of the performance of this processor

and a robust version indicates that they compare favorably

to some of the well known G C C procedures.
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F
INTRODUCTION

The estimation of propagation delay in a common signal arriving at

two spatially separated sensors is a problem which has received much

attention in the literature. Cross-correlation methods are particularly

popular because of the richness and variety of processors within this

class and the general ease of implementation. Of these, the

Hannan Thompson (H.T.) [1,5], the Ecklrt [1] and the

Hassab-Bucher (H.B.) [2] are examples of "optimum" processors

which maximize some performance criteria. On the other hand, the

SCOT [7] and the simple cross-correlator (CC.) are examples of "Ad Hoc"

or intuitive correlation type processors. In general the optimum proces-

sors are very sensitive to deviations from the assumed signal and noise

characteristics. By way of contrast, the C.C. and SCOT appear to be

more robust to these deviations from the nominal. However, these later

processors can have very poor performance at the nominal point.

In the following development an intuitive approach to the problem

yields another type of (generalized) cross-correlator. This is the

Wiener Processor, or W.P., which has a simple form. Yet preliminary

results indicate it outperforms most of the other above named proces-

sors when compared under various performance criteria for the few

important cases considered in this paper. A "robust" version of the W.P.

also indicates potentially good performance relative to the others under

uncertain spectra.

I
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L PROBLEM STATEMENT AND BACKGROUND

We first consider a system model generating the observations in Fig.

I. We observe Gaussian, ergodic, wide-sense stationary processes z1(t)

and zz(t) over a time interval [O,T] which contain uncorrelated noises

n i 1(t) and i2(t) and signals s(t) and s.(t) respectively. We assume c(t)

is a linear time invariant channel having a transfer function C(w) with

unknown linear phase so that s*(t) is a delayed but possibly distorted

version of s(t). Furthermore, we assume that the noises are uncorre-

lated with the signal and that T is much greater than the correlation time

of x1(t) and : 2 (t). The object is then to estimate the time delay, D. asoci-

ated with the channel.

We define the sample cross-correlation:

,(T) =f -- j)eJd . (1.1)

Here tiz( ) is some unbiased, consistent estimate of the cross-spectrum

Gl*( ). For definiteness we assume that k2(&) is obtained by the

Bartlett Procedure [19] consisting of segment averaging periodogram

type estimates M-X (c)Xat(i) where m is the total number of subdivi-

sions of [O,T] and Xl,(u) and Xat(i) are the Fourier Transforms of z 1(t)

and z2(t) on the k-th segment.

For very large observation time and suitable m, flg(r) gives a good

approximation to the true cross-correlation function which has a global

peak at D. In fact if c(t) Is pure delay and sa(t) is white, the cross-

correlation function is a delta function at the true delay. For finite
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observation time we can decompose A12(T) into the sum of four terms:

= c(1)t..(T)+ c(')*k,,(r) + %n(r + kyn(') (1.2)

where "0" denotes convolution. Here k(r) is an estimate of the signal

autocorrelation function R.(") and k,*(T,). k. 3 (r) and knz.(T) are esti-

mates of the cross-correlation between the signal and noise terms in the

observations. In the limit the sample cross-correlation converges to

c (T) *R. (T) which displays an absolute maximum at D. Thus, it is the last

three terms in Eqn. (1.2) which constitute zero mean disturbances

affecting peak resolution of the first term. This suggests preflitering the

sample cross-correlation with a filter W(c,) to obtain better resolution of

the peak at D, where W(w) has zero phase. This scheme is referred to as

the generalized cross-correlation method or the Generalized Cross-

Correlator (G.C.C.) and is illustrated in Fig. II (The content of the dashed

box is only symbolic for the operation in Eqn (1.1)). We denote the G.C.C.

output waveform R f(-r). Therefore we have:

R 2  -ftr,) W(rj)ei"'dt.i (1.3)

When W(w) is unity the resulting G.C.C. is called the simple cross-

correlator (C.C.). Considering the first term in Eqn. (1.2) as a "signal" in

additive noise, classical optimal Altering theory can be applied to derive

filters W(w) which maximize signal-to-noise ratio.

Lettng the last three terms of Eqn (1.2) be characterized as "noise"

we can define a signal-to-noise ratio as the energy at the output due to
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the global peak of c (') O. (-r) divided by the output power due to the

three noise terms. We will denote this by SNRI . For the specific cross-

spectral estimation procedure outlined above, the noise power has been

derived and is given by:

= kj I ( W c1d ri (1.4)

k is a positive constant inversely proportional to T, the observation time.

G11(w) and G-z(c) are the power spectral densities of the observations

zl(t) and z 2 (t) respectively. 72(w) is the magnitude coherency squared,

where, defining the true cross-spectrum G12 (&j),

IG12(W.) 12
= G 1(2)Gw)i (1.5)

Then from the defining relation:

SNR1 =[I ~ (rl. l0r2

we obtain:

SNR =  G2 (I W(')dc] 2

The maximum is obtained through the Schwarz inequality and yields the

H. 7. processor. The same result is derived in [5] as the result of minim-

izg the local variance of the delay estimate over the entire G.C.C. class,



and in [1] as the result of maximum likelihood estimation. The filter is:

1 7 P.(6) (1.7)

Neglecting the effect of the signal and noise cross terms

c(T)*I., (T) and ftL.(T) in Eqn. (1.2), gives another characterization of

the noise in the cross-correlation domain. With this definition of noise

another signal-to-noise ratio is defined in 18], SNR?, which is shown to be

maximized by the Eckwt processor WV-(c):

SNR2f G2(cj) I W (cj)d j]2
SNR 2a= 2w(1.8)

WK(CJ) c,() (1.9)w~x() : .,(i) G,,(w)

Where Ck,(w) and Cj,( ) are the auto-spectra of the noises nl(t) and

ng(t) respectively. Note in terms of the spectra of the observables zl(t)

and Z2 (t) the filter takes the form

= I G1(w.)j
(G (c) - IJGj2(ci)l)(G ,(c) - IG,(cj)l)

which attests to the complexity of implementing the Eckwrt in general.

Hassab and Boucher [2) take the approach of maximizing a signal-to-

noise ratio, SNR3 defined as the ratio of the expected peak energy at the

true delay to the total statistical variation of the output of the G.C.C,

This, in some mense, lumps the "s gnar', c (r) e (T), variation into the

.... .._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ I



noise terms and yields the H. R. flIter WMi.g. (w

SNR3 = -fG,$ .()c) (110

I G12 1(c

The H. is similar to the SCOT introduced by Carter of al [7] in that it

suppresses the cross-spectral estimate in weregions of both high and low

signal-to-noise ratio in an attempt to reject strong tonals in the observe-

tions.

W1



-7-

H1. THE WIENER PRCESSOR

Here a slightly different approach is taken to derive an optimal filter.

We deal directly with the quantities in the observation time domain (i.e.

Fig. 1). The procedure is motivated by the following argument. If we )
knew the signal s (t) and the filtered version s. (t) exactly then from the

linearity of the phase of the channel the time delay could be estimated

exactly by detecting the peak of the sample cross-correlation of s (t) and

s. (t). Therefore we simply try to estimate the signal s (t) as best we can

from the observations z 1(t) and the channel output signal s.(t) from

z 2(t) by minimizing the mean square errors:

Ej(s(t) - m(t))2 i = n (2.1)

E$(s, (t) - % (t)) 21 = min (2.2)

where

i*(t) fZ (a)h2(t- a)da

The above procedure is illustrated in Fig, ill. Given the channel charac-

teristic C(o) the solutions to Eqn. (2.1) and (2.2) are the Wiener filters

H(w) and H2(cj):

Q.(u) + Gh,,,(C)

G ci) IC(f)(12 + Cr,I(c)

Notirn that Gte(o) = C(cj) (j) we can express the above filters in terms

'" I
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of the quantities derived from the observables:

H,(,3 = I G12(CJ3(23
C(c.w) G11(w)

Hzc3 *()G2(w) (2.4)

where C*(j) is the complex conjugate of C(w).

With these filters the sample cross-correlation of the least mean

square error estimates of s (t) and s. (t) yields the estimate of the cross

correlation function:

(2.5)

where

Sht(cJ = Hl(w.3Xlk(cj) (2.6)

t.h(cw) = H2 (cj)X~k(w) (2.7)

Xlk(ca) and X~ (ce) are, as before, the finite time Fourier transforms of

z2(t) and z 2(t) on the k-th segment of (0,T]. Regrouping terms in (2.5)

we obtain

IG12(d)I 12 dc2(28

Comparing Eqn. (2.8) with Eqn. (1.3) we have the result that the W.P. is

equivalent to using a Generalized Cross-Corrdlator with the filter W(W)

equal to the magnitude coherency squared.

It should be emphasized that even though the Wiener filters H, and

H2 involve the knowledge of the channel C(cw) itself the G.C.C. equivalent

L4
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processor does not impose this requirement. In fact, as far as the cross-

correlation estimate of time delay is concerned, the actual channel is

immaterial to the peak detection procedure in the cross-correlation

domain. Hence the Wiener filter implementation (Fig. I1) with C(r.) arbi-

trarily set to unity in Eqns. (2.3) and (2.4) is equivalent to any other

choice of C() for the time delay estimation problem.

The definition of "additive noise" leading to the signal-to-noise ratio

SN]?1 , Eqn. (1.4), yields the interpretation that -12(w) is a measure of the

proportion of the power spectral density of the sample cross-correlation,

R12(T), which is due to the sample autocorrelation k (") (the first term

in Eqn. (1.2)). Thus the W.P. de-emphasizes those c-regions where the

sample cross-spectrum is most likely to be a highly inaccurate estimate

of the true cross-spectrum. This is not surprising given the raisonL d'Vtre

of the W.P. which is to accurately estimate the smoothed sample auto-

correlation, k (r) *c (T).

The W.P. does not of course maximize the signal-to-noise ratio in

general. If we examine the optimal processor for SNRj, the H.T. (Eqn.

(1.7)), we see that it has the additional ability to overemphasize as well as

to de-emphasize the cross-spectral estimate according to the function

y-y2(c). (I -- 7ys(cj)). (Actually in [5] the above function is shown to be

inversely proportional to the variance of the phase estimate

a 12(CJ)/l1 12 (J)1 with respect to the true phase of the cross-spectrum).

However, in situations where the coherence is low, and the signal spec-

trum nearly fiat, the H. T. and the W.P. are virtually identical and exhibit

identical performance (Eqn. (1.7) becomes proportional to 712).

. . .. ........ . . .. . .i lii
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It is also observed that the W.P. is equivalent to the H.B. for nearly

flat signal spectra and also to the Eclccrt if we add a low signal-to-noise

ratio condition:

G.((j) 21Cj
WS )= r 712(J

The above signal-to-noise ratio condition is that G.3 (&1j) be uniformly small

as compared to G.~)and %(c)
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M. PRACTICAL CONSIDERATIONS

In practice the various spectral quantities that appear in the expres-

sions for the optimal filters are unknown (either partially or totally) so

that the filters are not directly implementable. Two approaches to this

problem are possible. We either estimate the spectra and substitute the

estimates into the aforementioned filters (totally unknown spectra) or we

search for a robust solution over a range of spectra perturbed from some

nominal point (partially unknown spectra). In this section the estimation

approach is briefly discussed and in the- next section the robust approach

is considered.

Several simulation studies have recently appeared in the literature

which exercise the various filters for known signal and noise spectra. To

the extent that generalizations are possible from a limited set of simula-

tions, they have shown that the H. T. processor seems to outperform the

others such as: the SCOT and simple cross-correlator [10]; the Eckart;

and the H.B. for moderately broadband signals [ 11, 12].

When the spectral quantities are totally unknown the H. T. is no

longer implementable. Two main approaches to optimal time delay esti-

mation have been investigated. The exact maximum likelihood procedure

for unknown spectra was derived in [9] by Hannan and Thompson but it

Involves the simultaneous solution of several coupled equations at a large

number of grid points in frequency. The other approach, the Hamom

Hwan procedure (H.H.) [4], directly substitutes spectral estimates

into the H. T. to obtain the G.C.C. structure:

A
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RN(T 2" W (3.1)

where J)f(w) is an estimate of magnitude squared coherence and jp(r) is

an estimate of the phase g(w) of the cross-spectrum between the obser-

vations. This procedure converges to the H. T. in the limit of large obser-

vation times for suitable estimates of 7 2 and g.

The H.H. procedure was simulated in [10] and for the specific spec-

tral estimates reported, the H.H. (therein referred to as the A.M.L.) was

shown to perform badly even with respect to the (C.C.) for lowpass and

bandpass fiat signal spectra. Indeed a simple local analysis of the filter

estimation error for the H.H. filter, W.H.(w) = c4)/(-'s(w)), yields

the variance:

VarI 2JH.H.((O) -2(GC3)

For the specific coherence estimate developed in [13] by Carter and used

in Carter's program for time-delay estimation [ 14] the filter estimate has

a variance:

HT (- Cj)

where K, is a positive constant. Therefore the H.H. may vastly under-

weight those ri-regions where coherence is highest because of the large

slope of WH.. as a function of the coherence estimate when )f2 is near

unity. In addition, using averaged type coherence estimates like that in

[13] 2(w) can exhibit a large negative bias when the phase of G12(ci) is

rapidly varying [4]. This additional bias term in Eqn. (3.2) could lead to a

.....
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drastic increase in the error of the fiter estimate in w-regions of high

coherence. The net effect would be to decrease output signal-to-noise

ratio, dramatically raising the variance of the time delay estimate.

The W.P. on the other hand can be implemented by directly filtering

the cross-spectral estimate with the coherence estimate, the resultant

filter having potentially less bias in both the low and high coherence &.-

regions than the H.H. filter. This improved filter estimate could

translate into improved time delay estimator performance in some cases.

The practical performance of this implementation of the W.P. remains to

be investigated.

i_
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IV. A ROBWrb VERSON OF THE WIENER PROCESSOR

When the spectra underlying the observations are only partially

known a rich theory developed in the last decade [15-17] can be used to

design robust filters for classical matched or Wiener filtering. These are

maximin filters, i.e. they achieve the best possible performance over all

spectra in a given class. Usually, one first finds the signal and noise spec-

tral pair which gives the least favorable performance, if it exists. Then

one optimizes the filter for the least favorable point, hence the name

maximin filter.

For the time delay problem the only published result known to us in

this category of processors is that of Kassam and Hussaini [18] where

they used the fact that the Eckart processor maximizes a classically

defined signal-to-noise ratio to relate the filtering problem to robust

hypothesis testing. This is achievable only by associating uncertainty

classes with the spectral product Ca1( )GL(c), rather than with the indi-

vidual noise spectra themselves. Finding robust solutions to the other

signal-to-noise ratios SNRZ, SNR3 . remains an only partially solved prob-

lerm.

For the pure delay channel an alternate approach to combatting

against poor performance with uncertain spectra is suggested by the

recent work in robust Wiener filtering [16. 17) when applied to the W.P.

With regard to the original formulation of the W.P. we can replace the

least mean square estimates of the channel input and the channel output

by the robust least mean square estimates of s(t) and s, (t) under

uncertainty in the signal and noises. Specifically we assume that the
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signal spectrum G_(w) belongs to the spectral class Jui, and that the

noise spectra (v((w) and C,(w) belong to the spectral classes jqjj and

H21 respectively. Then we solve for the least favorable pairs for Wiener

filtering JGW.(), G (w) and JW(w), W(J)j over the product classes

frxu71 1 and orxes| which yield the robust Wiener filters Hf and HI (see

Eqns. (2.3) and (2.4)). Finally we implement these filters in the cross-

correlation domain as a G.C.C., a scheme which we will call the

Robust Wiene" Processor or the R. .P

i
1

'I
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V. NUMEMICAL COMPARISONS

At the present time no simulation results concerning the experimen-

tal performance of the W.P. and R. V.P. as opposed to the other G.C.C.'s

are available. In their absence a preliminary investigation of the relative

merits of the above processors was performed based on various signal-

to-noise ratio criteria for some specific observation spectra and for the

pure delay channel.

Fig. IV - VIII show the relative performance of the H. T. ,.. ,Eckawt,

SCOT, and CC. under the criteria SNRt, SNRZ, SNR3 and local variance

of the time delay estimate [3], for a third order Markov signal in first

order Markov noises with the noise 3dB bandwidth a factor of ten greater

than that of the signal. The interesting thing to note is that under SNR1

and SNR2 the V.P. exhibits better performance than all of the other

sub-optimum G.C.C.'s for that particular definition of SNR and under

SNR3 is in for a close second next to the M.L.E. In fact, under the cri-

terion SNR1 performance of the V.P. is virtually identical to the the

optimal H. T. processor. The local variance, although it ranks the W.P.

behind the H. T., H.B., and Eckart processors, only marginally disfavors

the V.P. at low signal-to-noise ratios. (It is to-be noted from Fig. VIII that

the SCOT and the CC have local variance orders of magnitude worse

than the W.P.).

In Figs. IX and X the performance of the R. .P., V.P. and other

G.C.C.'s are compared using SNRI for the c-contaminated uncertainty

class on the specific spectra in the example outlined in Kassam and Lim's

paper on Robust Wiener filtering [16]. Specifically, under the nominal
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assumption at each sensor we have a signal with the flat bandlimited

spectrum Q(fj) in first order Markov noise with the spectrum 4(u),

where the signal and noises are of comparable bandwidths. The uncer-

tainty on the signal and noise spectra are modeled as the c-mixtures

(1-Cj)Q(Cj) +

and

(1-C2)Cjc) + cC(c4

respectively with G (w) and G,(rj) arbitrary spectra having the same

mass as the nominal and c, and c2 lying in the interval [0.1]. Fig. IX

shows the relative performance for the nominal spectra and Fig. X the

performance for the least favora!.le signal and noise spectra for Wiener

filtering when el = 0.2 and qa = 0.1. Looking at the nominal case (Fig. IX),

we note that the use of the R. W.P. entails a loss of about 3dB at low SNR

(below about 0db) over the optimal for the least favorable pair. However

when the true signal and noise spectra are least favorable for Wiener

filtering the R. W.P. displays uniformly better relative performance gain-

ing about 3db over the other processors at low signal-to-noise ratios.

Note that this is not necessarily the least favorable pair for H. T filtering

so that no conclusive result is indicated here. However, Fig X does sug-

gest that at least for some spectra in the at ,,e uncertainty class we can

expect better performance with the R. W. P. than with the optimal scheme

for the nominal spectra.



VI. CONCLUSION

We have outlined the development of several of the most popular

G.C.C. implementations and have introduced another G.C.C. which is

believed to be new. This G.C.C. should be easier to implement than all

but the simple cross-correlator, because the frequency weighting can be

estimated directly for unknown spectra. Classical robustness theory led

to a simple alteration of the W.P. , which we called the R. W.P.. The

evaluation of theoretical performance in several specific signal and noise

environments was presented which suggests that the W. P. and R. W. P.

may be viable alternatives to existing time delay estimation schemes.

Further experimental and simulation based performance evaluation is

required before any general conclusions can be drawn.
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