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ABSTRACT

A new Generalized Cross-Correlator (GJCJCJ) for the passive

time delay estimation problem is presented. The interpreta-

tion of this G,C,CJ is that of estimating the cross-correlation

T q

function by cross-correlating the least mean square esti-

mates of the signal component in each of the observed

waveforms. The implementation is simply a E,S]C, with the
!

weighting filter equal to the magnitude coherency squared.

Numerical evaluation of the performance of this processor

and a robust version indicates that they compare favorably

to some of the well known ?/

CC

{4

procedures.
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INTRODUCTION

The estimation of propagation delay in a common signal arriving at

two spatially separated sensors is a problem which has received much

attention in the literature. Cross-correlation methods are particularly

popular because of the richness and variety of processors within this

Of these, the

class and the general ease of implementation.

[1,), the [Eckart [1] and the

Hannan Thompson (H.T.)

Hassab -Boucher (H.B.) [2] are examples of "optimum” processors

which maximize some performance criteria. On the other hand, the

SCOT [7] and the simple cross-correlator (C.C.) are examples of "Ad Hoc"

or intuitive correlation type processors. In general the optimum proces-

sors are very sensitive to deviations from the assumed signal and noise

characteristics. By way of contrast, the C.C. and SCOT appear to be

more robust to these deviations from the nominal. However, these later

processors can have very poor performance at the nominal point.

In the following development an intuitive approach to the problem

yields another type of (generalized) cross-correlator. This is the
Wiener Processor, or W.P., which has a simple form. Yet preliminary

results indicate it outperforms most of the other above named proces-

sors when compared under various performance criteria for the few

important cases considered in this paper. A “"robust"” version of the W.P.

also indicates potentially good performance relative to the others under

uncertain spectra.




L. PROBLEM STATEMENT AND BACKGROUND

We first consider a system model generating the observations in Fig.

o o A AR 4T v

I. We observe Gaussian, ergodic, wide-sense stationary processes z,(¢) -

and z,(¢) over a time interval [0,T] which contain uncorrelated noises

n,(t) and nz(t) and signals s(¢) and s, (¢) respectively. We assume c(t)

is a linear time invariant channel having a transfer function C(w) with

unknown linear phase so that s,(¢) is a delayed but possibly distorted

version of s(¢). Furthermore, we assume that the noises are uncorre-

lated with the signal and that T is much greater than the correlation time

of z,(t) and z5(¢). The object is then to estimate the time delay, D, asoci-

ated with the channel.

We define the sample cross-correlation:

R = #za,z(o)ef”do . (1.1)

Here a,z(o) is some unbiased, consistent estimate of the cross-spectrum

Gio(w). For definiteness we assume that Gyz(w) is obtained by the

Bartlett Procedure [19] consisting of segment averaging periodogram

type estimates Z"FX (@) X2 (@) where m is the total number of subdivi-

sions of [0,T] and Xy4(w) and Xz (w) are the Fourier Transforms of z;(¢)

and z3(¢) on the k-th segment.

For very large observation time and suitable m, R,g('r) gives a good

approximation to the true cross-correlation function which has a global
peak at D. In fact if c(¢) is pure delay and s(f) is white, the cross-

correlation function is a delta function at the true delay. For finite
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observation time we can decompose R,(7) into the sum of four terms:

Ria(7) = c(r) R (1)+ c(1)* Ry (o (7) + R (1) + Ry (1) (1.2)

where "*" denotes convolution. Here R, (1) is an estimate of the signal

autocorrelation function Rg(7) and R,,‘, (1), ﬁn.(-r) and ﬁn'n.('r) are esti-

1057 o S Ty W Tt V2T =¥ % e

mates of the cross-correlation between the signal and noise terms in the

observations. In the limit the sample cross-correlation converges to

¢ (T) *Rg (7) which displays an absolute maximum at D. Thus, it is the last

three terms in Eqn. (1.2) which constitute zero mean disturbances

affecting peak resolution of the first term. This suggests prefiltering the

sample cross-correlation with a filter W(w) to obtain better resolution of

the peak at D, where W(w) has zero phase. This scheme is referred o as

the generalized cross-correlation method or the Generalized Cross-

Correlator (G.C.C.) and is illustrated in Fig. II (The content of the dashed

box is only symbolic for the operation in Eqn (1.1)). We denote the G.C.C.

output waveform R&(7). Therefore we have:

Rf(7) = E;—-Zalz(u)ﬂ (»)ed"dw . (1.3)

When W(w) is unity the resulting G.C.C. is called the simple cross-

correlator (C.C.). Considering the first term in Eqn. (1.2) as a "signal” in

additive noise, classical optimal filtering theory can be applied to derive

fllters W(w) which maximize signal-to-noise ratio.

4‘ Letting the last three terms of Eqn (1.2) be characterized as "noise"

we can define a signal-to-noise ratio as the energy at the output due to
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the global peak of c(7) *Rg(7) divided by the output power due to the
three noise terms. We will denote this by SNR,. For the specific cross-

spectral estimation procedure outlined above, the noise power has been

derived and is given by:

S e e eyt -

0% = £ 611() Gaale) (1 7Rl ))] W () (1.4)

k is a positive constant inversely proportional to T, the observation time.

G1(w) and Gp{w) are the power spectral densities of the observations

z,(t) and z5(t) respectively. 7%(w) is the magnitude coherency squared,

where, defining the true cross-spectrum Giz(w),

Gia(w)

rh(w) = TGl (1.5)

Then from the defining relation:

_ [BREmp)?

2

1 -
Opn

(1.6)

[5/ Gl P (@)do)®

SNR; =

] 6y ()Gl ) 17BN W ()P

The maximum is obtained through the Schwarz inequality and yields the

H.T. processor. The same result is derived in [5) as the result of minim-
izing the local variance of the delay estimate over the entire G.C.C. class,
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and in 1] as the result of maximum likelihood estimation. The filter is:

1 7?‘2(0)
[G12(@)] 1—yE(w) (17)

Wyr(w) =

Neglecting the effect of the signal and noise cross terms ,
c(7) 'il.,l('r) and Ttm.('r) in Eqn. (1.2), gives another characterization of
the noise in the cross-correlation domain. With this definition of noise
another signal-to-noise ratio is defined in [8],' SNRj,, which is shown to be

maximized by the Eckart processor Wgy(w):

[5f 1Gi(e) W (w)dw]?
SNR, = =

(1.8)

S G ()G @ W ()

|Gya(w)|

”EK(U) = G“‘(Q q‘.(Q) (19)

Where G, (v) and G, (w) are the auto-spectra of the noises n,(t) and

ny(t) respectively. Note in terms of the spectra of the observables z,(t)

and z,(¢) the filter takes the form

_ |Gy2(w)]
Pex(©) = (o) ~ 1C@(Ca@) = G

which attests to the complexity of implementing the Eckart in general.
Hassab and Boucher [2] take the approach of maximizing a signal-to-

noise ratio, SNR3, defined as the ratio of the expected peak energy at the

true delay to the total statistical variation of the output of the G.C.C.

This, in some sense, lumps the "signal”, c () *R, (1), variation into the

ot A T T | e AT e




noise terms and yields the H.B. filter Wy, p (v):

L5/ 1Gi()IW(@)du]?

SNR; - - ( 1. 10)
2= J Cule)Ga()l W (w)fdo
Vas ()= E%%%Ei" (1.11)

The H.B. is similar to the SCOT introduced by Carter et al [7] in that it
suppresses the cross-spectral estimate in w-regions of both high and low

signal-to-noise ratio in an attempt to reject strong tonals in the observa-

tions.

— -
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IIl. THE WIENER PROCESSOR

Here a slightly different approach is taken to derive an optimal filter.
We deal directly with the quantities in the observation time domain (i.e.
Fig. I). The procedure is motivated by the following argument. If we
knew the signal s(¢) and the filtered version s, (¢) exactly then from the
linearity of the phase of the channel the time delay could be estimated
exactly by detecting the peak of the sample cross-correlation of s(t) and
s, (t). Therefore we simply try to estimate the signal s(¢) as best we can
from the observations z,(¢) and the channel output signal s,(f) from
z2(¢) by minimizing the mean square errors:
Ef(s(t) — §(¢))* = min (2.1)

El(so(t) -5, (t))zg = min (2.2)
where

r

8(¢) =j;'zl(o)h,(t—-o)da
r

5,(t) = j; z,(0)ho(t - o)do .

The above procedure is illustrated in Fig. Ill. Given the channel charac-
teristic C(w) the solutions to Eqn. (2.1) and (2.2) are the Wiener filters
H(w) and Hy(w):

_ G (W)
) = o+ G
C Gu@IC)P
Helo) = e NC@P + Gope)

Noting that G;2(w) = C(w)Ge(w) we can express the above filters in terms

g v AT 1 3
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of the quantities derived from the observables:

_ 1 Gw)
i) = ToT Cyl@) ®3)
Haylw) = C*(w) g:g:; . 2.4)

where C*(o) is the complex conjugate of C(w).

With these filters the sample cross-correlation of the least mean

square error estimates of s(¢) and s, (¢) yields the estimate of the cross

correlation function:
(2.5)
R = 5 f 15 5003, (@)eido
where
54 (©) = Hy(0)X (o) (2.6)
5oy (@) = Ha(w) X2 () 7

X (w) and Xz (w) are, as before, the finite time Fourier transforms of
z,(¢t) and z3(t) on the k-th segment of [0,T]. Regrouping terms in (2.5)

we obtain

T2 1Gr2(w)? ot
RZ(1) = 217_[' Gia(w) ‘E;(—S-%Je’ dw (2.8)

Comparing Eqn. (2.8) with Eqn. (1.3) we have the result that the W.P. is
equivalent to using a Generalized Cross-Correlator with the filter W(w)
equal to the magnitude coherency squared.

It should be emphasized that even though the Wiener filters H,; and

Hg involve the knowledge of the channel C(w) itself the G.C.C. equivalent

i
1
4
i




processor does not impose this requirement. In fact, as far as the cross-
correlation estimate of time delay is concerned, the actual channel is
immaterial to the peak detection procedure in the cross-correlation
domain. Hence the Wiener filter implementation (Fig. IlI) with C(w) arbi-
trarily set to unity in Eqns. (2.3) and (2.4) is equivalent to any other
choice of C(w) for the time delay estimation problem.

The definition of "additive noise" leading to the signal-to-noise ratio
SNR,, Eqn. (1.4), yields the interpretation that 7%(w) is a measure of the
proportion of the power spectral density of the sample cross-correlation,
R,2(7), which is due to the sample autocorrelation R, (7) (the first term
in Eqn. (1.2)). Thus the W.P. de-emphasizes those w-regions where the
sample cross-spectrum is most likely to be a highly inaccurate estimate
of the true cross-spectrum. This is not surprising given the raison d'étre
of the W.P. which is to accurately estimate the smoothed sample auto-
correlation, Ry (7)*c (7).

The W.P. does not of course maximize the signal-to-noise ratio in
general. If we examine the optimal processor for SNR,, the H.T. (Eqn.
(1.7)). we see that it has the additional ability to overemphasize as well as
to de-emphasize the cross-spectral estimate according tb the function
75(w)/ (1 = 7&(w)). (Actually in [5) the above function is shown to be
inversely proportional to the variance of the phase estimate
G12(w)/ |Gyz{w)! with respect to the true phase of the cross-spectrum).
However, in situations where the coherence is low, and the signal spec-

trum nearly flat, the H.7. and the W.P. are virtually identical and exhibit

identical performance (Eqn. (1.7) becomes proportional to y%).

QP S
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It is also observed that the W.P. is equivalent to the H.B. for nearly
flat signal spectra and also to the Eckart if we add a low signal-to-noise

ratio condition:

- 1 - 1
Wyp(w) = m?fz(w) = m"’ vp ()

G . 4
Wex(®) = GG (@)~ Gl T2

The above signal-to-noise ratio condition is that G4 (w) be uniformly small

as compared to G, («) and G, (v).

EP SIS PRI ST R
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1. PRACTICAL CONSIDERATIONS

In practice the various spectral quantities that appear in the expres-
sions for the optimal filters are unknown (either partially or totally) so
that the filters are not directly implementable. Two approaches to this
problem are possible. We either estimate the spectra and substitute the
estimates into the aforementioned filters (totally unknown spectra) or we
search for a robust solution over a range of spectra perturbed from some
nominal point (partially unknown spectra). In this section the estimation
approach is briefly discussed and in the next section the robust approach

is considered.

Several simulation studies have recently appeared in the literature
which exercise the various filters for known signal and noise spectra. To
the extent that generalizations are possible from a limited set of simula-
tions, they have shown that the H.T. processor seems to outperform the
others such as: the SCOT and simple cross-correlator [10]; the Eckart;

and the H.B. for moderately broadband signals [11,12].

When the spectral quantities are totally unknown the H.T. is no
longer implementable. Two main approaches to optimal time delay esti-
mation have been investigated. The exact maximum likelihood procedure
for unknown spectra was derived in [9] by Hannan and Thompson but it
involves the simultaneous solution of several coupled equations at a large
number of grid points in frequency. The olher approach, the Hamon
Hannan procedure (H.H.) [4), directly substitutes spectral estimates
into the H.T. to obtain the G.C.C. structure:

e i s
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RI(7) = 21" -f. l?f“:;:f)o) e W) +urg,, (3.1)

where %%(w) is an estimate of magnitude squared coherence and (o) is
an estimate of the phase ¢(w) of the cross-spectrum between the obser-
vations. This procedure converges to the H.T. in the limit of large obser-

vation times for suitable estimates of 7% and ¢.

The H.H. procedure was simulated in [10] and for the specific spec-
tral estimates reported, the H. H. (therein referred to as the A M.L.) was
shown to perform badly even with respect to the (C.C.) for lowpass and
bandpass flat signal spectra. Indeed a simple local analysis of the filter
estimation error for the H.H. filter, Wy y (©) = 5(w)/ (1-5%(w)), yields

the variance:

var (¥(w) -

var (Wy 4 (w)) ™ a:;:zzz;)—)‘_

For the specific coherence estimate developed in [13] by Carter and used

in Carter's program for time-delay estimation [14] the filter estimate has

a variance:

Ky 7h(w)

var (Wy gy (w)) ™~ T m)?

where K, is a positive constant. Therefore the H.H. may vastly under-
weight those w-regions where coherence is highest because of the large
slope of Wy as a function of the coherence estimate when 3% is near
unity. In addition, using averaged type coherence estimates like that in
[13] %&(w) can exhibit a large negative bias when the phase of Gyp(w) is
rapidly varying [4]. This additional bias term in Eqn. (3.2) could lead to a

i
i
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drastic increase in the error of the filter estimate in w-regions of high
coherence. The net effect would be to decrease output signal-to-noise

ratio, dramatically raising the variance of the time delay estimate.

The ¥.P. on the other hand can be implemented by directly filtering
the cross-spectral estimate with the coherence estimate, the resultant
filter having potentially less bias in both the low and high coherence o~
regions than the H.H. filter. This improved filter estimate could
translate into improved time delay estimator performance in some cases.
The practical performance of this implementation of the W.P. remains to

be investigated.
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IV. A ROBUST VERSION OF THE WIENER PROCESSOR

When the spectra underlying the observations are only partially
known a rich theory developed in the last decade [15-17] can be used to
design robust filters for classical matched or Wiener filtering. These are
maximin filters, i.e. they achieve the best possible performance over all
spectra in a given class. Usually, one first finds the signal and noise spec-
tral pair which gives the least favorable perlormance, if it exists. Then
one optimizes the filter for the least favorable point, hence the name

maximin filter.

For the time delay problem the only published result known to us in
this category of processors is that of Kassam and Hussaini [18] where
they used the fact that the Eckart processor maximizes a classically
defined signal-to-noise ratio to relate the filtering problem to robust
hypothesis testing. This is achievable only by associating uncertainty
classes with the spectral product G, (w)Gy,(w), rather than with the indi-
vidual noise spectra themselves. Finding robust solutions to the other
signal-to-noise ratios SNR,, SNRg, remains an only partially solved prob-
lem.

For the pure delay channel an alternate approach to combatting
against poor performance with uncertain spectra is suggested by the
recent work in robust Wiener filtering [18, 17] when applied to the W.P.
With regard to the original formulation of the W.P. we can replace the
least mean square estimates of the channel input and the channel output

by the robust least mean square estimates of s(¢) and s,(t) under

uncertainty in the signal and noises. Specifically we assume that the
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signal spectrum G, (w) belongs to the spectral class {0}, and that the
noise spectra G, (w) and G, («) belong to the spectral classes {n,} and
fn2} respectively. Then we solve for the least favorable pairs for Wiener
fitering {G{ (). GY, ()] and {G(w) . GY,(w)} over the product classes
foxn,] and foxnz)} which yield the robust Wiener filters H¥ and HE (see
Eqns. (2.3) and (2.4)). Finally we implement these filters in the cross-
correlation domain as a G.C.C., a scheme which we will call the

Robust Wiener Processor or the R.W.P.

Bl 4 A 1 o A MA Rt bl 5. e g AR s
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V. NUMERICAL COMPARISONS

At the present time no simulation results concerning the experimen-
tal performance of the W.P. and R.W.P. as opposed to the other G.C.C.'s
are available. In their absence a preliminary investigation of the relative
merits of the above processors was performed based on various signal-
to-noise ratio criteria for some specific observation spectra and for the

pure delay channel.

Fig. IV - VIl show the relative performance of the H.T. ,H.B. ,Eckart,
SCOT, and C.C. under the criteria SNR,, SNR;, SNR3 and local variance
of the time delay estimate [3], for a third order Markov signal in first
order Markov noises with the noise 3dB bandwidth a factor of ten greater
than that of the signal. The interesting thing to note is that under SNR,
and SNR; the W.P. exhibits better performance than all of the other
sub-optimum G.C.C.’'s for that particular definition of SNR and under
SNRg is in for a close second next to the M.L.E. In fact, under the cri-
terion SNR; performance of the W.P. is virtually identical to the the
optimal H.T. processor. The local variance, although it ranks the W.P.
behind the H.T., H.B., and Eckart processors, only marginally disfavors
the W.P. at low signal-to-noise ratios. (It is tobe noted from Fig. VIII that
the SCOT and the C.C. have local variance orders of magnitude worse
than the ¥.P.).

In Figs. IX and X the performance of the R.N.P., W.P. and other
G.C.C.'s are compared using SNR; for the e-contaminated uncertainty

class on the specific spectra in the example outlined in Kassam and Lim's

paper on Robust Wiener filtering [18]. Specifically, under the nominal

Yostnso.i
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assumption at each sensor we have a signal with the flat bandlimited
spectrum G&(w) in first order Markov noise with the spectrum Ga(w),
where the signal and noises are of comparable bandwidths. The uncer-

tainty on the signal and noise spectra are modeled as the e-mixtures

(1-2,)G% (@) + £,Go(w)

and
(1-£2) G2 (@) + £2G,(w)

respectively with G,(w) and G,(w) arbitrary spectra having the same
mass as the nominal and ¢, and ¢ lying in the interval [0,1]. Fig. IX
shows the relative performance for the nominal spectra and Fig. X the
performance for the least favoratie signal and noise spectra for Wiener
filtering when £; = 0.2 and ¢; = 0.1. Looking at the nominal case (Fig. IX),
we note that the use of the R. W.P. entails a loss of about 3dB at low SNR
(below about 0db) over the optimal for the least favorable pair. However
when the true signal and noise spectra are least favorable for Wiener
filtering the R.W.P. displays uniformly better relative performance gain-
ing about 3db over the other processors at low signal-to-noise ratios.
Note that this is not necessarily the least favorable pair for H.T. filtering
so that no conclusive result is indicated here. However, Fig X does sug-
gest that at least for some spectra in the al *.ve uncertainty class we can
expect better performance with the R F.P. than with the optimal scheme
for the nominal spectra.
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VI. CONCLUSION

We have outlined the development of several of the most popular
G.C.C. implementations and have introduced another G.C.C. which is
believed to be new. This G.C.C. should be easier to implement than all
but the simple cross-correlator, because the frequency weighting can be
estimated directly for unknown spectra. Classical robustness theory led
to a simple alteration of the W.P., which we called the R.W.P.. The
evaluation of theoretical performance in several specific signal and noise
environments was presented which suggests that the W.P. and R.W.P.
may be viable alternatives to existing time delay estimation schemes.

Further experimental and simulation based performance evaluation is

required before any general conclusions can be drawn.

g~
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