
' AD-A129 676 AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATIONS (OR CRAY /N
PERFORMANCE FROM A.. (U CARNEGIE-MELLON UNIV PITTSBURGH
PA DEPT OF COMPUTER SCIENCE A W APPEL MAR 83

NCIA SI ED CMU-CS-83-18 ROOD 4-76-C 0370 F/G 9/2 N

I EEEEEEEE7Eh~hhEE

9;41 .*O 1 2
" 1326

11111 Ed 0

11(11125 (~I~ * .

MICROCOPY RESOLUTION TEST CHART
NAI IONAL BUR[AU OF STANOARDS-1963-A

foy awnrft"y $met'"s

(*f-, Ciny P~rft M804 from, AVAX)

AndrwW. Anae

DEPARTMENT OI
Of ~ELECTr '\

COMPUTR SCIENCE

AO

F. -77 PDCL..E"TA' ION PAGE I r rro C0CO'.*'pLNC FORM.

11.IE'100, k~riGO'! ACCEWCONh NO. 3. ALCIP4Eh71& CAT ALOZ #.L.m&L

CMU-CS-83-118 'A)- 1) 7e
4. TITLE

r . YPE Or REPORT & PERIOD COVERED

AN EFFIL;ISNT PROGRAM FOR MANY-BODY SIMULATIONS

(RO, CRAY PERFORMANCE FROM A VAX) Interim
. PERFORI G ORG. REPORT NUMBR

7. AUTOR(s) I. CONTRACT OR GRANT kUmBEf(WJ

Andrew W. Appel N00014-76-C-0370

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Carnegie-Mellon University A A WOR UNIT NUNRS

Computer Science Department
Pittsburgh, PA 15213

It. CONTROLLING OFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research March 1983
Arlington, VA 22217 13. NUMBER Of PAGES

4i. MoNITORING AGENCY NAME It ADDRESS(If differmt Ir, Controlling Office) 1S. SECURITY CLASS. (a! this report)

UNCLASSIFIED
Ila. DECL ASsIFIc ATIO1DOWNrGRADING

SCHEDULE

16. DISTF.IOUTION STATEMENT (of ths R porl)

Approved for public release; distribution unlimited

17. DISTRIBUT IDN S' ATEMENT (of Cho abstract oini .Jin Block 3*, II different fro. Report)

IL. SUPPLEMENTARY NOTES

IS. KEY WORDS (Cc.ulinue onl teo*rt ald* i1 flec c.. y and identiyl by block nu.ber)

2C.. A stRACI (Confn,. n 4 . I.'t r .0 .e .. r y id IoenuImy ' fjr W ='i'.)

Tnc simulation of N particles interacting in a gravitational force field is useful in astrophysics, but such

simulations become costly for hrnc I. Representing the universe as a trec structure with the particles at the
siulations allowy Sevralsimltaeou

lcaves and internal nodes labelled with the centers of mass of their descndats allows svral simuanou -

aacks on the computation time rcquired by the problem. These approaches range from algorithmic changes

DD 1 ' 3 EC..,.I, 0 1 1 N.'1 l CL, I ISfIET

• 'h It,; ')ONt" "

UNCLA STFTED
SICURITY CLASSIPCATION Or THiS PAGE (ho Dam £. ntm.o

(rcplacing an O(AP) algorithm with an O(N log N) algorithm) to data structurc modifications. code-tuiting.

and hardwarc modifications. The changes reduccd the running time of a largc problem (N= 10.000) by a

factor of four hundred. This paper describes both the particular program and the methodology underlying

such speedups.

5, o1O2-.7*ui. o U~NCLASSIFIEDOF "

An Efficient Program

for Many-Body Simulations

(or, Cray Performance from a VAX)

Andrew \..\ppel

March 1983

Abstract

-A'hc simulation of N particles interacting in a gravitational force field is useful in astrophysics, but such
simulations become costly for large N. Representing the universe as a trce structure with the particles at the

leaves and internal nodes labelled with the centers of mass of their descendants allows several simultaneous
,* attacks on the computation time required by the problem. These approaches range from algorithmic changes

(replacing an O(N2) algorithm with an O(N log N) algorithm) to data structure modifications, code-tuning,
and hardware modifications. The changes reduced the running time of a large problem (N= 10,000) by a
factor of four hundred. This paper describes both the particular program and the methodology underlying

such speedups

This research was supported by an NSF Graduate Student Fellowship and by ONR Grant #N0014-76-C-0370.

I

AN HI I.INI lI'tOURiAM IOR M.\NYItOl)Y 'a'.IL I A!IONS

1. Introduction
Isaac NeA ton calculated the behavior of two particles interacting through the force of gra% ic . but he was

unable to solve the equations for three particles. In this he was not alone [6. p. 6341. and systcms of three or

more particle,; can be sohed only numerically. Itetftive methods are tsually used. computing at each discrete

time interval the force on each particle, and then computing the new velocities and positions for each particle.

A naive implemcntatioa of an iterativc many-body simulator is computatiunally cry expcnsivc for large

numbers of particles, where "expensive" means days of Cray-1 time or a ycar of VAX time. This paper

describes .he de\elopment of an efficient program in which several aspects of the computation were made

faster. The initial step was the use of a new algorithm with lower asymptotic time complexity; the use of a

better algorithm is often the way to achieve the greatest gains in speed [21.

Since every particle attracts each of the others by the force of gravity, there are O(.v-) interactions to

compute for every iteration. Furthermore, for the same reasons that die closed form integral diverges for

small distances (since the force is proportional to the inverse square of the distance between two bodies), the

discrete time intr.rval must be made extremely small in the case that two particles pass very close to each

other. These are the two problems on which the algorithmic attack concentrated. By the use of an

appropriate data structure. each iteration can be done in O(N log N) time, and the time intervals may be

made much larger, thus reducing the number of iterations required. The algorithm is applicable to N-body

problems in any force field with no dipole moments.

Using an algorithm with a better asymptotic time complexity yielded a significant improvement in rinning

time. Four additional attacks on the problem were also undertaken, each of which yielded at least a factor of

two improvement in speed. These attacks ranged from insights into the physics down to hand-coding a

routine in assembly language. By finding savings at many design levels, the execution time of a large

simulation was reduced from (an estimated) 8000 hours to 20 (actual) hours. The program was used to

investigate open problems in cosmology, giving evidence to support a model of the universe with random

initial mass distribution and high mass density.

This paper describes the problem and its solution, considered from the point of view of a computer scientist

approaching a software engineering problem. Thus, only a brief overview of the physics is given; the

emphasis is on techniques of writing efficient software. Section 2 explains the nature of the cosmological

questions that can be answered by many-body simulations. Section 3 describes some old algorithms for such

simulations, Section 4 introduces the data structure and the algorithm to reduce the time per iteration, and

Section 5 shows how to use the data structure to reduce the number of iterations. Section 6 shows how to

create the structure and how to keep it from becoming distorted. Section 7 describes an implementation of

k"I,

2 \NI)RI'.W W. APPI-. 13 APRIL 1983

the algoritlil. 'I he techniques used to attain speedups at various dcsign levels are dcscribed. illcsc speedups

are surnmari/ed, and thc design methodology leading to them is discussed, in Section 8.

2. Applications in Astrophysics
The search for a faster algorithm to compute many-body intcractions in a gravitational force field was

motivated by two important questions in cosmology that can be investigated by simulating gravitational

interactions of tens of thousands of galaxies. An efficient computer program has made it feasible to do such

simulations. This section describes the cosmological applications, and the remaining sections describe the

program.

2.1. How Did Galaxies Form?

It is generally believed that the early universe was radiation-dominated, that is. that most of the energy of

the universe was in the form of photons, and the forces on a typical particle were primarily electromagnetic.
The present uniherse, however, is mass-dominated, with most of the energy condensed into massive bodies
(such as stars), and the primary interaction between these bodies being gravitation:il (the gravitational force

between the Earth and the Sun, for example. completely dominates the "solar wind" of photons pushing the

Farth away from the Sun).

The transition between a radiation-dominatcd and a mass-dominated universe probably took place
relatively suddenly, after that, massive bodies such as galaxies began to form (they would have been torn

apart in a radiation-dominated universe). Two of the competing theories describing the formation of
galaxies [20] may be characterized as "top-down" and "bottom-up," respectively.

In the "top-down" theory [211, galaxy clusters formed as a result of long-range pressure waves left over
from the radiation-dominated universe. A pressure wave contains alternating regions of high and low density.
When the universe "condensed" and the radiation disappeared, there would be no medium to support the

waves, but the regions of high and low mass-density would remain. It is proposed that the regions of high

density became super-clusters of galaxies, that galaxies formed within these super-clusters; and that stars
formed within the galaxies. Two-dimensional simulations under these assumptions have shown a cell-like

structuring of the clusters [7]; it is not clear whether the dimensionality of the simulation is responsible. It

may be that these cells exist in the present universe [121, but the observations at large distances are not

conclusive.

In the "bottom-up" theory [161, there were no pressure waves, and the universe immediately after

condensation consisted of randomly distributed hydrogen molecules. In a random distribution, there will be

AN I:I.:H{IIN PROURAM 1
,
!.lANY-I ODY SIMUIA IONS 3

local fluctuations in mass density, and as the universe expands, the denser regions will tcnd to cohere, while

the regions of lower density will expand. This will tend to increasc the size of the fluctuations, forming stars.

More expansion will increase the size of the fluctuations to that of galaxies and eentually of clusters and

super-clusters of galaxies. The clusters %kill have a more random structure than in the "top-down" model.

In both theories, the only significant interactions between galaxies after the condensation are gravitational.

A simulation of the motion of many particlcs with gravitational interactions can therefore test these theories.

A ten-thousand-galaxy, three-dimensional simuhition testing the "bottom-up" theory (that is, starting with a

uniform random distribution of particle positions) has been done using the techniques described in the

remainder of this paper. The result of the simulation is clustering consistent with that observed by

astronomers (see Figure 2-1 for a picture of the simulation's output). A similar test of the "top-down" theory

has not yet been done, but since this theory differs from the "bottom-up" theory primarily in its specification

of the distribution of the initial placement of the particles, it could be simulated easily using the same

algorithm.

The large-scale simulations done using the program described in Sections 3 through 6 of this paper seem to

imply that the bottom-up model can explain the present mass distribution of the universe quite well, without

the complicated assumptions inherent in the top-down model.

2.2. Is the Universe Open or Closed?

One of the fundamental questions in cosmology is whether the universe will continue expanding forever, or

whether it will eventually collapse in a gigantic reversal of the Big Bang. One way to answer this question is to

look at the mass density of the universe. If the universe is below a certain "critical density" then expansion

will continue forever; otherwise it will contract. Unfortunately, it is difficult to measure the mass density of

the tmiivers,!. Astrophysicists have been able to make estimates: most observational estimates put the mass

density at about a tenth of the critical density. Since Truth, Beauty, and Simplicity demand that the density of

the universe be equal to the critical density [15], a great astronomical search has been on for the "missing

mass." The search is complicated by the fact that many forms of mass (such as black holes) are difficult to

observe directly.

This problem can be avoided by approaches that do not involve direct observation of the mass density.

One such approach is through simulation of the gravitational interactions of galaxies under different

assumptions about the mass density. Groth et aL [101 observed in small simulations that low mass densities

will not lead to the amount of clustering actually observed, and that the critical density would lead to such

clustering. The ten-thousand-body, three-dimensional simulation using the program described later in this

4 ANI)REW W. AIIIlI-. 13 APR11. 1983

..
7 -7-._ _,_.."

--
_.,..

Figure 2-1 Result of a Simulation

An initial randomly generated configuration of 1000 galaxies, and thc result or simulating the gravitational interactions of this

configuration as thc univcrsc expands by a factor of 7.12, with mass density p = p crit as a parameter of die simulation.

The particles are in a three-dimensional space which has been projccted into two dimensions for this picture. A periodic coordinate

system is used in which the two extreme points in each dimension are identified. Thc pictures arc scaled to the expansion factor of the

simulated universe.

paper was for the higher-density case; large-scale clustering was observed, lending support to this theory. The

lower-density casc can be examined by the same techniques.

-3. Previous Algorithms
Because the N-body problem cannot be done in closed form, the calculation must be done numerically.

That is, at cach time 1, the'gravitational forces of each mass on each of the others may be computed by

Newton's laws. (For an appropriate range of distances -- say, between one and a few hundred million

light-years -- Newton's laws are a good approximation to General Relativity.) Using the inverse-square force
law, an approximation to the true acceleration and velocity of each particle over a time di can be computed.

By many iterations of this method, the position of each particle after an arbitrary length of time may be

found.

o nirtion i p f

AN FI-ICIFNr PIROGRAM IOR M\ANY 11DY SMLI ATIONS

3.1. A Simple Algorithm

Newton's law of gravity states that the force betwcen any pair of particles is proportional to the product of

their masses divided by the square of die distance between them. Stated as a vector cquation.

Gin in .(r-- r)

where ri is the position vector of particle i. r" is the acceleration vector of particle i. and G is the universal

gras i ational constant.

When there arc many particles, the acceleration of each particle is given by the sum of the accelerations (as

computed by Newton's law) for all the other particles. This is simply a large set of differential equations. For

two bodies, it is solvable in closed form, however, for more than two bodies no closed form solution exists.

The differential equation can be integrated numerically using a "naive" algorithm. At each iteration,

compute the acceleration acting upon each particle: from this. compute a modified velocity over the next time

increment, and then compute the position of each particle at the end of the time increment by calculating

rncw = rold + v'di,

The time increment di must be made small enough that die accelerations do not greatly change between t and

t+ di.

There are two problems with this algorithm. The first is that die number of interactions is large as a

function of the number of particles. In particular. die gravitational action of each particle on every other

oaticle must be computed every iteration, requiring a total of n - N operations. When N is large (physicists

would like to simulate tens of thousands of particles, although they are rarely able to do so), an O(N2)

algorithm is extremely costly to execute.

The second problem in many-body simulations is that it usually happens that some pairs of particles in

such a system will pass very close to each other. Nearby particles in a gravitational field usually move at high

speed with respect to each other; the combination of high velocities and small distances necessitates an

extremely small time increment between iterations.

One approach to these problems is to use an extremely fast computer. The Cray-1 computer is very fast at

algorithms that have a "vectorizable" formulation: that is, problems which can be expressed in terms of

element-by-element arithmetic operations on long arrays of numbers. The acceleration computation can be

formulated in terms of such large vectors. If the vector instructions of the Cray-1 are used to advantage

(either by hand-coding, or by using the Cray Fortran compiler with a good understanding of what sorts of

6 A.I)RI-W W. APPFI. 13 APRIl. 1983

programs the Compiler can generate effcient code for). the tirac required to calculate the acceleration

between two bodies can be estimated at 100 clock cyclcs (40 of which arc nccded for a calculation of a

periodic distance function peculiar to the many-galaxy problem [3]). The time for one clock cycle is 12

nanoseconds [18]. and the number of pairs of bodies is V/2, so the time for one iteration can be estimated at

.6, microseconds. Using scalar instrictions, or using vector instructions with inefficient pipeline behavior.

would more than double the time taken per iteration.

Using a similar program to simulate ten thousand bodies over one thousand iterations requires

approximately 8000 hours of VAX time (this was extrapolated from observations of 100-particle simulations).

Fable 3-1 gives the times required for various implemcntations of a straightforward simulator. Iven on a fast

vector processor like the Cray-i. this simulation takes several hotirs. The disadvantage to running the

simulation on the Cray computer is that the Cray-i is enormously expensive: at a cost of eight to ten million

dollars it is about 40 times as expensive as a large minicomputer such as a VAX. A solution whereby the

problem can be solved in tens of hours on the VAX would obviously be preferable to any of the points in the

solution space described in the table below.

VAX-11/780 Cray-1 (estimated)

Optimizing Compiler 8000 30

Hand-optimized 5000 16

Table 3-1: Running times, in hours, of an O(N2) program

for 10,000 bodies over 1,000 iterations.

3.2. Other Algorithms In the Literature

Two approaches have been taken to reduce the computational cost of solving the N-body problem. One

approach is to represent the problem in a position-velocity. phase space, and transform the force field using a

Fast Fourier Transform into a form where it can be applied in linear time [13, 14]. This takes O(N log N)

time (dominated by the Fourier Transform) per iteration. However, the phase space must be discrete. This

means that all positions must be multiples of some lattice size a, and that all velocities must be less than some

maximum f Thus, the (physically interesting) effects of tight clusters cannot be modelled.

Another approach is to keep track, for each particie, of the sets of "nearby" particles and "faraway"

particles [1]. The "faraway" particles may be integrated with larger time-steps than the "nearby" particles.

When the particles are uniformly distributed, this has an asymptotic complexity of O(MN5). Unfortunately,

when clustering occurs, the aumber of "nearby" particles is in the same order of magnitude as the total

number of pi cles, and " asynmtotic complexity is again O(M). The problem of small time-steps is

attacked by usir _. spectul-case technique for close two-body interactions, but this technique cannot be

AN III.ICIIN I I'ROGRAI;M OR MANY-I;OI)Y SIM I..LA I IONS 7

applied for tight clusters of three or more particles.

Another similar approach is to divide the universe into cells, computing the particle-particle interactions

within the cell. and then the cell-cell interactions [111. This also has complexity O(,V) fbr a uniform

distribution, and also degrades to a quadratic time-complexity Ahen clustering occurs.

With none of these algorithms is the problem of the \anishingly small discrete ine-step sohed: in the

discrete phase-space approach. the time steps cannot be made smaller and dus information is lost, Ahile in

the second and third approaches. the problem is essentially the same as with the "naive" algorithm.

4. Reducing the Complexity of Each Iteration

To compute the force of gravity on an apple exerted by the Earth. it stffices to treat the Earth as a point

mass: it is not necessary to sum the forces exerted by each atom of the Earth. This is a consequence of the

spherical symmetry of the Earth: Newton invented the integral calculus to prove this fact.

When an attracting body is not spherically symmetric, the result obtained by treating it is a point mass is no

longer exact, but it is a good approximation. This approximation -- in which one attraction between a pair of

point masses is calculated, rather than all the attractions between all their constituent particles -- is the key to

reducing the asymptotic complexity of computing the accelerations from O(,V-) to O(N log N).

4.1. The Monopole Approximation

A divide-and-conquer algorithm can solve the many-body problem in 0(.N log N) time per iteration, and

requires significantly fewer iterations. This order time has not been proved, but a reasonable argument is

given; furthermore, experience with an implementation of the algorithm has shown that it runs as quickly as

expected.

The algorithm relies upon the following approximation: suppose there are two particles, in, and in2, each

no rrre than dr from their center of mass (see Figure 4-1). The gravitational attraction they exert upon an

observer situated a distance r from the center of mass will be

Gn(r + dr) + Gm(r + dr,) G(m, + m,)r + O(dr2).
ir+drl 3 + i rl- = ir +

Because there is no term in dr in this equation, the approximation is good to first order.

Now consider the arrangement of masses shown in Figure 4-2, which we will suppose to be a subset of the

particles in a many-body simulation. To compute the acceleration of each particle on every other, we may

break the computation into three parts: those interactions of two particles which are in the left-hand clump,

a ANI)RIW W APPi. 13 .PIl 1983

/ d r2
r Idr

m2
observer

Figure 4-1: The Monopole Approximation

those interactions of which bath particles are in the right-hand clump, and the interactions of a particle from

each clump. The latter interactions may be approximatecd to order (dr/r)2 by using die approximation

described in the previous paragraph: by computing one interaction, as if each of the two clumps were one

large mass. The number of" computations required to calculate de intcr-clump interaction has thus been

reduced from t,.it to 1: the intra-clump calculation remains unchanged.

rr

nl bodies n2 bodies

Figure 4-2: Two clumps to which the approximation can be applied

Had the two clumps been closer together, then the approximation would no longer have been as good,

since it depends on the value of drir. In that case, more calculations would have had to be done.

4.2. A Data Structure

A method is needed for finding subsets of the particles for which the approximation can be made. This is

made easier by the introduction of an appropriate data structure -- a binary tree whose leaves are particles and

whose internal nodes represent clumps of particles. Every node will have an associated mass and position.

The leaves will have the mass and position of the particles they represent; each internal node will have a mass

equal to the sum of the masses of its two child nodes, and a position equal to the center of mass of its child

nodes. Also associated with each clump (internal node) will be the approximate radius of the clump.

It is now a simple matter to compute all of the gravitational interactions between two clumps that are small

AN F:I IlCIi I' I O(tR\l OR I .\NY ROM) SIMLIA lIONS

relative to their separation, that is,

dr/r< 8 and dr./r<8

for sonc fixed criterion of accuracy S. The parameters dr, and dr, are storcd in the tree: the positions need

onIl be subtracted and multiplied b\ [lie total masses of each clump (also stored in the tree).

If the accuracy criterion is not satisfied, that is. if the clumps ire large and close together. then the

calculation Of the intCraction Of each of the two subclumps of o)nc clum11p With each of the tWo suil)ClUmps of

the other clump must be made. It is not always necessary to "break up" both clumps for this calculation: see

Figure 4-3 for an example in which one clu p satisfies the criterion and need not be split. \hile the other

clump is split into two pieces.

Figure 4-3: An example of the calculation of clump interaction

4.3. The Algorithm

This algorithm can be coded as the following pair of pseudo-Pascal recursive procedures -- procedure

ComputeAcccl computes all of the accelerations internal to one clump, and procedure TwoNode computes

the interactions between two clumps.

procedure ComputeAccel (B)
begin if B is a nontrivial clump

then begin ComputcAcccl(Bleft.child)
ComputcAccel(Brightchild)
TwoNode(Bleft.child B right.child)

end
end

10 ANI)RIW W. APPII. 13 APIRII. 1983

procedure TwoNode(A. 1B)
begin d - r8 - r 4

if (drAld> 8) and (drA > drB)

then begin l'woNodc(/'lict-child, B)

TwoNode(/ngit-chil d , I)
end

else if drq/d> 3
then begin TwoNodc(I. /1,ft-Child)

Two Node(A, Briht-child)

end
else begin Ace 4 - ACCA + GnBdl/d 3

ACCB - .CCB - GmAdld 3

end
end

One detail that for clarity has so far been omitted from the description of the algorithm pertains to the

representation of position. velocity, and acccleration vectors. Rather than storing at each node the absolute

position of the clump associated with that node, the position vector from the node's parent to the node is

stored. (The same applies to Nelocities and accelerations.) This is done in order to minimize round-off errors

in subtractions, which will be discussed in section 7. The absolute position of a particle or clump may be

computed by taking the sum of the position offsets of all its ancestors up to the root, though it is rarely

necessary to compute absolute positions. Note that the algorithm assigns accelerations throughout the data

structure, taking advantage of the relativization of acceleration vectors.

4.4. Analysis of Time Complexity

If the parameter 8 is set to zero, then the TwoNode procedure will always recur down to the level of

individual particles, and the accelerations assigned to the internal nodes will be zero. If 8 is not equal to zero,

then the absolute acceleration of a single particle will be an approximation to the true acceleration. For values

of'8 between 0 and 1, the time complexity of ComputeAccel is estimated (and observed) to be O(N log N).

To see this, consider the number of times a particle X is compoared with other clumps for the purposes of

adding to an acceleration ve.tor. Suppose there is a spherical shell around X of radius r and thickness 8r. If

this shell is filled with clumps of diameter 8.r, then there will be 4/82 clumps in the shell. The smallest sphere

will have a size such that the expected number of galaxies contained within it is 1; the largest will enclose a

volume such that the expected number of galaxies within it is N. The quotient of the radii of the largest and

smallest spheres will therefore be M/ 3. This will be cqual to (1 + 8)k, where k is the number of shells. Then

A\ IFIIC'IIN I I'RO(iRAM 1O, \.\\Y BIDI)Y SIMLI A IONS II

k= log(N)/3 log(l + 6), and the number of clumps for which there must bc calculation of accelerations with

respect to particle X is approximately

4 log N
3 62 log(I + 6)

Note that this number o crcstimates the number of calculations done. in that some of the calculation will

involve not the comparison of X with another clump, but the comparison of an enclosing clump of T with

another clump. tIhat calculation would also be countcd in this analysis as a calculation for A's sibling clump.

and all other subclumps of the encompassing clump. However, this %ill do no more than change the constant

of proportionality: for each of the V galaxies. O(log .V) calculations must be done. giving a total cxCcution

time -- for fixed 8 -- of O(N log N).

4.5. Accuracy of the Algorithm

The parameter 8 is a measure of the accurac) of the calculation. When one clump is compared with

another, and the ratio of diameter to separation is less than 6, then the computed acceleration %ill hae a

fractional error less than 6:. When all the accelerations that clump X feels from other clumps are summed,

the error in acceleration should be proportional to 6 dikided by the square root of the number of clumps

compared with (assuming random directions of the error vector). A more intuitixe explanation of this

statistical argument is that larger clumps will tend to approach some sort of spherically symmetric

distribution, simply because of the large number of randomly positioned particles. In a perfectly spherical

distribution, the error made in assuming that all the mass is positioned at the center is exactly zero. Thus the

error in acceleration, on the average, should be significantly less than 82.

In fact, the distribution of errors, shown in Figure 4-4. is such that there is a maximum absolute error

range, such that for most particles the error is quite small on an absolute scale. For particles with large

accelerations, the proportional error is practically zero. Figure 4-4 was computed by taking a random

distribution of particles and using the (exact) results computed by running the algorithm with 8=0 as the

"Actual" acceleration components, and using the results computed with 6=0.3 as the "Computed"

acceleration components. The absolute errors are the deviations from the line y= x, the scatterplot shows a

good bound on the absolute error.

In those calculations where the exact final positions of the particles is not as important as statistics about

their configurations, a relatively large value of 8 can be used (such as J), greatly reducing the constant factor

in the running time of the O(N log N) program.

It is useful to note that although the O(N 2) algorithm has theoretically complete accuracy in computing

12 ANIRIYV W APPIEJ. I APAIl 1983

accelerations, the fact that thc time intervals iust be made discretc introduces approxination! into any

numerical calcuIaiion lof the ,V-body problem. ly chousing the parametcrs so that the crrors introduccd by

each part (the clump approximation and the discrete-timc approximation) are equal, thc resulting error is

about equal to that of the standard algorithm.

Since tie use of a clumping algorithm to study the formation of galaxy clusters might conceivably be a

cause of systematic error, dhe result of a simulation using this algorithm in which no clustering occurred is of

interest. In this simulation, the galaxies were given higher initial velocities than predicted by theory. and no

measurable clustering occurred (as seen both by the human eye and by a correlation function of interparticle

distance).

5. Reducing the Number of Iterations
When two particles come very close to each other in an inverse-square force field, their accelerations

become extremely high. To model their behavior accurately, extremely small time steps are required. In any

simulation with a large number of particles, there are bound to be a few such pairs at any given tim, , these

pairs require the time increments of the simulation to be so small that the number of iterations required to

integrate over a significant interval of time becomes prohibitively large.

One widely used solution to this problem modifies the force law to limit the accelerations at small

distances. The inherent problem with this approach in the modelling of galaxy clustering is that the clustering

occurs (and should be examined by the simulation) over all distance scales. To tamper with the force law at

small distances makes any conclusions about clustering at these distances suspect.

Fortunately, the data structure introduced in the previous section leads to a solution to this problem that

preserves the invcrse-square properties of the force law at-all distance scales. In section 5.1 an aspect of the

calculation open to algorithmic attack is described, and the attack itself is explained in sections 5.2 and 5.3.

5.1. Characteristic Times

The time increment di between iterations is determined after each iteration. The usual approach is to use a

global dt for all particles. In order to avoid gross inaccuracies at very small distances, the minimum

characteristic time over all particles must be used for d. The characteristic time of an object is a measure of

how long it takes for that object's acceleration to change significantly; the time will be much shorter for a

particle tightly orbiting a neighbor. The occasional tight pairs and threesomes require an expensively small

value for di in the naive algorithm.

AN H, Il ICIIN I PROGRAM IOR M,.NY-IUI)Y SIMLI .VIIONS 13

it
I

.

I..

Figure 4-4: Scattcrplot df components of
actual vs. computed accelerations for 8 =0.3

The characteristic time for a clump C is thc time in which a child of C will move a distance of
approximately 8 times thc child's distance from Cs center of mass. Thiis is casy to calculatc, since die position
vector of each is stored as the vector from (the ccntcr of mass of) C So the characteristic time of C is the min
over both childrcn of t, and tao where

ax I PI = x II

8XIPI = IAIXJI..

(Note that P, , and A are the position, velocity, and acceleration vectors of the children relative to the center
o4rbt cide of -.nd, wer

14 ANIDRFW W. APPIE. .3APRIL 1983

of mass of C.) In each iteration, the accelerations are computed by ComputeAccel, the minimum

characteristic time dt is found. and then Move calculates the new positions and velocities. Calculating the

minimum characteristic time ov cr the entire universe leads to an exceedingly small di, however. Suppose two

or three galaxics get into a tight orbit around each other: their characteristic time may be an order of

magnitude shorter than the characteristic time of any other object in the universe.

It would be nice to be able to iterate small. very tight clusters at shorter time intervals than te rest of the

universe. saving a large amount of calculation. This is not too difficult: what is needed is a concise criterion to

distinguish such clumps.

5.2. Indivisible Clumps

Let such a clump be considered to be one object, indivisible, of nonzero radius. Indivisibility will be

defined as follows: a clump is indivisible if for ali clumps outside it, its ratio of size to distance is less than S.

What indivisibility effectively means is that an indivisible clump will never -- throughout the course of the

acceleration calculations for one iteration -- be "split" by procedure TwoNode to calculate accelerations of its

subclumps with respect to any other clump. This is easy to detect -- simply mark clump A in the first then

clause or clump B in the second then clause of procedure TwoNodce. Any clump that is never marked during

the process of computing all the accelerations is indivisible.

The reason that this criterion is chosen is that it characterizes very well die set of clumps such that the

external gravitational field acting upon them is an almost constant function of position within the clump. In

fact, the monopole approximation has the effect of assuming that this field is constant, and the improved

moving algorithm described below takes advantage of this fact.

Procedure Move, procedure ComputeAccel, and the procedure that determines di will be altered so that

they never look at the internal structure of such a clump. Note that TwoNodc need not be altered, since the

way indivisible clumps are defined implies that TwoNode never looks at their internal structure. Now the

problem is gone: the small, tight cluster of galaxies has become a point (although with nonzero radius). The

time increment di will be much larger than it could have been otherwise.

The internal motions and accelerations of these tight clumps will have to be computed every iteration, and

in fact it will take several local iterations of the tight clump to compute its motion over the time interval d.

However, these iterations of three or four objects are replacing iterations over the entire universe.

AN I':IC1IINI PROGRAM IOR MANY-BODY SIMILATIONS is

5.3. Closed Form Calculations

When an indivisible object itself is a clump containing two indikisible subclumps (these will usually be

simply individual galaxies), then its orbit may he solved in closed form. In this case. the caiculations to

resolve internal moti'-,. may be postponed until another clump gets near enough to see the internal structure

of the object. This may be many iterations of the universe later -- and many times more iterations of the tight

pair. which typically has a much shorter charactecristic time. Only one calculation needs to be made in closed

form to replace these many i:erations: furthermore, this calculation will be exceedingly accurate. since no

approximations are being made internally to the subsystem.

Since indivisibility may occur at several distance scales (indivisible clumps may contain clumps which

themselves contain indivisible clumps, and so on)), the tight-clump calculations (of which the two-body closed

form calculation is a special case) may done recursively.

6. Managing the Data Structure

The efficiency of all parts of the algorithm depends on having the structure of the tree of clumps accurately

reflect the structure of the particles in the simulated space. Under the influence of gravity, the particles move,

distorting the tree. The structure must be maintained and the distortions removed regularly. Fortunately, this

can be done in a simple way.

6.1. Reorganizing the Tree

After moving clumps that are not indivisible, the coordinates of a clump will no longer correspond exactly

to the center of mass of the two subclumps. This is due to a nearby object attracting one subclump more

strongly than the other. It is a simple matter, however, to adjust the position of each clump after its

subclumps have been moved. Sometimes, however, another subclump will intrude into a clump so that the

clumps no longer represent disjoint (in the simulated three-space) clusters. In this case, it is necessary that the

clumps be rearranged (while keeping the actual galaxies fixed). The condition to aim for is this: for every

clump C, the closest clump to C external to C shall be its parent clump. Let Closest(C) be the nearest clump

with which C is compared during the execution of procedure TwoNode. If the distance from C to Closest(C)

is less than the distance from C to its parent, then a new clump W will be formed, which will become the

subclump of Parent(O) in place of C. IV will contain as subclumps C and Closest(C). Now the old parent

clump of Closcst(C) has only one subclump, so it can be liquidated, "promoting" its subclump. 'This process

is represented in Figure 6-1.

Thcse adjustments (which shall be known as Grabs) take place immediately after procedure ComputeAccel

finishes running. Each Grab is a purely local phenomenon in the data structure (only affecting four nodes),

9 L- 1111111"

16 ANI)RIW W. APPIL 13APRI. 1983

before after

Figure 6-1: Rearrangement of Clumps

and preserves the positions, velocities, accelerations, and all other important data of die clumps involved. The

process of Grabbing guarantees that close pairs will be subclunips of the same clump, and that the clumps will

be close to optimally arranged for quickly computing accelerations. Although die Grab algorithm does not

find the "best" arrangement of clumps, it has been observed to do a fairly good job in a very short time (see

Figure 6-2).

The TwoNode procedure that calculates the accelerations throughout the tree also stores information which

is used by the rearrangement algorithm in finding candidates for Grabs. The rearrangement is done after

every iteration: it takes time linear in the number of particles.

6.2. Creating the Tree

While grabbing is very useful in maintaining the clump structure ih the face of distortions, it will not be

able to create one in the first place from a randomly arranged set of galaxies. This will be done as follows.

The universal clump -- which contains all the galaxies -- will be divided initially into two subclumps chosen so

that the first contains all galaxies whose x coordinate is less than the median x coordinate, and the other

subclump will contain all galaxies with x larger than or equal to the median x.

Each of those subclumps will be divided into two sub-subclumps using the median y as the splitting

criterion. Each lower level of clump will be split on z, then x, then y, then z, until the clumps consist of one

galaxy each. Note that this procedure does not require that the number of clumps be a power of two,

although that might seem most natural.

This structure is known as a k-d tree [4]. It has a variety of applications in multidimensional problems,

including searching, nearest-neighbor calculations, classification, numerical integration, and computing11110= =

AN lIICIFNT PROGRAM FOR MANY-ROI)Y SIMLUI AIIONS 17

V V

Figure 6-2: Effect of the Grab Algorithm

Figure 6-2 illustrates the effect of the grab algorithm on a two-dimensional uni'erse. The diagram on the left depicts the clump

structure as first created. by alternately splitting at the median x and y. The diagram on the right shows the structure after several

iterations of Grab. Note that the panicles are in the same positions, but the structure is cleaner -- close pairs arc now all linked directly

together. This improvcd structure may be measured by the fact that the acceleration calculation on the improved structure is empiric.lly

observed to be about twice as efficient as on the original structure.

minimum spanning trees [8, 5, 9]. For a many-body application, a standard k-d tree will be far from optimal

-- nearby objects will not be in the same clump much of the time. The Grab procedure, though its behavior is

difficult to analyze theoretically, has been observed to do a very good job of cleaning up the structure in just

two or three iterations (see Figure 6-2).

7. Implementation of the Program
Various algorithmic attacks using the center-of-mass tree structure have been described in the preceding

sections. It is inappropriate to stop seeking reductions in running time after a good algorithm has been found,

however; significant efficiencies can be achieved in the implementation of a given algorithm.

The algorithm as described was first implemented in about 1200 lines of Pascal on a VAX-11/780. For a

problem size of 10,000 galaxies, this first implementation runs in about forty minutes per iteration, and about

500 iterations are required to simulate the expansion of the universe by a factor of 100. Under the General

Relativistic assumptions made, letting i run from 1 to 1000 causes the distance scales to run from 1 to 100,

ei

18 ANIRI"W W. APPII. 13 APRIL 1983

because distance is proportional to 9/3. Accelerations are transformed at each iteration to correspond with the

changing distance scale. 31T Thus, 340 hours of execution time would be needed for this program, as opposed

to 8000 for the O(A-) algorithm. The times given throughout this paper are for a slight modification of the

algorithm to simulate a periodic distance ftnction, which was necessary ill the initial application. This adds a

small constant factor to all distance calculations (cightecn floating point instructions, or about 25% of the

running time).

A profiler was used to identify those parts of the program that consumed most of the processing time 119).

The profiler operates by asynchronously sampling the computer's program counter 60 times per second and

incrementing the appropriate bin of a distribution finction. The results showed that all but two percent of

the execution time was spent in the TwoNode procedure. This is not unexpected, as TwoNode is the only

part of the algorithm with an order time of O(N log N): the rest of the procedures run in O(N) time. Since

TwoNode is relatively small, hand optimization of the machine code was an obvious step. Writing this

procedure in assembly language resulted in a speedup by a factor of two and a half. This rewriting used

standard techniques, such as keeping more quantities in registers. putting procedure calls in-line, and using

the addressing modes of the VAX more effectively.

At this point we found that the use Of the Floating Point Accelerator option on the VAX significantly

improves the performance of the program. The program was sped up by a factor of two by moving the

calculations to a VAX on which an Accelerator had been installed.

Many-body calculations usually require double -precision arithmetic because of the wide range of distances

involved. Close orbits are often more than four orders of magnitude -- a dozen binary digits -- closer than the

distance to a far-away galaxy. Since the improved algorithm stores all positions relative to the parent clump,

this problem disappears -- typically only one order of magnitude, or less, is involved in the difference between

the size of a clump and the size of its parent clump. The use of 32-bit floating point numbers in place of

64-bit floating point halved the running time of the algorithm.

The factors of two in speed from the use of the Floating Point Accelerator and from the use of single

precision are approximate and interdependent. Table 7-1 shows the running time as a function of these

variables.

Since tight, "indivisible" clumps are recognized and their small time constant does not affect the time

constant of the universe, far fewer iterations are required. Typically, such clumps are iterated about four

times for each iteration of the universal clump. Each of those iterations would have been a global iteration in

the straightforward algorithm, as in that algorithm there is no way to detect a tight clump. A conservative

AN I1l CIIATPROGRAM 101R ,M\NY-I,0I)D SIMLIAfIONS 19

32-bit Floating Point 64-bit Iloating Point

With -PA Hardware 16 28

Without FPA Hardware 25 74

T"ahle 7-1: Running times. in seconds, of an acceleration calculation
for 1,000 bodies on a VAX-I 1/780.

estimate of the number of iterations sa~cd is 50% -- a factor of two speedup.

In the astrophysical applications described in Section 2. in which galaxy clustering Occurs. the d\clopmcnt

Of clusters among the particles simulated leads to greater opportunities for procedure lwoNodc to apply its

approximation. The resulting gain is an empirically observed two-fold speedup in computation of

accelerations.

The program that resulted from these modifications to a 'cry simple iteration method succeeded in

reducing the running time of a simulation from 4000 hours to 20 hours -- a factor of two hundred (for ten

thousand bodies, with 52=0.3). ihis saving was achicvcd by attacking the problem from several angles at

once.

8. Conclusions

It is often very difficult to make 'ne change in a program that makes it faster by more than one order of

magnitude. In this case. even a change that reduced the order time of the algorithm from O(N2) to

O(N log N) increased the efficiency for a typical problem size by only a factor of 12 -- one of der of

magnitude. The four-hundred-fold reduction in running time was the product of savings at all levels of the

conceptual hierarchy, from the idea that some galaxies are in systems by themselves, to the idea that keeping

certain pointers in registers savcs memory references (see 'rable 8-1). ley are in some sense independent

-- improving the efficiency of one level of the hierarchy does not preclude improving the efficiency of

another. Most importantly, all of the savings are multiplied together.

Reddy and Newell [171 have characterized the type of problem for which this multiplicative speedup can be

expected: such a problem has four to eight layers of implementation, such as compu'ter technology.

architecture, algorithm, et cetera. This paper has been concerned with ways to avoid changes in the

technology and architecture layers (i.e., using a Cray-1) because of their expense. Rather, the algorithms,

"knowledge sources," and implementation layers have been attacked.

This brings the running time of the algorithm on a relatively small and inexpensive computer such as the

VAX down to what it would be on a large, extremely fast, and expensive Cray-1. Of this speedup, a factor of

20 NNDRIEW W. .1I'1. 13 APII 1983

I.evel Spcedup Factor I)escription

Algorithm 12 Changing to the O(N log N) algorithm

Problem-Specific 2 Iterating indiv isible chmps b themselves and using
Knowledge closed-form solutions, thus ha!h ing the number o" global iterations.

Algorithm 2 Clustering beha\ior in the simulation produces a clump
(Problcm-Specific) structure %ell-suitcd to the algorithin

System-Independent 2 Use of singie precision floating point rather than double
Codc Tuning precision, made possible by the data stncture

System-l)cpcndent 2.5 Hand-coding die rotutine where most of the time was spent

Hardware 2 Use of the Floating-Point Accelerator

Table 8-1: Summary of the speedups attained at various levels

about two was attributable to technology (the use of die Floating Point Accelerator) and two to

implementation (hand coding a critical routine) -- these could be done for an) program, probably with similar

results. The other factor of a hundred (for ten thousand bodies) came from the exploitation of the data

structure in various ways. The use of a good data structure to provide an asymptotically fist algorithm is

especially important for large problems.

Since the layers of the problem are relatively independent, the technology and architecture layers are still

available for additional speedup factors. If the program were run on a Cray-1 or a Cyber 7600. the 20 hours

of runtime might be reduced to 1 or 2 hours, since most of the efficiency improvements described in this

paper are machine-independent, and these computers are much faster than the VAX (and almost

proportionally more expensive).

The data structure is a variant of one already known in the literature (the k-d tree), but the reorganization

of the tree with the Grab procedure changes it substantially -- it loses the useful (for some applications)

property of being split along planes of constant x.y, and z, and gains the useful (for this application) property

of joining mutually nearest neighbors at all levels of the hierarchy. For the simulation of gravitational

attractions, this turned out to better than halve the number of calculations. Reorganized trees may have other

applications as well; for example, the recognition of individual objects from the point set obtained from a

television camera might be facilitated by an algorithm that could group points together in O(N log N) time.

Some sorts of nearest-neighbor searching might also be made easier.

OIL -. . .. , - " .I , L ,-.,. - i +

.AN IFH]CIIENI PROGRAM [OR MANY-BODY SIMUI A I IONS 21

It is difficult to analyze the properties of bic Grab algorithm. It is low-level in nature: when two points arc

found to bc closer to each other than to their parent nodes, a local rearrangement is done without regard for

the global structure of the tree. That it works as well as it does was difficult to predict. Its behavior is

dependent on S. since these closest pairs arc detected during the TwoNodc procedure: the question of what 8

to use to most efficiently produce a reorganized tree (independent of gravitational considerations) might be

investigated if reorganized trees arc found to be useful in other applications.

:1 .

22 ANIRI-W W. APPUL 13 APRIL 1983

References

[11
Sverre J. Aarseth. J. Richard Gott Il. and Edwin I. Turner. .V-body Sitnulattis of Galaxy Clustering:

L Initial Conditions and Galaxy' Collapse Times. Astroph,, sical Journal. 228 (1979). pp. 664-683.

[21
Alfred V. Aho. John F. Hopcroft, and Jeffrey 1). Ullnan, The Design and -,Inaldsis of(omputer

,,lgorithms Addison-Weslcy, Reading, MA. 1974.

131
Andrew W. Appcl, An Investigation oJ'Galaxy Clustering Using an 1s)mpltoicall, last .V-body
Algorithm, Undcrgraduate Thesis, Princeton University, Princeton, NJ. April 1981.

141
Jon Louis Bentley, luhtidimensional binary search trees used for associative searching. Comm. ACM,
18 (1975), pp. 509-517.

[51
Jon Louis Bentlcy and Jerome H. Friedman. Fast Algorithmsfor Constructing Mlinimnum Spanning

Trees in Coordinate Spaces, IEEFlTransactionson Computers. C-27 (19708). pp. 97ff.

(61
Edward A. Desloge, Classical Mechanics. John Wiley & Sons, New York, NY, 1982.

[71
A. G. l)oroshk'ich, E. V. Kotok. 1. D. Novikov, A. N, Polyudov, Yu. G. Sigov, and S. F. Shandarin,
Dvumernaya model obrazovaniya krupnomasshtabnoi struktury vselennoi (A Two-Dintensional .1lodel of

the Formation of Large-Scale Structures of the Universe), Preprint 83, IPM AN SSSR (Institute for
Problems of Mechanics, Academy of Science, USSR), Moscow, USSR, 1978.

[81
Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel, An Algorithm for Finding Best
Matches in Logarithmic Expected Time, ACM Transactions on Mathematical Software, 3 (1977), pp.
209ff.

[91
Jerome H. Friedman and Margaret H. Wright, A Nested Partitioning Procedure for Numerical Multiple

Integration, ACM Transactions on Mathematical Software, 7 (1981), pp. 76ff.

1101
Edward J. Groth, P. James E. Peebles, Michael Seldner, and Raymond M. Soncira, The Clustering of

Galaxies, Scientific American, 237 (1977), pp. 76 ft.

f111

AN I I Kl N I PROGRAM IOR \lANY-IOIDN SIMLI A IONS 23

Roger W. H-o,,kney and James V,'. I-Fastwood, Conipwer .',in: u/aijt Using l'atli/h" , MtcGraw-I Ilill,

New York. N'), 1981.

(121
M. Joeveer. J. Einasto. and F. lago, }'dcheiska) a Stnik ura V |'i/cnnti (The Cell Structure of the
Univer,. Preprint A- I. AN Fstonskoi SSR, TarLu, Fstionian SSR. L SSR. 1977.

[131
R. [-. Miller and K. II. Prendergast, Stellar Dytnamics in a Discreie Phase Space. Astrophysical
Journal. 151 (1968). pp. 699ff.

[141
R. H. Miller. K. IH. Prcndcrgast. and William J. Quirk, .Vumerical Lperimnents on .Spiral Structure.
Astrophysical Journal, 161 (1970). pp. 903-916.

[151
Charles W. Misner. Kip S. Thorne. and John Archibald Wheeler. Gravitation. W. Fl. Freeman & Co..
San Francisco. CA, 1973.

[161
P. J. E. Peebles. The large-Scale Structure tf'the Universe. Princetomn Unixcrsity Press, Princeton. NJ.
1980.

[171
R. Rcddy and Allen Newell. .Mluitiplirative Speedup ofSysttms, Pcrspecti\cs on Computer Science.
A. K. Jones. ed., Academic Press. New York. NY. 1977. pp. 183-198.

[181
Richard M. Russell, The CRA Y-1 ComputerSystem, Computer Structures: Principles and Examples,
Siewiorek, Daniel P., Bell. C. Gordon, Newell, Allen, ed.. McGraw-Hill, New York. NY, 1982, pp.
743-752.

[191
Unix Programmer's Manual, Computer Science Division, Department of Electrical Engineering and

Computer Science. University of California. Berkeley, CA. Sections prof(l), pc(l), and profil(2)
contain information about the execution profiler.

[201
M. Mitchell Waldrop, The Large-Scale Structure of the Universe, Science, 219 (1983), pp. 1050-1052.

[211
Ya. B. Zeldovich, The Theory of the Large Scale Structure of the Universe, IAU Symposium #79,
International Astronomical Union, Dordrccht, Holland, 1978, pp. 409 fT.

i

DA

FIL

