AD-A129 676 AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATIONS {(OR CRAY
PERFORMANCE FROM A..{U) CARNEGIE-MELLON UNIV PITTSBURGH
PA DEPT QF COMPUTER SCIENCE A W APPEL MAR 83

UNCI ASSIFIED CMU-CS-B3-118 N00014-76-C-0370 F/G 9/2

EN

e
7 83

ome

0 B K
s, = e
| RS

2

o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

ter. Cmy Mrmanco from a VAx)

kndmvw :\nel

vy o e R

e

Y e

-
SESUF Sy T ety 1T DT Nt FANE fnen Tiprg Leteerd

Fii 77 DDCUMENTATION PAGE l BEFORE ConmrEs e moRs

y A
V. WEWRDAT NumEl e . GOVY ACCESSION RO 3. KECIFIERT 'S CATALDS numBER

CMU-CS-83-118 /\D':A | ; q é 74,./a

] 4. TITLE (and Subliile, S. .7\”: OF REPORY & PERIOD COVERED
AN EFFIGIENT PROGRAM FOR MANY~BODY SIMULATIONS -
(RO, CRAY PERFORMANCE FROM A VAX) Interim
€. PERFORWMING ODRG. REPORT NUMBER
7. AUTrOR(s) 8. CONTRACT OR GRANT NUMBER(e)
Andrew W. Appel NOOO14-76-C~0370
9. PE‘FDRH.ING ORGANIZATION NAME AND ADDRESS .
Carnegie-Mellon University " ::giz‘:"%é:sr”:"zo;éc: Tas

Computer Science Department
Pittsburgh, PA 15213

11, CONTROLLING OFFICE NAME AND ADDRESS -1 12. REPORT DATE
Office of Naval Research . March 1983
Arlington, VA 22217 13. NUWBER OF PAGES
) .) 24
14. MONITORING AGENCY NAME & ADDRESS(1f ditieront fromr. Controlling Ollice) 15. SECURITY CLASS. (of thie report)
UNCLASSIFIED
152, DECL ASSIFICATION/DOW
SETEDILE /DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Reporns)

Approved for public relesse; distribution unlimited.

37. DISTRIBUTION STATEMENT (of the abstract ente ¢J in Block 20, 11 diffarent fror: Report)

1t. SUPPLEMENTARY NOTES

1$. XKEY WORDS (Ccatinue on reverse aide il necensary and identily by block number)

2¢. ABLSTRACT (Ccontinue on reverse ¢/Ce 1f necossary and toentily by Blocr mamber)
ticles interacting in a gravitational force ficld is uscful in astrophysics, but such

The simulation of N par
universe as a tree structure with the particles at the

ome costly for large N. Representing the
d with the centers of mass of their descendants
Thesc approaches range from algorithmic changes

simulations bec
Jeaves and internal nodes Jabelle
attacks on the computation time reguired by the problem.

allows several simultancous

- e -
Do Voan 3y V473 LLITICN ©OF VKGVIEL IS GRS ETE MOLA S SITIET
TN CICI-Caes 61D 40 as

LFCL T Y .’~ "“' ‘L)' -’*N OF TeiL Ball (¥he= [ats Potoreg:

MASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Vhea Dae Enterev®

(replacing ar; b(N’) algorithm with an O(N log N) algorithm) to dauwa structure modifications, cgdc-tuﬂihg, 4
and hardwarc modifications. The changes reduced the running time of a large problem (A=10,000) by a |

factor of four hundred. This paper describes both the particular program and the mcthodology underlying '

such spcedups.

$.N 0102- LF- 014- 6601
UNCLASSIFIED

. s — - A (Xhepn gete
. A A i . o 1o § adictech - Akl AT < T AL NP kS Y TN VY e e

: m"s‘ﬂi w

CAU~CS~-83-118

T e s e ST SISO

An Efficient Program
for Many-Body Simulations

(or,'Cray Performance from a VAX)

Andrew W, Appel

March 1983

i
i

!

,‘ Abstract

>\l“hc simulation of V particles interacting in a gravitational force ficld is uscful in astrophysics, but such

L simulations become costly for large N, Representing the universe as a tree structure with the particles at the

i leaves and internal nodes labelled with the centers of mass of their descendants allows several simultancous

i attacks on the computation time required by the problem. These approaches range from algorithmic changes

- (replacing an O(V?) algorithm with an O(N log N) algorithm) to data structure modifications, code-tuning,

[}

i and hardwarc modifications. The changes reduced the running time of a large problem (V=10,000) by a

i factor of four hundred. This paper describes both the particular program and the methodology underlying

f such spcedups

; .

§ \ .

: L

3

' This rescarch was supporied by an NSF Graduate Student Fellowship and by ONR Grant # N00014-76-C-0370.

'
s~

AN EFPICIENUPROGRAM FOR MANY-BODY SIMULATIONS 1

1. Introduction

Isaac Newton calculated the behavior of two particles interacting through the force of grasity, but he was
unable to solve the cquations for three particles. In this he was not alone {6, p. 634]. and systems of three or
more particles can be solved only numerically. Terative methods are usually used. computing at cach discrete

time interval the force on cach particle, and then computing the new velocities and positions for cach particle.

A naive implementation of an iterative many-body simulator is computationally very expensive for large
numbers of particles, where “expensive” means days of Cray-1 time or a year of VAX tme. This paper
describes the developmient of an cfficient program in which scveral aspects of the computation were made
faster. "The initial step was the usc of a new algorithm with lower asymptotic time comptexity; the use of a

better algorithm is often the way to achieve the greatest gains in speed [2].

Since cvery particle attracts cach of the others by the force of gravity, there are O(N?) interactions o
compute for every iteration, Furthermore, for the samie reasons that dhe closed form integral diverges for

small distances (since the force is proportional to the inverse square of the distance between two bodics), the

discrete time interval must be made extremely small in the case that two particles pass very close to cach

other. ‘These are the two probiems on which the algorithmic attack concentrated. By the use of an
appropriate data structure, cach iteration can be done in O(N log V) time, and the time intervals may be
made much larger, thus reducing the number of iterations required. The algorithm is applicable to N-body

problems in any force ficld with no dipole moments.

Using an algorithim with a beuer asymptotic time compiexity yicided a signiticant improvement in running
time. Four additional attacks on the problem were also undertaken, each of which yiclded at least a factor of
two improvement in speed. These attacks ranged from insights into the physics down to hand-coding a
routinc in assembly language. By finding savings at many design levels, the cxccution time of a large
simulation was reduced from (an cstimated) 8000 hours to 20 (actual) hours. The program was used to
investigate open probicms in cosmology, giving cvidence to support a model of the universe with random

initial mass distribution and high mass density.

"This paper describes the problem and its solution, considered from the point of view of a computer scientist
approaching a software engincering problem. Thus, only a brief overview of the physics is given; the
emphasis is on techniques of writing efficient software. Scction 2 explains the nature of the cosmological
questionsthat can be answered by many-body simulations. Section 3 describes some old algorithms for such
simulations, Scction 4 introduces the data structure and the algorithm to reduce the time per itcration, and
Section 5 shows how to use the data structure to reduce the number of iterations. Section 6 shows how to

create the structure and how to keep it from becoming distorted. Section 7 describes an implementation of

e T TG T PO S pon -

2 ’ ANDREW W APPEL : 13 APRIL. 1983

the algorithim. “The techniques used to attain speedups at various design levels are described. These speedups

are summarized, and the design methodology leading to themn is discussed, in Scction 8.

2. Applications in Astrophysics

The scarch for a faster algorithm to compute many-body inicractions in a gravitational force ficld was
motivated by two important questions in cosmology that can be investigated by simulating gravitational
interactions of tens of thousands of galaxies. An cfficient computer program has made it feasible to do such
simulations. This section describes the cosmological applications, and the remaining sections describe the

program,

2.1. How Did Galaxies Form?

[t is generally believed that the carly universe was radiation-dominated. that is. that most of the energy of
the universe was in the form of photons, and the forces on a typical particle were primarily electromagnetic.
The present universe, however, is mass-dominated, with most of the energy condensed into massive bodies
(such as stars), and the primary interaction between these bodics being gravitational (the gravitational force
between the Farth and the Sun, for example. completely dominates the "solar wind™ of photons pushing the

Farth away from the Sun).

The transition between a radiation-dominated and a mass-dominated universe probably took place
rclatively suddenly; after that, massive bodics such as galaxies began to form (they would have been torn
apart in a radiation-dominated universe). Two of the competing theorics describing the formation of

galaxies [20] may be characterized as "top-down™ and "bottom-up," respectively.

In the "top-down" theory [21], galaxy clusters formed as a result of long-range pressure waves left over
from the radiation-dominated universe. A pressurc wave contains alternating regions of high and low density.
When the universe "condensed” and the radiation disappcared, there would be no medium to support the
waves, but the regions of high and low mass-density would remain. It is proposed that the regions of high
density became super-clusters of galaxics; that galaxies formed within these super-clusters; and that stars
formed within the galaxies. Two-dimensional simulations under these assumptions have shown a cell-like
structuring of the clusters [7); it is not clear whether the dimensionality of the simulation is responsible. It
may be that these cells cxist in the present universe [12], but the observations at large distances are not
conclusive,

In the "bottom-up” theory [16], there were no pressure waves, and the universe immediately after
condensation consisted of randomly distributed hydrogen molecules. In a random distribution, there will be

e st bbb

et i R h s

el .

AN FFFICIENT PROGRAM FOR MANY-BODY SIMULATIONS 3

local Aluctuations in mass density, and as the universe expands, the denser regions will tend to cohere, while
the regions of lower density will expand. This will tend to increase the size of the fluctuations, forming stars,
More expansion will increase the size of the fluctuations to that of galaxics and cventually of clusters and

super-clusters of galaxies. The clusters will have a more random structure than in the "top-down” model.

In both theorics. the only significant interactions between galaxies after the condensation are gravitational,
A simulation of the motion of many particles with gravitational interactions can therefore test these theories.
A ten-thousand-galaxy, three-dimensional simukition testing the "bottom-up” theory (that is, starting with a
uniform random distribution of particle positions) has been done using the techniques described in the
remainder of this paper. The result of the simulation is clustering consistent with that observed by
astronomers (sce Figure 2-1 for a picturc of the simulation’s output). A similar test of the "top-down™ theory
has not yet been done, but since this theory differs from the "bottom-up” theory primarily in its specification
of the distribution of the initial placement of the particles, it could be simulated casily using the same

algorithm,

The large-scale simulations done using the program described in Sections 3 through 6 of this paper scem to
imply that the bottom-up modcl can cxplain the present mass distribution of the universe quite well, without

the complicated assumptions inhcrent in the top-down model. -

2.2.Is the Universe Open or Closed?

One of the fundamental questions in cosmology is whether the universe will continue expanding forever, or
whether it will eventually collapse in a gigantic reversal of the Big Bang. One way to answer this question is to
look at the mass density of the universe. If the universe is below a certain “critical density” then expansion
will continue forever; otherwise it will contract. Unfortunatcly, it is difficult to measure the mass density of
the universe. Astrophysicists have been able to make cstimatcs; niost obscrvational cstimates put the mass
density at about a tenth of the critical density. Since Truth, Beauty, and Simplicity demand that the density of
the universe be equal to the critical density {15], a great astronomical scarch has been on for the "missing
mass." The scarch is complicated by the fact that many forms of mass (such as black holes) are difficult to
obscrve directly,

This problem can be avoided by approaches that do not involve direct observation of the mass density.
One such approach is through simulation of the gravitational interactions of galaxies under different
assumptions about the mass density. Groth er al. [10] observed in small simulations that low mass densities
will not lead to the amount of clustering actually observed, and that the critical density would lead to such

clustering. The ten-thousand-body, three-dimensional simulation using the program described later in this

4) ANDREW W, APPEL 13 APRIL. 1983

Figure 2-1: Rcsult of a Simulation
An initial randomly generated configuration of 10,000 galaxies, and the result of simulating the gravitational intcractions of this

configuration as the universe expands by a factor of 7.12, with mass density p = p rjy as a parameter of the simulation.

The particles are in a three-dimensional space which has been projected into two dimensions for this picture. A periodic coordinate
system is used in which the two extreme points in cach dimension are identified. The pictures are scaled 1o the expansion factor of the

simulated universe.

paper was for the higher-density casc; large-scale clustering was observed, lending support to this theory. The

lower-density case can be examined by the same techniques.

3. Previous Algorithms

Because the N-body problem cannot be done in closed form, the calculation must be done numerically.
That is, at cach time 4 the ‘gravitational forces of each mass on cach of the others may be computed by
Newton’s laws. (For an appropriate range of distances -- say, between one and a few hundred million
light-years -- Newton'’s laws are a good approximation to General Relativity.) Using the inverse-square force

law, an approximation to the true acceleration and velocity of each particle over a time df can be computed.

By many iterations of this mecthod, the position of each particle after an arbitrary length of time may be
found.

em—

v o m

AN EFFICIENT PROGRAM FOR MANY -BODY SIMULATIONS b

3.1. A Simple Algorithm
Newton's law of gravity states that the foree between any pair of particles is proportional to the product of

their masses divided by the squarc of the distance between them. Stated as a vector equation,

g, = Gmmt~r)) '
'fj'—r"lj

where r; is the pasition vector of particle 4, ¢, is the acceleration vector of particle /. and G is the universal

gravitational constant.

When there are many particles, the acceleration of cach particle is given by the sum of the accelerations (as
computed by Newton's law) for all the other particles. This is simply a large sct of differential equations. For

two bodices. it is solvable in closed form; however, for more than two bodies no closed form solution exists.

The differential cquation can be integrated numerically using a "naive™ algorithm. At cach itcration,
compute the acceleration acting upon cach particle; from this. compute a modified velocity over the next time

increment, and then compute the position of cach particle at the end of the time increment by calculating

Fnew = Told + v-dt,

The time increment df must be made small enough that the accelerations do not greatly change between ¢ and
t+d.

There arc two problems with this algorithm. ‘The first is that the number of interactions is large as a
function of the number of particles. In particular, the gravitational action of cach particle on cvery other
pariicle must be computed cvery iteration, requiring a total of N~ N opcrations. When N is large (physicists
would like to simulate tens of thousands of particles, although they are rarcly able to do so), an O(N?)

algorithm is extremely costly to execute.,

The sccond problem in many-body simulations is that it usually happens that some pairs of particles in
such a system will pass very close to cach other. Nearby particles in a gravitational ficld usually move at high
specd with respect to each other; the combination of high velocitics and small distances nccessitates an

extremely small time increment between iterations.

One approach to these problems is to usc an extremely fast computer. The Cray-1 computer is very fast at
algorithms that have a "vectorizable” formulation: that is, problems which can be expressed in terms of
clement-by-element arithmetic operations on long arrays of numbers., The acceleration computation can be

formulated in terms of such large vectors. If the vector instructions of the Cray-1 arc used to advantage
(cither by hand-coding, or by using the Cray Fortran compiler with a good understanding of what sorts of

pray-r-ommey

s

6 ANDREW WOAPPLL 13 APRII. 1983

programs the compiler can generate cfficient code for), the tirae required to calculate the acceleration
between two bodics can be estimated at 100 clock cycles (40 of which are nceded for a calculation of a
periadic distance function peculiar to the many-galaxy problem [3]). The time for one clock cycle is 12
nanoscconds (18], and the numnber of pairs of bodics is V*/2, so the time for one iteration can be estimated at
6N microseconds. Using scalar instructions, or using vector instructions with inefficient pipcline behavior.

would more than double the time taken per itcration,

Using a similar program to simulatc ten thousand bodies over onc thousand iterations requires
approximatcly 8000 hours of VAX time (this was extrapolated from observations of 100-particle simulations).
Table 3-1 gives the times required for various implementations of a straightforward simulator. Even on a fast
vector processor like the Cray-1, this simulation takes scveral hours. The disadvantage to running the
simulation on the Cray computer is that the Cray-1 is cnormously cxpensive: at a cost of cight to ten million
dollars it is about 40 times as cxpensive as a large minicomputer such as a VAX. A solution whercby the
problem can be solved in tens of hours on the VAX would obviously be preferable to any of the points in the

solution space described in the table below.

VAX-11/780 Cray-1 (cstimated)
Optimizing Compiler 8000 30
Hand-optimized 5000 16

Table 3-1: Running times, in hours, of an O(N?) program
for 10,000 bodies over 1,000 itcrations.

3.2. Other Algorithms in the Literature

Two approaches have been taken to reduce the computational cost of solving the N-body problem. One
approach is to represent the problem in a position-velocity. phase space, and transform the force field using a
Fast Fouricr Transform into a form where it can be applied in lincar time {13, 14). This takes O(N log N)
time (dominated by the Fourier Transform) per iteration. However, the phase space must be discrete. This
means that all positions must be multiples of some lattice size o, and that all velocities must be less than some
maximum f Thﬁs. the (physically interesting) cffects of tight clusters cannot be modelled.

Another approach is to keep track, for each particic, of the sets of "ncarby” particles and "faraway"
particles {1]. The "faraway" particles may be integrated with larger time-steps than the "ncarby” particles.
When the particles are uniformly distributed, this has an asymptotic complexity of O(N'*). Unfortunately,

when clustering occurs, the number of "nearby” particles is in the same order of magnitude as the total
number of ps -cles, and ~ asymptotic complexity is again O(M). The problem of small time-steps is
attacked by usir,. - specual-case technique for close two-body interactions, but this technique cannot be

S —

T Y 21 i U T AL

i
!
i

AN FELICIENT PROGRAM § OR MANY-EODY SIMULATIONS 7
applicd for tight clusters of three or more particles.

Another similar approach is to divide the universe into cells, computing the particle-particle interactions
within the cell. and then the cell-cell interactions [I1]. This also has complexity O(N'*) for a uniform

distribution, and also degrades to a quadratic time-complexity when clustering occurs.

With none of these algorithms is the problem of the vanishingly small discrete time-step solved: in the
discrete phase-space approach, the time steps cannot be inade smaller and thus information is lost, while in

the second and third approaches. the problem is essentially the same as with the "naive” algorithm.

4. Reducing the Complexity of Each Iteration
To compute the force of gravity on an apple exerted by the Earth. it suffices to treat the Earth as a point
mass; it is not nccessary to sum the forces excrted by cach atom of the EFarth. This is a conscquence of the

spherical symmetry of the Earth: Newton invented the integral calculus to prove this fact.

When an attracting body is not spherically symmetric, the result obtained by treating it is a point mass is no

longer exact. but it is a good approximation. This approximation -- in which on¢ attraction between a pair of
puint masses is calculated. rather than all the attractions between all their constituent particles -- is the key to

reducing the asymptotic complexity of computing the accelerations from O(N-)to O(V log N).

4.1. The Monopole Approximation

A divide-and-conquer algorithm can solve the many-body problem in O(N iog N) time per iteration, and
requircs significantly fewer itcrations. This order time has not been proved, but a reasonable argument is
given; furthermore, experience with an implementation of the algorithm has shown that it runs as quickly as
expected.

The algorithm relics upon the following approximation: suppose there are two particles, m, and m,, cach
no mare than dr from their center of mass (sce Figure 4-1). The gravitational attraction they exert upon an

observer situated a distance r from the center of mass will be

_ Om/(r+dr) Gmyfr+dr,) _ Gim 4+ m)r
= r+dr|? Te+dr, [P T e]?

Because there is no term in dr in this cquation, the approximation is good to first order.

+ O(dr?).

Now consider the arrangement of masses shown in Figure 4-2, which we will suppose to be a subset of the
particles in a many-body simulation. To compute the acceleration of cach particle on every other, we may
break thc computation into three parts: those interactions of two particles which are in the left-hand clump,

8 ‘ ANDREW WO APPEL ’ 13 APRIE 1983

dri
!
%
v dr 3,
R m2
observer

Figure 4-1: The Monopole Approximation

thosc interactions of which bath particles are in the right-hand clump, and the interactions of a particle from
cach clump. The latter interactions may be approximaied to order (/) by using the approximation
described in the previous paragraph: by computing one interaction, as if cach of the two clumps were one
large mass. The number of computations required to calculate the inter-clump interaction has thus been

reduced from n,-n, 1o 1; the intra-clump calculation remains unchanged.

n1 bodies n2 bodies

Figure 4-2: Two clumps to which the approximation can be applicd

Had the two clumps been closer together, then the approximation would no longer have been as good,

since it depends on the value of dr/r. In that case, more calculations would have had to be done.

4.2. A Data Structure

A method is needed for finding subsets of the particles for which the approximation can be made. This is
made casicr by the introduction of an appropriate data structure -- a binary tree whose leaves are particles and
whose internal nodes represent clumps of particles. Every node will have an associated mass and position.
The leaves will have the mass and position of the particles they represent; cach internal node will have a mass
equal to the sum of the masses of its two child nodes, and a position cqual to the center of mass of its child
nodes. Also associated with cach clump (internal node) will be the approximate radius of the clump.

It is now a simple matter to compute all of the gravitational interactions between two clumps that are small

AN FEPICTENT PROGRAM FOR MANY BODY SIMULATIONS 9

eadantiniss

relative to their separation, that is,

dri/r<é and dr./r<8

for some fixed criterion of accuracy 8. The parameters dr, and dr, are stered in the tree: the positions need |

only be subtracted and multiplied by the total masses of cach clump (also stored in the tree).

If the accuracy criterion is not satstied. that s, if the clumps are large and close together, then the
calculation of the interaction of cach of the two subclumps of one clump with cach of the two subclumps of i
the other clump must be made. It is not always neeessary to "break up” both clumps for this calculation; sce
Figurce 4-3 for an cxample in which ong clﬂmp satisfies the criterion and nced not be split. while the other

clump is split into two picces.

Figure 4-3: An cxample of the calculation of clump interaction

4.3. The Algorithm
This algorithm can be coded as the following pair of pscudo-Pascal recursive procedures -- procedure
ComputeAccel computes all of the accelerations internal to one clump, and procedure TwoNode computes

the interactions between two clumps,

procedure ComputeAccel (B)
begin if B is a nontrivial clump
then begin ComputeAccel(Biop-chitg)
ComputcAccel(Bright-chitd)
TwoNode(Bien-chitd: Bright-child)
end

end

10 _ ANDREW W APPEL 13 APRIL 1983

procedure 1'woNode(A, B)
hegind « rp—r,
if (dry/d>8) and (dryg>drp)
then begin 1'woNodel A qi-chitg:)
TwoNode(Anghl‘child' /3)
end
else if drp/d>§
then begin TwoNode(A, Bieqi-chitd)
TwoNode(A, Brgn-chita)
end
else begin Acc 4 « Acc 4 + Gmpd/d?
Accg = Accg— Gmd/d?
end
cnd

One detail that for clarity has so far been omitted from the description of the algorithm pertains to the
representation of position, velocity, and acecleration vectors. Rather than storing at cach node the absolute
position of the clump associated with that node, the position vector from the node’s parent to the node is
stored. (The same applies to velocities and accelerations.) This is done in order to minimize round-off errors
in subtractions, which will be discussed in section 7. The absolute position of a particle or clump may be
computed by taking the sum of the position offsets of all its ancestors up to the root, though it is rarcly
necessary to compute absolute positions, Note that the algorithm assigns accelerations throughout the data

structure, taking advantage of the rclativization of acceleration vectors.

4.4. Analysis of Time Complexity

If the parameter § is sct to zcro, then the TwoNode procedure will always recur down to the level of
individual particles, and the accclerations assigned to the internal nodes will be zero. If § is not equal to zero,
then the absolute acceleration of a singie particle will be an approximation to- the truc acccleration. For valucs

of & between 0 and 1, the time complexity of ComputcAccel is estimated (and observed) to be O(N log N).

To see this, consider the number of times a particle X is compared with other clumps for the purposes of
adding to an acceleration vector. Suppose there is a spherical shell around X of radius r and thickness &-7. If
this shell is filled with clumps of diameter §-r, then there will be 4/8% clumps in the shell. The smallest sphere
will have a size such that the expected number of galaxics contained within it is 1; the largest will enclose a

volume such that the expected number of galaxies within it is N. The quoticnt of the radii of the largest and
smallest spheres will therefore be M/2, This will be cqual to (1+ 8)¥, where k is the number of shells. Then

ANPFVICIENT PROGRAM TOR MANY -BODY SIMUL ATIONS 11

A= log(V)/3 log (1 + §), and the number of clumps for which there must be calculation of accelerarions with
respect Lo particle X is approximately

__dloghN

38 Tog(1+38)

Note that this number overestimates the number of calculatons done, in that some of the caleulation will
imvolve not the comparison of X with another clump. hut the comparison of an enclosing clump of Y with
another clump. ‘That calculation would also be counted in this analysis as a calculation for X's sibling clump,
and all other subclumps of the encompassing clump. However, this will do no more than change the constant
of proportionality: for cach of the .V galaxics. @(log V) calculations must be donc. giving a total cxecution
time -- for fixed § -- of O(.V log V).

4.5. Accuracy of the Algorithm

The parameter 8 is a measure of the accuracy of the calculation. When one clump is compared with
another. and the ratio of diameter to separation is less than §, then the computed acceleration will have a
fractional crror less than §°. When all the accelerations that clump X feels from other clumps are sumined,
the crror in acceleration should be proportional to 8° divided by the square root of the number of clumps
compared with (assuming random directions of the crror vector). A more intuitive explanation of this
statistical argument is that larger clumps will tend to approach some sort of spherically symmetric
distribution, simply because of the large number of randomly positioned particles. In a perfectly spherical
distribution, the crror made in assuming that all the mass is positioned at the center is exactly zero. Thus the

error in acceleration, on the average, should be significantly less than §2.

In fact, the distribution of crrors, shown in Figure 4-4, is such that there is a maximum absolute error
range, such that for most particles the error is quite small on an absolute scale. For particles with large
accelerations, the proportional crror is practically zero. Figure 4-4 was computed by taking a random
distribution of particles and using the (exact) results computed by running the algorithm with § =0 as the
"Actual” acccleration components, and using the results computed with §=0.3 as the "Computed”
acceleration components. The absolute errors are the deviations from the line y= x, the scatterplot shows a
good bound on the absolute crror.

In those calculations where the cxact final positions of the particles is not as important as statistics about
their configurations, a relatively large value of 8 can be used (such as 1), greatly reducing the constant factor
in the runnirg time of the O(N log N) program, '

It is useful to note that although the O(MN?) algorithm has theorctically complete accuracy in computing

r

12 ANDREW W APPEL 13AP41 1983

accelerations, the fact that the time intervals must be made discrete introduces approximations iato any
numerical calculation of the V-body problem. By chousing the parameters so that the errors introduced by
cach part (the clump approximation and the discrete-time approximation) are cqual, the resulting ¢rror is

about cqual to that of the standard algorithm.

Since the use of a clumping algorithm 1o study the formation of galuxy clusters might conceivably be a
cause of systematic error, the result of a simulation using this algorithm in which no clustering occurred is of
interest. In this simulation, the galaxics were given higher initial velocitics than predicted by theory, and no
measurable clustering occurred {as scen both by the human eye and by a correlation function of interparticle

distance).

5. Reducing the Number of Iterations
When two particles come very close to cach other in an inverse-square force ficld, their accelerations

become extremely high. To model their behavior accurately, extremely small time steps arc required. In any

simulation with a large number of particles, there are bound to be a few such pairs at any given time , these

pairs require the time increments of the simulation to be so small that the number of iterations required to

integrate over a significant interval of time hecomes prohibitively large.

Onc widely used solution to this problem modifies the force law to limit the accelerations at small
distances. The inherent problem with this approach in the modelling of galaxy clustering is that the clustering
occurs {(and should be examined by the simulation) over all distance scales. To tamper with the force law at

small distances makes any conclusions about clustering at these distances suspect.

Fortunately, the data structure introduced in the previous scction lcads to a solution to this problem that
preserves the inverse-squarce propertics of the force law at-all distance scales. In section 5.1 an aspect of the
calculation open to algorithmic attack is described, and the attack itsclf is explained in sections 5.2 and 5.3.

5.1. Characteristic Times

The time increment d¢ between iterations is determined after cach iteration. The usual approach is to use a
global dr for all particles. In order to avoid gross inaccuracies at very small distances, the minimum
characteristic time over all particles must be used for dt. The characteristic time of an object is a measure of
how long it takes for that object’s acceleration to change significantly; the time will be much shorter for a
particle tfghtly orbiting a neighbor. The occasional tight pairs and threesomes require an expensively small

value for d! in the naive algorithm.

- e 2m

AN EFRICIENT PROGRAM FOR MANY-BODY SIMUI ATIONS 13

]
|

tom ~™p

*

wred Auc‘gn’

C.n'
k!

. —A‘fggl A-‘:iit"l”\ ->

—————— e S ——— W ———
e —

Figure 4-4: Scauterplot 6f components of
actual vs. computed accelerations for § = 0.3

The characteristic time for a clump C is the time in which a child of C will move a distance of
approximatcly & times the child's distance from C's center of mass. This is casy to calculate, since the position
vector of cach is stored as the vector from (the center of mass of) C. So the characteristic time of C is the min
over both children of ¢, and ¢, where

x| P| = 4,x|V|
8x|P| = | A]x}el

(Note that P, V, and 4 are the position, velocity, and acceleration vectors of the children relative to the center

Py

14 ‘ ANDREW W. APPEL : 13 APRIL. 1983

of mass of C) In cach itcration, the accelerations are computed by ComputeAccel, the minimum
characteristic time dr is found. and then Move calculates the new positions and velocities. Caleulating the
minimum characteristic time over the entirc universe leads to an excecdingly small dr, however. Supposc two
or three galaxics get into a tight orbit around cach other: their characteristic time may be an order of

magnitude shorter than the characteristic time of any other object in the universe,

It would be nice to be able to iterate small, very tight clusters at shorter time intervals than the rest of the
universe. saving a large amount of calculation. 'this is not too difficult: what is neceded is a concise criterion to

distinguish such clumps.

5.2. Indivisible Clumps

Let such a clump be considered to be one object, indivisible, of nonzero radius. Indivisibility will be
defined as follows: a clump is indivisible if for all clumps outside it, its ratio of sizc to distance is less than §.
What indivisibility cffectively means is that an indivisible clump will never -- throughout the course of the
acccleration calculations for onc iteration -- be "split” by procedure TwoNode to calculate accelerations of its
subclumps with respect to any other clump. This is casy to detect -- simply mark cluinp A in the first then
clause or clump B in the sccond then clause of procedure TwoNode. Any clump that is never marked during

the process of computing all the accelerations is indivisible,

The rcason that this criterion is chosen is that it characterizes very well the set of clumps such that the
external gravitational ficld acting upon them is an almost constant function of position within the clump. [n
fact, the monopole approximation has the cffect of assuming that this ficld is constant, and the improved

moving algorithm described below takes advantage of this fact,

Procedure Move, procedure ComputeAccel, and the procedure that determines dr will be altered so that
they never look at the internal structure of such a clump. Note that TwoNode need not be altered, since the
way indivisible clumps are defined implics that TwoNode never looks at their internal structure. Now the
problem is gone: the small, tight cluster of galaxics has become a point (although with nonzero radius). The

time increment dt will be much larger than it could have been otherwise.

The internal motions and accelerations of these tight clumps will have to be computed every iteration, and

in fact it will take several local iterations of the tight clump to compute its motion over the time interval dl.

However, these itcrations of three or four objects are replacing iterations over the entire universe.

AN EFFICIENT PROGRAM F'OR MANY-BODY SIMULATIONS 15

5.3. Closed Form Caiculations

When an indivisible object itself is a clump containing two indivisible subclumps (these will usually be
simply individual galaxics). then its orbit may be solved in closed form. In this case, the caiculations to
resolve internal moti-v, may be postponed until another clump gets near cnough to see the internal structure
of the object. This may be many iterations of the universe later -- and many times more itcrations of the tight
pair, which typically has a much shorter characteristic time. Only one cilculation needs to be made in closed
form to replace these many ierations: furthermore, this calculation will be exceedingly accurate, since no

approximations arc being made internally to the subsystem.

Since indivisibility may occur at several distance scales (indivisible clumps may contain clumps which
themselves contain indivisible ciumps, and so on})), the tight-clump calculations (of which the two-body closed

form calculation is a special casc) may done recursively.

6. Managing the Data Structure

The efficiency of all parts of the algorithm depends on having the structure of the tree of cluimps accurately
reflect the structure of the particles in the simulated space. Under the influence of gravity, the particles move,
distorting the tree. The structure must be maintained and the distortions removed regularly. Fortunately, this

can be done in a simple way.

6.1. Reorganizing the Tree

After moving clumps that are not indivisible, the cuordinates of a clump will no longer correspond exactly
to the center of mass of the two subclumps. This is duc to a ncarby object attracting one subclump more
strongly than the other. It is a simple matter, however, to adjust the position of cach clump after its
subclumps have been moved. Somctimes, however, another subclump will intrude into a clump so that the
clumps no longer represent disjoint (in the simulated three-space) clusters. In this case, it is necessary that the
clumps be rearranged (while keeping the actual galaxics fixed). The condition to aim for is this: for every
clump C, the closest clump to C cxternal to € shall be its parent clump. 1.t Closest(C) be the nearest clump
with which C is compared during the exccution of procedure TwoNode. If the distance from C to Closest(C)
is less than the distance from C to its parent, then a new clump W will be formed, which will become the
subclump of Parent(C) in place of C. W will contain as subclumps C and Closest(C). Now the old parent
clump of Closest(C) has only one subclump, so it can be liquidated, "promoting™ its subclump. This process
is represented in Figure 6-1, -

These adjustments (which shall be known as Grabs) take place immediately after procedure ComputeAccel

finishes running. Each Grab is a purely local phenomenon in the data structure (only affecting four nodes),

16 i ANDREW W, APPEL 13 APRIL. 1983

O

after

Figure 6-1: Rcarrangement of Clumps

and preserves the positions, velocitics, accclerations, and all other important data of the clumps invoived. The
process of Grabbing guarantees that close pairs will be subclumps of the same ¢lump, and that the clumps will
be cluse to optimally arranged for quickly computing accelerations. Although the Grab algorithm docs not
find the "best” arrangement of clumps, it has been observed to do a fairly good job in a very short time (sce
Figure 6-2).

The TwoNode procedure that calculates the accelerations throughout the tree also stores information which
is used by the rcarrangement algorithm in finding candidates for Grabs. The rearrangement is done after

cvery iteration; it takes time linear in the number of particles.

6.2, Creating the Tree

While grabbing is very useful in maintaining the clump structure in the face of distortions, it will not be
able to create onc in the first place from a randomly arranged sct of galaxics. This will be done as follows.
‘The universal clump -+ which contains all the galaxics - will be divided initially into two subclumps chosen so
that the first contains all galaxics whose x coordinate is less than the median x coordinate, and the other

subclump will contain all galéxics with x larger than or cqual to the median x.

Each of those subclumps will be divided into two sub-subclumps using thc median y as the splitting
criterion. Each lower level of clump will be split on z, then x, then y, then z, until the clumps consist of one
galaxy each. Note that this procedure does not require that the number of clumps be a power of two,
although that might scem most natural.

This structure is known as a k-d tree [4]). It has a variety of applications in multidimensional pfoblems.

including scarching, nearest-neighbor calculations, classification, numerical integration, and computing

N e 7 e A

AN LUFICIENT PROGRAM FOR MANY-BODY SIMULATIONS 17

=
Y
e

Figure 6-2: Effcct of the Grab Algorithm
Figure 6-2 illustrates the effect of the grab algorithm on a two-dimensional universe. The diagram on the left depicts the clump
structure as first created, by alternately splitting at the median x and y. The diagram on the right shows the structure after several
iterations of Grab. Note thal the panticles are in the same positions, but the structure is cleaner -- close pairs are now all linked directly
together. ‘This improved structure may he measured by the fact that the acccleration caleulation on the improved structure is empirically

obscrved to be about twice as efficient as on the original structure.

minimum spanning trees [8, 5, 9). For a many-body application, a standard k-d tree will be far from optimal
- nearby objects will not be in the same clump much of the time. The Grab procedure, though its behavior is
difficult to analyze theoretically, has been observed to do a very good iob of cleaning up the structure in just
two or three iterations (sce Figure 6-2).

7. Implementation of the Program

Various algorithmic auacl.(s using the center-of-mass tree structure have been described in the preceding
sections. It is inappropriate to stop seeking reductions in running time after a good algorithm has been found,
however; significant cfficiencics can be achicved in the implementation of a given algorithm.

The algorithm as described was first implemented in about 1200 lines of Pascal on a VAX-11/780. For a
problem size of 10,000 galaxies, this first implementation runs in about forty minutes per itcration, and about
500 itcrations are required to simulate the expansion of the universe by a factor of 100. Under the General
Relativistic assumptions made, letting ¢ run from 1 to 1000 causcs the distance scales to run from 1 to 100,

e

A - e

18 ANUGREW WOAPPEL 13 APRI. 1983

because distance is proportional to £/°, Accelerations are transformed at cach iteration to correspond with the
changing distance scale. (3] Thus, 340 hours of exccution time would be needed for this program, as opposed
to 8000 for the O(N?) algorithm. The tmes given throughout this paper are for a slight modification of the
algorithm to simulate a periodic diétuncc function. which was necessary in the initial application. This adds a
small constant factor to all distance calculations (cighteen floating point instructions, or about 25% of the

running time).

A protiler was used to identify thuse parts of the program that consumed most of the processing time [19).
The profiler operates by asynchronousiy sampling the computer’s program counter 60 times per second and
incrementing the appropriate bin of a distribution function. The results showed that all but two percent of
the cxceution time was spent in the ‘TwoNode procedure. This is not unexpected, as TwoNode is the only
part of the algorithm with an order time of O(N log N): the rest of the procedures run in O(N) time. Since
TwoNodc is relatively small, hand optimization of the machine code was an obvious step. Writing this
proceduse in assembly language resulted in a specdup by a factor of two and a half. This rewriting used
standard techniques, such as keeping more quantitics in registers. putting procedure calls in-line, and using

the addressing modes of the VAX more effectively.

At this point we found that the usc of the Floating Point Accelerator option on the VAX significantly
improves the performance of the program. The program was sped up by a factor of two by moving the

calculations to a VAX on which an Accelerator had been installed.

Many-body calculations usually require double-precision arithmetic because of the wide range of distances
involved. Close orbits are often more than four orders of magnitude -- a dozen binary digits -- closer than the
distance to a far-away galaxy. Since the improved algorithm stores all positions relative to the parent clump,
this problem disappears -- typically only one order of magnitude, or less, is involved in the difference between
the size of a clump and the size of its parent clump. The usc of 32-bit floating point numbers in place of

64-bit floating point halved the running time of the algorithm.

The factors of two in speed from the use of the Floating Point Accelerator and from the use of single
precision are approximate and interdependent. Table 7-1 shows the running time as a function of these

variables.

Since tight, "indivisible" clumps are recognized and their small time constant does not affect the time

constant of the universe, far fewer itcrations are required. Typically, such clumps arc itcrated about four

times for each iteration of the universal clump. Each of those iterations would have been a global iteration in
the straightforward algorithm, as in that algorithm there is no way to detect a tight clump. A conservative

N

v
[

AN EFICHENT PROGRAM FOR MANY-RODY SIMULATIONS 19

32-bit Floating Point 64-bit Floating Point
With FPA Hardware 16 28
Without I'PA Hardware 25 74

e = -

Table 7-1: Running times, in seconds, of an acceleration caleulation
for 1.000 bodics on a VAX-11/780.

estimate of the number of iterations saved is 50% -- a factor of two speedup.
In the astrophysical applications described in Section 2, in which galaxy clustering oceurs, the development

of clusters among the particles simulated leads to greater opportunitics for procedure ‘TwoNode 1o apply its

approximation. The resulting gain is an cmpirically obscrved two-fold specdup in computation of

accelerations.

The program that resulted from these modifications 0 a very simple iteration method succeeded in
reducing the running time of a simulation from 4000 hours to 20 hours -- a factor of two hundred (for ten
thousand bodics, with §2=0.3). This saving was achicved by attacking the probiem from scveral angles at

once.

8. Conclusions ,

It is often very difficult to make ene change in a program that makes it faster by more than onc order of
magnitude. In this case, cven a change that reduced the order time of the algorithm from O(N?) to
O(N log N) increased the efficiency for a typical problem size by only a factor of 12 -- onc order of
magnitude. The four-hundred-fold reduction in running time was the product of savings at all ievels of the

conceptual hierarchy, from the idca that some galaxies are in systems by themselves, to the idea that keeping

certain pointers in registers saves memory references (see Table 8-1). They are in some sense independent
-- improving the cfficiency of onc level of the hicrarchy docs not preclude improving the cfficiency of
another. Most importantly, all of the savings are multiplicd together.

Reddy and Newell [L7] have characterized the type of problem for which this multiplicative speedup can be
expected: such a problem has four to cight layers of implementation, such as computer technology,
architecture, algorithm, et cetera. This paper has been concerned with ways to avoid changes in the
technology and architecture layers (i.c., using a Cray-1) because of their expense. Rather, the algorithms,
"'knowlcdge sources,” and implementation layers have been attacked.

This brings the running time of the algorithm on a relatively small and inexpensive computer such as the
VAX down to what it would be on a large, extremely fast, and expensive Cray-1. Of this speedup, a factor of

20) ANDREW WoAPPEL 13 APRT 1983

Level Speedup Factor Description

Algorithm 12 Changing to the O(.V log N) algorithin

Problem-Specific 2 lterating indivisibie clumps by themselves and using

Knowledge closed-form solutions, thus halving the number of global iterations.

(9]

Algorithm Clustering behavior in the simulation produces a clump
{Problem-Spccific) structure well-suited to the algorithin

tJ

System-Independent Use of singte precision floating point rather than double

Codc Tuning precision, made possible by the data structure
System-1Dependent 2.5 Hand-coding the routine where most of the time was spent
Hardware 2 Use of the FFloating-Point Accelerator

Table 8-1: Summary of the spcedups attained at various levels

about two was attributable to technology (the use of the [Floating Point Accelerator) and two to
implementation (hand coding a critical routine) -- these could be done for any program. probably with similar
results. The other factor of a hundred (for ten thousand bodies) came from the exploitation of the data
structure in various ways. The use of a good data structure to provide an asymptotically fust algorithm is

especially important for large problems,

Since the layers of the problem are relatively independcent, the technology and architecture layers are still
available for additional specdup factors. If the program were run on a Cray-1 or a Cyber 7600, the 20 hours
of runtime might be reduced to 1 or 2 hours, since most of the cfficiency improvements described in this
paper are machinc-independent, and these computers are much faster than the VAX (and almost

proportionally more expensive).

The data structure is a variant of one alrcady known in the literature (the k-d trec), but the reorganization
of the tree with the Grab procedure changes it substantially -- it loses the useful (for some applications)
property of being split along plancs of constant x.y, and z, and gains the uscful (for this application) property
of joining mutually nearest neighbors at all levels of the hicrarchy. For the simulation of gravitational

attractions, this turned out to better than halve the number of calculations. Reorganized trecs may have other

applications as well; for example, the recognition of individual objects from the point sct obtained from a
television camera might be facilitated by an algorithm that could group points together in O(N log N) time,
Some sorts of nearcst-neighbor searching might also be made easier.

AN EFFICIENT PROGRAM IFOR MANY-BODY SIMUI ATIONS 21

[t is difficult to analyzc the propertics of the Grab algorithm. It is low—lcicl in nature: when two points are
found to be closer to cach other than to their parent nodes, a local rearrangement is donc without regard for
the global structuse of the tree. That it works as well as it does was difficult to predict. 1ts hehavior is
dependent on 8. since these closest pairs are detected during the TwoNode precedure: the question of what 8
to use to most ctficiently produce a reorganized tree (independent of gravitational considerations) might be

investigated if reorganized trees are found to be useful in other applications.

. wadda

Jaiamme e

L

2

(1

3]

[4)

(3]

o1

"

(8]

)

[10)

ANDREW WO APPEL 13 APRIL 1983

References

Sverre J. Aarseth, J. Richard Gott 111, and Edwin L. Turner, N-body Simulations of Galaxy Clustering:
1. Initial Conditions and Galaxy Collupse Times, Astrophysical Journal, 228 (1979). pp. 664-683.

Alfred V. Aho. John E. Hoperoft, and Jeffrey 1. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974,

Andrew W, Appel. An Investigation of Galaxy Clustering Using an Asymptotically Fast N-body
Algorithm, Undcergraduate Thesis ., Princeton University, Princeton, NJ. April 1981,

Jon Louis Bentey, Multidimensional binary scarch trees used for associative searching, Comm, ACM,
18 (1975), pp. 509-517.

Jon Louis Bentley and Jerome H. Friedman, Fast Algorithms for Constructing Minimum Spanning
Trees in Coordinate Spaces, 1EEE Transactions on Computers, C-27 (1‘//8\ pp. 97T,

Edward A. Desloge, Classical Mcchanies. John Wiley & Sons, New York, NY, 1982,

A. G. Doroshkevich, E. V. Kotok. 1. D. Novikov, A. N, Polyudov. Yu. G. Sigov, and S. F. Shandarin,
Dvumernaya model obrazovam ya krupnomasshtabnoi strukiury vselennoi (4 Two- Dimensional Model of
the Fornation of Large-Scule Structures of the Universe), Preprint 83, IPM AN SSSR (Institute for
Problems of Mechanics, Academy of Science, USSR), Moscow, USSR, 1978.

Jerome H. Fricdman, Jon [_ouis Bentley, and Raphacl Ari Finkel, An Algorithm for Finding Best
Matches in Logarithmic Fxpected Time, ACM Transactions on Mathematical Software, 3 (1977), pp.
2091,

Jerome H. Friedman and Margarct H. Wright, A Nested Partitioning Procedure for Numerical Multiple
Integration, ACM Transactions on Mathematical Software, 7 (1981), pp. 76fF.

Edward J. Groth, P. James E. Peebles, Michacl Seldner, and Raymond M. Soncira, The Clustering of
Galaxies, Scientific American, 237 (1977), pp. 76 ff.

(12]

{13]

{14]

(15]

(16]

(171

(18]

(19]

20]

21]

AN FLHHICH NTPROGRAM FTOR MANY-BODY SIMULATIONS 23

Roger W. Hockney and James V. Eastwood. Computer Simulation Using Particles, McGraw-1Hill,
New York, NY, 1981,

M. Joeveer, J. Einasto. and F. Tago. Yacherskaya Struknura Vseiennoi (The Cell Structure of the
Universe), Preprint A-1 AN Estonskoi SSR. Tartu, Estonian SSR. USSR, 1977.

R. H. Miller and K. H. Prendergast, Siellar Dynamics in a Discrete Phase Space. Astrophysical
Journal, 151 (1968). pp. 699(T.

R. H. Miller, K. H. Prendergast. and William J. Quirk, Numerical I'xperiments on Spiral Structure,
Astrophysical Journal, 161 (1970). pp. 903-916.

Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler, Gravitation, W. H. Freeman & Co..
San Francisco, CA, 1973.

P.J. E. Pecbles. The Large-Scale Structure of the Universe, Princeton University Press, Princeton. NI,
1980.

R. Reddy and Allen Newell, Mudtiplicative Speedup of Systcms, Perspectives on Computer Science,
A. K. Jones, cd., Academic Press. New York, NY, 1977, pp. 183-198.

Richard M. Russcli, The CRAY-I Computer System, Computer Structures: Principles and Examples,
Siewiorck, Danicl P., Bell, C. Gordon, Newcll, Allen, ed.. McGraw-Hill, New York. NY, 1982, pp.
743-752.

Unix Programmer’s Manual, Computer Scicnce Division, Department of Flectrical Engincering and
Computer Science, University of California, Berkeley, CA. Scctions prof(1), pe(1), and profil(2)
contain information about the exccution profiler,

M. Mitchell Waldrop, The Large-Scale Structure of the Universe, Science, 219 (1983), pp. 1050-1052.

Ya. B. Zeldovich, The Theory of the Large Scale Structure of the Universe, IAU Symposium #79,
International Astronomical Union, Dordrecht, Holland, 1978, pp. 409 f.

