
AD-A129 665 WORST-ASE ANALYSES 0F SELFORGANIZING *SEQUENTA
SEARCH -lEURISTCS..U) CARNEGIE-MELLON UNIV PITSBURGH
PA DEPT 0F COMPUT ER SCIENCE JLBENTLYE LUN SSIFES 28 MAR 83 CMU-CS-83-121 N0055 C-0 / 1 NLEhCA nhEEI 00 1 im010oEECUP

monflfflfon4

Im



' LIN5

*

MICROCOPY RESOLUTION TEST CHART
N11NAL BUREAU OF STANDARD-1963-A

mliit- " II,

, .. ,,, !3,



CIW-CS-53-1 21

(D Worst-Case Analyses of
Self-Organizing

Sequential Search Ieuristics 1

Jon Louis Bcndey 2

Catherine Cole McGeoch
Department of Computer Science

Carnegie-Mcllon University
q Pittsburgh, Pennsylvania 15213

23 March 1983

DEPARTMENT
of

COMPUTER SCIENCE LT. .

Thio&_ument h.9

C-)iut a oC-ds t

L:J

Carnegie-Mellon University.-

____ ... 88 06 II



SILCUSII CLASS5II ' or Too P &cg 0%"~e Doe Emuoeid

PFEP,:)RT DOCUMENTATION PAGE VIE.R ____________________

Sk nli usbzC Govi ACCESSIONf NO .3.PewSCTLGNME

CtW-CS-83-12l W.L-r 6(____________
A. TITLE (AfE.egwmlej S. TyPE or REPORT 6 PERIOD COVERZO

WCRS -CASE ANALYStES 0t SELF-ORGANIaING .Interim

SEQ'JEINrflAL SEAP.CH HEURISTICS S. 1101RFORMIN6 ORG. REPORT NUMSeR

7. £uTMOR~qj a . COMIRICT OK GRANT uUmICR(eI

Jon Louis Bentley- on leave at Bell Labs. ,NJ NU014-(6-C-0370
Catherine Cole McGeoch
9. P&IRFORMING ORGANIZATION NAME AND ADDRESS to. P;ROGRaw CLE1ENT. PROJECT.TASK

Carnegie-Mellion University AE OI NT~ma

Computer Science Department
Pittsburghts PA 15213

[If. CONTROLLING OFrICE NAMIE AND ADDRESS StI. REPORT DATE

Office of Naval Research March____ 28,_________
aArlington, VA 2221713 uBROPAE

V4. MONIoTORING AGENCY NAME &ADDRESS(iI diIaI dSMI C41R.IMS OffiS) 11L SECURITY CLAMS (of tis uopwev

- . UNCLASSiFIED
IS.. DECL ASSIFCATIONOOWNGRAOING,

IS. DISTRIBUTION STATEMENT (ofaiRp~t Ah- Pop"Eu

Approved forpfublic release; distibu tion unlimited

t7. DiSTRIOU11ON SIATELMINT (of I%. 4betroaU oneti.,.Ex Stock 20. LIdill .1mg from Ropeta

IS SUPPLEMENTARY NOTES

19. Key WORDS (Cc-"###e. on #*v.,.. aide of n.....wy and Ideity by black OmSAeJ

0.AS RACT tfooltoe en covers* aid.ei #0 #6e...and identify by Stock aIWmb..

The -cf fcrnm_-re of sequenTiali sext c=n oe enhanced by ihe use off heiistlcshat mo% a elerncnts closer wo

.*-c fren: of 1he ;s a hey are found. Previous 3nalyses have c!harame4-4.2'd the performanee cf9.suet heuristicst ~caly I this paper C~ show thatI the hewistis can also be analyzed i the worst-c-ise sense. and

DD IJr)1473 EDITION Or I Move$ IS 0OS4IETS 6LS~T

S/Il*I~eS3OOISI ~5SCURIlY CL.&I.&IICA1lI*8 0r THIS PAGE rul.e costs ane"



SeCurln CLM Pic&,no$$U of T 6$ S V AGIh uuft aw a"o, .

Uhai the relative mncrit of the heuristics under this analysis is different -han in the prob bi is j.
Simulations show that the relatve merit of the heuristics on real data is closer to that of the new we,,C.sB
analyses rathcr than -that of the previous probabilistic analyses.

o A

W 6102 ly Old 661UNI.SF

1W*

. A o

S [.

II
So ,

s. N 01o. i. O .***: 1J1CL &SS 1F1ED : "

.-- o._ ' i ll n4 " n



CMU-CS-83-121

Worst-Case Analyses of
Self-Organizing

Sequential Search Heuristics1

Jon Louis Bentley2

Catherine Cole McGeoch . - -/*

Department of Computer Science , -. . .

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213" "

28 March 1983

Abstract

The performance of sequential search can be enhanced by the use of heuristics that move elements closer to

4the front of the list as they are found. Previous analyses have characterized the performance of such heuristics

probabilistically. In this paper we show that the heuristics can also be analyzed in the worst-case sense, and

that the relative merit of the heuristics under this analysis is different than in the probabilistic analyses.

Simulations show that the relative merit of the heuristics on real data is closer to that of the new worst-case

analyses rather than that of the previous probabilistic analyses.
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1. Introduction
The performance of sequential search in an unsorted list can be enhanced by the use of selforgnizing

heuristics that attempt to ensure that frequently accessed keys are near the front of the list. 3 The fbflowing

three heuristics are representative of a larger class.

* Transpose. When the key is found, move it one closer to the front of the list by transposing it with
the key immediately in front of it.

* Move-to-Front. When the key is found, move it to the front of the list (all other keys retain their
relative order).

* Count. When the key is found, increment its count field (an integer that is initially zero) and move
it forward as little as needed to keep the list sorted in decreasing order by count.

Note that the first two heuristics require no memory other than that for representing the lists, while the third

heuristic requires an additional count field; the first two heuristics will therefore be called nemoryles.

Previous work (described in the next section) has shown that under various probabilistic assumptions, these

heuristics can significantly reduce the time required by sequential search.

In this paper we will investigate the heuristics from a novel viewpoint: that of their worst-case performance

rather than their expected performance. Such an analysis is trivial and uninteresting if we consider the

worst-case cost of a single search. We will therefore count the worst-case number of comparisons made by the

heuristics for any particular sequence of search keys, and show that for the Move-to-Front and Count

heuristics, that number is at most twice the number of comparisons made when using the Optimal Static

Orderin (defined in the next section) for the sequence of requests. This result immediately implies the

strongest general theorem known for the expected time of the Move-to-Front heuristic. We also give a

counterexample that shows that the Transpose heuristic has very poor worst-case perfornance.

These nalyses are of both theoretical and practical interest. This paper emphasizes the theoretical tools

used in the wort-cme analyses. Our results provide a simpler proof of a stronger theorem regarding an

artifact that has been extensively studied for almost two decades Furthermore, the analyses use a simple but

elegant bookkeeping technique of general intert. The practical contribution of this paper is not so much

prescriptive a descriptive: practioem have long used the Move-to-Front heuristic even though theoretical

analyses indicated that the Transpose heuristic was superior. Our analysis provides a metric under which

Mo.e-To-Fmnt is superior w Transpose and thereby explains the actions of the practitionea.

3,,e dw mk we au a . b muq a return: our us qp@ to m itMpkmeat with arwi w l I
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This paper is organized in six sections. An overview of previous work can be found in Section 2. With that

background, the new results are presented in Section 3. Section 4 describes the results of empirical studies,
and advice to practitioners is offered in Section 5. The paper is summarized in Section 6.

2. Previous Work

In this section we will survey previous results concerning self-organizing heuristics. Only the more

important results are are presented here: for further study, consult the references at the end of the paper.

The heuristics (or rules) that we study deal with searches for elements of a set of N keys stored in a list. A
particular query is answered by performing a sequential search for the requested key and then reordering the
list according to some search rule. A string of requests forms a request sequence. An important kind of request

sequence independently chooses the h element with probability pi according to the probability distribution P

(p... ..... PN). The cost of a search rule for such a distribution has been defined as the asymptotic expected
search cost for a single key (measured as the number of comparisons made) when the set is being reordered
according to the rule; we will denote this cost by AR (P) for rule R. The Optima! Static Ordering for the set is
one in which the keys are arranged in decreasing order of request probabilities and never reordered. While

this is not necessarily optimal over all rules (because it is static, rather than dynamic), it is used as a basis for
comparing the performance of the heuristics, and its cost will be denoted by Ao(P). The heuristics have been

studied under this asymptotic model since 1965; we present the significant results below. The Count heuristic

is considered after the two memoryless heuristic.

The asymptotic expected search cost AM(P) under the Move-to-Front rule for the probability distribution

P has been given by McCabe [1965, Burville and Kingman [19731 Knuth [19731 Hendricks [19761, Rivest

[1976L, and Bitner [19791. It is known that for any distribution P, the cost AM(P) is at most twice the cost of
the Optimal Static Ordering, Ao(P). The asymptotic expected cost for Transpose, A7.(P), was shown by

Rivest [1976] to be less than or equal to AM(P); this bound is strict for all P except where all the nonzero

probabilities are equal or when N= 2.

Rivest defined the optimal permutation rule to be one with least cost for all Pand any initial ordering of the

keys, and conjectured that Transpose is optimal Yao (reported in Bitner [19761) and Bitner [19821 have given

distributions where Transpose is optimal over all rules, but Anderson, Nash, and Weber [19821 presented a

counterexample to the conjecture by finding a rule that is better than Transpose for a specific distribution.

Recent work has examined modifications of the heuristics and asymptotic costs for classes of probability

distributions see Gonne, Munro and Suwanda [19791, Hendricks [19731, Bimer [1976,19821, Kan and Ross

119811, and Tenenbaum and Nemes 11982. Zipfs Law is a natural distribution; Knuth [19731 showed that the

ie- ~ -- ___
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cost of Move-to-Front under this distribution is bounded by 2 In 2 (about 1.386) times the cost of the Optimal
Static Ordering. The highest ratio yet found is v / 2 (by Gonnet, Munro, and Suwanda [1979]), and the

existence of a bound tighter than 2.Ao(P) remains an open problem.

Measurements other than asymptotic cost have been considered. Bitner [1976, 19791 showed that while
Transpose is asymptotically more efficient. Move-to-Front converges more quickly. Therefore, Move-to-

Front is preferred when the number of requests is not large. He proposed a hybrid rule which changes from

Move-to-Front to Transpose when the number of requests falls in a certain range: he suggests from E(N) to

e(N ) requests as the change point for Zipt's Law. Bitner also discussed the overwrk (the area between the
cost curve and its asymptote) for the two rules, and presented distributions for which Move-to-Front performs

much better than Transpose under this measure. Under Zipf's Law, for instance, the overwork is O(Nz ) for

Move-to-Front and is ,(N3 ) for Transpose.

Rivest [19761 introduced a range of move-ahead-k heuristics, where a requested key is moved ahead k
positions (k= 1 corresponds to Transpose and k= N-1 corresponds to Move-to-Front ), and simulated the
asymptotic behavior of these heuristics for values of k from 1 to 6 and values of N from 3 to 12, for 5000
requests distributed by Ziprs Law. On the basis of those results, Bitner [19761 conjectured that for any two

4 heuristics in this range, one will converge faster and the other will have lower asymptotic cost; Gonnet,
Munro, and Suwanda [19791 later proved this. Tenenbaum [19781 performed similar tests for N from 3 to 230

and for 12,000 requests, with k from 1 to 7. His results indicate that for larger N and this number of requests a
heuristic other than Transpose is more efficient

The Count heuristic introduces a frequenc count f of requests for the P* key. Because of this extra
information, Count has not been considered to be in the same class as the first two heuristics and has received

less attention. By the law of large numbers, if p, >pj, then the frequency fi may be less than f for only a finite
number of requests. The search cost under Count therefire asymptotically approaches that of the Optimal

Static Ordering. Dltner [19761 showed that if P is not known beforehand, then Count is at all times optimal.

Various modifications of Count have been proposed to reduce the space needed to maintain the frequency

counts. Bimer [1976, 19791 suggested that it is better to maintain the differences between frequencies of
adjacent keys rather thm their actual counts and also proposed a unitaididmnce rule, where the counts are

left unchamed after some upper limit is reached. Other modifications have been suggested for ure in

combination with Move-to-Front or Tram=se Gonnet, Munro and Suwanda (1979, and Kan and Ross
(19801 have eamined k-**-aw heristc where a key is moved only after It has been requested k times in'a

row. and itNer [19761 has alyz rules of the fbrm ,,,, -and-mr Lam, SuL, and Yu 19811 presented a

sindn was shown to be optimal over all heuristics that use frequency If1ao L
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3. Worst-Case Analyses
The primary results of the previous section can be summarized as follows: for any probability distribution

P,

AM(P):5 2-AO(P),
AT(P)5 AM(P), and

AC(P) = A 0(P).

These results all deal with the asymptotic expected cost of a single search when the queries are from a

distribution P. In this section we will take an alternative view by considering the worst-case cost of

performing all searches in a given sequence of queries S. When the fist is being reordered by rule R, we will

denote the total number of comparisons required for the sequence S by CR (S) (signifying the concrete cost as

opposed to the asymptotic cost). The next two subsections will show that for any sequence S,

CM(S) S 2.Co(S), and
Cc(S) 2-Co(S).

In Subsection 3.3 we will show that such a result does not hold for the Transpose heuristic by exhibiting a

particular sequence with very poor performance under that rule.

Before describing the results we must define precisely our cost functions. For the Move-to-Front, Count,

and Transpose rules we define CR(S) (the cost of rule R on the request sequence S) by considering the effect

of S on an initially empty search list. For each element i of S we in turn search the current list of size m at a

cost of i comparisons if I is in position i or m comparisons if I is not present (in which case we then insert t at

the end of the list). In either case we reorder the list by rule R. The cost Co(S) of the Optimal Static Ordering

is fundamentally different: rather than starting with an initially empty list, each search uses the (unchanging) -

list in which the keys are arranged in decreasing frequency of their counts in S. Note that this assumes that all

keys are known in advance, and implies that each search will be successful The cost of finding an element in

position i is i comparisons.

3.1. Move-To-Front Heuristic

In this subsection we will show that for any particular sequence of requests S, the number of comparisons

made by the Move-To-Front heuristic is never more than twice the number made under the Optimal Static

Ordering. To do this, we will reduce the problem to the case in which the request list contains just two distinct

keys, analyze that simple case, and finally combine several facts to complete the proof.

The total number of comparisons made for a given request sequence can be divided into two kinds of

comparisons: Intword comparisons (successfully) compare equal keys, and terwad comparisons
(unsuccesftily) compare unequal keys. For any sequence, the number of intraword comparisoDs is invariant
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under all heuristics. For the Move-T9-Front heuristic, the total number of interword camparom is the sm

over all distinct pain of keys of the number of interword comparsons made between each pair. Furthenner

for any sequence S and all pairs of keys A and B, the number of interword comparisons of A to B is exactly

the number made for the subsequence of S consisting solely of A's and B's. We call this the pabwiv

independence property of the Move-To-Front heuristic; the number of comparisons made is dependent only

on the relative ordering of the A's and B's in the sequence and is independent of other keys. The proof of the

property is obvious: accessing an A will cause an (A,B) interword comparison if B is in ftront of A in the

search list, which is true if and only ifthe last B was accessed more recently than the last A. The other keys in

the request sequence do not affect this relationship.

We will now demonstrate the following fact.

Fact 1.

The total number of interword comparisons made by the Move-To-Front heuristic on a sequence of

A's and B's is at most twice the number of interword comparisons made by the Optimal Static

Ordering applied to the same sequence.

To prove the fact we will assume that the sequence S consists of m A's and n B's, where (without loss of

generality), ms& Under the Optimal Static Ordering, a total of m interword comparisons will be made

(because the search list is always in the order B A, and so only requests for A will cause an interword

comparison). Under the Move-To-Front rule, an interword comparison will be made whenever the request

sequence changes from an A to a B or from a B to an A. The total number of such changes possible is just

twice the number of occurrences of A's (for each change involves an A, and each A can be involved in at most

two changes. We therefore know that the total number of comparisons made by Move-To-Front is at most

2.,. Fact 1 follows immediately.

We are now ready to prove the key fact of this subsection.

Fact .

For any sequence S, CM(S) :S 2.CO(S).

We will prove this by simple algebra on the relations

CM(S) = Intra(S) + Intrm(S) and
CO(S) = hum(S) + Inero(S

where Intre and Interj refer to die total number of comparisons of each type made by rule R. By Fact I we

know that each Pak of keys udsfles the factor of two inequality; summng over that inequality for all distin

-3-W
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InterM(S) S 2"Intero(S),

for any sequence S. Combining this inequality with the above definition gives Fact 2.

The factor of two in Fact 2 cannot be tightened; the request sequence

ABCD(DCBA)m

has CO(S). - 2m but CM(S) - 4 nL

Knuth [1973, Exercise 6.1-11] shovs that AM(P) < 2".Ao(P) for any distribution P, that exercise is rated

M30, implying that it is mathematically oriented and may require over two hours' work to solve. Fact 2 allows

us to prove that result easily: we let the sequence S be an arbitrarily long sequence chosen from the

distribution P. By Fact 2, we know that

CM(S) 5 2.Co(S).

Let C 4 0 p(S) denote the cost of applying the (asymptotically) optimal ordering for distribution P to die

sequence S; because the Optimal Static Order for the sequence is optimal over all static orders, we know

Thnese inequalities combine to show that

i Cu(S) < 2.C, op().

Thie law of large numbers establishes thet for an arbitrarily long sequence S,i ~op(S)/ ISl - Ao(,

(exactly as in the previously mentioned analysis of the Count heuristic). By definition, we know that

CM(S)/ ISI - AM(P).

Combining these asymptotic facts with the third inequality yields the desired result.

3.2. Count Heuristic

In this subsection we will show that the cost of the Count heuristic on any particular sequence is at most

twice the cost of the Optimal Static Ordering. Because the flow of this subsection is exactly the same as the

previous sit'section, we will proceed at a faster rate.

The first fact that we must establish is that the Count heuristic has the pairwise independence property: for

any sequence S, the number of interword comparisons of A and B is exactly the number made for the

subsequence of S consisting solely of A's and B's. This is easily proved: A will precede B in the search list if

and only if A has a count greater than B's count, or in the case of equal counts, if A's count was most recently

greater than B's. In either case, the positions are not affected by other keys. As in the Move-To-Front

I i I II I "11" I '"..- q
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heuristic, this pairwise independence allows us to focus on two-element sequences. We therefore prove the

following fact.

-V Fact 3.

The total number of interword comparisons made by the Count heuristic on a sequence of A's and B's

is at most twice the number of interword comparisons made by the Optimal Static Ordering applied to

the same sequence.

To prove this fact, we again assume that the sequence S consists solely of m A's and n B's, with m < n. Under

the Count heuristic, an interword comparison is made every time the second key in the search list is

requested; at that time, its count field is incremented. The count field of A can be incremented while it is in

the rear at most m times (because it is requested m times). Furthermore, the count field of B can be

incremented while it is in the rear at most m times (because after that it has been requested more than m times

and can no longer be in the rear). The number of interword comparisons, then, is bounded by m (requests for

A's) plus m (for B's), or 2r, which is twice the number of comparisons made by the Optimal Static Ordering.

The key fact of this subsection follows from the same kind of reasoning used to establish Fact 2 of the

previous subsection.

Fact 4.

For any sequence S. CC(S) S 2-Co(S).

Again, the reasoning involves summing over the factor of two inequality. By an example similar to that in the

previous section, the factor of two cannot be tightened.

3.3. Transpose Heuristic

&In this subsection we will demonstrate that the worst-case ratio of the performance of Transpose to that of

the Optimal Static Ordering cannot be bounded by any constant. This is easily observed if we consider the

request sequence

ABCDE(ED)k
SAfter the first five elements are stored by Transpose, the sequence of (E D) request pairs will cause those two

elements to swap position at the back of the list, and neither will advance. The average cost of a search in this

sequence will therefore approach 5, while under the Optimal Static Ordering 1.5 comparisons would suffice.

For increasing k, this example gives

CT(S) > 3.33€O(5)

The constant 3.33 can be increased to - 2k/3 by increasing the length of the "filler" sequence preceding the

"active" pair to k-2. Note that this counterexample exploits the fact that the Transpose heuristic does not

AII' "



28 March 1983 Worst-Case Sequential Search -8-

have the pairwise independence property: the relative order of any two keys depends not only on the request

sequence but also on whether the keys are adjacent in the search list.

4. Empirical Results

The theoretical analyses in Sections 2 and 3 are by no means unanimous in their evaluation of the

heuristics. To gain further insight into the behavior of the heuristics, we used each to perform word counts on

a variety of files; that is, the words in each file served as a request sequence. As each word (defined to be a

lower-case alphanumeric string delimited by spaces or punctuation marks, which are ignored) was requested,

a linear search of the key list was performed, the count field for the key was incremented, and the list was

reordered according to the appropriate rule. Each trial started with an initially empty key list; at the first

request for a word, the list was searched to the end to determine its absence and then the reordering occurred

as if the element had been found in the (new) last position. Although this application clearly suggests the

Count heuristic (since the frequencies must be stored anyway), this type of input is one indicator of the

behavior of the heuristics under natural conditions.

The average search cost (defined as the total number of interword comparisons divided by the number of

requests) required by each heuristic for each file is reported in Table 1; the best performance for each file is

underlined. Under a uniform distribution of request frequencies the average static search cost is

approximately D/2. where D is the length of the search l. We might expect better results for this data,

however, because the distribution of request frequencies in many natural contexts obeys Zipf's Law; the

average cost for the Optimal Static Ordering of that distribution is approximately D / In D (see Knuth [1973,

Section 6. 1D. The column in Table 1 entitled "Zipf's Law" gives the cost of the Optimal Static Ordering if the

requests had been drawn from that distribution; comparing that column to the cost of the Optimal Static

Ordering shows that the data is closer to a Zipf distribution than a uniform distribution.

The files were obtained from user accounts and an on-line documentation system, and were grouped into

two classes: Pascal files and Text files. The characteristics of the classes vary, so we consider the results for

each separately.

The four Pascal files tested contained between 100 and 181 distinct words (corresponding to the length of

the key list), which were requested a total of 431 to 1456 times (corresponding to the length of the request

sequence). The empirical results for the Pascal files were striking: Move-to-Front and Count performed

dramatically better than Transpose, and in two cases, Move-to-Froet required fewer comparisons than the

Optimal Static Ordering. The high locality present in source code accounts for this surprising phenomenon:

infrequently used words such as Integer appear in groups rather than being uniformly distributed throughout

4J
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the file. Where a request for such a word would require a long search under the Optimal Static Ordering, the

search under Move-to-Front would be short after the first request, since the key would then be at the

beginning of the list. The Count heuristic can also exploit the locality of keywords such as real and integer; at

the beginning of the program text, their counts will be higher than the counts of other words. For Transpose,

the requested element may not have time to drift towards the front and high-locality words that occur in the

same neighborhood can contend with one another, so the search remains expensive. This phenomenon of

locality in such constructs as Total = Total + 1, end; end; end, and var declarations enhances the

performance of Move-to-Front considerably.

The Text files included the text of the Constitution of the United States (T6 in Table 1), the script to The
Rocky Horror Picture Show (T5), a version of this paper (T4), excerpts from an on-line documentation

system, and text files augmented with instructions to the Scribe document production system. While

Transpose still required more comparisons than the other two heuristics, its performance was better for this

class of files. Move-to-Front performed best in most cases, although it never beat the Optimal Static

Ordering. The Count heuristic was never far behind Move-to-Front, and in two cases performed better than

Move-to-Front.

Distinct Total Zipf's Optimal Move-to Count Transpose
Words Words Law Static Front

Ordering

Pascal Files

P 1 100 480 18.28 27.52 24.49 33.16 40.43

P 2 107 431 19.36 26.23 31.50 38.92
P 3 117 1,176 20.90 18.04 ]LZ1 20.63 30.53

P4 181 1,456 30.32 30.78 3IAD 35.71 47.41
Text F'les

T 1 471 1,888 68.95 93.03 J 111.21 147.41
T 2 498 1,515 72.36 112.86 19.3t 135.63 160.69

T 3 564 3,296 80.58 96.29 "2.9 112.41 155.17
T 4 999 5,443 132.48 149.34 1L.9 175.42 258.20
T S 1,147 7,482 149.47 143.72 174.50 J ___,Q 204.74

T 6 1,590 7,654 199.02 232.53 280.83 349.94

Table 1. Average Search Costs.

The empirical results indicate that neither the worst-case nor the probabilistic analyse by themselves

completely describe the behavior of the heuristics under natural conditions: Transpose clearly is not the best

heuristic for this application, yet it never performed as badly as our results showed it might. Certainly. the
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distribution and size of the request sequence seem less significant than the.ordering of the requests. Empirical

results for the Pascal files would be less dramatic if Pascal reserved words were treated differently from

identifiers, as might happen within a compiler. If sequential search were used by an interpreter for identifier

lookup at runtime, however, the presence of dynamic locality (for example, in requests for loop variables)

11 would argue strongly for the use of Move-to-FronL4 This phenomenon is not restricted to source code; for

example, the word "president" appears with high locality in the U.S. Constitution. In most written prose,

locality of subject (and therefore of certain words) dctermincs paragraph construction. Move-to-Front is able

to take advantage of this characteristic. Indeed, such a phenomenon as "pairwise-locality" (the appearance of

word pairs or two-word phrases such as "vice-president" or A[I) might hamper the performance of

Transpose; if two such words have the misfortune to be adjacent in the key list, then they will contend with

each other rather than drifting to the front as they should.

5. Advice to Practitioners

The previous sections have evaluated the heuristics from various viewpoints, using theoretical tools as well

as test results for several data sets. We now consider the heuristics from a very different perspective: how

should they be used by practicing programmers?

The purpose of the heuristics is to increase the performance of a linear search. This raises the most

important point of this section: if a programmer faces an efficiency problem in a search procedure, then linear

search is probably not the method of choice. Knuth [1974, Chapter 6] describes a number of other search

methods that are usually significantly more efficient. There are, however, contexts in which self-organizing
linear search may be appropriate.

* When N is very small (say, at most several dozen), the greater constant factors in the runtimes of
other strategies may make linear search competitive. This occurs, for example, when linked lists
are used to resolve collisions in a hashing structure.

* When space is severely limited, sophisticated data structures may be too space-expensive to use.

* If the performance of linear search is almost (but not quite) good enough, a self-organizing
heuristic may make it effective for the application at hand without adding more than a few lines of
code

4Mhe w1d wed Mknmft BASIC Whrelr Sam symbs In its m -im (Unea) symbol table i Oe ofe a uhbd OW wm be
seen. One of the author (JiB) one reduced the tun tne of a productko BASIC progrmn under iadt m iterpw ha hum
bonn to sevn bow mpliy by rereng to ac hW m aiable om in a dmmy mment a h o dhe prm fthe urn of *Ae
Move-To-Front herk hi ad im interpreter would prombably mbsmn ly docrem the run tkie of amw BASI p - -
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Ed McCreight [19831 found himself in the last situation when improving the performance of a VLSI circuit

simulator that had two primary phases: the first phase read the description of the circuit and the second phase

then simulated the circuit. On typical runs the first phase would take five minutes while the second phase

would take several hours. Although the five minutes of the first phase was not crucial, it was irritating for

users to have to wait that long to see the simulation begin (especially when they knew that most of the time

was going to sequential searches in the simulator's symbol table). Following McCreight's suggestion, the

implementer of the program augmented the straightforward sequential search with the Move-to-Front

heuristic. Those additional half-dozen lines of code decreased the runtime of the first phase from five minutes

to halfa minute (most of which was not going to symbol table routines).

The lesson to be learned from the above paragraph is that when efficiency matters in a search routine, then

non-linear data structures (especially hashing) should be seriously considered. Sometimes, however, self-

organizing heuristics can be exactly the right tool for the job by providing enough runtime efficiency with

little overhead in code development.

Knowing when to use self-organization heuristics still leaves the implementer with the decision of which

one to choose in a given application. Some authors have interpreted the results in Section 2 in a way we feel is

unwarranted: for instance, Gotlieb and Godieb [1978, p. 1181 asscrt in their excellent data structures text that

"[Move-to-Front] is not the best [strategy] for a self-organizing list. It is better to promote the referenced ertry

only one place by transposing it with its predecessor." The following discussion of the heuristics is relevant to

most situations Ln which self-organizing schemes are applicable.

* Move-to-Front. The linked list implementation of this heuristic is the method of choice for most
applications. The heuristic makes few comparisons, both in the worst case and when observed on
real data; furthermore, it exploits any locality of reference present in the input. The linked list
implementation is natural for an environment supporting dynamic storage allocation and yields an
efficient reorganization strategy. Unfortunately, moving to front is expensive if the sequence is
implemented as an array.

9 Transpose If storage is extremely limited and pointers for lists cannot be used, then the array
implementation of Transpose gives very efficient reorganization. Its worst-case number of
comparisons is high, but it performs well on the average.

* Count. Although this heuristic does make a small number of comparisons in the worst case, its
extra storage and higher move costs make it unattractive for most applications. It should probably
be considered only in applications in which the counts are already needed for other purposes.

In the above discussion we have intentionally kept vague several potentially quantifiable measures. Rather,

we appeal to an intuition that asymptotically efficient algorithms tend to require more code and to have larger4.
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constant factors. We have avoided hard data because it is extremely sensitive in this context to coding style

and to details of the compiler and machine architecture. Readers who insist on such detail should consult

Knuth [1973, Chapter 61, but we warn that data on his MIX implementations may be misleading for other

computing environments.

6. Conclusions
The conclusions of this paper are clear: when a self-organizing sequential search is appropriate in an

application, the Count and (especially) the Move-To-Front heuristics should be considered for

implementation. Although previous probabilistic analyses showed that Transpose is superior to Move-To-

Front under some measures, both our worst-case analyses and our empirical results show contexts in which

the opposite is true.

The theoretical results in this paper could be extended in a number of ways. An implementer of these

algorithms may wish to consider measurements other than number of comparisons, such as number of moves
or total distance moved. The worst-case analysis of algorithms previously analyzed only for their expected
performace is an interesting open problem. To predict more accurately the behavior of the heuristics on

4 i input like that described in the previous section, it would be helpfil to have theoretical tools for describing

the locality present in the input. Also, the proof techniques that we presented could be used to study other

self-modifying structures in the worst-case sense.5
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