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1. Introduction

The performance of sequential search in an unsorted list can be enhanced by the use of selforganizing
heuristics that attempt to ensure that frequently accessed keys are near the front of the tist.? The following
three heuristics are representative of a larger class.

o Transpose. When the key is found, move it one closer to the front of the list by transposing it with
the key immediatcly in front of it.

o Move-to-Front. When the key is found, move it to the front of the list (all other keys retain their
relative order).

o Count. When the key is found, increment its count field (an‘integcr that is initially zero) and move
it forward as little as needed to keep the list sorted in decreasing order by count.

Note that the first two heuristics require'no memory other than that for representing the lists, while the third
heuristic requires an additional count field; the first two heuristics will therefore be called memoryless.
Previous work (described in the next section) has shown that under various probabilistic assumptions, these
heuristics can significantly reduce the time required by sequential search.

In this paper wc will investigate the heuristics from a novel viewpoint: that of their worst-case performance
rather than their expected performance. Such an analysis is trivial and unintercsting if we consider the
worst-case cost of a single search. W+ will therefore count the worst-case number of comparisons made by the
heuristics for any particular sequence of search keys, and show that for the Move-to-Front and Count
heuristics, that numbcr is at most twice the number of comparisons made when using the Optimal Static
Ordering (defined in the next section) for the sequence of requests. This result immediately implies the
strongest general theorem known for the expected time of the Move-to-Front heuristic. We also give a
counterexample that shows that the Transpose heuristic has very poor worst-case performance.

These analyses are of both theoretical and practical interest. This paper emphasizes the theoretical tools
used in the worst-case analyses. Our results provide a simpler proof of a stronger theomniregardingan
artifact that has been extensively studied for almost two decades. Furthermore, the analyses use a simple but
elegant bookkeeping techanique of general interest. The practical contribution of this paper is not so much
prescriptive as descriptive: practitioners have long used the Move-to-Front heuristic even though theoretical
analyses indicated that the Transpose heuristic was superior. Our analysis provides a metric under which
Mo.2-To-Front is superior to Transpose and thereby explains the actions of the practitioners.’
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This paper is organized in six sections. An overview of previous work can be found in Section 2. With that
background, the new results are presented in Section 3. Section 4 describes the results of empirical studies,
and advice to practitioners is offered in Section 5. The paper is summarized in Section 6.

2. Previous Work
In this section we will survey previous results concerning self-organizing heuristics. Only the more .
important results are are presented here; for further study, consult the references at the end of the paper.

The heuristics (or rules) that we study deal with searches for elements of a set of N keys stored in a list. A
particular query is answered by performing a sequential search for the requested key and then reordering the
list according to some search rule. A string of requests forms a reguest sequence. An important kind of request
sequence independently chooses the i*# element with probability p; according to the probability distribution 2
=(puPy - - . PN). The cost of a search rule for such a distribution has been defined as the asymptotic expected
search cost for a single key (measured as the number of comparisons made) when the set is being reordered 1
according to the rule; we will denote this cost by Ag(P) for rule R. The Optimal Static Ordering for the set is i
. one in which the keys are arranged in decreasing order of request probabilities and never reordered. While ;
this is not neccssarily optimal over all rules (because it is static, rather than dynamic), it is used as a basis for "
comparing the performance of the heuristics, and its cost will be denoted by 4 (P). The heuristics have been
studied under this asymptotic model since 1965; we present the significant resuits below. The Count heuristic
is considered after the two memoryless heuristics.

The asymptotic expected search cost A(P) under the Move-to-Front rule for the probability distribution

P has been given by McCabe {1965}, Burville and Kingman {1973), Knuth {1973}, Hendricks [1976}, Rivest

{1976}, and Bitner [1979]. It is known that for any distribution P, the cost A,(P) is at most twice the cost of

the Optimal Static Ordering, 4p(P). The asymptotic expected cost for Transpose, Ap(P), was shown by ]

‘ Rivest [1976] to be less than or equal to Az (P); this bound is strict for all P except where all the nonzero
probabilities are equal or when N=2,

Rivest defined the optimal permutation rule to be one with least cost for all Pand any initial ordering of the
keys, and conjectured that Transpose is optimal. Yao (reported in Bitner [1976]) and Bitner [1982) have given
distributions wherc Transpose is optimal over all rules, but Anderson, Nash, and Weber [1982] presented a
counterexample to the conjecture by finding a rule that is better than Transpose for a specific distribution.
Recent work has examined modifications of the heuristics and asymptotic costs for classes of probability
distributions: see Gonnet, Munro and Suwanda [1979}, Hendricks [1973), Bitner [1976, 1982}, Kan and Ross
{1981], and Tenenbaum and Nemes [1982). Zipf's Law is a natural distribution; Knuth [1973] showed that the

oy ) Simtic = - G e " N




-

28 March 1983 Worst-Case Sequential Search -3-

cost of Move-to-Front under this distribution is bounded by 2 In 2 (about 1.386) times the cost of the Optimal
Static Ordering. The highest ratio yet found is w /2 (by Gonnet, Munro, and Suwanda [1979)]), and the
existence of a bound tighter than 2- Ap(P) remains an open problem.

Measurements other than asymptotic cost have been considered. Bitner [1976, 1979] showed that while
Transpose is asymptotically more efficient, Move-to-Front converges more quickly. Therefore, Move-to-
Front is preferred when the number of requests is not large. He proposed a hybrid rule, which changes from
Move-to-Front to Transpose when the number of requests falls in a certain range: he suggests from (N ) to
O(N?) requests as the change point for Zipfs Law. Bitner also discussed the overwork (the area between the
cost curve and its asymptote) for the two rules, and presented distributions for which Move-to-Front performs
much better than Transpose under this measure. Under Zipf’s Law, for instance, the overwork is O(MV?) for
Move-to-Front and is $2(V? ) for Transpose.

Rivest [1976] introduced a range of move-ahead-k heuristics, where a requested key is moved ahead k

~ positions (k=1 corresponds to Transpose and k=N-1 corresponds to Move-to-Front ), and simulated the

asymptotic behavior of these heuristics for values of & from 1 to 6 and values of N from 3 to 12, for 5000
requests distributed by Zipfs Law. On the basis of those results, Bitner [1976] conjectured that for any two
heuristics in this range, one will converge faster and the other will have lower asymptotic cost; Gonnet,
Munro, and Suwanda [1979] later proved this. Tenenbaum [1978] performed similar tests for N from 3 to 230
and for 12,000 requests, with & from 1 to 7. His results indicate that for larger N and this number of requests a
heuristic other than Transpose is more efficient.

The Count heuristic introduces a frequency count f; of requests for the i key. Because of this extra
information, Count has not been considered to be in the same class as the first two heuristics and has received
less attention. By the law of large numbesrs, if p; > p;, then the frequency f; may be lcss than J; for only a finite
number of requests. The search cost under Count therefore asymptotically approaches that of the Optimal
Static Ordering. Bimcr[l976]:howedthatifPisnotknqwnbeforehand.menCwmisatallﬁmaopdmaL'

Various modifications of Count have been proposed to reduce the space needed to maintain the frequency
counts. Bitner [1976, 1979] suggested that it is better to maintain the differences between frequencies of
adjacent keys rather than their actual counts and also proposed a /imited-difference rule, where the counts are
left unchanged after some upper limit is reached. Other modifications have becn suggested for use in
combination with Move-to-Front or Transpose. Gonnet, Munro and Suwanda {1979}, and Kan and Ross
(1980§ have examined £-in-a-row heuristics, where a key is moved only after it has been requested & times in a
row, and Bitner [1976] has analyzed rules of the form wait-c-and-move. Lam, Sui, and Yu [1981] preseated a
scheme that was shown to be optimal over all heuristics that use frequency information.
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3. Worst-Case Analyses
The primary results of the previous section can be summarized as follows: for any probability distribution
P,

A7(P) S Ay(P), and
Ac(P)= Ap(P).

Thesc resuits all deal with the asymptotic expected cost of a single scarch when the querics are from a
distribution P. In this section we will take an alternative view by considering the worst-case cost of
performing all searches in a given sequence of queries §. When the list is being reordered by rule R, we will
denote the total number of comparisons required for the sequence S by Cr(S) (signifying the concrete cost as
opposed to the asymptotic cost). The next two subsections will show that for any sequence S,

Cun(S) £2:Cp(S), and

Cc(S) £ 2:Cp(9).
In Subsection 3.3 we will show that such a result does not hold for the Transpose heuristic by exhibiting a
particular sequence with very poor performance under that rule.

Before describing the results we must define precisely our cost functions. For the Move-t0-Front, Count,
and Transpose rules we define C R (S) (the cost of rule R on the request sequence S) by considering the effect
of S on an initially empty search list For each element ¢ of S we in turn search the current list of size m at a
cost of i comparisons if ¢ is in position i or m comparisons if / is not present (in which case we then insert ¢ at
the end of the list). In cither case we reorder the list by rule R. The cost CO(S) of the Optimal Static Ordcnng
is fundamentally different: rather than starting with an initially empty list, each scarch uses the (unchanging)
list in which the keys are arranged in decreasing frequency of their counts in S. Note that this assumes that ail
keys are known in advance, and implies that each search will be successful. The cost of finding an clement in
position i is i comparisons.

3.1. Move-To-Front Heuristic

In this subsection we will show that for any particular sequence of requests S, the number of comparisons
made by the Move-To-Front heuristic is never more than twice the number made under the Optimal Static
Ordering. To do this, we will reduce the problem to the case in which the request list contains just two distinct
keys, analyze that simple case, and finally combine several facts to complete the proof.

The total number of comparisons made for a given request sequence can be divided into two kinds of

comparisons: intraword oomparlsons' (successfully) compare equal keys, and interword comparisons
(unsuccessfully) compare unequal keys. For any sequence, the number of intraword comparisons is invariant
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under all heuristics. For the Move-To-Front heuristic, the total aumber of interword comparisons is the sum
over all distinct pairs of keys of the number of interword comparisons made between cach pair. Furthermore,
for any sequence S and all pairs of keys A and B, the number of interword comparisons of A to B is exactly
the number made for the subsequence of S consisting soleiy of A's and B's. We call this the pairwise
independence property of the Move-To-Front heuristic; the number of comparisons made is dependeat only
on the relative ordering of the A’s and B's in the sequence and is independent of other keys. The proof of the
property is obvious: accessing an A will cause an (A,B) interword comparison if B is in front of A ia the
search list, which is true if and only if the last B was accessed more rccently than the last A. The other keys in
the request sequence do not affect this relationship.

We will now demonstrate the following fact.

Fact 1.
The total number of interword comparisons madc by the Move-To-Front heuristic on a sequence of
A’s and B’s is at most twice the number of interword comparisons made by the Optimal Static
Ordering applied to the same sequence.

To prove the fact we will assume that the sequence S consists of m A’s and n B's, where (without loss of
generality), m< a. Under the Optimal Static Ordering, a total of m interword comparisons will be made
{(because the search list is always in the 'order B A, and so only requests for A will cause an interword
comparison). Under thel Move-To-Front rule, an interword comparison will be made whenever the request
sequence changes from an A to a B or from a B to an A. The total number of such changes possible is just
twice the number of occurrences of A’s (for each change involves an A, and each A can be involved in at most
two changes). We therefore know that the total number of comparisons made by Move-To-Front is at most
2= Fact 1 follows immediately.

We are now ready to prove the key fact of this subsection.

Fact2
For any sequence S, Cp(S) < 2-Co(S).
We will prove this by simple algebra on the relations

Cu(S) = Intra(S) + Intery (S) and

Co(S) = Intra(S) + Intero(S),
where Intra and Intery refer to the total number of comparisons of each type made by rule R. By Fact 1 we
know that each pair of keys satisflcs the factor of two inequality; summing over that inequality for all distinct

peairs gives
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Intery(S) S 2-Interp(S), ..
for any sequence S. Combining this inequality with the above definition gives Fact 2.

The factor of two in Fact 2 cannot be tightened; the request sequence
ABCD(DCBA)™
has Co(S)~ 2m but Cp(S) ~4m.

Knuth [1973, Exercise 6.1-11] shows that 4;,(P) < 2- 4o(P) for any distribution P; that exercise is rated
M30, implying that it is mathematicaily oriented and may require over two hours’ work to solve. Fact 2 allows
us to prove that result easily: we let the sequence S be an arbitrarily long sequence chosen from the
distribution P. By Fact 2, we know that

Cu(S) £ 2:Co(S).
Let C 40p(S) denote the cost of applying theé (asymptotically) optimal ordering for distribution P to the

sequence .S; because the Optimal Static Order for the sequence is optimal over all static orders, we know

Co(S) £ C 40p(S)-
These inequalities combine to show that

Cu(S) £ 2-C40p(S).

The law of large numbers estadiishes that for an arbitrarily long sequence S,
CaopP(8)/ |S| ~ Ag(P),

(exactly as in the previously mentioned analysis of the Count heuristic). By definition, we know that
Cu(S)/ |S| ~ Ay(P).

Combining these asymptotic facts with the third incquality yields the desired result.

3.2. Count Heuristic

In this subséction we will show that the cost of the Count heuristic on any particular sequence is at most
twice the cost of the Optimal Static Ordering. Because the flow of this subsection is exactly the same as the
previous sizbsection, we will proceed at a faster rate. '

The first fact that we must establish is that the Count heuristic has the pairwise independerce property: for
any sequence S, the number of interword comparisons of A and B is exactly the aumber made for the
subsequence of S consisting solely of A’s and B's, This is easily proved: A will precede B in the search list if
and only if A has a count greater than B’s count, or in the case of equal counts, if A’s count was most recently
greater than B's. In either case, the positions are not affected by other keys. As in the Move-To-Front

R T SR - -
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heuristic, this pairwise indcpendence allows us to focus on two-element sequences. We therefore prove the
following fact.

Fact 3. :
The total number of interword comparisons made by the Count heuristic on a sequence of A’s and B's
is at most twice the number of interword comparisons made by the Optimal Static Ordering applied to
the same sequence.

To prove this fact, we again assume that the sequence S consists solely of m A’s and n B's, with m< n. Under
the Count heuristic, an interword comparison is made every time the second key in the search list is
requested; at that time, its count field is incremented. The count field of A can be incremented while it is in
the rear at most m times (because it is requested m times). Furthermore, the count field of B can be
incremented while it is in the rear at most m times (because after that it has been requested more than m times
and can no longer be in the rear). The number of interword comparisons, then, is bounded by m (requests for
A’s) plus m (for B’s), or 2m, which is twice the nimber of comparisons made by the Optimal Static Ordering.

The key fact of this subsection follows from the same kind of reasoning used to establish Fact 2 of the

previous subsection.

Fact 4.
For any sequence S, Cc(S) S 2-Co(S).

Again, the reasoning involves summing over the factor of two inequality. By an example similar to that in the

previous section, the factor of two cannot be tightened.

3.3. Transpose Heuristic
In this subscction we will demonstrate that the worst-case ratio of the performance of Transpose to that of
the Optimal Static Ordering cannot be bounded by any constant. This is easily observed if we consider the

request sequence

ABCDE(ED)*
After the first five elements are storcd by Transpose, the sequence of (E D) request pairs will cause those two
elements to swap position at the back of the list, and neither will advance. The average cost of a search in this
sequence will therefore approach §, while under the Optimal Static Ordering 1.5 comparisons would suffice.
For increasing &, this example gives

Cr{(S) > 3.33Co(S).

The constant 3.33 can be increased to ~ 2k/3 by increasing the length of the "filler” sequence preceding the
"active” pair to k~2. Note that this counterexample exploits the fact that the Transpose heuristic does not
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have the pairwise independence property: the relative order of any two keys depends not only on the request
sequcnce but also on whether the keys are adjacent in the search list.

4. Empirical Results

The theoretical analyses in Sections 2 and 3 are by no means unanimous in their evaluation of the
heuristics. To gain further insight into the behavior of the heuristics, we used each to perform word counts on
a variety of files; that is, the words in each file served as a request sequence. As each word (defined to be a
lower-case alphanumeric string delimited by spaces or punctﬁation marks, which are ignored) was requested,
a linear scarch of the key list was performed, the count field for the key was incremented, and the list was
reordered according to the appropriate rule. Each trial started with an initially empty key list; at the first
request for a word, the list was searched to the end to determine its absence and then the reordering occurred
as if the element had been found in the (new) last position. Although this application clearly suggests the
Count heuristic (since the frequencies must be stored anyway), this type of input is one indicator of the

behavior of the heuristics under natural conditions.

The average search cost (defined as the total number of interword comparisons divided by the number of
requests) required by each heuristic for each file is reported in Table 1; the best performance for each file is
underlined. Under a uniform distribution of request frequencies the average static search cost is
approximately D/2, where D is the length of the search list. We might expect better results for this data,
however, because the distribution of request frequencies in many natural contexts obeys Zipfs Law; the
average cost for the Optimal Static Ordering of that distribution is approximately D/ ln D (see Knuth [1973,
Scction 6.1]). The column in Table 1 entitled "Zipf's Law" gives the cost of the Optimal Static Ordering if the
requests had been drawn from that distribution; comparing that column to the cost of the Optimal Static
Ordering shows that the data is closer to a Zipf distribution than a uniform distribution.

The files were obtained from user accounts and an on-line documentation system, and were grouped into
two classes: Pascal files and Text files. The characteristics of the classes vary, so we consider the results for

each separately.

The four Pascal files tested contained between 100 and 181 distinct words (corresponding to the length of
the key list), which were requested a total of 431 to 1456 times (corresponding to the length of the request
sequence). The empirical results for the Pascal files were striking: Move-to-Front and Count performed
dramatically better than Transpose, and in two cases, Move-to-Frost required fewer comparisons than the
Optimal Static Ordering. The high locality present in source code accounts for this surprising phenomenon:
infrequently used words such as integer appear in groups rather than being uniformly distributed throughout
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the file. Where a request for such a word would require a long search under the Optimal Static Ordering, the
search under Move-to-Front would be short after the first request, since the key would then be at the
beginning of the list. The Count heuristic can also exploit the locality of keywords such as real and integer; at
the beginning of the program text, their counts will be higher than the counts of other words. For Transpose,
the requested element may not have time to drift towards the front and high-locality words that occur in the
same neighborhood can contend with one another, so the search remains expensive. This phenomenon of
locality in such constructs as Total := Total + 1, end; end; end, and var declarations enhances the

% ‘ performance of Move-to-Front considerably.

The Text files included the text of the Constitution of the United States (T6 in Table 1), the script to The
Rocky Horror Picture Show (TS), a version of this paper (T4), excerpts from an on-line documentation
system, and text files augmented with instructions to the Scribe document production system. While
Transpose still requircd more comparisons than the other two heuristics, its performance was better for this
class of files. Move-to-Front performed best in most cases, although it never beat the Optimal Static
Ordering. The Count heuristic was never far behind Move-to-Front, and in two cases performed better than

* ] Move-to-Front.

A Distinct Total Zipf's Optimal Move-to Count Transpose
) Words Words Law Static Front
‘ Ordering
. Pascal Files
’ Pl 100 480 18.28 2152 2449 33.16 4043
kY P2 107 431 19.36 26.23 25.62 3150 3892
; ’-’. > P3 117 1,176 2090 13.04 18.21 20.63 30.53
) . P4 181 1,456 3032 30.78 3140 “3571 4741
¥ Text Files
T } T1 471 1,888 63.95 93.03 104,46 111.21 14741
k. I T2 498 1,515 72.36 112.86 11931 135.63 160.69
7 SN T3 S64 3,296 80.58 96.29 '98.90 112.41 155.17
; '_- T4 - 999 5443 13248 149.34 168.79 17542 25820
i TS 1,147 7,482 149.47 143.72 174.50 166,10 204.74
¥ T6 1,59 7654 19902 23253 28083 26164 @ 349
* Table 1. Average Search Costs.
"4 1
59 T The empirical resuits indicate that neither the worst-case nor the probabilistic analyses by themseives

completely describe the behavior of the heuristics under natural conditions: Transpose clearly is not the best
heuristic for this application, yet it ncver performed as badly as our results showed it might. Certainly, the

WS vider g g
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M,' distribution and size of the request sequence seem less significant than the ordering of the requests. Empirical
‘é results for the Pascal files would be less dramatic if Pascal reserved words were treated differently from
| ; identifiers, as might happen within a compiler. If sequential search were used by an interpreter for identifier
k: lookup at runtime, however, the presence of dynamic locality (for example, in requests for loop variables)

would argue strongly for the use of Move-to-Front* This phenomenon is not restricted to source code; for

; example, the word “presidcnt” appears with high locality in the U.S. Constitution. In most written prose,
f'% locality of subject (and therefore of certain words) determincs paragraph construction. Move-to-Front is able
to take advantage of this characteristic. Indeed, such a phenomenon as "pairwise-locality” (the appearance of
word pairs or two-word phrases such as "vice-president” or Afl]) might hamper the performance of
Transpose; if two such words have the misfortune to be adjacent in the key list, then they will contend with
each other rather than drifting to the front as they should.

5. Advice to Practitioners

The previous sections have evaluated the heﬁristics from various viewpoints, using theoretical tools as well
as test results for several data sets. We now consider the heuristics from a very different perspective; how
. should they be used by practicing programmers?

N

The purpose of the heuristics is to increase the performance of a linear search. This raises the most

o -

) important point of this section: if a programmer faces an efficiency problem in a search procedure, then linear
. search is probably not the method of choice. Knuth [1974, Chapter 6] describes a number of other search
methods that are usually significantly more efficient. There are, howevcr, contexes in which self-organizing %
linear search may be appropriate.

e When N is very small (say, at most several dozen), the greater constant factors in the runtimes of
other strategies may make linear search competitive. This occurs, for example, when linked lists
. are used to resolve collisions in a hashing structure.

o When space is severely limited, sophisticated data structures may be too space-cxpensive to use.

o If the performance of lincar search is almost (but not quite) good enough, a self-organizing
heuristic may make it effective for the application at hand without adding more than a few lines of
code.

‘mewiddy-\uedMMMSICinwwmlymbobinBmﬁMM)WNMhNMhMMMM
seen. One of the authors (JLB) once reduced the run time of a production BASIC program under such an interpreter from fourteen
hours to seven hours simply by referring 10 each “hot" variable oncs in a dummy statement at the front of the program. The use of the
Move-To-Front heuristic in such an interpreter would probably substantiaily docrease the run time of many BASIC programs.
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Ed McCreight [1983] found himself in the last situation when improving the performance of a VLSI circuit
simulator that had two primary phases: the first phase read the description of the circuit and the sccond phase
then simulated the circuit. On typical runs the first phase would take five minutes while the sccond phase
would take several hours. Although the five minutes of the first phase was not crucial, it was irritating for
users to have to wait that long to sce the simulation begin (especially when they knew that most of the time
was going to sequential searches in the simulator’s symbol table). Following McCreight's suggestion, the
implementer of the program augmented the straightforward sequential search with the Move-to-Front
heuristic. Those additional half-dozen lines of code dccreased the runtime of the first phase from five minutes
; to half a minute (most of which was not going to symbol table routines).

The lesson to be learned from the above paragraph is that when efficiency matters in a search routine, then
non-linear data structures (especially hashing) should be seriously considered. Sometimes, however, self-
organizing heuristics can be exactly the right tool for the job by providing cnough runtime efficiency with

little overhead in code development.

Knowing when to use self-organization heuristics still leaves the implementer with the decision of which

one to choose in a given application. Some authors have interpreted the results in Section 2 in a way we feel is
unwarranted: for instance, Gotlieb and Gotlieb [1978, p. 118] assert in their excellent data structurcs text that
"[Move-to-Front] is not the best [strategy] for a self-organizing list. It is better to promote the referenced entry
only one place by transposing it with its predecessor.” The following discussion of the heuristics is relevant to

most situations in which self-organizing schemes are applicable.

o Move-to-Front. The linked list implementation of this heuristic is the method of choice for most
applications. The heuristic makes few comparisons, both in the worst case and when observed on
real data; furthermore, it exploits any locality of reference present in the input. The linked list
implementation is natural for an environment supporting dynamic storage allocation and yields an
efficient reorganization strategy. Unfortunately, moving to front is expensive if the sequence is
implemented as an array.

o Transpose. If storage is extremely limited and pointers for lists cannot be used, then the array
' . implementation of Transpose gives very cfficient reorganization. Its worst-case number of
F 2 comparisons is high, but it performs well on the average.

i 3 o Count. Although this heuristic does make a small number of comparisons in the worst case, its
3 ] extra storage and higher move costs make it unattractive for most applications. It should probably
' . be considered only in applications in which the counts are already needed for other purposes.

. In the above discussion we have intentionally kept vaguc several potentially quantifiable measures. Rather,
" ‘ { we appeal to an intuition that asymptotically efficient algorithms tend to require more code and to have larger




Y
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constant factors. We have avoided hard data because it is extremely sensitive in this context to coding style
and to details of the compiler and machine architecture. Readers who insist on such detail should consult
Knuth [1973, Chapter 6], but we warn that data on his MIX implementations may be misleading for other
computing environments.

6. Conclusions

The conclusions of this paper are clear: when a self-organizing sequential search is appropriate in an
application, the Count and (especially) the Move-To-Front heuristics should be considered for
implementation. Although previous pmbabilisdc analyses showed that Transpose is superior to Move-To-
Front under some measures, both our worst-case analyses and our empirical results show contexts in which
the opposite is true.

The theoretical results in this paper could be extended in a number of ways. An implementer of these
algorithms may wish to consider measurements other than number of comparisons, such as number of moves
or total distance moved. The worst-case analysis of algorithms previously analyzed only for their expected
performance is an interesting open problem. To predict more accurately the behavior of the heuristics on
input like that described in the previous section, it would be helpful to have theoretical tools for describing
the locality present in the input. Also, the proof techniques that we presented could be used to study other
self-modifying structures in the worst-case sense. .
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