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ABSTRACT

-) The fractal dimension of a surface is a measure of its geometric complexity and
can take on any non-integer value between 2 and 3. .Normally, the topological
dimension of surfaces is 2; however, their fractal dimensions increase with greater
amounts of complexity or roughness, For example, a fractal dimension of 2.3 is
.found to be a common value in describing the relief on the earth,

This paper discusses and presents examples of an algorithm designed to measure
the fracticality of surfaces. The algorithm was developed at The Ohio State

- University and is shown to be reliable and robust. It is placed in an interactive
setting and is based on the premise that the complexity of isarithm lines may be
used to approximate the complexity of a surface. The algorithm operates with the
following scenario: Starting with a matrix of Z-heights, an isarithm interval is
selected and isarithm lines are constructed on the surface. A fractal dimension is
computed for each isarithm line by calculating their lengths over a number of
sampling intervals. The surface's fractal dimension is the result of averaging the
fractal dimensions of all the isarithm lines and adding 1.

Potential applications for this technique include 2 new means f& data compression,
& quantitative measure of surface roughness, and be used for generalization and

filtering.

The problem of describing the forms of curves and surfaces has vexed researchers
over the years. For example, a coastline is neither straight, nor circular, nor
elliptic and therefore Euclidean lines cannot adequately describe most real world
features. Imagine attempting to describe very rough or bumpy terrain in terms of
classical geometry. An intriguing concept proposed by Mandelbrot (1967, 1977,
1982) is to use fractals to fill the void caused by the absence of suitable geometric
.representations. A fractal characterizes curves and surfaces in terms of their
complexity by treating dimension as a continuum. WNormaliy, dimension is an
Integer number (1 for curves, 2 for areas, and 3 for volumes); however, fractal

. dimensions may vary anywhere between | and 2 for a curve and 2 and 3 for a
surface depending upon the irregularity of the form. Although individual fractals
have been around since the 1900's, Mandelbrot was the first to recognize their
applications outside of mathematics.

INTRODUCTION
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This paper discusses an algorithm, developed at Ohlo State and implemented in an
Interactive setting, designed to measure the fracticality of a surface. It also
presents results from examining three surfaces.’ '

DEFINITION OF FRACTALS AND SELF-SIMILARITY

In Euclidean geometry every curve has a dimension of | and every plane has a

dimension of 2. This is generally referred to as the topological dimension (Dt).

These dimensions remain constant no matter how complex or irregular a curve or

glane may be. For example, the Rocky Mountain area contalns many irregularities,
ut the topological dimension remains 2.

In the fractal domain a curve's dimension may be between | and 2 according to its
complexity. The more contorted a straight line becomes, the higher its fractal
dimension. Similarly, a plane's dimension may be a non-integer value between 2
and 3. The {ractal dimension for any curve or surface is denoted by (D) and within
this framework: D > Dt. Mandelbiut (1977) proposes the following definition for a
fractal: "A fractal will be defined as a set for which the Hausdor{f-Besicovitch
dimension strictly exceeds the topological dimension.” .

Central to the concept of {ractals is the notion of self-similarity. Self-similarity
means that for any curve or surface a portion of the curve or surface can be
considered a reduced image of the whole. However, seldom in nature (crystals are
one exception) does self-similarity occur and therefore a statistical form of self-
"similarity is often encountered. In other words, if a curve or surface is examined
at any scale [t will resemble the whole in a statistical sense; therefore, D will
remain constant. Brownian motion Is an excellent example of statistical self-
similarity. Because of this principle, a curve can be decomposed into Nsr
nonoverlapping parts and each subgegment has a length of 1/r=1/N. Similarly, a
unit re can be divided into N=r” squares, where the similarity ratio is r(N) = I/r
= 1/N. In either case the following equation applies:

|  Dslog N/log (1/r) (1)
. and could be called the shape’s similarity dimension. D can also be expressed as:
7 Dlog (N/N_)/tog(A /%) @

where A and ) are two sampling intervals and N_ and N are the number of such
Intervals’ contained. If a curve resembles a stralg%t line ,then when the sampling
Interval is halved, N doubles and the proportion equals 1. The majority of
cartographic curves are not straight lines and therefore N will more than double
causing D to be greater than |. The principle of self-similarity is dismissed by
Goodchild (1980), Hakanson (1978), and Scheldegger (1970). Hakanson, for example,
,points out the absurdity of postulating the validity of self-similarity down to the
size of the pebbles on the coastline and at the molecular interstices of those
pebbles. Goodchild demonstrates that although Richardson (1961) found the west
coast of Britain to have a constant D of 1.25 over sampling intervals between 10
and 1000km., he found the east coast to vary between 1.15 and 1.31 for a similar
'sampling Interval. This suggests that whatever created the irregularities on the
coastline acted at specific scales. Goodchild states that since self-similarity is
only one aspect of the fractal approach, it would be unwise to reject the entire
concept.

DEVELOPMENT OF THE FRACTAL SURFACE ALGORITHM

The following algorithm is based upon the research performed by Goodchlild (1980).
He noted the earlier empirical work performed by Richardson (1961) and later



extended by Mandelbrot (1967). Rlichardson measured the lengths of several
{rontlers by manually walking a palr of dividers along the outline so as to count the
number of steps. The opening of the dividers (n) was fixed in advance and a
{ractional side was estimated at the end of the walk., The main purpose in this
section of Richardson's rescarch was to study the broad variation of In withn,

Richardson produced a scatterplot In which he plotted log total length agalinst log
step size for flve land [rontiers and a circle. Mandelbrot (1967) discovered a
relationship between the slope (B) of the lines and fractal dimension (D). To
Richardson the slope had no theoretical meaning, but to Mandelbrot it could be
used as an estimate of 1-D, which leads tos ‘

Dal-g | (3

Goodchild computed the fractal dimensions of surfaces by constructing contour
lines and calculating their lengths. He extended Hakanson's (1978) analysis in order
to calculate D. In computing length, Hakanson counted the number of intersections
between a grid and a coastline, and {for a complex curve, it is possible that any
even number of Intersections could exist. Goodchild points out the scale of the
map, which determines the size of the grid, is not strictly related to a sampling
Interval. In terms of D, it would be more appropriate to count the number of cells
.Intersected instead of the number of Intersections.

Goodchild estimated D for several self-similar surfaces generated by shear
displacement (Mandelbrot 1973). He selected a contour line at a height equal 1o
the mean of the minimum and maximum heights. Cells were aggregated into larger
aggegates of 5x3, 7x7, 9x9, and up to 19x19, and classified them as above (black)
or below (white) the contour line. To count the number of boundary cells or, in
other words, compute the length of the contour line, as a function of aggregate
size, a count was made of the number of black aggregates containing at least one
white cell. This is where the cells are cut by the boundary. The log of the average
number of boundary cells was then regressed against the log of the aggregate size.
Goodchild calculated D for the contour line using Equation 3 and extending that
same principle to a surface, the following equation is used

Ds2.8 . )

The following algorithm developed by Shelberg (1982) extends Goodchild's work in
that D can be approximated for nonself-similar surfaces and is placed In an
interactive setting. Because Goodchild's study only dealt with self-similar
surfaces, he could select a contour line at a height equal to the mean of the
minimum and maximum heights, A self-similar surface possesses the same
statistical properties at all scales and at all locations; therefore, choosing the
average contour line Iis a valld method. However, a surface may not be entirely
self-similar and selecting the mean contour line may -produce a false fractal
dimension. For example, i{ a surface consisted of a plain'and a mountain range,
then selecting the average contour line would neglect both points on the plain and
mountain range and bias the overall fracticality. Although two of the surfaces
. reported in this paper are self-similar, the algorithm is designed to analyze
nonself-similar surfaces. Instead of choosing only the mean contour line, any
number of contour lines, up to 8 maximum of 200 can be used to examine a surface.

All ‘surfsaces are in the form of & Digital Elevation Model (DEM) and the algorithm
begins with the user inputting whether the fractal dimension will be determined by
rows of columns. This option Is provided so that a trend in the sur{ace may be
captured. The contour’ interval Is then entered and the number of contour lines
determined. Next, the maximum cell size, which Is comparable to Richardson's
opening of the pair of dividers, Is input. The minimum allowable maximum cel!

. <



Nze lll J because any number less than 3 would leave the linear regression open to
question, <

For each contour linc, cells are sggragated into larger aggregratas, up to the
maximum cell size, and classifled as above (bluck) or below (white) the contour
line. To count the number of boundary cells, as a function of aggregate size, a
count is made of the number of black aggregates contalning at jeast one white cell,
Flgure | represents a 6x6 surface In which the contour [ine of 35 is denoted by the
darker line on the surface, '
The algorithm starts with the lowest contour line, In this case 3J, and classifles
each cell as white (1) or black (2); see Figure 2. Alweys beginning with & cell size
of I, It then compares cach neighboring cell, along the columns, for boundary cells.
Por example, the comparison betweer (1,1) and (1,2); and (1,5) and (1,6) Indicates a
boundary cell Is not present. Conversely, the comparison between cells (1,4) and
(1,5% and (6,2) and (G,3) Indicates boundary cells exist and in these cases the
number of boundary cells Is Incremented by [. After the entire surface is
examined using | cell size, the search begins again using a cell size of 2, Now cells
(1,1) and (1,3) and (6,2) and (6,4) are compared and so on. This continues until the
. maximum cell size is rcached. For each contour line the same process is repeated.

It is possible, for a given cell size, that no boundary cells are encountered. In
Figure 3, this occurs when the cell size equals 3, 4 or 5. For example, the only
possibility of encountering a boundary cell is in row 6 when the contour line equals
19. U the cell size equals 3, cells (1,1) and (1,6) are compared and no boundary
cells are reported present, The results remain the same for the remalning
comparisons within that row., For any given cell size, if no boundary cells are
encountered, the contour line Is eliminated from the calculations. Since the
algorithm regresses loh(nvcugc number of boundary cells) against log (cell size),
without eliminating the contour line, but just deleting the cell size from the
regression, zould result in |, 2 or 3 points used in defining the regression line and
immedlately poses obvious difficulties. Although, by e lmlmdnﬁ some contour
lines, the method neglects certain small portions of the surface, It accounts for
greater variations than if only the mean contour line is selected. The strategy is to
choose the lowest contour [nterval with the fewest contour lines being eliminated.

After counting the number of boundary cells per cell size for each contour line, a
linear regression is performed. Por every contour line, (average number of
boundary cells) Is regressed against log (cell size). A D Is computed for each
contour line and extended to a surface by using Equation 4, A surface's {racticality
-Is the average of all the D's for the included contour lines.

EXAMPLES AND RESULTS .

Two of the three surfaces used as examples were generated by the shear

displacement method and are statistically self-similar. E‘ch Is In the form of a

. 30x30 matrix and, on the CRT, are represented by a perspective view with hidden
lines eliminated.

The {irst surface, In Figure 4, has a theoretical D of 2.2. Table | shows a rather
large array of D values and the selection of numerous contour intervals s intended
to display the stability of the algorithm. In an effort to preserve consistency
among the results and not fall below the minimum acceptable maximum cell size,
In the {ollowing examples, the maximum cell size is 3. all cases, D Is computed
along the rows.



Yigure 4. 50 x 50 surface with a theoretical D of 2,2,
Minimum and maximum elevations are ~-303 and 269.

/

Tigure 5. 50 x 30 surface vith i thoorltlcli D of 2.6,
Hinisus snd maxisum elevations are =42 and 41.

NOTE: Meights are unieleas,



Contour Maximum . No. ot No. of lines

Interval Cell Size D Included lines  not includad
J 3 2.1915 146 8
10 5 2.1869 72 4
20 3 . 2.1732 36 2
22 b] 2,2071 33 !
2 b 2.2000 30 !
30 b 2.1%93 24 1
20 3 2.2365 14 0
100 b 2.2143 7 0
200 J 2,2268 : 3 0
k13 5 2.1289 L 0

Table 1. Results from examining a 30x30 surface with a theoretical D of 2.2

. A D of 21915 would be selected to represent the surface because of the large
number of contour lines (146) used In the calculations versus only § contour lines
being eliminated.

Figure 5 shows a 50x30 surface with a theoretical D of 2.6, Table 2 displays the
results over a number of contour intervals.

‘'
L4

Contour Maximum No.of =  No. of lines
Interval Cell Size D Included lines  not included
2 J 2.,6720 3% . 7
b 5 2.6671 14 2
7 b 2.6679 10 1
10 5 2.62%0 7 0
20 J 2.6390 , 3 0
8L 3 2,985 "1 0

Table 2, Results from examining a 30x30 surface with a theoretical D of 2.6 °

A D of 26720 would be selected because 34 contour lines are included in the
calculations versus only 7 being eliminated.

The third surface is also 30x30, and is a Defense Mapping Agency's standard
elevation matrix over a small portion of Southern Nevada. The minimum and
maximum heights, in meters, are 2011 and 2376. Although the degree of self-
similarity is not known, the D values, in Table 3, are extremely stable. A D of
2.1893 would be selected to best approximate the complexity of the surface. The
actual surface is not shown because the hardcopy is illegible.

Contour Maximum No.of ' No. of lines

Interval Cell Size D included lines  not included
L4 5 2.1893 66 6
15 b 2.1903 y 74 ' |
20 5 2.1707 16 1
130 5 2.1701 o | 0

Table 3. Results from examining a "real-world" mso surface.
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* SUMMARY AND CONCLUSIONS

The results dernonstrate the stabllity of the algorithm in which, over a number of
contour or sampling intervals, the fractal dimension remalns reasonably constant.
Other 30x30 selt-similar surfaces which were examined, ranging in D from 2.1 to
2.9, produced simllar results. By using a number of contour lines, the maximum
variation In the complexity of the surface can be captured and therefore D can be
closely approximated,

Potentlal applications of this algorithm Include a new means to compute surface
roughness, & means to measure the amount of surface generalization or filtering
attained, and a method to store a8 compressed surface so that greater complexity
can be introduced to match a target surface with a speciflc {ractal dimension.
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