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ROBUST WIENER FILTERING FOR MULTIPLE INPUTS
WITH CHANNEL DISTORTION

by

Cheng-Tie Chen and Saleem A. Kassam
Department of Systems Engineering

University of Pennsylvania
Philadelphia, PA 19104

ABSTRACT

Robust Wiener filtering has previously been considered for the

single-input (scalar) case where there is no channel distortion and where

the signal to J~e estimated is the source signal itself. In this corres-

pondence,Aef extend these results to the multiple-input (vector) case where

linear channel distortion is allowed and the signal to be estimated is

a linear-filtered version of the source signal. The result Iare obtained

from those for the single-input case by modifying appropriately the

constraints on signal and noise characteristics. Such a modification is

motivated by an examination of the expression of the mean-square error for

the optimum filter.
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I. INTRODUCTION

in minium mean-squared-error estimation of random signals observed

in random noise, classical theory is applicable for obtaining optimum

estimators provided signal and noise second-order characteristics are

known. When these characteristics can only be confined a priori to belong

to some broader classes of possibilities, minimax robust estimators may be

used to obtain performance which Is always at least as good as an optimum

lower bound. In [11 a minimax robust Wiener smoother was obtained for

the case where the scalar observation process was an additive mixture of

the desired random signal and random noise. The result in [1] was obtained

for signal and noise power spectral density classes of total-power-con-

strained spectra lying between given upper and lower bounds. In [21,

this work was extended to more general classes of allowable spectra, and

causal estimation filters were also considered. Another extension of the

results of [1] has recently been obtained [3), applicable for cases where

signal and noise are possibly correlated. It is also of relevance to note

that the robust Wiener filtering results obtained in [1] are closely re-

lated to robust hypothesis testing results obtained in [4] for bounded

classes of probability density functions. This relationship was observed

in [2). In fact, the results in [41 give more details of the results and

proofs in (1).

In this correspondence we obtain another useful extension of the
or

basic robust Wiener smoother result in [1). We consider here the case

where a linear channel (a.g. measuring instrusmnt or transmission channel) C3
3n-

distorts the original signal a(t) whose power spectral density I* modeled

as belonaing to a bounded class, so that the observet to process Is the

ty CodesAvail and/s -
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sm of a distorted version of the original signal and noise. In addition,

we will look for estimates of a linear-filtered version d(t) of s(t).

In this work we will assume that the channel distortion and the linear

filter generating d(t) from s(t) are specified. The case where the channel

distortion Is Imprecisely specified but signal =4 noise spectra are known

has also been recently considered [5). In addition, we simultaneously allow

our signal, noise and observation processes to be vector-valued, for which

we use spectral models which are direct extensions of those used in the

scalar case.

The results that we establish for the robust filters in our more

general case can be obtained by modifying the proofs of the results

obtained for the simple case considered in [1,41. Although we do not

attempt it here, it should be possible to include signal and noise

correlation (as In [3]) in this more general scheme, and also to apply

the restriction to causal filters [2].

II. PROBLEM STATEMENT

Consider the model of an u-input signal estimation problem in Figure

1. Rere a(t) t the original signal u-component real vector process, and

it is desired to obtain an estimate d(t) of a desired k-vector d(t) which

is a linearly filtered version of l(t). Specifically, we have

d(t)- .1 )(t). ()
Where (t) Is a k x m real matrix and the "e- denotes matrix-vector

mvolutisa. The observation process Z(t) Is a real a-component vector

7:I
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process given by

W~) (C T s) M)t + U(t), -mt'W (2)

whe the m xma real matrix-valued function CT is the observation-.

channel lapulse-reaponse and n(t) Is a real or-component noise process. We

assumne that the processes s(t) and n(t) are uncorrelated, zero-scan and

vide-sense stationary, with respective power spectral density matrices1

S(W) and N(O). Further, we assume that the Fourier transform 1(W) and

C(W) of K(t) and C(t), respectively, exist and are know. Let H (o) be

the k x a frequency response matrix of a linear filter (not necessarily

causal) used for estimating !I(t). We require 1(w) to belong to the class

H of frequency response matrices of real filters. Then the resulting

mean-squared-error e (H; B , N) A E{[d1(t) - I~) [d((t)-d(t)]), where

A(t) is the estimate, can Le show to be given by

e(H; S, N) - trace I~ [K(W) - C(N) UR )I t. S(w)(K(m) - C(w) U(w)1
-WO

+Ht (W N( WHW dw) , (3)

where "t" denotes conjugate transpose.

Our problem Is to find a sinimax robust filter characterized by

frequency response matrix RR(P), for specific classes S and Al of allow-

*able spectral density matrices S(w) and N(w), respectively, so that

mft max e (H' 8, 3) s ax e~ 1 8, 3)
Bn~f sES sES

MEN uIEN (4)

1 6 deIne the atocorrelatiom matrix of I(t) as {Zfy Z(tl

* .46f
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T bhe specific classes S and N ye will consider are generalizat ion* to the

matrix case of the bounded classes of power-constrained spectral densities

considered in 11, 21, and for these a siulsex robust filter will be found

which satisfies

min max (, S, 9) amax sin e(V,S, N)
BEff sES ses HIGH

ISEl INsEAI

W e(RI 8R, NR' 5

In this case HRa Is the frequency response of the optimum filter correspond-

Ing to the pair (Se R* NR S x N,-which Is called the least-favorable pair.

111. ASSUMPTIOKS AND ALLONABLI CHARACTERISTICS

We assume that the channel characteristic C~W is of the form C (W)I,

where C 0 (w) is a scalar function and I denotes the identity matrix. This

assumption holds for the case where the source signals all pass through

the same observation channel and do not Interfere with each other-in the

observation channel.

Since S(w) and M(w) are hernitian, non-negative definite matrices,

they can be decomposed Into P (W)A86O()a t( W and Pn ~ A 3 (d)? t(w). respect-

ively, where POWm and P Cs6) are unitary matrices consisting of the norm-

&lI e genvectors of 8(w) and N(w), and AIC) An(w) are diagonal matrices

consisting of the asenvalues of 5(w) and M(w). respectively. We will

son that P. (i) %W In Cm (m). This assumption, although restrictive,

does bold for som practical situations. for example, If the noise

gemoas awe Independent. of each other and each have the ame pewer

spectral density, (I.e. , NC.) is diaoMa? matrix With the eas diagonal

tera)o the calwms of P(a) am be met to be the normalized cigeavectora

A



-5-

of 8(a). Me also assume that P(w) is known, so that uncertainty about

S(w) and 3(w) Is with respect to the elgenvalue functions Aa(w) and n(w).

In a practical application of these results one would start with a nominal

description for S and N which are diagonalisable by the same matrix P , and

then allow deviations from the nominal In the diagonal terms. While this

asmption aWain restricts the applicability of the results, it Is

necessary for obtaining the explicit results that we give. Several

Interesting examples can be given in which such ip.tqrctions hold [6]. This

asumption Implies that the a components of the observation process z(t)

can be decoupled prior to further processing.

Let X *I(w) and ARj(w) denote the i-th diagonal terms of Aa(w) and

An (W). For allowable S(w)(=P(w)A ()P t( )) and N(w)(-P(w)An(w)P (w)), we

assume that A (w) and A n() satisfy the following constraints:

Xa,(W) < 8s,(w) <- ks. (W)  (6a)

M (6b)

i= A (w) X (w)dw 2vQ

and
Ant () <- Xni(w) 1 Xfnut (M) (7a)

I(1  ) i(w> (0)(/ICo(w)l12 dw -2wQ (7b)

where Ai(W) is the i-th diagonal term of Pt(w)K(w)Kt(w)P(w), andil denotes

the set of a11 w such that CO(W) 0 0. Note that( 6b )is a power constraint

on the desired signal d(t), since the left-hand side of (6b) can be shown

to be tg- ( S>>milarly, (7b) is a power constraint on the

'+ ..... . , + '4r4 . ... _+ ..;p:
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noise which would appear if the estimated desired signal is obtained

directly by passing y(t) through a linear filter witth frequency response

_K (QW)10  , the "inverse" filter. Thus, the constraints (6) and (7) my

be specified by a priori information.

in the following, we will find the robust solution for the allowable

S(co) and N(w) just defined. As will be seen, the results can be obtained

by a generalization of the proof of the results in [1, 21.

IV. SOLUTION FOR ROBUST FILTER

Let S 0 N 0be any pair of spectral density matrices in the classes

S, N, respectively, defined in Section III. Then the optimum filter

frequency response H 0T(w) for this pair Is given by

HOW(a) - [IC O(W)1 2 so(W) + NIo (W)) 1 1cj0 (w) So (w) K(w); (8)

here "t" denotes complex conjugate. Let A so() X)i (w~) be the i-th

diagonal elements of A so M and A n(w) in the decompositions P(w)A,,(W)P t(W)

and (W)A no (w)P t (w) of So(ws) and N0(w), respectively. Using (8) in (3) and

after some simple matrix manipulations, we get

M 0 (W~) 2

eCs,* - LCO(W),2A5 OW) + A (W)

io sil

+ I ICowl 2 X 0i~ 2

CO(W)IA so + o

1C(w) a i

4a
.C(N1
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Now this can be rewritten as

_ 1 a
e(.o, S, M)i J [1 I A()J A X( )ei(w)do "

2v 1c(W) 2 ni(w) (10)

where

- A i ( W )soi (W)

)- Ai(O)soil) + [Ai(o)Ano)ljc0( 2] (11)

Note that the optiumu filter frequency response can be described by

0 (w) " w P(w) " (w) (w) K(w) (12)

where H (w) Is the a x a diagonal mtrix of elements H~~)
0 o

Defining A si () - Ai(W)Asi (w) and Xni(() - [Ai(w)/ICO( ) 2 ni(W)

we obtain the expression

-m2

+ [Hui (w)] A i w)dw, (3

This is significant because for the simple scalar problem where the

desired signal power spectral density is o(w), noise power spectral density

is i(w) and the observation process is the desired signal plus noise, a

filter with frequency response r (w) gives a man-squared-error between

output and the desired signal component at the Input of

e(r. **,q) - jil-r(i)I o(Ia) + j(,),j2 0(14)



* . Mw robust imer filter for this problemi lien a sad qt ere Is power-

costriaeA bounded classes was obtained explicitly in (11.

We see then that In env case, In light of the definaition* for our

spectral doesty class (eqs. (6) and. (7)1 the least-favorable'spectra

and the- robust f ilter may be obtained directly f ro the results in [1, 41. *
at least for the case a 1. For thIs case (a 1) we have thus shown how

the presence of a nap-ideal channel and an arbitrary definition forea

desired signal (as some linear-f iltered version of the original signal)

say be Included In the problem formilatIon for robust Wiener filtering

by defining the power constraint appropriately [Eqs. (6b) and (7b) 1.For

the more general case a 2 1, a simple extension of the proof for the

scalar case In f 11 gives the "otion for the robust filter. The

extension consists of sisply musing the, more general expressions (6b)

and (7b) in"ven swtiemwever a components; for the power constraint;

the solution for the lesat-favevsble characteristics Is again obtained In

term of two oeseofte a" kn. These define isri (i) and.Xnri(w) for

the least-faworsb30 ohertevistics, for each I, exactly as in the scaler

case. This exat to fesly ptoved;, one way to justify it Is to

consier the case -A*w I& a scaler caon, a diarjoint frequey subsets

have upper sad le~s spectral boads, defned,p an d total. Power constrained.

As eas emil, if m(N) ts emsctly epeciti04 and S(00) -P(O)A Cv)*? Cu) Is

* ee~s 16-M-4 by (6), vs in

A~m Aft~ 4& { 1 (.)L (in). af Ms*)S~~

.*.i'V.
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Note that Ai( ) may be removed everywhere it occurs in (15).

It is possible to consider a more general error expression of the

form e Q(H. S, N) - E{[(t)-_(t)J-Q where Q is non-negative

definite and Hermitian, and generalize the above results. In this case

the Ai( ) have to be taken as the diagonal elements of Pt (w)K(w)QKt (w)P(w).

A complete proof of these results is given in [6].

V. SUM4ARY

In this correspondence, we have extended earlier results on robust

Wiener filtering which had been obtained for the scalar case when there

was no channel distortion and when the signal to be estimated was the

source signal itself. The choice of allowable characteristics considered

here was motivated by an examination of the expression for e(Ho, S, N).

Although the constraints (6b) and (7b) are not put on the power spectral

density matrices of the source signal and input noise directly, they

are meaningful in applications. Results for the robust solution are

obtained directly from the previous results [1, 4] by noting the corres-

pondence between the roles of Ai(W)Xsi(w), AI(w)ni(w)/IC0(w)1 2 and the

roles of the densities considered in [1, 4].
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