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ROBUST WIENER FILTERING FOR MULTIPLE INPUTS
WITH CHANNEL DISTORTION

by

Cheng-Tie Chen and Saleem A. Kassam
Department of Systems Engineering
University of Pennsylvania
Philadelphia, PA 19104

\ ABSTRACT

Robust Wiener filtering has previously been considered for the
single-input (scalar) case where there is no channel distortion and where
the signal tw estimated is the source signal itself. In this corres-
pondence, .w€ extend these results to the multiple-input {(vector) case where
linear channel distortion is allowed and the signal to be estimated is ]
8 linear-filtered version of the source signal. The resultﬁare obtained
from those for the single-input case by modifying appropriately the
constraints on signal and noise characteristics. Such a modification is
motivated by an examination of the expression of the mean-square error for
the optimum filter. A

‘m”.q for
d&ltum p":lﬁo ’.10333 ;
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I. INTRODUCTION

In minimum mean-squared-error estimation of random signals observed
in random noise, classical theory is applicable for obtaining optimum
estimators provided lignalvand noise second-order characteristics are
known. When these characteristics can only be confined a priori to belong
to some broader classes of possibilities, minimax robust estimators may be
used to obtain performance which is always at least as good as an optimum
lower bound. In [1] a minimax robust Wiener smoother was obtained for
the case where the scalar observation process was an additive mixture of
the desired random signal and random noise. The result in [1] was obtained
for signal and noise power spectral density classes of total-power-con-
strained spectra lying between given upper and lower bounds. In [2],
this work was extended to more general classes of allowable spectra, and
causal estimation filters were also considered. Another extension of the
results of [1] has recently been obtained [3], apﬁlicable for cases vhere
signal and noise are possibly correlated. It is also of relevance to note
that the robust Wiener filtering results obtained in [1] are closely re-
lated to robust hypothesis testing results obtained in [4] for bounded
classes of probability density functionms. Thii relationship was observed
in [2). 1In fact, the results in [4] give more details of the results and

proofs in [1].

In this correspondence we obtain another useful extension of the P —
or
basic robust Wiener smoother result in [l1). We consider here the case !g ;
where a linear channel (e.g. measuring instrument or transmission channel) a f
. ' ’ m— ]
distorts the original signal s(t) vhose power spectral density is modeled |
as belonging to a bounded class, so that the observation process is the Y,
ty Codes

, vail and/er
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sum of a distorted version of the original signal and noise. In additiom,

we will look for estimates of a linear-filtered version d(t) of s(t).

In this work we will iumu that the channel distortion and the linear
filter generating d(t) from s(t) are specified. The case where the channel
distortion is imprecisely specified but signal aud noise spectra are known

has also been recently considered [5). In addition, we simultaneously allow
our signal, noise and observation processes to be vector-valued, for which
we use apqctul wodels which are direct extensions of those used in the
scalar case.

The results that we establish for the robust filters in our more
general case can be obtained by modifying the proofs of the results
obtained for the simple case consiciered in {1,4]. Although we do not

attempt it here, it should be possible to include signal and noise

correhtim (as in [3)) in this more general scheme, and also to apply

the restriction to causal filters [2]).

IT1. PROBLEM STATEMENT 1

Consider the model of an m-input signal estimation problem in Figure
1. Here s(t) is the original signal ®m-component real vector process, and

it is desired to obtain an estimate é_-(t) of a desired k-vector d(t) which

is a linearly filtered version of s(t). Specifically, we have i {
a(e) = (KT * g)(r), —=ctem, ) (1)

wvhere Kr(t) is a k x m» real metrix and the "a" dmtiu intr:lx-vcctor

convolution. The observation process y(t) is a real m-component vector




process given by

2@) = (€T * ) (t) + n(t), ~=ctem, - )
vhére the m x m real matrix-valued function C'r is the observation=-
channel tnpulﬁc-rccpohac and n(t) is a real w-component noise process. We
sssume that the processes s(t) and n(t) are uncorrelated, zero-mean and
wide-sense stationary, with iéspective power spectral density utrice31
S(w) and N(w). Further, we assume that the Fourier transforms K(»w) and
Cw) of K(t) and C(t), respectively, exist and are known. Let HTG.;) be
the k x = frequency response matrix of a linear filter (not necessarily
causal) used for estimating d(t). We require H() to belong to the class
H of frequency response matrices of real filters. Then the resulting
' mean-squared-error e(H; S, N) B {d(e) - ;_(:)]T[g(t)—i(t)]), where

é_(t) is the estimate, can Le shown to be given by

e(H; S, N) = trace {EI_II'J [K@) - cw) H('ﬂ)lf' S(w) [K(w) ~ C(w) H(w)]

-

+ 8 (W) N@w) HW) ), | 3

vhere "+" denotes conjugate transpose.
Our problem is to find a minimax robust filter characterized by
frequency response matrix nkm). for specific classes S and N of allow-
able -pcctui density matrices S(w) and N(u), re-pectiv;ly. ‘80 that
ain max e(H, S, N) = max e(ll'.| s, N)
BEH SES ' sES
NEN NEN : «%)

.-

Lue define the sutocorrelation mstrix of y(t) as By (0)r (o)),
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The specific classes S and N we will consider are 3@aa1uatious to the
matrix case of the bounded classes of power-constrained spectral densities
considered in [1, 2], and for these s minimax robust filter will be found

which satisfies

ain max e(H, S, X) = max min e¢(H, S, N)

BEH S€S SES uEH
NEN REN
- .(nl’ sR'. NR). (5)

In this case li.n is the frequency response of the optimum filter correspond-

ing to the pair (SR. lln) € S x N, which 1s called the least-favorable pair.

I1I. ASSUMPTIONS AND ALLOWABLE CHARACTERISTICS

We assume that the cWel characteristic C(w) is of the form Co(m)I,
where co(u) is a scalar function and I denotes the identity matrix. This
assumption holds for the case where the source signals all pass through
the same observation channel and do not interfere with each other in the
observation channel.

Since S(w) and N(w) are hermitian, non-negative definite matrices,
they can be decomposed into P'(u)n.(u)l':(m) and Pn(u)An(u)?n*(Q). respect-
ively, vhere P.(u) and Pn(u) are ullttarf astrices consisting of the norm-
alized eigenvectors of S(w) and ¥N(w), and A.(u). An(u) are diagonal matrices
consisting of the eigenvalues of 8(uw) and N(w), respectively. We will
sssume that P_(0) = P (w) = P(u). This assumptiocn, slthough restrictive,

- 4oes hold for some guetical situaticns. For example, if the noise
~ components are wcnt- of each other and sach have the sama power |
spectral density, (i.e., N(u) is dlagonal matrix with the same diagonal

terms), the colums of P(w) can be set to be the normalized eigenvectors
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of S(vw). Ve also assume that P(w) is known, so that uncertainty about
S(w) and N(w) is with respect to the eigenvalue functions A («) and A (0.
In a practical application of these results one would start with a nominal
description for S and N vhich are diagonalizable by the same uttzx P, and
then allow devistions from the nominal in the diagonal terms. While this
sssumption again restricts the applicability of the results, it is
necessary for obtaining the explicit results that we give. Several
interesting examples can be given in which such ¥gétrictions hold [6]. This
assumption implies that the m components of the observation process y(t)
‘can be decoupled prior to further processing.

Let x“(u) and A lu(m) denote the i-th diagonal terms of A'(u) and
A;(u). For allowable S(u)(-P(w)A'(w)P*(w)) and R(m)C'P(m)An(u)P+(m)), we

assume that A.(u) and An(m) satisfy the following constraints:

Mgy @) 5 A (W) 2 a4 (w) (6a)
M J' (6b)
121 -.Ai(w) Agq (w)dw = ZIQ-'

and : |
g @) 22, @) 2 dyg @) (7a)
¥ | 2
1{1 Aglw) Agq @/ 6| au = 2ng, ' (7b)

vhere A (v) is the 1-th diagonal term of P (W)K(w)K' (w)P(s), and ® denotes
the set of all w such that co(s) f. 0. MNote that( 6b)is a power constraint
on the desired signal d(t), since the left-hand side of (6b) can be shown !
to be tr It’(u):(u)l(u)d:» Similarly, (7b) is a power constraint om the
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noise which would appear if the estimated desired signal is obtained
directly by passing y(t) through a linear filter with frequency respomse
_R?(m)/co(é), the "inverse" filter. 'l'hixs, the constraints (6) and (7) may
be specified by a priori information. )

In the following, we will find the robust solution for the allowable
S(w) and N(w) just defined. As will be seen, the results can be obtained
by a generalization of the proof of the results in [1, 2].

IV. SOLUTION FOR ROBUST FILTER

Let So, No be any pair of spectral density matrices in the classes
S, N, respectively, defined in Section III. Then the optimum filter

frequency response Hor(u) for this pair is given by

B, @ = 116w s + 8 17 ¢/ s, wkw); ®)
here "t" denotes complex conjugate. Let '\soi("’)’ Anoi(w) be the i-th
diagonal elements of A 80 (w) and A 7o (w) in the decompositions P(w)A 00 (w)P+(m)
and P(w)A_ ()P’ (u) of 5 (u) and N_(w), respectively. Using (8) in (3) and

after some simple matrix manipulations, we get

e, S, K) = g %._; r lnoi( w) : ]2.
i=1 Ico(u)| Aoy @) + 24, (w)
Ai("msi("’)d”
l_]’ Ico(u)l Aot (@) 2 - ®
3 R
i - |c (“)l L («n) + 2 0q @)

(w)
; 3 A a (w)dw
(u) |




Now thh can be rewritten as

| ¥ - 2
e(d , S, N) = 12 57 | 11 -H )7 A, Wde ~

1
rm ()12 A‘m (w)dw (10)
(] ———— ("] » ’

where
A, (w)2 (w)

AN () + [A ) @/]Cw)]?)

soi

Hoi(w) - 11)

Note that the optimum filter frequency response can be described by

Ho(w) = C ( 5 P(w) ll (w) P (w) K(w) 12)

vhere io (w) 1s the m x m diagonal matrix of elements l-ioi(w).

Defining X _, (w) = A ()} , (w) and }_, () = [Ai(m)/lco(m)lzllni(m)
we obtain the expression

- 9 -
e(H »y S, N) = 121 2 I‘ - Hoi(w)l Aai(w)

=

+ 1, )% A (0w, a3

This is significant because for the simple scalar problem where the
desired signsl power spectral density is o(w), noise power spectral density
is n(w) and the observation process is the desired signal plus noise, a
filter v'ith frequency response I'(w) gives a mean-squared-error detween

output and the duiu& signal component at the input of

«(ty o,.n) = -5,17 rll--!'(m)lz o) + |1 mw)ae (14) | 1

LIS
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The robust Wiener filter for this problem when ¢ md n nfo in power-

constrained bounded clum was obtained explicitly in {1].
He ses then that in our case, in usht of the definitions for our

——

spectral density classes (lqvav.‘- (6) and (7)], the _lmtffavorauc spectra

and the robust filter mey be obtained d;neny from the results in {1, 4],
‘For this case (m = 1) we have thus shown how

at least for the case m = 1.
the presence of 2 non~ideal channel gend an arbitrary definition for a

desired signal (as some linnr-fﬂtcfred version of the otigml 'sigml)

may be included in the mblu foruuhtion for robust Wiener filteting

by defining tho pover cmtuint cpproprhtely [sqn. (6b) and (7b)]. For

the more general case m > 1, a ti.nh extension of the proof for the

scalar case 1n {1) siv_.i the solution for the robust filter. The

extension consists of simply usiag the more gemeral expreséiona (6b)
and (7b) involviag summstions over m components for the power constraint;
the solution for the lesst-favorsble characteristics is again obtained in

terms ofmm-ut ad k a’ Mdef‘mi | G) and; (u) for

the lust-fm.bh Mnmutus. for esch 1. mccly as in the scalar
. case. M Wlﬂ is mﬂy ptma one vty to justify it is to
eou:ldcr the cass. vhere ia s scalar case, o mtjotnt frequmy subsets
have ‘upper snd lowsr metul m uﬁm&. ma r.oul pover constrained.
As an exswple, 1f N(e) s exactly specified sod S(u) = P, @) () 10

eumm by 66). ve !M

&l)l
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Note that Ai(é) may be removed everywhere it occurs 1n'(15).

It is possible to consider a more general error expression of the
form eQ(H. S, N) = E{[g}t)f;(t)]TQ [gﬁt)fé(t)]} where Q is non-nefative
de;;ﬁite and Hermitian, and generalize the above results. In this case
the Ai(w) have to be taken as the diagonal elements of Pf(w)K(w)QKt(m)P(m).

A complete proof of these results is given in [6].

V. SUMMARY

In this correspondence, we have extended earlier results on robust
Wiener filtering which had been obtained for the scalar case when there
was no channel distortion and when the signal to be estimated was the
source signal itself. The choice of allowable characfetistics considered
here was motivated by an examination of the expression for e(Ho. S, N).
Although the constraints (6b) and (7b) are not put on the power spectral
density matrices of the source signal and input noise directly, they . ,;
are meaningful in applications. Results for the robust solution are

obtained directly from the previous results [1, 4] by noting the corres-

pondence between the roles of A, (w)A_, (w), Al(m)xai(u)llco(m)l2 and the

roles of the densities considered in [1, 4].
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