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ABSTRACT

The Middleton Class A narrowband non-Gaussian
noise model is considered. The performance of various
simple suboptimum threshold detectora is examined
and compared with the performance of the optimum
detector. For example, it is shown that for most cases
of interest the blanker has nearly optimal perfor-
mance while the soft limiter and hard limiter have sub-
stantially less than optimal performance. Then, a new
approximation to the locally optimum detector non-
linearity is developed using ideas from the theory of
robust detection.

|. INTRODUCTION

Various attempts have been made to develop
nodels of non-Gaussian noises (see, for example, {1-
.3]). Among the most general models are those
leveloped by Middleton [7-12). Middleton divides non-
:aussian noise into two classes. A and B. (There has
slso been consideration of a Cless C which contains
noises which are sums of Class A and Class B com-
ponents [9).) Class B noises are broadband, i.e. those
with spectra broader than the passband of the
receiver. Class A noises are narrowband, i.e. have
spectra comparabie to or narrower than the receiver
passband.

In a previous paper [1] we examined the Middleton
Class A noise model. We showed that, in a wide variety
of cases, the first-order noise probability density func-
tion (PDF), which is an infinite weighted sum of Gaus-
sian PDF's, can be closely approximated by the (nor-
malized) sum of the first two terms in the series. We
also showed that the detector which is locally optimum
for this approximation performs very well for the origi-
nal Class A model.

In this paper, after a brief review of previous work
in Section II, we examine the performance of other
even simpler suboptimum threshold detectors. We
show that in almost every case at least one of these
very simple detectors is nearly optimal. In the Section
IV we return to the two term approximation discussed
above. Anticipating that this simple approximation
would not work in every case we developed a somewhat
more sophisticated scheme involving ideas from robust
detection. This scheme is discussed in Section IV.

In order to formulate his model, Middieton [7-12)
sssumes the noise has the form X(t) + N(t) where
N(t) is a Gaussian background component and

Xx(t) = ; Uy(¢.9) Q1)
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where U; denotes the j% received waveform from an
interference source and ¥ ia a random parameter. He
then assumes that the waveform receptions are Pois-
son distributed in time and shows that the normalized
(to unit veriance) noise density f (z) can be approxi-
mated cangnically by

7(z)= T K.riz:o}) (2)
ms=)
where '{ (z:0%) is the zero-mean Gaussian PDF with vari-
ance ¢°. The variance o2 of the m' density is given by
e . M/A+ ™
Im = Tier @
and the coeflicient K, is given by
a A™
Ko =074 T (4)

where A and T" are the two basic parameters of the
model. Tbe firast parameter, A, is called the “overlap
index"” and is defined by A = v7T, where v is the rate of
the homogeneous Poisson process which governs the
generation of the interfering waveforms Uy and T is the
mean duration of a typical interfering signal. The
other parameter, [", is given by the ratio of the power
in the Gaussian portion of the interference to the
power in the Poisson component.

Middleton has shown that, by adjusting the param-
eters A and I, the dentity f given in (2) can be made to
fit a great variety of non-Gaussian noise densities [9-
12]. Also, the parameters A and I" are physically
motivated and can be directly estimated (see {12,8)]).
Unfortunately the model (2) i# cumbersome. For
example, in fll]. Spaulding and Middleton exhibit the
optimal nonlinearity for detection (i.e. the likelihood
ratio £ (z-%,)/ f (x —#,)) and point out that this detec-
tor structure is likely to be computationally burden-
some and uneconomical. Thus we would like to develop
detector nonlinesrities having simpler structure but
which retain the desirable properties of the one given
in [11].

In [1] we considered the (normalized) M-term
truncation of the Class A noise PDF given in (2), i.e.

=1
'S: Kt (zi0})
s g) = B (5)
¥ x
mel
We showsd that W) g a very good approximation to f
for small values of M. In particular, for the problem of
threshold (or locally optimum) detection (i.e. small
signal, large time-bandwidth product), the detector
designed assuming the noise has density £¥ performs
virtually as well as the optimal detector when the noise
is actually given by the full Class A model f. even for
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values of i as small as 2.

In the next section we will examine the perfor-
mance of several suboptimumn detectors whose struc-
ture is even simpler then the ones considered in [1],
but first we will give a brief summary of the necessary
results from the theory of locally optimum detection.
The details of this theory may be found in many places
[14-17.11].

Under mild regularity conditions the (asymptotic)
performance (or processing gain) achievable using &
given detector nonlineerity g(x) when the (indepen-
dent identically distributed) noise process has first
order PDF A(x) is given by the efficacy functional

- 2
g(z)h'(2)dz
nlg.A) = ®

J 9%(=)r(z)dz

For a given noise PDF A(z) the locally optimum detec-
tor nonlinearity gy(z) is the solution to

n*(h) = max n(g.h) 1)
and has the form
a(z) = AL ®

The performance of this locally optimum nonlinearity
is given by
- 2
. e py = h(z
7)) = n@iA) = [ |5 Meez (9)
The functional n*(h) is also known as Fisher's Informa-
tion for A. An interesting (and well known) fact about
the function n®(k) is that it is minimized over all PDF's
by the Gaussian PDF. In fact, the locally optimum
detector nonlinearity for Gaussian noise is the linear
detector (g(z)=z/ o;) which has performance equal to
unity for all noise PDF's.

The Class A noise PDF f in (2) is highly non-
Caussian, and it is often the case thet n®*(f)>>1. In
[1] it was shown that for very small values of M, f{M)
and gu(z) closely spproximate f and its locally
optimum nonlinearity gs(z). Moreover, for a wide
range of values of the parameters) we saw that the
processing gain achievable using g2 is extremely close
to that achievable using g;. That is, n{g2.7) = n°(s).
Of course, there are situations where even simpler
detector nonlinearities are desirable. In the next sec-
tion we examine the performance of three commonly-
used very simple suboptimum nonlinearities.

11. THREE VERY SIMPLE SUBOPTIMUM NONLINEARI-
TIES

In Figure 1 the locally optimum nonlinsarity for a
Class A noise PDF is plotted for z 2 O (since f is sym-
metric, g; is antisymmetric, i.e. g/(-z) = ~p/(z)).
The parameters (A=0.35 "=0.0005) of the Class A
model used in Figure 1 are used in [8-12] to fit
“interference (probably) from nearby powerline, pro-
duced by some kind of equipment fed by line" [8]). The
vertical dashed lines at 2 = 0.08 and z = 0.10 divide
the =z-axis into three regions S, = ||=z|«0.08},
Sa = {0.08<|2{€0.10{, and Sy = ||z |>0.10{ which are
the regions where gs(z) is approximately linear (S,).
returning to zero &.). and approximately zero (Sy).
Evaluating the probability under f of each of these
regions (or, more intuitively the fraction of the data we

should expect to fall in esach region) we have that
Pr(S,)~0.71, Pr(S3) % 0.01, and Pr(Sg) = 0.28. Thus
we see that all but about 1% of the time the dats will
fall in the approxzimately linear region or the approxi-
mately zero region. This leads us to believe that g/
can be closely approximated by a blanker gf (also
called & hols puncher) which is shown in Figure 2a. For
comparison we have also examined the performance of
a soft limiter g§; (or clipper) and a hard limiter gfy (or
sign detector) which are shown in Figures 2b and 2c,
respectively.

In Table 1 we have given the processing gain
achievable using the locally optimum nonlinearity y,'.
the blanker gy, the soft limiter gg;. and the hard lim-
iter gy (Note that the stars on gp and gg; indicate
that the optimal value of c is used). We have included
each of the examples used in (1] as well as two others.
In each case we see that the blanker is nearly optimal
while the soft limiter and the hard limiter have sub-
stantially less than optimal performance. The one
exception to this is the last example (4=1.0, I"=0.1)
where the soft limiter is nearly optimal and even the
hard limiter outperforms the bianker. Not surprisingly
the locally optimum nonlinearity for this case (shown
in Figure 3) is more closely approximated by a soft
limiter than a blanker. We must stress though that,
based on our experience, this seems to be an unusual
case. In fact Table 1 is quite representative of our
findings in general.

Another issue of importance when considering
various detector nonlinearities is that of robustness or
sensitivity. Since the blanker and soft limiter each
only depend on one parameter (the "cut-off” pareme-
ter c), it is fairly straightforward to examine their
robustness. (Note that a harad limiter does not depend
on such a parameter.) In Figure 4 we plotted the pro-
cessing gain achievable using g and g§; versus the
cut-off parameter c for the example
(A=0.35 ™=0.0005) considered in Figure 1. It would
seemn from the smoothness and flatness of the curves
in Figure 4 near their respective maxima that both the
soft limiter and the blanker are quite insensitive to
variations in the cut-off parameter.

On the other hand, in Figure 5, the same two
curves are plotted using a different scale on the
abscissa. This new scale is not the cut-off parameter ¢
but the probability of the set j-c<z<c{ under the
Class A PDF f(z). As mentioned sbove, this can be
thought of as the fraction of the deta which we can
expect to fall in the linear region of the detector non-
linearity (cf. S, in the first paragraph of this section).
Since any estimate of c®, the optimal value of the cut-
off parameter, would presurnably come from some ver-
sion of an empirical PDF (see [12]), Figure 5 is likely to
be a more reasonable way than Figure 4 to examine
the sensitivity of the blanker and soft limiter to uncer-
tainties in estimating ¢®. Results similar to Figure 5
have also been obtained for the Middleton Class B
(broadband) naise model by Ingram and Houle [18].

It is not unressonable at first thought to assume
that this change in scale would cause little change in
the relative smoothness and flatness of the two curves.
In fact Figure 5 shows quite strikingly that the blanker
is very sensitive while the soft limiter is very insensi-
tive near their respective maxima. This sxample is
again quite representative of a wide variety of other
cases.




IV. A ROBUST APPROXIMATION SCHEME

In this section we present a new scheme for detec-
tion in noise which is ressonably well-modsled by the
Class A density (2). This scheme requires some back-
ground on the theory of asymptotically robust detec-
tion. This theory was first developed in a paper by
Martin and Schwartz [19] for the case of nearly Gaus-
sian noise. It was then extended by Kassam and Tho-
mas [20] to mixture models with general "nominal”
noise densities. We now present the needed resuits
trorm [20].

In [20] an e-mixture (or e-contaminated) class of
PDF's of the form

FP=ifl f(z) = (~e)ho(z)+er,(z), AR} (10)

was considered, where Ag is a fixed element of H satis-
{ying certain regularity conditions and H is the class of
all bounded symmetric PDF's. They showed tbat the
detector nonlinearity which has the best lower bound
over the class F on asymptotic performance, i.e., the
minimax locally optimum detector nonlinearity g, .

has the form
Zholze)
~holz
Df,(z) = _h;‘(’z—)—
—hg(c)
ho(c)

where c is chosen to satisfy

Y 2hf(c) _ 1
Jree - Sy T e

r<—c
|z |=c (11)

z>C

(12)

As we see from (11), the robust detector non-
linearity is equal to the locally optimal nonlinearity for
the nominal PDF Ay (see (8)) for |z | less than the cen-
soring constant c, and it is constant lor |z| greater
thanec, i.e., gf is a censored version of g“.

In [1] we saw that in most cases the locally
optimum detector nonlinearity g, for the Class A PDF
(2) can be closely .pproxnmnted by the locally
optimum nonlinearity gs for the PDF containing just
the first two terms (i.e., £ as in (5)). In the cases
where there was any substantial difference between
the two nonlinearities it was in the tails. Beyond 4 or 5
standard deviations, the two term nonlinearity gg con-
tinued its linear path while the infinite term nonlinear-
ity flattened virtually to the horizontal. In Figure 8
these two nonlinearities have been plotted.

The horizontal (dotted) line added to Figure 6
corresponds to the robust detector nonhneanty for

the class F with Ag=f® and ¢ = z Ky. That is,

instead of simply discarding all the tormt in the Class
A PDF beyond the first two as in (1], we bave
“robustified” with respect to this remainder. It is clear
from Figure 8 that this robustified two term nonlinear-
ity ot may often be an even better spproximation to
g7 than gg. Our conviction has been that, in those
cases where the two term locally optimum nonlinearity
g: does not perform in s nearly optimel fashion
(assuming the noise actually bas the Class A density ¢
as in (2)), the robust version gf will. However, as of
this writing we have been unable to find & single case
where gg does not perform virtually as well as y,

Still there are justifications for this robust
scheme. First, in every case we have considered the
robust version performs about as well or even better
than the two term optimal version. Even though these
differences are negligible they do not contradict the
conviction stated above. Of course, this requires
further exploration. Second, it bas been sbhown by
Berry [13] that the Class A model would generaly be
useful when the noise is dominated by two com-
ponents: receiver noise and one strong interferer. If
this is the case, the Class A model may be chosen
solely on the basis of its Ait for the first two (dominat-
ing) terms and the remaining terms may not really be
accurate. Cleuly. due to its minimax design the
robust version will be less sensitive to these inaccura-
cies than the two term optima! detector. In fact, it
might even outperform the “optimal” nonlinearity y, if
the true npise has other small interferers which are
not at the .pproprute distances and powers necessary
to be accurately described by the Class A model
beyond the first two terms.

V. SUMMARY

In this paper we have examined the performance
of some simple suboptimum detector nonlinearities.
For most Class A noises the blanker bas nearly optimal
performance while the soft limiter and bard limiter
have significantly lower performance. On the other
hand the performance of the blanker seems to be far
more sensitive to errors in estimating the optimal
cut-of! parameter.

In (1] we showed that the Middleton Class A noise
model can often be approximated closely by the (nor-
malized) sum of just the first few terms. In fact, in
many cases, two terms are sufficient. This was espe-
cially clear when we looked at the eflicacy of the
detector nonlinearity which is locally optimum for two
terms of the Class A model and found it comparable to
the eflicacy of the full locally optimum detector. In
this paper we alsc developed a robust scheme which
needs some further examination but which we feel
offers a number of advantages over the methods of [1].
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