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(X ABSTRACT where U( denotes the ja received waveform from an
The Middleton Class A narrowband non-Gaussian interference source and d is a random parameter. le

noise model is considered. The performance of various then assumes that the waveform receptions are Pois-
-" simple suboptimum threshold detectors is examined son distributed in time and shows that the normalized

and compared with the performance of the optimum (to unit variance) noise density f (s) can be approxi-
detector. For example, it is shown that for most cases mated cangnically by
of interest the blanker has nearly optimal perfor-
mance while the soft limiter and hard limiter have sub- f (2) Z t rf (Z.01) (2)
stantially less than optimal performance. Then. a new o0

approximation to the locally optimum detector non- where I (W os ) is the zero-mean Gaussian PDF with vari-
tinearity is developed using ideas from the theory of ance e. The variance ar. of the m" density is given by
obust detection. , /A+r(
1. INTRODUCTION i + r

Various attempts have been made to develop and the coefficient Km is given by
nodels of non-Gaussian noises (see, for examnr!a, [I-
.3]). Among the most general models are those K1. = (4)
leveloped by Middleton [7-12]. Middleton divides non-
;aussian noise into two classes. A and B. (There has where A and I' are the two basic parameters of the
lso been consideration of a Class C which contains model. The first parameter, A. is called the "overlap

noises which are sums of Class A and Class B com- index" and is defined by A = sT, where , is the rate of
ponents [9].) Class B noises are broadband. i.e. those the homogeneous Poisson process which governs the
with spectra broader than the passband of the generation of the interfering waveforms Uj and T is the
receiver. Class A noises are narrowband, i.e. have mean duration of a typical interfering signal. The
spectra comparable to or narrower than the receiver other parameter. 1, is given by the ratio of the power
passband. in the Gaussian portion of the interference to the

In a previous paper [1) we examined the Middleton power in the Poisson component.
Class A noise model. We showed that. in a wide variety Middleton has shown that, by adjusting the param-
of cases, the first-order noise probability density func- eters A and I". the density f given in (2) can be made to
tion (PDF). which is an infinite weighted sum of Gaus- fit a great variety of non-Gaussian noise densities (9-
sian PDlrs. can be closely approximated by the (nor- 12). Also, the parameters A and I are physically
malized) sum of the first two terms in the series. We motivated and can be direcUy estimated (see (12.9]).
also showed that the detector which is locally optimum Unfortunately the model (2) is cumbersome. For
for this approximation performs very well for the origi- example, in [11], Spaulding and Middleton exhibit the
nal Class A model. optimal nonlinearity for detection (i.e. the likelihood

In this paper, after a brief review of previous work ratio f (z - s)/f (z -so)) and point out that this detec-
in Section II. we examine the performance of other tor structure is likely to be computationally burden-
even simpler suboptimum threshold detectors. We some and uneconomical. Thus we would like to develop
show that in almost every case at least one of these detector nonlinearities having simpler structure but
very simple detectors is nearly optimal. In the Section which retain the desirable properties of the one given
IV we return to the two term approximation discussed in (Ill.
above. Anticipating that this simple approximation In [I] we considered the (normalized) M-term
would not work in every case we developed a somewhat truncation of the Class A noise PDF given in (2). i.e.
more sophisticated scheme involving ideas from robust &f
detection. This scheme is discussed in Section IV.
n. PlmVious ios ;(N)(z) = (5)

In order to formulate his modeL Middleton (7-22] K.
assumes the noise has the form X(t) + N(t) where
N(9) is a Gaussian background component and We showed that f (8) is a very good approzimation to f

for small values of M. In particular, for the problem of
X(t) a (4((.e) threshold (or locally optimum) detection (i.e. small

Q6-_ signal, large time-bandwidth product), the detector0 ThIe reseaeb was supported by the Offie* of NaW Repeaerh designed assuming the noise has density f(A) performs
under CWnract N000142-8-K-0140. virtually as well as the optimal detector when the noise

is actually given by the full Class A model /. even for
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values of N as small as 2. should expect to fall in each region) we have that
In the next section we will examine the perfor- PN(S) U 0.71. P(S) f 0.01. and PA(So) f 0.28. Thus

mance of several suboptimum detectors whose struc- we see that all but about 1S of the time the data will
ture is even simpler than the ones considered in (1], fail in the approximately linear region or the approxi-
but first we will give a brief summary of the necessary mately zero region. This leads us to believe that g;
results from the theory of locally optimum detection. can be closely approximated by a blanker gj (also
The details of this theory may be found In many places called a bole puncher) which is shown in Figure 2.. For
[14-17.11]. comparison we have also examined the performance of

a soft limiter #I,, (or clipper) and a hard limiter VAL (orUnder mild resulsrity conditions the (asymptotic) sign detector) which are shown in Figures 2b and 2c.performance (or procesrin ain) achievable usin ely.
given detector nonlinearity g(z) when the (indepen-
dent identically distributed) noise process has first In Table 1 we have given the processing gain
order PDF h(z) is given by the efficacy functional achievable using the locally optimum nonlinearity g;,

the blanker #;. the soft limiter #;, and the hard lim-
iter gHL (Note that the stars on gg and USL indicate
that the optimal value of c is used). We have included

v7(.h) = (6) each of the examples used in [I] as well as two others.
f g'(z)h(z)dr In each case we see that the blanker is nearly optimal
- while the soft limiter and the hard limiter have sub-

For a given noise PDF h(z) the locally optimum detec- stantially less than optimal performance. The one
tor nonlinearity g(z) is the solution to exception to this is the last example (As1.0. rzol)

where the soft limiter is nearly optimal and even the
-q" (h) = max n(g ,h) (7) hard limiter outperforms the blanker. Not surprisingly

9 the locally optimum nonlinearity for this case (shown
and has the form in Figure 3) is more closely approximated by a soft

S-h'(z) limiter than a blanker. We must stress though that,
Sh(Z) based on our experience, this seems to be an unusual

The performance of this locally optimum nonlinearity case. In fact Table I is quite representative of our
The perne ofindings in general.
is given by

Another issue of importance when considering
' z various detector nonlinearities is that of robustness orn°(h) = 7W .h) xd. ()

_, Lsensitivity. Since the blanker and soft limiter each
only depend on one parameter (the "cut-off" parame-

The functionalv)"(h) is also known as Fisher's Informa- ter c). it is fairly straightforward to examine their
tion for A. An interesting (and well known) fact about robustness. (Note that a hard limiter does not depend
the function i70(h) is that it is minimized over all PDF's on such a parameter.) In Figure 4 we plotted the pro-
by the Gaussian PDF. In fact. the locally optimum cessing gain achievable using 91 and VIL versus the
detector nonlinearity for Gaussian noise is the linear cessing garaceae s ad v the

detctr z~~c) hih as erorane qul o out-off parameter c for the exampledetector (g(Z)---Z ) which has performance equal to (A=0.35 7'=0.0005) considered in Figure 1. It would
unity for all noise PDF's. seem from the smoothness and flatness of the curves

The Class A noise PDF f in (2) is highly non- in Figure 4 near their respective maxima that both the
Gaussian. and it is often the case that i6(f )>>1. In soft limiter and the blanker are quite insensitive to
[I] it was shown that for very small values of M, f(AV variations in the cut-off parameter.
and g;(z) closely approximate f and its locally On the other hand, in Figure 5, the same two
optimum nonlinearity g;(z). Moreover, for a wide curves are plotted using a different scale on the
range of values of the parameters) we saw that the abscissa. This new scale is not the cut-off parameter c
processing gain achievable using gg in extremely close but the probability of the set I-cz , under the
to that achievable using g;. That is, "(,f)= 7.(f) Class A PDF f(z). As mentioned above, this can be
Of course, there are situations where even simpler thought of as the fraction of the data which we can
detector nonlinearities are desirable. In the next sec- expect to fall in the linear region of the detector non-
tion we examine the performance of three commonly- linearity (cf. S, in the first paragraph of this section).
used very simple suboptimum nonlinearities. Since any estimate of c€, the optimal value of the cut-
Il. THIE VERY EMPL/ SUILDOPIMUN NONUKIt- off parameter, would presumably come from some ver-
TIES sion of an empirical PDF (see [12]), Figure 5 is likely to

In Figure I the locally optimum nonlinearity for a be a more reasonable way than Figure 4 to examine
Class A noise PDF is plotted for x a 0 (since f is sym- the sensitivity of the blanker and soft limiter to uncer-
metric, 9; is antisymmetric, i.e. 0;(-z) = -g;(x)). tainties in estimating c*. Results similar to Figure 5
The parameters (A=0.35, r"=0.0005) of the Class A have also been obtained for the Middleton Class B
model used in Figure 1 are used in (9-12] to fit (broadband) noise model by Ingram and Houle (18].
"interference (probably) from nearby powerline. pro- It is not unreasonable at first thought to assume 1
duced by some kind of equipment fed by line" [9]. The that this change in scale would cause little change in
vertical dashed Lines at z a 0.06 and a = 0.10 divide the relative smoothness and ftness of the two curves.
the x-axis into three regions S, z I iO.06. In fact Figure 5 shows quite strikingly that the blanker
S 2 = 10.06<1z I0.10. and S3 a s 1>0.101 which are is very sensitive while the soft limiter is very insensi-
the regions where &() is approximately linear (S). rie near their respective maxima. This example is
returning to zero (Se), and approximately zero (SO). again quite representative of a wide variety of other
Evaluating the probability under f of each of these cases.
regions (or. more intuitively the fraction of the data we
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IV. A ROWSI'TSY -- Still there are justifications for this robust

In this section we present a new scheme for detec- scheme. First. in every case we have considered the

tio in noise which is reasonably well-modeled by the robust version performs about as well or even better
Class A density (2). This scheme requires some back- than the two term optimal version. Even though these

ground on the theory of asymptotically robust detec- differences are negligible they do not contradict the
tion. This theory was first developed in a paper by conviction stated above. Of course, this requires

Martin and Schwartz (19] for the case of nearly Gaus- further exploration. Second. it has been shown by

sian noise. It was then extended by Kassam and Tho- Berry [13] that the Class A model would generaly be
mas (20] to mixture models with general "nominal" useful when the noise is dominated by two com-
noise densities. We now present the needed results ponents: receiver noise and one strong interferer. If
from (20]. this is the case, the Class A model may be chosen

solely on the basis of its fit for the first two (dominat-
In [20] an a-mixture (or c-contaminated) class of ing) terms and the remaining terms may not really be

PDFrs of the form accurate. Clearly, due to its minimax design the

F - If I f (z) - (1-e)ho(z)+eAh(z). hIcHl (10) robust version will be less sensitive to these naccura-

was considered, where ho is a fixed element of H notus- cies than the two term optimal detector. In fact. it

tying certain regularity conditions and H in the class of might even outperform the "optimal" nonlinearity g if
al bounedasyericy odits They swe tha te the true noise has other small interferers which areall bounded symmetric PDF's. They showed that the not at the appropriate distances and powers necessary

detector nonlinearity which has the best lower bound t ae aprate dstanes an pers nece
over the class F on asymptotic performance. i.e.. the to be accurately described by the Class A model

minimax locally optimum detector nonlinearity gf. beyond the first two terms.

has the form Y. SUMMARY
In this paper we have examined the performance

0(-) of some simple suboptimum detector nonlinearities.
0(-c ) <- For most Class A noises the blanker has nearly optimal

Whz performance while the soft limiter and hard limiter
gi0(z) - 0(z) I () have significantly lower performance. On the other

-ho(c) hand the performance of the blanker seems to be far
ho(c) Z>c more sensitive to errors in estimating the optimal

cut-off parameter.

where c is chosen to satisfy In [1] we showed that the Middleton Class A noise
w hatisf model can often be approximated closely by the (nor-

f h(z)d h() 1 (12) malized) sum of just the first few terms. In fact, in
7°-, '(c) 1 7-7 many cases two terms are sufficient. This was espe-

cially clear when we looked at the efficacy of the
As we see from (11). the robust detector non- detector nonlinearity which is locally optimum for two

linearity is equal to the locally optimal nonlinearity for terms of the Class A model and found it comparable to
the nominal PDF ho (see (8)) for Iz I less than the cen- the efficacy of the full locally optimum detector. In
soring constant c. and it is constant for z I greater this paper we also developed a robust scheme which
than c, i.e.. is a censored version of u4. needs some further examination but which we feel

In (1] we saw that in most cases the locally offers a number of advantages over the methods of [I].
optimum detector nonlinearity #g for the Class A PDF in'KNCKS
(2) can be closely approximated by the locally 1. X. S. Vastola. "On narrowband impulsive noise,"
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The horizontal (dotted) line added to Figure 6 Van Nostrand. 1978.

corresponds to the robust detector nonlinearity for 4. K. Furutsu and T. Ishida. "On the theory of ampli-
(and = t . Tht Is. tude distribution of impulsive random noise." J. of

the class F with A0 
=  C) E .Tt. Applisd Physcs. Vol. 32. No. 7. pp. 1208-1221. Julyass

instead of simply discarding all the terms in the Class 1961.
A PDF beyond the first two as in (1]. we have 5. A. A. Giordano and F. Haber, "Modeling of atmos-
"robustifled" with respect to this remainder. It is clear pheric noise." Radio Science. Vol. 7. No. 11, pp.
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ity of may often be an even better approximation to 6. J. H. Miller and J. B. Thomas. '"The detection of sig-
gV. than #;. Our conviction has been that. in those nals in impulsive noise modeled as a mixture pro-
cases where the two term locally optimum nonlinearity cess." IEEE 1l'lsa. Comm. Vol. COM-24. pp. 559-
g; does not perform in a nearly optimal fashion 563. May 19W.
(assuming the noise actually has the Class A density D
as in (2)). the robust version fI will. However. as of 7. D. Middeton. "Setistioal-physia models of urban

this writing we have been unable to find a single case IEEo -nose. evctromeng. CP 1.. Vol. iMC-14.
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