

<u>،</u>

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

SUBOPTIMAL THRESHOLD DETECTION IN NARROWBAND NON-GAUSSIAN NOISE

Department of Electrical Engineering and Computer Science, Princeton University, Princeton, New Jersey 06544

ABSTRACT

The Middleton Class A narrowband non-Gaussian noise model is considered. The performance of various simple suboptimum threshold detectors is examined and compared with the performance of the optimum detector. For example, it is shown that for most cases of interest the blanker has nearly optimal performance while the soft limiter and hard limiter have substantially less than optimal performance. Then, a new approximation to the locally optimum detector nonlinearity is developed using ideas from the theory of robust detection.

I. INTRODUCTION

Various attempts have been made to develop nodels of non-Gaussian noises (see, for example, [1-.3]). Among the most general models are those leveloped by Middleton [7-12]. Middleton divides noniaussian noise into two classes, A and B. (There has also been consideration of a Class C which contains noises which are sums of Class A and Class B components [9].) Class B noises are broadband, i.e. those with spectra broader than the passband of the receiver. Class A noises are narrowband, i.e. have spectra comparable to or narrower than the receiver passband.

In a previous paper [1] we examined the Middleton Class A noise model. We showed that, in a wide variety of cases, the first-order noise probability density function (PDF), which is an infinite weighted sum of Gaussian PDF's, can be closely approximated by the (normalized) sum of the first two terms in the series. We also showed that the detector which is locally optimum for this approximation performs very well for the original Class A model.

In this paper, after a brief review of previous work in Section II, we examine the performance of other even simpler suboptimum threshold detectors. We show that in almost every case at least one of these very simple detectors is nearly optimal. In the Section IV we return to the two term approximation discussed above. Anticipating that this simple approximation would not work in every case we developed a somewhat more sophisticated scheme involving ideas from robust detection. This scheme is discussed in Section IV.

II. PREVIOUS WORK

In order to formulate his model, Middleton [7-12] assumes the noise has the form X(t) + N(t) where N(t) is a Gaussian background component and

$$X(t) = \sum_{i} U_{i}(t, \theta)$$
 (1)

This research was supported by the Office of Naval Research under Contract N00014-81-K-0148.

where U_j denotes the j^{th} received waveform from an interference source and σ is a random parameter. He then assumes that the waveform receptions are Poisson distributed in time and shows that the normalized (to unit variance) noise density f(x) can be approximated canonically by

$$f(x) = \sum_{m=0}^{\infty} K_m f(x;\sigma_m^{\rm B})$$
 (2)

where $f(x;\sigma^2)$ is the zero-mean Gaussian PDF with variance σ^2 . The variance σ_m^g of the m^{th} density is given by

$$\sigma_m^2 = \frac{m/A + \Gamma}{1 + \Gamma} \tag{3}$$

and the coefficient K_m is given by

$$K_{\rm m} = e^{-A} \frac{A^{\rm m}}{m!} \tag{4}$$

where A and Γ are the two basic parameters of the model. The first parameter, A, is called the "overlap index" and is defined by $A = \nu T$, where ν is the rate of the homogeneous Poisson process which governs the generation of the interfering waveforms U_j and T is the mean duration of a typical interfering signal. The other parameter, Γ , is given by the ratio of the power in the Gaussian portion of the interference to the power in the Poisson component.

Middleton has shown that, by adjusting the parameters A and Γ , the density f given in (2) can be made to fit a great variety of non-Gaussian noise densities [9-12]. Also, the parameters A and Γ are physically motivated and can be directly estimated (see [12,9]). Unfortunately the model (2) is cumbersome. For example, in [11], Spaulding and Middleton exhibit the optimal nonlinearity for detection (i.e. the likelihood ratio $f(x-x_1)/f(x-x_0)$) and point out that this detector structure is likely to be computationally burdensome and uneconomical. Thus we would like to develop detector nonlinearities having simpler structure but which retain the desirable properties of the one given in [11].

In [1] we considered the (normalized) M-term truncation of the Class A noise PDF given in (2), i.e.

$$f^{(B)}(x) = \frac{\sum_{m=0}^{B^{-1}} \mathcal{K}_{m} f(x;\sigma_{m}^{2})}{\sum_{m=0}^{B^{-1}} \mathcal{K}_{m}}$$
(5)

We showed that $f^{(H)}$ is a very good approximation to f for small values of M. In particular, for the problem of threshold (or locally optimum) detection (i.e. small signal, large time-bandwidth product), the detector designed assuming the noise has density $f^{(H)}$ performs virtually as well as the optimal detector when the noise is actually given by the full Class A model f, even for

83

06

21

To be presented at the 1963 IEEE International Conference on Communications, Boston, Massachusetts, June 19-22, 1963. To be published in the proceedings of the conference.

values of H as small as 2.

In the next section we will examine the performance of several suboptimum detectors whose structure is even simpler than the ones considered in [1], but first we will give a brief summary of the necessary results from the theory of locally optimum detection. The details of this theory may be found in many places [14-17,11].

Under mild regularity conditions the (asymptotic) performance (or processing gain) achievable using a given detector nonlinearity g(x) when the (independent identically distributed) noise process has first order PDF h(x) is given by the efficacy functional

$$\eta(g,h) = \frac{\int_{-\infty}^{\infty} g(x)h'(x)dx}{\int_{-\infty}^{\infty} g^{2}(x)h(x)dx}$$
(6)

For a given noise PDF h(x) the locally optimum detector nonlinearity $g_h^*(x)$ is the solution to

$$\eta^{\bullet}(h) = \max \eta(g, h) \tag{7}$$

and has the form

and the second se

Ę

$$g_{h}^{*}(z) = \frac{-h'(z)}{h(z)}$$
(8)

The performance of this locally optimum nonlinearity is given by

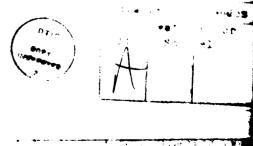
$$\eta^{\bullet}(h) = \eta(g_{h}^{\bullet}, h) = \int_{-\infty}^{\infty} \left[\frac{h'(x)}{h(x)} \right]^{2} h(x) dx. \qquad (9)$$

The functional $\eta^*(h)$ is also known as Fisher's Information for h. An interesting (and well known) fact about the function $\eta^*(h)$ is that it is minimized over all PDF's by the Gaussian PDF. In fact, the locally optimum detector nonlinearity for Gaussian noise is the linear detector $(g(x)=x/\sigma^2)$ which has performance equal to unity for all noise PDF's.

The Class A noise PDF f in (2) is highly non-Gaussian, and it is often the case that $\eta^{\circ}(f) >> 1$. In [1] it was shown that for very small values of M, $f^{(M)}$ and $g_M^{\circ}(x)$ closely approximate f and its locally optimum nonlinearity $g_f^{\circ}(x)$. Moreover, for a wide range of values of the parameters) we saw that the processing gain achievable using g_2° is extremely close to that achievable using g_f° . That is, $\eta(g_2^{\circ}, f) = \eta^{\circ}(f)$. Of course, there are situations where even simpler detector nonlinearities are desirable. In the next section we examine the performance of three commonlyused very simple suboptimum nonlinearities.

10. THREE VERY SIMPLE SUBOPTIMUM NONLINEARI-TIES

In Figure 1 the locally optimum nonlinearity for a Class A noise PDF is plotted for $x \ge 0$ (since f is symmetric, g_f' is antisymmetric, i.e. $g_f'(-x) = -g_f'(x)$). The parameters (A=0.35, $\Gamma=0.0005$) of the Class A model used in Figure 1 are used in [9-12] to fit "interference (probably) from nearby powerline, produced by some kind of equipment fed by line" [9]. The vertical dashed lines at $x \equiv 0.06$ and $x \equiv 0.10$ divide the x-axis into three regions $S_1 \equiv \{|x| \le 0.06\}$, $S_2 \equiv \{0.06 < |x| \le 0.10\}$, and $S_3 \equiv \{|x| > 0.10\}$ which are the regions where $g_f'(x)$ is approximately linear (S_1), returning to zero (S_2), and approximately zero (S_3). Evaluating the probability under f of each of these regions (or, more intuitively the fraction of the data we


should expect to fall in each region) we have that $Pr(S_1) \approx 0.71$, $Pr(S_2) \approx 0.01$, and $Pr(S_2) \approx 0.28$. Thus we see that all but about 1% of the time the data will fall in the approximately linear region or the approximately zero region. This leads us to believe that g_f' can be closely approximated by a blanker g_g' (also called a hole puncher) which is shown in Figure 2a. For comparison we have also examined the performance of a soft limiter g_{SL}^{*} (or clipper) and a hard limiter g_{SL} (or sign detector) which are shown in Figures 2b and 2c, respectively.

In Table 1 we have given the processing gain achievable using the locally optimum nonlinearity g_{f} , the blanker g_B , the soft limiter g_{SL} , and the hard limiter g_{HL} (Note that the stars on g_B and g_{SL} indicate that the optimal value of c is used). We have included each of the examples used in [1] as well as two others. In each case we see that the blanker is nearly optimal while the soft limiter and the hard limiter have substantially less than optimal performance. The one exception to this is the last example $(A=1.0, \Gamma=0.1)$ where the soft limiter is nearly optimal and even the hard limiter outperforms the blanker. Not surprisingly the locally optimum nonlinearity for this case (shown in Figure 3) is more closely approximated by a soft limiter than a blanker. We must stress though that, based on our experience, this seems to be an unusual case. In fact Table 1 is quite representative of our findings in general.

Another issue of importance when considering various detector nonlinearities is that of robustness or sensitivity. Since the blanker and soft limiter each only depend on one parameter (the "cut-off" parameter c), it is fairly straightforward to examine their robustness. (Note that a hard limiter does not depend on such a parameter.) In Figure 4 we plotted the processing gain achievable using g_{β} and g_{\betaL} versus the cut-off parameter c for the example (A=0.35 ["=0.0005) considered in Figure 1. It would seem from the smoothness and flatness of the curves in Figure 4 near their respective maxima that both the soft limiter and the blanker are quite insensitive to variations in the cut-off parameter.

On the other hand, in Figure 5, the same two curves are plotted using a different scale on the abscissa. This new scale is not the cut-off parameter c but the probability of the set $\{-c \le z \le c\}$ under the Class A PDF f(x). As mentioned above, this can be thought of as the fraction of the data which we can expect to fall in the linear region of the detector nonlinearity (cf. S_1 in the first paragraph of this section). Since any estimate of c*, the optimal value of the cutoff parameter, would presumably come from some version of an empirical PDF (see [12]), Figure 5 is likely to be a more reasonable way than Figure 4 to examine the sensitivity of the blanker and soft limiter to uncertainties in estimating c*. Results similar to Figure 5 have also been obtained for the Middleton Class B (broadband) noise model by Ingram and Houle [18].

It is not unreasonable at first thought to assume that this change in scale would cause little change in the relative imoothness and flatness of the two curves. In fact Figure 5 shows quits strikingly that the blanker is very sensitive while the soft limiter is very insensitive near their respective maxima. This example is again quite representative of a wide variety of other cases.

IV. A ROBUST APPROXIMATION SCHEME

In this section we present a new scheme for detection in noise which is reasonably well-modeled by the Class A density (2). This scheme requires some background on the theory of asymptotically robust detection. This theory was first developed in a paper by Martin and Schwartz [19] for the case of nearly Gaussian noise. It was then extended by Kassam and Thomas [20] to mixture models with general "nominal" noise densities. We now present the needed results from [20].

In [20] an z-mixture (or z-contaminated) class of PDF's of the form

$$\mathbf{F} = \{ f \mid f(x) = (1-\varepsilon)h_0(x) + \varepsilon h_1(x), h_1 \in \mathbf{H} \}$$
(10)

was considered, where h_0 is a fixed element of H satisfying certain regularity conditions and H is the class of all bounded symmetric PDF's. They showed that the detector nonlinearity which has the best lower bound over the class F on asymptotic performance, i.e., the minimax locally optimum detector nonlinearity $g_{h_0}^{R}$, has the form

$$g_{h_0}^{R}(x) = \begin{cases} \frac{-h_0(-c)}{h_0(-c)} & x < -c \\ \frac{-h_0(x)}{h_0(x)} & |x| \le c \\ \frac{-h_0(c)}{h_0(c)} & x > c \end{cases}$$
(11)

where c is chosen to satisfy

$$\int_{-\varepsilon}^{\varepsilon} h_0(x) dx - \frac{2h_0^{\varepsilon}(c)}{h_0'(c)} = \frac{1}{1-\varepsilon}$$
(12)

As we see from (11), the robust detector nonlinearity is equal to the locally optimal nonlinearity for the nominal PDF h_0 (see (8)) for |x| less than the censoring constant c, and it is constant for |x| greater than c, i.e., $g_{h_0}^R$ is a censored version of $g_{h_0}^R$.

In [1] we saw that in most cases the locally optimum detector nonlinearity g_j^* for the Class A PDF (2) can be closely approximated by the locally optimum nonlinearity g_2^* for the PDF containing just the first two terms (i.e., $f^{(2)}$ as in (5)). In the cases where there was any substantial difference between the two nonlinearities it was in the tails. Beyond 4 or 5 standard deviations, the two term nonlinearity g_2^* continued its linear path while the infinite term nonlinearity flattened virtually to the horizontal. In Figure 6 these two nonlinearities have been plotted.

The horizontal (dotted) line added to Figure 6 corresponds to the robust detector nonlinearity for the class F with $A_0 = f^{(2)}$ and $\varepsilon = \sum_{m=2}^{\infty} K_m$. That is, instead of simply discarding all the terms in the Class A PDF beyond the first two as in [1], we have "robustified" with respect to this remainder. It is clear from Figure 6 that this robustified two term nonlinearity g_S^{0} may often be an even better approximation to g_f than g_2° . Our conviction has been that, in those cases where the two term locally optimum nonlinearity g_2° does not perform in a nearly optimal fashion (assuming the noise actually has the Class A density f as in (2)), the robust version g_f^{0} will. However, as of this writing we have been unable to find a single case where g_2° does not perform virtually as well as g_f° .

Still there are justifications for this robust scheme. First, in every case we have considered the robust version performs about as well or even better than the two term optimal version. Even though these differences are negligible they do not contradict the conviction stated above. Of course, this requires further exploration. Second, it has been shown by Berry [13] that the Class A model would generally be useful when the noise is dominated by two components: receiver noise and one strong interferer. If this is the case, the Class A model may be chosen solely on the basis of its fit for the first two (dominating) terms and the remaining terms may not really be accurate. Clearly, due to its minimax design the robust version will be less sensitive to these inaccuracies than the two term optimal detector. In fact, it might even outperform the "optimal" nonlinearity g_f if the true noise has other small interferers which are not at the appropriate distances and powers necessary to be accurately described by the Class A model beyond the first two terms.

V. SUMMARY

In this paper we have examined the performance of some simple suboptimum detector nonlinearities. For most Class A noises the blanker has nearly optimal performance while the soft limiter and hard limiter have significantly lower performance. On the other hand the performance of the blanker seems to be far more sensitive to errors in estimating the optimal cut-off parameter.

In [1] we showed that the Middleton Class A noise model can often be approximated closely by the (normalized) sum of just the first few terms. In fact, in many cases, two terms are sufficient. This was especially clear when we looked at the efficacy of the detector nonlinearity which is locally optimum for two terms of the Class A model and found it comparable to the efficacy of the full locally optimum detector. In this paper we also developed a robust scheme which needs some further examination but which we feel offers a number of advantages over the methods of [1].

- K. S. Vastola, "On narrowband impulsive noise," Proc. Twentieth Ann. Allerton Conf. Comm. Control, Computing, Monticello, Ill., Oct. 1982, pp. 739-748.
- O. Ibukun, "Structural aspects of atmospheric radio noise in the tropics," *Proc. IEEE*, Vol. 54, pp. 361-367, 1966.
- E. N. Skomal, Manmade Radio Noise. Princeton: Van Nostrand, 1978.
- K. Furutsu and T. Ishida, "On the theory of amplitude distribution of impulsive random noise," J. of Applied Physics, Vol. 32, No. 7, pp. 1208-1221, July 1961.
- A. A. Giordano and F. Haber, "Modeling of atmospheric noise," Radio Science, Vol. 7, No. 11, pp. 1101-1023, November 1972.
- J. H. Miller and J. B. Thomas, "The detection of signals in impulsive noise modeled as a mixture process," *IEEE Trans. Comm.*, Vol. COM-24, pp. 559-563, May 1976.
- D. Middleton, "Statistical-physical models of urban radio-noise environments, Part 1: Foundations, *IEEE Trans. Electromagn. Compat.*, Vol. EMC-14, pp. 38-56, May 1972.

- D. Middleton, "Man-made noise in urban environments and transportation systems." *IEEE Trans. Comm.*, Vol. COM-21, pp. 1232-1241, Nov. 1973.
- D. Middleton, "Statistical-physical models of electromagnetic interference," *IEEE Trans. Elsctromagn. Compat.*, Vol. EMC-19, pp. 108-127, Aug. 1977.
- D. Middleton, "Canonical non-Gaussian noise models: Their implications for measurement and for prediction of receiver performance," *IEEE Trans. Electromagn. Compat.*, Vol. EMC-21, pp. 209-220, Aug. 1979.
- A. D. Spaulding and D. Middleton, "Optimum reception in an impulsive interference environment -Part I: Coherent detection," *IEEE Trans. Comm.*, Vol. COM-25, No. 9, pp. 910-923, September 1977.
- D. Middleton, "Procedures for determining the parameters of the first-order canonical models of Class A and Class B electromagnetic interference," *IEEE Trans. Electromagn. Compat.*, Vol. EMC-21, pp. 190-208, Aug. 1979.
- L. A. Berry, "Understanding Middleton's canonical formula for Class A noise," *IEEE Trans. Elec*tromagn Compat., Vol. EMC-23, No. 4, pp. 337-343, November 1981.
- J. Capon, "On the asymptotic efficiency of locally optimum detectors," *IRE Trans. Inform. Theory*, Vol. IT-7. pp. 67-71, April 1961.
- D. Middleton, "Canonically optimum threshold detection," *IEEE Trans. Inform. Theory*, Vol. JT-12, No. 2, pp. 230-243.
- E. J. G. Pitman, Some Basic Theory for Statistical Inference. London: Chapman and Hall, 1979.
- C. W. Helstrom, Statistical Theory of Signal Detection. Oxford: Pergamon Press, 1968.
- R. F. Ingram and R. Houle, "Performance of the optimum and several suboptimum receivers for threshold detection of known signals in additive, white, non-Gaussian noise," Naval Underwater Systems Center Technical Report No. 6339. New London, Conn., November 1980.
- R. D. Martin and S. C. Schwartz, "Robust detection of a known signal in nearly Gaussian noise," *IEEE Trans. Inform. Th.*, Vol. IT-17, No. 1, pp. 50-58, Jan. 1971.
- S. A. Kassam and J. B. Thomas, "Asymptotically robust detection of a known signal in contaminated non-Gaussian noise," *IEEE Trans Inform. Th.*, Vol. IT-22, No. 1, pp. 22-26, Jan. 1976.

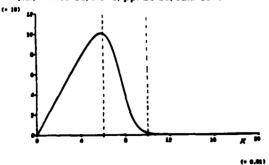


Figure 1. Locally optimum detector nonlinearity for Class A noise PDF f (linear scales) (A=0.35, $\Gamma=0.0005$).

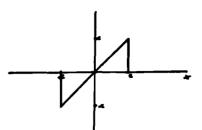
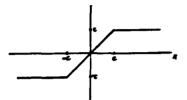


Figure 2a. The blanker (hole puncher).



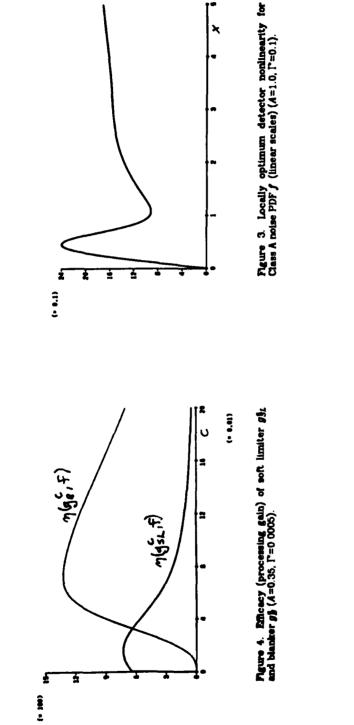
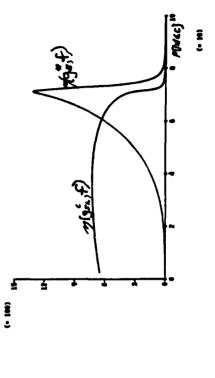

Figure 2b. The soft limiter (clipper).

Figure 2c. The hard limiter (sign detector).

AT	0.35.0 0005	0.0001.50	0.1.0.001	01.01	1.0. 0.000:	1.0.01
	1340	1.02	692.0	9.2	3299	2.39
Les.	1325	1 02	800 Z	9.0	3221	1.89
a *ei	730	1.02	M 5.1	7.8	916	2.20
8 °m	139	0.65	516.7	5.9	84 6	1.00

Table 1. Processing gain (efficacy) achievable using optimal (g°) , blanker (g°) , soft limiter (g°_{SL}) , and hard limiter (g°_{SL}) nonlinearities.



×

.

and the second second

1

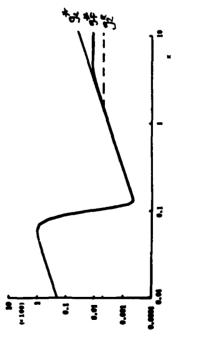


Figure 5. Efficiency (processing gain) of soft limiter $g_{\rm L}^{\rm ex}$ and blamker $g_{\rm L}^{\rm ex}$ (A=0.35, Γ =0.0005). Abscissa scale different from $\Gamma_{\rm R}$. 4.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
AD-A1296-	19
I. TITLE (and Sublitio)	S. TYPE OF REPORT & PERIOD COVERED
	Reprint ·
Suboptimal Threshold Detection in Narrow-	
band Non-Gaussian Noise	6. PERFORMING ORG. REPORT NUMBER
. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(+)
Kenneth S. Vastola and Stuart C. Schwartz	N00014-81-K-0146
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT. PROJECT, TASK
Information Sciences & Systems Laboratory	AREA & WORK UNIT NUMBERS
Dept. of Electrical Eng. & Computer Sci.	NR SRO-103
Princeton Univ., Princeton, NJ 08544	
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Office of Naval Research (Code 411SP)	June 1983
Department of the Navy	13. NUMBER OF PAGES
Arlington, Virginia 22217 4. MONITORING AGENCY NAME & ADDRESS/I dillorgni from Controlling Office)	18. SECURITY CLASS, (of this report)
	Unclassified
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution 7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different is	
7. DISTRIBUTION STATEMENT (of the obstract antered in Block 20, if different b	
7. DISTRIBUTION STATEMENT (of the abetract antered in Block 20, If different is 0. SUPPLEMENTARY NOTES	en: Report)
DISTRIBUTION STATEMENT (of the abotract entered in Block 20, 11 different is B. SUPPLEMENTARY NOTES To appear in the Proceedings, 1983 IEEE In	en: Report)
7. DISTRIBUTION STATEMENT (of the abetract antered in Block 20, If different is 0. SUPPLEMENTARY NOTES	en: Report)
7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different is 8. SUPPLEMENTARY NOTES TO appear in the Proceedings, 1983 IEEE In on Communications.	en Report) ternational Conference
 DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different is SUPPLEMENTARY NOTES FO appear in the Proceedings, 1983 IEEE In on Communications. KEY WORDS (Centinue en reverse elde if necessary and identify by Nock number threshold detection 	en Report) ternational Conference
 DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different is SUPPLEMENTARY NOTES FO appear in the Proceedings, 1983 IEEE In on Communications. KEY WORDS (Continue on reverse olds if necessory and identify by Nock number chreshold detection 	en Report) ternational Conference
 DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 11 different is SUPPLEMENTARY NOTES To appear in the Proceedings, 1983 IEEE In on Communications. KEY WORDS (Centinue on reverse olds if necessory and identify by block number chreshold detection diddleton Class A model 	en Report) ternational Conference
 DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 11 different is SUPPLEMENTARY NOTES To appear in the Proceedings, 1983 IEEE In on Communications. KEY WORDS (Centinue on reverse olds if necessory and identify by block number chreshold detection diddleton Class A model 	en Report) ternational Conference
 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different is SUPPLEMENTARY NOTES TO appear in the Proceedings, 1983 IEEE In on Communications. KEY WORDS (Continue on reverse olds if necessary and identify by block number threshold detection Middleton Class A model non-Gaussian noise ABSTRACT (Continue on reverse olds if necessary and identify by block number) 	en Report) Sternational Conference
 DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different is SUPPLEMENTARY NOTES To appear in the Proceedings, 1983 IEEE In on Communications. KEY WORDS (Centinue on reverse elds if necessary and identify by block number threshold detection Aiddleton Class A model non-Gaussian noise 	en Report) Sternational Conference
 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different is SUPPLEMENTARY NOTES To appear in the Proceedings, 1983 IEEE In on Communications. KEY WORDS (Centinue en reverse elde if necessery and identify by Neck number threshold detection Middleton Class A model non-Gaussian noise ABSTRACT (Centinue en reverse elde if necessery and identify by Neck number the Middleton Class A model non-Gaussian noise ABSTRACT (Centinue en reverse elde if necessery and identify by Neck number the Middleton Class A model non-Gaussian noise 	en Report) Aternational Conference by ssian noise model is mple suboptimum thres-
 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different is SUPPLEMENTARY NOTES To appear in the Proceedings, 1983 IEEE In on Communications. KEY WORDS (Centimus on reverse side if necessary and identify by Nock number threshold detection Middleton Class A model non-Gaussian noise ABSTRACT (Centimus on reverse side if necessary and identify by Nock number the Middleton Class A model non-Gaussian noise ABSTRACT (Centimus on reverse side if necessary and identify by Nock number the Middleton Class A model non-Gaussian noise 	en Report) Aternational Conference of ssian noise model is mple suboptimum thres- th the performance of
 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different is SUPPLEMENTARY NOTES To appear in the Proceedings, 1983 IEEE In on Communications. KEY WORDS (Centime on reverse elds if necessary and identify by block number threshold detection Middleton Class A model non-Gaussian noise ABSTRACT (Centime on reverse elds if necessary and identify by block number to class A model non-Gaussian noise ABSTRACT (Centime on reverse elds if necessary and identify by block number to class A model non-Gaussian noise ABSTRACT (Centime on reverse elds if necessary and identify by block number to class A model non-Gaussian noise 	en Report) Aternational Conference Sian noise model is mple suboptimum thres- th the performance of shown that for most case
 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different is SUPPLEMENTARY HOTES To appear in the Proceedings, 1983 IEEE In on Communications. KEY WORDS (Centimus on reverse elds if necessary and identify by block number threshold detection Middleton Class A model non-Gaussian noise ABSTRACT (Centimus on reverse elds if necessary and identify by block number to class A model non-Gaussian noise ABSTRACT (Centimus on reverse elds if necessary and identify by block number to class A model non-Gaussian noise ABSTRACT (Centimus on reverse elds if necessary and identify by block number to class A model non-Gaussian noise ABSTRACT (Centimus on reverse elds if necessary and identify by block number) is not class A narrowband non-Gaussian noise 	en Report) Aternational Conference ssian noise model is mple suboptimum thres- th the performance of shown that for most case performance while the
 DISTRIBUTION STATEMENT (of the electrics entered in Block 20, 1/ different & SUPPLEMENTARY NOTES FO appear in the Proceedings, 1983 IEEE In on Communications. KEY WORDS (Centimus en reverse elde 1/ necesser; and identify by block number threshold detection Middleton Class A model non-Gaussian noise ABSTRACT (Centimus en reverse elde 1/ necesser; and identify by block number threshold detection Sidered. The performance of various si nold detectors is examined and compared with the optimum detector. For example, it is of interest the blanker has nearly optimal soft limiter and hard limiter have substan 	en Report) Aternational Conference ssian noise model is mple suboptimum thres- th the performance of shown that for most case performance while the tially less than optimal
 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different is SUPPLEMENTARY NOTES To appear in the Proceedings, 1983 IEEE In on Communications. KEY WORDS (Centimus en reverse elde 11 necesser) and identify by block number chreshold detection Middleton Class A model non-Gaussian noise ABSTRACT (Centimus en reverse elde 11 necesser) and identify by block number considered. The performance of various si nold detectors is examined and compared with the optimum detector. For example, it is of interest the blanker has nearly optimal 	en Report) Aternational Conference ssian noise model is mple suboptimum thres- th the performance of shown that for most case performance while the tially less than optimal
 DISTRIBUTION STATEMENT (of the electrical entered in Block 20, 11 different is SUPPLEMENTARY HOTES FO appear in the Proceedings, 1983 IEEE In on Communications. KEY WORDS (Centinue on reverse side if accessory and identify by block number chreshold detection Middleton Class A model non-Gaussian noise ABSTRACT (Centinue on reverse side if accessory and identify by block number, The Middleton Class A model non-Gaussian noise ABSTRACT (Centinue on reverse side if accessory and identify by block number, The Middleton Class A model non-Gaussian noise ABSTRACT (Centinue on reverse side if accessory and identify by block number, The Middleton Class A narrowband non-Gaussian detectors is examined and compared with the optimum detector. For example, it is of interest the blanker has nearly optimal soft limiter and hard limiter have substan 	en Report) Aternational Conference ssian noise model is mple suboptimum thres- th the performance of shown that for most case performance while the tially less than optimal

1

(Abstract con't.)

detector nonlinearity is developed using ideas from the theory of robust detection.

SECURITY CLASSIFICATION OF THIS PASE (Then Base Butered)

÷

4

END DATE FILMED

7-83 DTIC