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Abstract

For a random sequence of events, with indicator variables xi. the be-

(xk" * "xk-m-l

havior of the expectation E rew—y'q } for 1 £ k s kem-1 < n can be taken
l L n

as a measure of clustering of the events. When the measure on the X's is
i.i.d., or even exchangeable, a symmetry argument shows that the expectation
can be no more than m/n. When the X's are constrained only to be a stationary
sequence, the bound deteriorates, and depends on k as well. When m/n is small,
the bound is roughly 2m/n for k near n/2 and is like (m/n) log n for k near

1 or n. The proof given is partly constructive, so these bounds are nearly

achieved, even though there is room for improvement for other values of k.
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1. Introduction,

In considering portions of larger, but still finite strings of random
variables, the following problem arose. If xl, vees xn is part of a stationary
sequence of zeros and ones, one would not oxpect the ones within that portion
to clump together, intuitively because each )(i is as likely as any other to

have the value one. Based on that intuitive argument, one could expect the

xk"“'xk-m-l .
expression sup X T (note: 0/0 = 0) where 1 € k < kem-1 S n,
PeS 1°°°"n

and S is the set of stationary probability measures on binary sequences, to
behave roughly like m/n. Indeed, if the probability P is restricted to be
i.i.d. or even exchangeable, a simple symmetry argument yields a supresum of
mn/n, achieved when the )(i are identically 1. For the case of stationarity,
the upper bounds on the supremum for m/n small are roughly 2m/n when k is near
n/2, and like (m/n)log n for k closer to 1 or n (thm. 7). The key result is
a constructive proof that finds the P which achieves the supremum for the two
cases of m =1, k=1, and m = 1, k = (n+l1)/2 (thm. 2).

I would like to thank Professor Michael Steele for insisting that this
could be done, and Professor Larry Shepp for an improvement in the proof.
I would also like to acknowledge the many simplifications and improvements

suggested by the referee.

2. Results.
We shall immediately narrow our concern to the simpler problem of finding
bounds for
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Notice that the variables xn 20 ver do not appear in the above expression,

.1’ xno
» so only the marginal distribution of (xl. cees xn) affects the values of Rk n’
»

A small amount of notation is needed for the next theorem, which makes use of
this observation.

A loop is a finite sequence a,, ..., ay of zeros and ones. Subscripts

1)
out of range will be taken circularly, so that a, = a, and 8l 1

a loop a and any positive integer n, the measure Pa n gives mass 1/m to each

’ i

s 8 For

.
S i

of (‘1’ cenp an). (82. ceey an‘l). seay (amp ceey am‘n-l)-

Theorem 1.
If a binary sequence X has a stationary distribution, then the marginal

distribution of (xl, cens Xn) can be written as a convex combination of

measures Pa n for a € Ah' where An is a finite set of loops. Moreover, every
2

Pa n is the marginal of some infinite stationary distribution.
»

More details, and a proof of this can be found in Zaman (1983) or Hobby
and Ylvasaker (1964). Since expectation is a linear functional, thm. 1 allows
replacing the maximization over S in eq. 1 by maximization over Pa n for

ace An, yielding

Ryn = max By (/15 ) X)), €3]
,N

€A a
bt

Using the definition of Pa n’ the expectation can be further decomposed into
»

n lom n
EPa.n(xk/ Ljar %) = 5 L gLy 240g) (3)

vhere m is the length of the loop a. In a completely unrelated problem, sums

of the form given in the right side of eq. 3 have been given the name cyclic
sums, e.g. Daykin (1970).
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Equations 2 and 3 convert the original probability problem of eq. 1 into
Q i a finite maximization of a function over a set of loops. This maximization
i is performed for chosen values of k in the appendix to prove the following

key theorenm.

. : Theoren 2.

(a) When k = 1 or n, the maximum in eq. 2 is achieved for a = o148
(the notation 0"'l refers to a block of n-1 zeros) for some number 8 depending
on n.

1 (b) Wwhen k = (nel)/2 for odd n, the mgximm in eq. 2 is achieved for

as Ok-ll.

Corollary 3.
Define

a(n) = sup(nes)™t IT . 1/i. (#
821

Then,

a(n-1) ifk=1lorn (a)
2/(n+1) if k = (n+l)/2 (b)

f,n =

The corollary is actually proved as a step in proving thm. 2, but can
also be proved by writing out eq. 3 for the loops given in thm. 2.

Using these equalities for R and R » @ general bound for Rk n

1,n (n*1)/2,n
is easy to get. Theorems 4 and S do just that. The bounds of thm. 4 are de-

picted graphically in fig, 1.

Theoren 4.

Define

-1 B-1
a(k,n) = s k8 (n-k)/8 1/71).
(ko) = sup (ko)™ ((n-k)/8 ¢ N V2§
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Fig. 1: Bounds on Rk n s @ function of k, for n = 101,
The area between the upper and lower bounds of thm. 4 is
“shaded to indicate the possible region for Rk n" The

different bounds arc labelled by the cquation number in
v thm. 4.




Then
(a) o(n-k, n) s Rk,n < a(n-k) when 2k-1 € n
(b) oa(k-1, n) s Rk,n < a(k-1) when 2k-1 2 n
(c) 1/(nel-k) < Rk,n < 1/k when 2k-1 £ n
(d) Y/ s Rk,n < 1/(nel-k) when 2k-1 2 n.

Proof:
Parts (b) and (d) follow from (a) and (c) respectively, once the symmetry

condition

Rk,n = Rn-k*l ,n (5)

is established. To prove this, note that if Pa n is the distribution of

(xl’ cees xn) then the distribution of (xn. cees x1) is given by Pa',n for

»

= (am. cees al). Now for any loop a,

l-:Pa n(xklrj’ﬂ X3 = E. ( ne1-k/ 2:)=l b

from which eq. 5 follows.

The upper bound in (a) follows from Cor. 3a by

Rk,n s sup E (xklzj-k j Rl.ml-k = a(n-k).

Similarly, for part (c), the result of Cor. 3b shows that for 2k-1 s n

k-1
fx,n 5 58 Bp (4 /Lsay X5) = R gy = VK

The lower bounds have been included in the theorem to get some idea on

the room for improvement of these bounds. It is conjectured that the actual

values of R, , are much closer to the lower bounds than to the upper bounds.

The lower boumd (a) is obtained by using eq. 3 to get for k s (nel1)/2




X 8 Ep (xklzj 1 Xy
as=0"
kSBSI‘I

2 sup (neB-k)~ [(k-l)/B*i 1/i].
ksB8<n

3 . The lower bound in (c) is achieved by letting a = On'kl. For that value of

§ a, if 2k-1 < n then by eq. 3

n 1
Eva(x“, je1 %) = i -

It is not difficult to find loops which give even higher lower bounds,

but that does not seem to be the more fruitful direction of moving the bounds. O

‘i Theorem S.

; Ry nS 1339553311- for n 2 3.
i

Before giving a proof, a logarithmic approximation for the function a

will be established.

Lemma 6.
1 -1 =
' log n o%l(l,ogm 150(,,);.1.9.5_'.‘. for n 2 3.
Proof:

Let B8* be a value of B which achieves the maximum in eq. 4, so that
atm) = (neg)”! 5 1/ 6)

A crude bound to the harmonic series in eq. 6 gives

a(n) s (lelog B*)/(nes*). &)




By calculus, the function (le¢log x)/(n+x) for x 2= 1 reaches its maximum

value of (log x*)/n when x* log x* = n. If n > e, log x* can be bounded by
logn - log log n < log x* < log n. (8)
Plugging this information about the maximum into eq. 7
a(n) s (1+log B*)/(n+8*) < (log x*)/n < (log n)/m,

establishing the second inequality of the lemma.
For the first inequality, let x* be as before, define B = [x*] (the
integer part), and for notational convenience let £ = log n -~ log log n which

is the texrm on the left side of eq. 8. Then

a(n) 2 (nog)'1 Xg.l 1/i 2 (mx')'1 log x*
2 men/2) 12 = n 122/ (1e) = a7l [e-100201) 7Y (9)
> (2-1)/n.

The last inequality substitutes a prettier expression at the cost of some
precision. 0O
The proof of thm. 5 then amounts to the following. By eq. S
max =  max
k "o k<(n+1)/2 "

(by thm. 4a, ¢} s max {(1/x) A a(n-k)}
ks(n+1)/2

(by lem. 6) S  max {(1/x) A log(n-k)/(n-k)} (10)
ks(n+1)/2
Since 1/k is decreasing and the second function increasing as k increases, the
maximm in eq. 10 is attained at some k = k* for which the two functions are

equal. Thus




max R . = 1/k* = log(n-k*)/(n-k*)
k »
= [1+log(n-k*)])/n,

where the last expression follows by some algebra. Since k* 2 1, replacing

it by 1 gives the claimed result in thm. 5. 0

Returning to the original problem as stated in the introduction, one can

state the following theorem based only on the definition of Rk n°

Theoren 7.

kﬂ{-l g kﬂf—l

sup E X, / X.r s R, .
PeS T| jox I/ j=1 3| jax oM
For example, this proves that for any stationary measure P,

E xk"""xlu-m-l

n

and for blocks near the middle

X . *...*
-k "k}s 1

P X_n+. . .+xn ne+l

E .2 1og(;‘-'_‘T) < (2k+1)/(n-k)

by using the values of Rk n given in theorems 5 and 4c, d.
»




APPENDIX

Proof of Theorem 2a.

The appendix will use eqns. 2, 3, 4, S and lem. 6 from the previous
section. It is to be noted that these do not use thm. 2 in any way and are
mainly definitional equations. To avoid repeating awkward summstions, for
the loop a = 315 ceey 8 e define

k
inj %

S(i, k) = §
Si = S(i-n+1, i)

T, = 8;/8;

LCHEDIED P

By eq. 5, Rl.n =z Rn,n‘ We will choose to work with Rn.n for which eq. 3

can be written as

n
Epa,n(x“/zj'l X;) = T(1, m)/m. (A.1)

Consider the case when a is of the special form 0""11x for some integer

x. Working out the sums involved in eq. A.1l, for this a

n -1rx
Bp_ (/I X = (1o Vi
’ (A.2)
< af{n-1).

It is easy to see that in eq. A.2 equality is achieved for some value of x S n
which we shall denote by B(n-1) (the argument n-1 will be assumed from now on).
The proof that amongst the set of all loops, the given loop 0“'118 maximizes

the expectation will be done by contradiction. Assume there is some

Ty O O A MM B
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10
3=a), ..., 8 and ¢ > 0, for which
T(1, n)/m > a(n-1) + €. (A.3)

The method of proof involves a stepwise modification of a. At each step the
previous sequence will be denoted by a, and the modified one by a“. The
variables m”“, for the length of a“, as well as S° and T” will similarly be

defined for a“. After each step, for the modified sequence the inequality
T°(1, m*)/m” > a(n-1) (A.4)

will be proved. Yet after a finite number of steps, the sequence a” will

essentially look like 0" 118, providing the contradiction.

Step 1.

Let m” be a multiple of m, large enough so that n/m” < ¢, for the ¢ in
eq. A.3, and also m” > 5n (this last restriction is not necessary, but allows
the treatment of a loop as a long open string).

We have a = Bys cees B0

. n-1
Let a“ =0 an, ceey am,.
To prove eq. A.4 note that ai‘ s a;, so si' < Si. So fori=n, ..., m*

we have ‘l‘{ 2 Ti' and for i = 1, ..., n-1, 'l'i < 1. Hence
T(1l, m°) s (n-1) ¢« T°(n, m").

Since m” is a multiple of m,
a(n-1) ¢ € < T(1, m)/m
= T(1, m”)/m"
S [(n-1) « T°(1, m°)])/m”*

Se+T°(1, m)/m”°

which proves eq. A.4.
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Step 2.

Now a = on'lan. 8,12 *++» 8. Define b = S(n, 2n-1).
. n-1.b.n-b

Let a“ =0 "10 Bans sees Bpe

Note that a” is simply a, with the block Bos ceen 3300 Tearranged SO
that all of its b ones are to the left of its zeros. We pause to prove the

following lemma about switching the order of a neighboring pair of 0 and 1.

Leoma 8.
Let a and a° be two loops of the same length m, identical except that
anoj = aﬁoj&l = 0 and aﬁ’j = 8nejel * 1. If °j+l = 0, then
T(l, m) £ T°(1, m).
Proof::

The proof consists simply of noting that the only difference between Ti
and Ti is TZn*j < Tzn*j' Tn+j a Th’j’l and 1;’5’1 = Tﬁ+j' g
Applying lem. 8 repeatedly over a large block yields

Corollary 9.

If a has a block of zeros aj.1 z ,,. = ajob = 0 then construct &” by

rearranging the block 8 ei* *cr 8 so0 that the ones are to the left of

i nejed
the zeros, but otherwise a and a” are identical. Then the conclusion of lem. 8
is still valid.

Returning to step 2 in the construction, a(n-1) < T(1, m)/m < T*(1, »°)/m”,

where the first inequality was established in step 1, the second follows from

cor. 9,

Step 3.
! Now a = o“'llbo“'baZn. ceey B«

» n'l B l\-b
Let a’ = 170 8ons cco0 B

sO that m" =m ¢ g - b,




12

By the definition of 8 in eq. A.2,

T(1, ned-1) = [0 174 s (neb-1)a(n-1)
(A.5)
T°(1, neg-1) = 12 1/i = (neg-D)a(n-1).

For the remaining values i = n¢b, ..., mwe have T, = T’ if 8 & b-1.

i ieg-d
When B < b-1 the only difference is that Si > siOB-b for i = 2n, ..., 2n¢b-8-2,

so that in all cases
T(nedb, m) s T (n+g, m”). (A.6)
Combining eqns. A.5 and A.6
T(l, m) - T°(1, m") S (b~B)a(n-1).

This implies eq. A.4 as can be seen by this simple lemma.
Lemma 10.

1I£T(l, m) - T (1, m") € (m-m")a and T(l, m)/m > o then T°(1, m“)/m* > a.
Proof:

0<T(l, m) ~ma <T°(l, m°) - m°a. O

Step 4.
If b > 8, return to step 2; otherwise n-b 2 n-8, so the second block of

zeros in a has at least n-8 elements. Let a be the first occurrence of a 1
in azn’a-l. ese g Cm.
Now a = on'llaon'aum, cees B
» -l ‘l
Let a” = O" 180n 8. ecen u‘,

so that m” = me2n+p-c-1.
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Note that T(l, 2n-1) = T"(1, 2neg-2), Tima-l = ] and

T(c+l, m) = T*(2n+B, m”) so that
T(1, m} - T°(1, m°) S T(2n, 2n+8-2) + Tc ~ 1. (A.7)

Let d = S(2n, 2n+8-2) so that there are n-d-1 zeros in LIIRRRY ‘2n+8-2'

Then each S, for i = 2n, ..., 2n+¢g-2 sums at most n-3-1 zeros, and at least

i
del ones, i.e., each si 2 d+1. Since 8y and hence 'l‘i is nonzero d times for

i=2n, ..., 2neg-2
T(2n, 2neg-2) < d/(d+1). (A.8)
We will separate out three cases, and in each case establish
T(l, m) - T°(1, ®°) < (m-m“)a{n-1), (A.9)
which would imply eq. A.4 by lemma 10.

Case 1: 2n+g-1 < c < 3n.

Here (m-m“) 20 and d = Sk-l. s0 eqns. A.7 and A.8 imply
T(l, m) - T°(2, m*) s (sk°n/sk . l/Sk -1=0,
establishing eq. A.9.

Case 2: c23n and n =4, 6, 8 or 10.

Since d s g-1 and m-m” 2 nel-g8, using eqns. A.7, A.8, we need to show

(8-1)/8 s (n+1-8)a(n-1). (A.10)

to prove eqn. A.9. Looking at table 1, this holds for all given values of n
except 4, 6, 8, 10. For values beyond the table, eq. A.7 was checked numeri-
cally up to n = 100, and the logarithmic approximations of lemma 6 will be

used after that. Since 8 maximizes eq. A.2, we have
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Table 1:

3od
2
!

1 a(n-1)
1.000000
.500000
.375000
.305556
.261905
.231481
.208333
.190278
. 175641
.163333
.153125
.144118
. 136466
.129643
.123539

WONPVNEWLNN - l=

O NN NUILE L UGN e

a(n-1) 2 [n—l#(s-l)]'lzg;i 1/i
= [E—:—%:%—)c(n-l) - [ﬁ] (1/8)

which gives a(n-1) s 1/8. Since B8a(n-1) s 1 and (8-1)/8 s 1,

(n+1-B)a(n-1) - (B-1)/8 2 (n+l)a(n-1) - 2

(by lem. 6) 2 (n+1) lggﬂ-l)-l%logjn-l)-l -2

20 forn 2 87.

The final inequality can be calculated for n = 87, and since the penulti-
mate expression is an increasing function of n, all larger n must also satisfy

it. But this establishes eq. A.10 and hence A.9 for all n = 4, 6, 8 or 10,

Case 3: c23n and n =4, 6, 8, or 10.
This case is further broken into three subcases each involving a verifi-

cation by table 1.
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(33) If ¢ » 3n and Sc > 1 then Tc < 1/2 so if
(8-1)/8 - 1/2 s (n+1-g)a(n-1)

then eq. A.9 is satisfied.
(3b) If ¢ = 3n and Sc = 1 then S(2n+1, 2n+g-2) = 0, and so
T(2n, 2n+6-2) = T, s 1/B. Using this in eq. A.7, we need to verify
1/8 € (nel-B)a(n-1).

(3c) If ¢ > 3n then n-m” 2 n+2-8 and we need

(B-1)/8 S (n+2-8)a(n-1).

As these cases are exhaustive, and in each case eq. A.4 is true, Step 4

is complete.

Step S.

=1.8.n-1
Now a = 0" "15" 82neg-1" "0 Bp
Let a’ = °"-1‘2noa-1' R e L

Since a” is just a rotation of a, T(1, m) = T°(1, m”), so eq. A.4 will

hold. Now, return to step Z unless
a = 0™ 118" 118 . o™ 1y8, (A.11)

At every return to step 2, some elements of the original sequence are

deleted or reordered into blocks of 0" 118,

Since no new disordered elements
are created at any step, the procedure must stop after a finite number of
steps. Since at each step eq. A.4 was verified, for the final a of eq. A.11

we must have

T(1, m)/m > a(n-1)
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yet simply computing,
T(l, m)/m = (n-loa)°l 22-1 1/i = a(n-1)
providing the contradiction which proves the theorem. D

Proof of Theorem 2b,

Let n be odd, k = (n+1)/2, and a = a1y -eey Bg. As notation,

define

e
Gy 37 = lay %
Ti = aiok/S(i¢1. i+n)
A v
TG, 57 = Loy Ty

so that eq. 3 can be written as

n
EPa.n(xk/Ej-l X;) = T(1, m)/m.

For any loop s,
T, K = 5K, a,,, /5001, den) s I 8, /5(kel, neD) = 1.

As this holds for all loops, it will also hold for the loop

(‘hk¢l' B ke2? 0 ‘hkon) for any integer h. Thus
T(hkel, (h+l)k) <1 forhs=0,1, 2, ... .
Adding these up for h = 0, 1, ..., m-1,

m > 2;:: T(hkel), Cheldk) = T(1, mk) = kT(1, m),

(A.12)
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because a is periodic with period m. Rewriting A.12 gives
T(1, m)/m < 1/k = 2/(n+l) (A.13)

1 for any loop a. On the other hand, it is straightforward to verify that the

k-1

loop a = 0 "1 achieves the upper bound in eq. A.13, thus proving thm. 2b and

cor. 3b simultaneously. (0
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