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A Non-clustering Property of Stationary Sequences

by . ....

Arif Zaman . ... ... _.
Florida State University

/ "
Abstract .. ... .

For a random sequence of events, with indicator variables XV, the be-

havior of the expectation EX#..Xkmlfor 1 9 kc 5 k~m-l s n can be taken

as a measure of clustering of the events. When the measure on the X's is

i..d.., or even exchangeable, a symetry argument shows that the expectation

can be no more than m/u. When the X's are constrained only to be a stationary

sequence, the bound deteriorates, and depends on k as well. When m/n is small,

the bound is roughly 2%/n for k near n/2 and is like (m/n) log n for k near

1 or n. The proof given is partly constructive, so these bounds are nearly

* . achieved, even though there is room for improvement for other values of k.
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I. Introduction.

In considering portions of larger, but still finite strings of random

variables, the following problem arose. If XI , ..., X n is part of a stationary

sequence of zeros and ones, one would not expect the ones within that portion

to clump together, intuitively because each Xi is as likely as any other to

have the value one. Based on that intuitive argument, one could expect the

expression sup EP{Xk; +..X~- (note: 0/0 - 0) where 1 6 k S k*u-l S n.P-C +...,xPSr 1 n J
and S is the set of stationary probability measures on binary sequences, to

behave roughly like m/n. Indeed, if the probability P is restricted to be

i.i.d. or even exchangeable, a simple symetry argument yields a supremm of

m/n, achieved when the Xi are identically 1. For the case of stationarity,

the upper bounds on the supremum for m/n small are roughly 2m/n when k is near

n/2, and like (m/n)log n for k closer to I or n (thm. 7). The key result is

a constructive proof that finds the P which achieves the supremum for the two

cases of m a 1, k a 1, and m - 1, k a (n l)/2 (thm. 2).

I would like to thank Professor Michael Steele for insisting that this

could be done, and Professor Larry Shepp for an improvement in the proof.

I would also like to acknowledge the many simplifications and Improvements

suggested by the referee.

2. Results.

We shall immdiately narrow our concern to the simpler problem of finding

bounds for

sup E for 1 I k S n. (I)

i
Rk
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Notice that the variables Xn.1, Xh*2, ... do not appear in the above expression,

so only the marginal distribution of (XI, ..., Xn) affects the values of Rk,n -

A small amount of notation is needed for the next theorem, which makes use of

this observation.

A loop is a finite sequence a1, ... , am of zeros and ones. Subscripts

out of range will be taken circularly, so that a0 = and am#, I. For

a loop a and any positive integer n, the measure P gives mass I/a to each
a~n

of (a, an ) (a, an, 1 ) . (a. ... amn-).

Theorem 1.

If a binary sequence X has a stationary distribution, then the marginal

distribution of (X, ..., ) can be written as a convex combination of

measures Pa,n for a e A., where An is a finite set of loops. Moreover, every

Pa,n is the marginal of some infinite stationary distribution.

More details, and a proof of this can be found in Zaman (1983) or Hobby

and Ylvasaker (1964). Since expectation is a linear functional, thin. I allows

replacing the maximization over S in eq. I by maximization over P a,n for

a e An, yielding

Rk aA a max E (,/ 1 X4) (2)

Using the definition of Pa,n' the expectation can be further decomposed into

E a n m n.
an X/j1Xj) Y il(ai~k/1j.I ai.j) (3)

where i is the length of the loop a. In a completely unrelated problem, sums

of the form given in the right side of eq. 3 have been given the name cyclic

sums, e.g. Daykin (1970).

'2t>- -
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Equations 2 and 3 convert the original probability problem of eq. 1 into

a finite maximization of a function over a set of loops. This maximization

is performed for chosen values of k in the appendix to prove the following

key theorem.

Theorem 2.

(a) When k a I or n, the maximum in eq. 2 is achieved for a a 0n'11

(the notation 0 refers to a block of n-1 zeros) for some number B depending

on n.

(b) When k • (n~l)/2 for odd n, the maximum in eq. 2 is achieved for
a 0 ok-l.

Corollary 3.

Define

oCn) - "pn*O I/i. (4)

Oal

Then,

n n-1) if k 1 or n (a)

21n~l) if k a (n~l)/2 (b)

The corollary is actually proved as a step in proving thu. 2, but can

also be proved by writing out eq. 3 for the loops given in thu. 2.

Using these equalities for R1 ~ and R(n~l)/2n, a general bound for Rkn

is easy to get. Theorems 4 and S do just that. The bounds of th. 4 are de-

picted graphically in fig. 1.

Theorem 4.

Define

a(k,n) sup (k.P)] l(n-k)/ I/I].
n-k ((n in-k

iW Im' ... WW-R.
... . J ;
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Then

(a) *(n-k, n) S R kn S a(n-k) when 2k-i s n

(b) a(k-l, n) S Rk'n s a(k-1) when 2k-I k n

(c) /(n~l-k) S Rk, n s 1/k when 2k-i S n

(d) I/k s Rk, n a Sf(n*l-k) when 2k-I a n.

Proof:

Parts (b) and (d) follow from (a) and (c) respectively, once the symmetry

condition

Rk, n = R k*l, n  (S)

is established. To prove this, note that if Pa1n is the distribution of

(X1, '.. Xn) then the distribution of (Xn , ... 1, X) is given by P a',n for

a, ... ,)a . Now for any loop a,

E P X/1,' X.)EV CX -/~ Xn
a,n Jlj -a,n41Y

from which eq. 5 follows.

The upper bound in (a) follows from Cor. 3a by

R s Sup Fp(CXk/]' X.) R s i(n-k).k Jok R l,n~l-k"
PCs

Similarly, for part (c), the result of Cor. 3b shows that for 2k-1 sn

Rk'n Sup ")(k42 k 4  X" a
PCs jul j

The lower bounds have been included in the theorem to get some idea on

the room for improvement of these bounds. It is conjectured that the actual

values of Rk. n are much closer to the lower bounds than to the upper bounds.

The lower bound (a) is obtained by using eq. 3 to get for k S (n.l)/2

[ _P
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R sup E, (XeI xj)
k mO n"10 a (Xk

a'onn-k
,, ks~sn

z' sup (n+O-k) '1[(k-l',/$ + 10 . I/t].

The lower bound in (c) is achieved by letting a 0 1nkI. For that value of

a, if 2k-i S n then by eq. 3

J Pa(Xk/n - Xj) - n1-

It is not difficult to find loops which give even higher lower bounds,

but that does not seem to be the more fruitful direction of moving the bounds.

Theorem S.

R k, n S n for n ? 3.

Before giving a proof, a logarithmic approximation for the function a

will be established.

Lemma 6.

log n - log(log n) - n
n a (n) !9 fornz3.

Proof:

Let 0' be a value of 0 which achieves the maxiumm in eq. 4, so that

ecn) - Cn+O")- toc1 6)

A crude bound to the harmonic series in eq. 6 gives

&(n) S (Ilog $*)/(n*0'). (7)

ii. K
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By calculus, the function (lelog x)/(n~x) for x t I reaches its maxium

value of (log x*)/n when x* log x* a n. If n b e, log x* can be bounded by

log n - log log n log x* log n. (8)

Plugging this information about the maximum into eq. 7

a(n) s (llog 5)/(n4$*) (log x*)/n S (log n)/n,

establishing the second inequality of the lema.

For the first inequality, let x* be as before, define 0 = [x*] (the

integer part), and for notational convenience let I a log n - log log n which

is the term on the left side of eq. 8. Then

Q(n) 2: (n+B)1 J . 1/i X (n~xinf1 log x*

> n/l)'l Z n- 1 12 /(l*L) a n'l[2-l+(1+l) "I ]  (9)

' (1-l)/n.

The last inequality substitutes a prettier expression at the cost of some

precision. D

The proof of thu. S then amounts to the following. By eq. 5

mx Rkn - max R k nRkn k<(n+l)/2

(by thm. 4a, c) s max (/k) A *(n-k))
k<(n+l)/2

(by lea. 6) s max (/k) A log(n-k)/(n-k)} (10)
k%(n~l)/2

Since 1/k is decreasing and the second function increasing as k increases, the

maximum in eq. 10 is attained at some k a k* for which the two functions are

equal. Thus

I1
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max Rkna l/k * log(n-k*)/(n-k*)

[I*. log(n-k*)I/n.

where the last expression follows, by some algebra. Since k* z 1, replacing

it by 1 gives the claimed result in thu. S. 0

Returning to the original problem as stated in the introduction. one can

state the following theorem based only on the definition of R kn-

Theorem 7.

sup E Iu 1 J 5 1 R3k

1For example, this proves that for any stationary measure P,
E ~ s (u/n) (I + log(n- 1)J

and for blocks near the middle

E{Xk, } 2 log(wj!3,) s (2k~l)/(n-k)

by using the values of Rk~ given in theorems S and 4c, d.
kI
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APPENDIX

Proof of Theorem 2a.

The appendix will use eqns. 2, 3, 4, S and 1em. 6 from the previous

section. It is to be noted that these do not use ths. 2 in any way and are

mainly definitional equations. To avoid repeating awkward sumations, for

the loop a = a1  ... , a we define

S(j, k) a a

S. = S(i-nl, i)

T= a I /Si

T(,, k) Ik Tini V*

By eq. 5, RI.n Rn- We will choose to work with R , n for which eq. 3

can be written as

Pa,n n jul Xj

Consider the case when a is of the special form on-1 X for some integer

x. Working out the sums involved in eq. A.1, for this a

a n its(A. 2)

Ss (n-l).

It is easy to see that in eq. A.2 equality is achieved for some value of x S n

which we shall denote by B(n-l) (the argument n-l will be assumed from now on).

The proof that amongst the set of all loops, the given loop On116 maximizes

the expectation will be done by contradiction. Assume there is sow

4

4BJ
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a a, ..., a and e 0, for which

T(1, 3)/u 2 a(n-l) 4 e. (A.3)

The method of proof involves a stepwise modification of a. At each step the

previous sequence will be denoted by a, and the modified one by a'. The

variables mo, for the length of a', as well as S' and T' will similarly be

defined for a'. After each step, for the modified sequence the inequality

T'1 m'/m > cton-1) (A.4)

will be proved. Yet after a finite number of steps, the sequence a' will

essentially look like 0n-11B, providing the contradiction.

Ste 1.

Let m' be a multiple of m, large enough so that n/m < e, for the c in

eq. A.3, and also m' > Sn (this last restriction is not necessary, but allows

the treatment of a loop as a long open string).

We have a u a1, ..., a
.0 n-l,..,a.

Let a o 1

To prove eq. A.4 note that a: s ai, so S S S So for i n,..., a'

we have T a Ti, and for i • 1, ... , n-l, T. s 1. Hence
1

T(l, m') s (n-l) * T'(n, a').

Since a' is a multiple of a,

o~n-l) * £ < (1, 3)/u

Tl, u*)/u'

S[(n-l) * T'(I, tm'))/tm

. s c * T'(l, mi)/u"
I.

which proves eq. A.4.

*J

-- i- I .



Now a o an. nl* ... , am. Define b a S(n, 2n-1).
Lo '= 0'1l1benban, ,... a %.Letau 10aa.. 3

Note that a' is simply a, with the block an, ... , a2nl rearranged so

that all of its b ones are to the left of its zeros. We pause to prove the

following lema about switching the order of a neighboring pair of 0 and 1.

Lemma 8.

Let a and a' be two loops of the same length a, identical except that

a*j n anj 4 1 a o and g ,j . 1. If aj+l a 0, then

T(l, m) S T'(1, m).

Proof:

The proof consists simply of noting that the only difference between Ti

and T' is T2  S Tn Tn,. and Tn ? n.
2n~j in~j- Tn+j =aj~ n ~l n~j*

Applying lem. 8 repeatedly over a large block yields

Corollary 9.

If a has a block of zeros a,,1 = .,. u a. b  0 then construct a' by

rearranging the block a .,., anl.,b so that the ones are to the left of

the zeros, but otherwise a and a' are identical. Then the conclusion of lea. 8

is still valid.

Returning to step 2 in the construction, u(n-l) < T(1, a)/* % T'(1, al/m,

where the first inequality was established in step 1. the second follows from

cor. 9.

Stop 3.

0 a -lbe-ba 2n' ... , a.

Let a' On'110n'b a. nl...B, a-M

so that a' * ma. P - b.

_ _..._,_,__ _ _ _,,__ _ _ _ _ _ _"__ _', '"
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By the definition of B in eq. A.2,

T(,. n~b-1) - 1/i S (n.b-l)m(n-1)

(A.s)

T'(1. n+B-1) * I/i L (n.B-l)a(n-).

For the remaining values i = n~b, m...z we have T T if B b-I.

When B < b-i the only difference is that Si > S +O b for i * 2n, ... , 2n~b-8-2,

so that in all cases

I T(n~b, m) s T'(n.B, m'). (A.6)

Combining eqns. A.S and A.6

~~~T(l, a) -T(I, m') <(-~~-)

This implies eq. A.4 as can be seen by this simple lemma.

Lema 10.

If T(l, m) - T (1, m') : (m-m)a and T(l, m)/m > a then T'(1, m')/m' > a.

Proof:

0 < T(l, m) - ma < T'(1, m') - m'a. 0

Step 4.

If b > B. return to step 2; otherwise n-b n-B, so the second block of

zeros in a has at least n-B elements. Let ac be the first occurrence of a 1

in a2n+0 1 , ... # am.

Now a - on 11OP"'a 2n' ...0 a.

Let a" 0 0n'llBnlaR .. at .

so that u" = m*2n+-c-l.

I.. .
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Note that T(I, 2n-1) T'(1, 2n.B-2), T'+,.1 - 1 and

T(c~l, m) a T'(2nB, mo) so that

T(l, m) - T'(1, m') S T(2n, 2n+0-2) T c - 1. (A.7)

Let d a S(2n, 2n 8-2) so that there are n-d-l zeros in an , ... , a2n+*O2 .

Then each Si for i - 2n, ..., 2n.-2 sums at most n-d-1 zeros, and at least

d~l ones, i.e., each Si a dil. Since aI and hence Ti is nonzero d times for

i 2 Zn, ..., 2n+0-2

T(2n, Zn.8-2) ! d/(d.l). (A.8)

We will separate out three cases, and in each case establish

* T(l, m) - T'(i, m-) s (m-m')a(n-i), (A.9)

which would imply eq. A.4 by leama 10.

Case 1: 2n+O-l 5 c < 3n.

Here (m-mr) a 0 and d = Sk-1, so eqns. A.7 and A.8 imply

T(l, m) - T'(1, m) s (Sk-I/k ( ) / S k -I 1 0,

establishing eq. A.9.

Case2: c a 3n and n a 4, 6, 8 or 10.

Since d s 0-1 and am' a! nol-B, using eqns. A.7, A.8, we need to show

(8-1)/B £ (n.1-9)o(n-1). (A.10)

to prove eqn. A.9. Looking at table 1, this holds for all given values of n

except 4, 6, 8, 10. For values beyond the table, eq. A.7 was checked numeri-

cally up to n a 100, and the logarithmic approximations of lama 6 will be

used after that. Since B maximizes eq. A.2, we have
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Table 1:

n O(n-1) m(n-1)

1 1 1.000000
2 1 .500000
3 2 .375000
4 3 .305556
s 3 .26190S
6 4 .231481
7 4 .208333
8 5 .190278
9 5 .175641
10 6 .163333
11 6 .153125
12 6 .144118
13 7 .136466
14 7 .129643
is 8 .123539

"ITn-1) a1/i

= a(n-1) -i1l

which gives aCn-1) s 1/0. Since Oa(n-1) 6 1 and (0-1)/0 S 1,

(n.l-8)a(n-1) - (8-1)/I > (n.l)a(n-1) - 2

(by le. 6) > (n.1) log(n-1)-log log(n-1)- - 2~n-I"

>0 for n a 87.

The final inequality can be calculated for n a 87, and since the penulti-

mate expression is an increasing function of n, all larger n =ust also satisfy

it. But this establishes eq. A.10 and hence A.9 for all n * 4, 6, 8 or 10.

Case3: c 3n and n a 4, 6, 8, or 10.

This case is further broken into three subcases each involving a verifi-

cation by table 1.

i pil- - +- .. ... .. . .
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(3a) If c a3ftand S cPI then T : /2 so if

(0-1)/P - 1/2 5 n10an1

then eq. A.9 is satisfied.

(3b) If c v 3n and Sc - 1 then S(2n.1, 2n+-0-2) -0, and so

T(2n, 2n+0-2) a T 2n S 1/0. Using this in eq. A.7, we need to verify

(3c) If c > 3n then rn-rn' k n*2-0 and we need

As these cases are exhaustive, and in each case eq. A.4 is true, Step 4

is complete.

Ste" S.

Now a=O 1  2n*1a ... ' am
2 2n8-Pl' i

* Since a' Is just a rotation of a, T(l, mn) uT'(1, m-), so eq. A.4 will

hold. Now, return to step 2 unless

a n 1 0 -B -10(.)

At every return to step 2, some elements of the original sequence are

deleted or reordered into blocks of 0~ nl 1B Since no new disordered elements

are created at any step, the procedure must stop after a finite number of

steps. Since at each step eq. A.4 was verified, for the final a of eq. A.11

we must have

TO, j)A- un1
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yet simply computing,

T(l, M)/m (n-l+0)1  Iar /i -4(21-1)

providing the contradiction which proves the theorem. 0

Proof of Theorem 2b.

Let n be odd, k *(n+l)/2, and a a,,1 ... , a,. As notation,

define

T~j, i i n u

TI. - 1. T.

so that eq. 3 can be written as

E n (Xk 1j. ) aTO. 3)/n.

For any loop a,

T(I. k) i a ik/S(ii. i~n) I . ai /S(k~l, n~l) 31.

As this holds for all loops, it will also hold for the loop

~~Ik4 %k.2 ~' ) for any integer h. Thus

T(hk~l, (h.1)k) S I for h a 0, 1, 2,..

Adding these up for h a 0, 1, ... ' rn-1,

m - T(hk~l), (h~l)k) aT(l, dk) -kT(t, in). (A.12)

I. _0
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because a is periodic with period m. Rewriting A. 12 gives

'1(1, tu)/m :9 l/k a 2/(n~l) (A.13)

for any loop a. On the other hand, it is straightforward to verify that the

loop a - 0 k- 11 achieves the upper bound in eq. A.13, thus proving thu. 2b and

cor. 3b simultaneously. 0
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