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I. INTRODUCTION

There is considerable interest in the development of extremely

sensitive superconducting magnetometers for the detection of changes

in magnetic field intensity. The most sensitive detectors developed

up to this time are thin film dc SQUID maqnetometers. The dc SQUID con-

sists of a superconducting loop interrupted by two Josephson junctions.
If the junctions are biased near the critical current by an externally

applied dc bias current, the voltage across the junctions becomes a sen-

sitive function of the flux threading the loop. Thus, the dc SQUID acts

like a flux to voltage transducer.

The resolution of the dc SQUID magnetometer is determined pre-

dominately by three factors.' 4First, the Josephson junctions employed

in the device must be non-hysteretic. As a result, the thin film tunnel

junctions typically used in the device are externally shunted by a normal

resistance. The Johnson noise associated with this resistance produces

fluctuations in the voltage across the SQUID.,- This noise can be referred

to the input as an effective flux noise, S,. A useful figure of merit

is then the energy factor S = S /2L, where L is the SQUID loop inductance.
E J

In the usual mode of operation, the incident magnetic field is coupled

into the SQUID through a superconducting transformer. The pick-up coil

is connected in a series with a coupling coil which is inductively coupled

to the SQUID loop. In this case, the minimum detectable change in magnetic

field energy stored in the pick-up coil is proportional to the energy

factor SE. For conventional dc SQUIDs, the energy factor is determined

by the temperature T, the loop inductance L, and junction capacitance C,

SE  kBT A-C. The ultimate resolution for quantum noise limited devices

appears to be SE t 5

The second factor which limits the resolution of dc SQUID magneto-

meters is the presence of I/f noise at the output of the device. The

" - source of this noise is not well understood. However, it is likely that

the dominant source is related to low frequency thermal fluctuations

within the Josephson junction.'7 ' These fluctuations increase in importancc

Ii 1



as the effective junction volume is reduced. Since the effective volume

scales with the junction capacitance, attempts to reduce the energy factor
at low frequencies by decreasing the junction capacitance have failed.

In fact, for the most sensitive devices with SE nuh, 1/f noise is the
dominant noise source at frequencies f t 10-100 KHz.

The third factor which limits the resolution of the dc SQUID magneto-
meter is the intrinsic low loop inductance of the device. For example,

the maximum practical loop inductance for devices operated at 4K is L
nH. SQUIDs with energy factors SI approachinq h have beeh fabricated with loop
inductance L -pH. However, the magnetic field resolution depends not

only on the energy factor SE, but also on the effective area of the pick-
up coil. Since the pick-up coil inductance must be matched to the induc-
tance of the coupling coil to the SQUID, the magnetic field resolution

is limited by the coupling efficiency between the SQUID loop and the

coupling coil. As a result, planar dc SQUIDs with loop inductance L I.
pH show little promise as sensitive detectors of magnetic field intensity.

Recently, a novel superconducting device related to the dc SQUID

has been suggested by Ho Jung Paik.10 In this device, the single dc SQUID

loop is replaced by a double loop structure. In this configuration,

a "SQUID" loop containing two Josephson junctions and a superconducting
"coupling" loop are connected in parallel with a shorting capacitance.

It has been suggested that the behavior of this device will be closely
related to the ordinary dc SQUID. In particular, a heuristic calculation

suggests that the coupling properties of the device will be determined
by the coupling loop inductance, whereas the energy factor will be determined

10
by the SQUID loop inductance. Thus, by decreasinq the SOUID loop

inductance without sacrificinq the ability to couple efficiently to

larqe input coils.

In this report we describe the results of a detailed investigation
of the double loop SQUID magnetometer. We begin by presenting a thermal
activation model for the DC SQUID which supplements the original numerical

simulations of the device. The model is particularly useful for deriving

the behavior of the device at low bias currents. The equations of motion

2
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for the dc SQUID are then compared with a lumped circuit element model for

the double loop SQUID. A relationship between the double loop and con-

ventional SQUID characteristics in the absence of noise is described. Direct

numerical simulations of the double loop device are then performed. Noise

free characteristics are computed as a function of the coupling loop resonant

frequency, the bias current and the applied flux. Noise rounded character-

istics are then generated. An approximate expression for the flux resolution

as a function of the total loop inductance is determined. A model is

developed for conventional and double loop SQUID magnetometers. The model

includes explicitly the effects of the input circuit on the SQUID character-

istics. The resolution of superconducting and lossy double loop magnetometers

is calculated as a function of the signal frequency and the input and SQUID

circuit parameters.

Some of the basic results reported for the isolated double loop SQUID

were computed in conjunction with a project on the analysis of double loop

linear amplifier performed for the National Science Foundation under Grant

DAR-8009388.

3
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II. MODEL FOR THE CONVENTIONAL DC SQUID

A. Numerical Simulation of Lumped Circuit Element Model

The conventional dc SQUID 1consists of a superconducting loop inter-
2rupted by two Josephson junctions. A lumped circuit element model for

the device is shown in Figure 10 The SQUID is biased at constant current

I. The average voltage V across the SQUID output is then a periodic

function of the flux !,a applied to the loop inductance L. The RSJ model (Fig. 2(a))
12

is used to describe the behavior of the junctions. The junction critical

currents are I01 = (1 - ) o10 and 102 = (1 + a)Io , where a is the asymmetry

parameter. The junction shunt resistance is R. We consider the limit
Bc = RC/(% /27 I0R) << 1.

The differential equations describing the development of the quantum

mechanical phase differences 51 and 62 across the Josephson junctions

are then
4

) =I/2 - J - I (1 - a) sin 6i + VNI/R, (1)

(D d62
(-n-j) u = 1/2 + J - 10(I + a) sin 62 + VN2/R, (2)

where VN1 and VN2 are the Johnson noise voltages associates with the

shunt resistances. The circulating current J is related to the junction
phase differences by the quantization of the fluxoid

LJ I - is2) / 21 - 'a (3)

where ¢a is the quasistatic flux applied to the ring. The voltage developed

acorss the junctions is

¢o d61 d62

,T 3 °t Ut

4



4,
The equations of motion have been solved by numerical simulation.

The voltage V(t) and circulating current J(t) are computed as a function

of the bias current I and applied flux 11 a by stepwise integration of Eqs.

1-4. The time averaged voltage V(a ), forward transfer function " a

voltage noise power spectral density S v(f), circulating current noise

spectral density Sj(f), and correlation noise spectral density SVj(f ) are

then computed. The effective flux noise spectral density at the input is S. -

SV/(JV/i'a2 In most cases, we are interested in the constant low fre-a
quency component, S , at frequencies f << IoR/ o.

The numerical simulation yields results which are in good agreement

with observed characteristics for bias currents I 21o. However, the

simulation is fairly tedious. In addition, at bias currents I << 21

numerical simulation is not practical. Furthermore, the simulation

does not provide a clear intuitive framework upon which further investiga-

tion can be based.

B. Thermal Activation Model

We present a thermal activation model for the conventional dc SQUID

which provides a clear, intuitive description of the behavior of the device.

The model depends on the fact that the equations of motion (Eqs. 1-4)

can be derived from a potential U(61,62). This is not a trivial statement.

In fact, the equations of motion of numerous interesting devices cannot

be related to a potential field. The double loop SQUID is an

example of such a device. However, both the single

resistively shunted Josephson junction and the rf SQUID can be

described by a potential. 4'1 5 16'1 7  For example, the equations of
motion for the single current biased Josephson junction (RSJ model)

are

+ - u (5)

where u (6) : - cos \ - 1'. (6)

5



In these equations, the bias current I = i1o, and the voltage across the

junction V = (IoR)V = (IoR)d,5/dO. The dimensionless time 0 = t/(o/271oR).

At bias currents i < 1, the potential consists of a one dimensional chain
of wells separated by barriers (the "washboard" potential, Fiq. 2(b))

develops in time like the coordinate of a particle moving in a viscous

medium within the wells. The random Johnson noise voltages vN cause

the particle to make transitions over the barrier between the wells.

A voltage pulse is generated in the process. Thus, the time averaged

voltage is proportional to the average rate of escape over the barriers.

At low temperatures (kBT << 2e 0 R), the power spectral density of

the thermal fluctuations in the voltage across the shunt resistor will

roll off like SN(,, ) % exp (-tiw/kBT). In this regime, the dominant

source of voltage fluctuations across the single junction will be produced

by the detailed quantum mechanical behavior of the junction. The inves-

tigation of this behavior is a subject of consideration interest at this

time.

The conventional dc SQUID equations can be related to the equations

of motion of a particle moving in a two dimensional potential field,

d2xk d k ur - + - k = 1, 2 (7)

c dt 2  dt k k

where the potential u(,S1, 62
) satisfies

u( , 2 6 = - cos 'SI - cos 2 1 + 'S2) i/2 + Tj 2/2 (8)

and

J = (61 - 2- 2a (9)

The junction parameters are critical current 10, capacitance C and shunt

resistance R. the voltage developed across the junctions, V = vloR, is

a function of the dc bias current I = il0 and the applied flux 'a = qa '

16



The screening factor is l = 2LI0 o0 and f 2IoR2C/: o* We shall be

interested in the solution to these equations in the overdamped limit,

Equations 7-9 are a set of classical equations of motion for a particle

moving in a two dimensional potential field. The form of the potential

u('S,1, 2 ) is similar to the one dimensional field for the single current

biased junction. The potential consists of a family of wells located within

a low potential trough. An example is plotted in Figure3 for bias current

i = 0, applied flux qa 0.5 and screening factor = 1. At low bias currents

in the absence of noise, the particle velocity will be damped out. Thus, the

particle will settle into a single well. As the bias current is increased,
the potential trough is tipped and the barrier between successive wells is

* decreased. At some critical current, ic, which is a function of the applied

flux .a' the barrier vanishes. At this point, the particle propagates

freely down the potential trough. Since the voltage is proportional to the

direct sum of the components of the particle velocity, a voltage develops
across the SQUID (see Fig. 4 ).

In the presence of noise (vN1, v N2  0), the particle undergoes Brownian

motion in the potential field. At bias currents i < i c( a), the particle

motion occurs predominately within the potential well. However, the particle

will occasionally make a classical transition over the barrier. The thermal

activation of the particle from one well to the next produces an average

voltage across the SQUID even at bias currents i c(, a) (see Fig. 5).

The voltage pulse produced as the particle escapes from the well is usually

accompanied by a pulse in the circulating current around the SQUID as

*each of the phase differences advances by 2r. Fluctuations in the number

of pulses per unit time generate low frequency noise in the voltage and

circulating current. In addition, noise is generated by the random motion

of the particle in the wells. This source of noise is most pronounced in

the low frequency current noise at bias currents i <.- i c(a ). Motion

within the well does not contribute substantially to the low frequency

voltage noise. An example of current and voltage low frequency noise

spectral densities as a function of bias current are plotted in Fig. 6

and Fig. 7. Near the critical current, the random generation of the

7 "
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current and voltage pulses is the dominant source of noise. Since the

current and voltage pulses are coincident, the two noise components are

strongly correlated (see Fig.8 ).

The conventional dc SQUID I-V characteristics and noise spectral

densities can be computed directly from the form of the potential u

for values of bias current i 'k ,. The probability of making a single

transition over a barrier height Au in the overdamped limit (t 1)

depends exponentially on the barrier height,

.x CC 2C(- 
s u  ) (10)

where Cwi Cw2, and CS1 , 1Cs2I are the curvatures of the well and saddle

expressed in normal coordinates. The factor " is the ratio of the thermal

energy to the intrinsic energy of the junction, F = 2rkBT/Io o.

The motion of the particle down the chain of well is analogous to the

action of a non-paralyzable counter. The occurence of an event at the

counter corresponds to the escape of the particle over the barrier. The counter

deal time corresponds to the transit time T over the barrier. The times be-

tween successive pulses are the sum of the independent, randomly distriDuted

transition and pulse times. The transition times (time in the wells) are
2exponentially distributed with mean I/p and variance I/p . We assume that

the variance in the pulse t. ime iv 1/p . The mean nmuiber of pulses

arriving in unit time is 5 = 1/p and the variance in n is (An) = ,2/ 3

where (3 is the suni of the variances in the transition time and is the

sum of the means?
2

Thus, the effective transition rate is

r = pl(1 + p1) (11)

and the variance in the nuitmber of transitions per unit time is

(An)2 _ p 3 (12)

(0 + pr) 3

The average voltage is

2 p"

v 21rr +p (13)

$ 8



and the low frequency voltage spectral density generated by fluctuations

in the number of pulses is

0 2 22222p

Sv  (2-)2n 2 = 2(27) P f<< f (14)V( + pT) 3  '

As mentioned previously, the circulating current noise, SO, arises

from two sources. There is a contribution generated by the motion of the

particle from one well to another, and a contribution from motion within

the well. In the first case, the current pulse jp = f (j - jw)df, where

the limits of integration are taken from the bottom of the following well,

and jw is the circulating current in the well. For average pulse size

<jp,, the contribution from the fluctuation in the number of pulses per

unit time is

S9 = 2(jp )2p (15)
'P (1 + PT)3

The contribution to S from the motion within the well can be
1

estimated in the low noise limit by ordinary first order correlation

theory following the treatment of Likharev and Semenov for the single

junction at i < i For a particle confined within the well, the low

frequency current noise spectral density is

S o= 41(a2 + b2) (16)(a + b + ab)2

where

a = (1 - a)cos 1 min (17)

b = (1 + r)cos 2 min (18)

We assume that the motion within the well is essentially uncorrelated

with the noise generated by the random production of the current pulses.

9



Thus, for effective pulse rate r and dead time r,

Sj S.0 + (1 - rT) So (19)

The voltage and current pulses are produced simultaneously, and

thus are strongly correlated. Since the voltage noise is dominated by

the voltage pulse noise, the low frequency correlation spectral density

can be approximated by S0  S0 S0

Note that Eqs. 11-19 are only valid for bias currents i % 1. At

bias current i 1; 1 such that Au I F, the approximations used to derive

Eq. 10 begin to break down. The model seems to work fairly well for values

of Au r/2. At bias currents such that Au < r/2, the computed voltage

and noise spectral densities decrease rapidly and the model fails. Also

note that Eqs. 11-19 have been derived considering motion only in the direc-

tion of increasing 6. However, at bias currents i 0- 0, the potential

difference between successive wells approaches zero. In this case, the

particle can make a transition either to the right with probability p = p

generating a voltage pulse + 2, or to the left with probability p, =

p exp (-2ii/r) generating a voltage pulse -27. At i - 0, the rates are

equal, and 0 =. Near i 0, is a function of both pr and pg. A

detailed discussed of this effect can be found in Appendix I.

10
,.
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III. MODEL FOR THE DOUBLE LOOP SQUID MAGNETOMETER

A. Lumped Circuit Element Model

The lumped circuit element model for the double loop SQUID is shown

in Figure 9. The superconducting outer loop is divided into two parts by

a shorting capacitance Cs with loss Rs. The lower "SQUID" loop of induc-

tance L contains the Josephson junctions. The upper "coupling" loop in-

ductance is Ls. We assume that the current feed is symmetric and the

mutual inductance between the loops is negligible. The junction parameters

are critical current Io % shunt resistance R and junction capacitance C.

If the device is biased at constant current I, a voltage V appears across
the output. The time averaged voltage V is then a periodic function of

the flux Da threading the superconducting loop.

The equations describing the time development of the junction phase

drops, 5 1 and 62, are identical to those for the conventional dc SQUID.

V, = (10/2vr)(dSl/dt) = R(I/2 - J - 10 sin 2) + VN1, (20)

and

V2 = (%/2v)(d 2/dt) = R(I/2 + 3-Io sin 62) + VN2. (21)

where J is the current circulating in the "SQUID" loop, and VN1 and VN2
are random voltage noise sources associated with the shunt resistors.

The output voltage V satisfies

V = (0 o/4 1)(d I/dt + d 2/dt). (22)

The quantization of the fluxoid through the outer superconducting loop

yields

1- 62 )/2w : (LsK + LJ + ta),"o. (23)

tI 11



where K is the current through the "coupling" loop. The screening currents

K and J are related via

Lsd 2 K/dt 2 + RsdK/dt + K/Cs = RsdJ/dt + J/Cs + dVs/dt (24)

Equations 20-24 are the basic equations describing the double junction

SQUID. For convenience, we re-express Equations 20-24 in dimensionless units

(see Table I). The voltage v across the output is

d61  d t(v _I (b-T- + -2- )  (25)

where

= - j - sinI + V1  (26)

1

d6 + j - sin 6 + v 2 , (27)
d') 2 2

61 - 2 7J + Tl Lk + 2 Ta' (28)

and

dk dk
d k - k = + j + (29)

do

Note that the noise current i is related to the dimensionless Johnsons

noise voltage vs of the loss resistor R vis is = f3sdvs/do.

Equations 25-2g are the basic equations describing the behavior of

the double loop magnetometer. Note that these equations reduce to the

conventional dc SQUID equations in the limit 0. In that case, we

have seen that the equations of motion can be derived from a potential

U(1,62). However, in the general case (L 0), the equations of motion

for the double loop SQUID cannot be derived from a potential field. Thus,

the thermal activation techniques used to solve the conventional dc SQUID

cannot be applied to the double loop structure. However, as we shall see

in the next section, there is a range of parameters over which the

I1 1-
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TABLE I

II
FLUX QUANTUM 0 1

APPLIED FLUX a a

JUNCTION SHUNT RESISTANCE R I

JUNCTION CRITICAL CURRENT Io  I

BIAS CURRENT I i

CIRCULATING CURRENT (SQUID)

CIRCULATING CURRENT (LOOP) K k

OUTPUT VOLTAGE V v

NOISE VOLTAGE (SHUNT) VNI Vnl

VN2  4n2

NOISE VOLTAGE (LOSS) V v

LOSS RESISTANCE R S

SQUID SCREENING FACTOR = 2LIo/1o

LOOP SCREENING FACTOR BL 2LsIo/¢o

TOTAL SCREENING FACTOR =2L

SQUID HYSTERESIS PARAMETER c = 21TIOR 2C/%0

SHUNTING CAPACITANCE 6s = 2TIOR2CS/,

NOISE FACTOR r = 2kBT/I o¢

VOLTAGE SPECTRAL DENSITY sv = (Sv /2r)2kBTR

CURRENT SPECTRAL DENSITY Sj = (S./2r)2kBT/R

SK = (Sk/
2r)2kBT/R

CORRELATION SPECTRAL DENSITY S = (Sv/2r)?kBT

SVK = fSvk/2r)2kBT

TRANSFER FUNCTION aq = (D<V>/a )I R/
a a 0 0

FLUX NOISE SV/( VN/ )2 = (2kBT/I2R)l2
S/<V/ta B 00

13
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conventional and double loop SQUID characteristics are closely related.

B. Double Loop Characteristics Above Tank Circuit Resonance

First, the double loop and conventional dc SQUID equations are

identical for all values of the device parameters, provided that the

circulating screening current k = j = constant. In that case, the

phase drops 61 and 6 2 are constant and the double loop SQUID is in the

zero voltage state. The screening currents j and k are identical to

the screening curent JT that would flow around a conventional dc SQUID

with total loop inductance LT = L + L s OT = + Ns). Similarly, the

dependence of the double loop critical current on the applied flux is

identical to the conventional SQUID dependence for a device with screen-

ing factor IT . The conventional dc SQUID dependence of critical current

vs. applied flux is plotted in Figure 10 for convenience (from Ref. 14).

Note in particular that the modulation depth Aic = i C, = 0) - ic( = 0.5)

decreases as rT increases.

If the double loop SQUID is biased above the critical current in

the noise free state, the phase differences and screening currents begin

to oscillate in time. For arbitrary initial conditions, a transient

will be observed in the screening currents. From Eq. 24, the transient

response is given by the resonant frequency and Q of the tank circuit

composed of Ls, Rs and Cs in series. The transient response significantly

complicates the numerical analysis of the device. A simplification occurs,

however, if the resonant frequency of the tank circuit, Ot = (Ls C s)-', lies

well below the natural frequency of the junctions, Qd = (2n/o ) V where

V is the average voltage developed across the device biased at some cur-

rent i >. ic .  In this case, the Josephson oscillations of the phase dif-

ferences 61 and 62 drive the tank circuit well of resonance. The

oscillations in j at the Josephson frequency and harmonies are essen-

tially shorted by the capacitance Cs, and the oscillations in the

screening current k can be neglected. In terms of the dimensionless

parameters B = 2LI0/4o, BL 2Ls 10/, s = 2TI 0R
2Cs/5 o0 and resistance

ratio p = Rs/R, this corresponds to the condition <v--2 nLBs s 1. In
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addition, we restrict the discussion to a fairly high Q tank circuit,

Bs <v> 1. This is a physically reasonable assumption, since a low

Q tank circuit would introduce excess Johnson noise which would tend to

degrade the device performance. The screening current k can now be

approximated by the time average, -k. = <j-.. Thus, Eq. 28 becomes

2- 2 = + 2n (4a + tL <j/2). (30)

Equations 25-27 and Eq. 30 correspond to a set of equations iso-

morphic to the dc SQUID equations with a total applied flux increased

by the screening flux BL <j /2. Thus, the solution of the conventional

dc SQUID equations for screening factor 3 and applied flux T is an

approximate solution to the double loop equations with screening factors

and BL and applied flux a if 'a = @T - L <j-/2. Note that <j> is the

average circulating current for both the conventional dc SQUID solution

and for the double loop solution. Similarly, the average voltage, <v>,

developed across the conventional dc SQUID biased at i and T is approxi-

mately equal to the average voltage developed across the double loop device

biased at i and

The common solutions can be found using a oad line technique. We

illustrate the technique for a double loop SQUID with screening factor

S= 1 and = 50. We plot the average circulating current <j> versus

applied flux 11 for a conventional dc SQUID with screening factor B = 1

as a function of bias current in Figure 11. Note that the family of curves

are periodic in T with period 1 (in dimensioned units, the periodicity

is ;,o). Only the section 0 < T < 1 has been shown. A load line, <j-

(2/ L)(' T - a) , has also been drawn for a = 0.25, L = 50. Note that

the load line is not periodic in T . As a result, a family of parallel

lines appears in the collapsed plot, Figure 11. As the screening factor

L increases, the slope of the load line decreases, and the separation

between the parallel lines decreases. As a result, as PL increases, the

load line will intersect the curve <j> vs. Tfor fixed i bias at numerous

places. Each point of intersection represents a distinct approximate
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solution. The corresponding average voltage, ..v-., can be read off the

<VN vs. T characteristics plotted in Figure 12. In the limit, CL 0,

the load line approaches the vertical. In this case, @T = and the

conventional dc SQUID and double loop solutions are identical.

Noise free I-V characteristics for a conventional dc SQUID with

=I are plotted for various values of applied flux in Figure 4. All

the characteristics are single valued, and lie between the characteristics

labled q'T = 0 and CT = 0.5. Noise free I-V characteristics as a function

of applied flux for a double loop SQUID with 1 = and L 1 10 are plotted

in Figure 13. Since the average voltage at fixed bias current i for the

double loop SQUID corresponds to the conventional dc SQUID voltage at some

flux 0 < 4T < 0.5, all the double loop characteristics also lie within

the conventional SQUID characteristics labled T = 0 and 4T = 0.5. In

fact, since <j> = 0 at #T = 0 and T = 0.5, the conventional character-

istics and the double loop characteristics coincide at those values of

applied flux. However, as can be seem from Figure 13, a family of hysteretic

solutions also exist. The hysteresis arises because the critical current

for the double loop SQUID is identical to the critical current for the

conventional SQUID with total screening factor T = + k' As BT increases,

the critical current i c( a ) also increases (see Figure 4b). However, as

<v, increases, the double loop solutions are approximated by conventional

solutions for screening factor B = 1. These characteristics lie below the

characteristics for T = 11. As a result, the double loop characteristics

droop. In addition, for sufficiently large values of L' there are a set

of metastable solutions which occur below the critical current. Another

set of lobed solutions occur above the critical current (see Figure 14).

These solutions correspond to excess flux trapped in the SQUID loop, and

cannot be generated from the conventional solutions by smoothly varying

the parameter 3L'

Equations 25-29 were also simulated numerically. The equations were

integrated stepwise in time using a fourth-order Adams Moulton predictor-

corrector method. The instantaneous voltage v(o) and circulating currents

j(o) and k(o) were computed at each step interval. The initial conditions

were carefully chosen so as to minimize the transient response.
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The average voltage was determined by computing the period of oscillation

of the phases 1 and 62. I-V characteristics determined by this method

are in excellent agreement with the approximate hysteretic solutions.

Appropriate initial conditions could not be determined for the negative

resistance region of the hysteretic characteristics, nor for the meta-

stable lobes.

C. Noise Free Characteristics for Arbitrary Parameter Values

Noise free characteristics for arbitrary values of the circuit para-

meters are generated by direct numerical simulation of the basic equations.

In the general case, no simple relationship exists between the double

loop characteristics and the conventional dc SQUID characteristics. We

are interested in calculating the characteristics for values of the para-

meters which enhance the coupling properties of the device without degrading

the signal-to-noise ratio. A reasonable quess would be to choose values

for the resonant coupling circuit consisting of the coupling loop Ls,

shorting capacitance C and loss R such that the resonant frequency of

the coupling circit is much less than the Josephson frequency of the junc-

tions, tot << "o" As demonstrated in Section III-B, the I-V characteristics

in that case become multivalued and show considerable hysteresis. Unfor-

tunately, hysteresis in the I-V characteristics of a conventional dc SQUID

near the zero voltage state degrades the performance of the device. To

avoid this problem in the double loop SQUID, we must relax the constraint

t J"
In this section, a family of I-V characteristics is computed for

double loop devices with variable resonant frequencies ot' If the coupling

loop inductance L is fixed, the resonant frequency wt is a function of

the dimensionless shorting capacitance Ps, wt = ( s-. We take the

resistance ratio p = Rs/R << 1 to reduce the Johnson noise generated in

the loss resistance Rs (the noise free characteristics are essentially

independent of p in this limit).

The I-V characteristics generated by numerical simulation are plotted

in Fig. 15 as a function of "t The screening factors are 1 1.0, 10.0
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and the applied flux 'ta = 0.25. For comparison, the dimensionless Josphson

frequency (,j = <v. Thus, the curve labled Ss " 10, t - 0.06 corresponds

to the hysteretic approximate solution for 6t << W found in Section III-B.

Note that the negative resistance region and metastable lobes were not

generated in the numerical simulation. As wt is increased, the hysteresis

near the zero voltage state increases. In fact, the characteristic plotted

in Fig. 13 for ot = 0.15 lies below the conventional dc SQUID characteristic

for 2 = , T 0.5. In this case, the double loop behavior clearly cannot

be approximated by the conventional dc SQUID behavior. However, at bias

currents such that ) = --v. - 0.15, the characteristic approaches the

approximate solution found in Section III-B.

The I-V characteristic for ;ot = 0.3 shows a qualitatively different

behavior. In this case, the tank circuit resonant frequency, e"t, corresponds

to the average voltage near the bottom of the droop in the approximate

solution. As a result, for *v-' Wt the Josephson oscillations are not

effectively shorted out by the capacitance Cs. The device behaves like

a conventional dc SQUID with = 1, a 0.25. No hysteresis is observed

near the zero voltage state. In the region <v \ t, the double loop

characteristic begins to deviate from the i = 11 dc SQUID characteristic.

Furthermore, the numerical simulation becomes somewhat unstable.

The character of this instability can be seen in Fig. 16. The instantaenous

voltage v and screening currents k and j are plotted as a function of time,

0, for a double loop SQUID with P =1, L = 10 and rc = 0.3537. At bias cur-

rent i = 2.0, (wj < wt) the Josephson frequency uj < w , and the voltage and

screening currents are periodic functions of time as expected. However, if

the bias current is increased to i = 2.25, the Josephson frequency approaches

the resonant frequency of the coupling loop. At this point, the voltage and

circulating currents are no longer periodic functions of time. If the bias

current is then increased to i = 2.4, iU wt and the periodic relationships

between v, j and k and the time 0 return. This kind of behavior is character-

istic of chaotic systems. In this case, the equations of motion can be reduced

to a set of coupled third order non-linear differential equations describing

18
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a system of two lightly damped non-linear oscillators with nearly equal
characteristic frequencies. Chaotic behavior in systems of this nature has

f been described in detail. From a practical standpoint, we expect chaotic

behavior to be accompanied by a continuous low frequency voltage power spectral

density, even in the absence of Johnson noise sources. Although chaotic

behavior in Josephson junction devices is a subject of considerable interest,

a careful investigation of this behavior in the double loop device is outside

the scope of the present effort.

At bias currents i xl 2.2, instabilities in the calculation of the

I-V characteristic labled .t = 0.3 are no longer observed. In this region,

a hysteresis loop is observed. Note that both branches of the loop are

numerically stable. At bias currents i - 3.0, the characteristic approaches

the approximate solution for the limit ut X In this region, both

solutions are nearly equal to the conventional dc SQUID solution for a = 0.5,

3=1.

The final characteristic plotted in Fig. 15 corresponds to the limit

t .. for frequencies j within the hysteretic region in the approximate

solutions (i.e., o"t , 0.6). In this case, the I-V characteristic is nearly

identical to the conventional dc SQUID characteristic for £ = 11, Ca = 0.25.

Furthermore, no instabilities in the simulation were observed. This is

probably because the non-linearities associated with the Josephson junctions

are small in the region w t v wJ. As a result, chaotic effects are less

likely.

In conclusion, the only characteristics in Fig. 15 which are non-

hysteretic satisfy wt 't 0.6. In this case, the shorting capacitance is

essentially irrelevant, and the characteristics reduce to the conventional dc

SQUID characteristic with r = 3 + L As (,t is decreased, the I-V character-

istics begin to deviate from the conventional dc SQUID characteristics.

In particular, a hysteresis loop is observed at bias currents i - i

For sufficiently low values of wt, the hysteresis occurs near the zero

voltage state.
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D. Nunerical Techniques for Double Loop Characteristics with Noise

In this section, the numerical techniques used to compute device char-

acteristics in the presence of noise are discussed. The dominant noise

sources within the device are assumed to be the Johnson noise generated

by the junction shunt resistances and the tank circuit resistance, Rs. The

effect of low frequency noise sources will not be discussed in this section.

We assume that the device parameters and operating point are chosen such

that the power spectral density of the voltage noise source associated with

each resistance is white at all relevant frequencies. For a device generated

at temperature T, the corresponding average voltage across the device must

satisfy V = <v>IoR << 2vkBT/< o . The voltage noise sources are uncorrelated,

with shunt power spectral density SN = 4kBTRs and loss power spectral density

Ss = 4kBTRs* In dimensionless units, Sn = 4F and Ss = 4'.

In the conventional dc SQUID, the equations of motion written in dimen-

sionless form are independent of the shunt resistance, R. As a result,

the energy factor SE scales with the shunt resistance, SE x I/R. The value

of R is limited by the constraint 2c = 21I R2C < 1. The dimensionless equa-

tions of motion for the double loop SQUID are also independent of R. How-

ever, the equations are a function of the resistance ratio ., = Rs/R. As

we have seen in Section 111-C, the noise free I-V characteristics are rela-

tively independent of ,, provided (sP<v < 1. In the noise roundec ,

however, any noise generated by the loss resistor will tend to degrade the

resolution of the device. Thus, we are interested in computing the character-

istics for device parameters such that the noise currents cenerated by the

loss resistance are small compared to the noise currents generated by the

junction shunt resistance.

An indication of the relative importance of the noise currents generated

in the device is obtained by taking the limit Io = 0. In this limit, the

shunted junctions are replaced by the shunt resistances (see Figure 17).

The device now consists of ordinary linear circuit elements with uncor-

related white voltage noise sources in series with the resistances R and

Rs . The voltage noise source Vs in series with Rs generated a current Is

through the shorting capacitance Cs . This noise source affects the device
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in two ways. First, noise components near the Josephson frequency 1.,j will

contribute to the noise rounding of the I-V characteristics. In addition,

the noise will be mixed down by the non-linear interaction in the junctions

and appear as a contribution to the low frequency voltage and current noise.

In addition, the component of Is near the tank circuit resonance, "t, can

link noise flux into the device through the inductances L and Ls. Since

the I-V characteristics and device noise spectral densities are a function

of the quasistatic applied flux ' the device characteristics at frequencies'a'

(" <" W t can be approximated by a weighted average of the characteristics

over the variance in the flux produced by the noise in the loss resistor

Rs. If the flux resolution is a sharp function of the applied flux, the

average resolution may be reduced considerably.

As an example, consider a double loop SQUID with 2 = 1, !- Ls/L ...1.

Let the resonance frequency of the tank circuit :o << " Jo 2-10R/'0  The

noise current Is  V s/ZT where

ZT Rs [1 + 2p(,Q 2,t )2 ] + jRs [ Q(4 + ,,2LL T/R 2)(./ t ) - Q (,t/J] (31)

and

(4 + ,,2L 2 /R2 (32)

Case A: r, T ,tLs 1' 2R. In dimensionless units, pQ >' 2. This

condition is equivalent to 0Lt/No 5 1. At frequencies t , w jo, y

R /(2L T, and ZT Rs (I + 2/f)) + JRsQ/k L. The fraction of the current noise

from R flowing around the SQUID loop is Sjs 7 4kBTRs/JZT 2 - 4k2T/R s

[(i + 2/ )2 + Q2/M 2]. By comparison, the current noise from the shunt re-

sistances flowing in the SQUID loop is SJN " 4kBT(2R)/R 2 [(2 + r)2 + (71./,jo

Qoot/.) ]. Thus the noise from the loss resistor can be neglected if

(2/p)[(2 + p)2 + [n(U/Ajo ) - Q (t/ ) ]2 (note PQ/L " 1).
Now Qf(",t/:) Q) ((,0t/(,Uo) 2 fL(t/jo) 2 . Thus, we need fL (('t/"'Jo)

S<< 4, p << 1. If p is small enough to satisfy both of these conditions,

the effects of the noise from Rs on the junctions can be neglected. At
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frequencies near the resonant frequency, t , y R2 /t L2 " ]/Q2 2, and

ZT - Rs (1 + 2/) + JRsQ. For 1) << 1, S J 4kBT/RsQ2 . The noise

flux spectral density is S s  
4 kBTL 2/RsQ over a bandwidth Af

,2 2 3
The variance 24 /o 2 (P/2fl)((t/.'Jo)(1/oQ ) << 1. Thus the noise flux

through the SQUID loop can be neglected. The noise current through the
2coupling loop SKs " S J (2R/,otLS) produces a noise flux of S,# =

(Ls/L) (2R/,tL) 2 S. . The variance A12 /,2 (1'/2 1)( ,jo/.,t)LsSKs- s s osd
0/Q 3 (/167)(,o ) 4 21/, 3 ). Since I > land tL,/jo - 1,

this condition also places an upper limit on p. Note that the amount

of variance in flux at (,t which can be tolerated without serious loss

of resolution depends on the detailed dependence of the energy resolu-

tion on applied flux.

Case B: iLT -, Ls -,' 2R. In dimensionless units ,Q << 2 and

L(t/, <<1 . Near the resonance frequency, 0.25 and ZT - Rs
(1 + Q /2 1) + jRsQ 3o,3/4 -L  The flux noise generated through the

2 2 2 2 22
coupling loop is Sc LS Svs/IZ TI 4kBTR s Ls/R s(1+..Q ) . Since

h -" 1, the averaging over the characteristics produced by Vs can be

large unless AQ2 :.> 1. Since pQ << 2, this places a constraint on both

p and Q, 1/Q2  < p "< 2/Q and Q 1.

In conclusion, the effect of the noise source Vs on the device

characteristics can be ignored for a wide range of device parameters.

For a double loop SQUID with resonant frequency , <- ("Jo and coupling

loop inductance Ls  L, the requirement is typically R << R.

We assume that the double loop SQUID parameters are chosen such

that the noise in Vs can be ignored. In this case, the device character-

istics are computed as follows. Equations 25-29 are integrated

stepwise in time on a computer. The noise sources in

the shunt resistors, Vn2 and Vn2' are approximated as follows. The Johnson

noise terms are considered to consist of a chain of pulses of equal dura-

tion A and random amplitude vk. The amplitudes {vkl should be chosen

such that the voltaqe noise power spectral density is white, with value

S n(f) 4F for I 27TkBT/lolo (in dimensioned units, SN(F) 4 kBTR).

22
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To facilitate the computation, the noise source is artificially smoothed

by taking the Fourier transform of the voltage amplitudes v k = a exp [inki,

where nk is a pseudoraridoin nunber uniformly distributed in the range

(0, 2u). Thus the spectral density Sn (f) = 2i' at all values of f for

each individual run. The total nimber of pulses in a run, N, and the

pulse duration, AO, are chosen such that the minimum frequency comporent

fmi n 1/NAO << wt$ where *)t is the tank circuit resonant frequency. In addi-

tioun, the maximum freq uenLy comuponent. mu,;L sati fy f I/2"j is where

is the FundamenLal fr'equUncy of the JO,'1111,on oscillatio:L . riTCe' we

are interested in computing the characteristics for the case ,t : s these

conditions imply that N must be a 1aroe number. Typical values or'.

fmin ' :/20, .'L ,y/10, and N ,- 2048.

The differential equations, Eqs. :1-15, are then integrated step-

wise in time usinq a fourth-order, Adams Moulton Predictor-corrector

method. The instantaneous voltage v(O) and circulating currenits, j(':)

and k (0) are computed at each step interval. Noise rounded i-v character-

istics are calculated by computing the average voltage <v> over typically

40 sets of 2048 intervals. The initial values for the integration are

carefully chosen so that no transient response is apparent in the zvtra(,

voltage. Noise power spectral densities Sv , S i, Sk , SVj and Svk are

determined from the average of the products of he Fast Fourier

Transform of the appropriate variables for- a single run. We estimate

the average voltage to be accurate to about I% and the noise power spectral

densities to be accurate to about 15%
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E. NOISE ROUNDED CHARACTERISTICS FOR THE DOUBLE LOOP SQUID 2
In this section we calculate noise rounded characteristics for two

particular devices. First, we consider a double loop SQUID with ( = 1.

(-,L = 1 and .o < "'Jo* A device which is similar to this structure is

presently under construction by Ho Jung Paik and co-workers. The device

has been fabricated in a toroidal geometry with point contacts as the

Josephson junctions.2 4 In this case, the coupling properties are enhanced

by the properties of the toroidal geometry, rather than by an increase

in the coupling loop 8L" Next, we consider a double loop SQUID with

3 = 1, L = 10. In this device the coupling loop inductance has been

increased by an order of magnitude. Significant deviation from the con-

ventional dc SQUID behavior are expected in this case.

1. Double Loop SQUID with , = i L = 1

The device parameters are chosen such that the resonant frequency
wo << wo' and the resistance ratio p << I. We take i-Is = 2l.oR2Cs/ao 100

and p = Rs/R = 0.01. Calculations are performed for a moderately noise

rounded device, r = 0.01. The resonant circuit Q = (1/r)(L/ps) =18,

and the ratio (,o t/WJo) = 0.056. Note that nQ - 0.2 and the device is

near the case B limit. In particular, 1/Q2  0.003 < r - 2/Q 0.1. The

ratio (w t/ /,Jo) and the resonant circuit Q are chosen to facilitate the

numerical calculation. Note that the calculation has been performed for

a relatively low value of Q. In general, a transient will be generated

in the circuit at the beginning of the numerical simulation. The size

of the transient is determined by the initial values of the phases and

circulating currents. The transient decay time is determined by the

Q of the tank circuit. In the case t J Q -' 1, the integration

must be carried out for a large number of Josephson periods before useful

data is generated. To avoid this problem, we have performed the calcula-

tion for a relatively low value of Q. We expect the results to be rela-

tively independent of Q, provided Q - 1, 1 and t < ' 1Jo .
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A family of characteristics for a double loop SQUID with the para-

meters listed above is plotted in Figure 18. For comparison, we also

plot noise rounded characteristics for a conventional dc SQUID with the

same total loop inductance = + rL = 2. In principle, the input

signal can be coupled into the entire superconducting loop. Thus the

input inductance of the device is given by .T, rather than by tL" As

a result, the energy resolution of the double loop SQUID should be com-

pared to the resolution of a conventional dc SQUID with screening factor

iT .

The double loop I-V characteristics are plotted in Figure 18a. The

noise free characteristic labled 1 = 0 is hysteretic, with critical cur-

rent ic = 1.75. Solutions in the negative resistance region of the character-

istic could not be generated numerically. Note that the noise rounded

characteristic labled P 0.01 lies below the noise free curve. In the

conventional dc SQUID, the opposite behavior is observed. Also note

that the double loop I-V characteristic is not well approximated by the

noise rounded dc SQUID characteristic for 'T =2.

The forward transfer function, 1 <v-/,pa, is plotted as a function

of bias current for a = 0.275 in Figure 18b. At bias currents i 2.0,

the double loop transfer function for I' = 0.0 is identical to the noise

free value. The noise free transfer function becomes infinite as the

characteristic approaches the negative resistance region (i . 1.7). The

noise rounded characteristic is well behaved in this region. The noise

rounded double loop transfer function is not well approximated by the

conventional noise rounded SQUID characteristic for T = 2. The low

frequency voltage and current noise spectral densities are plotted in

Figure 18(c)-(g). Curves are plotted for a double loop SQUID with

= 0.25 and a : 0.3, and for the conventional dc SQUID at a = 0.25.
The low frequency voltage noise spectral density So peaks up near the

v
critical current ic , 1.75. At this bias current, the double loop value

is more than twice the conventional dc SQUID value for i = 2. At bias

currents i c, the voltage noise spectral densities approach the

25

1.



spectral density of the parallel shunt resistances, S 21'. The low

frequency current noise spectral densities Sk and o 

18 (d)-(e) also peak near ic. However, at this bias current, the con-

ventional T = 2 SQUID and double loop spectral densities are nearly

equal. Since the conventional SQUID current noise tends to decrease

for increasing screening factor (see Appendix I), the double loop current

noise is actually depressed below the conventional value for SQUID 3T = 1.

At bias currents i "- ic , the current noise spectral densities approach

the value for the series combination of the shunt resistances S j, Sk , 21'.

The voltage and current noise spectral densities are strongly correlated

near i c (Fig. 15 (f)-(g)). At bias currents i -> ic, the noise sources

are essentially uncorrelated. oo (S1r ?v.?a2
The dimensionless low frequency flux noise c-, = (S /2F)/(<v *1'a)%

is plotted as a function of bias current in Fig. 18(h). From Table 1, the

dimensioned low frequency flux noise S 0 0 (2kBTR)I(IoR/ o)2

,°(2kBT/I'R)'. This is the equivalent flux noise at the input which

would produce the voltage noise observed at the device output. Note

that the minimum dimensionless flux noise for the double loop SQUID is

almost identical to the minilmium for the conventional dc SQUID with the

same total loop inductance. Furthermore, since the dimensioned flux

noise is a function only of the junction parameters 10, R and T, and

the dimensionless factor T, the dimensioned flux noise is also the same

in both cases. Thus, although the two devices has dissimilar I-V character-

istics, forward transfer functions and voltage spectral densities, the

effective input flux noises are the sanie. Also note that in the conventional

SQUID, the minimum flux resolution, the maximum voltage noise spectral

density and the maximum forward transfer function all occur at approximately

the same values of bias current, I % 1.75 10. For the double loop SQUID,

however, the minimnm flux noise occurs at bias current i - 1.9-2.0. This

is the value at which the noise rounded average voltage began to decrease

below the noise free values (i.e., the hysteresis in the I-V curvP began

to affect the device perfonmance). Thus, in operatino this device, it

is important to choose that value of bias current which optimizes the
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flux resolution (i.e., I = 1.9 I) and not the value which optimizes
0

the forward transfer function (i.e., I = 1.7 I ).

The magnetic field resolution of the double loop SQUID is proportional

to the energy factor SE. If the input signal is coupled to the entire

superconducting loop inductance LI, the energy factor is SE = S /2LT.

As we have seen, the flux noise S for a double loop SQUID with ,= 1,

i L = 1 is nearly identical to that of a conventional dc SQUID with the

same total loop inductance. Thus the energy factor and input inductance

of the two devices are almost the same. As a result, the magnetic field

resolution of the two devices used directly as sensors will be similar.

The main different is that the double loop SQUID structure can be easily

realized in a toroidal geometry. Thus if the device is coupled through

a mutual inductance to a coupling coil in series with a pick-up loop,

the superior coupling properties of the toroidal geometry may be exploited

to improve the magnetic field resolution.
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2. Double Loop SQUID with = , L 10

Results for the double loop SQUID with SQUID loop = and coupling

loop BL = 10 are plotted in Fig. 19 (a)-(h). Calculations are perfonied

for p = 0.1 and rs = 10. For these values, the resonant circuit Q = 18

and the ratio (wt/,,jO) = 0.056 as in the previous case. The total super-

conductinq loop inductance rT = 11. The critical current in the noise free

case is ic = 1.93 at ,)a = 0.25. As a result, the noise free double loop
characteristic plotted in Fiq. 9 (a) shows substantial hysteresis. Cal-

culations are performed for a relatively low value of the noise figure,

F = 0.001, to illustrate the effects of this hysteresis on the noise rounded

characteristics.

The noise rounded I-V characteristic is plotted in Fig. 19 (a). The

characteristic is almost identical to the noise free double loop characteristic

for i > 1.9. Below this value, the noise rounded characteristic switches

rapidly to the zero voltage state. At this value of bias currrnt, the double

loop noise free characteristic was generated from the conventional dc SQUID

characteristic for F = 1, and effective flux e - 0.4. The critical current

of a conventional SQUID with F.= 1, = 0.4, is ic = 1.26. Thus the double

loop noise free behavior in the region i -- 1.9 is similar to a conventional

SQUID biased well above its critical current. The noise rounding of the

I-V characteristics of a conventional dc SQUID is negligible for K = 0.001

in this region.

The similarity between the double loop characteristics for a 0.25,

i ,11.9 and the conventional dc SQUID characteristics for 1k = , 0.4

is also apparent in the plots of the double loop forward transfer function,

4<v/;I a , and voltage noise spectral density S0v/21 (Fig. 19 (b)-(c)). The

transfer function for r = 0.001 is nearly identical to the noise free value

for i . 1.9 as expected for a device biased well above its critical current.

The voltage spectral density also rapidly approaches the value for a Lonven-

tional device biased well above the critical current, So - 2i', at bias cur-v
rents i 1,, 1.9. For comparison, the voltage noise spectral density of a

conventional dc SQUID with , = 11 is S0/2F - 70. This discrepancy between
v

I.
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j the behavior of the double loop SQUID with = 11 and the conventional SQUID

with the same loop inductance, r = 11, is even more striking than in Section

j III.E.I. Below i = 1.9, the voltage noise increased dramatically as the
o -2SQUID switches to the zero voltage state, then falls to S /2T 10

The low frequency double loop SQUID circulating current noise spectral~02
densities, S /2F and Sk/2;' are similar (Fig.19 (d)-(e)). Both values are3 kdepressed below the value for the isolated shunt resistances, S = 21', at

1.9 < i < 2.1. As the SQUID switches to the zero voltage state, the current

noises increase slightly. However, the increase is significantly less than

that observed for the voltage noise, because the device is switching between

states of similar circulating current. The low frequency noise in the current
j and k are moderately correlated with the voltage noise (Fig. 19 (f)-(g)).

The double loop SQUID flux noise spectral density, = (S/2F)/(Lv /':,a)2

is plotted as a function of bias current for a = 0.275 in Fig. 19 (h). Above'#a "
i = 1.9, the flux noise is well approximated by the conventional dc SQUID

value for a SQUID with , = 1 = 0.4. The flux noise for this device reaches' a
a minimum near ic = 1.26. However, the double loop flux noise increases

rapidly at i < 1.9 due to the hysteresis in the I-V characteristic. As a

result, the minimun double loop flux resolution, min 90, is similar to theW .min
minimum value for a conventional dc SQUID with F = 11, a = 0.25, 100.

Thus, although the device characteristics are similar to a conventional SQUID

with = = a 0.4 for i 1.9, the minimum flux resolution is limited

to a value determined by the total loop inductance i 11.

29

- - ~ ~ .



IV. ANALYSIS OF CONVENTIONAL DC SQUID MAGNETOMETER SYSTEMS

In this section a model is developed for conventional dc SQUID magnet-

ometer systems. Two examples are given. First, the dc SQUID is coupled

inductively to a superconducting input circuit containing a pick-up coil

and an input coil in series. Next, the effect of including a resistance in

series with the input inductance is investigated. This calculation is a

aeneralization of the model for the dc SQUID magnetometer described by

Clarke, Tesche and Giffard (CTG).5

A. DC SQUID with Superconducting Input Circuit

A conventional dc SQUID coupled inductively to a superconducting input

circuit is shown in Fig. 20 (a). The external quasistatic flux a is applied

to a pick-up inductance L in series with an input inductance L.. The mutual
p 2

inductance between the input inductance and the SQUID loop is M = c 2LLi.
The effects of stray capacitance within the input circuit and between the

input circuit and the SQUID loop are not included in this model.

Flux is quantized in the input circuit. As a result, the circulating

current, J, in the SQUID loop generates a superconducting screening current,

H, in the input circuit satisfying

(Li + L p) H + MJ + a = 0. (33)

Quantization of the fluxoid in Lhe SQUID loop implies

D = LJ + MH (34)

where D = (,D2 - 2) Combining Eqn. 33 and 34,

D L J + ( e' (35)
where

L = L(0 - x2r) (36)
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':e = ir(L/Li) 2  . (37)

and

r = Li/(L i  + L p). (38)

Eqn. 35 is the analog of the fluxoid quantization condition for an isolated

dc SQUID. The equations of motion for the phase drops 1 and 62 are the usual
junction relations, Eqn. 26 and 27. The voltage across the SQUID output satisfies

Eqn. 25. As a result, the equations for the superconducting dc SQUID magneto-
meter are identical to those of an isolated dc SQUID with loop inductance Le

and applied flux qe"

The superconducting dc SQUID magnetometer may be modeled as a conventional

dc SQUID with input inductance L The device forward transfer function

( /¢'a) = (V/,,e)( ) / ',a), where ()V/I4e) is evaluated for a dc SQUID with

loop inductance Le biased at applied flux :,e* Similarly, the voltage noise

spectral density is Sv, and the current noise spectral density through the

inductance Lp is SH = M
2S J/(Li + L P), where Sv and S are evaluated for loop

inductance Le and applied flux *;e" The correlation factor for the equivalent

SQUID, C = (S S - S2 j)/S 2 is identical to the correlation factor for the
p VJ vi vi

isolated SQUID with inductance Lp and applied flux e
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B. DC SQUID with Lossy Input Circuit
A magnetometer system consisting of a dc SQUID coupled inductively to

an input circuit containing a resistive element is shown in Fig.20(b). A
normal resistance Ri is in series with the pick-up coil inductance L and

coupling coil inductance Li. The effects of stray capacitance within the input circt,
and between the input circuit and the SQUID are not included in the analysis.
The introduction of loss into the input citcuit destroys the quantization of
flux within that loop. As a result, the behavior of the lossy magnetometer
differs significantly from the behvaior of magnetometers with superconducting

input circuits.

The equations of motion for the system are as follows. The equations
describing the development of the junction phase drops (Eqn. 26-27) and the
expression for the voltage across the SQUID (Eqn. 25) are identical to the
isolated SQUID equations. The equation describing fluxoid quantization in
the SQUID loop is similar to the superconducting magnetometer relationship,

D = LJ + MH + B 39)

Note that we have introduced a bias flux B into the SQUID loop. In the
isolated SQUID operated in a flux locked loop, the bias flux usually consists
of both dc and ac components. The analog of Eqn. 33 is given by the voltage
drop around the input circuit,

(Li+L p ) dH/dt + MdJ/dt + RiH+ d,%a/dt + VNI = 0 (40)

where VNI is a random voltaqe qenerated by the Johnson noise in the resistor
Ri. Eliminating the input circuit current H between Eqn. 39 and Eqn. 40

yields

d(D-LeJ) (D-LJ + "+ dB M (d'Ia + V

d-t (Li+L P)dt NI' (41
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where i = (Li + L p)/R i and the screened inductance is Le (Eqn. 36). Thus

the equations determining the output voltage V as a function of the applied

flux a are Eqn. 26, Eqn. 27 and Eqn. 41.

The basic equations for the lossy magnetometer are independent of the

dc value of the externally applied flux "a As a result, the system cannot

be described by an equivalent device with forward transfer function .V/,:

Instead, we shall compute the response of the system to a time dependent

applied flux Ma(t).

As an example of the technique to be used, consider the following case.

Let the input circuit parameters and coupling efficiency be such that the

screened loop inductance Le L (A2 -< 1). Consider the noise free case,

VNI = 0, with bias flux d:B/dt = 0. Eqn. 41 reduces to

d (D-LJ)= - (D-Lj + F(t) + (42

where F(t) - M(d,: a/dt)/(i Lp ). This expression can be integrated for a

sinqle Fourier component of F(t) of the form F sin nt
n n

D - JL = C exp (-t/i) + An sin (. nt - 0 n ) + >B (43

where

An r(1 +, ) Fn(44

and

n  =tan- I ( T  .  (45)

The constant C is determined by the initial conditions. Note that a sudden

channe in the dc bias flux 1,B introduces a transient with C = %"',B. A sudden

change in the amplitude of the ac applied flux at time to introduces a

I0
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transient with C : AAn si nt- ,).

Eqn. 43 is the analog of the fluxoid quantization expression for the

isolated dc SQUID given by Eqn. 28. The form of the two equations are simi-

lar. The lossy input circuit has the effect of introducing a transient re-

sponse time into the quantization condition. A sudden change, ,B', in the

dc bias flux through the SQUID loop introduces a transient ' : exp (-t/:).

In addition, an ac flux, :a, applied to the pick-up coil is equivalent to

an ac flux through the isolated SQUID loop with an amplitude and phase shift

determined by the input circuit parameters, signal frequency ,, and response

time i.

The well known solutions for the isolated dc SQUID may now be exploited

to determine the effective ac forward transfer function and the flux resolution

of the lossy magnetometer system. Suppose that the applied flux is-oscillating

sinusoidally at frequency, .-< j. We use a quasistatic approximation

to determine the amplitude of the output voltage, Vo , at the signal frequency

in terms of the amplitude of the applied flux ao and the isolated SQUID

forward transfer function, V/;a,

"M('V/ :a) VoVo  Ri (i,2 2) (46)

R~ (1+2' L2 )

At frequencies ,.<< 1/T, the output signal is reduced. The resolution is

determined by comparing the flux noise to the effective signal flux in the

isolated SQUID. The mean squared flux noise in bandwidth B is AN = S B,

where SI is evaluated at the SQUID bias flux CB (small signal limit). The

mean squared signal flux ' s through the isolated SQUID is related to the

mean squared applied flux Al a via

x2Li L ,,2 2

~s A . (47)
(Li+L p ) (1+ 2) a

The minimum observable applied flux with 1:1 signal-to-noise ratio (A~s = AN)

is optimized for input circuit parameters LoPL Lp. In that case

(,212) 4L

A,+a =+ _ 2 4L S B. (48)
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Note that the flux resolution deteriorates at frequencies 17. like
2 2

I/. .I
For comparison, the winimum mean square signal flux derived from the CTG

2
model for an input coil in the limit R. = O, , . 1 is

4LS ,B
A:, p (49)a 2L

The optimal input inductance in this limit is L opt = L . Thus the CTG model
1 p

adequately describes the behavior of the lossy magnetometer in the weak

coupling limit at signal frequencies i 1/t.

Equation 48 was derived in the weak coupling limit for the case VNI = 0.

This approximation is valid provided that the noise rounding of the magneto-

meter system characteristics are dominated by the Johnson noise sources

associated with the shunt resistances in the SQUID rather than by the Johnson

noise in the input circuit resistance. We estimate the relative importance

of the two noise sources as follows. The input noise appears in Eqn. 41 as

a random forcing function F = - MVNI /(L.i + L p). Since Eqn. 41is linear, F

may be decomposed into a Fourier series and the components integrated

following the method used for the applied flux. The spectral density of the

resultant flux noise in the integrated equation is

M2S

S'=M S V (50)S11 Ri (I+'o 2 1 2 )5O

where S VI is the voltage power spectral density of the Johnson noise generated

by the input resistance. For comparison, the independent Johnson noise

sources associated with the junction shunts may be transformed into an
26equivalent bias current noise source and an independent flux noise source.

The spectral density of the intrinsic flux noise source is

L2SNI (51)

S, s 2R2

where SNI is the voltage power spectral density of the Johnson noise in a

shunt of resistance R. We limit the discussion to system parameters such
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that -L 1/i. In this case, the shunt flux noise dominates the input

equivalent flux noise at frequencies (,,j in the optimized system, if

SVI << (2/ 2)(L p/L)(.L/R)2 SNI (52)

In the thermal limit, this constraint is equivalent to the condition

RiTi/L p << RT/L, where the input and shunt temperatures are Ti and T, and

W]L/R _= 1. In this limit, the SQUID characteristics determined by the total

noise spectral density near the Josephson frequency are independent of VNI,

and the input Johnson noise source may be approximated as a low frequency

(quasi-static) noise source.
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V. ANALYSIS OF DOUBLE LOOP MAGNETOMETER RESOLUTION

In this section we compute the magnetic field resolution of double

loop magnetometer systems. The double loop SQUID may be used directly as

a magnetometer, or coupled to an input circuit. In this first case, the

flux resolution of the device in the limit < , <,, is approximately equal

to that of a conventional SQUID with the same total loop inductance. The

double loop configuration is useful in those cases where a shortinq capacitance

across the SQUID loop is unavoidable. An example is a thin film gradiometer

in the form of a figure eight with both junctions located in one of the

loops. In the second case, the magnetometer resolution depends on both

the SQUID and input circuit parameters. As an example, we discuss the reso-

lution of a double loop SQUID coupled inductively to a superconducting and

normal input circuit in detail.

A. Double Loop SQUID with Superconducting Input Circuit

The maqnetic field resolution of the double loop SQUID can be enhanced

by coupling the device to a superconducting input circuit (Fig. 21 (a)).

The circulating currents in the SQUID oscillatinq at the Josephson frequency

and its harmonics generate flux in the input circuit. Screening currents

in the input circuit act back on the SQUID, altering the behavior of the

device. As a result, the noise spectral densities and forward transfer

function of the device are a function of theinput circuit parameters.

It is useful to model the double loop SQUID plus input circuit as a

single superconducting magnetometer with forward transfer function and noise

spectral densities referred to the pick-up coil inductance, L (See Fig.
p

21 (a)). The equivalent magnetometer can then be used to replace a conventional

dc SQUID in magnetometer and linear amplifier applications (see Ref. 25).

The pick-up coil inductance Lp corresponds to the conventional SQUID loop

inductance L. The forward transfer function is Iv/W;, where a is the
a' a2

external flux applied to the pick-up coil. The flux noise S, v(V/ ,2
v a

and the noise current S through L correspond to the conventional flux
H p

noise and circulating current noise through the SQUID loop inductance L.
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The equations describing the double loop SQUID plus input circuit for

the superconducting input circuit (Fig. 21(a)) are as follows. The total flux

applied to the input circuit is the external quasistatic flux ta plus the

induced flux, MK, generated by the double loop SQUID, where M2 = a2 LL i.

For convenience, we shall assume that the nutual inductance between L. and

L is nealigible. Since flux is quantized in the input circuit, the screening

current H satisfies

H(Li + Lp ) + KM + 'a = n 0  (53)

In addition, the fluxoid quantization condition (Eqn. 23) in the SQUID becomes

D = LJ + LsK + MH (54)

Thus, Eqn. 23 is replaced by

D = LJ + Le K - e (55)

where

r = Li/(L i + L p), (56)

e = or (Ls/L i )  a (57)

and

Le = L ( 0 2r) (58)

The equations describing the development of the phase drops 1 and '2 (Eqn. 20-

22) are unchanqed. Eqn. 24 becomes

d2K dk k = dJ +J ds

Le d + R d- + R d- +C- + dV5  (59)
edt t
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Thus, the basic equations for the double loop SQUID plus input circuit, Eqns.

20-22, are identical to the original equations with effective coupling loop

inductance e = Ls (1 - 12r) and applied flux '. .The forward transfer function which relates the change in output Voltage

AV to the change in externally applied flux A. is )V/' : = (V/ ', )( /4' )
0 a a e e a

and the voltage noise at the output is SO where V and S are computed for aV' V

double loop coupling inductance Le and applied flux : e' The effective flux

noise through the pick-up coil is S = S:,E Li/ 2r2L For an effective total

inductance (e, 1 I, 'ie % po/4,-I
S'p - 4k BT (L + Ls(I -( 2 r)2 Li/2r2LsR .

The double loop magnetometer plus input coil can now be represented by an

I idealized maqnetometer with input coil inductance Lp and effective flux noise

S~p.2 The flux noise, is iinilnized in the perfect coupling limit, x = 1.

In that case,

SS p - (4kBT/R) [LL i + LLp + L SL p 
2 /LiLs. (60)

The flux noise is minimized for fixed Lp as a function of Li as follows:

L pt Lp (1 + Ls/L) (61)

S opt  (16 kBT/R)(1 + L/L )LLp. (62)

Wear ntrstdinth imt ', . Inta ae opt_ LLs/(L s + 2L) -L.We are interested in the limit Ls 1.L. In that case, Le op=L- ( L
ot=e s s

and Lpt = L p(Ls/L )  The optimal flux noise in this case is limited by the

SQUID loop inductance L and input pick-up coil inductance L The inductance

L is constrained by 6T. 2 p. 1. (Note that the case C, = 1 has been solved

numerically in Section III.D.)

j The current noise power spectral density through the pick-up coil is
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2 2SH = M SKE/(Li + L )2 , where SKE is the current noise power spectral density

for a double loop SQUID with screening loop inductance Le and applied fluxI,2 eK/LK/p
Ie" In the limit Ls " L, 'I = 1, SH  S F/(LS F/L ). The correlation factor

for the conventional SQUID is CF = (SvSJ - S2 2)/S2 Note that the correla-

tion factor for the current H and the output voltage V in the double loop
input circuit combination is identical to the correlation factor for the current

K and V of the equivalent double loop SQUID. Furthenlore, the correlation

factor for the double loop SQUID with 1, = is comparable to the cor-

relation factor of a conventional dc SQUID with i= 2.

I It is instructive to compute the energy factor eeferred to the pick-up

coil, Sep = S E/2Lp. In the limit Ls .. L, SEP - 4kBT(2L)/R. The energy

I factor of a conventional dc SQUID with loop inductance LT is SE 4kBT/R.

This is a reassuring result. The noise temperature TN of a conventional SQUID

linear amplifier with a tuned input circuit operated at frequency is pro-
portional to the energy and correlation factors, T, CFS[/KB. The optimal

source resistance scales with the input SQUID loop inductance L. If we replace

the conventional SQUID in the linear amplifier circuit with the double loop plus
input circuit combination, the energy factor is unchanged for LT 2L. In

addition, the correlation between the output voltage and the current noise

in the pick-up coil is similar tot he correlation between the SQUID output

voltage noise and SQUID loop circulating current noise. As a result, the optimal

noise temperatures of the two devices are similar. This is important because

the noise temperature of a high gain linear amplifier is limited by the uncer-

tainty principle to TN fi.,/kBln . This limit is approached for values of

the device parameters such that roj -> kBT. In this case, the thermal noise

sources in the shunted junctions are dominated by quantum fluctuation effects

in the SQUID. Minimum noise temperatures computed as a function of the con-

ventional dc SQUID parameters are consistent with the uncertainty principle

requirement 5 Since the behavior of the conventional dc SQUID and the optimized

double loop SQUID plus input circuit with LT = 2L are similar, we expect a

detailed analysis would also yield S[ h, C C in anreement with the
Ep FE CFinarentwhth

uncertainty principle limit.. However, the optimal source resistance of the
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double loop amplifier now scales with the pick-up inductance L . This value

is not limited by the uncertainty principle.

The procedure for optimizing the magnetic field resolution is the follow-

ing. The flux noise S tE for the double loop magnetometer can be reduced by

lowering the junction loop inductance L. The coupling inductance is increased

to Ls 1> L to improve the coupling properties of the double loop SQUID. The

inductance Ls is then screened by the superconducting input circuit. The

actual input inductance for the combined system is Lp = (Li/L s)L, where L. is

the largest coil that can be efficiently coupled to the inductance L . The

inductance screening technique is only advantageous in the limit , - 1. For

x 2 $ 1, Ls ". L, the effective inductance L e[L + 2Ls ( - ,t2)]1(2 - ,2).

If the effective inductance is dominated by Ls rather than by L, the effective
flux noise deteriorates like (Ls/(2L). This places a limit on the values of L,

L and Li, and determines the value of Lp. The magnetic field resolution is
1 P,

then a function of the geometry of Lp, and SEP.

One of the properties of the double loop SQUID is that it permits the use

of SQUID neometries with improved coupling properties. For example, a thin
27film planar double loop SQUID has been fabricated by Jaycox and Ketchen. In

addition, a toroidal point contact SQUID similar to a double loop SQUID has

been fabricated by Paik 4. In both cases, the coupling properties of these

devices are superior to the conventional planar and cylindrical dc SQUIDs. As

a result, the double loop SQUID is a more promising device for the investigation

of inductance screening effects. Note, however, that the analysis has ignored

any stray capacitance in the circuit. The effects of such a capacitance must

be negligible even at the effective Josephson frequency.
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B Double Loop SQJID 4ith Lossy Input Circuit

The analysis of the lossy double loop magnetometer follows the

analysis of the lossy dc SQUID system closely. The double loop SQUID

is coupled inductively to the input circuit as shown in Fig. 21(b).

The mutual inductance between the input and SQUID coupling loop is

M 2 = 2 Li Ls" The mutual inductance between the input circuit and

the SQUID loop inductance, L, is taken to be negligible, as is the

effect of any stray capacitance in the circuit. The pick-up coil

inductance is L and the loss is R..p
The voltage drop around the input circuit is
(L. + L) dH + M dK + Ri H + d(D + V = O, (63)

p dt dt 1 dt NI 0 '(3

where the flux Da is applied to the pick-up inductance Lp, H is

the current flowing in the inout coil, and the Johnson noise in the

loss Ri is VNI. Quantization of the fluxoid in the SQUID yields

D = LJ + LsK + MH + 4,B' (64)

where the bias flux to the SQUID loop is 4B" Eliminating the circulating

current H in the input circuit,

d (D-L K- SK- LJ) BT (D - LeK - LJ) =- s+ IL tI-eT i  dt

- M +d V\ (65)
(Li + Lp) \ + NI,)'

where Ti = (Li + L )/Ri as before, and the screened coupling loop

inductance L = L s( - a r) for r = Li(L p + Li)-. The voltage
drop around the coupling loop in the SQUID yields the analog of

Equation 24,
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d2K dK K d2H = dJ J dVs
Ls d + Rs dK + + M d 2 s dt + it + (66)

dt Cs d dt CS

The junction equations, Eqn. 20-21, and the output voltage relationship,

Eqn. 22, are unchanged.

Following the analysis for the conventional lossy magnetometer,

we consider the weak coupling limit (CL2 << 1, Le L ). In this

case Eqn. 65 has the form

d (D - LsK- LJ)

dt (D - K - LJ) = - + F(t), (67)

where the forcing function F(t) is a function of the input and applied

flux, and the input Johnson noise voltage. Integrating Eqn. 67 for a

single Fourier component of F(t) of the form Fn sin n t,

D - L sK - LJ = C exp(-t/ri ) + An sin(w nt - 0 n), (68)

where A T.(I + 2 )-1/2 F (69)n i n 1 n

and 0n = tan -1 (Wn T i). (70)

Combining Eqn. 68 and Eqn. 66 for constant bias flux DBI

M d C 2exp(-t/ ) ' 2 A sin(w t - 0 (71)
ci -. n n n n

1

Eqn. 71 can be used to eliminate the current in the input coil, H,

from Eqn. 66 . For times t - i' the transient response can be

neglected. We express Eqn. 66 in terms of an effective circulating

current Ke9

d2 Ke  dK K dJ d~s
e + R ep + e -R -- + - + _ (72)

S -- S dt C s Ct C dtcit s
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I
where K K - K sin(w - 0n), (73)

e 0 n n
2 2o 2 )2]_

Cs A w(1 - 2 L C) 2 + ( R C 2 (74)Ko=cn s n n s ( n s s

and 0n 
=  + tan-1 [(w R Cs (I - W2 Ls C )-1] (75)

In the low frequency limit, w << i/L Cs w << 1/R C 0' = 0n s ' n ' n n
and K = K 2 C A sin(w t - 0

e n 2 s An in n
The fluxoid quantization condition, Eqn. 68 , can also be

expressed as a function of the effective circulating current Ke  for

times t >> -i

D Ls Ke + LJ + 4e (76)

where the effective flux
= A sin(k nt - On) + Ls K sin(wnt ,n). (77

e n s0 n n

Eqn. 76 and Eqn. 77 now have the same form as the corresponding

equations for the isolated double loop SQUID. As a result, the complete

set of equations for the lossy double loop magnetometer, Eqns. 20, 21,

22, 76 , and 77 , can be solved using the same techniques for the

isolated driven double loop SQUID. For example, consider a lossy

double loop magnetometer system with parameters satisfying

0j Ti >> Qt'i >>i and Rs Cs Qr < < I (see Sec. III B). The effective

flux noise components of De generated by the input resistance at

frequencies wn > fQt will produce noise rounding of the double loop

SQUID characteristics. In this limit, 0 ' = 0n The effective fluxn n L2 Sv/2 weeS
noise spectral density near resonance is S I S /R where I

is the voltage power spectral density of the Johnson noise generated

by the loss R. The input and SQUID parameters must be chosen such
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that the smearing of the characteristics produced by S'I is negligible

(see Sec. III.D). This places an upper limit on the input resistance

R. and temperature T.

The effective flux noise at frequencies wn j is

S 4S,/W 2 The equivalent flux noise aenerated within the SQUID isSP l v I n * 2

SIs L SNI/2R 2 , where SNI is the voltage spectral density of the Johnson

noise generated by the junction shunt (see Sec. IV.B). Thus, the noise

rounding of the device characteristics can be neglected provided

S 8 (o L/R) 2 S 78)VI SNI ,(8

where the factor (2j L/11) 1 for SQUID loop B 1. Note that if

the input noise cannot be neglected, the resultant equations cannot be

well approximated by those of an isolated symmetric double loop SQUID.

We assume that the effects of the input Johnson noise can be

neglected. In that case, for signal frequency (os < t') the applied

flux a through the magnetometer system may be approximated by a

quasistatic effective flux 4>e through an isolated double loop SQUID

(see Sec. IV.B). In this limit, the contribution of the screening

current, K - Ke, to the effective applied flux can be neglected. As

a result, the analysis of the resolution follows the pattern of the

conventional lossy dc SQUID magnetometer (Sect. IV.B). The amplitude

of the output voltage generated by an applied flux Ta = ao sin ,,st

is
V0 = ws M( V/a a) ' ao(9

V = a o sin(wt -6 ,(79)
o~ 2i l 2 . 1) /2

where o = tan (Ws '1), and a ) is the quasistatic foreward

transfer function for the isolated double loop SQUID. The minimum

observable mean-squared flux A a  in bandwidth B for unity signal-

to-noise ratio is
2 2(1 + 4L Si BL

AMa = -2 2 2
(s L i s
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for optimal input inductance L op+ : L In this expression, S, is the

flux noise spectral density of the isolated double loop SQUID.
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VI. SUMMARY

An analysis of double loop SQUID magnetometer systems has been performed.

The device consists of a couIventional dc SQUID with loop inductance in serif-,

with a resonant coupling circuit. A lumped circuit element model for the

device has been developed. The equations of motion for the device in the noise

free case are seen to be closely related to the conventional dc SQUID equations

for devices with coupling loop resonant frequency well below the intrinsic

Josephson frequency. The I-V characteristics are found to be hysteretic, with

critical current determined by the total loop inductance. In addition, possibly

chaotic behavior is observed for devices with resonant frequency on the order

of the Jospehson frequency.

Noise rounded characterisLics were generated by direct numerical simula-

tion. Optimal flux resolution is obtained at bias currents on the order of

the total loop critical current. The device characteristics at that point

are well approximated by conventional dc SQUID characteristics for a device

with loop inductance equal to the double loop SQUID junction loop inductance.

However, the hysteresis in the double loop characteristics limits the minimum

flux resolution to a value which is well approximated by the resolution of a

conventional device with the same total loop inductance.

The main advantage of the double loop SQUID appears to lie in the enhanced

coupling properties which the double loop geometry pennits. With that in mind,

a model for SQUID magnetometer systems which explicitly includes the effects

of the input circuit on the SQUID characteristics was developed. The model

was used to calculate the resolution of superconducting and lossy magnetometer

system. Inductance screening effects obtainable for input circuits coupled

inductively to the SQUID were found to enhance the magnetic field resolution

in the good coupling limit. Deterioration of the flux resolution of lossy

* systems was observed at signal frequencies below the inverse of the input

circuit decay time. The effects of stray capacitance within the input circuit

and between the input circuit and the SQUID were not considered in this effort.

These effects could he substantial if resonant behavior in the input circuit
Sis observed at the couplina loop resonant frequency or at the Josephson frequency.
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IFigure 1. Lumped Circuit Element Model for the DC SQUID.
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