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OPTIMUM QUANTIZATION OF FIR WIENER AND MATCHED FILTERS

Cheng-Tie Chen and Saleex A. Kassam

The Moore School of Electrical Engineering
University of Pennsylvania
Department of Systems Engineering
Philadelphia, Pennsylvania 19104

ABSTRACT

In this paper quantization schemes are con-
sidered for the coefficients of discrete-time fin-
ite~impulse-response filters for estimation and de-
tection. Por filter impulse-response sequences of
length J, we consider the optimum choice of a small-
er number K of coefficient values and their dis-
tribution over the J-sample filter sequence. The
quantized filters are optimized with respect to
estimation or detection performance criteria, and
recursive algorithms are developed for use in find-
ing numerical solutions. Results we give indicate
that in general only a few levels give good per-
formance.

1. INTRODUCTION

The use of matched filters and Wiener filters
is widespread as signal processing elements in many
applications. In many situstions such filtering is
performed on discrete-time data sequences, and the
filter is implemented as the couvolution of a fin-
ite impulse-response sequence with the data sequence.
Wiener filtering is performed when the data repre-
sents a noisy random signal which is to be estima-
ted with minisus mean-square-error (MSE), whereas
matched filtering can be used to maximize the out-
put signal-to-noise ratio (SNR) at specific times
when the input is a noisy version of somes deter-
ministic signal.

Let (xt) represent an observation sequence of
a signal {v_]} and additive zero-mesn noise {"r.}"
Suppose this sequence is to be coavol with a
finite impulse-response sequence (gt}g' of length

J. In estimstion problems the output {y ] may be
required to be an estimate of {v: _} for fowe in-
teger n. Similarly in matched fHEcri.ng. the out-
put values {’(Jﬂ)t) for some fixed repetition in-

terval J+m may be required to have maximum SNR
values. In general, optimization of the filter
impulse-rasponse sequence results in a specific
sequence of J different numerical values. In many
applications, however, we msy be interaested in
using & smaller number K of distinct values in
forming the filter impulse-response sequence of
length J. This may be desirable (a) to allow the
filter to be esasily updated in adaptive systems,
+This research is supponted by the Air Force

%‘ﬁ;zo‘ Scientific Research under Grant AFOSR

(b) as a first step in obtaining sub-optimum but
computationally efficient schemes, or (c) to pro-
vide a degree of robustness of performance under
deviations from assumed signal and noise character-
istics.

We will refer to partitioning of the J impulse
response samples into K groups, with each of which
a distinct level is associated, as quantization of
the impulse-resp q e. In comsidering
optimum quantization it is natural to use as a
criterion of performance the original criterion of
minimizing the MSE or maximizing SNR. In addition
one can also look for a "best-~fit" quantization of
the optimum filter, for example by minimizing mean-
square-deviation between the optimum and quantized
impulse-rasponse saquences. We will consider these
quantization schemes and give numerical performance
results in the rest of this paper. It will be
seen that in many cases system performance with a
low-order quantization can be expected to be quite
close to optimum performance.

In earlier work [1] quantization of the co-
efficients of a matched filter was considered, for
white noise and low input SNR. In {2] quantiza-
tion of the Wiener filter frequency response was
congidered. In another receant paper [3] computa-
tionally efficient "multiplication-free" imple-
mentations of quantized Wiener filters and equal-
izers have been considered.

I, OPTIMUM QUANTIZED FIR WIENER FILTERS

With our previous notation, the output of an

" FIR filter is

Jil

.1 x_.8:-

i t 1=0 t~1"1
* .

Defining hi =8 and 8 " Veotd1’ %1 " Yeeial

48d ¥y " %eetel for 1e1,2,...,J, we have y = b'g =

f (s + n) vhere + means conjugate-transpose and
where the vectors are columm vectors of corres-
ponding components indexed from 1 to J. For Wiener
filtering (vith zero-mean s) let the quantity to be
estimsted at time t be d = l_\d_s_.*vhou h, is some
given J=-vector. For example; h could—ge [1,0,...,
0,0] to estimate v from oo X _greceeX gy For
a given filter h, the MSE e(h) between y_ and d
can be obtaingd as + + t
.(E)-I_\dsbd"-p_nh-zu(hcgd}. (1)
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where S = E{s ;}, R = E{r _r_+) and G = {r g*}. The
filter EO minimizing e(h) is given by
-1
By = ¥ et
For any K-th order quantized filter (with K
groups) define a grouping matrix Q = [QkJ]KxJ such

that ij = 1 if je].k. the k-th of K groups, and q‘j

= 0 otherwise. Each columm of Q has a single non-
zero entry. Let the level associated with the
k-th group be Hk’ k=1,2,...K. Thus hj - Hk if ‘lj

= 1. From this it follows that for such a quan-
tizated filter h = Q H where the level-vector H =

T
(8, By, .. H D

For a K-th order quantized filter the MSE ae-
tween y_ and d is obtained by replacing h with QH
in 1).% For given Q the optimum level-vector B,
is easily obtained to be

+,-1
By = (R ach,, @

and an expression for the resulting MSE can be
found directly from (1).

Next we consider the case where the quantized
filter levels are given. This is useful in prac-
tice when the levels are fixed for simplicity of
implementation. The following theorem gives a
necessary condition on the optimum grouping to
minimize the MSE.

Theorem I. Let the level-vector H of K distinct
levels be given, and let I ., k= 1,2,...,K de-
note the corresponding optghun groups. If p:Iom,
then

Ret* -u™ilem ] ®
el l -
n m k=1 “kggg Pq
ok (3

-2(CL|d)P]) z 0,

for all n ¥ m, where R__ is the pq-th element of R
and (Ch. ), is the p-th &lement of Ch,. If the eq-

uality-in (3) holds for a lpecific—g, P can be re-
moved from I__ and assigned to Ion without chang-

ing the MSE.

The proof can be found in [4]. When R is
diagonal, the first term in the bracket in (3)
vanishes, and (3) is essentially a necessary and
sufficient condition [within the ambiguity caused
by the equality in (3)]. From the above, optimum
quantized filter levels and optimum groups which
jointly minimize the MSE must satisfy (2) and (3)
simultaneously. Note that (2) and (3) provide
only necessary conditions for the optimum quantized
Wiener filter.

The results in Theorem I can be simplified if
the quantities involved are real. This is given
by the following theorea.

+ (Hn + Hm)Rpp

Theorem 1I. Assume that all quantities are real,
and assume an indexing for the given filter levels
such that H.<li.’_1. a=1,2,...,K-1, without loss of

generality. Let I__ be the corresponding m-th
optimum group. If°’c1 on’ then

by s (P sb “)

where b = (R +
] n
bxnm)’ and «
£(p) = {(chy), - kzlnk qzpnm)/nw.
qel
om

Hmﬂ)/Z for m-l.Z,...,K-l(bo - -,

(5)

If the lower(upper) equality in (4) holds, p can be
removed from I°m and assigned to Io(n-l) (Io(n&l))

without increasing the MSE.

The proof is given in [4]. Now it is obvious
that for the case of real quantities, the optimum
quantized levels H (indexed in increasing
order) and the correg%onding optimum groups 1
must satisfy simultaneously (2) and (4). Baséd on
these necessary conditions, a recursive algorithm
can be developed to find particular solutions for
Ho " and Ioi'

Algorithm I.

1) Initialize: Q:L = KxJ null matrix.
Input: Initial guess of grouping matrix, Q.

2) Find H from (2). Re-index to get elements
of _I;l_o n rank order. Interchange rows of Q
likewise.

3) 1fQe= Ql, stop. Current H and Q then repre-
sent candidate for optimumquantization. Other-
wvise, set Q- = Q and continue.

4) Compute b vector and f(p), p=1,2,...,J of
Theorem 2. Assign p to m-th group if bn-l

< f(p) ¢ bm, and obtain new Q. Go to step 2.

Different initial guesses of Q may lead to
different candidates for the optimum quantization,
since the algorithm is based on the necessary con-
dition for optimality. In practice, from several
initial guesses one can pick the best result ob-
tained. The algorithm generally converges rather
quickly when it does converge, and can be used to
obtain at least very good sub-optimum schemes when
the MSE's of the non-quantized and resulting quan-
tized filters are close. Note that minor modif-
ications in the above algorithm allow it to obtain
candidates for the optimum Q for given H.

The algorithm will fail to converge if the re-
sult at the r-th step is the same as the result at
the s-th step for some r > s+l. If at some step
one or wore groups contain no element-index, i.e.
if one or more rows of Q are all zero, the iter-
ations cannot continue because then QRQ' cannot
be inverted. This can happen because of a bad
choice for the initial guess or if the optimm
(unquantized) filter requires less than K distinct
levels.

I1I1. OPTIMUM QUANTIZED FIR MATCHED FILTERS

With the same notation as that used in Section
11, we find that the SNRfor the output Y, is

o =~ |n's|¥dm O)
where N = E{n g‘r}. The filter h maximizing o(h)
s h = N-lg. For a K-th order quantized filter
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he ou put SNR is obtsined from (6) by replacing
vit Q H. Por given Q the optimum level-vector
easily obtained to be

+,-1
B, = (W)™ qs, )

and sn expression for the resulting SNR can be
found directly from (6).

Unlike the Wiener filtering problem, no ex-
plicit result on the optimum grouping has been
obtained for the case of givem quantized filter
levels. However, a necessary condition similar to
that in the previocus section can be found if we con-
sider jointly the optimum quantized filter levels
and the optimum grouping.

éﬂltr L

Tboorc- III. Let H , i=1,2....,K denote the
optimm quantized t‘ﬁnr evels and the optimum
groups which jointly maximize the output SNR. If
pel then H . and I uthfy (7) and the follow
1ng"Pnequalicd?

T T T [kzlzn qun + Wyt B N -20])
qel ok
20 (8)

for all n ¥ m. If the quantities involved are

real, we can reduce (8) (by assuming noi Ho(iﬂ)
wvithout loss of generslity) into
b1 S f(p) < L 9

where b. = (l + i (-‘_1))/2 for ==1,2,...,Kk=1

(bon-. b‘-.)'m

K
£(p) = {-p - kzlnok uN}/n”. (10)
qdok

The proof is given in [4]. It is interesting
to note the similarities between (8) and (3), or
(9) and (4). Hence, for the case of real quan-
tities, an algoritha similar to Algorithm I can
be developed to find specific candidates for the
optimum quantized mstched filcer.

IV. DBEST-FIT QUANTIZATION OF OPTIMUM FILTERS

One approsch to finding a reasonable quantiza-
tion of s J-component optimum filter h,into a K-
valued filter is by seeking that K-th order filter
which ainimizes some measure of "distance" between
and its quantized version. In particular, con-
er the integrated-squared-error (ISE) msasure

K
2
o= la, - n_}% ayv
o h§1 quk B " Poq
Por given grouping, i.e.

aasy to show that the
levels ‘ok satisfying

, kw1, 2,...,K, 1t 1is
ISE is obtained for

7 n oa’ R a2)
qclt qel,

Thus H . is the average of the optimum lsvels for
the k-t?n group. For given level-vector H we have
«ae following:

Theorem IV. Let I i=1,2,...,K, denote the
optism groups minlmizing e for given quantized
filter level-vector H. If PeI__, then

* * 2 2
Re{(H -8 )h”} < 1/2 (Inn[ - lu_l ) @13)

for all n ¥ ». In additiom, if (13) is true with
strict inequality for all n ¥ m and some p, then
pel . 1f, for some p, (13) is true for all n ¢ m
but fhe equality in (20) holds for some spacific
nej, then p can belong to either I or I More-
over, if the quantities involved af? real ind
n1<uzc...<llx. then (13) reduces to

lsh sb- (14)

where b " (H + H )/2 for a=1,2,...,K-1 (b

- bl( @),
The results in Theorem IV are obtained from
the property that pclm if and only if the summand

Inm hoplz in (11) is the smallest among all
2
luk - hop] , k=1,2,...K. The proof is omitted.

From the above, the best-fit qunntizod filter
levels H . and the best-fit groups I 1 which joint-
1y mintafie the ISE must satisfy (12%1and (14)
simultaneously for the case of real quantities.
These two equations provide only necessary con-
ditions. An algorithm similar to Algorithm I can
be developed to find particular candidates for the
best-fit quantized filter.

Before we proceed to give numerical examples,
we note that the best-fit quantization of optimum
filters is not, in genmeral, the same as the optimum
quantization discussed in Sections II and III.
Clearly, the best-fit quantized filter will have
somevhat higher MSE in Wiener filtering, and some-
what lower SNR in watched filtering.

V. NUMERICAL EXAMPLES

The two examples in this section illustrate the
use of the results we have obtained.

Example 1 (Wiener Filter)

In this cn-p].c we consider s 15-..-;;1. esti-
wation problem with h, = [1,0,0,...,0])T. The sig-
ual end noise are uncirrelated so that ReS+N and
C=S, where the ij-th elements of the signal and
noise covariance matrices S and N sre 8.0 exp(-0.3-
|1 = 3]) and 6.0 exp(=0.8)1 - j]), respsctively.
'l'ho optimm Wiener futor eoctficifnt vector 1{

= [0.497, 0.729x101, 0.434x10"1, 0.259x10"
0 155:10'1 0. 919:10'2 0.568:10‘2 0 326x10™ 2
0.195x1072, 0. 116:10‘2, 0.691x1073, 0.413x10"3,
0.247x10"3, 0.149x1073, 0.137x10~3]T, giving an MSE
of 3.251.

Tor second-order quantization (K=2) differeat
initial guesses resulted in basically two types of
quantiszation schemes with good MSE parformance. The
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best MSE of 32366 was obtained with filter levels of
(1) 0.942x10"° and (2) 0.553, distributed in the
obvious way over the 15-sample impulse response
sequence as {2 111 ... 1& Many of the runs of
Algorithm I with different initjal sses gave a
quantizer with levels (1) 0.362x107° and (2) 0.304,
distributed as {2 2111 ... 1}, wicth an MSE of
3.705. For K=3 basically very similar rasults were
obtained, with improvements in MSE performsance which
are not major because of the good results for K=2.

For this example one conclusion from the above
is that using only the current sample with a weight
of 0.5 one can axpect good results. In fact, the
resulting MSE is 3.5. However, the results above
also indicate that good performance say be obtained
by using only levels of 0.3 for the first two sam-
plas (current and previous sample), with zero
weighting for the others. The resulting MSE is
3.72. The possibility of such a scheme is not
obvious without the algorithm. This type of scheme
may be preferable if the data is subject to
occassional random higher-variance contamination,
because the averaging over two samples will then
provide a better estimate. In general the use of
Algorithm I allows generation of a set of good
quantizer designs from which a specific useful or
easily implemented approximation may be derived.
For simple implementation the modification of
Algorithm I may be used to determine optimal group-
ing once a good set of levels is determined.

For this example with K=2 the best-fit quantizer,
as given by the necessary conditions, turned -out to
have levels of (1) 0.129x10~1 and(2) 0.497 for all
the different initial guesses that were tried. The
distribution over the 15 samples was the obvious one,
and the resulting MSE was 3.407. While this vas
very close to one of two the previous results, note
that the second quantizer would not have emerged
from the best-fit criterion.

Example 2 (Matched Filter)

Again we use J=15. The deterministic signal
vector 8 is formed from uniformly spsced samples of
an amplitude-taperad sinusoidal waveform. Specif-
ically, we take 8 = 2.5 cos[0.2n(i-1))-cos([0.025n
]i-1|]. The i{j-ch element of the input noise co-
varisnce matrix is assumed to be 0.5 exp(-0.8]{1-3]).
For this case the optimum matched filter coefficient
vector is h = [3.995, 2.399, 0.874, -0.956, -2.347,
~2.761, -2.085, -0.6591, 0.892, 1.938, 2.114, 1.454,
oiszi. =0.693, -1.846]", giving the meximum SNR of
42.61.

For third-order quantization (K=3) different
initial guesses for Q in the recursive algorithm
again gave several differant results which were
very good in SNR performance. In all cases con-
vergence took place in less than 7 iteratioms.
However, basicslly two distinct types of quantized
filters emerge from the different initial guesses.
Of cthe twenty different trials made, the best SNR
obtained for Ke3 was 40.11, obtained with levels
(1) =1.791, (2) 1.178, and (3) 3.003, distributed
over the 15-sasple impulse-response as {3 32111
112232211}, Many initial guesses gave
optimum levels of (1) -1.777, (2) 0.960, end (3)
2.699, distributed as {3 321111123322
1 1) with an SWR of 39.72. Another basically sim~

ilar type of quantizer (with levels close to -2.0,
1.0 and 3.0) gave an SNR of 39.96.

Another group of initial guesses gave, for
k=3, the levels (1) -2.187, (2) -0.172, and (3)
2.293, distributed as {3 331111223332
2 1}, with an SNR of 39.54. Again, several other
guesses gave this type of result (with levels
close to -2.0, O and 2.0) with SNR's very close to
39.54. One interesting indication from this is
that the use of levels -2, 0, 2 distributed in this
way should give good results, and would require
only one bit signed coefficients. Indeed, the SNR
for this scheme turns out to be 39.46. Thus one
use for the theoretical results is for providing
s set of good quantization schemes on vwhich a
choice of a simple scheme may be based.

The candidates for best-fit minimum ISE
quantizers wvere also obtained for this example.
Interestingly, vhile the specific numerical values
are different, it turms out that the resulting
quantizers also fall into one of the same two
basic types. The best quantizer by this criterion,
from the initial guesses tried, gives levels of (1)
«1.621, (2) 0.891 and (3) 2.611, distributed as
for the similar quantizer based on maximizing SNR,
and gives an SNR of 39.69. Thus we may conclude
that the best-fit quantizer gives very good results
for such examples. This implies that it should be
reasonable to find optimum grouping for given
levels using the minimum ISE criterjion, since no
such analytical result has been found for maxi-
sizing SNR.
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