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OPTIVM QUANTIZATION OF FIR WIENER AND MATCHED FILTERS

Cheng-Tie Chen and Salem A. Kassam

The oors School of Electrical Engineering
University of Pennsylvania

Departmnt of System Engineering
Philadelphia, Pennsylvania 19104

ABSTRACT (b) as a first step in obtaining sub-optimum but
coputationally efficient schemes, or (c) to pro-

In this paper quantization schemes are con- vide a degree of robustness of performuce under
sidered for the coefficients of discrete-time fin- deviations from assumed signal and noise character-
ite-impulse-response filters for estimation and de- stics.
tection. For filter impulse-response sequences of We will refer to partitioning of the J impulse-
length J, we consider the optimum choice of a small- response samples into K groups, with each of which
er number K of coefficient values and their dis-

tribtio ove th J-mplefiler equece.The a distinct level is associated, as quantization of
tributizn over the o-sample filter sequence. The the impulse-response sequence. In considering
quantized filters are opiomrzed with respect to optimum quantization it is natural to use as a
estimation or detection performance criteria, and criterion of performance the original criterion of
recursive algorithms are developed for use in find- minimizing the MSE or maximizing SNR. In addition
ing numerical solutions. Results we give indicate one can also look for a "best-fit" quantization of
that in general only a few levels give good per- the optimum filter, for example by minimizing mean-
formance. square-deviation between the optimum and quantized

I. INTRODUCTION impulse-response sequences. We will consider these
quantization sches and give numerical performance

The use of mtched filters and Wisr filters results n the rest of this paper. It will be
The se f mtchd flter an Winerfilers seen that in may cases system performance with a

is widespread as signal processing alements in uny low-otdet qImticatin can be expected to be quite

applications. In many situations such filtering is lose toao atio ance

perforned on discrete-tim data sequences, and the close to optimm performance.

filter is implemented as the convolution of a fin- In earlier work [I1 quantization of the co-
ite impulse-response sequence with the data sequence. efficients of a matched filter was considered, for
Wiener filtering is performed when the data repre- white noise and low input SNR. In [2] quantiza-
sents a noisy random signal which is to be estima- tion of the Wiener filter frequency response was
ted with minimum mean-square-error(MSE), whereas considered. In another recent paper [31 computa-
matched filtering can be used to maximize the out- tionally efficient "multiplication-free" imple-
put signal-to-noise ratio (SNR) at specific times mentations of quantized Wiener filters and equal-
when the input is a noisy version of some deter- izers have been considered.
ministic signal.

Let (x ) represent an observation sequence of 11. OPT IMM QUANTIZED FIR IEER FILTERS

a signal (vt} and additive toro-mean noise {w ).
Suppose thil sequence is to be covolve With our previous notation, the output of an

finite impulse-response sequenc t
"

f w th FIR filter is J-1

J. In estimation problem the output (y ) my be Yt =t0 xt-g~.
required to be an estimate of* v. ) for ome in- i-0
tege n. Similarly in matched fd!ering, the out- D
put values {y(j+E)t) for some fixed repetition In- I -i-l C i+l' n wi+ 1

terval J4m may be required to have mxium SUR and ri x ..I+l for 1-l,2,...,J, we have yt --hrs
values. In general, optimization of the filter ht (s + a) where 1 me conjugate-trspose and
Impulse-response sequence results in a specific where c o e conjugvetrso e cre

sequees of different numerical values. In mny oiwhere the mctors are c olm vectors of ories-

applications, however, we may be Interested In ponding compo onto idexed from 1 to J. For Wiener

using a saller number K of distinct values in filtering (with zero-mean 9) +let the quantity to be

forming the filter impulse-respons sequence of eastimated at time t be d - h s, where h is some

lengthe .This my be desirable ) to allow the given J-vector. For example, h couldle [1,0...,
o0,0] to estiate v from xt , xt  ' For

filter to be easily updated in adaptive system, t t t-l t-J+l

"Th.A anez* i6 upLO'.d by t e U4t Foac a given filter h, the MSE o(h) between yt and d

066,ice oi S iti6ia Reaukl une G~ AFOSR can be obtain ?l as + tG~h -h . +h Ith - 2 RehC52022 ~)-S~+ ~ - Re{h .%), (1.)
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where S - E{s a }, R - E{r r
t) and C - {r at). The where b. - (Bm + Ha+,)/2 for m-l,2,... ,K-l(b0 -

filter ho minimizing e(h) is given by b K _), andbRChK K ) a

- Rf(p) hk I Rq)/R (5)
For any K-th order quantized filter (with X Cdp - Pq pp

groups) define a grouping matrix Q - [QkJ KJ such

that qkj - 1 if Jtlk, the k-rh of K groups, ad If the lower(upper) equality in (4) holds, p can be
= 0 otherwise. Each column of Q has a single non- removed from I and assigned to I (I )
zero entry. Let the level associated with the om o01-1 o(m+l)
k-th group be B., k-l,2 .... K. Thus h - B.k if Oj without increasing the MSE.

= 1. From this it fgllows that for such a quan- The proof is given in [4]. Now it is obvious
tizated filter h = QiH where the level-vector H that for the case of real quantities, the optimum

quantized levels H (indexed in increasing
[B . . ]. order) and the corre~onding optimum groups I

must satisfy simultaneously (2) and (4). ieass onFor a K-th order quantized filter the MSE - these necessary conditions, a recursive algorithmween y ad d in obtained by replacing h with q H thsnessrcodtnareusvalrth
t yt F is obte by rel c th H can be developed to find particular solutions for

in (1). For given Q the optium ievel-vector andIo
is easily obtained to be Hai and Ioi.

0 - (QRxQ)-IQQ '  (2) Alsorithm 1.

and an expression for the resulting MSE can be 1) Initialize: Q = KxJ null matrix.
found directly from (1). Input: Initial guess of grouping matrix, Q.

Next we consider the case where the quantized 2) Find H from (2). Re-index to get elements
of H In rank order. Interchange rows of Qfilter levels are given. This is useful in prac- likevise.

tice when the levels are fixed for simplicity of 1
implementation. The following theorem gives a 3) If Q - Q , stop. Current H. and Q then repre-
necessary condition on the optimum grouping to sent candidate for optimuaquantization. Other-minimize the NSE. wise, set Q! - Q and continue.

Theorem I. Let the level-vector H of K distinct 4) Compute b vector and f(p), p-l,2,....J of
levels be given, and let I ,, k - 1,2,...,K de- Theorem 2. Assign p to m-th group if b U 1
note the corresponding opt& grou om, < f(p) I b , and obtain new Q. Go to step 2.

then ~ K I
Re{(H n  -H R[I21 R + (Hn + H)Rpp Different initial guesses of Q may lead to

k-i different candidates for the optimum quantization,
Ok (3) since the algorithm is based on the necessary con-

-2(C)p])a 0 , dition for optimality. In practice, from severalinitial guesses one can pick the best result ob-
for all n # m, where R is the pq-th element of R tained. The algorithm generally converges rather
and (Ch aoi the p-th Element of Ch . If the eq-ad 3 ' tholde fo h pe cific1  p can be re- quickly when it does converge, and can be used toualitynl (3) holdo for a pecifi obtain at least very good sub-optimum schemes when
moved from I and assigned to I without chang- the NSE's of the non-quantized and resulting quan-ing the MSE. °

onteSEsoteno-unie n reutgqa-tized filters are close. Note that minor modif-

The proof can be found in [4). When R is ications in the above algorithm allow it to obtain
diagonal, the first term in the bracket in (3) candidates for the optimm Q for given H.
vanishes, and (3) is essentially a necessary and The algorithm will fail to converge if the re-
sufficient condition [within the ambiguity caused sult at the r-th step is the same as the result at
by the equality In (3)]. From the above, optimum th s-h te fosmer sl Ifasme te
quantized filter levels and optimm groups which
jointly minimize the NSE must satisfy (2) and (3) one or more groups contain no element-Index, i.e.if one or more rows of Q are all zero, the iter-simultaneously. Note that (2) and (3) provide ations cannot continue because then QRQt cannot
only necessary conditions for the optimm quantized be inverted. This can happen because of a bad
Wiener filter.beivre.Ticahapnbcueoabd choice for the initial guess or if the optimum

The results in Theorem I can be simplified if (unquantized) filter requires less than K distinct
the quantities involved are real. This is given levels.
by the following theorem.

III. OPTIMM QUANTIZED FIR MATCHED FILTERS
Theorem 11. Assume that all quantities are real,
and assume an indexing for the given filter levels With the same notation as that used in Section
such that Ha <H.l, m-l,2,...,K-l, without loss of II, we find that the SNRfor the output yt is
generality. Let I be the corresponding a-th o(h) " Ih _12/h_ (6)
optimum group. If-lIo . then Tom where N - En n. The filter h maximizing o )

be. I f(p) I bm (4) is h a N-1 s. For a K-th order quantized filter

I-
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the output SIR is obtained from (6) by replacing Thus R k to the average of the optimum levels for
h with Qt!. For given Q the optimm level-vector the k-% group. for given level-vector R we have
U is easily obtained to be e folloving:

l "o - (QNQt) 0 1 , (7) Theorem IV. Let i ,...,K denote the
and an expression for the resulting SIM can be optimum goups u in a for given quantied

found directly from (6). filter level-vector R. If ;cI o, then

Ualike the Wiener filtering problem, no ex- - *o2
plicit result on the optima grouping has been Re((HU - Hm )hI £ 1/2 (I12 - 1H12) (13)
obtained for the case of gv quantized filter

levels. However, a necessary condition similar to for all n a a. In addition, if (13) is true with
that in the previous section can be found if we con- strict inequality for all n # a and some p, then

ilder Jointly the optimum quantized filter levels pet . If, for some p. (13) is true for all n # m
and the optimum grouping. but He equality in (20) holds for some specific

n-J, then p can belong to either I or I . More-
* Theorem I1. Let H , I , i-l,2,... ,K denote the over, if the quantities Involved all real°ind

optim. quantized fitertievels and the optima 1y,2-...<* . then (13) reduces to
groups which jointly maximize the output SE. If
pel_, than E and %I satisfy (7) and the follow b h i b (14)ngo~nequalt . Ro-b1 ! op a b

(n , K 2here b,- (Hn+ H,l)/2 for ,1,2.....K-1 (bo "
(Hon 0 N pq (He+ Nom)PP-2p ] b

qEIok The results in Theorem IV are obtained from

(8) the property that PcI if and only if the summand
1Ha - h 2 in (11) is the smallest among all

for all n 0m. If the quantities involved are o
real, we can reduce (8) (by assuming 1o ' Hk=1,2,...K. The proof is omitted.oI< o(i+l) o p -,,..L Tepoo soitd
without loss of generality) Into From the above, the best-fit quantized filter

Sf(p) Ilevels H and the best-fit groups II which joint-b) b3  (9 ly minimale the ISE mat satisfy (12? and (14)
be (I + )12 for simultaneously for the case of real quantities.

where on o(m o) These two equations provide only necesary con-

(b ° - -, b1  *), and ditions. An algorithm similar to Algorithm I can

K be developed to find particular candidates for the

f(p) - { - I H k N /N . (10) best-fit quantized filter.
p k-l o q4 pq pp Before we proceed to give numerical examples,

qcI ok e note that the best-fit quantization of optimum
filters is not, in general, the same as the optimun

The proof is given In [41. it is Interesting quantization discussed in Sections It and III.
to note the similrities between (8) and (3), or Clarly, the best-fit quantized filter will have
(9) and (4). HeBnce, for the case of real quan- somewhat higher 1SE in Wiener filtering, and some-
tities, an algorithm similar to Algorithm I can what lover SNR in matched filtering.
be developed to find specific candidates for the
optimum quantized matched filter. V. NMRICAL EXAMPLES

The two examples in this section Illustrate the
IV. BEST-FIT QUANTIZATION OF OPYnM FILTERS use of the results we have obtained.

One approach to finding a reasonable quantiza- Examale 1 (Wiener Filter)
tie of a J-componenmt optimm filter hointo a K- In this exarmple vs consider a 15-sample esti-
valued filter is by seeking that K-th order filter metion problem with h - [1,0,0,... ,O]T. The sig-
which 4nmizes some measure of "distance" between al and noise are uacrrelted so that 1-S+N and

and its quantized version. In perticular, con- C-S, where the ij-th elements of the signal and
eor the integrated-oquared-orror (IS!) measure noise covarlance matrices S and N are 8.0 exp(-0.3-

I h 2 i - al) snd 6.0 emp(-0.811 - ii), respectively.
I - (11) The optima Wiener filter coeffici nt vector IF

1l qel. h - 10.497, 0.729x10 1 , O.434x10', 0.259x10- 1 ,
0.1Slxl0-l, 0.919210-2, 0.548x10-2, 0.326x10"2,

For given grouping, I.e. L, k-l,2,...,K, it is 0.195210-2, 0.116x10"2 , 0.691xlo" , 0.413x10" 3 ,
eas to show that the miGa m 1S is obtained for 0.247xl0" 3 , 0.149210- 3 , 0.137xl0-3]T, giving an SE
levels Eok satisfying of 3.251.

For second-order quantization (R-2) different
- h / ! 1. (12) initial guesses resulted In besically two types of
qcI h quantization schemes with good 35E performance. The
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best MSE of 3 364 was obtained with filter levels of ilar type of quantizer (with levels close to -2.0,
(1) 0.942xlO- and (2) 0.553, distributed In the 1.0 and 3.0) gave an SOR of 39.96.
obvious way over the 15-sample Impulse response
sequence as {2 1 1 1 ... 1). Many of the runs of Another group of initial guesses gave, for

Algporithm I with different initial noesses gave a K-3, the levels (1) -2.187, (2) -0.172, and (3)

quantizer with levels (1) 0.362x10" and (2) 0.304, 2.293, distributed as (3 3 3 1 1 1 1 2 2 3 3 3 2

distributed as (2 2 1 1 1 ... 1), with an MSE of 2 1), with an SNR of 39.54. Again, several other
3.705. For 1-3 bscally very similar results vere guesses gave this type of result (with levels

obtained, with improvements in MSE performsnce which close to -2.0, 0 and 2.0) with SNR's very close to

are not major because of the good results for X-2. 39.54. one interesting indication from this is
that the use of levels -2, 0, 2 distributed in this

For this example on. conclusion from the above 'my should Siva good results, and would require
is that using only the current sample with a weight only one bit signed coefficients. Indeed, the SNR
of 0.5 one can expect good results. In fact, the for this scheme turns out to be 39.46. Thus one
resulting SE is 3.5. However, the results above use for the theoretical results is for providing
also indicate that good performance may be obtained a set of good quantization schemes on which a
by using only levels of 0.3 for the first two ass- choice of a simple scheme may be based.
ples (current and previous sample), with zero
weighting for the others. The resulting MS! is The candidates for best-fit minimum ISE

3.72. The possibility of such a scheme is not quantixers were also obtained for this example.

obvious without the algorithm. This type of scheme Interestingly, while the specific numerical values

may be preferable if the data is subject to are different, it turns out that the resulting

occassional random higher-variance contamination, quanti ers also fall into one of the same two
wsll then basic types. The best quantizer by this criterion,

because the averaging over two samples whlluta from the initial guesses tried, gives levels of (1)
provide a better estimate. In general the use of -1.621, (2) 0.891 and (3) 2.611, distributed as
Algorithm I allows generation of a set of good frtesmlrqatzrbsda aiiigSR
quantizer designs from which a specific useful or for the similar quantizer based on maximizing SN!,
easily implemented approximation may bit derived, and gives ar SNi of 39.69. Thus we may conclude

For simple implementation the modification of that the best-fit quantizer gives very good results
for such examples. This implies that it should be

Algorithm I may be used to determine optial group- reasonable to find optimum grouping for given
ing once a good set of levels is determined, levels using the minimum ISE criterion, since no

For this example with K-2 the beat-fit quantizer, such analytical result has been found for maxi-
as given by the necessary conditions, turned-out to mizing SN.
have levels of (1) 0.129x10"1 and(2) 0.497 for all
the different initial guesses that were tried. The
distribution over the 15 samples was the obvious one, 1. S.A. Kassam and T.L. Lis, "Coefficient and
and the resulting 15 was 3.407. While this yas Data Quantiation in Hatched Filters for De-
very close to one of two the previous results, note tection," IEEE Trans. comunication, Vol. COM-
that the second quantizer would not have emerged 26, pp. 124-127, Jnury 1978.
from the best-fit criterion. 2. L.J. Cimini and S.A. Kassam, "Optimum Piece-
Emple 2 (Matched Filter) wise Constant Wiener Filters." J. Opt. Soc. An

Vol. 71, pp. 1162-1171, October 1981.
Again we use J-15. The deterministic signal

vector ! is formed from uniformly spaced samples of 3. T.T. Yan and K. Yao, "A Multiplication-Free
an amplitude-tapered sinusoidal waveform. Specif- Solution for Linear Minimum Man-Square
ically, we take s € 2.5 cos[0.2w(i-l).coo0.02v Estimation and Equaliaation Using the Branch-
li-11]. The ij-th element of the input noise co- and-Bound Principle," IEEE Trans. Information
variac rix is assumedto he 0.5 exp(-0.1l-jl). Theory, Vol. IT-26, pp. 316-326, Hay 1950.
For this gas the optimm matched filter coefficient
vector is h - [3.995, 2.399, 0.874, -0.956, -2.347, 4. C.-T. Ches, "Robust and Quantized Linear
-2.761, -2.085, -0.659 0 892, 1.938, 2.114, 1.454, Filtering for Multiple-Input System," Ph.D.
0.343, -0.693, -1.8461t, iving the maimm SI of dissertation, Dept. of Systems Engineering,
42.61. Moore School of Electrical Engineering. Univ.

of Pmnsylvania, 1983.
For third-order quantization (K3) different ofPnslana_93

initial guesses for Q in the recursive algorithm ce...
again gave several different reaults which were Accession For

very goo In SK performace. In all cases coan- T GRAi
vergence took place In less than 7 iterations.
Hnoever, basically two distinct types of quantized DTIC TAB 0l
filters mrgo from the different initial pUsses. Unannounced El
Of the twenty different tr als made, the best SYI Justif icLAtA.0i
obtained for K13 was 40.11, obtained with levels
(1) -1.791, (2) 1.178, and (3) 3.003, distributed
over the 15-sample impulse-response as (3 3 2 1 1 1 By -
1 1 2 2 3 2 2 1 1). Many initial guesses gave
optim levels of (1) -1.777, (2) 0.960, and (3) Distribution/
2.699, distributed as (3 3 2 1 1 1 1 2 3 3 2 2 Availability Codes
1 1) with am SIM of 39.72. Another basically sia- n-jAvail- and/or

Dist Special


