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ABSTRACT

A combined direct/inverse three-dimensional
transonic wing design method is presented. The method
is built around the ZEBRA II transonic potential flow
solution algorithm to provide a design method that is
particularly suited for use on a vector computer. The
development of a pilot design computer code and a
baseline design/analysis code is described. Results
are presented that verify the accuracy and consistency
of the design method.
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monitor at the David Taylor Naval Ship Research and Development Center, and

Mr. Jerry South, NASA-Langley Research Center, for providing computer time.

INTRODUCTION

In recent years, the increasing importance of transonic flight by both

military and commercial aircraft has prompted a large amount of research to

develop more accurate and reliable computational methods for the analysis

of aircraft configurations in transonic flow. This research was spurred by

the increasing costs of wind tunnel tests and the interference and scale

problems associated with tests conducted at transonic conditions. As a

result of this effort, several computer codes have been developed to calcu-

late the transonic flow about wing and wing-body configurations. A few of

these codes have demonstrated levels of accuracy and reliability that have

gained them acceptance in the aircraft industry as useful analysis tools.

Unfortunately, the development of wing design codes has lagged the

development of analysis codes. The research undertaken in the past few

years to develop more efficient wing design methods has centered on two

different approaches to the design problem--numerical optimization and

- .. I . .. ... .....- . . . . . . T - ' ' " 1I



inverse design. Numerical optimization provides a means of automating the

trial-and-correction design process using analysis methods. In theory,

optimization allows the designer to specify a quantity to be minimized,

such as drag, without prior knowledge of the flow details that will produce

the objective design. However, most (if not all) transonic codes cannot

predict drag accurately enough to use it as a design objective in the opti-

mization process. Therefore, the difference between a specified design

pressure distribution and the computed pressure distribution at a span

station is used as the function to be minimized in the optimization pro-

cess. However, the amount of computer time required for optimization

limits the technique to performing the design at one span station at a

time. In addition, a considerable amount of computer expertise is required

to effectively implement the optimization procedure.

In the inverse approach, the wing geometry is computed by specifying a

desired pressure distribution over a part of the wing and then solving a

mixed Neumann and Dirichlet boundary value problem by finite difference

techniques. Since more than one span station at a time can be designed by

the inverse technique, it would appear to be much simpler to use and cost

less than the numerical optimization procedure.

The present combined direct/inverse transonic wing design program is a

joint effort of the Lockheed-Georgia Company and Texas A&M University

(TAMU) to develop an inverse wing design method that incorporates the

latest advances in computational transonic aerodynamics. The research

program includes three major tasks:

1. Formulation of the Design Method.

2. Development of a Three-Dimensional Inverse Pilot Code.

3. Development of a Baseline Unified Design/Analysis Code.

The formulation of the inverse design scheme and the development of a

pilot code to validate the design method was conducted at Texas AM

University. This pilot code is based on the ZEBRA 1I three-dimensional

transonic potential flow code developed at NASA Langley by South et al. 1 -2

The development of the baseline unified design/analysis code was performed

' _'I<I2



by Lockheed-Georgia Company in two stages. A three-dimensional analysis

code capable of solving the flow about swept, tapered wings without twist

was developed first. This code served as the baseline code for the

development of the unified design/analysis code. The inverse design method

developed at TAMU was then implemented into this analysis code.

FORMUL&TION OF THE DESIGN METHOD

The principal goal of this research program was to develop a design

method that is accurate, fast, and economical to use. To meet this goal,

it was decided that the design method should incorporate the following

features:

1. The inverse scheme would be based on the direct/inverse

approach developed by Carlson at TAMU for a transonic

airfoil design.

2. The potential flow solver would use the conservative

form of the full potential equation.

3. Wing surface boundary conditions would be applied on a

mean plane in a Cartesian grid system to simplify grid

generation and wing shape calculation.

4. A fast, vectorizable solution algorithm such as approxi-

mate factorization or the ZEBRA II algorithm would be

used in the potential flow solver.

In the direct/inverse design method, the leading edge geometry of the

airfoil (usually the forward 10 percent) is spe-ified; the remaining

portion of the airfoil is computed for a specified pressure distribution.

This eliminates the need to specify a boundary condition in the leading

edge stagnation region.

The accuracy of transonic flow solutions for arbitrary swept wings

depends on the form of the governing equation (i.e., full potential or

small disturbance), the finite difference scheme, and the computational

mesh system employed in the solution algorithm. The conservative form of

the full potential equation provides the most accurate solution for highly

swept wings. In addition, solution of the conservative full potential

3
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equation ensures that the condition of zero mass flux across surface

streamlines will be satisfied for inverse design cases. This condition is

critical for the accurate calculation of wing shape.

The selection of a Cartesian computational grid system in lieu of a

body-fitted system such as those used by Jameson3 and Holst4- 6 was based

on results obtained by Purcell and Carlson 7 for two-dimensional transonic

flow. Purcell and Carlson7 showed that sufficient accuracy can be obtained

for full potential equation solutions by applying the full surface boundary

condition on a mean plane in a Cartesian grid system. This plane can be

located on a grid line or situated between two adjacent grid lines. Two

problems are avoided by using the Cartesian grid system and mean plane

boundary conditions for inverse design calculations. First, the computa-

tional grid does not have to be recomputed each time the wing shape is

computed in an inverse design case. Second, intermediate calculation of

wing shape during the potential flow solution is avoided. The new wing

shape is computed only after the potential flow solution has converged to a

desired value.

In order for any inverse scheme to be cost effective, the potential

flow solver must be fast and reliable. In addition, the solution algorithm

should be amenable to vectorization for use on current supercomputers such

as the CYBER 205 and CRAY I. Two existing algorithms meet these require-

ments: the AF2 scheme developed by Holat4- 6 and the ZEBRA II algorithm

developed by South et al. 1-2 After an unsuccessful attempt to implement

the AF2 algorithm using the Cartesian grid system described, the ZEBRA 11

scheme was selected for the potential flow solver. The selection of the

ZEBRA II scheme proved fortuitous because it allowed the use of the pilot

code developed at NASA Langley as a test bed for developing the inverse

design scheme. Since this code also used a Cartesian mesh system, the

inverse schemes developed at TAMU using the ZEBRA II code could be

implemented directly into the baseline analysis/design code being developed

at Lockheed.

4
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DEVELOPMENT OF THE THREE-DIMENSIONAL INVERSE PILOT CODE

The development of the inverse design method occurred in two phases.

In the first phase, a scheme based on the small disturbance approximation

to the surface boundary condition was developed. In the second phase, this

technique was extended to use the full surface boundary condition applied

on a mean plane in the Cartesian grid system. The small disturbance code

was developed first because the NASA ZEBRA II code used the small disturb-

ance approximation of the surface boundary condition. In addition, it was

felt that the schemes developed for the small disturbance boundary condi-

tion provided a logical foundation for building the full potential scheme.

Because of its importance in the development of the inverse design scheme,

the ZEBRA II algorithm is described in detail in Appendix A. A complete

description of the development of the inverse method is given in Reference

8.

SMALL DISTURBANCE DESIGN METHOD

The characteristics of the inverse design method in a Cartesian grid

system are affected by the placement of the Z-O plane on which the surface

boundary conditions are applied. In the Langley ZEBRA II code the Z-O

plane is located between two grid lines. The surface boundary condition is

implemented by replacing the difference approximation for 0. in Eq. (A-3)

of Appendix A on the plane KWNGT-l/2 or KWNGB+l/2 as shown in Figure 1,

with the small disturbance approximation

0z u dx (1)

In this way, the surface boundary conditions can be implemented in the

solution algorithm without using dummy values of potential or costly inter-

polations from the actual body surface. In addition, the complexity of the

computer program is reduced.

In the inverse design method, the Neumann surface boundary condition

is replaced by a Dirichlet condition in which the potential is specified

directly as a function of a desired pressure distribution. In the present

research, procedures were developed for implementing the inverse boundary

5
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conditions that would not destabilize the convergence of the potential flow

solution and would, at the same time, maintain the features of the ZEBRA

algorithm that make it vectorizable. The following scheme was developed

for the Cartesian grid system used in this research.

Referring to Figure 1, the small disturbance approximation of the

pressure coefficient, Cp - -20x, at the mid-cell point X on the mean plane,

Z-O, can be written

2CP) (2)

The objective is to compute the value of 0 at point A as a function of the

pressure specified at point X. This is accomplished by first computing OR

and O by extrapolation from the points above the mean plane. Three point

extrapolation yielded the most accurate results. Therefore, OR can be

written as

OR AOA+B0B+ COC (3)

where for an evenly space grid

(zA Z ZB) (ZA - zc)

(zB - ZA) (z- zC) (4)

C B AB

(zC - zA ) (zC - zB )

Substituting Eq.(3) and a similar one for OL into Eq. (2), and solving for

$A yields

0 A a 0D - (B(O - 0 ) + C(Oc "@ )  Cx (5)
A DA ((B~ ~E ~ C - OF A_ TCRX

When sweeping through the grid in the streamwise direction, the poten-

tial at the points corresponding to Point A at each inverse station in the

cross-plane is determined using the previously described approach. Notice

that this approach uses "old" values at the i cross-plane and "new" values

6



at i-I. The cross-plane is then solved using the standard ZEBRA approach.

Since the ZEBRA scheme solves for AO only, it does not know which points

are inverse and which are direct. At the end of the double pass ZEBRA

loop, all points are updated by A including the points corresponding to

point A. To correct point A an additional calculation is performed to get

back to its boundary value, i.e. OA - (OA + 60 )- A0. This approach is

needed to retain the vectorization feature and associated efficiency of the

ZEBRA scheme. The actual ZEBRA loop remains blind to whether the station

is inverse or direct. The boundary condition alone is changed.

After a converged inverse solution is obtained, the airfoil shape can

be determined by integrating the airfoil slopes obtained from the wing

boundary condition, i.e.

dz . _z (6)
dx U

where z must be obtained from the inverse solution. The first attempts to

compute z at the wing slit used the * values from the inverse solution and

the three point extrapolation formulas. However, this procedure did not

yield accurate slopes and led to erroneous airfoil ordinates.

A second approach was devised that used the finite difference approxi-

mation of the full potential equation to obtain the wing slopes. Expanding

Eq. (A-3) at point A and solving for 0z at R yields

O (Oz) + Az [6( ) +(0( ) (7)R R B -xi=A+ J=A41

The value of wing slope at each inverse station is then obtained by

substituting Eq. (7) for Oz in Eq. (6). Straightforward trapezoidal

integration is then used to obtain the airfoil ordinates at each inverse

station, i.e.,

z~ zl + dz (dxz ]  8

1 n 2 (.dA. + ( )d - dx (8)

.4 7 47



FULL POTENTIAL DESIGN HETHOD

As in the small disturbance method, the full potential design method

uses a specified pressure coefficient to define an inverse boundary

condition. However, the full potential pressure coefficient equation is

used in place of the linearized mall disturbance equation. The full

potential pressure coefficient can be written as

Y

C . 2 1 + (-Y- 1) M2 (I -u +v2  .+ WZ) -1 (9a)
P Ym2  2 2

where M, is the freestream Mach number, Y is the ratio of specific heats, q,

is the magnitude of the freestream velocity vector, and u,v,v are the local

components of velocity given by the expressions

u - x

,v (9b)

q. y

q, 0z

Solving Eq. (9) for *x yields

L 2 1 L+ M 1

(yt I)M 2 2

S+ (1)2 + (.) i

8
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Referring to Figure 1, this expression is applied at the point X to

extract a value for the potential at point A as was done in the small dis-

turbance method. However, values of y and *z must now be calculated. As

in the small disturbance method a three point Lagrangian extrapolation is

used to define values of * on the wing mean plane.

The term 0y is given in the half plane at Point X by the average of y

at points R and L, i.e.,

Oy - H - yG + ON )
y 2~ 2Ay 2ay()

The value of z at point X is computed by averaging Oz at L and R. The

expression for *z in the half plane is given by differentiating the general

three-point Lagrangian extrapolation with respect to Z so that Oz at R is

given by

z AO A + BO B +CO C (12)

where

- -ZB -zC
(zA - ZB) (ZA- zc)

SzA -ZC

B - (13)
(zB - zA) (zB - zC)

-ZA -zB
C ZA ZB

(zC - zA) (zc- zB)

It can be seen, however, that evaluating Oz and Oy with these express-

ions poses several problems when used in Eq. (10). First, Eq. (10) cannot

be evaluated explicitly at each time step since u appears in the

denominator of the right-hand side of the equation. Second, OA appears in

both Oz and Ox expressions. These problems were overcome by updating v/u

and w/u only every ten iterations using the current value of OA" This pro-

cedure is based on the fact that Oy and Oz should be on the same order of

9
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magnitude as the slopes and, therefore, very small relative to Ox. Thus,

the denominator in Eq. (10) should remain on the order of one in the

inverse region.

As in the small disturbance method, the final expression for OA is

given by

- (CP YM)

J Y (- 0M.2 2 AX
A a OD + A  + .X) (w)2 A (14)

BC
A - E A C -F )

where A, B, and C are the Lagrangian coefficients given In Eq. (4). This

boundary condition is implemented in the ZEBRA algorithm in the same manner

as the small disturbance boundary condition. The ZEBRA code was also modi-

fied to use the full surface boundary condition applied on the wing mean

plane for calculations in the direct region.

Calculation of wing slopes in the full potential method is also per-

formed in the same manner as was done in the small disturbance method by

using the residual equation to define the w velocity on the wing mean

plane. However, a modified form of the full surface boundary condition is

used in place of the small disturbance condition. The full potential boun-

dary condition can be tritten as

dz dz

z + x T + (sy) d-z (15)

In the current design method, the spanise slope is set to zero. As

in the small disturbance method, Oz is computed using Eq. 7 after the

scheme has iterated to a desired level of convergence.

10



INVERSE METHOD VERIFICATION

The verification test centered on validating the design consistency

and accuracy of both inverse methods. The design consistency means that a

wing shape generated for a given pressure distribution in the inverse mode

will yield the same pressure distribution when run in a purely analysis

mode. A test of both consistency and accuracy is to take the pressure

distribution for a known wing shape as the target pressure distribution for

an inverse design and then compare the computed shape with the original

wing. Both techniques were used in the present research.

Small Disturbance Method

Both the small disturbance and the full potential design methods were

verified using an untapered NACA 0012 wing with an aspect ratio of 6.96. A

planform view of this wing configuration indicating the span stations used

in the design testing is shown in Figure 2. Tests were made for both

subcritical and supercritical Mach numbers. All the tests were made using

a 72x17x30 grid.

Figures 3 and 4 present results for the small disturbance design

scheme at a single span station at two angles of attack. These figures

compare the computed pressures and target pressures for two subcritical

tests. In Figure 3, the input pressures for the inverse scheme were the

same as those obtained from analysis for a 2 degree angle of attack. As

can be seen, the resulting pressures obtained at the end of the inverse

cycle compare well with the analysis pressures.

Figure 4 presents results for a test at zero angle of attack using a

modified upper surface pressure distribution. The pressure distribution

obtained at the end of the inverse cycle is compared with the target pres-

sure distribution. The pressures in the inverse region compare quite well.

However, the pressures on the lower surface and in the nose region of the

upper surface are slightly changed. These changes are to be expected since

the lift and, therefore, the circulation of the wing has been changed.
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The results obtained for the small disturbance scheme indicated that

the method was convergent and duplicable for a given pressure distribu-

tion. Based on these results, the method was extended to the full poten-

tial scheme. A series of tests were run in which the inverse scheme was

applied at three consecutive span stations.

Subcritical Tests

The first runs with the full potential code were made to test the

accuracy of the code by using the pressure distribution for a known airfoil

shape as the target for the inverse mode, and then comparing the resulting

shape with the original airfoil. Figures 5 to 7 present results at a

single span station for a subcritical test at 2 degrees angle of attack.

Figure 5 demonstrates that the full potential method will accurately

reproduce the desired pressure distribution. The accuracy of the inverse

scheme and the shape calculation is sbown by Figures 6 and 7. As can be

seen, both the NACA 0012 slopes and ordinates are accurately computed.

Figures 8 through 19 present results at all three design stations for

a subcritical test at zero angle of attack for a modified upper surface

pressure distribution. The target pressure distribution was obtained by

modifying the analysis pressures with a french curve. It was not expected

that specifying the target pressure distribution in this arbitrary manner

would produce realistic airfoil shapes. However, the object of these tests

was to determine if the specified pressure distribution could be reproduced

by the inverse scheme.

Figures 8 to 10 present the pressure distribution for all three span

stations. As previous tests, the computed pressures agree well with the

specified pressures in the design region with small changes evident on the

lover surface and the nose region of the upper surface. The airfoil slopes

and ordinates computed for the specified design pressures are given in

Figures 11 through 16. Note that these new airfoils all have "fishtails,"

i.e., the upper and lower surfaces cross, which is physically unrealistic.

However, these results illustrate one of the problems encountered in devel-

oping an inverse scheme. Because the purpose of these tests was to verify
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the inverse approach and not to design a wing, no attempt was made to con-

trol the trailing edge thickness.

Figures 17 through 19 illustrate the consistency of the design scheme.

The pressures generated by analyzing the modified wing shape are compared

with the pressures obtained from the inverse code. These results indicate

that the modified wing shapes will yield the desired pressures when the

wing is analyzed.

Supercritical Tests

The next series of tests were made to verify the inverse scheme for

supercritical flow. Following the same procedures used for subcritical

flow, the code was first tested for accuracy by using a pressure distribu-

tion obtained from analysis of the wing, as the target pressure distribu-

tion for the inverse scheme. Figure 20 to 22 presents results for the

unswept NACA 0012 wing at a 2 degree angle of attack and a Mach number of

0.82. As in the subcritical cases, the pressures are in excellent

agreement.

The next step in the supercritical testing was to modify the Mach 0.82

two-degree angle of attack pressure distribution to eliminate the shock on

the upper surface. This type of design represents a typical application of

an inverse scheme in a wing design. Figures 23 to 25 compare the pressure

distributions obtained by the inverse scheme with the desired pressure

distributions at the three design stations. These results further confirm

that the inverse scheme is successful at supercritical Mach numbers.

Figures 26 through 31 show the corresponding airfoil slopes and shapes

obtained from the inverse code. Note that for this design the trailing

edge thicknesses of the resulting airfoils are physically unrealistic.

However, Figure 32 illustrates that these shapes are consistent with the

specified pressure distribution. The results at the other two design

stations compare equally well.
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Swept Wings

A final series of tests was conducted to verify the inverse method for

swept wings. The supercritical tests were repeated using the basic NACA

0012 wing swept back 15 degrees. The Mach number for the tests was

increased to 0.85. The results presented are for an angle of attack of

zero degrees. Figures 33 to 35 compare the computed and specified

pressured distributions for a test in which the upper surface pressures

were modified to eliminate the shock. The airfoil slopes and shapes

generated by the modified pressure distribution are given in Figures 36

through 38. These figures show that the accuracy of the code is not

affected by wing sweep. Figures 42 to 44 show that the consistency of the

design scheme is retained.

All the test cases described were converged to a residual of 0.0011,

which represents a reduction from the initial residual of about three

orders of magnitude. For most cases, this represents a sufficient level of

convergence. This convergence criteria required an average of about 83

seconds on a Cyber 203 for inverse runs and about 63 seconds for analysis

runs.

DEVELOPMENT OF THE BASELINE UNIFIED DESIGN/ANALYSIS CODE

The baseline unified design/analysis code was developed in two stages.

In the first stage, a three-dimensional transonic flow analysis code was

developed that served as the foundation for the development of the baseline

design/analysis code. In the second stage, the inverse design method

developed at Texas A&M University was implemented.

TRANSONIC POTENTIAL FLOW ANALYSIS

A new analysis code had to be written because the NASA Langley ZEBRA

II code was developed as a pilot code to verify the ZEBRA algorithm and

was, therefore, not suited for calculating flow about arbitrary wing con-

figurations. Additionally, the ZEBRA II code (and consequently, the TAMU

pilot code) was written in explicit vector instructions which prohibits its

14
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use on computers other than the CYBER 203 and 205. The baseline unified

design/analysis code was written in standard FORTRAN to make it transport-

able to other computers. The major difference between the baseline code

and the TAMU code is the use of streamwise shearing transformations to

align the computational mesh with the wing planform.

Grid Generation

Prior to the start of this research, it was felt that the fine inner

mean/coarse outer mesh grid embedding scheme developed by Boppe9 would

provide the optimum mesh system for the design code. However, after work

on the design method began, it was decided that the time required to Imple-

ment the embedded grid system would delay the development of the unified

analysis/design method. Therefore, both analysis and inverse solutions

were obtained using one mesh for the entire computational domain. Initial

tests were made using a 90x30x30 grid. Because the convergence rate for

this grid system was unacceptably slow, grid sequencing was employed to

speed up convergence.

The computational grid for the baseline analysis code was formed by

first computing a stretched cartesian grid system and then shearing the

grid to align it with the leading and trailing edges of the wing. This

procedure has been used with great success in the small-disturbance codes

developed bf Bailey and Ballhauas0 and by Boppe9 . With the sheared grid

system, each spanwise plane of the grid contains an equal number of points

on or adjacent to the wing surface.

To ensure compatibility with the TAMU pilot code, the grid stretching

used in that code was implemented in the Lockheed code. In this mesh

system, the wing surface is covered with an evenly spaced grid system. The

regions in front of the leading edge, behind the trailing edge, and

outboard of the wing tip are stretched exponentially. Geometric stretching

is used above and below the wing mean plane.
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A shearing transformation of the form

X(x.y) - x-xle(y)
c(y)

Y(y) = y (16)

Z(z) - z

(where xle(y) defines the leading edge of the wing and c(y) is the local

chord distribution), transforms the physical grid system (x,y,z) into a

computational grid (X,Y,Z) aligned with the wing. Figure 45 shows the mesh

system generated by this transformation.

In a typical inverse or analysis solution, a sequence of three grids

is used. The solution starts on a coarse grid that has 25 chordwise

points, 30 spanwise points, and 8 points normal to the wing mean plane.

The solution from the coarse grid is interpolated onto a medium grid that

contains 50 chordwise points, 30 spanwise points,and 16 normal points. The

medium grid solution is interpolated onto a fine grid that has 90 chordwise

points, 30 spanwise points, and 30 points normal to the mean plane. Twenty

of the 30 spanwise stations used in each grid were placed on the wing sur-

face. The number of chordwise points covering the local chord at each span

station varied from 10 for the coarse grid to 25 for the medium grid and 50

for the fine grid.

The Full Potential Equation in General Coordinates

Following Rolst4-6 a general coordinate transformation is used to

transform Eq. (A-I) to the computational coordinate system. On trans-

formation, Eq. (A-I) becomes

( ) + (21) + (j ) - 0 (17a)

Jx J y J z

[ - (U + Vy+W) -C](17b)

1 X YZ
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where U, V, and W are the contravariant components of velocity in the com-

putational plane and J is the Jacobian of the transformation. Details of

this transformation are given in References 4 to 6. Eq. (17) has been

nondimensionalized by the cricical speed of sound and the stagnation

density.

For the transformation defined by Eq. (16), we get

U CXX 2 + Xy3 ) Ix + X 0Y

V = 0x + 0

(18)

14- Z

J -Xx

This transformation retains the strong conservation form of the original

equation.

Numerical Solution Algorithm

The finite difference analog of Eq. (17) can be written

PU) + (21) 4 -W (0 -J) i+Ij k + 6Y i i,i+li,k i j k-Oi (19)

where 6xv 6Y and Sz are first order backwards differences. In order to
pz

maintain stability in regions of supersonic flow, the density has been

replaced by the retarded density approximation used by Holst.
4- 6

Pi+,j ,k [(1-v)P]i+11,j,k + \i+,j koi- jk (20a)

where

MN

v MIN (1, MAX (-- , 0)]
M2  (20b)

i,j ,k
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and 5 is the retarded density coefficient; Mc is a cutoff Mach number

whose value is usually 0.94_MCS1.0.

In the current code, Eq. (20) is evaluated only at the midsegment

point i+l/2,j,k. The values at i,J+l/2,k and i,j,k+1/2 are obtained by

averages of the surrounding points. Values on the mean plane are obtained

by two point extrapolation from above and below the mean plane. Averages

of central difference approximations are used to compute the values of y

at i±1/2 and x at J±1/2 in Eq. 18.

It was found that the convergence of the analysis method was improved

by splitting the full potential into separate perturbation and freestream

components.

- G + X q. cos a + Zq. sin a (21)

where a is the angle of attack. Equation (19) is then solved for G.

Boundary Conditions

As in the NASA Langley ZEBRA code, surface boundary conditions are

introduced by replacing W at KWNGB+l/2 and rWNGT-1/2 in Eq. (19) with Eq.

(15). This boundary condition is computed prior to the start of each

iteration using values of 0 from the previous iteration and then held

constant during the ZEBRA sweeps.

For lifting cases, the section circulation r is computed by taking the

difference in the potential at the section trailing edge linearly extrapo-

lated from the points above and below the airfoil. The Kutta condition is

implemented in Eq. (19) by replacing 0KWNGB with oKwNGB-r on the line above

the mean plane and by replacing OWT with IMGT +r on the line below the

wing plane at all points behind the trailing edge of the wing. The circu-

lation is computed prior to the start of each iteration and then slightly

overrelaxed to improve convergence.

18
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Because the outer boundaries are located at finite lengths from the

wing, the expressions of Klunker1t are used to compute the change in the

far-field potential due to lift. The potential on the downstream boundary

is updated by assumming that Gx  0 0. This was implemented by letting GNI

GNI- 1 •

The symmetry condition at the wing root is implemented by setting

V - 0 and by replacing oy in Eq. (18) with

Y= - Xy X (22)

Verification of the Analysis Code

A standard wing used to evaluate the performance of an analysis code

is the ONERA M6 wing described in Reference 12. This wing has a leading

edge sweep angle of 30 degrees, an aspect ratio of 3.8, and a taper ratio

of 0.562. A series of verification tests were conducted at a Mach number

of 0.839 and an angle of attack of 3.0 degrees. Figures 46 to 49 compare

the computed pressure distribution at four span stations on the wing with

experimental data and results from TWING program of Holst. As can be seen,

the results for this test case compare reasonably well with both the exper-

imental data and the TWING results. The discrepancies at the wing tip and

at the lower-surface leading edge indicate the need for finer grid systems

in these regions. The pressure distribution over the entire wing is given

in Figure 50.

In a typical analysis run, the coarse and medium grids are iterated

until the initial residual drops by four orders of magnitude or a maximum

number of iterations, usually 400, is reached. The code is then run for

100 iterations on the fine grid. The current version of the baseline code

takes about 90 seconds of CPU time on a CRAY 1S computer and about 8

minutes of CPU time on the CYBER 203 to run the ONERA M6 test case. This

disparity in run times points out the inefficiency of the automatic vector-

ization feature of the CYBER 203 FORTRAN compiler.
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INVERSE METHOD

The inverse method developed at Texas A&M University was implemented

in the same manner as was done in the ZEBRA II pilot code. However, the

non-dimensional form of the governing equations used in the Lockheed code

leads to a slightly different equation for the pressure coefficient

boundary condition. The derivation of this equation is given in Appendix

B.

A series of tests were initiated to determine the consistency and

accuracy of the inverse method using the ONERA M6 wing as the base geome-

try. First, the pressure distribution for the ONERA M6 wing generated by

analysis for the Mach 0.84 case was used as the target pressure distribu-

tion for the inverse code. The resulting pressure distribution and wing

shapes were then compared with the corresponding data for the base shape.

The inverse method was applied at five consecutive design stations along

the span. Figures 51 to 53 compare the base airfoil sections with the

sections computed by the inverse scheme. The airfoil shapes are recovered

reasonably well. The error in the shape calculation is felt to be due to

neglecting the effects of the spanwise variation in slope in the inverse

scheme for a tapered wing. In addition, the target pressures were

generated using the full potential boundary condition. Techniques to

include the spanwise effects in the inverse scheme will be investigated in

the second phase of this contract.

Next, the inverse scheme was tested using target pressure distribu-

tions designed to weaken the shock at each of the five design stations.

Figures 54 to 56 compare the computed pressure distributions with the

target pressure distributions at three of the design stations. The

computed and the target pressures are in good agreement. Figures 57 to 59

compare the base airfoils with the computed airfoils by the inverse method.

As in the results obtained by the TAMU pilot code, the airfoils produced

are physically unrealistic. Figures 60 to 62 indicate, however, that the

computed wing shape is consistent with the specified pressure distribution.
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In a typical inverse run, the coarse grid is converged for the base

wing geometry. The coarse grid results are interpolated onto the medium

grid and run for 50 iterations before the inverse design is initiated. The

medium grid is then run in the inverse mode until convergence. The medium

grid results are interpolated onto the fine grid which is then run for the

100 iterations in the inverse mode. Wing shapes are computed at the end of

the fine grid iterations. Running the code in the inverse mode requires

only about 100 seconds on the CRAY IS.

CONTROL OF TRAILING EDGE THICKNESS

The results from both the baseline and pilot inverse design codes

indicate the need for a technique to control trailing edge thickness. A

review of existing wing and airfoil inverse design methods revealed two

different procedures for enforcing trailing edge closure that can be used

in the present design method.

In the first approach, the nose region of the starting airfoil or wing

is modified to increase or decrease the leading edge radius. After a few

tries, a nose shape can usually be found that will provide the desired

trailing edge thickness. This approach was used by Carlson13-14 in his

two-dimensional direct/inverse design method. The major drawback of this

approach is that it is a trail and correction procedure that relies heavily

on the expertise of the designer. Shankar15- 16 has suggested that this

procedure can be automated by specifying the nose shape by y - a xn, where0
n and ao are free parameters that are adjusted by a numerical optimization

procedure to satisfy a specified trailing edge thickness constraint.

A second technique to enforce trailing edge closure has been used by

Shankar16 in a small-disturbance design code. In this technique, a

functional relationship between the trailing edge thickness and the

velocity potential at the leading edge is assumed at each spanwise design

station. A perturbation to the leading edge velocity that will drive the

trailing edge thickness to a desired value can then be computed at each

design station.
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At the start of this contract it was felt that perturbing the nose

shape under control of a numerical optimization scheme would prove to be

the most effective approach for enforcing trailing edge closure.

Therefore, the baseline unified design/analysis code was modified to use

the optimization techniques developed by Vanderplaats, Hicks, and Murman
17

to perform the nose shape modifications required to control trailing edge

thickness. However, the time constraints on the first phase, of the

contract prevented the successful implementation of optimization. The best

way to control the trailing thickness will be addressed in the second phase

of the contract.

RESULTS AND DISCUSSION

The results presented in the previous sections of this report

illustrate that the present design method can be used effectively for both

subcritical and supercritical design cases. The supercritical results show

that the method can perform one of the more important functions of a

transonic wing design code-the elimination or weakening of strong shock

waves at supercritical Mach numbers. This can be seen by comparing the

section lift, drag, and moment coefficients shown in Fig. 48 for the 672

span station of the base ONERA wing with the values given in Fig. 62 for

modified wing. The lift coefficient changes from .21 for the base wing to

.020 for the modified wing. The drag coefficient changes from -0.0081 to

-0.001 ana the moment coefficient changes from -0.0960 to -0.0947. The

negative values of drag illustrate the inaccuracy of the pressure drag

calculation that is common to most transonic analysis codes. However, the

values obtained illustrate the effect that weakening the shock has on the

section drag.

CONCLUSIONS

An inverse design method for wings in transonic flow that is particu-

larly suited for use on a vector computer has been developed. The

technique has been verified for accuracy and consistency in both a

developmental pilot code and a baseline unified/design code that will serve

as the basis for future code development.
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Figure 28. Airfoil slopes from modified target pressures,
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APPENDIX A

ZEBRA II ALGORITHM

The ZEBRA II scheme of South et al.1-2 solves the conservative form of

the full potential equation

(Pu) + (PV)y + (w) z =0 (A-1)

where

V =y

w Z I

P = (M2 a
2 ) Y- 

(A-2)

a 2 = + !:-_.(1 - q 2 )
M2 2

q2 u
2 + V2 + w

2

Equation (A-1) is replaced by its finite difference analog on an

evenly spaced grid

6x 00x) k + 6 (00 y) + 6 (Pz ) k 0 (A-3)

where 5X9 5y' and 6 z are first-order backwards differences. For example,

(Q ) - (x)
5 (P ) i* ,ik i- ,jk (A-4)

where i+,j ,k AX

ox0,k 1i+ jk xi,Jk
i *;Ijk AX (A-5)

x 0i,jk -i- 1,jk
i- ,Jk Ax

The density P is replaced by the upwinded artificial compressibility

value 0 to stabilize calculations in regions of supersonic flow. The value
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of P is given by

[U Ax . + v y (A-6)

qq yx

where 3o/3x and 3r/Py are upwind differenced at supersonic points, Ax is

the chordwise grid spacing and Ay is the spanwise grid spacing. The

upwind switching function u is given by

- MAX (0,1 - a) (A-7)q2

In the present ZEBRA II code v/q. and Dp/3y are assumed to be negligible

and u/q., is assumed to be approximately one. Equation (A-6) then becomes

30
- (A-8)

The ZEBRA II algorithm solves Eq. (A-3) using an iterative scheme that

mimics point Successive Overrelation (SOR). For 3-D calculations, the

ZEBRA II algorithm marches in the streamwise (I) direction solving one

spanwise plane at a time. In each plane, points J+K odd are denoted black

and points J+K even are termed white. Each plane is solved by a two-pass

sweep in which new black values are obtained first, followed by the white

points. In this way, convergence is accelerated because calculations at

the white points will use updated quantities at the black points.

By replacing 0 in Eq. (A-3) with

N (A-9)

N+ L N
where € =  - is the correction, is an acceleration parameter, and N

is the iteration number. The solution at each grid point is given by

1 I i,j,k +S (A- 1)
i,J,k B ave i-iJk
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where

I

2 + . --) 2 + _x + (A -lAl22)x

W "tx Wy .y. z

The 8Ai term in Eq. (A-tO) comes from the inclusion of a 0xt term to

add explicit temporal damping to the algorithm; B is the damping coeffic-

ient. It should be noted that the ZEBRA II algorithm possesses some natu-

ral temporal damping since the points in the 1+1 plane are not as updated

as the points in the I-I plane. In addition, the black points in each I

plane are not as current as the white points.

The residual, Ax2Ri,j k in Eq. (A-10) can be written

NN -N N+1 k

Ax2 Ri,jk -i+ ,j,k (.'1,j+I,k - i,j,k) - ,i- ,j,k , - i, Jk) +

i,j+;,,k Oi,j+l,k -i *iJ,k - Pij-1,k 01Qik - i,J-l,kj(A) +

N N V\ /AX12
Pi,j,k+li ijk+t- *1,k - Pi,,k-i Oi,j,k - i,jk-' tizi

(A-12)
V N for J+K odd

v - N+. for J+K even

lI
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APPENDIX B

DERIVATION OF PRESSURE COEFFICIENT BOUNDARY CONDITION

FOR BASELINE UNIFIED DESIGN/ANALYSIS CODE

Normalizing the full potential equation by the critical speed of sound

and the stagnation density leads to a slightly different equation for the

pressure coef ficient than that used in the TAMU pilot code. The coef-

ficient of pressure can be written

2P
C - E- -- 11 (B-1)

where P is the local pressure, PS is the stagnation pressure, and P. is

the free stream pressure. Thus,

- ( +~. M] 1 (B-2)

s

- . ct1 ( 2 +4 *2 +02)] f
PS y+I x y z (B-4)

Now let P8/p,, C1 and

02 o2
(A2+02 +4 02 _ 02 C1 + Y+ A~.. (B-5)

x 3' Z X *2 .2
x x

Substituting into Eq. (B-1) yields

14 [1 X -_..Y 02 (1 + 2 (o26

2 CP +1-C1 y+ x 0x x)Y1 B6
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Solving Eq. (B-6) yields

2 Cp I Y

- [ + (...+ + ( -.) 102 -1 2C 1  C1(B7

2 o2

x x

The procedure outlined in the description of the development of the

three-dimensional inverse pilot code is used to extract & value of 0 as a

function of Cp from Eq. (B-7) for use as a Dirichlet boundary condition in

the inverse design scheme.
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