AD-A129 573  COMBINED DIRECT/INVERSE THREE-DIMENSIONAL TRANSONIC
WING DESIGN(U} LOCKHEED-GEORGIA CO MARIETTA
R A WEED ET AL. MAY 83 LGB3-ER-0060
UNCLASSIFIED DTNSRDC/ASED-CR-03-83 NOO167-81-C-0078 F/G 20/4 NL




COMS §28 W25
o £
L, £ MR
s = =

| | I
L28 e g

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A




DTHSRDC ~ASED-CR-03-83

COMBINED DIRECT/INVERSE THREE-DIEENSIORAL
TRANSONIC WING DESIGN

Richard A. Weed
Lockheed~Georgia Company
Marietta, Georgia 30063

Leland A. Carlson and William K. Anderson
Texas A&M University
College Station, Texas 77843

e 2 i - -

May 1983
Final report for period May 1981 to September 1982
APPROVED FOR PUBLIC RELEASE: PISTRIBUTION UNLIMITED DT ‘ C

ELECTE R
JUN211083 7

fad

Ptmrd for | | ‘ A

DAVID W. TAYLOR NAVAL SHIP RRSRARCH AND DEVELOPMENT CRNTER
Aviation and Surface Effects Dspartment
Bethesds, Maryland 20084




v SECURITY CLASSIFICATION OF THIS PAGE ("hon Daco Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVY ACCESSION NOT 3. RECIPIENT'S CATALOG NUMBER
DINSRDC-ASED-CR-03-83 0-A129523|
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
COMBINED DIRECT/INVERSE THREE-DIMENSIONAL Final Report
TRANSONIC WING DESIGN ey 1281 - _September 1982
LG83-ER-0060
7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)

Richard A. Weed,

Leland A. Carlson,* and William K. Anderson* N°°167'81’¢‘°°78‘P°°°°1

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Lockheed-Georgia Company
86 South Cobb Drive

GA 300613
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
David Taylor Naval Ship R&D Center b May 1983
Aviation and Surface Effects Department ”'"""'i%if"“"
l* NONITORlnG AGENCY NAME & ADDRESS(i! ditferent [rom Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

— —eeee
16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, i{ different from Report)

18. SUPPLEMENTARY NOTES

*
Texas A&M University
College Station, TX 77843

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

Transonic Flow Analysis .
Inverse Wing Design
Computational Aerodynamics
Finite Differences

. ABSTRACT (Continue on reverse side If necessary and identily by block number)

A combined direct/inverse three-dimensional transonic wing design method is
presented. The method is built around the ZEBRA II transonic potential flow
solution algorithm to provide a design method that is particularly suited for
use on a vector computer. The development of a pilot design computer code
and a baseline design/analysis code is described. Results are presented that
verify the accuracy and consistency of the design method. .

DD %% 1473  woimion oF 1 nov 68 1 ossOLETE

SECUMTY CLASSIFICATION OF THIS PAGE (When Date a..o

- ————




TABLE OF CONTENTS
Page
LIST OF FIGURES ¢ ¢ ¢ + o o o o ¢ o s o o s o s o s o 5 o 5 ¢ s v
NOMENCLATURE « & ¢ s o ¢ o + ¢ ¢ o o ¢ 2 s o 5 o s o o 0 8 s o o xi
ABSTRACT ¢ & o o 4 « o o ¢ o s ¢ 4 o o 5 o 0 5 5 o o ¢ ¢ s o o s
ADMINISTRATIVE INFORMATION:. « ¢ o o ¢ o o o ¢ = o s o o o o s o &
INTRODUCTION ¢ ¢ o ¢ o o o o o o o s o s ¢ o ¢ o s o o o s o s o
FORMULATION OF THE DESIGN METHOD. .« o ¢ o o o ¢ ¢ o ¢ ¢ o « o & o
DEVELOPMENT OF THREE-DIMENSIONAL PILOT CODE . . « « & o o & o o+ &
SMALL PERTURBATION METHODe ¢ o« « o o o o s o ¢ o o ¢ » o o o
FULL POTENTIAL DESIGN METHOD . « ¢ & ¢ ¢ o ¢ ¢ & o o o o o o 8
INVERSE METHOD VERIFICATION: « ¢ o « o ¢ s o « o s o o o o » 11
Small Disturbance Method . « o ¢ ¢ o ¢ ¢ ¢ ¢ ¢ o o ¢ « & 11

Subcritical TeStS. « ¢ « ¢ ¢ ¢ o s s o o« o o o o s o o o 12

[V IV I VU R I )

Supercritical TestS: « « « ¢ o ¢ o ¢ o s o o o o o o « 13

SWwept Wingse « « ¢ o ¢ ¢ o o ¢ o o ¢ o 0 ¢ o s s s s e 14

DEVELOPMENT OF THE BASELINE UNIFIED DESIGN/ANALYSIS CODE. . . . . 14 f

TRANSONIC POTENTIAL FLOW ANALYSIS. « « « o o o o o « o « o « 14 ’

Grid Gemeration. . « ¢ ¢« ¢ ¢ ¢ o ¢ ¢ ¢ 6 o ¢ s o e 0 o o 15

The Full Potential Equation In General Coordinates . . . 16

Numerical Solution Algorithm « « . ¢« ¢ ¢ ¢« o ¢ ¢ o o o & 17

Boundary Conditions. « « « ¢ ¢ o ¢ o « 2 o o s o o o & 18

Verification of the Analysis Code. + « + « « ¢« ¢ o « & & 19

INVERSE METHOD ¢ « « ¢ o o o o o o « o ¢ 6 2 o o 2 o s o s o 20

CONTROL OF TRAILING EDGE THICKNESS « o« « + ¢ « o o o o o & & 21

RESULTS AND DISCUSSION. « & o o o o o o s « o o o s o o s s s o & 22

CONCLUSIONS « o« « o o o o o 5 o o s o o s s s o s s o o 6 s o o o 22

FIGURES ¢ o ¢ o ¢ o ¢ o o o o o o o o o s s s 5 o 2 o 0 0 0 o o 23

APPENDIX A - ZEBRA IT ALGORITHM ¢ « ¢ & o« o o o ¢ o o o o ¢ o o & 85

APPENDIX B - DERIVATION OF PRESSURE COEFFICIENT BOUNDARY

CONDITION FOR BASELINE UNIFIED DESIGN/ANALYSIS

CODE ¢ ¢ ¢ o o o o o o o ¢ o o o o« o s o s s o s o & 89

unuNCBs. L] L L] * L L) L] [ ] L L] . . . * L] . L) L] . L] L] ] . . L] L] L] 91
! ini“r“ l -
’ | | v s
| S
| t -
[N o N S o o
< ¢} T.oer - e — =
J(« —t . | - .
SR e . .~
. ~ B ® .
111 j, s
. L ™) )
i « ! ’\\t,
*
¢ 3 ~ P
hd b

.- - e — — e -
2 o -
W . r. AR A




LIST OF FIGURES

Figure Title Page
1 Grid points used in inverse boundary condition calculation 23
2 Design stations used in TAMU pilot code 24
3 Correlation of small perturbation inverse pressures with 25

analysis target pressures

4 Correlation of small perturbation inverse pressures with 26

modified target pressures

5 Correlation of full potential inverse and analysis target 27
pressures, Mach = 0.4, n = 0.3125.

6 Correlation of original airfoil slopes with slopes from 28

inverse using analysis target pressures

7 Correlation of original airfoll ordinates with ordinates 29

from inverse using analysis target pressures

8 Comparison of inverse pressures and modified target pressures, 30
Mach = 0.4, n » 0,1875

9 Comparison of inverse pressures and modified target pressures, 31
Mach = 0.4, n = 0.3125

10 Comparison of inverse pressures and modified target pressures, 32
Mach = 0.4, n = 0.4375

11  Airfoil slopes obtained from modified target pressures 33
Mach = 0.4, n = 0.1875

12 Airfoil ordinates obtained from modified target pressures 34
Mach = 0.4, n = 00,1875

o 4
R WAL S




Figure Title Page

13  Airfoil slopes obtained from modified target pressures
Mach = 001‘, ns 003125 35

14 Airfoil ordinates obtained from modified target pressures
Mach = 0.4, n = 0.3125 36

15 Airfoil slopes obtained from modified target pressures
Mach = 0.4, n = 0.4375 37

16 Airfoil ordinates obtained from modified target pressures
Mach = 0.4, n = 0.4375 38

17 Correlation of inverse pressures and pressures from analysis
of modified wing, Mach = 0.4, n = 0.1875 39

18 Correlation of inverse pressures and pressures from analysis
of modified wing, Mach = 0.4, n = 0.3125 40

19 Correlation of inverse pregssures and pressures from analysis
of modified wing, Mach = 0.4, n = 0.4375 41

20 Correlation of inverse and analysis target pressures,
Mach = 0.82, o« = 2.0, n = 0,1875 42

21  Correlation of inverse and analysis target pressures,
Mach = 0.82, a = 2.0, n = 0,3125 43

22 Correlation of inverse and analysis target pressures,
Mach = 0.82, o = 2.0, n = 0.4375 44

21 Correlation of inverse and modified target pressures,
Mach = 0.82, a = 2.0, n = 0.1875 45

vi

- e e s wn e e - el

C e~ w—— =

T T I a l
T e el s




Figure Title Page

24 Correlation of inverse and modified target pressures,
Mach = 0.82, a = 2.0, n = 0.3123 46

25 Correlstion of inverse and modified target pressures,
Mach = 0.82, a = 2.0, n = 0.4375 47

26 Airfoil slopes from modified target pressures,
Mach = 0082. G = 2-0. ne 0.1375 48

27 Airfoil ordinates from modified target pressures,
chh - 0-82, Q = 200. Ne 0-1875 ‘09

28 Airfoil slopes from modified target pressures,
Mach = 0.82, a = 2.0, n = 0.3123 50

29 Airfoil ordinates from modified target pressures,
Mach = 0.82, a = 2.0, n = 0.3125 51

30 Airfoil slopes from modified target pressures,
Mach = 0.82, a = 2.0, n = 0.4375 52

31 Airfoil ordinates from modified target pressures,
Mach = 0.82, a = 2.0, n = 0.4375 53

32 Comparison of inverse pressures with pressures from
analysis of modified wing, n = 0.1875 54

33 Correlation of modified target pressures and inverse
pressures for a swept wing, Mach = 0.85, a = 2.0, 55
n = 0,1875

34 Correlation of modified target pressures and inverse
pressures for a swept wing, Mach = 0.85, a = 2.0, 56
n = 0.3125

vii




Figure Title

35

36

37

38

39

40

41

42

43

44

45

46

47

Correlation of modified target pressures and inverse
pressures for a swept wing, Mach = 0.85, a = 2.0,

n = 0.4375

Comparison of inverse pressures with pressures from
analysis of modified swept wing, Mach = 0.85, a = 2.0,
n = 0.1875

Comparison of inverse pressures with pressures from
analysis of modified swept wing, Mach = 0.85, a = 2.0,
n = 0.3125

Comparison of inverse pressures with pressures from
analysis of modified swept wing, Mach = 0.85, a = 2.0,
n = 0.4375

Modified swept wing airfoil slopes, n = 0.1875
Modified swept wing airfoil ordinates, n = 0.1875
Modified swept wing airfoil slopes, n = 0.3125
Modified swept wing airfoil ordinates, n = 0.3125
Modified swept wing airfoil slopes, n = 0.4375
Modified swept wing airfoil ordinates, n = 0.4375

Planform view of sheared cartesian grid

Correlation of pressures from analysis of ONERA M6 wing
with experiment and TWING, n = 0.20

Correlation of pressures from analysis of ONERA M6 wing
with experiment and IWING, n = 0.4103

viii

Page

57

58

59

60

61

62

63

64

65

66

67

68

69

e e




Figure Title Page

48 Correlation of pressures from analysis of ONERA M6 wing
with experient and TWING, n = 0.6667 70

49  Correlation of pressures from analysis of ONERA M6 wing
with experiment and TWING, n = 0.9744 71

50 ONERA M6 wing pressure distribution 72

51 Comparison of ONERA M6 ordinates with ordinates from

inverse using analysis target pressures, n = 0.4615 73

52 Comparison of ONERA M6 ordinates with ordinates from

inverse using analysis target pressures, n = 0.5641 74

53 Comparison of ONERA M6 ordinates with ordinates from
inverse using analysis target pressures, n = 0.6667 75

54 Comparison of inverse pressures with modified target

pressures, n = 0,4615 76

55 Comparison of inverse pressures with modified target
pressures, n = 0.5641 77

56 Comparison of inverse pressures with modified target

pressures, n = 0.6667 78

57 Comparison of ONERA M6 airfoil ordinates and ordinates
from inverse using modified target pressures, n = 0.4615 79

58 Comparison of ONERA M6 airfoil ordinates and ordinates
from inverse using modified target pressures, n = 0.5641 80

59 Comparison of ONERA M6 airfoil ordinates and ordinates
from inverse using modified target pressures, n = 0.5667 81

ix




Figure Title Page

60 Correlation of inverse pressures and pressures from
analysis of modified wing, n = 0.4615 82

61 Correlation of inverse pressures and pressures froa
analysis of modified wing, n = 0.5641 83

62 Correlation of inverse pressures and pressures from
analysis of modified wing, n = 0.6667 84




?l? [ ]

o
[2 AN ¢]

LS °

[¢]
B

w A K W00
- -
G
~

U,v,w
u,v,w
U

X,¥,2
X,Y,2

HsV

€ © ©

NOMENCLATURE

Speed of sound

Coefficients used in potential extrapolation
Coefficients used in inverse boundary condition
Chord

Drag coefficient

Lift coefficient

Moment coefficient

Constant in baseline inverse boundary condition
Perturbation potential

Grid indicies

Jacobian

Mach number

Pressure

Velocity magnitude

Residual

Cartesian velocity components

Contravariant velocity components

Freestream velocity

Cartesian coordinates

Computational coordinates

Angle of attack

Temporal damping coefficients

Gas constant

Circulation

Retarded density switch functions

Spanwise distance from root divided by semispan
Density

Velocity potential

Acceleration parameter

xi




ABSTRACT

A combined direct/inverse three-dimensional
transonic wing design method is presented. The method
is built around the ZEBRA II transonic potential flow
soluticn algorithm to provide a design method that is
particularly suited for use on a vector computer. The
development of a pilot design computer code and a
baseline design/analysis code is described. Results
are presented that verify the accuracy and consistency
of the design method.
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NO0157-81-C-0078-P00001. The authors acknowledge Dr. Tsze C. Tai, contract
monitor at the David Taylor Naval Ship Research and Development Center, and
Mr. Jerry South, NASA-Langley Research Center, for providing computer time.

INTRODUCTION

In recent years, the increasing importance of transonic flight by both
military and commercial aircraft has prompted a large amount of research to
develop more accurate and reliable computational methods for the analysis
of aircraft configurations in transonic flow. This research was spurred by
the increasing costs of wind tunnel tests and the interference and scale
problems associated with tests conducted at transonic conditions. As a
result of this effort, several computer codes have been developed to calcu-
late the transonic flow about wing and wing-body configurations. A few of
these codes have demonstrated levels of accuracy and reliability that have

gained them acceptance in the aircraft industry as useful analysis tools.

Unfortunately, the development of wing design codes has lagged the
development of analysis codes. The research undertaken in the past few
years to develop more efficient wing design methods has centered on two

different approaches to the design problem--numerical optimization and
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inverse design. Numerical optimization provides a means of automating the
trial-and-correction design process using analysis methods. In theory,
optimization allows the designer to specify a quantity to be minimized,
such as drag, without prior knowledge of the flow details that will produce
the objective design. However, most (if not all) transonic codes cannot
predict drag accurately enough to use it as a design objective in the opti-
mization process. Therefore, the difference between a specified design
pressure distribution and the computed pressure distribution at a span
station 1s used as the function to be minimized in the optimization pro-
cess. However, the amount of computer time required for optimization
limits the technique to performing the design at one span station at a
time. In addition, a considerable amount of computer expertise is required

to effectively implement the optimization procedure.

In the inverse approach, the wing geometry is computed by specifying a
desired pressure distribution over a part of the wing and then solving a
mixed Neumann and Dirichlet boundary value problem by finite difference
techniques. Since more than one span station at a time can be designed by
the inverse technique, it would appear to be much simpler to use and cost

less than the numerical optimization procedure.

The present combined direct/inverse transonic wing design program is a
Joint effort of the Lockheed-Georgia Company and Texas ASM University
(TAMU) to develop an 1nverse.wing design method that incorporates the
latest advances in computational transonic aerodynamics. The research

program includes three major tasks:

1. Formulation of the Design Method.
2. Development of a Three~Dimensional Inverse Pilot Code.
3. Development of a Baseline Unified Design/Analysis Code.

The formulation of the inverse design scheme and the development of a
pilot code to validate the design method was conducted at Texas A&M
Univeraity. This pilot code is based on the ZEBRA II three~dimensional
transonic potential flow code developed at NASA Langley by South et al.l-2

The development of the baseline unified design/analysis code was performed




by Lockheed-Georgia Company in two stages. A three~dimensional analysis
code capable of solving the flow about swept, tapered wings without twist
was developed first. This code served as the baseline code for the
development of the unified design/analysis code. The inverse design method
developed at TAMU was then implemented into this analysis code.

FORMULATION OF THE DESIGN METHOD

The principal goal of this research program was to develop a design
method that is accurate, fast, and economical to use. To meet this goal,
it was decided that the design method should incorporate the following
features:

1. The inverse scheme would be based on the direct/inverse

approach developed by Carlson at TAMU for a transonic
airfoil design.

2. The potential flow solver would use the conservative

form of the full potential equation.

3. Wing surface boundary conditions would be applied om a

mean plane in a Cartesian grid system to simplify grid
generation and wing shape calculation.

4. A fast, vectorizable solution algorithm such as approxi-

mate factorization or the ZEBRA II algorithm would be
used in the potential flow solver.

In the direct/inverse design method, the leading edge geometry of the
airfoil (usually the forward 10 percent) 1is spe:ified; the remaining
portion of the airfoil is computed for a specified pressure distribution.
This eliminates the need to specify a boundary condition in the leading
edge stagnation region.

The accuracy of transonic flow solutions for arbitrary swept wings
depends on the form of the governing equation (i.e., full potential or
small disturbance), the finite difference scheme, and the computational
mesh system employed in the solution algorithm. The conservative form of
the full potential equation provides the most accurate solution for highly

swept wings. In addition, solution of the conservative full potential




equation ensures that the condition of zero mass flux across surface
streamlines will be satisfied for inverse design cases. This condition is
critical for the accurate calculation of wing shape.

The selection of a Cartesian coamputational grid system in lieu of a
body-fitted system such as those used by Jameson3 and Holst4'6 was based
on results obtained by Purcell and Carlson7 for two-dimensional transonic
flow. Purcell and Carlson7 showed that sufficient accuracy can be obtained
for full potential equation solutions by applying the full surface boundary
condition on a mean plane in a Cartesian grid system. This plane can be
located on a grid line or situated between two adjacent grid lines. Two
problems are avoided by using the Cartesian grid system and mean plane
boundary conditions for inverse design calculations. First, the computa-
tional grid does not have to be recomputed each time the wing shape is
computed in an inverse design case. Second, intermediate calculation of
wing shape during the potential flow solution is avoided. The new wing
shape is computed only after the potential flow solution has converged to a

desired value.

In order for any inverse scheme to be cost effective, the potential
flow solver must be fast and reliable. In addition, the solution algorithm
should be amenable to vectorization for use on current supercomputers such
as the CYBER 205 and CRAY I. Two existing algorithms meet these require-
ments: the AF2 scheme developed by Holst®® and the ZEBRA II algorithm
developed by South et al.l'z After an unsuccessful attempt to implement
the AF2 algorithm using the Cartesian grid system described, the ZEBRA II
scheme was selected for the potential flow solver. The selection of the
ZEBRA II scheme proved fortuitous because it allowed the use of the pilot
code developed at NASA Langley as a test bed for developing the inverse
design scheme. Since this code also used a Cartesian mesh system, the
inverse schemes developed at TAMU using the ZEBRA II code could be
implemented directly into the baseline analysis/design code being developed

at Lockheed.
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DEVELOPMENT OF THE THREE-DIMENSIONAL INVERSE PILOT CODE

The development of the inverse design method occurred in two phases.
In the first phase, a scheme based on the small disturbance approximation
to the gurface boundary condition was developed. In the second phase, this
technique was extended to use the full surface boundary condition applied
on a mean plane in the Cartesian grid system. The small disturbance code
was developed first because the NASA ZEBRA II code used the small disturb~-
ance approximation of the surface boundary condition. In addition, it was
felt that the schemes developed for the small disturbance boundary condi-
tion provided a logical foundation for building the full potential scheme.
Because of its importance in the development of the inverse design scheme,
the ZEBRA II algorithm {3 described in detail in Appendix A. A complete
description of the development of the inverse method is given in Reference
8.

SMALL DISTURBANCE DESIGN METHOD

The characteristics of the inverse design method in a Cartesian grid
system are affected by the placement of the Z=0 plane on which the surface
boundary conditions are applied. In the Langley ZEBRA II code the Z=0 W
plane is located between two grid lines. The surface boundary condition is
implemented by replacing the difference approximation for ¢, in Eq. (A-3)
of Appendix A on the plane KWNGT-1/2 or KWNGB+l1/2 as shown in Figure 1,
with the small disturbance approximation

-y 4z
¢z Vs dx (1)

In this way, the surface boundary conditicns can be implemented in the
solution algorithm without using dummy values of potential or costly inter-
polations from the actual body surface. In addition, the complexity of the
computer program is reduced.

In the inverse design method, the Neumann surface boundary condition
is replaced by a Dirichlet condition in which the potential is specified
directly as a function of a desired pressure distribution. In the present

research, procedures were developed for implementing the inverse boundary

“dniiiiibiiiainelistinladusiopste—"""""" B e




conditions that would not destabilize the convergence of the potential flow
solution and would, at the same time, maintain the features of the ZEBRA
algorithm that make it vectorizable. The following scheme was developed
for the Cartesian grid system used in this research.

Referring to Figure 1, the small disturbance approximation of the

pressure coefficient, Cp = ~2¢,, at the mid-cell point X on the mean plane,
Z=0, can be written

Cp = - (8 - o) (2)

The objective is to compute the value of ¢ at point A as a function of the
pressure specified at point X. This is accomplished by first computing L3y
and ¥, by extrapolation from the points above the mean plane. Three point

extrapolation yielded the most accurate results. Therefore, ¢g can be
written as

o = Ad, + Bép + Co, (3)

where for ar evenly space grid

A=

(4)

C=

(25 = 2) (z¢ =~ 2zg)
Substituting Eq.(3) and a similar one for ¢y into Eq. (2), and solving for
9, ylelds

1
® " % " & (Bloy - o) + Clog - o) + Sy ] (s)

When sweeping through the grid in the streamwise direction, the poten-
tial at the points corresponding to Point A at each inverse station in the
cross—plane is determined using the previously described approach. Notice

that this approach uses "old” values at the i cross-plane and "new” values




at i{~1l. The cross-plane is then solved using the standard ZEBRA approach.
Since the ZEBRA scheme solves for A¢ only, it does not know which points
are inverse and which are direct. At the end of the double pass ZEBRA
loop, all points are updated by A¢ including the points corresponding to
point A. To correct point A an additional calculation is performed to get
back to its boundary value, {i.e. o) = (¢A + 4¢ )= Ad. This approach is
needed to retain the vectorization feature and associated efficiency of the
ZEBRA scheme. The actual ZEBRA loop remains blind to whether the station

is inverse or direct. The boundary condition alone i3 changed.

After a converged inverse solution is obtained, the airfoil shape can
be determined by integrating the airfoil slopes obtained from the wing
boundary condition, i.e.
¢z

dz
dx U (6)
where $, must be obtained from the inverse solution. The first attempts to
compute ¢, at the wing slit used the ¢ values from the inverse solution and
the three point extrapolation formulas. However, this procedure did not

yield accurate slopes and led to erroneous airfoil ordinates.

A second approach was devised that used the finite difference approxi-
mation of the full potential equation to obtain the wing slopes. Expanding
Eq. (A-3) at point A and solving for ¢z at R yields

¢z

. - -
" 5o () + 0z (6, (00 ) + 8y (00y) 1} 7

R
I=aty

1=a+y

The value of wing slope at each inverse station is then obtained by
substituting Eq. (7) for ¢, in Eq. (6). Straightforward trapezoidal
integration 1is then used to obtain the airfoil ordinates at each inverse
station, i.e.,

d

= AJt Z dz
z z, +5 [ + &3] (8
1+1 i 2 dx o) 9% . )
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FULL POTENTIAL DESIGN METHOD

As in the small disturbance method, the full potential design method
uses a specified pressure coefficient to define an inverse boundary
condition. However, the full potential pressure coefficient equation is
used in place of the linearized small disturbance 'equacion. The full

potential pressure coefficient can be written as

1

- 2 2 2 Y-

Cp -2 [1+LY__2_1_1M£ (1-S F v +w, -1) (9a)
2 1

where M, is the freestream Mach number, Y is the ratio of specific heats, q,

is the magnitude of the freestream velocity vector, and u,v,w are the local

components of velocity given by the expressions

u
— +
9. ! ¢x

Y . 9b
% ¢ (9b)

Solving Eq. (9) for ¢, yields

@ -
x - 1 (10)
v 2 w 2
L+ (E) + (:)
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Referring to Figure 1, this expression is applied at the point X to
extract a value for the potential at point A as was done in the small dis-
turbance method. However, values of ¢y and ¢z must now be calculated. As
in the small disturbance method a three point Lagrangian extrapolation is
used to define values of ¢ on the wing mean plane.

The term °y is given in the half plane at Point X by the average of °y
at points R and L, {.e.,

¢, - ¢ ¢, - ¢
H G N M
( 5y + 25y ) (11)

1
¢y 2
The value of ¢, at point X is computed by averaging ¢, at L and R. The

expression for ¢, in the half plane is given by differentiating the general
three-point Lagrangian extrapolation with respect to Z so that ¢, at R is

given by
5, = Ao, + Boy + Co, (12)
where
Z - -zB -zC
(zy - zg) (z, - 2¢)
- “Zx T3¢

(zg = 2,) (zg = 2)

C=
G - %) (3¢ - 2p)

It can be seen, however, that evaluating ¢, and ¢y with these express-
ions poses several problems when used in Eq. (10). First, Eq. (10) cannot
be evaluated explicitly at each time step since u appears in the
denominator of the right-hand side of the equation. Second, ¢$A appears in
both ¢, and ¢, expressions. These problems were overcome by updating v/u
and w/u only every ten iterations using the current value of ¢,. This pro-

cedure is based on the fact that ¢y and ¢; should be on the same order of
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magnitude as rhe slopes and, therefore, very small relative to ¢,. Thus,
the denominator in Eq. (10) should remain on the order of one in the
inverse region.

As i{n the small disturbance method, the final expression for ¢, is
given by

=1 1
: 2 CP YMZ, Y 2
) ) 1+ -1
Ax (v = 1)MS 2 s

X
1+ G e &2 A a8

B - <
-2 (85 = 0 = T (og = o)

where A, B, and C are the Lagrangian coefficients given fan Eq. (4). This

boundary condition is implemented in the ZEBRA algorithm in the same manner
as the small disturbance boundary condition. The ZEBRA code was slso modi-
fied to use the full surface boundary condition applied on the wing mean

plane for calculations in the direct region.

Calculation of wing slopes in the full potential method is also per-
formed in the same manner as was done in the small disturbance method by
using the residual equation to define the w velocity on the wing mean
plane. However, a modified form of the full surface boundary condition is
used in place of the small disturbance condition. The full potential boun-
dary condition can be vwritten as

dz dz
s, = (1+6) g2+ (¢y) day (15)

In the current design method, the spanwise slope is set to zero. As
in the small disturbance method, ¢, is computed using Eq. 7 after the
scheme has iterated to a desired level of convergence.
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INVERSE METHOD VERIFICATION

The verification test centered on validating the design consistency
and accuracy of both inverse methods. The design consistency means that a
wing shape generated for a given pressure distribution in the inverse mode
will yield the same pressure distribution when run in a purely analysis
mode. A test of both consistency and accuracy is to take the pressure
distribution for a known wing shape as the target pressure distribution for
an inverse design and then coapare the computed shape with the original

wing. Both techniques were used in the present resgearch.
Small Disturbance Method

Both the small disturbance and the full potential design methods were
verified using an untapered NACA 0012 wing with an aspect ratio of 6.96. A
planform view of this wing configuration indicating the span stations used
in the design testing ig shown in Figure 2. Tests were made for both
subcritical and supercritical Mach numbers. All the tests were made using
a 72x17x30 grid.

Figures 3 and 4 present results for the small disturbance design
scheme at a single span statfon at two angles of attack. These figures
compare the computed pressures and target pressures for two subcritical
tests. In Figure 3, the input pressures for the inverse scheme were the
same as those obtained from analysis for a 2 degree angle of attack. As
can be seen, the resulting pressures obtained at the end of the inverse
cycle compare well with the analysis pressures.

Figure 4 presents results for a test at zero angle of attack using a
modified upper surface pressure distribution. The pressure distribution
obtained at the end of the inverse cycle is compared with the target pres-
sure distribution. The pressures in the inverse region compare quite well.
However, the pressures on the lower surface and in the nose region of the
upper surface are slightly changed. These changes are to be expected since
the 1ift and, therefore, the circulation of the wing has been changed.

11




The results obtained for the small disturbance scheme indicated that
the method was convergent and duplicable for a given pressure distribu-
tion. Based on these results, the method was extended to the full poten~
tial scheme. A series of tests were run in which the inverse scheme was

applied at three consecutive span stations.
Subcritical Tests

The first runs with the full potential code were made to test the
accuracy of the code by using the pressure distribution for a known airfoil
shape as the target for the inverse mode, and then comparing the resulting
shape with the original airfoil. Figures 5 to 7 present results at a
single span station for a subcritical test at 2 degrees angle of attack.
Figure 5 demonstrates that the full potential method will accurately
reproduce the desired pressure distribution. The accuracy of the inverse
scheme and the shape calculation is shown by Figures 6 and 7. As can be
seen, both the NACA 0012 slopes and ordinates are accurately computed.

Figures 8 through 19 present results at all three design stations for
a subcritical test at zero angle of attack for a modified upper surface
pressure distribution. The target pressure distribution was obtained by
modifying the analysis pressures with a french curve. It was not expected
that specifying the target pressure distribution in this arbitra;y manner
would produce realistic airfoil shapes. However, the object of these tests
was to determine if the specified pressure distribution could be reproduced
by the inverse scheme.

Figures 8 to 10 present the pressure distribution for all three span
stations. As previous tests, the computed pressures agree well with the
specified pressures in the design region with small changes evident on the
lover surface and the nose region of the upper surface. The airfoil slopes
and ordinates computed for the specified design pressures are given in
Figures 11 through 16. Note that these new airfoils all have "fishtails,”
i.e., the upper and lower surfaces cross, which is physically unrealistic.
However, these results illustrate one of the problems encountered in devel-

oping an inverse scheme. Because the purpose of these tests was to verify
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the inverse approach and not to design a wing, no attempt was made to con-
trol the trailing edge thickness.

Figures 17 through 19 illustrate the consistency of the design scheme.
The pressures generated by analyzing the modified wing shape are compared
with the pressures obtained from the inverse code. These results indicate
that the modified wing shapes will yield the desired pressures when the
wing 1is analyzed.

Supercritical Tests

The next series of tests were made to verify the inverse scheme for
supercritical flow. Following the same procedures used for subcritical
flow, the code was first tested for accuracy by using a pressure distribu-
tion obtained from analysis of the wing, as the target presgsure distribu-
tion for the inverse scheme. Figure 20 to 22 presents results for the
ungwept NACA 0012 wing at a 2 degree angle of attack and a Mach number of
0.82. As in the subcritical cases, the pressures are in excellent

agreement.

The next step in the supercritical testing was to modify the Mach 0.82
two-degree angle of attack pressure distribution to eliminate the shock on
the upper surface. This type of design represents a typical application of
an inverse scheme in a wing design. Figures 23 to 25 compare the pressure
distributions obtained by the inverse scheme with the desired pressure
distributions at the three design stations. These results further confirm

that the inverse scheme is successful at supercritical Mach numbers.

Figures 26 through 31 show the corresponding airfoil slopes and shapes
obtained from the inverse code. Note that for this design the trailing
edge thicknesses of the resulting airfoils are physically unrealistic.
However, Figure 32 illustrates that these shapes are consistent with the
specified pressure distribution. The results at the other two design

stations compare equally well.
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Swept Wings

A final series of tests was conducted to verify the inverse method for
swept wings. The supercritical tests were repeated using the basic NACA
0012 wing swept back 15 degrees. The Mach number for the tests was
increased to 0.85. The results presented are for an angle of attack of
zero degrees. Figures 33 to 35 compare the computed and specified
pressured distributions for a test in which the upper surface pressures
were modified to eliminate the shock. The airfoil slopes and shapes
generated by the modified pressure distribution are given in Figures 36
through 38. These figures show that the accuracy of the code 1is not
affected by wing sweep. Figures 42 to 44 show that the consistency of the

design scheme 1is retained.

All the test cases described were converged to a residual of 0.0011,
which represents a reduction from the initial residual of about three
orders of magnitude. For most cases, this represents a sufficient level of
convergence. This convergence criteria required an average of about 83
seconds on a Cyber 203 for inverse runs and about 63 seconds for analysis

Tuns.
DEVELOPMENT OF THE BASELINE UNIFIED DESIGN/ANALYSIS CODE

The baseline unified désign/analysis code was developed in two stages.
In the first stage, a three-dimensional transonic flow analysis code was
developed that served as the foundation for the development of the baseline
design/analysis code. 1In the second stage, the inverse design method

developed at Texas A&M University was implemented.
TRANSONIC POTENTIAL FLOW ANALYSIS

A new analysis code had to be written because the NASA Langley ZEBRA
ITI code was developed as a pilot code to verify the ZEBRA algorithm and
was, therefore, not suited for calculating flow about arbitrary wing con-
figurations. Additionally, the ZEBRA II code (and consequently, the TAMU
pilot code) was written in explicit vector instructions which prohibits its

14




use on computers other than the CYBER 203 and 205. The baseline unified

design/analysis code was written in standard FORTRAN to make {t transport-
able to other computers. The major difference between the baseline code
and the TAMU code is the use of streamwise shearing transformations to

align the computational mesh with the wing planform.

Grid Generation

Prior to the start of this research, it was felt that the fine inner

mean/coarse outer mesh grid embedding scheme developed by Boppe9 would

fed

provide the optimum mesh system for the design code. However, after work

b ad

on the design method began, it was decided that the time required to imple-
ment the embedded grid system would delay the development of the unified
analysis/design method. Therefore, both analysis and inverse solutions

were obtained using one mesh for the entire computational domain. Infitial

tests were made using a 90x30x30 grid. Because the convergence rate for
this grid system was unacceptably slow, grid sequencing was employed to

speed up convergence.

The computational grid for the baseline analysis code was formed by
first computing a stretched cartesian grid system and then shearing the
grid to align it with the leading and trailing edges of the wing. This
procedure has been used with great success in the small-disturbance codes
developed by Bailey and Ballhaual® and by Boppeg. With the sheared grid
system, each spanwise plane of the grid contains an equal number of points

on or adjacent to the wing surface.

To ensure compatibility with the TAMU pilot code, the grid stretching
used in that code was implemented in the Lockheed code. In this mesh

system, the wing surface is covered with an evenly spaced grid system. The
regions in front of the leading edge, behind the trailing edge, and

outboard of the wing tip are stretched exponentially. Geometric stretching
is used above and below the wing mean plane.

15

- - W« e s - R T




A shearing transformation of the form

X(x,y) = EHe0)

Y(y) =%

Z2(z) = 2z

(where xle(y) defines the leading edge of the wing and c(y) 1s the local
chord distribution), transforms the physical grid system (x,y,z) into a
computational grid (X,Y,Z) aligned with the wing. Figure 45 shows the mesh

system generated by this transformation.

In a typical inverse or analysis solution, a sequence of three grids
is used. The solution starts on a coarse grid that has 25 chordwise
points, 30 spanwise points, and 8 points normal to the wing mean plane.
The solution from the coarse grid 1is interpolated onto a medium grid that
contains 50 chordwise points, 30 spanwise points,and 16 normal points. The
medium grid solution is interpolated onto a fine grid that has 90 chordwise
points, 30 spanwise points, and 30 points normal to the mean plane. Twenty
of the 30 spanwise stations used in each grid were placed on the wing sur~
face. The number of chordwise points covering the local chord at each span
station varied from 10 for the coarse grid to 25 for the medium grid and 50
for the fine grid.

The Full Potential Equation in General Coordinates

Following Holst4_6 a general coordinate transformation is used to

transform Eq. (A-l) to the computational coordinate system. On trans=-

formation, Eq. (A-l) becomes
pU 2V 2% . g (17a)
Ep o+ Ep o+ ),

1

y Y~ (17b)

-1
o = (L= L5 (Woy + Voy + Vo,




— E——

where U, V, and W are the contravariant components of velocity in the com—
putational plane and J is the Jacobian of the transformation. Details of
this transformation are given in References 4 to 6. Eq. (17) has been
nondimensionalized by the cricical speed of sound and the stagnation
density.

For the transformation defined by Eq. (16), we get

(=]
[ ]

(X2 + X, 2) Oy + X, by

<
[ ]

X, o + Oy
(18)
V=0,

I o= X

This transformation retains the strong conservation form of the original

equation.
Numerical Solution Algorithm

The finite difference analog of Eq. (17) can be written

- - W
< U . & + 5,0 =0
% (J)w:.j,k*’ L Ltk 2L (19)

where gx, EY and Ez are first order backwards differences. In order to
maintain stability in regions of supersonic flow, the density has been
replaced by the retarded density approximation used by Holst.“"6

Pim gk = L= g ¥ Vi, 3,601,006 (20a)

where

M
v = MIN fl, MAX (1-—=, 0)]

Mi 3.k (20b)
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and 7 1is the retarded density coefficient; M. is a cutoff Mach number
whose value is usually 0.9¢$Mc£1.0.

In the current code, Eq. (20) is evaluated only at the midsegment
point i+1/2,j,k. The values at i,j+1/2,k and 1i,j,k+1/2 are obtained by
averages of the surrounding points. Values on the mean plane are obtained
by two point extrapolation from above and below the mean plane. Averages
of central difference approximations are used to compute the values of ¢y
at 1+*1/2 and o, at J*1/2 in Eq. 18.

It was found that the convergence of the analysis method was improved
by splitting the full potential into separate perturbation and freestream

components.

¢ =G+ Xgq_cosa+2q sina (21)

where a 1s the angle of attack. Equation (19) is then solved for G.

Boundary Conditions

As in the NASA Langley ZEBRA code, surface boundary conditions are
introduced by replacing W at KWNGB+l/2 and KWNGT-1/2 in Eq. (19) with Eq.
(15). This boundary condition is computed prior to the start of each
iteration using values of ¢ from the previous iteration and then held

constant during the ZEBRA sweeps.

For 1ifting cases, the section circulation T is computed by taking the
difference in the potential at the section trailing edge linearly extrapo-
lated from the points above and below the airfoil. The Kutta condition is
implemented ia Eq. (19) by replacing SKWNGB with $gwngp-L on the line above
the mean plane and by replacing RWNGT with SxuNGT +I on the line below the
wing plane at all points behind the trailing edge of the wing. The circu-
lation is computed prior to the start of each iteration and then slightly

overrelaxed to improve convergence.
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Because the outer boundaries are located at finite lengths from the
wing, the expressions of Klunkerl!l are used to compute the change in the
far-field potential due to 1ift. The potential on the downstream boundary
is updated by assumming that Gx = 0. This was implemented by letting Gyy =

Gyp-1°

The symmetry condition at the wing root is implemented by setting
V = 0 and by replacing ¢y 1in Eq. (18) with

¢Y = - xy ¢X (22)

Verification of the Analysis Code

A standard wing used to evaluate the performance of an analysis code
is the ONERA M6 wing described in Reference 12. This wing has a leading
edge sweep angle of 30 degrees, an aspect ratio of 3.8, and a taper ratio
of 0.562. A series of verification tests were conducted at a Mach number
of 0.839 and an angle of attack of 3.0 degrees. Figures 46 to 49 compare
the computed pressure distribution at four span stations on the wing with
experimental data and results from TWING program of Holst. As can be seen,
the results for this test case compare reasonably well with both the exper-
imental data and the TWING results. The discrepancies at the wing tip and
at the lower-surface leading edge indicate the need for finer grid systems
in these regions. The pressure distribution over the entire wing is given
in Figure 50.

In a typical analysis run, the coarse and medium grids are iterated
until the initial residual drops by four orders of magnitude or a maximum
number of iterations, usually 400, is reached. The code is then run for

100 iterations on the fine grid. The current version of the baseline code

takes about 90 seconds of CPU time on a CRAY 1S computer and about 8
minutes of CPU time on the CYBER 203 to run the ONERA M6 test case. This
disparity in run times points out the inefficiency of the automatic vector-
ization feature of the CYBER 203 FORTRAN compiler.




INVERSE METHOD

The inverse method developed at Texas A&M University was implemented
in the same manner as was done in the ZEBRA II pilot code. However, the
non-dimensional form of the governing equations used in the Lockheed code
leads to a slightly different equation for the pressure coefficient
boundary condition. The derivation of this equation is given in Appendix
B.

A series of tests were initiated to determine the consistency and
accuracy of the inverse method using the ONERA M6 wing as the base geome-
try. First, the pressure distribution for the ONERA M6 wing generated by
analysis for the Mach 0.84 case was used as the target pressure distribu-
tion for the inverse code. The resulting pressure distribution and wing
shapes were then compared with the corresponding data for the base shape.
The inverse method was applied at five consecutive design stations along
the span. Figures 51 to 53 compare the base airfoil sections with the
sections computed by the inverse scheme. The airfoil shapes are recovered
reasonably well. The error in the shape calculation is felt to be due to
neglecting the effects of the spanwise variation in slope in the inverse
scheme for a tapered wing. In addition, the target pressures were
generated using the full potential boundary condition. Techniques to
include the spanwise effects in the inverse scheme will be investigated in

the second phase of this contract.

Next, the inverse scheme was tested using target pressure distribu-
tions designed to weaken the shock at each of the five design stations.
Figures 54 to 56 compare the computed pressure distributions with the
target pressure distributions at three of the design stations. The
computed and the target pressures are in good agreement. Figures 57 to 59
compare the base airfoils with the computed airfoils by the inverse method.
As in the results obtained by the TAMU pilot code, the airfoils produced
are physically unrealistic. Figures 60 to 62 indicate, however, that the

computed wing shape is consistent with the specified pressure distribution.




In a typical iaverse run, the coarse grid is couverged for the base
wing geometry. The coarse grid results are interpolated onto the medium
grid and run for 50 iterations before the inverse design is initiated. The
medium grid is then run in the inverse mode until convergence. The medium
grid results are interpolated onto the fine grid which is then run for the
100 iterations in the inverse mode. Wing shapes are computed at the end of
the fine grid iterations. Running the code in the inverse mode requires
oanly about 100 seconds on the CRAY 1S.

CONTROL OF TRAILING EDGE THICKNESS

The results from both the baseline and pilot inverse design codes
indicate the need for a technique to control trailing edge thickness. A
review of existing wing and airfoil inverse design methods revealed two
different procedures for enforcing trailing edge closure that can be used

in the present design method.

In the first approach, the nose region of the starting airfoil or wing
is modified to increase or decrease the leading edge radius. After a few
tries, a nose shape can usually be found that will provide the desired
trailing edge thickness. This approach was used by Carlson13'14 in his
two-dimensional direct/inverse design method. The major drawback of this
approach is that it is a trail and correction procedure that relies heavily
on the expertise of the désigner. Shankat15-16 has suggested that this
procedure can be automated by specifying the nose shape by y = aox“, where
n and a, are free parameters that are ad justed by a numerical optimization
procedure to satisfy a specified trailing edge thickness constraint.

A second technique to enforce trailing edge closure has been used by
Shankarl® in a small-disturbance design code. In this techaique, a
functional relationship between the trailing edge thickness and the
velocity potential at the leading edge is assumed at each spanwise design
station. A perturbation to the leading edge velocity that will drive the
trailing edge thickness to a desired value can then be computed at each

design station.

21




At the start of this contract it was felt that perturbing the nose
shape under control of a numerical optimization scheme would prove to be
the most effective approach for enforcing trailing edge closure.
Therefore, the baseline unified design/analysis code was modified to use
the optimization techniques developed by Vanderplaats, Hicks, and Murmanl’
to perform the nose shape modifications required to control trailing edge
thickness. However, the time constraints on the first phase, of the
contract prevented the successful implementation of optimization. The best
way to control the trailing thickness will be addressed in the second phase

of the contract.
RESULTS AND DISCUSSION

The results presented in the previous sections of this report
illustrate that the present design method can be used effectively for both
subcritical and supercritical design cases. The supercritical results show
that the method can perform one of the more important functions of a
transonic wing design code--the elimination or weakening of strong shock
waves at supercritical Mach numbers. This can be seen by comparing the
section 1ift, drag, and moment coefficients shown in Fig. 48 for the 672
span station of the base ONERA wing with the values given in Fig. 62 for
modified wing. The 1lift coefficient changes from .21 for the base wing to
.020 for the modified wing. The drag coefficient changes from ~0.0081 to
-0.001 and the moment coefficient changes from -0.0960 to -0.0947. The
negative values of drag i{llustrate the inaccuracy of the pressure drag
calculation that is common to most transonic analysis codes. However, the
values obtained illustrate the effect that weakening the shock has on the

section drag.
CONCLUSIONS

An inverse design method for wings in transonic flow that is particu-
larly suited for use on a vector computer has been developed. The
technique has been verified for accuracy and consistency in both a
developmental pilot code and a baseline unified/design code that will serve

as the basis for future code development.
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Figure 2, Design stations used in TAMU pilot code
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ETR = 0.4615

154 ——————— ANALYSIS
INVERSE ETA= 0.4615

1.0 T T T U
0.0 0.2 0.4 0.6 0.8 1.0
' X/C
MACH= 0.8395 ALPHA= 3.0600 TWIST=- 0.0000
CL = 0.2233 CM =-0.0732 C0O =-0.0043

Figure 60. Correlation of inverse pressures and pressures from
analysis of modified wing, n = 0.4615
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Figure 61. Correlation of inverse pressures and pressures from
analysis of modified wing, n = 0.I1941
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ANALYSIS
INVERSE ETA= 0.6867
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Figure 62. Correlation of inverse pressures and pressures from
analysis of modified wing, n = 0.6667




APPENDIX A
ZEBRA II ALGORITHM

The ZEBRA II scheme of South et al.l"2 solves the conservative form of
the full potential equation

(o) + (OV)y + (ow), =0 (a-1)
where
u = Qx
v = ¢y
v o=, 1
o = o) T (A=)

a2 = L+ X2l o g2y
MZ 2

q23u2+V2+W2

Equation (A-l1) 1is replaced by its finite difference analog on an
evenly spaced grid

5. (04.) +3. (po.) +3 (06.) -0 (A-3)
oM g Y Ygmek 2 g ke

where Gx, Gy, and 32 are first-order backwards differences. For example,

_ (b)) = (°°x)
5. (09.) - S PRL i-ds, 0k (A-4)
X X . Ax
where i+g,3,k
. ¢y s de 5 T %k
{ i#Hs, ik Ax
(A-5)
o, %0k T %ok
1-3, 5k A%

The density 0 is replaced by the upwinded artificial compressibility

value 0 to stabilize calculations in regions of supersonic flow. The value




of o is given by

= u 4x Jp v_ Ay 3p (a-6)
p=p-u [— =+ = 98
[qw x  q 6y]
where 30/3X and 3c/ey are upwind differenced at supersonic points, Ax is
the chordwise grid spacing and Ay 1s the spanwise grid spacing. The
upwind switching function u 1s given by

2
L = MAX (0,1 - &) (A-7)
q2

In the present ZEBRA II code Vv/q, and 3p/dy are assumed to be negligible
and u/q, 1is assumed to be approximately one. Equation (A-6) then becomes

- 9p
D’D"Uax (A°8)

The ZEBRA II1 algorithm solves Eq. (A-3) using an iterative scheme that
mimics point Successive Overrelation (SOR). For 3-D calculations, the
ZEBRA II algorithm marches in the streamwise (1) direction solving one
spanwise plane at a time. In each plane, points J+K odd are denoted black
and points J+K even are termed white. Each plane is solved by a two-pass
sweep in which new black values are obtained first, followed by the white
points. In this way, convergence 1s accelerated because calculations at

the white points will use updated quantities at the black points.
By replacing ¢ 1in Eq. (A-3) with

- _ 8, N
o Ml a=t+o (4-9)

N+1 N
where 16=0  -» is the correction, u is an acceleration parameter, and N

is the iteration number. The solution at each grid point is given by
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where
2,2 4x2 . 2 bx°?
Ly (-K): te (Az) +8 (A-11)
x Yy z

The BA¢1_1 term in Eq. (A-10) comes from the inclusion of a ¢xt term to
add explicit temporal damping to the algoritim; 8 is the damping coeffic~-
fent. It should be noted that the ZEBRA II algorithm possesses some natu-
ral temporal damping since the points in the I+l plane are not as updated
as the points in the I-l1 plane. In addition, the black points in each I

plane are not as current as the white points.

The residual, szni 4,k 1o B4 (A-10) can be written
] »

- N N )_ 5 (¢N - ¥l )
ax? Ry 4 i ™ Pisg,i,k (¢i,j+1,k T 0 a,k) T Paot, 1,k WPk T TERLL SR 4

N

- - N A )] Ax 2
[°i’1+‘=,k(°z.1+1.k' "1.3,1:) “’m-m(%,j.k *1,5-1,k (3?) *

2
- N - N _ a4V ]_A_:g
["1,: ,m(°\i,5.k+1 } "1.3*) ) °1,J.k-1s("1.j.k °i,J.k-1) (&)

(A-12)

v =N for J+K odd

v = N+l for J+K even
;
3
py
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APPENDIX B
DERIVATION OF PRESSURE COEFFICIENT BOUNDARY CONDITION
FOR BASELINE UNIFIED DESIGN/ANALYSIS CODE

Normalizing the full potential equation by the critical speed of sound
and the stagnation density leads to a slightly different equation for the
pressure coefficient than that used in the TAMU pilot code. The coef-
ficient of pressure can be written

P
2 P
Cp == b 5o - 1] (8-1)
Y™ 8 "™

where P is the local pressure, Ps is the stagnation pressure, and P, 1is
the free stream pressure. Thus,

P y-1 _li'
- . Y=L om2y Y- -
P 1+ 7 Ma) (B-2)
Y
2. (B-3)
P, og
1
L . Xl o2 2 p42y1 Y=L
Pg [ v+l (°x + ¢y +¢z)] (B-~4)
Now let Pg/P, = C, and
02 o2
2 2 2 . a2 2
b gl L+ T+ (B-5)
¢x ¢x

Substituting into Eq. (B-1) yields

NV . R 02 . 02y, v-1
= Cpt+l=¢ 81 s oL 1+ 'y +"2)] (B-6)

2 42
¢x ¢x
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Solving Eq. (B~6) yields

5 1
C Y
¢,2( - Y-l 2C1 Cl (8-7)
2 2
i1+ <—-§1> +(—§)1
¢x ¢x

The procedure outlined in the description of the development of the
three-dimensional inverse pilot code is used to extract & value of ¢ as a
function of Cp from Eq. (B=7 ) for use as a Dirichlet boundary condition in

the iaverse design scheme.
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