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ABSTPACT

The qutitatie 7rediction and reasu--%:ert cf softue re-

liability is of vital Impor ance in the development of high quality cost

effective sofet-are. Yany software reliability models .avo been poatulaUt

in the literature (Ref. 11). however few have been applied to field data,

A model ba-,ad upon the assumption that the faiur3 rate of the seotwa-re 15

proportional to the number of resid=l scftware e-or- leda tt % constan.t.

failure at and an exponential relkab!_ iy f'anction, (I.ef. 1). T.. made'

contains two constants, the proportlor.iity constant K and Tha in! tial

(o #,a 3.) n rnbcr of e = v - 9

The constants K and ET can be estmatd du-ring e;.rly dsi n- Icy

ecpar-sac of hs preaent project with h-istoricl data. Dr.ng the in-

tegration tast phase, a more accurate determination of the model ara.meters

can be obtained by using simulator test data as if It were operational

failure data. The simulator data is collected at two different points

in the Integration test phase and the two parameters can be dete-Ained

from moment estimator formulas (Ref. 9). The more powerful maximum

likelihood method can also be employed to obtain point and interval

estimates (Ref. 3). It is also possible to use least squares methods

to obAin lzametar estimates which is the simplest method and provides

insight into the analysis of the data (Ref. 12).

: I.
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This thesis utilizes a set of software development and field

data taken by John D. Musa (Ref. 10) as & vehicle to study the ease of

alculatimn and the correspondence of the three nethods of yapaaeter

estimation. The sensitivity of the ra.±ability predictions to razete.r

changes a=e studied and ccmed with field results,

This thesis Is based in pat on & Joint paper Written by

the author and Professor Maztin L. Shaman, 1-esented at the OCk-TIS

Conference in Floida, Janu az 1981. (14)
The 'rsults show that if data is caxefully collectod, soft-

lare reliability models are pmatical and yield useful esults. These

can serve as one zmeas to help In choosing among ocpetitive desg.;ns

and as a vage of when to tezinate the Inteation tcst phase.

lj
- ' • .. .. .. + : +:; -+, .... - , ,, i ... , . .. . . . -. , ,
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1.0 Introduction

Software presently represents the highest cost Item in the

development of ccmputer systems. There is a aucity of quantitative

measures to Judge the quality of the final software and use as a meacurs

of progress during the test and debugging phase. The reliability and

meantime to failure ( =rP) of the software is a most useful metric for

both the above purposes.

An important class of software reliability modelz (see

Refs. 1, 8) make the assumption that the operational software failure

rate is proportional to the remaining number of errors. Thus the failure

rate is dependent on development time T, but not on crerating time t.

This leads to a constant hazard and exponential reliability model, with

two unknown pa-ameters K and E,

A major focus of this thesis is to investi~ate and provIde

insight into a number of issues related to the estimation of these two

paameters :

1. The accuracy one can obtain by using historical data to

deteraine K and E.r (Musa's);

2. A comparison of the accuracy obtained rsing three dif-

ferent methods of parameter estimation: the maximum

likelihood, momenta, least squares;

3. A comarison of prtdicted values of MI.,? and observed

MT values from field failure data;

14e Model par'meter sensitivity; and,

5. Model accuracy/parameters related to the practical ap-

plication by the software manager.

• 1
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The conclusions reached in this study clearly indicate that

pzameter estimation during system development is a highly practical tool

which can be used to successfully predict software M o and the 'debugging'

time required to achieve that goal@
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2.0 Development of Error and Reliability Models

2.1 An Error Removal Model

The reliability model used in this paper has been described

in detail in a number of references (1, 2, 3). In brief, the model as-

sues that the pogram enters the integration test phase with ET total

ez-s remaining in the software. As integration testing prcceeds, all

detected errors are promptly corrected, and. at any point In the develop-

zent cycle (aftertmonths of development time)*, a total of E. (T) er-

ra-e have been corrected, and the remaining number of errors, Er is

E.(T) = ET - Ec(T) ()

In a zore advanced model (4) It is assumed in addition that new erors

are generated du-ing develo~ment. Ona can often norm-.iie the above

equaticr. th_-cugh division by the numter of object code instructiona IT

to yield

ErJ-ET -_. Ec-.c (2a)

Ir IT IT

CrtrJ= Er-c- (7-) (2b)
/r

Wheje Cr=&d Cc - EC
IT IT

Basically the error modal used in this pepr assumes that the

total number of errors in the progr m is fixed ard that if we record tho

in some cases the actual number of test hours Is estimated and is uned

as the development time variable rather t.an the cruder calendar days.



cumulative number of errors corrected during debugging, then the difference

represents the remaining errors. We can define error removal rtes as t

which can be normalized to yield

where

P(T-) - error-. removed/total number of instructions/test hours (5)

ep (T) - p (x)dx - cumulative errors/total number of instructions. (6)

In Reference 5 error data are reported for seven large super-

visory programs an.d applicat+ions programs * Zn Fig. 1 the nc.--alized err-r

zat*P(T) calculated from this data is plotted as a function of T, the

number of months of debugging after release for three of the seven systems.

Although several curve shapes might be fitted to this eata, one chr:cter-

istic is common for all curves. The normalized error rate decreases over

the entire curve or at least over the latter two-thi=dz or half of the

curves whereas Initial behavior cf P(r) differs from e ample to example.

A curve of the cumulative error data for the supervico-y system A of Fig. 1

is shown in Fig. 2. Similar curves of C (T) drawn for the other examples of

Fig. I all build up initially with a constant or iner-sing slope and then

exhibit a decreasing curvature appearing to bocome asymptotic. The smo-

othing nature of integration makes all the E (T) cumoe look more alike than

theP(T) curves do. (Figs. 2A & B). 3oth are needed for a detailed study.
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If we assume that the total number -. of errors in the program

(ET) is constant and that the program contains ZT inztructions, then the

asymptote which the C(T) curves approa~ch Is ET/IT. (Figs. 2, 2A, 23).

The error model developed above will be used in the following

section to formulate a reliability model.

2.2 Development of the Exponential Reliability Model

Me assume that all operational software errors occur due to

the occasional traversing of a portion of the program in which a hidden

software error Is lurking. Ve begin by writing an expression for the

probability that an error is encountered in the time interval dt after t

successful hours of. operation. We make the assuption that this prob-

ability is proportional to +he number of errors remaining in the program.

(See Ref. 6 for data substantiating this assumption).

From a study of basic probability and reliability theory we

know that the probability of failure in time interval t to t +&t, given

that no failures have occurred up till time et, is proportional to the

failure rate (hazard function) z(t). Thus, we obtain

P(ttf4t +4t I t,>t) - z(t)4t - KEr(Z)4t (7)

where tf - time to failure, (occurrence of a software error)

P(tt.t +AtItf>t)- probability of failuro in interval a

given no previous failure.

K - an arbitrary constant

j



8

From reliability theory (7) we cart show that the probability

of no system failures in the Interal 0 to t is the rollability function

which is related to the hazard, s(t), bys

RHt (8)

If we substitute our ex-reszion for z(t) from Eq. ? into

Eq. 8 and assume K, and E (t), are independent of -or.ratinm time, we

obtain

R(t= xft) e - (9) '

Basically the above equation states that. the probability of

successful operation without scft .are errors Is an ex:nential function

of ope-ating time. When the system is fixst turned oa, t - 0 and H(O) - 1.

As operating time increases the reliability monotonicv.lly decreases as

shown in Fig. 3. We depict the reliability function -o= three values ef

debugging time, TC(j< r2 . From this curve we may m:. .:e various pre-

dictions about the system reliability. For exaple, looking along tho

vertical line t - 1/( we may states

1. If we spend T hours of debugging then R(Ii) - 0.35

2. If we spend T, hour.; of debuging then - -50-

3. f e ped hours of debugging then -~ 0.75
3. I we pend 2
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2.3 Meantime to Software Failure

A simpler way to summarize the results of the reliability

model is to compute the mean time to (software) failure,MTrF, for

the system.

do

Xf''MJ R~t) dt, (10)

For prposes of illustration we letp(t) be modeled by

a constant rate of error correction Po. Solution of E&s. 2 and 10

then yields

' -" -a(-c)

where P2 X Sr/IT and Ct.% POIT/ZS:

This is depicted in Fig. 4 where3xMIM- is plotted vsC-T,

and we note that the greatest Improvement in ?ITTF occurs during the

last A of the debugging stage.

Reference 5 describes other error correction rate models,

as illustrated in Fig. 4A. In order to copare the relative effects on

system MTTF by assuming a varyingp(T), it is essential that we Integ-

rate the latter over the same range. This is readily verified by

noting that the total axea under each curve is identical. Intogration

results are plotted in Fig. 4B for each model to yield the cu.nulative

number of expected errors. The effect on systo. M.1F is depicted In

Fru. We.
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The rapid rise in XTIT toward the end of t-he integration

I*ase is of considerable Importance in software -roject management.

Field data by others (see Figs. 5 & 6) confim=s this ba ic shape. If

a manager Is pressed to release a system to the field .t an early date,

he my accept the current reliability and deliver the software. if we

believe Figs. thru 6, however, then a few more weeks could yield a

big improvement in MT=F. The model predicts such behaviour, but if

one only had test data fora-, j then it would be difficult to pre-

diet the sharp rise near 1T-1. The model is thus of great use in

managing a proJect and setting its release date.

2.4 Mus's Model

Muss. has de.veloped a acdel similar to that .iven in See. 2.2.

Howeer, instead cf basing his model on developnent tira as the resource

measure during integration, he utilized actual CTU tim. Musa also used

regular test data rather than simuiatcr test data. His rodel is given

by (8),

ace) - (12)

T,, Toe - (C' / MOT (13 ).
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Where

- hours of program opez-ation - t

T - mean time to failure i. operating hours -T

To - XTT? at the start of test (t 0)

C - ratio of equivalent operating time/test time

No - number of failures which must occur

to uncover all errors A.

- the CPJ time in hours during testing

Since we will be using Musa's data and some of his results

in See. 5 of this thesis, we must carefully account for.the different

_deinitions of time between Musa' s model and the exponcntimzl model

during the analysis of his data.
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3.0 Estimation of Model Pam~ters

3.1 Introduction

The exponential reliability model given in Eq. 9 contains the

parameters K and Er(t) which must be estimated. In many cases one wishes

to use such a model to roughly predict MTTF during a proposal phase or

early design of the project. In such a case the only available technique

for determining values of the rarsAeters Is to use historical data,

Presently Rome Air Development Center is developing a handbook and database

on Software Reliability for just such a purpose.

3.2 Moment Estimates

In Ref. 9, a method is disc-ssed for measurement of the two

needed parameters based on simulation testing of the cftwa-re. A program

simulating the field environment is generally available for all real live

computer programs , It is necessazy that this program be run for a total

of H1 hours following T 1 months of development. It is assumed also that

the tes+ng will produce r1 failures, S iilarly aftcr T2 months of testing,

the sim lator is run and H2 hours and r2 failures aro obtained, The MT=F

for the data is given by the ratio H2/r 2 and is equatad to the MM ex-

pression obtained by substituting Eq. 9 into Eq., 10. The two equations

(for T, and T ) allow us to solve for the constants Kand

21 (14i)

H2. I
-... K.ET - Ec-, .T2 (.()
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Simultaneous solution of Eqs. 14 and 15 yields the desired values of

and i.

ETr (16)

K =A (17)Er -C ('C)

Note that in deriving the above results we have assu-:,i that the failure

zate is constant and have used the ccmmon notation .nd well known

results for constant failure rates s

s(t)m mi 4T

3.3 Least Square Estimates

Another method of estimating model p.ramc.' !rs is to rewrite

equation 11 in the fore

A

X,- ,[ ,- Ec(, (18)

for ) - failure rate

to yield E (i) - 1... (19)

This equation ropresents a straight line 1>::ose parameters

can be determined from the slope and intercept of a lcz st squares fit of

the data, where
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I* -1 (20)

- intercept (21)

Naturally, the largerand the more accurate the data set, the

a e precisely can the model ;arameters be predicted,

3.41. Maximum Likelihood Estimates

Another method which can also be used to estimate the values

of X and Et is known as the Y.ax.mu= Likelihood Eztimatior. technique (ML).

The likelihood function, L is the Joint probability of occurrence for +he

observed set cf test values. If during simulaticn testing we observe r1

failure times (t, , ... t ) and n -r, successful runs testing (T,, T2 ,

... , ' . )then the likelihood function for a single test after E (r.)

errors have been removed is given by

L(KE) - f(t)f(t 2 ))....f(tr )R(t 1)R(T 2 )...(T l

where

f(t 1 ) - th density function K ( .) -

3(T 1 ) -the reliability function eK'r.)

To aximize the likelihood function we take partal de- itives with

respect to C and ET and set them equal to zero. To solve for the two

ope ations we need a second equation obtained frc anot'her likelihocd

equation based on a second set of tezt data at.timer 2. , Applying I'E
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theory to two tests with r and r. fallures over H, and H2 total hours,

we obtain (Appendix A, Ref. 3)

r i 4.~ c"I r%2 ~ (22)

As is aften the case with MLE, the above equations requiire

numerical soluticn: however, most stmtistic!ans believe them to yield

superior results to moment estizates. An iterative computer solution

of Eqs. 22 and 23 is easily Implemented, yvt a ra~phical solution

using a slnpl calculator cuffices in mest cases. Tne fi--%t step is

to obtain starting vmlues for and K using some other method, such

as Method of Moments. Values cf k above and below tho sta-ting

value are substituted into Eqs. 22, 23 and the curves of K vs ET

plotted on the same axes* Their intersection detezzinos the value

Ofi and i.
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4,0 Mus's Data

.1 TIntroduction

The software reliability data used La this paper was compiled

by John D. Musa (10) over a period of time on a vaziety of large software

systems, rnging from tens to hundreds of thousands o± object code in-

structions. * is objective was "to present In detail a substan.tial body

of data that has been gathered in the application cA" the execution time

theory of software reliability"; the end product is i-eally suited for

the pu.-pose of this .pmer, as it "esents a wealth of precise software

failure data obtained under carefully contro2-led circrmstances°

S4.2 Description of Raw Data

Software failure interval data was Dresei: td in tie following

format I

Failure number Failure teai Day of fi,

Failure interval was measured in seconds, and :-preeits either ruaning

clock time, (operating time on the computer), or, in one case, actual

CPi time. 'Day of Failure' is the workini day countc. from the s3.-a+

of project on which the failure cccurr=ed. (See Table I).
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TABLE I

FUME INTERVALS - SYSTEM 3 TEST PHASE

Failure Failure Day of Failure Failure Day of
Number Interval Failure NumberI interpal Failure

1 115 1 21 .85 26
2 0 1 22 390 26

178 3 24 1337 30
5 3 35 583 27

6 136 3 26 834 38
7 1077 3 27 3400 40
8 15 3 28 6 40
9 15 3 29 4561 42

10 92 3 30 3186 44

11 50 3 31 10571 47
12 71 3 32 563 47
13 606 6 33 2770 47
14 1189 8 34 652 48
15 40 8 35 5593 1 50
16 788 18 36 11696 54
17 I 222 18 37 6724 54
18 j 72 18 38 2546 55
19 615 18 39 10175" 56
20 389 26

* Notes If the last interval is followed by an asteisk, there was

no failure at the end of the period a.d the time represents the

interval between the last failure and the end of tho period. (10).

A UN
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For the purpose of this paper, failures occurTng on the same

working day were summed together to form one statistical data point, and

were tabulated under the following fomatt (See Table 2)

where*

S - sequential serial number assigned to each statistical

data point

WD - working day on which failure(s) occurred

Z - number of errors occurring that working day

Ec - cumulative errors to date

T - total operating time (failure interval tir.e) for that

working day

To - cumulative failure interval time to date

z - failure rate (E/T) for that working day

Presentation of Musa's data in this fcrmat had & twc-fold

purpose I

a) reduce the sheer bulk of the raw data without affecting

its statistical significance by group n.g the occurrence

of software failures by working day; a d,

b) tabulate the data in a format more suitable for subsequent

calculations.
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4.3 System Characteristics

Systems j-E& studied by Musa are real-time ccr~nd and control

software packages consisting of 21,700 to 33,500 object instructions and

a failure sample size of 38 to 136.

System 5 is a realtime commercial application, consisting of

2,h45,000 object instructions and a failure sample size of 831- Musa

notes that for system 5, design changes involving 21% of the source

code were introduced after approximately 30% of total testing time had

elapsed.
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'1ABIZ 2

SSTE't #3 FAZrUR=' AS DATA

SEz T Tc

1 2 2 .01739 115 115
3 10 12 .00523 1911 2026

3 6 1 13 .ooi65 606 2632
4 8 2 15 .00163 1229 3861
5 18 4 i9 .00236 1697 5558

6 26 3 22 .00302 994 6552
7 27 1 23 .00054 1863 3415
8 30 1 24 .00075 1337 9752
9 36 2 25 °00022 45C8 14,260

10 38 1 26 .00119 834 15,094

11 40 2 28 .00059 Y"o6 16,500
12 42 1 29 .0022 4561. 23,061
13 44 1 30 .0C031 3186 26,247
14 47 3 33 .00022 13,904 40,151
15 48 1 34 .00153 652 40,803

16 50 1 35 .00018 5593 46,396
17 5. 2 37 .0001i 18,420 64,si6
18 55 1 38 .00039 2546 67,362
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5.0 Z.ztmation of Model Constants

In the following section, we ,ill be estimating the model

constant3 K and E Cf several systez, using system #3 as a working

example to demonstrate the calculations used for Least Squares, Method

of Moments, and Paximum Likelihood Estimates. These constants will

then be used to estimate system MTTF using equation 11.

As indicated in Sec. 4.2, Musa's ras. data was condensed to

form one statistical data point per working day during which one or

Ore e-Eors were uncovered.

In the following section, this condensed data was reduced

even further to allow 2, 3, 4, 6, 8... points to represent an entire

system as required. For example, I" it were desired to represent

system 3 (see Table 2) consisting of 18 entries, by two points (Fig. 7),

the first nine entries were averaged statistically to yield the first

point and the last 9 entries to yield the seuond point.

5.1 Method of Mcments

The data reported by Musa for system #3 haz been processed

and grouped by working day as described in Sec. 4.2 (tee Table 2). Using

data points fcr the 9th and 18th group of failures, (Ec 9, Tc 9),

(Ec 18, To 18), we obtain the average failure rate fcr the interval 0-91

! w 5 failures " 0.C0175 failures/sec. - 6.3 failures/hr.
T9 14,260 sec.

and similarly the average failure rate for the Interal 10-18 is s

Eci - EC9L8 2X2-Ee
T"2S -Tc9 67,362 104,260

-2.448 X 10-4 failUres/sic. 0.881 fallurea/hr,
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2/ 1 " .1396

-I2/\ Ea9) - Ecl9 (o 9 )-1
- 1) (0.1396-1)

-40.110

and X -I . 04017i =1.i6o x io

T- E9 4D.110 -25

See Table 3 for a sugary of all systems.

5*2 Least Squares Linear Regression

In this method, we plot the failure rate z vs cumulative

e-rors Ec, Theoretically the best fit y-intercept yiolds 1 and the

negativo reciprocal ef the slore equals K.

The primary equations used in linear regression are t

slo a -N (4)

intercept y' ..ZY22 ME (25)

for the straight line given by :

y- ax + y' (26)

Applying the above to equation 19, and reforring oack to

TaUble 2,
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METHOD CF MC.CTS ESMTL'ATIO! OF ET' K

System

1 4t 8

EC 136 1T .51.6 153.6 i26.4

K * 5.514 4.576 13.56

2 2 24 8

Ec - -.4 !. 61.6 52.6 38.7

K 3.909 5.688 7.731

3 #Pts 2 1 6

Ec w 38 ET 40.1 38.2 28.3

i £i.6o 21.40 19.61

4 #PtS 2 1 6

Ec 53 ET. 54.9 54.9 22.2

i * 19.88 13.40 26.20

6 #Pts 2 r.....

Ea- 74, L 111.7 117.7

. e 28.345 27.639

• N,B, K v:Lluas x tO-5
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'29 .25 Zc18 -38

Tag 14,260 T018 = 67,362

We plot

17,53 ~ ~ x 0-4T -ZC - 25

X2  Z2  - 25 2.4 5 x 10-4. Y5 -x1Q8 38

to yield

- Jo.1 i - 1.16o3 lo "-

The above calculations are depoActed In Fig. 7 for system 3

and summa zed for all systems in Table 4.

5.3 farximum Like2hood Estimates (MLE)

The primary equations used (see Sec. 3.4) ar-

" 1r + r2 (.
cm 1+2(22). H, (EEc )H2 (ET'E )

r

I L% + '2 j(23)
xi~z EF'-o
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FIGUPS 7
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TABLE 4

LFASE SQiURr F=RM3I0N 5T3hA.T0MAIS OF.,

System

#Pts 2 4. 8 47*

1 Z 151.6 140.1 103.3 74.6

5.515 5.245 17.6C9 543.48

#'Ot3 2 8 12 2.

2 T 61.6 51.7 45.5 44.9 42.9

_ 3.909 6.253 8.333 9.395 10.279

J#Pt 8s 2 .6 39 28.4

T 40.1 1 34.9 32831 6 2*
11.603 25.490 23.;2Z 27.942 56.593

#Pts 2 4 10 19*

4 54.9 46.8 49.8 42.4

K 19.885 14.C29 20.400 4o.6o1

5 E 2390 998.9 805.2 742.9 497.6

8.089 30.675 44.9;2 51.475 94.518

K.B. AU n values x 10"5

* Number of points used represents total sy:tem data wi.thout

interval grouping.
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A numerical solution of the above equations can be readily

obtained, since we have two equations I'n two unlmown, K and Eo A

simpler approach assuming we only have a few estimates to make. is to

effect a graphical solutioni

Step Is obtain a starting value for ET by any method of

your choice: Method of Moments, Least Squares

Regression, Non-deter .niistic (eo... guess), *.l

Step 2: substitute a value E obtained in Step I into

equations 22 and 23. Try other values of F

above and below this value and repeat the cal-

culations, plotting them on the same axis of

vs 4 for the two equations; and,

Step 3t the intersection of these two curves yields the

required ;a_-ameters.

The method is illustrated using system 3 as an example:

Step Is ET - 40.1 using the stating value obtained by

the Method of Moments (MOM) Table 3.

Step 2s For ZT - 39, K 1  1504 x 10"- (from 22)

K2 - 2.195 x 10 (from 23)

For T - 41, K 1  8.355 x 1.o5 (from 22)

K - 7.008 x 10-5 (from 23)

Step 31 The above results are plotted on Fig,. 8 to yield

F?40*1
t - ± .6 x !o"_

Once an approximate value is obtained fret. the curves' in-

.esect.on, itratlve methodf can be used to obtain the required degree



of &CCUz&cy.

See Table Sfo a sumaz7 c'f thie IM .st-tratOs f 0?r a11 'f 0

B-.MS
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FIGURE 8
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.
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?IAXDMM LIIXLflHOOD ESTIVATS OF TK

System J ±

151.59 5.141 x 10-5

2 61.61 3.909 x 10-5

3 40.11 1.16o x 10

4 34.80 2.249 x 10

I
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6.0 Model &rameter Accuracy and Sensitivity

6a1 Introduction

Several additional factors must be considered when using

this exponential model - or any other model for t.hat matter - in pre-

dieting software system peormance.

Two aspects ccnsidered in this thesis ares

1. Model Accu-- c. i The more data one has on a particular

system, the more confident one can be that the parti-

cular model predictions w4ill app:rimate re-ality;

2. Model Sensitlvit, When soft-are field failu-e data

is available to comp.re with model Lrediction estimates,

it seems initially that slight. cl-nZes in model pazz-

meters are not proportionally reflected in model ;re-

dictions for system XTTF;

6.2 Model Accuracy

Intuitively, one feels that the more data one has about a

pLticular system, the more accurate will be our predictions about

system performance* To a certain extent this is trae. This implies,

however, that model Drediction accuracy only apprcachas reAlity as we

near the final debugging stage, whereas the *software xmrnger' is .quite

interested in estimatLng software reliability during carly testing

stages to determine future trends. As noted in Section 2.3, this is

strongly implied by Fig. 4 which indicates that the maximum return for
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onets efforts is obtained only during the latter 25% of the debugging

phase.

Hindsight will usually enable us to icok back at a parti-

cular software development project and to announce that 'x' time rather

than 'y' time should have been spent on development and testing.

The onset of. the release point can be determined in several

ways, two of which are tot

a) closely monitor the slop of our hTTF curve plotted

versus time spent on debugging and to watch for a

sharp increase as it nears a vertical asymptote

(Fig. 4, 4C) or,

b) ainice the system MTTF is directly related to the

number of software errors remaining (E - 1C), lcok

for the point in time when model predictions of

applied to the system in question approach a hori-

sontal asymptote. This aspect iS depicted in Fig. 9

by the shape of expected value andz2iccnfidence bands

around E as testing nears completion.

6.3 Model Sensitivity

The un-normalized equation used to calculate system XTq iz

W- (27)K(T1 I
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and the derivative with respect to K is

W-- -(28)

This indicates that variations in K result in a quasi-linear effect on

MI'T. For small variations in K this variation can be linearized as

sham In Fig. 10 where the percentage change in X is plotted vs resulting

percentage change in ?M.

Slight vaxlation= of 4, however, result in drmatic changes

in MTT o, especially as the former approaches the value of Ea (C). Cal-

culating Z MTTF yields,

- -• (29)

Thus, as Zc(Z)->Z, the ser.nitivity becones quite large. it

can be seen frcm Figs 11 that a 10% change in kT results in #0%+ variation

of system ?XTrF'. 'nis factor alone em-hasizes the requirement of high-

qulity failure data if accurate model predictions are to ensue.



. .. . .: : . _r -,

*~~7 .: -7- -!-tT-~

- TOTAL RS '~aTMTIZ;C TflD 7T

rYS 3-L

.......... _ _

- - T

4-' _ETL ____ (h__)__

A 1 L _

1:m



~L...2. .:CANGE IN BpY VARYf4CZ X*.

. .. ... . ... . -. l .. .. ... . .. . .. .. . .....

S... ... . .0 . .. - ...

- ... . . .4 - .L

- . . .H I ~ ' ," /E'D G Z. . .. .. . .

,. ! .....~ ~- : L..... ' -

__ ______.. .. _ .... __ __ _-...... ., ..... . . . .. L . . . .. . . . .. _ .

_____71

. . ... -- :::_. -

- - .---- .. . ..- -- +-- " "- - . . . "" . . . .

________ -... e __ c.., .L .....

...... .. ... - --- + -.. --- .. L,- . . . . -"+

.. .. I -4+- - - - --

, ,, , _ . . .- -- / -. . ..... . -.-. --. __ _ __ __ + _ . __'- - - - - - -
-, ,__ . --- - - . _- "- -,_

.4 2 . -

--" '' -- • : '; -: -- "* .- -.- - .. +,. ......... - ... .. -

. .- ~ -. ..--..--. -... . . ,.- - - ' ' . , -- +- - -,

,+ . .- , .. '__ __ _ . ...... A..... ......

*" -- - " .A.A. - .. .- I.. .- 1I-- .;-.- - ;- ,

_ - _ .. . .. A. __ . ,_ _ . . - -._
'- - -- -- " - - - . . _ ' L'F . - -+

, -I '--':. ... . T " 72 Z- ' L'_ 'z- .'.. -.... _-_



... ... .2UET ON M Y VARMIC 1'.

- -.-- at ...... . ~-- - o o

vtSY M# .- - - ---...

- -S.STM #

--70-.

-. . - .- . ~~- - - - .- . -

____ -4

tF . 2Zz.---- 
--- 4~~5



41

7.0 Conclusion

The primary aim of this thesis was to present a model of

software system parameter estimation, to subsequently compare predicted

system characteristics with actual field data, and to guide the software

manager in the practical application thereof to software systems under

his development.

Table 6 sumrmar-Ze3 model pa- -moters by system and method of

calculation. It can be seon that ?= prediction accuracy varied from

20% to 67%, depending on the system, with an overall average of 45%.

Surprisingly enough, there was less than 1% diffe-ence in

prediction accurcy between the three different methods of model para-

meter calculation Method of Moments, Least Squares, and Max-mum Likeli-

hood EstLxates. Although most statisticianr consider ?ITW to yield

superior results to other methods, the findings of tW.s thesis would

indicate that iarimeter estimation using Least Squares is preferable

for the software manager due to the less cumbersome calculations re-

quired.

Model parameter sensitivity was explored and indicated that

a variation in K resulted in a linear variation in estimated MTTF. This

was not the case with variations in total system esti.ated errors ( ),

however, .s minute varlatioe.s in the latter resulted in drastic changes

in predicted YsTTF.

Once model parameters and system M71F have been calculated,

it is of great interest to the software manager to use these calculations

to determine/predict the optimal release date for the system under develop-

ment. Sections 2.3 and 6.2 suggest several ways of doing no.
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To= 6

C~aLt(~ (F i~~E. BICTI(.INS TM D ZXL MAX-CZ

$yet. '10. __________ ____ < I T O (cxm lMrjsAY 9

i1 .MCM 5514 152 136 .. 3 15.1 - 1.6 66.6 120.4. 39.7
I 5.515 151 33.9 66.6

2 N 1 2 5 . 14 1 1.2 5 . 2 A4:5.2. .2

3.909 5 .935 13.6 12.7 31.. 59.5 I.5
3.909 62 .935 12.7 59.5
3.909 62 .93j 12.7 59.6

1.6o 40 38 1.13 13.2 15o 0.3 0.4 130.4 0.3311.603 40 1.14 15o 0o.3
11.60 o1.3 15-0 0.

19.88 55 53 :735 13.1 9.63 9-17 5 1
9.93 735 9.63 58.1

- Ardei'ted .MF .sed on te-Stng tiMe

.MIF - Predicted opertional (field) vrw

- Actujal operational (field) VW

%Idi - % difference between actual and predicted nW (exponential aodel)

%A2  - % dIfferor.ce between actual and predicted IT3 (SA'S model)

,MCM - Method of Momenta

is - Least Squares

HU - !axium Likelihood Estimate
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