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A BOUNDARY-FITTED COORDINATE CODE FOR GENERAL TWO-DIMENSIONAL

REGIONS WITH OBSTACLES AND BOUNDARY INTRUSIONS

INTRODUCTION
The use of numerically generated boundary-fitted curvilinear coor-
dinate systems as the basis for numerical solution of partial differential

equations on arbitrary regions is now well established. A comprehensive

survey of the generation and use of these coordinate systems has recently
appeared, Ref. [1], and the proceedings of a recent symposium devoted

to this area, Ref. [2], cover the basic techniques involved, as well as
applications in many areas.

Such coordinate systems have the property that some coordinate line
is coincident with each segment of the boundary in the physical regionm,
so that the complication of boundary shape is effectively removed from
the problem. 1In the past decade the numerical generation of curvilinear
coordinate systems has provided the key to the development of finite
difference solutions of partial differential equations on regions with
arbitrarily shaped boundaries. Although much of the impetus for these
developments has come from fluid dynamics, the techniques are equally
applicable to heat transfer, electromagnetics, structures, and all other
areas involving field solutionms.

With coordinate systems generated to maintain coordinate lines
(surfaces in 3D) coincident with the boundaries, finite difference codes
can be written which are applicable to general configurations without

the need of special procedures at the boundaries. Even when the bound-

aries are in motion, the use of such coordinate systems allows all




computation to be done on a fixed grid with a uniform square mesh in the
transformed plane. This greatly simplifies the coding, particularly

with regard to boundary conditions, which can now be represented without

need of interpolation. It is also possible to distribute the curvilinear
coordinate lines in the physical plane with concentration of lines in regions
of high gradients while maintaining the square grid in the transformed
(computat ional) plane.

With such systems, the grid points may be thought of as a finite
set of observers of the physical solutinn, stationed so as to be most
effective in covering all of the action on the field. The structure of
an intersecting net of families of coordinate lines allows the observers
to be readily identified in relation to each other. This results in
much more simple coding than would the use of a triangular structure
or a random distribution of points. The grid generation system provides
some influence of each observer on the others so that when one moves
to get into a better position, its neighbors will follow in order to
maintain smooth coverage of the field. The curvilinear coordinate system
thus should cover the field, with coordinate lines (surfaces) coincident
with all boundaries. The distribution of lines should be smooth, with
concentration in regions of high gradient.

Numerical solutions of partial differential equations are done on
the curvilinear coordinate system by first transforming all partial
derivatives (or integrals) analytically so that the curvilinear coordinates,
rather than the physical coordinates, become the independent variables.

Normal and tangential derivatives at boundaries are similarly transformed.

(These transformation relations are given in Ref. [3].) The result is a

e
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set of partial differential equations and boundary conditions in which
all derivatives (and integrals) are with respect to the curvilinear coor-
dinates. These equations may then be expressed as difference equations
on the square grid that is inherent in the transformed plane. There is
thus no need for interpolation regardless of the shape of the boundaries
or the distribution of the curvilinear coordinate lines in the field.

The present report concerns a code for the generation of boundary-
fitted coordinate systems for general 2D regions with boundaries of ar-
bitrary shape and with internal obstacles and boundary intrusions, arbi-
trary in shape and number. The code, referred to as WESCPR, is described
and instructions for input and use are given. Examples of the applica-
tion of this code are given in Ref. [4]-[6]. The coordinate system is
generated from the numerical solution of a system of elliptic partial
differential equations with provision for controlling the spacing of the
coordinate lines in the field. The transformed (computational) region
is rectangular with the obstacles and intrusions transformed to slits
and/or slabs. (This type of transformed configuration and its use are
discussed in Ref. [3].) A small code to distribute points on various
fundamental curves with exponential concentration is also described.

This front—-end code can be used to construct boundary point distributions
for input to the coordinate code. A plot code for the coordinate system
is also included. The boundary-fitted coordinate systems generated by
this code may be used as a basis for the numerical solution of partial
differential equations for any physical problem of interest.

The elliptic generation system is discussed in Part A, and the op-

eration and use of the codes are covered in Part B.
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PART A

ELLIPTIC GENERATION SYSTEM

ELLIPTIC GENERATION SYSTEM

The generation of boundary-fitted coordinates from elliptic systems
and the use thereof in the numerical solution of the Navier-Stokes e-
quations is surveyed in Ref. [1]. The foundations of elliptic generation
systems are discussed in detail in Ref. [7], and basic configurations of
the transformed plane are covered in Ref. [3]. The discussion in this
section is an introduction to the subject given by Johnson and Thompson

in Ref. [5] and is incorporated here for convenience.

Basic Ideas

Suppose one is interested in solving a differential system involving
two concentric circles, such as shown in Fig. 1, where r = constant = ny

on the inner circle and r = constant = N, on the outer circle, and 6

2
varies monotonically over the same range over both the inner and outer
boundaries, i.e., 0° to 360°.

A cylindrical coordinate system is the obvious choice since a coor-

dinate line, i.e., a line of constant radius, coincides with each boundary.

If one now pulls the interior regions between the two circles

ol hiantess e g
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REENTRANT BOUNDARIES ——

Figure 1. Transformation of domain between
concentric cylinders




apart at 6= 0° (or 9= 360°) and folds outward, it is easy to visualize

the region Dl becoming the rectangular region D Likewise, it should

e

be obvious that the right and left sides of the rectangle are reentrant

boundaries since g = 0° and § = 360° are coincident in region D If

1°

one computes a derivative in the cylindrical system at ¢ = 0°, values

at the points marked x and o on both sides might be used. Thus, these
same points, as shown in the rectangular region, would be used for a

similar derivative in region D This is the reason for calling these

2*

boundaries reentrant boundaries. As shown, the boundary of the inner

circle becomes the bottom of the rectangular region while the boundary
of the outer circle becomes the top.

The general boundary-fitted system is completely analogous to the

system discussed above. In Fig. 2 the curvilinear coordinate, n, is H
defined to be constant on the inner boundary in the same way that the
curvilinear coordinate, r, is defined to be constant on the inner circle

in the cylindrical coordinate system. Similarly, n is defined to be

constant at a different value on the outer boundary. The other curvi-
linear coordinate, £, is defined to vary monotonically over the same
range on both the inner and outer boundaries, as the curvilinear coordi-
nate, 8, varies from 0 to 27 around both the inner and outer circles in
cylindrical coordinates. It would be just as meaningless to have a dif-
ferent range for £ on the inner and outer boundaries as it would be to
have 0 increase by something other than 27 around one of the circles in
cylindrical coordinates. It is this fact that ¢ has the same range on
both boundaries that causes the transformed field to be rectangular.

Note that the actual values of the coordinates, n and ¢, are irrelevant,

10
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in the same way that r and 6 may be expressed in different units in cylin-

drical coordinates.

Now that the values of the coordinates, n and f, have been completely
specified on all the boundaries of a closed field, it remains to define
the values in the interior of the field in terms of these boundary values.
Such a task immediately calls to mind elliptic partial differential ;
equations, since the solution of such an equation is completely defined
in the interior of a region by its values on the boundary of the region.
Thus if the coordinates £ and n are taken as the solutions of any two i

elliptic partial differential equations, say L(&) = 0, D(n) = 0, where

L and D represent elliptic operators, then & and n will be determined
at each point in the interior of the field by the specified values on
the boundary. One condition must be put on the elliptic system chosen,
since the same pair of values (§,0) must not occur at more than one point
in the field or the coordinate system will be ambiguous. This condition
can be met by choosing elliptic partial differential equations exhibiting
extremum principles that preclude the occurrence of extrema in the in-
terior of the field.

This may be illustrated with resort to the governing equation for
a stretched membrane. Consider a membrane attached to a flat plate
around a closed circuit of arbitrary shape as shown in Fig. 3. Now let
a cylinder of arbitrary flat cross section be pushed up through the plate,
stretching the membrane upward. The vertical displacement, h, of the
membrane will be described by Laplace's equation, V2h = 0, with h = h

1 1
and h2’ respectively, on the circuits of contact with the plate and cyl-

inder. If equally spaced grid lines encircling the cylinder had been

12
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drawn on the membrane before displacement, these lines would appear to

move closer to the cylinder when viewed from above after displacement
of the membrane. None of these lines would cross, however.

Now leﬁ pressure be applied on the upper side of the membrane as
diagrammed in Fig. 4a. This will cause the slope at the cylinder to
steepen, with the effect that the lines will appear to be drawn even
closer to the cylinder but still without crossing. This situation cor-
responds to the Poisson equation, v%h = p, where p is the applied pressure.
If a variable pressure is applied on both sides of the membrane to a
sufficient degree, it is possible to make the membrane assume an S-shape
as shown in Fig. 4b. 1In this case the encircling lines have crossed,
and, consequently, a point on the plate can no longer be identified by
specifying the encircling line that it lies below (together with a radial
ray). This latter case corresponds to a right-hand side of the Poisson
equation that is not of one sign over the entire membrane, in which case
the extremum principles of Poisson's equation are lost.

Note, however, that if the differential pressure that is applied
across the membrane is not too large, the S-shape will not be reached.
In this case the lines do not cross, but rather the lines seem to con-
centrate near a line in the interior of the field. Thus the existence
of an extremum principle is a sufficient condition to prevent double-
valuedness in the coordinate system but is not a necessary condition.

Care must be exercised in its absence, however.
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Mathematical Development

From the discussion above, a logical choice of the elliptic gen-
erating system is Poisson's equation. Thus, based upon Fig. 2, the

basic problem is to solve

+ = P
Exx gyy
(1)
n _+n =
XX ¥y Q
with boundary conditions,
€= €l(x,y) on Fl
n = constant = n,. on T
1 1
(2)

£ = Ez(x,y) on Fz

n = constant = n, on Tz

The arbitrary curve joining Tl and T2

a branch cut for the multiple-valued function, £(x,y). Thus the values

in the physical plane specifies

of the coordinate functions x(&,n) and y(£,n) coincide along F3
and FA’ and these functions and their derivatives are continuous from

3

on F3 and Pa. As previously noted, boundaries with these properties

are designated reentrant boundaries.

The functions P and Q may be chosen to cause the coordinate lines

to concentrate as desired, in analogy with the membrane discussed above.

S

T, to Fa. Therefore boundary conditions are neither required nor allowed




As discussed in Ref. [7], negative values of Q result in a superharmonic

solution and cause n-lines to move toward the n~line having the lowest

value of n, while positive values have the opposite effect. Considering

the £ solution to be superharmonic results in the interior of the ¢ =
constant lines being rotated in a counterclockwise direction in the physical
plane; whereas if the [ - equation is subharmonic, i.e., P is positive,

the lines are rotated in the clockwise direction. These effects

are discussed in more detail below. It has been found convenient, as

discussed in Ref. [7}, to redefine the control functions as

=1 2 2
P F(xﬂ +yﬂ)P

1
Q=37 (x,2 +y,2Q
A major purpose of this coordinate system control is to concentrate %
lines in viscous boundary layers near solid surfaces, and some automated é
procedures for this purpose have been developed (cf. Ref. [7]). Control is
also useful to improve grid spacing and configuration when complicated
geometries are involved.
Since all numerical computations are to be performed in the rec-
tangular transformed plane, it is necessary to interchange the dependent
and independent variables in Eq. (1). Using the relations given in
Ref. [3]), Eq. (1) becomes
ax, . - ZBxan + - + anE + nyn =0
3) :
Peg ~ 2‘3}'631 0t aPyE * YQyn =0

17
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where

2 2
a= x<+
n yn

S SN LS

2 2
= x2 +
YEXe TV

J = Jacobian of the transformation = xgyn ~ xnyg

with the transformed boundary conditions

X = fl(g,nl) on rf
y = 8 (g,n)) on T}
x =

%*
fz(g,nz) on P2
y = 32(597]2) on r;

Again considering Fig. 2, the boundary functions fl, f2, 8y» and g,

are specified by the known shape of the contours Fl and Ty and the speci-
fied distribution of £ thereon. Boundary data are neither required nor
allowed along the reentrant boundaries F3 and PA. Although the new
system of equations is more complex than the original system, the boundary
conditions are specified on straight boundaries and the coordinate spacing
in the transformed plane is uniform. Computationally, these advantages

far outweigh any disadvantages resulting from the extra complexity of

the equations to be solved.

18




The boundary-fitted coordinate system so generated has a constant

n- line coincident with each boundary in the physical plane. The £-

lines may be spaced in any manner desired around the boundaries by
specification of x,y at the equispaced &- points on the Ff and Pf
lines of the transformed plane. As noted above, the entire side boundaries

are reentrant boundaries, and thus neither require nor allow specification

of x,y thereon.

Now the rectangular transformed grid is set up to be the size
desired for a particular problem. Since the values of £ and n are
meaningless in the transformed plane, the n-lines are assumed to run
from 1 to the number of n-lines desired in the physical plane. Likewise,
the ¢-lines are numbered 1 to the number specified on the boundaries of

the physical plane. The grid spacing in both the £ and n directions of

the transformed plane is taken as unity. Second-order central difference
expressions are used to approximate all derivatives.

Only one of a pair of reentrant boundaries 1is considered as a com-
putation line since the (x,y) are equal on both. As an example of how
a reentrant boundary is handled, consider the grid in Fig. 5 where "o"

indicates a computation point and "A"” a boundary point. The derivative

of x with respect to £ along i = 1 would be written as

3x

)/2 (4)

asl = (%5~ *nax-1,3
1,j

Again, it should be stressed that all computations are performed 4
on the rectangular field with square mesh in the transformed plane. The K

resulting set of nonlinear difference equations, two for each point, is

solved by accelerated Gauss-Seidel (SOR) iteration using overrelaxation.

19
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Some discussion of this technique is presented in Ref. [8].

It might be noted that both orthogonal and conformal transformations
are special cases of the generation of boundary-fitted coordinate systems
as the solutions of elliptic partial differential systems. In both of
these cases the curvilinear coordinates satisfy Laplace's equation with
one coordinate constant on each boundary, and the normal derivative of
the other coordinate equal to zero on each boundary. A conformal system
also requires a certain relation between the range of the two curvilinear
coordinates.

The same procedure may be extended to regions that are more than
doubly connected, i.e., have more than two closed boundaries, or equiv-
alently, more than one body within a single outer body. A river reach
containing more than one island would be an example. One such trans-

formation for such a problem is illustrated in Fig. 6.

Types of Boundary-Fitted Coordinate Systems

The above discussion of the generation of boundary-fitted coordinates
has centered around the idea of using branch cuts to reduce multiply
connected regions to simply connected ones in the transformed plane.

An example using branch cuts is sketched in Fig. 7. Here the body in

the field transforms to the entire bottom boundary of the transformed
plane, while the entire surrounding boundary, 1 - 2 - 3 -4 - S5 - 6,
transforms to the top boundary of the transformed plane. The sides of

the transformed plane are reentrant boundaries, corresponding to the cut,

8 -1and 7 - 6, in the physical field. Thus, in the difference equations,
points lying just to the right of the right boundary are identical with

corresponding points just to the right of the left boundary. This is

21
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the same type of circumstance that occurs with the familiar cylindrical
coordinate system, where § = 361° is the same point as 6§ = 1°. Similarly,
points just outside the left boundary are coincident with points just
inside the right boundary.

Many variations of this type of coordinate system can be produced,
cf. Ref. [ 3]. For instance, the transformed plane corresponding to the
same physical field shown in Fig. 7 can be rearranged as shown in Fig.
8. Now the reentrant boundary, corresponding to the cut, is located on
a portion of the bottom of the transformed plane. The coordinate lines
that result from these two types of arrangements of the transformed plane
are shown on each of the figures. As with all the boundary-fitted coor-
dinate systems, the grid is square in the transformed plane regardless
of the line configuration in the physical plane.

Multiple~body fields can also be transformed to simply connected
regions, an example of which is shown in Fig. 9 . Again there are many
different possible arrangements of the transformed plane, all of which
are created by sliding the boundary segments around the rectangular
boundary of the transformed plane. A number of examples are given in
Ref. [ 3] and Ref. [8].

The other type of coordinate system transformation available leaves
the multiplicity of the region unchanged. In this case, bodies in the
interior of the physical field are transformed to rectangular slabs or
even slits in the transformed plane. Three different possibilities are
shown In Fig. 10 for the physical plane shown in Fig. 7. 1In the case of
slits, the physical coordinates and solution variables in general have

different values at points on the two sides of the slit, even though such

24
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points are coincident in the transformed plane. This does not introduce 1

any approximations, but simply adds a little more bookkeeping to the

code. Fields with more than one body in the interior simply result in l

a like number of slabs and/or slits in the transformed plane. M
Comparison of all of the above figures shows that different types

of transformation may be more appropriate for different physical config-

urations. A further example of this is the configuration in Fig. 11,
shown with three variations. Generally, the slit/slab form is more
appropriate for channel-like physical configurations having bodies in

the interior, while the other form works particularly well for "unbounded"
regions involving external flow about bodies and for regions having an
outer boundary that forms a continuous circuit without pronounced corners
around the field. The slab is generally superior to the slit unless

the boundary has a sharp point. The case of a single channel without

any interior bodies is the same in either form. An example of a river

reach containing two islands, using horizontal slits rather than the

branch cuts previously presented in Fig. 6,is given in Fig. 12,

Data Required for Generation of Boundary-Fitted Coordinates

The basic input or data required to generate a boundary-fitted
coordinate system are the physical coordinates of points on the boundaries.
For example, with reference to Fig. 7, the coordinates of points on the
body from 8 around to 7 would be required, with these points being
spaced in any manner desired as long as there is a continuous progression
from 8 to 7. Similarly, the (x,y) values for points on the outer boundary

from 1 to 2, etc., on around to 6 would be required. Again these points
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may be spaced around the boundary as desired, with no restriction as to
how many points lie on each boundary segment, e.g., between 1 and 2 or
between 4 and 5, provided that only the total number of points from 1

around to 6 is the same as from 8 to 7. The coordinates of points must ‘o
be specified on the entirety of these lines. The coordinates of points
on reentrant segments of the boundary in the transformed plane, e.g., 1

i to 8 and 6 to 7, are not specified but are free to be determined by the

solution.

Similarly, with reference to Fig. 10a, the coordinates of outer
boundary points are required in the slab/slit transformations. In
addition, body points from 6 to 1 on the lower half of the body and
from 1 to 6 on the top half are required. No calculations would be ¥

made on the slab sides of Figure 10c or slits of Figures 10a and 10b

since values at such points are fixed. Points in the interior of a

slab are irrelevant. As always, points may be spaced as desired around

the bodies and outer boundary segments,

Computer Time Required for Generation of Boundary-Fitted Coordinates

Ref. [ 8] indicates that the typical time required to generate a
one~body coordinate system without coordinate system control (the
functions P and Q are set to zero) is about 2 min on a UNIVAC 1106 com-
puter for a 70 x 30 field (70 points on the body). If P and Q are not
zero, so that the spacing of coordinate lines is controlled, the computation
time increases. Multiple-body coordinate systems typically require about
6 min for a 70 x 40 field. If these same computations were to be made

on a CDC-7600 computer, the times ruoted above would be reduced by perhaps
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an order of magnitude or more. Therefore, the cost of generating

boundary~fitted coordinate systems for use in numerical models will

be generally insignificant.

COORDINATE SYSTEM CONTROL

Control of the coordinate line spacing in the field can be exercised
through the non-zero values given to the Laplacian of the curvilinear
coordinates as in Eq. (1), as noted above. With a zero Laplacian, the
lines tend to be closely spaced near convex segments and more widely
spaced near concave segments. A negative value of the Laplacian causes

the lines to move toward lower valves of the curvilinear coordinate.

Attraction to Other Coordinate Lines and/or Points

This effect is utilized as in Ref. [ 8] to achieve attraction of
coordinate lines to other coordinate lines and/or points by taking the

form of the control functions to be

n
Plg,m) = = ] a, sign(g - g)exp(-c |g - £,
i=1

m 1
- - - - 2 - 2772
I by sign(s - g)expl-d [( - €)2+ (n - n)21")
i=1
and an analogous form for Q(£,n) with £ and n interchanged. The effects
of such control is illustrated in Refs. [ 7] and [ 8]. The efficacy
of control to improve the accuracy of a physical solution done on the

coordinate system has been noted.

In the P function, the effect of the amplitude, a

L is to attract

£ - coordinate lines toward the Ei-line, while the effect of the amplitude
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bi is to attract £-lines toward the single point (Ei’ni)’ Note that

this attraction to a point is actually attraction ot ¢-lines to a point
on another £-line, and, as such, acts normal to the ¢-line through the
point. There is no attraction of p-lines to this point via the P
function. In each case the range of the attraction effect is determined

by the decay factors, cy and d With the inclusion of the sign changing

i
function, the attraction occurs on both sides of the g-line, or the
(gi,ni) point, as the case may be. Without this function, attraction
occurs only on the side toward increasing &, with repulsion occurring on
the other side. A negative amplitude simply reverses all of the above-
described effects, i.e., attraction becomes repulsion and vice versa.
The effect of the @ function of n-lines follows analogously. It should
be noted that P and Q are discontinuous because of the sign function and
are equal to sums of second derivatives. As a consequence, the coordinates
have continuous first derivatives but discontinuous second derivatives
at controlled locations.

In the case of a boundary that is an n-line, positive amplitudes
in the Q function will cause n-lines off the boundary to move closer
to the boundary, assuming that n increases off the boundary. The effect
of the P function will be to alter the angle at which the g-lines inter-
sect the boundary, since the points on the boundary are fixed, with the
£-lines tending to lean in the direction of decreasing £. If the boundary
is such that n decreases off the boundary, then the amplitudes in the §
function mustbe negative to achieve attraction to the boundary. In
any case, the amplitudes a; cause the effects to occur all along the
boundary, while the effects of the amplitudes bi occur only near se-

lected points on the boundary.
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Attraction to Space Curves and/or Points

If the attraction line and/or the attraction points are in the

field, rather than on a boundary, then the attraction is not to a fixed

line or point in space, since the attraction line or points are themselves
solutions of the system of equations, the functions P and § being functions

of the variables £ and n. It 1is, of course, also possible to take these

control functions as functions of x and y, instead of £ and n, and achieve
attraction to fixed lines and/or points in the physical field. This
case becomes somewhat more complicated, since it must be ensured that ’
coordinate lines are not attracted parallel to themselves. The following
development was given in Ref. [9].

Recall that in the above discussion, n-lines are attracted to other l

n-lines , and £-1lines are attracted to other ¢-lines . It is unreasonable,

of course, to attempt to attract n-lines to ¢-1lines, since that would

have the effect of collapsing the coordinate system:

19, g

£-line

A R e P PR 8.

n-line

When, however, the attraction is to be to certain fixed lines in
x~-y space, defined by curves y = f(x), care must be exercised to avoid
attempting to attract n- or £-lines to gpecified curves that cut the

n- or &-lines at large angles. Thus, in the figure below,
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E~line

-~ ’y = f(x)

n-line

it is unreasonable to attract Z-lines to the curve f(x), while it is

natural to attract the n-lines to f(x).

However, in the general situation, the specified line f(x) will not

necessarily be aligned with either a &- or n-line along its entire length.

Since it is unreasonable to attract a line tangentially to itself, some
provision is necessary to decrease the attraction to zero as the angle
between the coordinate line and the given line f(x) goes to 90°. This
can be accomplished by multiplying the attraction function by the cosine
of the angle between the coordinate line and the line f(x). It is also
necessary to change the sign on the attraction function on either side
of the line f(x). This can be done by multiplying by the sine of the
angle between the line f(x) and the vector to the point on coordinate
line.

These two purposes can be accomplished as follows. Let a general
point on the £-line be located by the vector R(x,y), and let the attrac-
tion 1line y = f(x) be specified by the collection of points §(xi,yi),
i=1, 2, --, n. Let the unit tangent to the attraction line be

t(x,,v,), and the unit tangent to a f£-line be T(g).
171 .




The control functions P(x,y) and Q{x,y) may then be logically taken as

n
fe.x (R - Sg] -k
i
P,y) = - [ a (e, - 3(5)) TR exp(~d; R - 5, |)
1=1 - -
(6)
n
[t,x (R -8,)] -« k
O N A _*'gil = exp(-d,[R - §|)
1=1 - -

where k is the unit vector normal to the two-dimensional plane. These

relations are evident from the figure below:

E~line

attraction line

()

Here the term Ei - T serves to decrease the attraction to zero as the
angle between the £-line and the attraction line approaches 90°. The
cross product term changes the sign of the control function on either
side of the attraction line to produce attraction on both sides of the
line, Again the strength and range of the attraction are determined by
the amplitude, a,, and the decay factor, di’ respectively,
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These'functions depend on x and y through both R and r(e) or T("), and

thus must be recalculated at each point as the iterative solution proceeds.

This form of coordinate control will therefore be more c=xpensive than
that based on attraction to other coordinate lines.

There is no real distinction between "line" and '"point" attraction
P

with this type of attraction. '"Line" attraction here is simply attraction

to a group of points that form a line f(x). If line attraction is speci-
fied, then the tangent to the line f(x) is computed from the adjacent
points on the line. If point attraction is specified, then the "tangent"
must be input for each point. The tangents to the coordinate lines are

computed from the relations given in Ref. [3].

Control Functions from Boundary-Point Distributions

With the Laplacians of the coordinates equal to zero, the line
spacing in the field will not be greatly affected by the distribution
of the boundary points, except very near the boundaries. In fact, if
the control functions are not consistent with the boundary point dis-
tribution, very large changes in the metric coefficients will occur near
the boundaries. Values of the control functions may be determined from
the 1D boundary point distribution such that the line spacing in the
field will generally follow that on the boundary. This concept was in-
troduced in Ref. [10 ] and is discussed in Ref. [7] as generalized to 3D
in Ref. [11 ]. However, in the use of control functions that are
1D, it should be noted that excessive concentration of lines can occur
near sharp convex corners as discussed in Ref. [7].

With Eq. (3) evaluated in 1D on a straight n-line conincident with

the x~axis, we have, since xn = y€ = (0 in this case,
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The reason for the choice of the form of the control functions in Eq. 3

becomes clear, since a cancels from this equation to leave

P(g) = -x (8)

ge/*e

Thus the control function, P(£), can be determined from the specified
boundary point distribution, x(g). Generalizing, x is replaced by arc

™ length along the £-line , and the effect will be qualitatively the same

when this line is curved. (Compare Ref. [7] for more detail.)

PRSP

If this value of the control function is then used throughout the

field, the &-line distribtuion in the field will generally follow the
specified distribution of the end points of these lines on the boundary.

With different point distributions on two boundaries, values of the

T T T T s

control function P(£,n) in the field between can be determined by 1D
interpolation in n between the values determined in the above manner on
the two n-line boundaries. An analogous development applies for the
determination of the control function 2{f,n) from interpolation in
between 1D evaluations on two £-line boundaries. This interpolation

was introduced in Ref. [12 ] in a 2D coordinate system.

SYSTEM CONFIGURATION
In the present model, the physical field may have both external and
internal boundaries of arbitrary shape. The field in the transformed :

plane is rectangular with rectangular holes corresponding to any internal

boundaries. This configuration is illustrated in Fig. 13. Boundary
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Figure 13. Example of coordinates generated in a
field containing a jetty and an island
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intrusions may be transformed either to portions of the rectangular outer
boundary of the transformed region, as in Fig. 13, or to slabs protruding
inward from this boundary as in Fig. 14. A general discussion of possible
configurations is given in Ref. [3]. Various outlet shapes and locations,
as well as internal obstacles and boundary protrusions such as weirs,

can be treated by the same code with only changes in the input. This
input consists of the physical cartesian coordinates of the points se-
lected on each segment of the physical boundaries. A small front-end
code was written to provide certain line segments (linear, quadratic,

and cubic polynomials) with linear or exponential distributions thereon

automatically.

The code automatically calculates control functions P(£,n) and
Q(g,n) for the coordinate generation equations (3) from the boundary
point distribution as discussed above., These functions are calculated
from the 1D relations on each boundary segment and are interpolated
linearly into the field between opposing boundary sections in the
transformed plane,

In addition, attraction of coordinate lines to other coordinate
lines and/or points, and to specified lines and/or points in space, also
discussed above, is provided through input quantities. This input
consists of the coordinate lines and/or points, and the specified space
curves and/or points, to which the attraction is to be made and the ampli-

tudes and decay factors for the corresponding attractiomns.
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Several examples of coordinate systems produced by this code are

given in Figs. 15-19. Examples of applications of such systems appear

in Ref. [4]-[6]. Two further examples, together with complete input

listings for the code, follow the description of the code in Part B.
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Figure 17. Hypothetical estuary similar to
Delaware River (from B. H. Johnson, Waterways
Experiment Station, Vicksburg)
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Transformation to slits

Figure 19.
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PART B

COORDINATE CODE

The present code (WESCPR) differs from a previous version (TOMCAT) !
described in Ref. [8] in that the latter does not provide for slits and/or !
slabs in the interior of the transformed plane. Also, branch cuts (if used)

in the present code are restricted to the entire left and right sides of

the outer rectangle in the transformed region. Finally, the present code
includes a more extensive means of coordinate line control, involving
attraction to space lines/or points and also involving determination from
boundary point distributions.

The code for the numerical generation of the boundary-fitted coor-

R et e G 1e

dinate system from the equations of Part A, together with a front-end

code to generate boundary point distributions and a plot code, is discussed
below. These codes were implemented on the CRAY-1 computer at the Air

Force Weapons Laboratory, Kirtland AFB, New Mexico.

WESCPR (Coordinate System)

This code generates the boundary-fitted coordinate system by solving

a set of elliptic partial differential equations by SOR iteration as

discussed in Part A. Attraction of coordinate lines to other coor-

dinate lines and/or points,and to specified lines and/or points in space,
is included. The shape and configuration of the boundary are arbitrary,
except that the outer boundary must be closed. There may be an arbitrary
number of internal closed boundaries transforming to either slits or
slabs as discussed in Part A. ~
The input to this code consists of the point distribution on the

boundary of the region, several quantities in connection with the control
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of the coordinate line spacing, and the parameters associated with the
iterative solution process. This input is described in detail below.
The file output from the code LINES can be used directly as a part of
the input to this code from file 10. A simplified flow chart of WESC@R
is shown in Figure 20.

Boundary Configurations

Arrays. The dependent variable field arrays are X and Y, which contain
the cartesian coordinates (x,y) for each grid point. The indices (I,J)
of these arrays correspond to the cur@ilinear coordinates (&, n), and
run from 1 to IMAX and JMAX, respectively. The increments Af and A4n
in the difference expressions are thus equal to unity by construction.

( These increments cancel from all the difference equations and are thus
irrelevant.)

In order to treat slit configurations, for which a closed interior
boundary in the physical region is collapsed to a slit in the transformed
region, there are four other coordinate arrays, XL, YL and XU, YU, which
contain the cartesian coordinates on the two sides of the slit. The
first index of these arrays corresponds to the location of the point
relative to the left end of horizontal slits, or relative to the lower
end of vertical slits, this end {ndex being designated unity. The other
index indentifies the particular slit. For horizontal slits the coor-
dinates on the lower side are in XL and YL, while those on the upper
side are in XU and YU, Vertical slits have the coordinates on the left
side in XL and YL, and those on the right side in XU and YU.

There is also a field array LSLIT(I,J) containing the point type

for each point. This array identifies each point as being on a slit,
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Figure 20, Simplified flow chart




adjacent to a slit, on a siab side, on an outer boundary, in the field,

or out of the computation region (inside a slab), as illustrated on the

diagram below:

e | » adjacent to slit

* on slit

e field

adjacent to slit
[ ]

i

. on slit

on outer
boundary

on slab side

e inside slab

(out of region)

——
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The coordinate system control functions P and ? for each point
are contained in the field arrays RXI(I,J) and RETA(I,J), respectively.
There are also arrays RXIL, RETAL and RXIU, RETAU, analogous to the
array XL, etc., discussed above, which contain the values of these
functions on the two sides of the slits. The acceleration parameters
for the iteration at each point are in the field array WACC(I,J).

Configuration types. The cartesian coordinates of the points on the

entire boundary of the physical region, i.e., the closed outer boundary
and any internal boundaries, must be input. There are two basic types
of overall configuration included in the code. 1In one the connectivity
of the transformed region is the same as that of the physical region,
i.e., the closed outer boundary of the physical region corresponds to a
closed outer boundary of the transformed region. With the other type,
one branch cut is introduced in the physical region so that the closed
outer boundary and one inner boundary of the physical region transform
to the bottom and top of a rectangle forming the outer boundary of the
transformed region. The left and right sides of the transformed region
then correspond to the branch cut in the physical region. Points on
these sides therefore are not input but rather are calculated as part of
the solution.

Rectangular outer boundary. If the outer boundary of the physical

region 1is to correspond to a rectangle forming the outer boundary of the
transformed region, then the points on this boundary can be input in

clockwise succession around the outer rectangle of the transformed region

as in the diagram below. If the outer boundary of the physical region
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is a circle, then the points on this circle can be generated internally
by the code, requiring input only of the radius (YINFIN) and cartesian
coordinates of the center (XOINF,YDINF) of the circle, together with
the cartesian coordinates of the angular position (AINFIN) and indices
(INFXI,INFETA) of the point at which the clockwise succession of points
around the outer rectangle is to start, and/the total number of points
on the circle (NINF). As above, the points will be placed in clockwise
succession around the circle or boundary of the physical region and
the rectangular boundary of the transformed region. The treatment of
the outer boundary is determined by the input parameter IBNDRY.

An alternative procedure for inputting the outer boundary is to input
each straight segment of this boundary of the transformed region as a
slab side in the manner described below for internal boundaries.

Internal boundaries (slits/slabs). Internal boundaries in overall

configurations of the former type introduced above correspond to either

slits or slabs in the transformed region:

. T =
9 » Ln f3
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In the case of slits, the points are input in clockwise succession
beginning at the right end for horizontal slits or counter-clockwise be-
ginning with the top for vertical slits, and are placed in the arrays XL,
etc,, described above. For slabs, the four sides are input independently
and the succession of points may be in either direction on each side.

In fact, it is not even necessary for the four sides of one slab to be input
in succession; the sides of all slabs in the field may be placed in any
order in the input. The coordinates of the points on slab sides are

placed directly in the field arrays X and Y. This input of boundary
segments corresponding to slits or slabs is accomplished as follows.

For horizontal slits, the £-indices(I) of the left and right ends
areplaced in the arrays LBl and LB2, respectively. The n~index (J) of
the entire slit or slab side is placed in the array LB3. 1In the case
of vertical slits, the n-indices (J) of the bottom and top go in LBl
and LB2, while the &-index (I) goes in LB3. Slab sides are treated in
the same manner except that, since the points thereon may be input in
either direction, LBl and LB2 contain the indices of the end points of
the side in either order, i.e., LBl may exceed LB2. The points are input
from LBl to LB2.

For both slits and slab sides, a flag is placed in an array LTYPE
to designate the segment as a slit or slab side in horizontal or vertical
orientation:

+1 horizontal slit

+2 vertical slit

-1 horizontal slab side
-2 vertical slab side

The code computes the number of points on the slit or slab side from the
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values of LBl and LB2 and places this value in the array LPT. All of these
arrays are single-dimension arrays, there being one set of parameters

for each slit or slab side. The total number of slits and slab sides,
including those on the outer boundary as described below, is specified

by the input parameter NBDY.

Outer boundary intrusions. As noted above, the outer boundary can be

_input in segments as slab sides. This is illustrated below.

¢

>

S-

This 1s done just as described above for internal boundaries except that
values of -11 and -12, respectively, are input for LTYPE for horizontal
and vertical segments of the outer boundary.

Branch cut. With the other type of overall configuration, involving
a branch cut, the outer boundary and the internal boundary connected to
the cut are both input clockwise from the points joined by the cut. As
noted above, these points are placed on the top and bottom of the rec-
tangle forming the outer boundary of the transformed region. This type
of configuration is elected through the input parameter NREN. Additional
internal boundaries can be input as either slits or slabs exactly as
described above.

Boundary input. Provision is made for reading the boundary points

either from card images (x and y for one point to a card in 2F10.0
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format) or from the output of the LINES code described below, as de-

termined by the input parameter ISLIT. The outer boundary must be input
as segments of slab sides if this boundary is included on the output of

the LINES code.

Control Functions

Coordinate system control is included through both the attraction
of coordinate lines to other coordinate lines and/or points and to speci-
fied lines and/or points in the physical region, as described in Part A.
(For completeness, provision is made for repulsion as well as attraction.)

Attraction to coordinate lines and/or points. The first of these

requires the input of the index (indices) of the curvilinear coordinate
line, together with the associated attraction amplitude and decay factor,

for each line (point) to which the attraction is made. For attraction

to lines, the index, amplitude, and decay factor are placed in the arrays -

JLN, ALN, and DLN, respectively, while for attraction to points, the
corresponding arrays IPT, JPT, APT, and DPT are used.

Attraction to space lines and/or points. For attraction to specified

lines and/or points in space, the input is similar in regard to the ampli-
tude and decay factors, using the arrays APT and DPT. It is necessary,

of course, to also input the cartesian coordinates of the points on the
line, or the isolated points, to which the attraction is made. These
coordinates are placed in the arrays XPT and YPT. For attraction to
points, it 1s also necessary to input the components of a vector normal

to the desired direction of the attraction for each point, these com-

ponents being placed in the arrays VECl and VEC2.




|

Effect of boundary point distribution. 1In addition to the above types

of attraction, the control functions also include the effect of the
boundary point distribution discussed in Part A, This is done by evalu-
ating one of the control functions on each boundary segment in the
transformed region (P on n-lines, Q on £-lines) from the one-dimen-
sional relations in terms of arc length discussed in Part A. These values !

are placed in the arrays RXI and RETA, except for slits where the arrays

RXIL, etc., are used in the manner described above for XL, etc. Values
of the control functions in the field are then interpolated linearly

between facing boundary segments, P being interpolated vertically and

? horizontally,as illustrated in the following diagram.

WP

‘_----:.-_-——\—--.‘ ....... N

« ¥

This evaluation is done first and then the contributions to the control
functions from the line and point attraction 1s added to the arrays

RXI and RETA in the field.

Iterative Solution

Initial guess. The initial guess for the values of the cartesian co-

ordinates in the field, i.e., the values in the arrays X and Y in the

field, that is used to start the iterative solution is obtained by the
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same type of interpolation between facing segments described above for

the control functions, except that both X and Y are interpolated between

the pair of facing segments with the smallest separation in the transformed

region. Thus values at point 1 in the figure below would be obtained

by horizontal interpolation, but at 2 the interpolation would be vertical.

- &

A -_-@.2--..-.-.-.---4
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Since very strong control functions can sometimes make the conver-

gence of the iterative solution difficult in complicated configurations,

provision is made for first converging the field with the control functions
set to zero and then re-converging in steps as these functions are
increased to full value. Actually this feature is rarely needed.

Acceleration parameters. As discussed in Part A the solution for the

cartesian coordinates in the field is done by SOR iteration. Either a
uniform value of the acceleration parameter can be input as R(1l) or the
code will calculate a locally optimum value at each point in the field,
these values being placed in the field array WACC. This calculation

is discussed in Ref. [8], where it is noted that the values obtained are
not truly optimum in all cases. Therefore this provision has not been

found to be as generally efficient as simply using a uniform value, since the

e P A A P e T

calculation of the acceleration parameter involves a square root and

hence is time-consuming. The uniform value should be around 1.85 for
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large fields. This value should be decreased for strong control functions

or small fields.

Iterative process. The iteration continues until either the magni-

tude of the changes in the values of x and y at each point in the field |
between iterations is less than the tolerances input as R(2) and R(3),
respectively, or until the maximum number of iterations allowed (input
as ITER) is reached. 1In the latter case the partially converged solu-
tion is stored on file 10 for restart. The input parameter IDISK can
cause the code to read this partially converged solution from file 10
and continue the iterations. This parameter also controls the dispo-
sition of the final solution, which is normally stored on file 11 for

l

use in the flow solution, but can be simply printed without being stored

if desired. Varilous other input parameters, such as print options, etc.,
are explained in the detailed input instructions given below and in

the source listing.

Code Operation

Initial input and setup. The WESCPAR code uses the values of NDIM,

NDIM1l, NDIM2, and NDIM3, which are assigned by a DATA statement, to deter-
mine if the problem specified by the input will fit in the arrays as
dimensioned. The first two of these parameters, NDIM and NDIM1l, corre-
spond to the dimensions of the field arrays, X, etc. The last two, NDIM2
and NDIM3, correspond to the dimensions of the slit arrays, XL, etc. The
last parameter, NDIM3, also corresponds to the dimension of the segment
arrays, LBl, etc. Thus NDIM is the maximum value of { that can be used,

while NDIM1 is the maximum value n allowed. Also, NDIM2 is the maximum

number of points that can be used on a slit or slab side, and NDIM3 is
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the maximum number of slits and slab sides that can be used. The input

thus must satisfy the following:

IMAX < NDIM

A

JMAX

A

NDIML
|LB2(L) - LB1(L)| + 1 < NDIM2 L=1,2, . . .,NBDY

NBDY < NDIM3 x

After the initial input parameters are read, the code does some
setup of various intermediate parameters and checks for compatability
with the array dimensions. The value of IDISK is then checked to de-
termine if the solution is to be started from the beginning or if a par-
tially converged solution is to be continued.

Boundary input and construction. If the start is from the beginning,

the point type array LSLIT is initialized to -20000on the outer rectangle

formed by I = 1 & IMAX and J = 1 & JMAX, and to 0 inside this rectangle.
Next the points on the slits and/or slab sides (if any) are read
from either card images or file 10. Points on slits are placed in the
slit arrays, XL, etc., while points on slab sides are placed directly
in the field arrays X and Y. The point type array LSLIT is set to
-(10000 + L) at points on slab sides, where L identifies the particular
segment in the order as input,unless the side is a part of the outer
boundary in which case LSLIT is left at -20000. At the same time, 10 is
added to the segment type array LTYPE for slab sides on the outer boun-

dary, resulting inreplacing the input values of -11 and -12 with -1 and

-2, respectively, in conformance with the usage for slits. $
The slit arrays, XL, etc. (if any), are then printed and subroutine

BNDRY is called for the outer boundary. If the outer boundary is not
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input in segments as slab sides, this boundary 1s either input as a

succession of points proceeding from a specified point completely around
the outer rectangle formed by I = 1,IMAX, and J = 1,JMAX, or a circular
outer boundary is generated internally and placed on this rectangle.
Both of these procedures are performed by this subroutine by calling the
subroutine INFBDY, which either reads a point from a card image or cal-

culates a point on the circle.

Point types. Next the point type array LSLIT is set to the following
values on and adjacent to slits (if any). Here L identifies the partic-

ular slit in the order as input:

-L : on slit

10L +1 : below horizontal slit

10L + 2 : above horizontal slit not adjacent to
10L + 3 : left of vertical slit slit ends
10L + 4 : right of vertical slit

The point type array LSLIT is then set to ~10000 for points outside
the computational region, i.e., inside slabs, by sweeping along each §-
and n-line and noting when the computational region is entered or left

across a slab side. The complete point type array then contains the

values indicated in the following diagram:




o 10L + 4 10L + 2
h o=L
®
[ ]
10L + 3 1oLk 1

*_L -20000T

-(10000 + L)

¢-10000
o0

» 10000
{-20000

Control functions and initial guess. With all of the boundary points

in place and the point type array filled, the code then calls subroutine
CONTRL to evaluate the control functions on the entire boundary (including
internal boundaries). The subroutine GUESSA is called next to calculate
the control functions and the initial guess for the cartesian coordinates
in the field by interpolation from the values on the boundaries. This

interpolation is done at each point in the field by locating the pair of
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boundary segments facing the point (one or both members may be internal
boundaries) and interpolating between these segments. For the coordinate
values, the distances separating the pair of segments facing the point

in the horizontal and vertical directions are examined and the interpo-
lation is done between the pair with the smaller separation.

Iterative solution. If the solution is to be restarted from a partially

converged result, then all of the above computations are skipped and the
partially converged solution is read from file 10 instead. In either
case the initial array values are printed at this point according to

the input print controls.

Subroutine TRANS is now called to perform the iterative solution.
This subroutine first reads the parameters associated with the attraction
of curvilinear coordinate lines to other curvilinear coordinate lines and/
or points. The species of line being controlled, i.e., £ or n, is read
into ATYP, and whether the control is to be attraction or repulsion is
determined by the input parameter ITYP. The number of coordinate lines
and points designated as sources of attraction are read into NLN and NPT,
respectively. Also, a common decay factor and a common amplitude multi-
plication factor to be used for all attraction lines and points for this
species can be read into DEC and AMPFAC, respectively.

For each species of control, subroutine RHS is called to read the
attraction line index, or point indices, and the amplitude and decay
factor for each. This subroutine q}so sums the effects for all such
attraction lines and points and adds this cumulative effect to the

control function at each point in the field in accordance with Eq. (5)

of Part A.




Subroutine TRANS then reads the parameters associated with attraction
of curvilinear coordinate lines to specified lines and/or points in space
and adds the cumulative effect of all such attraction lines and/or points
to the control functions at each point in the field. This is done in a
similar manner as described above. Subroutine RHSXY reads the cartesian
coordinates of the pointson the specified attraction line and those of
the isolated attraction points and calculates the normal to the attrac-
tion line. These qualities are placed in the arrays XPT, YPT, VECl, and
VEC2. The addition to the control functions in this case must be changed
as the iterative solution of x and y proceeds since the control functions
depend on x and y for this type of attraction.

After completing the calculation of the control functions, sub-
routine TRANS reads the parameters that provide for a gradual implemen-
tation of these equations during the iteration, and performs some setup
for the iterative solution.

The field is then swept iteratively until convergence is achieved
or the maximum number of iterations allowed is reached. In each itera-
tion, new values for x and y at points having the point type LSLIT non-
negative are calculated.

First, the coordinate derivatives are calculated, and the Jacobian
and other such quantities and coefficients are evaluated, Then the
locally optimum acceleration parameters are calculated if such is elected.
The change in these acceleration parameters between iterations is moni-
tored and the values are frozen when the magnitude of the change falls
below a specified tolerance at all points. (This change between itera-
tions, and the analogous changes in x and y, are calculated by calling

subroutine ERRPR.) The acceleration parameter is placed in the field
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array WACC. The addition to the control functions from attraction to
specified lines and/or points in the physical region is calculated next,
and then the new values of x and y for the point are calculated.

This procedure is followed for all points in the field, i.e., points
having the point type LSLIT non-negative. For points adjacent to slits
it is necessary to obtain the values on the slit from the slit arrays,
XL, etc., and the calculations are done in that case by calling sub-
routine SLIT.

After each sweep of the field the maximum changes in x and y from
the previous sweep are compared with the input tolerances. If the max-
imum number of iterations allowed by the input is reached before conver-
gence, then the partially converged solution is written on file 10 for
potential restart. If convergence is obtained, the solution is written

on file 11.

LINES (Boundary Segments)

The small front-end code LINES generates a distribution of a speci-
fied number of points on a curve between two specified points. The curve
may be specified to be a straight line, a circular or elliptic arc, a
quadratic with zero slope at either end point, or a cubic with the slope
specified at both ends. 1In any case the point distribution on the curve
may be uniform or exponentially concentrated toward either end. The
input consists of the number of curves to be generated and, for each
curve, the number of points on the curve, the type of curve, the end
points, and the particular quantities to be specified in connection with

each curve. Detailed instructions for input are given below.
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The cartesian coordinates of the points generated on each curve
are output in succession on file 10 by a separate unformatted write
statement for each point (WRITE(10) X,Y). Since more than one curve
can be generated in one run, this code can be used to build an entire
boundary composed of segments of different types. The generation of the
curves and the exponential concentration of points thereon are explained

in the following section.

Generation of Curves

Straight line. Here we have simply

y = a + bx

so that with the end points (xl, yl) and (x2, y2) specified we have
1 X )(a ) 1]
1 x, b Yy

% T h
¥2"R

so that

Y, =¥
b-_z_:__x_].'.
% 1

Circular arc. For a circular arc of radius r centered at (xo, yo)

with 0 measured counter-clockwise from the positive x-axis, we have
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x=x + r cos 8

Yy =Y + r sin @

The end points are defined by inputting the radius r and center of

the arc (xo, yo), together with the angles 8, and 0, of the end points.

v.

(x99

Elliptic arc. In this case we have, for an ellipse with semi-major

axis, a, and semi-minor axis, b, centered at x the equation

0’ yo’

- 2 _ 2
(x xo) .\ (y yo) -1
a2 b2

which can be written in terms of the angle 6, measured counter-clockwise

from the positive x-axis, and the angular-dependent radius r(0) as

Xx=x.+ r(8) cos o

0

Y=Y, + r(0) sin 0

Then

2 2 =
£(0) = co: 0 sin‘¢ 9
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The end points are specified by inputting the axes a and b, the center

(xo, yo), and the angles of the end points.

Quadratic with zero slope at end point. Here we have

y=a+ bx + cx?

vy =b + 2¢x

Then with the end points (xl, yl) and (x2, y2) specified together

with the specification of zero slope at end point £ (1 = 1 or 2) we have

2
1 X X a Yy
2 -
1 X, X, b Yy
0 1 in c 0

which is solved for the coefficients a, b, c.

Cubic. The cubic equation is
y=a+ bx + cx? + dx3

y’ = b ¢+ 2ex + 3dx2

or
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1 Xy xlz x13 a 1
1 x, x,2 31y,
0 1 2x1 3x1z c ) yl‘
0 1 2x2 3x22 d yz‘

which is solved for the coefficients a, b, ¢, d.

Exponential Concentration of Points

The exponential distribution of points on the curve of any type is

done by taking

1~ e—a(N-n)

- e—a(N-l)

xn-x
1

1 (x2 - xl) 1-

for concentration near the first end point and

e—u(n—l)

: e-u(N-l)

xn | + (*z - xl) 1

for concentration near the second end point. Here the strength of the
concentration is controlled by the specified decay factor a, and N is

the number of points on the curve.
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CSPLAT (Plot)

The plot code CSPLST plots the coordinate system generated by the
code WESCPAR, having read the coordinate system from file 11 as output
by WESCAR. The input consists of the number of coordinate lines to be
plotted, a designation for skipping lines, the extent of the field to be
plotted, and a factor for using different seating in the horizontal
and vertical directions. This input is detailed in the following pages.

The plot 1is formed by simply connecting the points on a line of
constant curvilinear coordinates in the physical region, i.e., by con-~
structing straight lings between each successive pair of points, X(I,J)

and Y(I,J), as one index is held fixed.




WESCOR INPUT INSTRUCTIONS

éﬁmmmuzscoamm
140=CRIRSOBEEETRsRsEERREIRsRITTRssEEsERERssELResTIsLOsLERURINSLLITNLILNLL
180=C  2-D BOUNDARY-FITTED COORDINATE SYSTEW CODE

180=C  MISSISSIFPI STATE UNIVERSITY , 1982

200=C U.S. ARMY EXCINEER UMERIMS EXPERIMENT STATION
2}{% VICXSBURC, NISSISSIPP.

nx&-gmummmummmummuummmmt
250=C ummmu SLIT-SLAB CONFIGURATION $3333

260=C :
70=C ttlt ATTRACTION TO COORDINATE LMESIPOINS AND TO SPACE LINES/POINTS. j
J80=C $¥%3 CONTROL FUNCTIONS ALSO INTERPOLATED FROM BOUMDARY POINT DISTRIBUTION. :

3 ]
300=C  SEETRTRULACELLRTASERILLLLLLIELLESTTRLILLECILLLTLALILLTLILTLLLNELSS ;
310=C SSERESELERE INPUT INSTRUCTIONS & i

3
330=C 398 CARDS(2) ¢ LAMEL - FORMAT(1008)
: LABEL - TWO 80 CHARACTER CARDS. (BLANX CARIS IF NO LABEL)
570=( S35 CARD ¢ lMX:JMXrNBMrlTEerSllTvlmhIDISK-IUIR-IIINTL:

300t 3 IFINREN -  FORMTC1115) i
90=C ¢ ]
:‘1)8:5 = IMAX - NUMBER OF XI POINTS. :
:g& : JRX - NUMBER OF ETA POINTS,

?ﬁg:cc : NBDY - TOTAL NUMBER OF SLAB SIDES AND SLITS IN THE FIELD. £
Q?g:% : ITER - MAXINUM NUMBER OF ITERATIONS ALLOWED,

&,

0=C ¢ 8r - <t SW 51“5 & SLITS m FRON CARDS,

=t 3§ FORMAT( » ONE POINT PER CARD.

500=C ¢ -2 SLM SIKS OR SLITS Rfﬁn FROM FILE 10.

%g:% : UNFORMATTED » ONE POINT PER IMAGE,

$0=C (imE. WIZONTN. SLITS ARE READ CLOCKWISE FROM Rlﬂn END. )

Wo=C AL SLITS ARE COUNTER-CLOCKWISE FROW TOP. )

wmc : SLAB SI[( MAY BE READ I EITHER DIRECTION. )

0=C IBNDRY - ‘0 OUT[R BOUNDAKY CALCULATED IKTERNALLY AS CIRCLE.

560=C R BOUNDARY READ FROM CARDS.

A  d XiY ~  FORMAT(2F10.0) +» ONE PMNT PER CARD,

800=C =2 OUTf BOUNDARY READ FADM F1

810=C XY - UNFORMATTED » ONE Pﬂll ER INAGE,

820=C : =-1 QUTER BOUNDARY READ IN SECHENTS ﬁs SLAB SIDES.

od0=C 8 (WOTE: FOR IBNDRY = 1 OR 2 » MER BOUNDARY IS READ CLOCKWISE)

oX=C ¢ { FROH POINT (1”!71“7 )

o60=C 8 ( *HTER BOUNDARY® MEANS "Im BOUNDARY OF TRANSFORMED )

620=C 8 ( REGION IF mao. lFm IS MOT ZERD, THEN OQUTER

o0=C ¢ { BOUNDARY 1S THE TOF OF THE TRANSFORMED RECION AMD )

67::% : ( INNER BOUNDARY 1S THE BOTTOM. )

710=C 8 IDISK - =0 DON'T READ Ok WRITE SYSTEM FROM OR OM FILE,

T0=C 8 =] WRITE SYSTEM ON FILES 10 & 11, DON’'T READ SYSTEM FKOM FILE.

730-=C 3§ =2 WRITE SYSTEN ON FILES 10 & 11 . READ SYSTEM FROM FILE 10 FOR RESTART,

m : =3 READ SYSTEM FROW FILE 10 FOR RESTART, DOW'T WRITE SYSTEM ON FILE 11,

760 3 (NOTE ﬂlE 10 1S RESTART FILE FOR CONTNUATION OF ITERATIOM.)

;ZN!C : FILE 11 15 STORACE FILE FOR FINAML SYSTEM, )

790sC § R - W’T PRINT EACH_ITERATION ERROR,

m : PRINT EACH ITERATION £RROR.

820=C 3 IVINTL - =0 DOW’T PRINT INITIAL GUESS.

830=C : =] PRINT INITIAL GUESS.

850=L $ TWFIN - NON-ZERO SUPPRESSES PRINT OF FINAL VALUES,




3
] MEN - NON-2ERD USES RE-EATRANT BOUNDARY O LEFT 6 ll&ﬂ SIDES
] OF TRAWSFORNED RECION, Wilh OQUTER BOUNDARY
: wD INNER BOUNDARY O BOTTOM.
s InNER BOUNDARY 1S READ AS FOLLONS BEFORE READING OUTER BIUMDARY:
4 =1 INNER BOUNDARY REAL FROM CAR
s Y - FMT(ZHO 0) ' M POINT PR CARD,
s =2 InMER BOUNDARY KCAD F!
: XY - UNFOKNATTED M lm! PE CARD,
: (MOTEs SUITS AND/OR SLABS NAY ALSO BE PRESENT.)
:ll CARD3(NBDY) L31aLB2sLBSILTYPE - FORMATI 415)
3 WBLILED - ARS‘ AND LAST InBICES OF SLAB SiDE OR SLITE
: (LB2 MAY BE LESS TnAw LE1 FOR SiAB SIDE. IWT 1S FROX LB T0 LB2,)
: LB3 - INIEX OF LINE On WKICH SuAB SiDE O S.IT 15 LICATED.
: LTYPE - SLAR SIDE DR SLIT TYPEL (. FCR NOKIZONTAL» 2 FOR VERTICAL.)
] (KGATIVF MHATLS S1.AB SlDEv M'lnER Thaw SLIT.)
1] L SUBTRACT 10 FOR OUTER BOUN )
] (!.E.v -11 h HORIZONTAL OCTER mmv "SZONENT )
: =12 15 VERTICAL QUTER BOUNDARY SECMENT. )
838 CARD  Ru12oR(2:sRCT o YINF INo ATNF INS XOINF » YOINF o INFAIo INFETA
: - FORMATL7F10.0,215)
] R(1) - SUR ACCELEhAtIDN PARANETER.
s VALUE CAUSES VARIARE ACCE.ERATION PMMETER)
; 1EL[I 10 BE CALCULATED INTERNACLY.
: R(2) - ALLOWABLE X ITERATION ERROK.
: ki3) - ALLOWABLE Y ITERATION EXROR.
: YINFIN - RADIUS OF CIRCULAR OUTER BOUNDARY.
1 AINFIN - ANGLE OF FIRST POINT ON CIRCULAR OUTER BOUNDARY {DEGREES).
; ( COUNTER-CLOCX FROW PISITIVE X-AXIS.)
: XOINF2YOINF - CENTER OF CIRCULAR DUTER BOUNDAKY.
: NINF - NUMEER OF UNIOUE FOINTS Ow CIRCULAR DUTER BOUMDARY.
: INFXZINFETA - INDICES OF FIRST POINT O CIRCULAR OUTER BOUNDAKY.
: (n0TE } LAST 7 OF TnESE FARAMZTERS ARE IRKELEVANT IF QUTER BOUNDARY IS READ.)
:'.00'00..0U‘l..".IO'...."""QQOOO'IOO."."OI'Q.Q.O"..l"'l‘l..
xr IF BODIES amD/OR QUTER BOUNDARY ARE READ FROM CARDSs SuCH CARDS
:l FOLLOW MEXT. *
'3
38 S ITE AnD/OR S.Ab SiDES ARE READ FIRST, THEN OLTER BOUNBARY IS REAL.
:‘ CTHESE RULES AFPLY FOR REALING FROM FILE 10 AS UELL AS FROM CARDS.)
'l.'0""'000'.1'0'....l.l..0..QQIQO....Q..ClIODOQO'IOQQ.QCOOOO"OQO
18 17 w0 CIORDINATE ATTRACTION IS T2 BE USEDs FOLLOM THESE CARLS
83 WITh FIVE BLan CARNS. IF ATTRACTION IS TG Bc USED USE THE FOLLOWING
:: INPUT RATHER THAN Thio BLANX CARES?
u !ﬂPUT Fﬂk CO(RXIIM"E SYSTEM CONTROL § USE FOUR SETS
NE ATTRACTIGN TG CODRDINATE LI S/FOINTS) M FOR ETA-UNE ATTRACTION
u 'h" COORI)IRMF UNE:/POMTS; 1.3 oa <L INE A"TR.\C"M 10 SPACE LINES/POINTS,
32 AnD OoE FOR ETA-LTNE ATTRACTION TD ACE LINES/FOINT
:: AnY SET NOT IM‘IEIr 15 REPLACED BV ONE BLANK CARD,
::MCNNN“"M“’NS“NMNﬂ““‘N"ﬂ“N"“M"N““”ﬂ
:: THE FOLLOMINGs MRKED WITH 8§ 13 FOR ATTRACTION TO COORDINATE LINES/POINTS:
l‘:“ CARD § ATYPYTTYP NLNINFToDECoRAPFAC - FURMAT(ABIT2921592F10.0)
" ATYP - TYPE OF ATTRACTION, (X1 FOk XI-LINE ATTRACTiONs
g ETA FOR ETA-LINE ATTRACTION. ) LEFT JUSTIFIED.
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] 1P - JERO_GIVES ATTRACTION OW B3Th SIDES.

S
§ NN - NUNBER OF ATTRACTION LINES.

" WT - MUMBER OF ATTRACTION POINTS.

§ DEC - NON-2ERD DEC USE3 DEC FOK DECAY FACTOR.

“ AMPFAC - NON-ZERD ANPFAC MULTIPLIES ALL AMPLIT) S BY aaPFAC,
::” CARDS(MLN) ¢ Jlm“i?l.g'vm“!' iS ;g&ut(ﬁhl 112F10.0

ss JUN - ATTRACTION LINE INDEX.

:0. AN - MPLITUDE (NEGATIVE REPELS) FOR LINE ATTRACTION.
?‘ DUN - DECAY FACTOR FOK LINE ATTRACTION,

8483 CARDS(NFT) ¢ IPT,JPT.APT,DFT - FORMAT(215:2F10.0)

:: (OAIT IF NPT IS ZERD)

" IPToJPT ~ ATTRACTION POINT INBICES.

i APT - MMPLITUDE (NECATIVE REPELS) FOR POINT ATTRACTION,
5 DFT - DECAY FACTOR FOK POINT ATTRACTION.
g’"””’”"“””““‘S”‘5“"”““““‘““i““”““““”'

"
3¢ THE FOLLONING, MARKEL WITH 8 15 FOR ATTRACTION TO SPACE LINES/POINTS ¢

3]
3358 THE FOLLONING CARDS ARE FOR ATTRACTION TD LINES AND/OR POINTS
$$38 DEFINED Bi X:Y COORDINATES. IF LN IS NCT ZERDs THEN NLN
8358 OF THE CARES CIVING WP WUST APPEAR. EACH OF THESE CARLS 15
8838 FOLLOWED BY HP DF THE CARDS GIVIAG XPTy ETC. IF NPT IS NOT
1888 ZERC, THEN NPT OF THE CARDS GIVING XF¥y ETC. WOST FOLLDN
mx THE LAST WP OF THESE CARDS.
u Y SET NOT WANTED 1S REPLACED BY ONE BLANK CARD,

2080=C “!t CARD § ATYPsITYPsNUNsMPT,DECIARPFAC - FORMATIABy12:21552F10.0)

3]

1" ATYP - TYPE OF ATTRACTION, (XI FOR XI-LINE ATTRACTION,
:: ETA FOR ETA-LINE ATTRACTION.) LEFT JUSTIFIED.
3] ITP - ZERO GiVES ATTRACTION Oa BOTH SIDES,

3] NON-ZEROD GIVES TTRACTMMI.WPER SIDE Axb

:: REPULSION ON LOVER SIDE

:: NN - NUMBER OF ATTRACTION LIMES.

1 L 4] NUNBER OF ATTRACTION POINTS

g ( NOT INCLUDING POINTS DN ATTRACTION LINES)

g DEC - NON-ZEROD DEC USES DEC FOR DECAY FACTOR,

:: ANPFAC - NON-ZERD AAPFAC MULTIPLIES ALL AMPLITUDES BY AMPFAC.
{:u CARD : WP~ FORMAT(IS)

:: NP - NUNBER OF POINTS OM THIS ATTRACTION LINE,

l':ll CARLS  XPT:YPT/APT,DPT+VECI,VEC2 - FORMATCSF20.0)

1] XPTsYPT - COORDINATES OF ATTRACTION POINT OR

l‘: POINT ON ATTRACTION LINE,

:: AT - ATTRACTION AMPLITUDE (NECATIVE REPELS),

:: W - DECAY FACTOR.

1] VEC1,VEC2 - XvY CONPONENTS OF UNIT VECTOR WORWAL 10

" TTRACTION DIRECTION FOR POINT ATTRACTION
:: (CMC!I.M'ED INTERNALLY FOR LINE ATTRACTION, )
8
".0..00..'0‘..0.!l'.("l.ll’.’0"00.0‘...‘l.Ql.0.0"‘.....I.Q..'O'
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$3% THE LAST CODRDINATE SYSTEN CONTROL CARD IS THE FOLLOWING CARD ¢
335 CARD ! IFAC/IRIT/EFAC - FORMATC 215:F10.0)

(CAN BE USED TO AID CONVERGENCE BY CONVERGING FIELD )
(UITH LESS ATTRACTION FIRST AND USING THIS RES\I.T )
(AS THE llYI GIESSF(RSTMR ATTRACTION, )
(BLANK CARD NUS BEINPUT lF THIS FEATURE IS NOT USED, )
(SIMMD IS T0 NOT USE THIS FEATURE s WYUSUSEMY)
(BE MECESSARY WITH STRM AYTRAC

IFAC - NUNBER OF STEFS IN AUBITION OF INHOWOCENEQUS TERM, !
DOUBLES INWOMOCENEOUS TERM AT EACH STEP.

(IERO COMVERCES WITH FULL ATTRACTION.

)

(l )
(UITH FULL ATTRACTION. 2,0 CONVERGES WITH MO )
(ATIRACTION FIRST, THEN WITH WALF) T)ﬂ mu Fll.l. )
(INCREASE NUMDER OF STEPS IF DIVERGENCE OCCURS, )

IRIT - NON-ZERO VALUE CAUSES INHOMOGEMEOUS TERM TO BE PRINTED.

EFAC - MULTIFLE OF CONVERGENCE CRITERION TO BE USED FOR
ITEROED ATE CONVERGENCE BETUEEN ADDITIONS OF
NHOMOGENEOUS TERM. (TYPICALLY 10.0 )

SISEEENSIRASEERS LTS SRRASASLABIRERTALLRILIRLLLLLLSLLRTATANALS
WASS STORAGE FILES @
RESTART FILE - FILE 10 ¢

(10) RXI,RETA

(10) XsYoLSLITsLABEL y INAX J

1)) Wlm-LBlrLB"9LB!vLTYPE1LP'hXLrXUvYI.9YU1
ND1MsNDINL yNDIN2+NDIN3 s WACC

COORDINATE SYSTEM STORAGE FILE - FILE 11 ¢

LABEL s INAX » JMAX

“.SL]T( 19901215 I8A% )5 =15 JMAX )

(XCIed o I=1sINAX }rd=1yJMAX)

(YCT9d dyI=19IMAX Ded=10 J0AX)
vavlﬂllLB?vLBLLTYPElLPhXLvXU’YLvYUv

NDIis NDIND+NDIN2/NDIN3

§

-~

AAQ

(11)
(11)
(11)
(11)
(11)

G} G0 S0 S5 S0 24 BB 40 P4 20 00 90 S0 TR 90 40 48 FU ou B0 ou S0 WD OV ou B Su G0 B G0 S0 S0 20 OO BB 06 SO S0 2% 00 S8 36 9u 96 o8




LINES INPUT INSTRUCTIONS

‘)o-' ISR R SNE RN ENEE SRR SRS T AT AN URNY: T SRR AR SRS RSANERSEERSNIARENTAS
|!'8:f'muumuxuumuu L1 NES IBRIESRRETSTSLLRLRIRASILIRIRLINREES
:@mmmmumumnnwumuuuuummummm
:ob“;c BOUNDARY SEGNENT CODE FOR INPUT TO WESCOR

NISSISSIPF1 STATE UNIVERSITY . 1982

300=C U,5.ARNY ENCINEER WATERWAYS EXPERINENT STATION
210=C VICKSBURG, MISSISSIPPI

?ﬁmummmmummummmt
*so=cuu POINTS ON BOUNDARY SECHENTS s33%
‘%:cmuumumxmummmuummuumumuumu
20=Caaes INPUT ¢

mmﬂ § NLINES - FORMAT(IS)

330=( MLINES - TGTAL NUNBER OF LINES,

mmwmm) $ N ITYPsD19D2o03sD45D5s D60DE -  FORMAT( 215:7F10.0)
’70‘C ¥ - NUMBER OF POINTS ON LINE.

380=C '

390=C 17YP - TYPE OF LINE i

400=( 0 ¢ STRAIGHT. !

#40=C 1 & CIRCULAR ARC. 1

20=C 3§ ELLIPTIC ARC.

+3)= 3% CUBIC, {

"=t 4 ¢ OUADRATIC WITH ZERO SLOPE AT FIRST POINT, {

22325 S i QUATRATIC WITH ZERD SLOPE AT SECOND POINT, b

A‘zg:c 11-D¢ AS FOLLOWS - ( ITENS NOT CITED ARE IRRELEVANT) I

$90<C  ITYP=0 ¢ D1 - X OF FIRST POINT, !

500<C - Y OF FIRST POINT.

510=C I3 - X OF SECOND mm

§§o;c 4 - Y OF SECOND POINT

S40=C  ITYP=1 ¢ [l - AWGLE OF FIRST PInT wscncss, COUNTER-CLOCK FROW POSITIVE X-AXIS)

£50=C D2 - AWGLE OF SECOND POINT (DECREES, COUNTER-CLOCK FROM POSITIVE X-AXIS)

30=C D3 - X OF CIRCLE CENTER.

£70=C D4 - Y OF CIRCLE CENTER.

s%:g DS - CIRCLE RADIUS,

300=C  ITYP=2 ¢ D1 - AWGLE OF FIRST POINT. (DEGREESs COUNTER-CLOCK FROM POSITIVE K-AXIS)

810=C U2 - AMGLE DF SECOND POINT, (DEGREES, COUNTER-CLOCK FROW POSITIVE X-AXIS)

020=C D3 - X OF ELIPSE CENTER.

630=C D4 - Y OF ELLIPSE CENTER,

40=C 15 - X-AXIS mmu OF ELLIPSE.

050=C Bo - Y-AXIS LENGTH OF ELLIPSE,

0d0=C

o70=C  ITYP=3 ¢ m SAKE AS ITYP=0 -

630<C - SLOPE AT FIRST POINT. (DECREES) COUNTER-CLOCK FROM POSITIVE X-AXIS)

gm no SLOPE AT SECOWD POINT, (DECREES, COUNTER-CLOCK FROM POSITIVE X-AXIS)

;g:g ITYP=4 : D1-Ds SAE AS ITYP=0

?g“icc 1TYPsS ¢ D1-Dé SAME AS ITYP=0

L K - exmmm cmmnm FACTOR,

76050 0,0 m saua.sv ING ON LINE, 4

770=C MECATIVE FOR COMCENTRATION NEAR FIRST POINT, :

’aoacm msmw m CONCENTRATION NEAR SECOND POINT,

Wmmmm:mm 3
820=C MES STORAGE FILE

m OUTPUT - FILE 10 ¢ WITE( 10) X(I¥( 1)
8350=C POINTS OF EACH LINE, INCLUDING ENDS.
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CSPLAT INPUT INSTRUCTIONS

-u&cmutmmmmmmm
.%uummmuuwm CSFLOT SEITSEIsassssssssssitsssssassstssns
‘{7‘8:8 COOKDINATE SYSTEM PLOT CODE - KISSISSIPPI STATE UMIVERSITY . 1982

180=C U5, ARNY ENGINEER WATERMAYS EXPERIMENT STATION
190=C VICKSBURG, MISSISSIPPL

200=C3

R m——
'.;zg:tc :um TNPUT INSTRUCTIONS ¢

7L x‘n CARD ; MUMBR » NUMBR11» ISKIP1 » ISKIP2Z - FORMATC4IS)

90 % = NUMBER OF EM—CMSTMT LINES DESIRED FOR PLOT.
m : (DEFAULT 15 ALL LIMS)

320C & NUMBR1 - NUMBER OF XI=CONSTANT LI!S DESIRED FOR PLOT,
33“&% : (DEFAILT 1S AL LINES)

= 3 1KIP - SKIP PARMITER FOR X1=CONSTANT COORDINATE LINES.
00=C ¢ 0TS EVERY LINEy 2 PLOTS EVERY SECOND LINE,» ETC.)
= : (MFMI.T IS EVERY LInc)

3%=C $ 15K1F2 - SKIP PARAMETER FOR ETA=CONSTANT COORDINATE LINES.
0?8:% : (SEE ISKIP1}

4

ﬁZﬁ zl! CARD : IK1 ¢ IB2 » JB1 » JB2 - FORMAT(4IS)

o=l 3 1»J_INDICES OF PLOT FIELD BOUNDARY,

=g : (115 XI» J IS ETA. DEFAULT 15 ENTIRE FIELD)

470=C :u CARD ¢ XYRAT - FORMAT(T10.0)

gg:% : XYRAT - RATIO OF PLOTTED X TO Y LENGTHS. (1.07

gxﬁg:cc BRad it tddiniataniitieidnieittitincitiodadiadadiod ettt beiissrit iy
!

4
£30=C 823888 COORDINATE SYSTEM 1S READ UNFORMATTED FROM UNIT 10 AS
w“o=C mxu WRITTEN BY TAE CODE ‘WESCOR’

340=0 tmmmmmmmw
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SAMPLE RUNSTREAMS

LINES Sample Runstream #1

20=J08,
mms.wnmr-mmmmmsmm.m-m-m.
140=L IRy DN=
:WBIS’OSE:NFFT&:?BHILE:I_N“SLN YR.TEXT-

o= + THOMPSONL INESO 1D-0RENING0 + RP
170=DELETE » IN=BINAKY s

180=EXIT.

190=DELETE » DN=BINARY

S00=8£0R

0= 5

:g°= 9 0.0 0.0 24,39 9.0
230= 9 0 0.0 =0.3 0l =0.3
0= bl 0 6.1 -0.3 5’039 =0.91
o= 2 0000 -0.3 0.0 0.0
0= B 023 -0 .39 0.0
J0=3E0R

~80=3E0F

WESCPR Sample Runstream #1

120408

mmms,wmo.rmmsmmcsn,xm,nr TR,

4ACOIIRE, BN, PN THONPSINGIR D6 1SN 7

o0 BISPSE, WEF T, SAFLE D=8 21T T
S 'r LE» THOPSONCORDO: 1-S0MSNE0 KP=999, ',
beDELETE D

190=DﬂET{anFBINMY.
OO=EXIT,

Z10=DELETE s MEFT10,
<<0=DELETE » DH=BINARY.,

230=

240=JONNSON FLUME

2W=33 X_25 COORDINATE SYSTEM
260 3 2% Sw 2 -1 1 1 ¢ 0 0

J0= L 3 X -1

280- | 1 -1

0= 9 3.) 1 -1

._3003 1 5 1 -1
1 25 35 -i2

420-1.8 0,00001  0.,00001

3=

0=

350=

-300=

370=

3B0=sEOK

390=$£0F

CSPLOT Sample Runstream

E » DN=FT10sPDN=THONPSONCORLO» 1D-00ENS0NS IF =T, U0,

130=ACOUIR

MWIR&WDIWY:PW‘WSPL By ID-0N0NINNS, DF =TR, U0,

150=LIR/L 1 B=HETAL 1By BN=BINAR

uemsms:,no:rrouw ILEvl_vD&STd}F -SBvTEXT t
170= ' CATALOGFILE» THOWPSONPLOT ¢ 15 -SRISNNES, RP=999




LINES Sample Runstream #2

120=J08.

ia&m‘ %”R‘ErN-BINAi‘YvPM-THMF‘SONLINESBle-—-IIF‘TRyUO.
&

la&llS;QSEthFTlOvSD#FILE lD=~vbC‘SToIIF TR TEXT=4

160= LRl M.’ﬂ- LLE:ThWSOﬂLI'(SO 1+ 1D-GRENNAEN s RF =999,
l;&ﬂﬂt:“—ﬂ
190=DELETE , Du=BINARY

0=¢£0k
M= 15
20= % 0150 0 3.9 0 9.0 0.0 -0,08
30 9 059 0.0 4.4 Y. 0.0 2.0 o2
M= 1 04 0.68 3.9 B 0.0 0.0 0.0
X0= 9 039 0.68 .9 W9 0.0 0.0 -0,2
0= 7 0229 0.0 0.0 . 0,0 9.0 0.0
0= 2 00.0 0.0 0.9 1.0} 0.0 0.0 0.0
B0 21 009.0 1.63 3.91 1.85 0.0 0.0 0.0
0= 29 059 1.63 15.0 1463 0.0 0.0 0,04
0= 7 0150 1.3 15.0 Iy 0.0 0.0 0.0
605 3150 L8 INE 0% 50 150 0.0
320= 5 015,25  0.% 15.8 43 0.0 0.0 0.0
e 9 0158 0.43 13463 .23 0.0 0.0 0.0
0= 5 01563 0.23 15,28 o 0.0 9.0 0.0
}50= 5 31525 0.58 15.0 ] 135.0 31,0 0.0
% 9 0150 0.5 15,0 . 0.0 0.0 0.0
mkdﬂ
380=4E

WESCOR Sample Runstream #2

120=008 T=40,

130=ACOUIRE » DN=F 710 PIni=THONF-SONL 1NE SO1 s 1 D-SNENRAEN DF = TR sUG
140=ACOUIRE » DN=BI NARY » PDn=THONPSONCOR DB, 1 [-NNRNED) BF =TK 1A«
150=LIK s DN=BINARY .

lb@'lm'mﬂnhwrlli 10-000000 [IC-STs DF =TKy TEXT= f
170= CATALOGFILE » TWPPSONCORDOY » 1) -0BEENDEN / RF =999, |
180=DELEE,DN=F7110,

190=TELETE s D=k INARY

200=£X1T,

210=DELETE 1Bw=F 710,

0=DELETE  DU=BINARY »

230-3£0R
“6= BORTCH TEST 4 - WITH WEIR
57.': 23 WDIMTE SYSTEN

.00= 15 2 - | S T S R
J6= & 5 1 ﬂl
= X U 1 -1
B i 1L 1 -n
M- 1 7 1 -l
EH A T B
1N 1 -
330= LN -i
L0 R SRS B SR |
k- SR T ) B
#®0= 8 5 17 -1
;70’ 53 5, l/_ -1
._)80:3 17 o1
M= 7 55 9 -

W 33 4 9 -
0= 9 1 a7 -l
+20=1.8 0.00001 0.00001
4,
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In accordance with letter fro& DAEN-RDC, DAEN-ASI dated
22 July 1977, Subject: Facsimile Catalog Cards for
Laboratory Technical Publications, a facsimile catalog
;a:d in Library of Congress MARC format is reproduced
elow,

Thompson, Joe F.

A boundary-fitted coordinate code for general two-
dimensional regions with obstacles and boundary
intrusions / by Joe F. Thompson (Department of Aerospace
Engineering, Mississippi State University). -- Vicksburg,
Miss. : U.S. Army Engineer Waterways Experiment Station ;
Springfield, Va. ; available from NTIS, 1983.

80 p. : il1l. ; 27 cm. -- (Technical report ; E-83-8)

Cover title.

"March 1983."

Final report.

"Prepared for Office, Chief of Engineers, UI.S. Army
under EWQOS Task IIIA.4."

"Monitored by Hydraulics Laboratory, U.S. Army Engineer
Waterways Experiment Station."

At head of title: Environmental § Water Quality
Operational Studies.

Bibliography: p. 48.

Thompson, Joe F.

A boundary-fitted coordinate code for gemeral : ... 1983.

(Card 2)

1. Boundary value problems. 2. Computer programs.
3. Coordinates. 4. Difference equations. 5. Differential
equations. 6. Finite difference equations. 7. Numerical
analysis. 1. Mississippi State University. II. United
States. Army. Corps of Engineers. Office of the Chief
of Engineers. III. Environmental § Water Quality
Operational Studies. IV, U.S. Army Engineer Waterways
Experiment Station. Hydraulics Laboratory. V. Title
VI. Series: Technical report (U.S. Army Engineer Waterways
Experiment Station) ; E-83-8.
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