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A BOUNDARY-FITTED COORDINATE CODE FOR GENERAL TWO-DIMENSIONAL

REGIONS WITH OBSTACLES AND BOUNDARY INTRUSIONS

INTRODUCTION

The use of numerically generated boundary-fitted curvilinear coor-

dinate systems as the basis for numerical solution of partial differential

equations on arbitrary regions is now well established. A comprehensive

survey of the generation and use of these coordinate systems has recently

appeared, Ref. [1], and the proceedings of a recent symposium devoted

to this area, Ref. [2], cover the basic techniques involved, as well as

applications in many areas.

Such coordinate systems have the property that some coordinate line

is coincident with each segment of the boundary in the physical region,

so that the complication of boundary shape is effectively removed from

the problem. In the past decade the numerical generation of curvilinear

coordinate systems has provided the key to the development of finite

difference solutions of partial differential equations on regions with

arbitrarily shaped boundaries. Although much of the impetus for these

developments has come from fluid dynamics, the techniques are equally

applicable to heat transfer, electromagnetics, structures, and all other

areas involving field solutions.

With coordinate systems generated to maintain coordinate lines

(surfaces in 3D) coincident with the boundaries, finite difference codes

can be written which are applicable to general configurations without

the need of special procedures at the boundaries. Even when the bound-

aries are in motion, the use of such coordinate systems allows all
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computation to be done on a fixed grid with a uniform square mesh in the

transformed plane. This greatly simplifies the coding, particularly

with regard to boundary conditions, which can now be represented without

need of interpolation. It is also possible to distribute the curvilinear

coordinate lines in the physical plane with concentration of lines in regions

of high gradients while maintaining the square grid in the transformed

(computational) plane.

With such systems, the grid points may be thought of as a finite

set of observers of the physical solution, stationed so as to be most

effective in covering all of the action on the field. The structure of

an intersecting net of families of coordinate lines allows the observers

to be readily identified in relation to each other. This results in

much more simple coding than would the use of a triangular structure

or a random distribution of points. The grid generation system provides

some influence of each observer on the others so that when one moves

to get into a better position, its neighbors will follow in order to

maintain smooth coverage of the field. The curvilinear coordinate system

thus should cover the field, with coordinate lines (surfaces) coincident

with all boundaries. The distribution of lines should be smooth, with

concentration in regions of high gradient.

Numerical solutions of partial differential equations are done on

the curvilinear coordinate system by first transforming all partial

derivatives (or integrals) analytically so that the curvilinear coordinates,

rather than the physical coordinates, become the independent variables.

Normal and tangential derivatives at boundaries are similarly transformed.

(These transformation relations are given in Ref. [3].) The result is a

6



set of partial differential equations and boundary conditions in which

all derivatives (and integrals) are with respect to the curvilinear coor-

dinates. These equations may then be expressed as difference equations

on the square grid that is inherent in the transformed plane. There is

thus no need for interpolation regardless of the shape of the boundaries

or the distribution of the curvilinear coordinate lines in the field.

The present report concerns a code for the generation of boundary-

fitted coordinate systems for general 2D regions with boundaries of ar-

bitrary shape and with internal obstacles and boundary intrusions, arbi-

trary in shape and number. The code, referred to as WESC0R, is described

and instructions for input and use are given. Examples of the applica-

tion of this code are given in Ref. [4]-[6]. The coordinate system is

generated from the numerical solution of a system of elliptic partial

differential equations with provision for controlling the spacing of the

coordinate lines in the field. The transformed (computational) region

is rectangular with the obstacles and intrusions transformed to slits

and/or slabs. (This type of transformed configuration and its use are

discussed in Ref. [3].) A small code to distribute points on various

fundamental curves with exponential concentration is also described.

This front-end code can be used to construct boundary point distributions

for input to the coordinate code. A plot code for the coordinate system

is also included. The boundary-fitted coordinate systems generated by

this code may be used as a basis for the numerical solution of partial

differential equations for any physical problem of interest.

The elliptic generation system is discussed in Part A and the op-

eration and use of the codes are covered in Part B.
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PART A

ELLIPTIC GENERATION SYSTEM

ELLIPTIC GENERATION SYSTEM

The generation of boundary-fitted coordinates from elliptic systems

and the use thereof in the numerical solution of the Navier-Stokes e-

quations is surveyed in Ref. (1]. The foundations of elliptic generation

systems are discussed in detail in Ref. [7], and basic configurations of

the transformed plane are covered in Ref. [3]. The discussion in this

section is an introduction to the subject given by Johnson and Thompson

in Ref. [5] and is incorporated here for convenience.

Basic Ideas

Suppose one is interested in solving a differential system involving

two concentric circles, such as shown in Fig. 1, where r = constant - n

on the inner circle and r = constant = fl2 on the outer circle, and e

varies monotonically over the same range over both the inner and outer

boundaries, i.e., 0 to 360*.

A cylindrical coordinate system is the obvious choice since a coor-

dinate line, i.e., a line of constant radius, coincides with each boundary.

If one now pulls the interior regions between the two circles
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apart at 6 - 00 (or 6 - 360*) and folds outward, it is easy to visualize

the region D1 becoming the rectangular region D2. Likewise, it should

be obvious that the right and left sides of the rectangle are reentrant

boundaries since e - 00 and E6- 3600 are coincident in region DV. If

one computes a derivative in the cylindrical system at 6 - 0, values

at the points marked x and o on both sides might be used. Thus, these

same points, as shown in the rectangular region, would be used for a

similar derivative in region D2 . This is the reason for calling these

boundaries reentrant boundaries. As shown, the boundary of the inner

circle becomes the bottom of the rectangular region while the boundary

of the outer circle becomes the top.

The general boundary-fitted system is completely analogous to the

system discussed above. In Fig. 2 the curvilinear coordinate, T), is

defined to be constant on the inner boundary in the same way that the

curvilinear coordinate, r, is defined to be constant on the inner circle

in the cylindrical coordinate system. Similarly, n is defined to be

constant at a different value on the outer boundary. The other curvi-

linear coordinate, t, is defined to vary monotonically over the same

range on both the inner and outer boundaries, as the curvilinear coordi-

nate, e, varies from 0 to 2n around both the inner and outer circles in

cylindrical coordinates. It would be just as meaningless to have a dif-

ferent range for C on the inner and outer boundaries as it would be to

have 6 increase by something other than 2w around one of the circles in

cylindrical coordinates. It is this fact that & has the same range on

both boundaries that causes the transformed field to be rectangular.

Note that the actual values of the coordinates, n and t, are irrelevant,
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in the same way that r and e may be expressed in different units in cylin-

drical coordinates.

Now that the values of the coordinates, n and E, have been completely

specified on all the boundaries of a closed field, it remains to define

the values in the interior of the field in terms of these boundary values.

Such a task immediately calls to mind elliptic partial differential

equations, since the solution of such an equation is completely defined

in the interior of a region by its values on the boundary of the region.

Thus if the coordinates t and n are taken as the solutioqs of any two

elliptic partial differential equations, say L(C) = 0, D(n) - 0, where

L and D represent elliptic operators, then E and n will be determined

at each point in the interior of the field by the specified values on

the boundary. One condition must be put on the elliptic system chosen,

since the same pair of values ( ,ri) must not occur at more than one point

in the field or the coordinate system will be ambiguous. This condition

can be met by choosing elliptic partial differential equations exhibiting

extremum principles that preclude the occurrence of extrema in the in-

terior of the field.

This may be illustrated with resort to the governing equation for

a stretched membrane. Consider a membrane attached to a flat plate

around a closed circuit of arbitrary shape as shown in Fig. 3. Now let

a cylinder of arbitrary flat cross section be pushed up through the plate,

stretching the membrane upward. The vertical displacement, h, of the

membrane will be described by Laplace's equation, V2h - 0, with h - h1

and h2, respectively, on the circuits of contact with the plate and cyl-

inder. If equally spaced grid lines encircling the cylinder had been

12
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Figure 3. Illustration of extremum principle

for Laplace's equation
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drawn on the membrane before displacement, these lines would appear to

move closer to the cylinder when viewed from above after displacement

of the membrane. None of these lines would cross, however.

Now let pressure be applied on the upper side of the membrane as

diagrammed in Fig. 4a. This will cause the slope at the cylinder to

steepen, with the effect that the lines will appear to be drawn even

closer to the cylinder but still without crossing. This situation cor-

responds to the Poisson equation, V2h = p, where p is the applied pressure.

If a variable pressure is applied on both sides of the membrane to a

sufficient degree, it is possible to make the membrane assume an S-shape

as shown in Fig. 4b. In this case the encircling lines have crossed,

and, consequently, a point on the plate can no longer be identified by

specifying the encircling line that it lies below (together with a radial

ray). This latter case corresponds to a right-hand side of the Poisson

equation that is not of one sign over the entire membrane, in which case

the extremum principles of Poisson's equation are lost.

Note, however, that if the differential pressure that is applied

across the membrane is not too large, the S-shape will not be reached.

In this case the lines do not cross, but rather the lines seem to con-

centrate near a line in the interior of the field. Thus the existence

of an extremum principle is a sufficient condition to prevent double-

valuedness in the coordinate system but is not a necessary condition.

Care must be exercised in its absence, however.

14
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Mathematical Development

From the discussion above, a logical choice of the elliptic gen-

erating system is Poisson's equation. Thus, based upon Fig. 2, the

basic problem is to solve

Cxx + &yy - P

(1)

Ti +i =Q
xx yy

with boundary conditions,

C -l(x,y) on r1

n constant = nI on r 1 1 (2)

E 2(x,y) on r2

q constant = n2 on r2

The arbitrary curve Joining rI and r2 in the physical plane specifies

a branch cut for the multiple-valued function, E(x,y). Thus the values

of the coordinate functions x(&,n) and y(&,n) coincide along r3

and r4 , and these functions and their derivatives are continuous from

r3 to r Therefore boundary conditions are neither required nor allowed

on r3 and r4 . As previously noted, boundaries with these properties

are designated reentrant boundaries.

The functions P and Q may be chosen to cause the coordinate lines

to concentrate as desired, in analogy with the membrane discussed above.

16



As discussed in Ref. [7], negative values of Q result in a superharmonic

solution and cause n-lines to move toward the n-line having the lowest

value of n, while positive values have the opposite effect. Considering

the & solution to be superharmonic results in the interior of the -

constant lines being rotated in a counterclockwise direction in the physical

plane; whereas if the c-equation is subharmonic, i.e., P is positive,

the lines are rotated in the clockwise direct: on. These effects

are discussed in more detail below. It has been found convenient, as

discussed in Ref. [7], to redefine the control functions as

p =7 (x 2 + y 2 )p

Q 7 X E(x 2 + y )Q

A major purpose of this coordinate system control is to concentrate

lines in viscous boundary layers near solid surfaces, and some automated

procedures for this purpose have been developed (cf. Ref. [7]). Control is

also useful to improve grid spacing and configuration when complicated

geometries are involved.

Since all numerical computations are to be performed in the rec-

tangular transformed plane, it is necessary to interchange the dependent

and independent variables in Eq. (1). Using the relations given in

Ref. [3], Eq. (1) becomes

OxE -2$x n + Yxnn + aPx& + yQxn M 0

(3)

OyU - 28y&n + Yynn + aPy& + yQy = 0

17
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where

a X2+ y2

M X enc + yen

yM x2 + y2

J = Jacobian of the transformation x~y - xy

with the transformed boundary conditions

x = f1(t,n) on r*

y= g1 (E,'l) on r*

x = f2 (E,'2 ) on r*

y g2( 'n2) on r*

Again considering Fig. 2, the boundary functions fl, f29 g,, and 92

are specified by the known shape of the contours r and r2 and the speci-

fied distribution of 4 thereon. Boundary data are neither required nor

allowed along the reentrant boundaries r3 and r 4* Although the new

system of equations is more complex than the original system, the boundary

conditions are specified on straight boundaries and the coordinate spacing

in the transformed plane is uniform. Computationally, these advantages

far outweigh any disadvantages resulting from the extra complexity of

the equations to be solved.

18



The boundary-fitted coordinate system so generated has a constant

n- line coincident with each boundary in the physical plane. The -

lines may be spaced in any manner desired around the boundaries by

specification of x,y at the equispaced E-points on the r* and r*

lines of the transformed plane. As noted above, the entire side boundaries

are reentrant boundaries, and thus neither require nor allow specification

of x,y thereon.

Now the rectangular transformed grid is set up to be the size

desired for a particular problem. Since the values of E and T) are

meaningless in the transformed plane, the n-lines are assumed to run

from 1 to the number of n-lines desired in the physical plane. Likewise,

the C-lines are numbered I to the number specified on the boundaries of

the physical plane. The grid spacing in both the E and rj directions of

the transformed plane is taken as unity. Second-order central difference

expressions are used to approximate all derivatives.

Only one of a pair of reentrant boundaries is considered as a com-

putation line since the (xy) are equal on both. As an example of how

a reentrant boundary is handled, consider the grid in Fig. 5 where "o"

indicates a computation point and "A" a boundary point. The derivative

of x with respect to E along i = I would be written as

X 2 (x2 )/2 (4)

I x l,j 'J2 - XIAX-'j 1

Again, it should be stressed that all computations are performed

on the rectangular field with square mesh in the transformed plane. The

resulting set of nonlinear difference equations, two for each point, is

solved by accelerated Gauss-Seidel (SOR) iteration using overrelaxation.

19
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Some discussion of this technique is presented in Ref. [8].

It might be noted that both orthogonal and conformal transformations

are special cases of the generation of boundary-fitted coordinate systems

as the solutions of elliptic partial differential systems. In both of

these cases the curvilinear coordinates satisfy Laplace's equation with

one coordinate constant on each boundary, and the normal derivative of

the other coordinate equal to zero on each boundary. A conformal system

also requires a certain relation between the range of the two curvilinear

coordinates.

The same procedure may be extended to regions that are more than

doubly connected, i.e., have more than two closed boundaries, or equiv-

alently, more than one body within a single outer body. A river reach

containing more than one island would be an example. One such trans-

formation for such a problem is illustrated in Fig. 6.

Types of Boundary-Fitted Coordinate Systems

The above discussion of the generation of boundary-fitted coordinates

has centered around the idea of using branch cuts to reduce multiply

connected regions to simply connected ones in the transformed plane.

An example using branch cuts is sketched in Fig. 7. Here the body in

the field transforms to the entire bottom boundary of the transformed

plane, while the entire surrounding boundary, 1 - 2 - 3 - 4 - 5 - 6,

transforms to the top boundary of the transformed plane. The sides of

the transformed plane are reentrant boundaries, corresponding to the cut,

8 - 1 and 7 - 6, in the physical field. Thus, in the difference equations,

points lying just to the right of the right boundary are identical with

corresponding points just to the right of the left boundary. This is

21
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Figure 6. Boundary-fitted coordinates for a river
containing two islands
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Figure 7. Example of coordinates generated using a
branch cut. Placement of body is such that sides

are reentrant boundaries
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the same type of circumstance that occurs with the familiar cylindrical

coordinate system, where 8 = 3610 is the same point as 0 - 1. Similarly,

points just outside the left boundary are coincident with points just

inside the right boundary.

Many variations of this type of coordinate system can be produced,

cf. Ref. [ 3]. For instance, the transformed plane corresponding to the

same physical field shown in Fig. 7 can be rearranged as shown in Fig.

8. Now the reentrant boundary, corresponding to the cut, is located on

a portion of the bottom of the transformed plane. The coordinate lines

that result from these two types of arrangements of the transformed plane

are shown on each of the figures. As with all the boundary-fitted coor-

dinate systems, the grid is square in the transformed plane regardless

of the line configuration in the physical plane.

Multiple-body fields can also be transformed to simply connected

regions, an example of which is shown in Fig. 9 . Again there are many

different possible arrangements of the transformed plane, all of which

are created by sliding the boundary segments around the rectangular

boundary of the transformed plane. A number of examples are given in

Ref. [ 3] and Ref. [81.

The other type of coordinate system transformation available leaves

the multiplicity of the region unchanged. In this case, bodies in the

interior of the physical field are transformed to rectangular slabs or

even slits in the transformed plane. Three different possibilities are

shown in Fig. 10 for the physical plane shown in Fig. 7. In the case of

slits, the physical coordinates and solution variables in general have

different values at points on the two sides of the slit, even though such

24
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Figure 8. Example of coordinates generated using a
branch cut. Placement of body is such that reentrant
boundaries lie on bottom line of the transformed

plane
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Figure 9. Coordinates generated for a
multiple-body field
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Figure 10. Examples of coordinates generated using slabs/slits
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points are coincident in the transformed plane. This does not introduce

any approximations, but simply adds a little more bookkeeping to the

code. Fields with more than one body in the interior simply result in

a like number of slabs and/or slits in the transformed plane.

Comparison of all of the above figures shows that different types

of transformation may be more appropriate for different physical config-

urations. A further example of this is the configuration in Fig. 11,

shown with three variations. Generally, the slit/slab form is more

appropriate for channel-like physical configurations having bodies in

the interior, while the other form works particularly well for "unbounded"

regions involving external flow about bodies and for regions having an

outer boundary that forms a continuous circuit without pronounced corners

around the field. The slab is generally superior to the slit unless

the boundary has a sharp point. The case of a single channel without

any interior bodies is the same in either form. An example of a river

reach containing two islands, using horizontal slits rather than the

branch cuts previously presented in Fig. 6,is given in Fig. 12.

Data Required for Generation of Boundary-Fitted Coordinates

The basic input or data required to generate a boundary-fitted

coordinate system are the physical coordinates of points on the boundaries.

For example, with reference to Fig. 7, the coordinates of points on the

body from 8 around to 7 would be required, with these points being

spaced in any manner desired as long as there is a continuous progression

from 8 to 7. Similarly, the (x,y) values for points on the outer boundary

from 1 to 2, etc., on around to 6 would be required. Again these points

28
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Figure 12. Coordinates generated with slits for a
river with two islands
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may be spaced around the boundary as desired, with no restriction as to

how many points lie on each boundary segment, e.g., between 1 and 2 or

between 4 and 5, provided that only the total number of points from I

around to 6 is the same as from 8 to 7. The coordinates of points must

be specified on the entirety of these lines. The coordinates of points

on reentrant segments of the boundary in the transformed plane, e.g., I

to 8 and 6 to 7, are not specified but are free to be determined by the

solution.

Similarly, with reference to Fig. 10a, the coordinates of outer

boundary points are required in the slab/slit transformations. In

addition, body points from 6 to 1 on the lower half of the body and

from 1 to 6 on the top half are required. No calculations would be

made on the slab sides of Figure 10c or slits of Figures 10a and l0b

since values at such points are fixed. Points in the interior of a

slab are irrelevant. As always, points may be spaced as desired around

the bodies and outer boundary segments.

Computer Time Required for Generation of Boundary-Fitted Coordinates

Ref. [ 8] indicates that the typical time required to generate a

one-body coordinate system without coordinate system control (the

functions P and Q are set to zero) is about 2 min on a UNIVAC 1106 com-

puter for a 70 x 30 field (70 points on the body). If P and Q are not

zero, so that the spacing of coordinate lines is controlled, the computation

time increases. Multiple-body coordinate systems typically require about

6 min for a 70 x 40 field. If these same computations were to be made

on a CDC-7600 computer, the times luoted above would be reduced by perhaps
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an order of magnitude or more. Therefore, the cost of generating

boundary-fitted coordinate systems for use in numerical models will

be generally insignificant.

COORDINATE SYSTEM CONTROL

Control of the coordinate line spacing in the field can be exercised

through the non-zero values given to the Laplacian of the curvilinear

coordinates as in Eq. (1), as noted above. With a zero Laplacian, the

lines tend to be closely spaced near convex segments and more widely

spaced near concave segments. A negative value of the Laplacian causes

the lines to move toward lower values of the curvilinear coordinate.

Attraction to Other Coordinate Lines and/or Points

This effect is utilized as in Ref. [ 8] to achieve attraction of

coordinate lines to other coordinate lines and/or points by taking the

form of the control functions to be

n

P(,) = - ai sign(Q- i)exp(-ci - Cil)

(5)

- bi sign(E - i -
2 + ( - i1

and an analogous form for Q(Q,n) with and n interchanged. The effects

of such control is illustrated in Refs. [ 7] and [ 8]. The efficacy

of control to improve the accuracy of a physical solution done on the

coordinate system has been noted.

In the P function, the effect of the amplitude, ai, is to attract

c-coordinate lines toward the Ei-line, while the effect of the amplitude
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b i is to attract C-lines toward the single point (Ei, ni). Note that

this attraction to a point is actually attraction ot &-lines to a point

on another C-line, and, as such, acts normal to the E-line through the

point. There is no attraction of n-lines to this point via the P

function. In each case the range of the attraction effect is determined

by the decay factors, c i and d With the inclusion of the sign changing

function, the attraction occurs on both sides of the &-line, or the

( i, ni) point, as the case may be. Without this function, attraction

occurs only on the side toward increasing ., with repulsion occurring on

the other side. A negative amplitude simply reverses all of the above-

described effects, i.e., attraction becomes repulsion and vice versa.

The effect of the Q function of n-lines follows analogously. It should

be noted that P and Q are discontinuous because of the sign function and

are equal to sums of second derivatives. As a consequence, the coordinates

have continuous first derivatives but discontinuous second derivatives

at controlled locations.

In the case of a boundary that is an n-line, positive amplitudes

in the Q function will cause n-lines off the boundary to move closer

to the boundary, assuming that n increases off the boundary. The effect

of the P function will be to alter the angle at which the &-lines inter-

sect the boundary, since the points on the boundary are fixed, with the

&-lines tending to lean in the direction of decreasing C. If the boundary

is such that n decreases off the boundary, then the amplitudes in the Q

function mustbe negative to achieve attraction to the boundary. In

any case, the amplitudes a i cause the effects to occur all along the

boundary, while the effects of the amplitudes b i occur only near se-

lected points on the boundary.
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Attraction to Space Curves and/or Points

If the attraction line and/or the attraction points are in the

field, rather than on a boundary, then the attraction is not to a fixed

line or point in space, since the attraction line or points are themselves

solutions of the system of equations, the functions P and Q being functions

of the variables C and n. It is, of course, also possible to take these

control functions as functions of x and y, instead of E and n, and achieve

attraction to fixed lines and/or points in the physical field. This

case becomes somewhat more complicated, since it must be ensured that

coordinate lines are not attracted parallel to themselves. The following

development was given in Ref. [9].

Recall that in the above discussion, n-lines are attracted to other

n-lines , and E-lines are attracted to other E-lines . It is unreasonable,

of course, to attempt to attract n-lines to c-lines , since that would

have the effect of collapsing the coordinate system:

C-line

n-line

When, however, the attraction is to be to certain fixed lines in

x-y space, defined by curves y - f(x), care must be exercised to avoid

attempting to attract n- or &-lines to specified curves that cut the

n- or c-lines at large angles. Thus, in the figure below,
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it is unreasonable to attract C-lines to the curve f(x), while it is

natural to attract the n-lines to f(x).

However, in the general situation, the specified line f(x) will not

necessarily be aligned with either a - or n-line along its entire length.

Since it is unreasonable to attract a line tangentially to itself, some

provision is necessary to decrease the attraction to zero as the angle

between the coordinate line and the given line f(x) goes to 90*. This

can be accomplished by multiplying the attraction function by the cosine

of the angle between the coordinate line and the line f(x). It is also

necessary to change the sign on the attraction function on either side

of the line f(x). This can be done by multiplying by the sine of the

angle between the line f(x) and the vector to the point on coordinate

line.

These two purposes can be accomplished as follows. Let a general

point on the C-line be located by the vector R(x,y), and let the attrac-

tion line y - f(x) be specified by the collection of points S(xiYi),

i - 1, 2, --, n. Let the unit tangent to the attraction line be

t(xi,Yi), and the unit tangent to a C-line be T

35



The control functions P(x,y) and Q(x,y) may then be logically taken as

n [t x(R - S
P(x,y) - a(ti• T [R- exp(-d R  Si

(6)

n
n .  ( [t x (R -S) k

Q(xy) a - 0) exp(-d.IR - S.)iiIR - Sil 1. .
i=l -~ .

where k is the unit vector normal to the two-dimensional plane. These

relations are evident from the figure below:

T(% C-line

Y attraction line

Here the term t T M serves to decrease the attraction to zero as the

angle between the E-line and the attraction line approaches 900. The

cross product term changes the sign of the control function on either

side of the attraction line to produce attraction on both sides of the

line. Again the strength and range of the attraction are determined by

the amplitude, ai, and the decay factor, di, respectively.
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These functions depend on x and y through both R and T or T , and

thus must be recalculated at each point as the iterative solution proceeds.

This form of coordinate control will therefore be more E-xpensive than

that based on attraction to other coordinate lines.

There is no real distinction between "line" and "point" attraction

with this type of attraction. "Line" attraction here is simply attraction

to a group of points that form a line f(x). If line attraction is speci-

fied, then the tangent to the line f(x) is computed from the adjacent

points on the line. If point attraction is specified, then the "tangent"

must be input for each point. The tangents to the coordinate lines are

computed from the relations given in Ref. [3].

Control Functions from Boundary-Point Distributions

With the Laplacians of the coordinates equal to zero, the line

spacing in the field will not be greatly affected by the distribution

of the boundary points, except very near the boundaries. In fact, if

the control functions are not consistent with the boundary point dis-

tribution, very large changes in the metric coefficients will occur near

the boundaries. Values of the control functions may be determined from

the 1D boundary point distribution such that the line spacing in the

field will generally follow that on the boundary. This concept was in-

troduced in Ref. [10 ] and is discussed in Ref. [7] as generalized to 3D

in Ref. [11 ]. However, in the use of control functions that are

ID, it should be noted that excessive concentration of lines can occur

near sharp convex corners as discussed in Ref. [7].

With Eq. (3) evaluated in ID on a straight n-line conincident with

the x-axis, we have, since x. y& = 0 in this case,
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=x - -aP() x (7)

The reason for the choice of the form of the control functions in Eq. 3

becomes clear, since c cancels from this equation to leave

P() = -x /x (8)

Thus the control function, P(E), can be determined from the specified

boundary point distribution, x(E). Generalizing, x is replaced by arc

length along the C-line , and the effect will be qualitatively the same

when this line is curved. (Compare Ref. [7] for more detail.)

If this value of the control function is then used throughout the

field, the t-line distribtuion in the field will generally follow the

specified distribution of the end points of these lines on the boundary.

With different point distributions on two boundaries, values of the

control function P(&,n) in the field between can be determined by 1D

interpolation in n between the values determined in the above manner on

the two n-line boundaries. An analogous development applies for the

determination of the control function Q(E,n) from interpolation in

between ID evaluations on two &-line boundaries. This interpolation

was introduced in Ref. [12 ] in a 2D coordinate system.

SYSTEM CONFIGURATION

In the present model, the physical field may have both external and

internal boundaries of arbitrary shape. The field in the transformed

plane is rectangular with rectangular holes corresponding to any internal

boundaries. This configuration is illustrated in Fig. 13. Boundary
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PHYSICAL PLANE

4 3

TRANSFORMED PLANE

Figure 13. Example of coordinates generated in a
field containing a jetty and an island
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intrusions may be transformed either to portions of the rectangular outer

boundary of the transformed region, as in Fig. 13, or to slabs protruding

inward from this boundary as in Fig. 14. A general discussion of possible

configurations is given in Ref. [3]. Various outlet shapes and locations,

as well as internal obstacles and boundary protrusions such as weirs,

can be treated by the same code with only changes in the input. This

input consists of the physical cartesian coordinates of the points se-

lected on each segment of the physical boundaries. A small front-end

code was written to provide certain line segments (linear, quadratic,

and cubic polynomials) with linear or exponential distributions thereon

automatically.

The code automatically calculates control functions P(Q,r) and

Q(E,n) for the coordinate generation equations (3) from the boundary

point distribution as discussed above. These functions are calculated

from the 1D relations on each boundary segment and are interpolated

linearly into the field between opposing boundary sections in the

transformed plane.

In addition, attraction of coordinate lines to other coordinate

lines and/or points, and to specified lines and/or points in space, also

discussed above, is provided through input quantities. This input

consists of the coordinate lines and/or point% and the specified space

curves and/or points, to which the attraction is to be made and the ampli-

tudes and decay factors for the corresponding attractions.
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TRANSFORMED PLANE

Figure 14. Boundary-fitted coordinates for a
river containing dikes
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Several examples of coordinate systems produced by this code are

given in Figs. 15-19. Examples of applications of such systems appear

in Ref. [4]-[6]. Two further examples, together with complete input

listings for the code, follow the description of the code in Part B.
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Figure 17. Hypothetical estuary similar to

Delaware River (from B. H. Johnson, Waterways

Experiment Station, Vicksburg)
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Figure 1.9. Transformation to slits
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PART B

COORDINATE CODE

The present code (WESCOR) differs from a previous version (TOMCAT)

described in Ref. [8] in that the latter does not provide for slits and/or

slabs in the interior of the transformed plane. Also, branch cuts (if used)

in the present code are restricted to the entire left and right sides of

the outer rectangle in the transformed region. Finally, the present code

includes a more extensive means of coordinate line control, involving

attraction to space lines/or points and also involving determination from

boundary point distributions.

The code for the numerical generation of the boundary-fitted coor-

dinate system from the equations of Part A, together with a front-end

code to generate boundary point distributions and a plot code, is discussed

below. These codes were implemented on the CRAY-I computer at the Air

Force Weapons Laboratory, Kirtland AFB, New Mexico.

WESC0R (Coordinate System)

This code generates the boundary-fitted coordinate system by solving

a set of elliptic partial differential equations by SOR iteration as

discussed in Part A. Attraction of coordinate lines to other coor-

dinate lines and/or points,and to specified lines and/or points in space,

is included. The shape and configuration of the boundary are arbitrary,

except that the outer boundary must be closed. There may be an arbitrary

number of internal closed boundaries transforming to either slits or

slabs as discussed in Part A.

The input to this code consists of the point distribution on the

boundary of the region, several quantities in connection with the control
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of the coordinate line spacing, and the parameters associated with the

iterative solution process. This input is described in detail below.

The file output from the code LINES can be used directly as a part of

the input to this code from file 10. A simplified flow chart of WESC0R

is shown in Figure 20.

Boundary Conf igurat ions

Arrays. The dependent variable field arrays are X and Y, which contain

the cartesian coordinates (x,y) for each grid point. The indices (I,J)

of these arrays correspond to the curvilinear coordinates (&,n), and

run from 1 to IMAX and JMAX, respectively. The increments AC and An

in the difference expressions are thus equal to unity by construction.

(These increments cancel from all the difference equations and are thus

irrelevant.)

In order to treat slit configurations, for which a closed interior

boundary in the physical region is collapsed to a slit in the transformed

region, there are four other coordinate arrays, XL, YL and XU, YU, which

contain the cartesian coordinates on the two sides of the slit. The

first index of these arrays corresponds to the location of the point

relative to the left end of horizontal slits, or relative to the lower

end of vertical slits, this end index being designated unity. The other

index indentifies the particular slit. For horizontal slits the coor-

dinates on the lower side are in XL and YL, while those on the upper

side are in XU and YU. Vertical slits have the coordinates on the left

side in XL and YL, and those on the right side in XU and YU.

There is also a field array LSLIT(I,J) containing the point type

for each point. This array identifies each point as being on a slit,
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Figure 20. Simplified flow chart
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adjacent to a slit, on a siab side, on an outer boundary, in the field,

or out of the computation region (inside a slab), as illustrated on the

diagram below:

* . adjacent to slit

adjacent to slit
av

on slit * on slit

•f ield
on outer

boundary

on slab side

* inside slab
(out of region)

* out of region fon outer boundary
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The coordinate system control functions P and Q for each point

are contained in the field arrays RXI(I,J) and RETA(I,J), respectively.

There are also arrays RXIL, RETAL and RXIU, RETAU, analogous to the

array XL, etc., discussed above, which contain the values of these

functions on the two sides of the slits. The acceleration parameters

for the iteration at each point are in the field array WACC(I,J).

Configuration types. The cartesian coordinates of the points on the

entire boundary of the physical region, i.e., the closed outer boundary

and any internal boundaries, must be input. There are two basic types

of overall configuration included in the code. In one the connectivity

of the transformed region is the same as that of the physical region,

i.e., the closed outer boundary of the physical region corresponds to a

closed outer boundary of the transformed region. With'the other type,

one branch cut is introduced in the physical region so that the closed

outer boundary and one inner boundary of the physical region transform

to the bottom and top of a rectangle forming the outer boundary of the

transformed region. The left and right sides of the transformed region

then correspond to the branch cut in the physical region. Points on

these sides therefore are not input but rather are calculated as part of

the solution.

Rectangular outer boundary. If the outer boundary of the physical

region is to correspond to a rectangle forming the outer boundary of the

transformed region, then the points on this boundary can be input in

clockwise succession around the outer rectangle of the transformed region

as in the diagram below. If the outer boundary of the physical region
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is a circle, then the points on this circle can be generated internally

by the code, requiring input only of the radius (YINFIN) and cartesian

coordinates of the center (XVINF,YOINF) of the circle, together with

the cartesian coordinates of the angular position (AINFIN) and indices

(INFXI,INFETA) of the point at which the clockwise succession of points

around the outer rectangle is to start, andjthe total number of points

on the circle (NINF). As above, the points will be placed in clockwise

succession around the circle or boundary of the physical region and

the rectangular boundary of the transformed region. The treatment of

the outer boundary is determined by the input parameter IBNDRY.

An alternative procedure for inputting the outer boundary is to input

each straight segment of this boundary of the transformed region as a

slab side in the manner described below for internal boundaries.

Internal boundaries (slits/slabs). Internal boundaries in overall

configurations of the former type introduced above correspond to either

slits or slabs in the transformed region:

54.
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In the case of slits, the points are input in clockwise succession

beginning at the right end for horizontal slits or counter-clockwise be-

ginning with the top for vertical slits, and are placed in the arrays XL,

etc., described above. For slabs, the four sides are input independently

and the succession of points may be in either direction on each side.

In fact, it is not even necessary for the four sides of one slab to be input

in succession; the sides of all slabs in the field may be placed in any

order in the input. The coordinates of the points on slab sides are

placed directly in the field arrays X and Y. This input of boundary

segments corresponding to slits or slabs is accomplished as follows.

For horizontal slits, the C-indices(I) of the left and right ends

areplaced in the arrays LBI and LB2, respectively. The n-index (J) of

the entire slit or slab side is placed in the array LB3. In the case

of vertical slits, the n-indices (J) of the bottom and top go in LBI

and LB2, while the C-index (I) goes in LB3. Slab sides are treated in

the same manner except that, since the points thereon may be input in

either direction, LBl and LB2 contain the indices of the end points of

the side in either order, i.e., LBl may exceed LB2. The points are input

from LBl to LB2.

For both slits and slab sides, a flag is placed in an array LTYPE

to designate the segment as a slit or slab side in horizontal or vertical

orientation:

+1 horizontal slit

+2 vertical slit

-1 horizontal slab side

-2 vertical slab side

The code computes the number of points on the slit or slab side from the

55



values of LBI and LB2 and places this value in the array LPT. All of these

arrays are single-dimension arrays, there being one set of parameters

for each slit or slab side. The total number of slits and slab sides,

including those on the outer boundary as described below, is specified

by the input parameter NBDY.

Outer boundary intrusions. As noted above, the outer boundary can be

input in segments as slab sides. This is illustrated below.

>4>

This is done just as described above for internal boundaries except that

values of -11 and -12, respectively, are input for LTYPE for horizontal

and vertical segments of the outer boundary.

Branch cut. With the other type of overall configuration, involving

a branch cut, the outer boundary and the internal boundary connected to

the cut are both input clockwise from the points joined by the cut. As

noted above, these points are placed on the top and bottom of the rec-

tangle forming the outer boundary of the transformed region. This type

of configuration is elected through the input parameter NREN. Additional

internal boundaries can be input as either slits or slabs exactly as

described above.

Boundary input. Provision is made for reading the boundary points

either from card images (x and y for one point to a card in 2F10.O
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format) or from the output of the LINES code described below, as de-

termined by the input parameter ISLIT. The outer boundary must be input

as segments of slab sides if this boundary is included on the output of

the LINES code.

Control Functions

Coordinate system control is included through both the attraction

of coordinate lines to other coordinate lines and/or points and to speci-

fied lines and/or points in the physical region, as described in Part A.

(For completeness, provision is made for repulsion as well as attraction.)

Attraction to coordinate lines and/or points. The first of these

requires the input of the index (indices) of the curvilinear coordinate

line, together with the associated attraction amplitude and decay factor,

for each line (point) to which the attraction is made. For attraction

to lines, the index, amplitude, and decay factor are placed in the arrays

JLN, ALN, and DLN, respectively, while for attraction to points, the

corresponding arrays IPT, JPT, APT, and DPT are used.

Attraction to space lines and/or points. For attraction to specified

lines and/or points in space, the input is similar in regard to the ampli-

tude and decay factors, using the arrays APT and DPT. It is necessary,

of course, to also input the cartesian coordinates of the points on the

line, or the isolated points, to which the attraction is made. These

coordinates are placed in the arrays XPT and YPT. For attraction to

points, it is also necessary to input the components of a vector normal

to the desired direction of the attraction for each point, these com-

ponents being placed in the arrays VEC1 and VEC2.
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Effect of boundary point distribution. In addition to the above types

of attraction, the control functions also include the effect of the

boundary point distribution discussed in Part A. This is done by evalu-

ating one of the control functions on each boundary segment in the

transformed region (P on n-lines, Q on E-lines) from the one-dimen-

sional relations in terms of arc length discussed in Part A. These values

are placed in the arrays RXI and RETA, except for slits where the arrays

RXIL, etc., are used in the manner described above for XL, etc. Values

of the control functions in the field are then interpolated linearly

between facing boundary segments, P being interpolated vertically and

Q horizontally,as illustrated in the following diagram.

AP

Q OS

:P :P

A.
* I

S .

This evaluation is done first and then the contributions to the control

functions from the line and point attraction is added to the arrays

RXI and RETA in the field.

Iterative Solution

Initial guess. The initial guess for the values of the cartesian co-

ordinates in the field, i.e., the values in the arrays X and Y in the

field, that is used to start the iterative solution is obtained by the
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same type of interpolation between facing segments described above for

the control functions, except that both X and Y are interpolated between

the pair of facing segments with the smallest separation in the transformed

region. Thus values at point 1 in the figure below would be obtained

by horizontal interpolation, but at 2 the interpolation would be vertical.

, i _2

Since very strong control functions can sometimes make the conver-

gence of the iterative solution difficult in complicatedconfigurations,

provision is made for first converging the field with the control functions

set to zero and then re-converging in steps as these functions are

increased to full value. Actually this feature is rarely needed.

Acceleration parameters. As discussed in Part A the solution for the

cartesian coordinates in the field is done by SOR iteration. Either a

uniform value of the acceleration parameter can be input as R(l) or the

code will calculate a locally optimum value at each point in the field,

these values being placed in the field array WACC. This calculation

is discussed in Ref. [8], where it is noted that the values obtained are

not truly optimum in all cases. Therefore this provision has not been

found to be as generally efficient as simply using a uniform value since the

calculation of the acceleration parameter involves a square root and

hence is time-consuming. The uniform value should be around 1.85 for
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large fields. This value should be decreased for strong control functions

or small fields.

Iterative process. The iteration continues until either the magni-

tude of the changes in the values of x and y at each point in the field

between iterations is less than the tolerances input as R(2) and R(3),

respectively, or until the maximum number of iterations allowed (input

as ITER) is reached. In the latter case the partially converged solu-

tion is stored on file 10 for restart. The input parameter IDISK can

cause the code to read this partially converged solution from file 10

and continue the iterations. This parameter also controls the dispo-

sition of the final solution, which is normally stored on file 11 for

use in the flow solution, but can be simply printed without being stored

if desired. Various other input parameters, such as print options, etc.,

are explained in the detailed input instructions given below and in

the source listing.

Code Operation

Initial input and setup. The WESCOR code uses the values of NDIM,

NDIMI, NDIM2, and NDIM3, which are assigned by a DATA statement, to deter-

mine if the problem specified by the input will fit in the arrays as

dimensioned. The first two of these parameters, NDIM and NDIMI, corre-

spond to the dimensions of the field arrays, X, etc. The last two, NDIM2

and NDIM3, correspond to the dimensions of the slit arrays, XL, etc. The

last parameter, NDIM3, also corresponds to the dimension of the segment

arrays, LBl, etc. Thus NDIM is the maximum value of & that can be used,

while NDIMl is the maximum value n allowed. Also, NDIM2 is the maximum

number of points that can be used on a slit or slab side, and NDIM3 is
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the maximum number of slits and slab sides that can be used. The input

thus must satisfy the following:

IMAX < NDIM

JMAX < NDIMI

ILB2(L) - LBl(L)j + I < NDIM2 L 1 1, 2, .,NBDY

NBDY < NDIM3

After the initial input parameters are read, the code does some

setup of various intermediate parameters and checks for compatability

with the array dimensions. The value of IDISK is then checked to de-

termine if the solution is to be started from the beginning or if a par-

tially converged solution is to be continued.

Boundary input and construction. If the start is from the beginning,

the point type array LSLIT is initialized to -20000 on the outer rectangle

formed by I = I & IMAX and J = 1 & JMAX, and to 0 inside this rectangle.

Next the points on the slits and/or slab sides (if any) are read

from either card images or file 10. Points on slits are placed in the

slit arrays, XL, etc., while points on slab sides are placed directly

in the field arrays X and Y. The point type array LSLIT is set to

-(10000 + L) at points on slab sides, where L identifies the particular

segment in the order as input, unless the side is a part of the outer

boundary in which case LSLIT is left at -20000. At the same time, 10 is

added to the segment type array LTYPE for slab sides on the outer boun-

dary, resultinglnreplacing the input values of -11 and -12 with -1 and

-2, respectively, in conformance with the usage for slits.

The slit arrays, XL, etc. (if any), are then printed and subroutine

BNDRY is called for the outer boundary. If the outer boundary is not
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input in segments as slab sides, this boundary is either input as a

succession of points proceeding from a specified point completely around

the outer rectangle formed by I = I,IMAX, and J = 1,JMAX, or a circular

outer boundary is generated internally and placed on this rectangle.

Both of these procedures are performed by this subroutine by calling the

subroutine INFBDY, which either reads a point from a card image or cal-

culates a point on the circle.

Point types. Next the point type array LSLIT is set to the following

values on and adjacent to slits (if any). Here L identifies the partic-

ular slit in the order as input:

-L : on slit

1OL + 1 : below horizontal slit

1OL + 2 : above horizontal slit not adjacent to

IOL + 3 left of vertical slit slit ends

lOL + 4 : right of vertical slit

The point type array LSLIT is then set to -10000 for points outside

the computational region, i.e., inside slabs, by sweeping along each F-

and n-line and noting when the computational region is entered or left

across a slab side. The complete point type array then contains the

values indicated in the following diagram:
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1OL + 4 IOL + 2

OL +3 IOL + 1

L -20000

-(10000 + L)

10-10000

V - 0-20000

Control functions and initial guess. With all of the boundary points

in place and the point type array filled, the code then calls subroutine

CONTRL to evaluate the control functions on the entire boundary (including

internal boundaries). The subroutine GUESSA is called next to calculate

the control functions and the initial guess for the cartesian coordinates

in the field by Interpolation from the values on the boundaries. This

interpolation is done at each point in the field by locating the pair of
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boundary segments facing the point (one or both members may be internal

boundaries) and interpolating between these segments. For the coordinate

values, the distances separating the pair of segments facing the point

in the horizontal and vertical directions are examined and the interpo-

lation is done between the pair with the smaller separation.

Iterative solution. If the solution is to be restarted from a partially

converged result, then all of the above computations are skipped and the

partially converged solution is read from file 10 instead. In either

case the initial array values are printed at this point according to

the input print controls.

Subroutine TRANS is now called to perform the iterative solution.

This subroutine first reads the parameters associated with the attraction

of curvilinear coordinate lines to other curvilinear coordinate lines and/

or points. The species of line being controlled, i.e., E or n, is read

into ATYP, and whether the control is to be attraction or repulsion is

determined by the input parameter ITYP. The number of coordinate lines

and points designated as sources of attraction are read into NLN and NPT,

respectively. Also, a common decay factor and a common amplitude multi-

plication factor to be used for all attraction lines and points for this

species can be read into DEC and AMPFAC, respectively.

For each species of control, subroutine RHS is called to read the

attraction line index, or point indices, and the amplitude and decay

factor for each. This subroutine 1iso sums the effects for all such

attraction lines and points and adds this cumulative effect to the

control function at each point in the field in accordance with Eq. (5)

of Part A.
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Subroutine TRANS then reads the parameters associated with attraction

of curvilinear coordinate lines to specified lines and/or points in space

and adds the cumulative effect of all such attraction lines and/or points

to the control functions at each point in the field. This is done in a

similar manner as described above. Subroutine RHSXY reads the cartesian

coordinates of the pointson the specified attraction line and those of

the isolated attraction points and calculates the normal to the attrac-

tion line. These qualities are placed in the arrays XPT, YPT, VECI, and

VEC2. The addition to the control functions in this case must be changed

as the iterative solution of x and y proceeds since the control functions

depend on x and y for this type of attraction.

After completing the calculation of the control functions, sub-

routine TRANS reads the parameters that provide for a gradual implemen-

tation of these equations during the iteration, and performs some setup

for the iterative solution.

The field is then swept iteratively until convergence is achieved

or the maximum number of iterations allowed is reached. In each itera-

tion, new values for x and y at points having the point type LSLIT non-

negative are calculated.

First, the coordinate derivatives are calculated, and the Jacobian

and other such quantities and coefficients are evaluated. Then the

locally optimum acceleration parameters are calculated if such is elected.

The change in these acceleration parameters between iterations is moni-

tored and the values are frozen when the magnitude of the change falls

below a specified tolerance at all points. (This change between itera-

tions, and the analogous changes in x and y, are calculated by calling

subroutine ERROR.) The acceleration parameter is placed in the field
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array WACC. The addition to the control functions from attraction to

specified lines and/or points in the physical region is calculated next,

and then the new values of x and y for the point are calculated.

This procedure is followed for all points in the field, i.e., points

having the point type LSLIT non-negative. For points adjacent to slits

it is necessary to obtain the values on the slit from the slit arrays,

XL, etc., and the calculations are done in that case by calling sub-

routine SLIT.

After each sweep of the field the maximum changes in x and y from

the previous sweep are compared with the input tolerances. If the max-

imum number of iterations allowed by the input is reached before conver-

gence, then the partially converged solution is written on file 10 for

potential restart. If convergence is obtained, the solution is written

on file 11.

LINES (Boundary Segments)

The small front-end code LINES generates a distribution of a speci-

fied number of points on a curve between two specified points. The curve

may be specified to be a straight line, a circular or elliptic arc, a

quadratic with zero slope at either end point, or a cubic with the slope

specified at both ends. In any case the point distribution on the curve

may be uniform or exponentially concentrated toward either end. The

input consists of the number of curves to be generated and, for each

curve, the number of points on the curve, the type of curve, the end

points, and the particular quantities to be specified in connection with

each curve. Detailed instructions for input are given below.
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The cartesian coordinates of the points generated on each curve

are output in succession on file 10 by a separate unformatted write

statement for each point (WRITE(l0) X,Y). Since more than one curve

can be generated in one run, this code can be used to build an entire

boundary composed of segments of different types. The generation of the

curves and the exponential concentration of points thereon are explained

in the following section.

Generation of Curves

Straight line. Here we have simply

y a + bx

so that with the end points (xl, yl) and (x2, y2) specified we have

I x 2 b Y2

so that

YlX2- Y2x1a-
x2 - 1

b Y2 - Yl
x2 - x1

Circular arc. For a circular arc of radius r centered at (xO , yo
)

with 0 measured counter-clockwise from the positive x-axis, we have
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x x 0 + r cos6

y " YO + r sin 6

The end points are defined by inputting the radius r and center of

the arc (xo, y0 ), together with the angles 61 and 62 of the end points.

r 

>
82

(x0 ,'y0 )

Elliptic arc. In this case we have, for an ellipse with semi-major

axis, a, and semi-minor axis, b, centered at xo, Y09 the equation

(x - X0)
2  (y - yo)2

a2 + b7 - 1

which can be written in terms of the angle 0, measured counter-clockwise

from the positive x-axis, and the angular-dependent radius r(e) as

x W x0 + r(8) cos 0

y M YO + r(e) sin e

Then

c0 2 e sin2 0
r(O) = a + b2
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The end points are specified by inputting the axes a and b, the center

(x 0 , y0), and the angles of the end points.

(x0 Y0 ) 
a

IN, x

Quadratic with zero slope at end point. Here we have

y - a + bx + cx
2

y' = b + 2cx

Then with the end points (x1 , yl) and (x2 , y2 ) specified together

with the specification of zero slope at end point i ( 1 1 or 2) we have

1 x1  x 2  a

1 x 2  x 2
2  b-Y 2

0 1 2xi  c 0

which is solved for the coefficients a, b, c.

Cubic. The cubic equation is

y - a + bx + cx
2 + dx3

y - b + 2cx + 3dx
2

or
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x xa2 x1 3 a

x2 x2 2 x2 3  b 2

0 1 2x, 3x 2  c l

0 1 2x 3x 2 2

which is solved for the coefficients a, b, c, d.

Exponential Concentration of Points

The exponential distribution of points on the curve of any type is

done by taking

n 1I + (2 1 i l-_i- e-a(N-1)]

for concentration near the first end point and

xn - e1 + x_ xj

for concentration near the second end point. Here the strength of the

concentration is controlled by the specified decay factor a, and N is

the number of points on the curve.
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CSPLOT (Plot)

The plot code CSPLOT plots the coordinate system generated by the

code WESCOR, having read the coordinate system from file 11 as output

by WESC0R. The input consists of the number of coordinate lines to be

plotted, a designation for skipping lines, the extent of the field to be

plotted, and a factor for using different seating in the horizontal

and vertical directions. This input is detailed in the following pages.

The plot is formed by simply connecting the points on a line of

constant curvilinear coordinates in the physical region, i.e., by con-

structing straight lines between each successive pair of points, X(I,J)

and Y(I,J), as one index is held fixed.
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WESCOR INPUT INSTRUCTIONS

.00rc - -- ----- u
20=CmWUSUUSUUSU WE S C 0 R sUSUU~SU listUpf

MOxC 2- UNDARY-FITTED COORDINATE SYSTEM CODE
170-C
19C MISSISSIPPI STATE UNIVERSITY * 1992190=C
200=C U.S. MY ENGINEER WATERWAYS EXPEIMENT STATION
210=C VICKSUBr, MISSISSIPPI

2,0=C
.50=C SuSmSU SLIT-SLAD CONFIGURATION SU
26=C
270=C 18 ATRACTION TO COORDINATE LIES/POIPTS AND TO SPACE LINES/POINTS.
280=C 835 CONTROL FUNCTIONS LSO INTERPOLATED FROM OINARY POINT DISTRIBUTION,
." S-=C -

31O=C UmS = = INPU INSTRUCTIONS:
32OC
330=C US CARDS2) : LABEL - FRMl (lOAB)340-C S
350=C S LABEL - TWO 80 CHARACTER CARDS. (LM CARDS IF NO LABEL)360=CI
3704C U CARD : InAXJMXN DYITERISLIT,INMYIIDISK IiIRIWINTLt
380C I IWINIREN - FO!WT(1115)
390=C8
'OOc 1 IMAX - NUMBER OF XI POINTS.
410=C
'20=C I JM - NUMBER OF ETA POINTS.430=C
440=C S MY - TOTAL WIDER OF SLAV SIDES AND SLITS IN THE FIELD.450=C
46C 8 ITER - MAXIMUM NUMIER OF ITERTIONS ALLOWED.
470=C I
49C I TST - =I SL4A SIDES OR SLITS REM FAN CA .
&90=C S XtY - FOAT(2FIO) 9 ONE POINT PER CARD.
s=C S =2 SLAV SIDES OR SLITS READ FROM FILE 10.
110=C S XY - UNFORNATTED r ONE POINT PER IMAGE.
520=C I
530=C I(NOTE: HORIZONTAL SLITS ARE READ CLOCKUISE FROM RIGHT END.)
540=C ( VERTICAL SLITS ARE COUNTER-CLOCKWISE FROM TOP.
!50=C S SLAB SIDES MAY BE READ IN EITHER DIRECTION,
56c 8
570=C S IINRY - 0 OUTER DOUNDRT CALCULATED INTERNALLY AS CIRCLE.
580cC ' OUTER BOUNDARY READ FROM CARDS.
Sc S XY - FORMAT(2FI0.0) s ON POINT PER CARD.
60C 8 =2 OUTER BOUNDARY READ FROM FILE 10.
6104 C XY - UNFORMATTED r ONE POINT PER IMAGE
620C z-I OUTER BOUNDARY READ IN SEGMENTS AS SLAD SIDES.
630-C 8
o40cC £(NOTE: FOR I RY z 1 OR 2 , OUTER BONIDARY IS READ CLOCKWISE)
ow I FROM POINT IINFXIIWETA).
660cC ( "OUTER BOUNDARYO MEANS ENTIRE BOWNDY OF TRANSFORMED
67oC ( REGION IF NIEN2O. IF WREN IS NOT ZERO, THEN OUTER
680C S BOUNDARY IS THE TOP OF THE TRANSFORMED REGION AIM
69oC ( INNER BOUNDARY IS THE BOTTOM.
70C $1O=C I IDISK - n0 DON'T READ OR WRITE SYSTEM FROM OR ON FILE.
'2C 5 x1 WRITE SYSTEM ON FILES 10 & 1.. DO'T READ SYSTEM FROM FILE.
'30=C 8 x2 WRITE SYSTEM ON FILES 10 & 11 .READ SYSTEM FROM FILE 10 FOR RESTART.
740=C S 23 READ SYSTEM FROM FILE 10 FOR RESTART. DON'T WRITE SYSTEM ON FILE II.
75ONC 8
760C S INOTE: FILE 10 IS RESTART FILE FOR CONTNUATION OF ITERATION-)
'70=C $ 1 FILE 11 IS STORAGE FILE FOR FINAL SYSTEM.

790 $ IVIR - so MON'T PRINT EACH ITERATION ERROR,
O0-C, ' PRINT EACH ITERATION ERROR.

920C 8 IWINTL - .0 DON'T PRINT INITIAL GUESS.
830-C I *I PRINT INITIAL GUSS.

5K 1 INFIN - NON-ZERO SUPPRESSES PRINT OF FINAL VIUES.

72



670C 1 a# NON-ZERO USES RE-EmT BONDARY O LlFT i RICdT SIDES
,O-C OF TRAeSFORED REGION, WITH OUTER OUNIDARY ON TOP

90 AND INNER DOANURY ON BOTTOM.

lo s INER BOUNDARY 1 READ AS FOLLOdS BEFORE READING OUTER MUINMY:
2W s :1 INNER BOUNDARY REA FRON CARDS.
3oc $ XY - FORT(2F0.0) , OWE POINT PZR CAD.

04O-C 8 =2 INNER DOUNDARY READ FRON FILE 10.
'50=C I XY - LIORATTED v ONE IMAGE PER CARD.

o'O-C I (NOtF: SLITS AND/Ok SLABS NAY ALSO K PRESENT. )

300C SiB C"RS(iDY) L3I,LB2,LBi,,LTYPE - FOMATtiIS)

I 1c 9 LDlL12 - FIRST AND LAST IrDICES OF S AD SiE OR S LIT ENDS.
1020'-C (L2 NAY BE LESS ThAN LEI FOR SLAB S:KE. II UT IS FRON L1 TO LB2.)h030-C
140-C- L03 - INDEX OF LINE 04i WIuCH SL.AB SIDE OR SJT IS LOCATED.

1060--Z LTYPE - SLAB SIX OR 5LIT TYPE I, FtAR HORIZONTAL 2 FOR VERTICAL.)
1070=C 1
1080-C a (NEGATIVE IMNlDATES SBIAR SIDE, LATER ThAN SLIT.)
!090=c S SUdTRAIT 10 FOR OUTER BOUNDARY SEWNNT.
l100-C I (I.E., -11 IS HORITONTAL OUTER BOUNDARY SFGNENT,)
•110=c ( -12 13 VERTICAL OUTER BOUNDARY SEGNENT.
1120--C
,130=C US CARD R1,,R(2',R(3YINFINAIMEINXOINF,YOINFIEAIINFETA
I.140=C 8 FORMTAO7F1O.O,215)1150 -CS
1A60C 1 Ri 1) - SOR ACCLERATION PARA ETER.
1170-C t (ZERO VAL.UE CAUSES AIAI.E ACCELERATION PARAMETER)
180C I %FIELD TO BE CALCILATED INTERN LLY. )

12* C R(2) - ALLOWiBi.E X ITERATION ERROR.
1210-C I

2-C 9 R(3) - AILOVABLE Y ITERATION ERRR.
1230=C I
1240-C I Y'NFIN - RADIUS OF CIRCULAR OUTER BOUNDARY.
1250-c I
1260-L AINFIN - ANGLE OF FIRST POINT ON CIRCULAR OUTER BOUNDAkY (DEGREES).
• 270=C S(COUNTER-CLOCK FRON POSITIVE X-AXIS.)

1 2'90- XOINFYOINF - CENTER OF CIRCULAR OUTER BOWDARY.
130-C

13104C 1 INF - NUKER OF UNIGUE POINTS ON CIRCULAR OUTER DOUNDARY.
1320-C S
1,O3C I IEX,IFETA - INDICES OF FIRST POINT ON CIRCULAR OUTER BOUNDARY.
13404C S
1350=-C $ (NOE : LAST 7 OF TnESE PARAMETERS ARE IRRELEVANT IF OUTER BOUNDARY IS READ.)I; O=CI
'37040 S ............................................ ...

'390=4C I' IF ,1DIES AMD/O OUTER ROUNDARY ARE READ FROM CARDS, SCH CARDS
lOo-C U FOLLOi NEXT.
110-.C $9
1420-C 94 SJTS AND/OR &A4 SIDES ARE READ FIRST, THEN O6TER BOUNDARY IS READ.
1430C S %THESE RULES APPLY FOR READING FROh FILE 10 AS WELL AS FROM CARDS.)
1I40=C S
450zC S ............................................................

1470--C is It tO COORDINATE ATTRC7Iiuu IS T' BE USED, FOLLOW THESE CARDS
1i80C US WITH FIVE BLAKei CARDS. IF ATTRACTION IS 71 L USED, USE THE FOLLOWING
1490- t 4U INPUT RATHER THAN ThE DIANX C.IRDS:
150.-C U
1510=C $9 INPUT FOR COORDINATE SYSTEM CONTROL : USE FOUR SETS, ONE FOR

520r-C U XI-UNE ATTRCTION TO COORDINATE LIrS/FOINTS, ONE FOR ETA-LIME ATTRACTION
1530C U T' COORDINATE LINES/POINTS. ONE FOR X'-LIIE ATTRACTION TO SPACE LINES/POINTS,
1540-C Us AND ONE FOR ETA-LIKE ATTRACTION TO SPACE LINES/POINTS.
1550-C U ANY SET NOT WANTED IS REPLACED BY ON BLAKi CARD.
1560-C U1570'C stir# € 51554 5555ttt t $Sttt ftStttttfSS##ttftttttt tStt#4#ttttt
IROUC St
.590"C s# TOE FOLLOJNG, NAIKED NiTH 1, I5 FOR ATTRACT;ON TO COORDINATE LINES/POINTS:
io0-C ISt
I XO- $11 CARD : ATYP,ITYPN.N,NF'TDC,vAPFAC - FORiT(AB,12215,2F.O0)
1o2t-C # 2
:,30:C o ATP - TYPE OF ATTRACTIOi. (xi FOR XI-LINE ATTRACTION,
1o40-C 0 ETA FOR ETA-lINC ATTRACTION.) LEFT JUSTIFIED.
1o50-C 07
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I00-C if ITYP - ZERO GIVES ATTRACTION ON 13Th SIDES.
1670-C SR NUN-ZERO GIVES ATTRACT;ON ON biPPER SIX AND
1d0C SR REPULSION ON LOWER SIDE.
1690=C i
1700-C If NL# - NIUMER OF ATTRACTION LINES.
1710-C If
17204C If eIT - *SE OF ATTRACTION POINTS.
17WOC #
1740,. S# DEC - NON-ZERO DEC USES DEC FO DECAY FACTOR.
175 -C of
1760-C If WFAC - NON-ZERO ffAC IKLTIPLIES ALL AMPtITf WS BY AMPFAtIloe-C S.
17S-C S#33 CARD(I ) JLNPALNtI.N - FORNAT(51tuSr2FIO.O,
I7"--C I# (OIT If " IS ZERO)
INK "i
1810aC $i JLM - ATTRACTION LIE INEX.
1820=C of
1830C i A - AM ITUDE (NEGATIVE REPELS) FOR LINE ATTRACTION.
9#-C i

1050aC if NI - DECAl FACTOR FOR LiNE ATTRACTION.
18602C if
1670C I$$ CARDS(NPT) : IPT,JPT.MPT,T - FOkAAT(215o2FIO.O)
IN9OC if (OGIT IF NlT IS ZERO)low St
I9#.C It IPTJPT - ATTRACTION POINT INDICES.
191OW #f
I20=C It APT - AMPLITUDE (NEGATIVE REPELS) FOR POINT ATTRACTION.
I9w=C #
1940C I# BIT - DECAY FACTOR FOR POINT ATTRACTION.

1970=C IS
19OLC SS5 THE FOLLOVINCt NARM WITH So I FOR ATTRACTION TO SPACE LINES/POINTS
19"=C is
2000C SS THE FOLLOWING CARDS ARE FOR ATTRATION TO LINES AD/ODR POINTS
2010=C 1It DEFINED If XY COORDINATES. IF ILN IS NCT ZEROt THEN NLN
2020C I$$ OF THE CARDS GIVING NP MUST APPEAR. EACH OF THESE CAM IS
2030-C I$SS FOLLOWED BY NP OF THE CARDS GIVIA XPT, ETC. IF OPT IS NOT
20404 ISSt ZERO, THEN WNI OF THE CARDS GIVING XPT, ETC. *lST FOLLOW
200--4 ISS TIE LAST GROUP OF THESE CARDS.
206W 158 MY SET NOT ANTED IS REPLACED 21 ONE BANK CARD.
2070C Us
IO29C III* CARD : ATYPiITYPLN,WPT,DECvAMPiAC - F T(A8tI2,2IT,2F10.O)

2100C 5s ATYP - TYPE OF ATTRACTION. (XI FOR XI-LIN ATTRACTION,
2110C I$ ETA FOR ETA-LINE ATTRACTION.) LEFT JUSTIFIED.
2120- IS
2130=C Is ITYP - ZERO GIVES ATTRACTION ON 83TH SIDES.
21403C IS NON-ZERO GIVES ATTRACTION ON UPPER SIDE AND
21504 IS REPULSION ON LONER SIDE.21604I n1
2170=C IS UIi - NIUER OF ATTRACTION LINES.
2100C IS
21901C I$ OPT - NUNER OF ATTRACTION POINTS.
2004 IC S (NOT INCLUDING POINTS ON ATTRACTION LINES)
220-C IS
2220--C Is DEC - NON-ZERO DEC USES DEC FOR DECAY FACTOR.
2230C I
2240=C AIPFAC - NON-ZERO AMPFAC MULTIPLIES ALL AMPLITUDES BY AtdPFAC.225KC IS
1260=C 55U CARD : NP - FORMAT(15)227OaC 5$
2202C is NP - WNIDER OF POINTS ON THIS ATTRACTION LINE.
229 4. Is
2300C iSSt C.RDS : XTYPTMTpDPTvVECIpVEC2 - FOR7T(6FI0.O)
23omc IS
2320C IS XTtYPT - COORDINATES OF ATTRACTION POINT OR
2Z3OaC 11 POINT ON ATTRACTION LINE,
234#-C IS
24-0C IA - ATTRACTION AMuLITUE (NEGATIVE REPELS).

23704C IS SF1 - DECAY FACTOR.

23904 IS VECIfXEC2 - IY COMPONENTS OF UNIT VECTOR NORNAL TO
2400 IS, ATTRACTION DIRECTION FOR POINT ATTRACTION.
24Jea SR (CALCILATED INTERNALLY FOR LINE ATTRACTION.)
2428C 124309C S
4W I..# ..... , ...... , ......, ...........
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24604 M THE LAST COORDINATE SYSTEM CONTROL CAD IS THE FOLLOWING CARD
2470=C 3
2480 33 CARD I IFACIRITEFAC - FORMT(215F1O.0)
24O=C )2 5O0=C 8 (CN BE USED TO AID CONVE/RGENCE BY CO~NERGING FIELD )
.510=C (MITH LESS ATTRACTION FIRST AND USING THIS RESULT
.VW s (AS THE INITIAL GUESS FOR STRONGER ATTRACTION.
90' 4 t (BLANK CARD MUST BE INPUT IF THIS FEATURE IS NOT USED,)

2540=C (STANDARD IS TO NOT USE THIS FEATURE t, BUT ITS USE MY)
250=K (BE NECESSARY WITH STRONG ATTRACTION.
256043
2570=4 IFAC - NBER OF STEPS IN ADDITION OF INHOOfCENEOUS TERN,
2580=C DOUiBLES INfOiOGENEOS TERM AT EACH STEP.25"0=C
2600:C 3 (ZERO COER ES WITH FULL ATTRACTION.
2610=C (1.0 CONERGES ITH NO ATTRACTION FIRST, THEN
46204 1 (WITH FULL ATTRACTION. 2,0 CONIVERCES WITH NO
2630C S (ATTRACTION FIRST, THEN VITH HALF, THEN 0ITH FULL.)
26404 (INCREASE NINIER OF STEPS IF DIVERGENCE OCCURS.
265043t
2660C 3 IRIT = NUN-ZERO VALUE CAUSES IININOEEOUS TERM TO B PRINTED.
26704 1
2680 8 EAC -MULTIPLE OF CONVERGENCE CRITERION TO K USED FOR
2690-C INTERMEDIATE CONVERGENCE BETWEEN ADDITIONS OF
27004 1 IIIIOM EOUS TERN. (TYPICALLY 10.0
2710=C
2720=C 333333333333333*33m 13 I!3333333333m3 s
2730=C
2740=C IMSS STORAGE FILES
275043
2760C 8 RESTART FILE - FILE 10
2770-C
2780C S (10) RXIPRETA
2790 1 (10) X.T1LSLITPLADELYINAXoJMAX
2900 1 (10) NIDYNuI,I.oIL,LB3,LTYPELPTtXLXUYL,YUf
2910C NDIMNDIMUNDI M2NDI3,WACC2820-=CI
28304 COORDINATE SYSTEM STORAGE FILE - FILE 11:

2850=C (11) LALtIMXPJMX
2860=C (11) ((LSLIT(IJJ),JpIMX),J=lJMX)
2870=C (11) ((X(IJ),I=,IAmX),J=,JAX)
2v0=C 3 (11) ((Y(IJ),II,IMX)J=,JNIAX)
28"=C 3 (11) NDYNUIMIBLBhLD2LB3LTYPELPTXLXUYLYU,
29004 1 NDIMNDII,NDIN2pNDIN3
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LINES INPUT INSTRUCTIONS

:-)O=i.M . A

2o=CmllUzuatRUSU L I 1 C S Uhzfl nVWUUsE9lus nmnlnnMua
130=c

!50-c
ioOWC DOUNDARY SEGMENT CODE FOR INPUT TO WESCOR
!70=C
'90K MISSISSIPPI STATE UNIVERSITY . 1982

.V=C U.S.ARAY EMCIkEER WATERWAYS EXPERIMENT STATION
?10=C VICKSrIEC, ISSISSIPPI

240=C23o~Cmlmmm 'r.._ .u_,wmwuusp umnnguwumlu
i4o=c
.50=C222 POINTS ON DOUNDARY SEGMENTS 28
260=C

,o--Cn IPUT
3004
310KCu2CARD : NLINES - FORMAT(15)
320C
130C NLINES - TOTAL NUMBER OF LINES,
3464C
I•'CUCARDS(NLINES) : m, ITYPvD1,D2,D3,D4,D5,D6v. - F0RmT(215,7F1O.O)
360=C
"70-C N - NUMER OF POINTS ON LINE.

390=C ITYP - TYPE OF LINE
400=C 0 STRAIGHT.
4I0=C I CIRCULAR ARC.
2--C 2 ELLIPTIC ARC.

030=C 3 CUIC.
40=C ,4 QUADRATIC WITH ZERO SLOPE AT FIRST POINT.
"50=C 5 QUADRATIC WITH ZERO SLOPE AT SECOND POINT.
460=C
&70--C b1-06 AS FOLLOWS - ,, ITENS NOT CITED ARE IRRELEVAN,)
480=C
9 0C ITYP=O : D1 - X OF FIRST POINT.

5O--C D2 - Y OF FIRST POINT.
slO=C D3 - X OF SECOND POINT.
520=C D4 - Y OF SECOD POINT.930-C
50-C ITYP=I : bi - ANGLE OF FIRST POINT (DEGREES, COUNTER-CLOCK FROM POSITIVE X-AXIS)
,50=C D - ANGLE OF SECOND POINT (DEGREES, CUNTER-CLOCK FROM POSITIVE X-AXIS)
%6=C D3 - X OF CIRCLE CENTER.
570=C 04 - Y OF CIRCLE CENTER.
5m0=C D5 - CIRCLE RADIUS.
a9O=C
O=C ITYP=2 : Di - ANGLE OF FIRST POINT. (DEGREES, CUNTER-CLOCK FROM POSITIVE X-AXIS)
610-C D2 - ANGLE OF SECOND POINT. (DEGREES, COUNTER-CLOCK FROM POSITIVE X-AXIS)
o2O-C D3 - X OF ELLIPSE CENTER.
630=C D4 - Y OF ELLIPSE CENTER.
640=C D5 - X-AXIS LENGTH OF ELLIPSE.
owC 9 - Y-AXIS LENGTH OF ELLIPSE.
o60-C
670C ITYP=3 : Dl-0, SAME AS ITYP4
oe=C D5 - SLOPE AT FIRST POINT. (DECREES, COUNTER-CLOCK FROM POSITIVE X-AXIS)
9rC 06 - SLOPE AT SECOND POINT. (DECREES, COUNTER-CLOCK FON POSITIVE X-AXIS)700 =C

710=C ITYP4 : I-4 SAKE AS ITYP20
720=C
7302C ITYP25 : 1-D4 SAME AS IT 4=0
740.C
7%0=C K - EXPONlTIM. CONCENTRATION FACTOR.
76-C 0.0 FOR EaUAL SPACING ON LINE,
770=C NEGATIVE FOR CONCENTRATION NEA FIRST POINT,
7W POSITIVE FOR CONCENTRATION NEAR SECOND POINT.
90rt_ _ _ _

20=C IAS STOM FILE:

OUTPUT - FILE 10 : RITE(0) X(I),Y(I)
CX & Y POINTS OF LA LIME, INCLUDING ENS.
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CSPLOT INPUT INSTRUCTIONS

=20CUUW=lTUsftEU C S P L 0 1 IP*PU7SUUUS

:4-C COORDINATE SYSTEM PLOT CODE - MISSISSIPPI STATE UIVERSITY o 1M
1704
160=C U.S. AMY ENGINEER WATERWAYS EXPERIMENT STATION
1"=C VICKSIURC, MISSISSIPPI
20cC

24Wc I
2w0 *am INPUT INSTRUCTIONS
2wec $
270=C SU CAR IR , NUM RI, ISIIPI , ISKIP2 - FOSWT(415)
280C
2904= NiKE - NUIER OF ETA-CONSTANT LINES DESIRED FOR PLOT.
300=C S (DEFAULT 15 AL LINES)
310=C 8
3204 1 NURl - NUMBER OF XImCOSTMT LINES DESIRED FOR PLOT.
330- 8 (DEFAULT IS AL LINES)
340=C 8
350 9 ISIPI - SIP PARAMETER FOR XI=ONSTMIT COORDINATE LIES.
30C I (1 PLOTS EVERY LINE, 2 PLOTS EVERY SECOND LINE, ETC.)
370=C t (DEFAULT IS EVERY LIN)
380=C
3 C 8 ISKIP2 - SIP PARAMETER FOR ETA-ONSTANT COORDINATE LINES.
4.0mct (SEE ISKIPI)410O=C
4204 $$1 CARD: I , II r JBl , J2 - FORNAT(415)
430C I
.4wC I IJ INDICES OF PLOT FIELD IOUNDARY.
;0 t ( IS XI, J IS ETA. DEFAULT IS ENTIRE FIELD)

470 M CARD : XYRAT - FORNAT(F1O.O)

4"=C 1 XYAT - RATIO OF PLOTTED X TO Y LENGTNS. (1.O
5wC s
4104 UU:UUUUWUUUUSSSU
52K40304 San COORDINATE SYSTEM IS READ IMFORMATTED FROM UIT 10 AS
S40C US1 WRITTEN DY rilE CODE WESCOR'550=C $
5604c -UU--UUS----------------- USU UU
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SAM4PLE RUNSTREAMS

LINES Sample Runs tream #1

120mJ03.
:3o=AcIREIIDINAR~tPDNzTOSINSII02UtDjTTRUC,
l40~jl3,IW41ARY.
150DISPOSE,3 WF10 SWNILE I90in.DC--T WTk TEXT~t
;Do 'CATALCFILETHWOINSOP INE9,I,RP--999.' .
1702DELE1EIvW=INARY,
IBKXIT.
1W0DELETEPDOg=BlRARY.
:00280
:102 5

222 33 0 0.0 0.0 24.39 0.0
2w0 9 0 0.0 -0.3 i.1 -0.3
2402- 25 0 6.1 -0.3 214.39 -0.41
2w0 25 0 0.0 -0.3 0.0 0.0
260 25 0 24.39 -0.91 24.39 0.0
270atEM
M29021W

WESCOR Sample Runstream #1

120=JUT=60.
130.-ACIREDIFTO~pNTHW*SWINESDID:,FTRUG,
L0W1REDNIIYPDN:TIWROWS0NCIDD4innIDF=ThUQ.
15O-LDN=B:.IHARY.
.40D1UPOSE WT I P W ILE I DinSDCST DFTR TEXT:.t
170-m 'CATAL OWILE fl4WIPS0CORDDID4EinoRP=?99.',
IB0DELETEWTF10.
1902DELETEPWDNINAY,
IO0EXIT.
210IOMPD~mF.TIO.
24EJ1TEIU.INARY.
230=lEW
2404JW190N FLUME
250233 X 25 COORDINATE SYSTEM
24-m 33 25 5 100 2 -1 1 1 1 0 0
2.j 1 33 'S -ii
280= 1 9 1 -11
:W0 9 33 1 -11
3W0 1 25 1 -12
310= 25 33 -i2
320=1.4 0.00001 0.00001
3w0
3w0
3w0:
370=
3wt2EOfi

CSPLOT Sa mple Runs tream

1202dl.
130:.MIIRE,2FfT10JK,#-THMnPS~W anOdD4EUI P~V:.TR#ta.
1404=IIREbkIIYPPW-TNHPS04SPLTI02UEinDFTRUG.
15"P1RLIDIETALIN-II0IIRY.
IW0DI9SMFT01 SW ILE I02NIDCRT D43TEXT.t
170m 'CATALU~tFILETWSOtOD IRP-9?99,'
190m39ETE,31fT1.
I9ODE TErDK4INARY.

2100DELETEt1NT0.
'W ELETEPINMY.

2402 0 0 1 1
25w 0 0 0 0

26W2.0
270.31W
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LINES Sample Runstream #12

k5041SPOSE i BNFT 0SIILE IDid C--S tDF=Tk t EXT= t
1602 'CATLOG 9FILE 7WOMPSLNES YI D PRr'-9 .'.
170=k1.tETEPW=INAY.
1B04XIT.
190=KLEIE.D941NM1.

210= Ili
220=- 25 0 15.0 0.0 5.91 0.0 010 0.0 -0.08
:30- 9 0 5.92 0.0 4.1 0.68 0.0 0.0 0.2

2.= 3 04.! 0.68 319 0.68 0.0 00 0.0
.W0 9 0 3.9 0.66 2.29 0.0 0.0 00 -0.2
2603 7 0 2.29 0.0 0.0 0.0 0.0 0.0 0.0
270-- 2- 0 0.0 0.0 0.0 1.03 0.0 0.0 0.0

20 21 0 0.0 1.63 5.91 1.63 0.0 00 0.0
20= 29 0 5.91 1.63 15.0 1.63 0.0 0.0 0.04
7W= A 1.2.522 1.2 . 0.70 10.0 0.0
,:0 7 01. 63 15.0 1.25 0l? .9 5.0 0.0 0.0
1-:4- 5 0 15.25 0.96 15.8 0.43 0.0 0.0 0.0
SW0 9 0 15.8 0.43 15.63 0.23 0.0 0.0 0.0
340-- 5 0 15.63 0.23 24.25 0.58 0.0 0.0 0.0
550= 5 3 15.25 0.58 15.0o 0.5 1351.0 51.0 010
;Do- 9 0 15.0 0.5 1 1.0 0.0 0.0 0.0 0.0
170cgEOR
3WI=EOF

WESCOR Sample Runstrean #2

130-AMJIREIST0,PD#WT ON ES01 r1ID nDFFRtM.

I50=I.3pDN41NARY.
160=I1SP9SINFT1,S 4ILE,1bin,0CST1F:TR9EX1:t
100z 'CATM.O~pF1EthPSNC0RD0,D-IiR--9,'.
1804-KEE.I'iT10.
190HLEJ ,3I=DINARI
200-EXI T.
210=KLETEiWIO1.
220=ILETEDINAReMY.

246= W0910 TEST 6 - NITH HEIR
2W0=57 X 23 CONDINATE SYSTEA

2b= 57 21 IS 100 2 -1 1 1 1 0 0
276= 49 25 1-1

29= 25 17 l-i
290- 07 1- 1 1

3;0: 7 1 1 1
520= . 2 1 -12
3w-= 1 2; 23 -11
340- '1 49 23 -!1
350:- 23 17 49 -2
So.0 .9 53 17 -1
30- 13 57 17 -1
3W0 17 9 c,7 -12
.90- .7 5 9 -j
400L 453 90-9
410= 9 1 49 -
42OZ1.8 0.00002 0.00001

440=
40
6,0-
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WESCOR System #1

(Reduced Horizontal Scale)

Ai I 1111
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(Reduced Horizontal Scale)
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