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CHARGE-CHARGE CORRELATION FUNCTIONS IN
ULTRA DENSE PLASMAS

I. INTRODUCTION

Theoretical investigations into the properties of dense plasmas have

benefitted greatly from the results of computer simulations of model

systems. The simplest of these models is the classical one-component

plasma (OCP) which is a system of classical ions imbedded in a uniform

neutralizing background. Monte Carlo1'2 and molecular dynamics3

simulations of the OCP have guided theoretical pursuits and have provided

benchmarks for analytic calculations of its properties, which are now well

understood.
4 ,5

The OCP is, however, a very simplified model of a real plasma and is

applicable only to systems which are so dense that the electrons are

completely degenerate. When the electrons are non-degenerate, they can no

longer be pictured as a uniform, rigid background, and the OCP becomes an

inappropriate model. Under these conditions, one must treat both the

electrons and ions as particles. A reasonable model which does this is the

two-component plasma (TCP).

In the TCP the electrons and ions are treated as classical (quasi-)

particles that interact through effective potentials which deviate from

pure Coulombic behavior at short distances in a way that simulates the

essential quantum diffraction effects. A specific form for such a

potential is the one suggested by Deutsch.6 If a and $ are species labels,

and if

( a= h/(2wuas kBT)
1/2

where Va is the reduced mass of this interacting pair, then Deutsch's

potential is

Ut (r) a r [l -exp (-r/ )] . (1)r i

This potential remains finite at the origin, and, therefore, prevents the

collapse of the system. It is expected to give reasonable results for non-

degenerate plasmas with temperatures above the ionization potential and

Manuseript approved April 8, 1983.
1



coupling parameters less then about two, or

r = <e2< 2a -

where a3 - 3/4wn - rs3a3 and a. is the Bohr radius.

The TCP is more difficult to simulate than the OCP, but recently

Hansen and McDonald7 ,8 have published results of molecular dynamics (MD)

analyses of a fully ionized hydrogen TCP using the effective potential in

Eq. (1). Among the properties calculated from the simulation data is the

dynamic charge-charge structure factor S QQ(k,w). As the Fourier transform

QQQof the charge density-charge density time correlation function, SQQ(kw)

reflects in its shape the spectrum of longitudinal modes in the plasma.

The motivation of this paper is to use the simulation data of Ref. 8 as a

reference against which various kinetic theoretical calculations of

SQQ(kw) can be tested. A similar study9 has already been made for the

OCP; the intention here is to generalize that work to two components.

The types of theories of interest here are microscopic theories based

upon formally exact kinetic equations derived from projection operator
10- 12

or other techniques. 1 3- 16 A general characteristic of such theories is the

separation of the so-called "memory" operator into a static mean-field or

Vlasov term and a frequency dependent collision term. Calculations of

density fluctuations in dense plasmas, using just such a theory, were

performed several years ago by Linnebur and Duderstadt. 17 Unfortunately,

they. were unable to estimate the short-range part of the direct correlation

functions appearing in the memory operator and had to approximate those

correlations by their Debye-Huckel limits. We are now able to calculate

the direct correlation functions using the potential in Eq. (1) in the so-

called hypernetted chain (HNC) equation. 18 '1 9 This is an approximate

integral equation method for calculating static correlation functions which

has proven to be accurate for plasmas in which the coupling parameter is of

order unity4, and produces excellent agreement with the static properties

calculated by computer simulations in Ref. 8. The proposal here, then, is

to generate the HNC direct correlation functions and use them in the model

kinetic theories described in Ref. 17.

In Section II, we define the quantities of interest and review the
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basic kinetic theory concepts involved. Calculations based upon three

different collision models are presented in Section III, and in Section IV

we present our conclusions.

II. KINETIC EQUATION

For a hydrogen plasma the dynamic charge-charge structure factor is

defined by

e2

I Sti(k,) - 2Se (k,w) + S (kw)] , (2)

vhere the partial density correlation functions S a(k,w) with a,$ - i,e

are given by

S (kw) 3pd3 p fdteit < (t)f (-)>

(3)

Sfd 3pd 3 f dte i t S (kt;+'")

Here

3 it+r *
f a(t) - fd re- fa (rt) (4)

is the Fourier transform of the phase-space density

N
a-r (t)) a (p- (5)j~l

In Eq. (3), N is the number of ions in the system and brackets indicate an

average over the equilibrium ensemble. It is not customary to calculate

S a(k,w) directly, but rather to find it from

S as(k,w) - 2 Re fd pd p 00 (kz;+') , (6)

where the Laplace transform function as (kz; ') is

3

I
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S (kz; $) - fo dte 1 ~ S (kt; *) " (7)

The advantage is that the functions S can be found from the solution to

a coupled set of kinetic equations of the form 17

A caB p)+ LL p yIei c() fd 3p"ci (8)+ 0 a Ye YYO(z "'

- I fd 3p" * (kz; p') Sy(kz;'p') - i S (k,t-O;+'*p')
y-e,i ayY 

as

In Eq. (8), M (p) represents the Haxwell-Boltzmann distribution function

(normalized to unity), and the caB's are the direct correlation functions

defined by the Ornstein-Zernike relations

c as(k) =h as(k) c (k) (Y(k), (9)
yie,i ay

where

h a(k) S as(k) -6 a (10)

and

S a(k) - f d3pd3p" S s(k,t O;pp') (11)

is the static partial structure factor for species a and $. (Note that in

Eq. (9) and Eq. (10) a factor of density has been absorbed into the usual

definitions). The effects of collisions are contained in the operators

to (kz; '). Formally exact expressions exist for these operators, but

they will not be presented here. Instead, we will simply present results

based upon various models for them.

Before preceding we note for future convenience that, in analogy with

the single species case1 3, Eq. (8) can be solved formally to obtain the

Laplace transformed functions,

Si (kz) " fd p d p i(kz;pp') (12)

4



in terms of the functions

(kz)- fdpd'- J (kz; ") (13)

where the J s are solutions to the simplified kinetic equations

(z -') J (kz;pP) - I fd" r (kz;*'") .(kz;p"p')

N(p) 6(-") 6 • (14)

Specifically, the results for a system of electrons and ions are

See(kz) - -j- [Ei(kz) (Je(kz) See(k) + Jei(kz) Sie(k))

+ (ce(k) - Z(Y (kz) ci (k) + J1i(kz) c i(k)))

x (Yis(kz) See(k) + Jii(kz) Sie(k)) ] (15)

and

sei(kz) - [Ee(kz) (Jii(kz) Sie (k) + Jie(kz) See (k))

+ (cel(k) - z(1ii(kz) cie(k) + Jie(kz) ee(k)))

x (Je(k) See(k) + ei(kz) Sie(k)) ]  (16)

5



where the functions a (kz) and E(kz) are defined bya

E (kz) I - c (k) + z (J (kz) c (k) + a (kz) c (k)), (17)
oua aa an as $a

E(kz) - Ee(kz) E1 (kz) - (ce(k) - z (Jee ei (k) + Je cii(k)))

x (cie(k) - z (Jit ie(k) + Jie cee(k))) " (18)

Various models for the collision operators will generate different

approximations to the J s a. Using these in Eqs (15-16), and their

counterparts within the labels "e" and "i" interchanged will give estimates

to the dynamic structure factors. These collision models will be studied

in the next section.

III. THE COLLISION MODELS

In this section we will examine the charge-charge structure factors

predicted by three different models for 4 and compare them to the MD

results of Ref. 8. All three models will require as input the direct

correlation functions c a(k) which will be obtained from the solution to

the two-component RNC equation with the potential in Eq. (1). The first

and simplest model we will investigate is the collionless or generalized

Vlasov model in which 4,, - 0. The second model employs a simple Fokker-

Planck-like collision operator developed by Lenard and Bernstein20. The

final model is one suggested by Duderstadt and Akcasu 21 which incorporates

the exact high-frequency behavior of 0 and models its time-dependence by

simple exponential decay.

6



A. The Generalized Vlasov Model

In this model we simply neglect 0 in Eq. (14) to obtain

3 (kz)= & (1 + X (kz)) /z

where

SM (p)
X (k'z) f d 3p a a p/ (20)

a z - /4

is the plasma response function. Substituting Eq. (19) into Eq. (16)

yields the usual RPA results for S (kz) with one important difference.

The results presented here contain the exact static correlation functions

rather than their Debye-Huckel limits.

Taking these functions from HNC data, we calculated SQQ(k, w ) for r -
80.5 and rs - 0.4 for the same values of q (-ka) used in the MD runs. The

results are shown in Fig. 1 where the standard RPA curves are presented for

comparison (the ordinate has been scaled by a factor of 100). It appears

quite clear that even at the smaller values of the wavenumber q, where the

collective modes will begin to exhibit evidence of dissipation not

available in this collisionless model, that the generalized Vlasov results

are in good agreement with the MD data.

A,.cnough this mean-field approximation may provide an adequate model

of SQQ(k, w) for r 4 0.5 (as long as q is > 0.78), it does not give a

good representation of the charge-charge spectrum at r -2 unless q is

restricted to much larger values. For appropriate comparison with MD

results at this value of the coupling, we must introduce a reasonable

approximation for Da in Eq.(14) and solve for J "

B. The Fokker-Planck Model

A simple model for 0 that introduces an interparticle collision

frequency, v, and allows an analytic solution to Eq.(14) is
20

7
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Figure 1

S QQ (k~w) (x 100) as a function of w/wpe for four values of q -ka at

r - 0.5 and r 8- 0.4. Dots: MD results. Dashed curve: Vlasov
spectrum. Full curve: generalized Vlasov with HNC statics.



M
#0 (kz;pp) 1 - 6 1)

0 Cis CO ap p

Substituting this approximate collision term into Eq. (14) and Fourier

transforming in momentum allows one to find 13

J (kz) 6 i(kz) , (22)

where

2 2, 1
a(kz) -- (ism v /k2) 1 (Q2 ,sl) (23)
a 2 2 2 2Q

and -2(Q2 + sa Q 2 x x(Q +s
Il(Q2s) Qo a a e fadxe x Q (24)

2 .k 2  2
In the above, Q B k/sm v and a a iz/v

Having introduced two collision frequencies, Vee and vii ' into our

solution for SQQ(k, w ) to allow for collisional damping, we must now

select them with some care. It is well known that the ordinary Spitzer-

like binary collision times are inappropriate in moderately to strongly

coupled plasmas. We can, however, utilize transport coefficients found

directly from the molecular dynamics simulations to obtain estimates of the

required collision frequencies. In particular using the self-diffusion

coefficients given by Ransen and McDonald8 , these frequencies are seen to

be

MD
Vee 1 1

pe meBD e  3rDe

and (25)

MD
Vii (e 1/2 1
1*pe Mi 3rD1

9
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Collisions are found to be of negligible importance for SQQ(kw) at

r - 0.5. They are, however, necessary when describing SQQ(kw) at larger

values of coupling. In Fig. 2 we compare the collisionless generalized

Vlasov model calculations (using "correct" RNC-evaluated direct correlation

functions) with the results employing v ND from Eq. (25) in the Fokker-
an

Planck solution for the case r - 2, r = 1. From the figure it is clear I
S

that the model including collisions provides a much superior fit to the MD

data than the collisionless model. For values of q smaller than 0.78, the

discrepancy is still larger, indicating the failure of mean-field (RPA)

descriptions of strongly coupled systems in the collective regime.

Even though the FP model considerably improves the shape of the

spectrum, electron peak intensity for the FP curve, which is a sensitive

function of v , falls below the ND data points at peak. In addition the

peak position is lower in frequency than is shown by the simulation. To

correct this deficiency we must consider a different collision model.

C. Duderstadt Akcasu-Linnebur (DAL) Model

Neither of the first two models discussed above satisfy the third non-

vanishing frequency moment of SQQ(k,w). This sum rule will however, be

automatically satisfied by any model collision operator which incorporates

the known high-frequency behavior of Q * One such model is that

suggested by Duderstadt and Akcasu2 , and later applied to weakly coupled

two-component plasmas by Linnebur and Duderstadt 1 7 , in which the time

dependence of 4 0 is modeled by two relaxation times. We define the DAL

collision operator as

*DALk ++ D - D(0) ~ ( +~(ko p' -. oio a .__+ P ) 6 (P+-5 )
CLO ao ~z+ia 5&k) ap ;p1

(26)

+ i M (p) +• (k) • ,
z+ia d(k) 

a

where

D (0) - D (0) + DI (0), (a*B) (27)

10
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+. 2D o(0) -0 f dr gas(r) 7 0(r) (28)

and

A(k) -n c (k)- - fdrg (r) eik (r) (29)am a 0 mm 8 a a

The decay constants a a(k) and ad (k) are chosen to obtain the correct

short and long time, as well as the known large and small wave-number
limits of S MO (kw).

Using Eq. (26) in Eq. (14) and once again Fourier transforming in

momentum leads to

2 2 2 2 m 2

Ie(l-iyiizmi/k Ai) - ./k yee + mi ZA(Ye2 -Ye Yl

Je(kz) k k c
ec 2-2

2 2 2/2,& + me mi 2 2
1 - iyiizmi/k Ai - y zm/k A -z A Ai(Ye-YeeYii)

(30)

and

e(kz) YeiAA2

cik 2 2 2 2 m m 2 2
l-y1izm1 /k Ai-iyeezme/k Ae+ c4 z Ae&i(Yei-YeeYii)

k

(31)

where I is defined as in Eq. (23), but with v replaced by w Q(kz)

which is given by

w (kz) D V(0)

W (kz) a (32)ac m s
Sz+ia (k)

The remaining functions appearing in Eq. (31) are

y6(kz) 3= Z+ia d(k) A AQ(k) • k (33)

12
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and

A izl- . (34)

The form of the damping functions are chosen to be

as~d (k) -a. (0) [1 + (k/ksd ) 2  (35)
k8 d

where the unknown parameters at (0) and kid are determined from known k

and w constraints on S a(k,w). 21,22 With these restrictions we are

required to choose only two other collision frequencies to complete the

description of the DAL model. Those coefficients are the electron-ion and

ion-electron collision frequencies, Vei and vie , characterizing momentum

transfer between particles.

We can find Vei from the coefficient of electrical conductivity

provided by the MD data,

MD wYei ee 1
- - - - . (36)

W 4wo 
4 a*(3

Pe

As an alternative to using the simulation derived conductivity to find Vei ,

we can employ a quantum kinetic theory treatment of plasma time-correlation

functions2 3 which leads directly to the calculation of the electrical

conductivity.24 This treatment can be thought of as a quantum

generalization of the fully renormalized kinetic theory of Mazenko1 5 in

which the disconnected approximation (DA) is used to renormalize the

potential terms in the collision operator. The application of this

approximation to strongly coupled plasmas has been discussed in Ref. 22 and

elsewhere. 2 5'2 6 More recently the theory has led to numerical evaluationsof a(orYea whch e lbel DA

of a (or v I, vhich we label v ) for the cases under consideration
27* DA ei

here.27 We can estimate v by taking

MD
DA .en DA

V V .es MD vei
Vei

The collision frequencies are collected in Table I for the cases used

in the simulation runs. The results employing the DAL model vith MD and DA

collision frequencies for a r - 2, r. - I TCP are given in Fig. 3. At low

13
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Figure 3

SQQ (k,w) for four values of q at r - 2, r, 1. Dots: MD results*

0 0D

Curves are DAL model results with v DA (dashes) and v - v H

(full).
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k, it is apparent that the fits are superior to the FP model in peak

position as well as the intensity of the resonance. At small wavelengths

the generalized Vlasov solution is nearly identical with those of the

collision models, indicating the lack of importance of collisions in this

regime.

In their paper, Hansen and McDonald8 developed a memory function

theory (mft) based on the work of Abramo, et al.28 to describe the charge-

fluctuation spectra obtained in the MD simulations. This theory builds a

hierarchy of memory functions for linear combinations of momentum-

integrated microscopic particle densities defined in terms of known sum

rules. The hierarchy is truncated at the highest order in which the sum

rules can be exactly calculated using two-particle radial distribution

functions (the fourth order sum rule). The highest order memory functions

are damped in time by an exponential or Gaussian approximation employing

relaxation times defined, again, by the known sum rules.

The advantage of "aft" lies in the fact that only two relaxation times

are required and that these constants are determined within the framework

sum rule calculations. The DAL model on the other hand, requires the

determination of four independent relaxation times by introducing four

transport coefficients. However, since these time constants interpolate

between hydrodynamic and Vlasov behavior, a knowledge of the needed

transport coefficients (which can be accurately found from MD simulations

or quantum kinetic theory) ensures correct small k, small w limits

of SQQ(kw). The charge-fluctuation spectra predicted by the DAL model and

mft are very similar for all of the cases under consideration here (see

Figs. 6 and 8 of Ref. 8). Results of S (k, w - 0) for these models are

collected in Table II.

As noted above, one may expect differences to occur at longer

wavelengths where the DAL model has used transport coefficients to ensure

correct hydrodynamic behavior. In Fig. 4 we present a comparison of aft

with the DAL model using values of the collision frequencies obtained form

XD transport coefficients and the quantum theoretical treatment with the

disconnected approximation at q - 0.307. The aft results were taken from
MD

Figs. 9 and 10 of Ref. 8. The DAL model using v predicts a plasma peak

of greater intensity and lower frequency than the mft calculations. The

16
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DAL model using the larger values of vD A predicts a smaller intensity and a

peak position closer to mft. Differences between these theoretical

approaches can be expected to increase as q is made smaller still.

Unfortunately there are no MD results at these wavenumbers to indicate

which is the preferable theoretical prediction.

IV. DISCUSSION

The collision approximations we have investigated for describing the

TCP all utilize equilibrium correlation data as input to the solutions.

This data has been shown 8 to be accurate and easily obtained from the

solution of the hypernetted chain integral equations using the Deutsch

potential as the effective interparticle interaction potential. We have

used this data in all models considered with the exception of the usual

Vlasov approximation.

As has already been shown8, the standard Vlasov equation, which

contains neither collisional dynamics nor correct initial time correlation

information, does not reproduce any of the MD spectra accurately. The

generalized Vlasov equation, in which the Fourier transform of the

potential in the mean-field term is replaced by the exact direct

correlation function, provides a reasonable fit to the data at r - 0.5 for

all r. and q values simulated. This approximation is also adequate for

large wavenumbers at higher values of the coupling parameter.

At the higher value of r considered here, it is necessary to include

collisions in order to damp the strongly spiking plasmon peak. The Fokker-

Planck-like Lenard-Bernstein model approximates these effects by

introducing two self-collision times into the solution of SQQ(kw). Even

though these constants are well-known, the resulting spectra are only

qualitatively simular to the MD data at smaller values of q. As we have

noted, the FP term does not satisfy the fourth frequency moment sum rule.

In addition the collisional invariant of momentum is not satisfied by this

model.2

The DAL model does incorporate exact sum rules up to fourth order and

does satisfy conservation of momentum, leading to much improved results at

low q in the case of large coupling.3 0 The implementation of several

relaxation times allows the collision dynamics to be interpolated from

19



known hydrodynamic (k + 0, w + 0) forms of S M(k,w) to their Vlasov and
free particle forms. This approximate form of the collision term depends

on the accuracy of the acquired hydrodynamic coefficients, but is seen here

to give a good description of the HD charge-fluctuation spectra. This

description is very similar to the aft calculations except at low

wavenumber where the interpolative DAL model should represent the spectra

resonances as accurately as the transport coefficients provided. For all

cases r < 2 and q > 0.78, the distinctions are negligible.

The primary limitation in this process is the accurate calculation of

the radial distribution functions from the ENC procedure. This implies

that the best solutions will arise from the most inclusive effective

interionic potential. The Deutsch potential, Eq. (1), is not valid

for r greater than about two, but the HNC scheme should give reasonable

distribution functions for a more general effective potential. From these

functions relaxation times can be derived and used in the DAL collision

term to provide accurate predictions of dynamic correlation functions in

more strongly coupled two-component plasmas over a wide range of k and w.
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