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CHARGE-CHARGE CORRELATION FUNCTIONS IN
ULTRA DENSE PLASMAS

I. INTRODUCTION

Theoretical investigations into the properties of dense plasmas have
benefitted greatly from the results of computer simulations of model
systems. The simplest of these models is the classical one-compounent
plasma (OCP) which is a system of classical ions imbedded in a uniform

]
neutralizing background. Monte Carlol'2 3

and molecular dynamics
simulations of the OCP have guided theoretical pursuits and have provided
benchmarks for analytic calculations of its properties, which are now well

understood.“’5

The OCP is, however, a very simplified model of a teﬁl plasma and 1is
applicable only to systems which are so dense that the electrons are
completely degenerate. When the electrons are non-degenerate, they can no
longer be pictured as a uniform, rigid background, and the OCP becomes an

inappropriate model. Under these conditions, one must treat both the

electrons and ions as particles. A reasonable model which does this {s the

two~component plasma (TCP).

In the TCP the electrons and ions are treated as classical (quasi-)
particles that interact through effective potentials which deviate from
pure Coulombic behavior at short distances in a way that simulates the
essential quantum diffraction effects. A specific form for such a
potential is the one suggested by Deutsch.6 If a and 8 are species labels,
and if
/2

!

X = h/(21rua8 B

af
where Hag is the reduced mass of this interacting pair, then Deutsch’s
potential 1is
2

Zuzse
UCB(r) -— [1 - exp (-r/{aa)] . (L

This potential remains finite at the origin, and, therefore, prevents the
collapse of the system. It is expected to give reasonable results for non-
degenerate plasmas with temperatures above the ionization potential and
Manuscript approved April 8, 1983,
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coupling parameters less then about two, or

2

= 0€
r=£-¢2

where aJ = 3/4mm = rs3a3o and a, i{s the Bohr radius.

The TCP is more difficult to simulate than the OCP, but recently
Hansen and McDona1d7’8 have published results of molecular dynamics (MD)
analyses of a fully ionized hydrogen TCP using the effective potential in
Eq. (1). Among the properties calculated from the simulation data is the
dynamic charge-charge structure factor SQQ(k,m). As the Fourier transform
of the charge density-charge density time correlation function, SQQ(k,w)
reflects in its shape the spectrum of longitudinal modes in the plasma.

The motivation of this paper is to use the simulation data of Ref. 8 as a
reference against which various kinetic theoretical calculations of

9

SQQ(k,m) can be tested. A similar study” has already been made for the

OCP; the intention here is to generalize that work to two cowmponents.

The types of theories of interest here are microscopic theories based
upon formally exact kinetic equations derived from projection operatorlo-lz
or other techniques.13'16 A general characteristic of such theories 1is the
separation of the so-called "memory"” operator into a static mean~field or
Vlasov term and a frequency dependent collision term. Calculations of
density fluctuations in dense plasmas, using just such a theory, were
performed several years ago by Linnebur and Dudetstadt.17 Unfortunately,
they were unable to estimate the short-range part of the direct correlation
functions appearing in the memory operator and had to approximate those
correlations by their Debye-Huckel limits. We are now able to calculate
the direct correlation functions using the potential in Eq. (1) in the so-
called hypernetted chain (HNC) equation.ls’19 This is an approximate
integral equation method for calculating static correlation functions which
has proven to be accurate for plasmas {n which the coupling parameter 1is of

order unity“

, and produces excellent agreement with the static properties
calculated by computer simulations in Ref. 8. The proposal here, then, is
to generate the HNC direct correlation functions and use them in the model

kinetic theories described in Ref. 17.

In Section 11, we define the quantities of interest and review the

2
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basic kinetic theory concepts involved. Calculations based upon three
different collision models are presented in Section III, and in Section 1V

we present our conclusions.

II. KINETIC EQUATION

For a hydrogen plasma the dynamic charge-charge structure factor is
defined by

2
e
Sqqlls) = - 183, (ksw) = 28 (kyu) + 5 ()] (2)

where the partial density correlation functions sas(k'“) with a,8 = 1,e
are given by

- 3 3.1 it 1 > >
S (ko0 [d7pd”p 7;-fdte <fa(ﬁpt)f8(-kp »

N
(3)
= fd3pd%' [ deelet sae(k:;ss') .
Here
>
£ (iPe) = [a3ce iR E £_(Fpe) (4)
is the Fourier transform of the phase-space density
>> N + + a > +
f (ept) = T S (r-r,(t)) s (p~-p, (L)) . (5)
a j-l j j

In Eq. (3), N is the number of ions in the system and brackets indicate an
average over the equilibrium ensemble. It is not customary to calculate
Sas(k,m) directly, but rather to find it from

3 g(ksw) = 2 Re [a3pa’p- §ae(kz;53’) , (6)

vhere the Laplace transform function §as(kz;$3‘) is

3
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& 2y 0 ™ izt S
scs(kz’ PP*) IO dte saB(kt'pp ) . N

The advantage is that the functions S can be found from the solution to

af
a coupled set of kinetic equations of the form 17

’o’ ~ 2 ’o 3 I « Ju2,
(z - B s_ (ke;387) + 22 u_(p) Yze’i C (8 [47P" S (kz5 5757)

1 4

o"[2

(8)

3. > ~ >R, >
- d kz; ")y s _(kz; =4{S (k,t=0; .
Yze’i [a7p7 o (kz; pp") S (kz;p"P") o (& £703 7 BP")

In Eq. (8), Ma(p) represents the Maxwell-Boltzmann distribution function

(normalized to unity), and the cas’s are the direct correlation functions

defined by the Ormstein-Zernike relations

T Ty oA~ T s~ R U

cas(k) = hae(k) -yze,i ch(k) hYB(k) R &)
where %
hog(6) = S (k) =68 (10)
and
S (k) = 3padpr s (x,t = 0;237) (11)
aB ag” "’

is the static partial structure factor for species g and g. (Note that in
Eq. (9) and Eq. (10) a factor of density has been absorbed into the usual
definitions). The effects of collisions are contained in the operators
oas(kz;sﬁ‘). Formally exact expressions exist for these operators, but
they will not be presented here. Instead, we will simply present results
based upon various models for them.

Before preceding we note for future convenience that, in analogy with
the single species case13, Eq. (8) can be solved formally to obtain the
Laplace transformed functions,

§a8(kz) = fdsp d3p’ §(kz;53‘) (12)

4




in terms of the functioms

s > >, 3 L,
J g(k2) = [dpdp J g (k2:PP") (13)
where the Eas‘s are solutions to the simplified kinetic equations
' 51: e >, > »b 5 >, >
(z = =) I g(kz;pP7) = ) . fdp @y (k2iPP™) J o(kzp"p7) =
a y=e,

> >,
M (p) &(p=p7) 6§ g - (14)
Specifically, the results for a system of electrons and ions are
Seel®®) = grizy (B (k2) (3, (k2) S (k) + I (k2) 8, (1))
+ (e (k) = 2(J  (kz) c (k) + T, (kz) e, (K)))
x (J  (k2) S (k) + J,,(kz) 5, _(K)) ] (15)

and

5e1(k2) = grigy [E(k2) (3y (k2) 5, (k) + I, (k2) S, (k)

+ (e (&) = 2(J, (k2) ¢, (k) + J, (kz) ¢, (%)))

x (3 (k2) S (k) + 3, (k2) 5, (k)] ,

5




where the functions !c(kz) and E(kz) are defined by
E (kz) =1-c (k) +z (3 ,,(k2) caa(k) + JaB(kz) csa(k)). a*8 (17)

E(kz) = E_(kz) E,(k2) ~ (e, (&) - 2z (] ) + 3, e, (00))

ee cei

x (eg (k) =z (Jyy ¢ (k) + 1), c  (K))) . (18)

ie Cee
Various models for the collision operators will generate different
approximations to the Jas’s. Using these in Eqs (15-16), and their
counterparts within the labels "e" and "1~ intetchénged will give estimates
to the dynamic structure factors. These collision models will be studied

in the next section.

III. THE COLLISION MODELS

In this section we will examine the charge~charge structure factors

predicted by three different models for °a and compare them to the MD

8
results of Ref. 8. All three models will require as input the direct

correlation functions cae(k) which will be obtained from the solution to
the two-component HNC equation with the potential in Eq. (1). The first
and simplest model we will investigate is the collionless or generalized

Vlasov model in which °a8 = Q. The second model employs a simple Fokker-

Planck~like collision operator developed by Lenard and Bernstein?®. The

21

final model is one suggested by Duderstadt and Akcasu®™ which incorporates

the exact high-frequency behavior of °a and models its time-dependence by

B
simple exponential decay.




A. The Generalized Vlasov Model

In this model we simply neglect °a

in Eq. (14) to obtain

8

iae(kz) =5, (1+x (k2)) /z,

]

where

k-p/ma Ma(p)

x (ks2) = [a’p (20)

> >

z ~ k-p/ma

is the plasma response function. Substituting Eq. (19) into Eq. (16)
yields the usual RPA results for §a8(kz) with one important difference.
The results presented here contain the exact static correlation functions
rather than their Debye~Huckel limits.

Taking these functions from HNC data, we calculated SQQ(k, w ) for T =
0.5 and L 0.4 for the same values of q (=ka) used in the MD runs.8 The
results are shown in Fig. 1 where the standard RPA curves are presented for
comparison (the ordinate has been scaled by a factor of 100). It appears
quite clear that even at the smaller values of the wavenumber ¢, where the
collective modes will begin to exhibit evidence of dissipation not
available in this collisionless model, that the generalized Vlasov results

are in good agreement with the MD data.

Aichough this mean-field approximation may provide an adequate model
of SQQ(k, w) for T < 0.5 (as long as q is 2 0.78), it does not give a
good representation of the charge—charge spectrum at T =2 unless q is
restricted to much larger values. For appropriate comparison with MD
results at this value of the coupling, we must introduce a reasonable

approximation for oa in Eq.(l4) and solve for 3&8 .

8

B. The Fokker—-Planck Model

A simple model for 0a

that introduces an interparticle collision
20

B

frequency, v, and allows an analytic solution to Eq.(14) is




Figure 1

SQQ(k,m) (x 100) as a function of w/mpe for four values of q = ka at
I = 0.5 and t, " 0.4, Dots: MD results.
spectrum. Full curve:

Dashed curve: Vliasov
generalized Vlasov with HNC statics.
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o PPlkziissy = £ -2 4 LA +83)y s -8 (21)
a8 Z;PP 8 GBvGB 35 . a; ;:P p pJ.

Substituting this approximate collision term into Eq. (14) and Fourier

transforming in momentum allows one to find 13
Jg(ka) = 8 g Kc(kz) , (22)
where
R (kz) = - (1gm v /%) I(Q%, s -1) (23)
a a ac a a
and 2 2 2 2
-2(Q" +s8) Q Q - (Q +s)
Ia(Qz,sa) =q, * % e® [YdxeTx * % (24)

In the above, Q2 = kz/Bm v2 and s = - 12/yv .
a a ac a aa

Having introduced two collision frequencies, Vee and Vygo into our
solution for SQQ(k, w ) to allow for collisional damping, we must now
select them with some care. It is well known that the ordinary Spitzer-
like binary collision times are inappropriate in moderately to strongly
coupled plasmas. We can, however, utilize transport coefficients found
directly from the molecular dynamics simulations to obtain estimates of the
required collision frequencies. In particular using the self-diffusion
coefficients given by Hansen and McDonaldB, these frequencies are seen to
be

MD
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Collisions are found to be of negligible importance for SQQ(k.u) at

r = 0.5. They are, however, necessary when describing S sw) at larger

¥
values of coupling. In Fig. 2 we compare the collisionless generalized
Vliasov wodel calculations (using “correct” HNC-evaluated direct correlation
functions) with the results employing vq:D from Eq. (25) in the Fokker-
Planck solution for the case I' = 2, r, = l. From the figure it is clear
that the model including collisions provides a much superior fit to the MD
data than the collisionless model. For values of q smaller than 0.78, the
discrepancy is still larger, indicating the failure of mean-field (RPA)

descriptions of strongly coupled systems in the collective regime.

Even though the FP model considerably improves the shape of the
spectrum, electron peak intensity for the FP curve, which is a sensitive
function of Voa * falls below the MD data points at peak. In addition the
peak position is lower in frequency than is shown by the simulation. To

correct this deficiency we must consider a different collision model.

C. Duderstadt Akcasu-Linnebur (DAL) Model

Neither of the first two models discusged above satigfy the third non-
vanishing frequency moment of SQQ(k,m). This sum rule will however, be
automatically satisfied by any model collision operator which incorporates

the known high-frequency behavior of ¢ One such model is that

21 ag

» and later applied to weakly coupled
17 {n which the time
is modeled by two relaxation times. We define the DAL

suggested by Duderstadt and Akcasu
two-component plasmas by Linnebur and Duderstadt
dependence of Oa

8
collision operator as

D (0

0 0 ezspp) =16, 2o— .+ L% s 3-3)
z+ia Sk) ap ap a
Q
(26)
+ M (p) P oA (k) o p
z+ad (k) @ af ’
aB
where
Da(O) - Dm(o) + DGB(O). (a»8) (27)

10
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q=.78 q=1.102

~
|

00
l
*————————————

Figure 2

SQQ(k,m) for two values of q at ' = 2, r, " 1. Dots: MD results.
Dashed curve: generalized Vlasov with HNC statics. Full curve: FP
model.
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1 »> 2
Das(o) 1 [ dar sas(r) v ch(r) ’ (28)
and
= _ k% _ 8 - 1K T
A g(® o ¢, e [ 4F g (r) e o o) - (29)

The decay constants azs(k) and age(k) are chosen to obtain the correct
short and long time, as well as the known large and small wave-number
limits of Sas(k’w)'

Using Eq. (26) in Eq. (14) and once again Fourier transforming in

momentum leads to

I (1-1yuzm§/k2 8,) - 1m§/k_2ye Be 4+ “‘z"‘f Ay 2 y
e e k z e i yei -yeeyii
J;e(kz) = ﬁi;fi
2, 2 2,2 el 2 2
1 1yiizm1/k Ai 1yeezme/k Ae + ka z AeAi(yei yeeyii)
(30)
and
mm y. .4 A
- el ei®e™1
Toy (k) = 1 2 2,2 2,2 . nlal 2 2 ’
1-y11zmi/k Ai-iyeezme/k 8% _Ezl_ z AeAi(yei-yeeyii)
k
(31)

where Ia is defined as in Eq. (23), but with Vaa replaced by waa(kz)
which is given by

D (0)
v (k) = TfT —_— (32)

a z+1a:u(k) )

The remaining functions appearing in Eq. (31) are

1 KeA (k) « k (33)

d af
z+iaa8(k)

yas(kz) 3

12
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and
A =21 -1 . (34)
a a

The form of the damping functions are chosen to be

s,d, 2

s,d -
aly (k) = (0) [1+ /&2, (35)

where the unknown parameters ‘°ng)zzand k:éd are determined from known k
and » constraints on Sae(k,m). ’ With these restrictions we are
required to choose only two other collision frequencies to complete the
description of the DAL model. Those coefficients are the electron-ion and

ion-electron collision frequencies, and Vie ? characterizing momentum

Vei e

transfer between particles.
We can find Vet from the coefficient of electrical conductivity
provided by the MD data,

v MD mp
el e 1
w, bvg  dwa* (36)
Pe
As an alternative to using the simulation derived conductivity to find Vei?
we can employ a quantum kinetic theory treatment of plasma time-correlation

23

functions“~ which leads directly to the calculation of the electrical

condnctivity.zA This treatment can be thought of as a quantum
generalization of the fully renormalized kinetic theory of Mazenkols in
which the disconnected approximation (DA) is used to renormalize the
poteatial terms in the collision operator. The application of this
approximation to strongly coupled plasmas has been discussed in Ref. 22 and
elsewhere.25'26 More recently the theory has led to numerical evaluations

DA ) for the cases under consideration

of o (or Veq® which we label Vet

DA

here.27 We can estimate Vee by taking
MD
DA _ Vee DA
< Vee MD Vei °
Vet

The collision frequencies are collected in Table 1 for the cases used
in the simulation runs. The results employing the DAL model with MD and DA
collision frequencies for a T = 2, r, " 1 TCP are given f{n Fig. 3. At low

18
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Figure 3
SQQ(k,w) for four values of q at ' = 2, r

Curves are DAL model results with vy = vDA

(full).

" 1. Dots: MD results.

(dashes) and v = qu




k, it is apparent that the fits are superior to the FP model in peak
position as well as the intensity of the resonance. At small wavelengths
the generalized Vlasov solution is nearly identical with those of the ?
collision models, indicating the lack of importance of collisions in this
regime.

In their paper, Hansen and McDonald8 developed a memory function
theory (mft) based on the work of Abramo, et al.28 to describe the charge-

fluctuation spectra obtained in the MD simulations. This theory builds a
hierarchy of memory functions for linear combinations of momentum—
integrated microscopic particle densities defined in terms of known sum
rules. The hierarchy is truncated at the highest order in which the sum
rules can be exactly calculated using two-particle radial distribution
functions (the fourth order sum rule). The highest order memory functions
are damped in time by an exponential or Gaussian approximation employing
relaxation times defined, again, by the known sum rules.

The advantage of "mft” lies in the fact that only two relaxation times

are required and that these constants are determined within the framework

sum rule calculations. The DAL model on the other hand, requires the
determination of four independent relaxation times by introducing four
transport coefficients. However, since these time constants interpolate
between hydrodynamic and Vlasov behavior, a knowledge of the needed
trangport coefficients (which can be accurately found from MD simulations
or quantum kinetic theory) ensures correct small k, small , limits

of SQQ(k,m). The charge-fluctuation spectra predicted by the DAL model and
mft are very similar for all of the cases under consideration here (see
Figs. 6 and 8 of Ref. 8). Results of saa(k’ w = 0) for these models are
collected in Table II.

As noted above, one may expect differences to occur at longer
wavelengths where the DAL model has used transport coefficients to ensure

correct hydrodynamic behavior. In Fig. 4 we present a comparison of mft

with the DAL model ‘using values of the collision frequencies obtained form
MD transport coefficients and the quantum theoretical treatment with the
disconnected approximation at q = 0.307. The mft results were taken from
Figs. 9 and 10 of Ref. 8. The DAL model using vMD predicts a plasma peak

of greater intensity and lower frequency than the mft calculations. The

16
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Comparison of model results at I' = 0.5, LI 0.4 for q = 0.307 Dotted
curve: mft results of Hansen and McDonald. Dashed curve: DAL

model with v = voA. Full curve: DAL model with v = JMD’
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DAL model using the larger values of vDA predicts a smaller intensity and a

peak position closer to mft. Differences between these theoretical
approaches can be expected to increase as q is made smaller still.
Unfortunately there are no MD results at these wavenumbers to indicate

which is the preferable theoretical predictionm.
IV. DISCUSSION

The collision approximations we have investigated for describing the
| TCP all utilize equilibrium correlation data as input to the solutions.
E This data has been shown 8 to be accurate and easily obtained from the
solution of the hypernetted chain integral equations using the Deutsch
potential as the effective interparticle interaction potential. We have

used this data in all models considered with the exception of the usual

Vlasov approximation.

8

As has already been shown”, the standard Vlasov equation, which !

contains neither collisional dynamics nor correct initial time correlation
information, does not reproduce any of the MD spectra accurately. The

generalized Vlasov equation, in which the Fourier transform of the

potential in the mean—field term is replaced by the exact direct
correlation function, provides a reasonable fit to the data at I' = 0.5 for
all r, and q values simulated. This approximation is also adequate for
large wavenumbers at higher values of the coupling parameter.

At the higher value of I considered here, it is necessary to include
collisions in order to damp the strongly spiking plasmon peak. The Fokker-
Planck-like Lenard-Bernstein model approximates these effects by
QQ(k,w). Even
though these constants are well-known, the resulting spectra are only

introducing two self-collision times into the solution of S

qualitatively simular to the MD data at smaller values of q. As we have

noted, the FP term does not satisfy the fourth frequency moment sum rule.
In addition the collisfonal invariant of momentum is not satisfied by this
uodel.29

The DAL model does incorporate exact sum rules up to fourth order and
does satisfy conservation of momentum, leading to much improved results at
low q in the case of large coupling.3° The implementation of several

CI TPV INGRPENPSERRICE VI SESNE SR

relaxation times allows the collision dynamics to be interpolated from
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known hydrodynamic (k + 0, 4 + 0) forms of sus(k'”) to their Vlasov and
free particle forms. This approximate form of the collision term depends
on the accuracy of the acquired hydrodynamic coefficients, but is seen here
to give a good description of the MD charge—fluctuation spectra. This
description is very similar to the mft calculations except at low
wavenumber where the interpolative DAL model should represent the spectra
resonances as accurately as the transport coefficients provided. For all
cases T S 2 and q 2 0.78, the distinctions are negligible.

The primary limitation in this process is the accurate calculation of
the radial distribution functions from the HNC procedure. This implies

that the best solutions will arise from the most inclusive effective
interionic potential. The Deutsch potential, Eq. (1), is not wvalid

for T greater than about two, but the HNC scheme should give reasonable
distribution functions for a more general effective potential. From these
functions relaxation times can be derived and used in the DAL collision
term to provide accurate predictions of dynmamic correlation functions in

more strongly coupled two-component plasmas over a wide range of k and w.
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