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and
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AVRADCOM Research and Technology Laboratories

SUMMARY

The results of an investigation of boundary layers close to the stagnation point
of an oscillating airfoil are reported. Two procedures for generating initial condi-
tions - the characteristic-box scheme and a quasi-static approach - were investigated,
and the quasi-static approach was shown to be appropriate provided the initial region
was far from any flow separation. With initial conditions generated in this way, the
unsteady boundary-layer equations were solved for the flow in the leading-edge region
of a NACA 0012 airfoil oscillating from 0* to 5. Results were obtained for both
laminar and turbulent flow, and, in the latter case, the effect of transition was
assessed by specifying its occurrence at different locations. The results demonstrate
the validity of the numerical scheme and suggest that the procedures should be applied
to the calculation of the entire flow around oscillating airfoils.

INTRODUCTION

The calculation of boundary-layer characteristics of an oscillating airfoil dif-
fers from the usual unsteady flow calculations in that difficulties are caused by the
translation of the stagnation point in space and time. In particular, it is essential
to develop a procedure to generate initial conditions in the immediate vicinity of
the moving stagnation point and to account for the flow reversal that occurs in this
region.

The study reported here is the continuation of the work described in reference 1.
It is one phase of a study that will be extended later to compute the complete bound-
ary layer and inviscid flow characteristics of an oscillating airfoil in order to
improve understanding of the dynamic-stall problem. In the present study, we focus
our attention on the calculation of boundary layers near the stagnation point of an
oscillating airfoil. We consider both laminar and turbulent flows and two different
procedures for generating the initial conditions in the (t,y) plane.

The following section describes the basic equations, turbulence model, the
initial conditions and the solution method. The details of the numerical procedure
were discussed in reference 1 and are not repeated here.

.echanical Engineering Dept., California State University, Long Beach,
California 90640.
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The third section presents the results for MACA 0012 airfoil. Calculations were
first performed with two procedures to investigate the prediction of initial condi-
tions in the (t,y) plane. They were limited to laminar flow and to the neighborhood
of the leading edge of the airfoil. The next set of calculations involved the
boundary-layer behavior of the NACA 0012 airfoil oscillating between angles of attack
of 0' and 5" for laminar, transitional, and turbulent flows and for a chord Reynolds
number of 3xlO. The transition location was varied in order to investigate its
influence on flow separation.

BASIC EQUATIONS

Boundary-Layer Equations

The boundary-layer equations for an incompressible laminar or turbulent flow on
an oscillating airfoil are well known and, with the eddy-viscosity (e.) concept, can
be written as

au +v (1)

+u u + L e + _e + _ (b 2S)(2
+ +- x y (2)

where x denotes distance along the surface of the airfoil, y is distance along the
normal, and b - v + em . In the absence of mass transfer, equations (1) and (2) are
subject to boundary conditions given by

y = 0 ; u = v - 0 y i=; u = ue(,t) (3)

The presence of the eddy viscosity em requires a turbulence model; we use the alge-
braic eddy-viscosity formulation developed by Cebeci and Smith (ref. 2). According
to this formulation, em is defined by two separate formulas. In the inner region of
the boundary layer (%.)i is defined as

(6m) {0 .4y[1 - exp(-y/A) ])2 jaultr 0 y I (4)" -o,,t12 Yc

where

A - 26vu;1(1 - 11.8 +]O/N , - ax (5)

In equation (4), Ytr is an interuittency factor that accounts for the transi-

tional region that exists between a laminar and turbulent flow. It is defined by

Ytr n I - exp[-G(x - xtr) (6)

t tr

Here xtr is the location of the start of transition and the empirical factor G,
which has the dimensions of velocity/(length)', is given by (ref. 2)
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1 T* ;13 (7)
2 V0 tr

The transition Reynolds number is defined as Rxt r  (Uex/v)tr.

In the outer region, (ea)o is defined as

(Cm)o - 0.01681f (ue - u)dy Ytr Yc S y S (8)

* The boundary between the inner and outer regions, Yc, is established by the continuity
of the eddy-viscosity formulas.

Initial Conditions

If initial conditions in the (t,y) plane are given at a station x. on the
upper surface of the airfoil and satisfy the condition u - 0 and, in addition,
initial conditions are given in the (xy) plane at t - 0, then the solutions of
equations (1), (2), and (3) may be integrated in x ) xo  until they break down (flow
separation). A similar remark applies to the lower surface except that u c 0. The
initial conditions at t - 0 can be generated for both surfaces if steady conditions
are assumed to prevail at that time. It is only necessary to solve the appropriate
equations which, in this case, are given by equation (1) and by

2u 3u due Iau\u-+ v - ue  y (9)

There is no problem with the initial conditions for equations (1) and (9) since the
calculations start at the stagnation point x - x ., where ue and u are zero for
all y.

Unlike steady flows, where us and u are zero for all y at the stagnation
point, the stagnation point is not fixed in an unsteady flow; although ue is zero.
we cannot assume a priori that u is also zero. We may avoid these difficulties by
using an implicit method, but now we are faced with the problem of generating a
starting profile on the new time-line.

A convenient and accurate procedure for calculating the first velocity profile
at the new time-line has been developed (ref. 1); it involves the use of the
"characteristic-box" scheme developed by Cebeci and Stewartson (in ref. 3) and
described in ref. 1. Another procedure, though not as accurate, is to use a quasi-
steady approach in the Immediate vicinity of the stagnation point region. We shall
discuss both procedures later (Results and Discussion section).

Transformed Equations

As in previous studies (see, for example, ref. 4), we use similarity variables
to transform the governing equations before we seek their solution. For a steady
flow, we use the Falkner-Skan transformation defined by

3
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a (Ue)"'y . M (Uevx)1/2f(x.n) (10)

where * is the usual definition of stream function that satisfies the continuity
equation (1), that is

uv - (II)

With this transformation, equation (9) and its boundary conditions, equation (3), can
be written as

(bf")' + ff" + a - (f,)2] X - f" (12)

" n0; f-' - 0; n ne; f' - 1 (13)

where primes denote differentiation with respect to n, and u denotes a dimension-
less pressure-gradient parameter defined by

X due (14)ue dx

For unsteady flows, we use a transformation similar to that defined by equa-
tion (10) except that us is now a function of both x and t, and the dimensionless
stream function F is a function of x, t, and 4; we let

[u (x,t)11/2-= vx y , ' - [Ue(X,t)vxJ1/2F(x~t,€) (15)

With this transformation, it can be shown that the continuity and momentum equations
and their boundary conditions for unsteady incompressible flows can be written as

(bF")' + I?" +m[1 - (11)21 + u,(1 - F') -2 2

X 2F- + F' -FI F" 3F (16)- u at- ax ax- (6

C - 0; F - F 0; ; F' - 1 (17)

Rere primes now denote differentiation with respect to c and

x x !Ue b+ + Ua x O e '-' b- at •' an  VIS

Solution Procedure

Ve use Keller's box method to solve the 8overning equations of the previous
section. This is a two-point finite-difference method which has been used to solve a
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wide range of parabolic partial-differential equations, as discussed in reference 4.
The solution procedure for equations (12) and (13) is identical to that described in
reference 5. The solution procedure employing the characteristic box scheme to
generate the first velocity profile at a new time-line is described in reference 1.
ror unsteady flows, where we now solve equations (16) and (17), we use the solution
procedure described in reference 6. In regions where there are no flow reversals
across the layer, we use the "standard box" scheme and in regions where there is flow
reversal, we use the "zig-zag" scheme.

A Model for External Velocity Distribution

The solution of boundary-layer equations requires that the external velocity
distribution be specified. Since the present effort is directed toward solutions
near the leading edge of the airfoil, a local model for the potential flow has been
chosen in the place of a full-potential flow code. We first consider an ellipse with
major axis 2a and thickness ratio T, where 2aX and 2AY, respectively, measure
distance along and perpendicular to the major axis from one apse, that is, from the
nose. The equation of the ellipse is then

4 1 4Y 2
4(X - 2+ I 1 (19)

and the velocity distribution near the nose is given by (ref. 6)

Ue I , + T)(X /2 t c) (20)u00 (X + (1/4)T 2]11/2

where a is proportional to the angle of attack in radians. Here T denotes the
thickness ratio (- b/a) and (+) denotes the upper surface and (-) the lower surface.
We note that equation (20) is valid only when a - 0(T), X - 0(T2). and the location
of the stagnation point X. is Xs - a.

The external velocity distribution of a symetrical airfoil in the neighborhood
of the nose can also be represented by an expression similar to equation (20). It
is only necessary to let T denote the thickness ratio of the equivalent ellipse and
replace T214 by R/2, where R is the nose radius. For example, the nose region
of a NACA 0012 airfoil at an angle of attack of 5* can be represented by the ellipse
by matching three points (0, 0.2, and 0.12); then the appropriate form of equa-
tion (20) is

u -t. (X1/2 t 4.783)

Us 2 (X + 0.00613)1/2

Figure 1 shows a comparison of the external velocity distribution computed by the
inviscid flow theory and that computed by equation (21) for the lower and upper sur-
faces of a MACA 0012 airfoil. Equation (21) is thus a satisfactory fit for the
velocity distribution extending to approximately 202 chord.

Equation (21) can also be used to approximate the external velocity distribution,
when the angle of attack Is varying sinusoidally, by writing it as
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-- 1i.2065 [X1/2 t 0.957a(1 + A sin wt)] (22)
um (X + 0.00613)1/2

Here physical time Is ut/c, the period of oscillation of the airfoil is
2vc/u.w, c (- 2a) is the chord, and A is a free parameter. We note from equa-
tion (8) that at time t - 0, the external velocity distribution corresponds to that
given by steady state. By choosing A - I and a - 5, we can compute the velocity
distribution at angles of attack ranging from 0* to 100. The term

0.957a(l + A sin wt) (23)

can be interpreted as an effective angle of attack, Geff(t). With this definition,
equation (23) becomes

ue [XI12 + a ef(t)]
- i.2065 f (24)

fti (X + 0.00613)1/2

Figure 2 shows a comparison of the external velocity distribution computed by Neumann
and by equation (24) for a - 0* and 10'. As can be seen, equation (24) is a satis-
factory representation of the velocity distribution, especially near the leading
edge. We note from the results that the agreement begins to deteriorate on the upper
surface as aeff begins to increase. However, equation (24) is a convenient formula
for generating the external velocity distribution in the immediate vicinity of the
stagnation point and for testing the computer program.

RESULTS AND DISCUSSION

Calculation of Initial Conditions by Two Separate Procedures

The procedure, based on the so-called characteristic-box scheme and developed
for calculating the initial conditions in the (t,y) plane, was tested for a model
problem (ref. 1) in which the external velocity distribution was given by

9 + to (I + A sin t)
u (I + C) / (25)

Here X - (1/4)T 2C2, C - 0(l), and A and Co denote parameters that need to be speci-
fied. The latter can be regarded as a reduced angle of attack; if it is increased
beyond 1.155, the steady-state solution at t - 0 separates on the upper surface of
the airfoil. Calculations were carried out with this procedure (ref. 1) for a test
case - to - 0.10, A - 1. w - w/4 - for a limited range of x(IxI <0.3), and the formal
validity and efficacy of the numerical scheme was established.

When this procedure was used for the external velocity distribution given by
equation (24) with w - 0.1. a value typical of conditions of dynamic stall, the com-
puting time of the numerical procedure increased significantly and the unsteady
effects on the atagnation-point behavior decreased. For this reason, an alternative
procedure based on a quasi-steady approach was developed and its results were cos-
pared with the predictions of the procedure of reference 1. With the quasi-steady
approach, the stanation point was computed from equation (24) and the solution of
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the boundary-layer equations was obtained up to X - 0.005 (- Xo/c). Because of the
rapid variation of the external velocity distribution in the stagnation-point region,
extremely small values in Ax corresponding to 0.001 were taken. Since the quasi-
steady approach is not valid for flows approaching separation, xo/c was chosen to
be just upstream of the pressure minimum and the calculations were then limited to
the region where the pressure gradient was favorable.

Figure 3 shows a comparison of the predictions of both procedures. The calcula-
tions were performed with initial conditions in the (x,y) plane corresponding to a
steady flow with an effective angle of attack a of 5* and for the external velocity
distribution given by equation (24). The parameter A was set equal to 1 and the
reduced frequency was equal to 0.1. The largest effective angle of attack was 100,
corresponding to wt - w/2, and the calculations were limited to the quarter cycle
from zero to w/2. It is expected that any differences between the results of the
two procedures would be greatest in this range, especially close to W/2.

The results shown in figure 3 indicate that the computed values of local skin-
friction coefficient obtained by both procedures are in remarkable agreement with
each other. (The small difference in cf stems from the use of different
Ax-spacings.) The procedure that uses the characteristic-box approach requires much
smaller Ax-spacings than the quasi-steady approach, without offering significant
improvement in prediction accuracy. The quasi-steady approach is easier to use (than
the characteristic-box approach), less demanding of computer time, and of equivalent
accuracy in the region of the stagnation point; as a result, we found it convenient
for use in the present study. This conclusion is, however, limited to the generation
of initial conditions near the stagnation point and to situations far from separation.

It is of interest to investigate the reason for the success of the quasi-steady
approximation in this study in contrast to the earlier one (ref. 1), in which the
behavior of the stagnation line is too complicated to be satisfactorily approximated
in thin way. Examination of equation (24) shows that the range of values of X over
which ue varies by a sirificant amount is quite small; for aeff 5, ue
increases from zero at XI2 - -0.084 to a maximum of 1.77u. at X - 0.005, the
corresponding values of x/c being -0.082 and +0.073. Thus, in equation (2),
u(au/ax) - 20u2/c, and 3u/at - (Wu./c)u. _ 0.1u2/c. Hence, in retrospect it is not
surprising that the unsteady term in equation (1) may be neglected in comparison with
the steady inviscid terms when computing the boundary-layer structure near the for-
ward stagnation point. Further downstream, u(3u/9x) becomes much smaller and the
neglect of au/at is not necessarily justifiable. Indeed, if separation occurs, it
is crucial that the au/3t term be retained in the integration; otherwise, the
solution will develop a singularity when the skin-friction vanishes.

The results of the present study may be generalized into the working rule that if
the frequency of oscillation is w*/2w, if R is the nose radius of the airfoil, and
if w*R/u,, < 0.1, then the quasi-steady approximation may be used to compute the
boundary layer near the nose on the compression side, and as far as the pressure
minimat on the suction side. For the calculation reported in reference 1, the value
of w in equation (25) was taken to be 7/4. Thus the two inertial terms, au/at
and u(3u/ax), in equation (1) are approximately of the same order of magnitude near
the forward stagnation point and neither could safely be neglected.

7
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Boundary-Layer Behavior of a NACA 0012 Airfoil Near the Leading Edge

With the Initial conditions computed by the quasi-steady approach, calculations
were performed to investigate the boundary-layer behavior of the MACA 0012 airfoil
near its leading edge at different angles of attack for a reduced frequency of 0.1
and for a chord Reynolds number of 3406.. Calculations were first performed for
angles of attack in the range of 0* to 5. The expression for the effective angle
given by equation (23) was written as

0. 957ci
aff 0 .7 (1 - cos Wt) (26)

so that the steady-state calculations start for zero angle of attack and. for half a
cycle, unsteady flow calculations were performed as the angle of attack was varied
from 0* to 5 by taking a - 5 in equation (26). Results were obtained for both
laminar and turbulent flows, with the transition point specified at (X/c)tr - 0.06.

Figure 4 shows the variation of wall-shear parameter F. and displacement
thickness 6*, defined by

(I f - u )dy (27)

0 e

with X for three effective angles: Geff - 0, 2.5, and 5. We see that the location
of minimum wall shear occurs at the transition point, namely (X/c)tr - 0.06, which
moves upstream with increasing angle of attack, for example, to X/c - 0.05 at
aeff - 5. The displacement thickness reaches a maximum, for example, at X/c - 0.06
for aeff - 0, reduces to a minimum after transition, and increases again with
further increase in X. The effect of angle of attack on displacement thickness is
pronounced, and at aeff - 5, the displacement thickness reaches a maximum of
X/c - 0.06, with a large dip in the AX/c range of 0.03, before it increases again.

Calculations were next performed for the same angle-of-attack range, but this
time the effective angle given by equation (23) was written as

a 0. 95%c (28)
eff  -2 (1 + sin wt)

so that the steady-state calculations started at an angle of attack of 2.5. Unsteady
calculations were performed for one cycle by taking 10* Increments in time. The
transition point was specified at two different X-locations to determine its effect.

Figures 5 and 6 show the variation of wall-shear parameter Fv, and displacement
thickness P* with X for the same effective angles as those in figure 4, but with
(X/C)tr - 0.04 and 0.07, respectively. The minimum value of wall shear in figure 5
occurs at the transition point, namely (X/c)tr a 0.04 for steady-state conditions
with aeff a 2.5" and moves downstram with decreasing angle of attack; for example,
to X/c - 0.044 at *ff a 0* and upstream with increasing angle of attack to
X/c a 0.036 at aff - So. As in figure 4, the effect of angle of attack on dia-
placment thickaess is pronounced as a, f increases from 0* to 5 causing a large
dip in 4.

8
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The results of figure 6 were obtained for a delayed transition location of
(X/c)tr - 0.07 and show similar behavior of wall shear and displacement thickness
with X at different angles of attack. Since the region of laminar flow has
increased, the values of wall shear are lover, indicating that the flow may approach
separation conditions with further delay of transition. The minim• value of wall
shear again occurs at the transition point, (X/c)tr - 0.07- with increasing or
decreasing angle of attack as it moves upstream, for example, to X/c - 0.065 at

ceff - 0 and to X/c - 0.06 at aff - 5*•

CONCLUDING MR131AKS

A method for calculating the behavior of laminar and turbulent boundary layers
on an oscillating airfoil has been developed and used to obtain results for the
boundary layer around a NACA 0012 airfoil oscillating between 0 and 5*. Two proce-
dures for generating the initial conditions in the (t,y) plane were investigated -
a characteristic box scheme and a quasi-static approach. The quasi-static approach
was shown to be preferable provided the X-location was far from flow separation.
The boundary-layer results were obtained by solving the unsteady-flow equations for
different angles of attack for both laminar and turbulent flows. They allow compari-
son of laminar and turbulent flow and for the latter, quantify the effect of changing
the location of transition. They are presented in terms of displacement thickness
and wall-shear parameter, both of which show large differences at the larger angles
of attack.
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Figure 3.- Comparison of the predictions of two separate procedures for computing
initial conditions in the (ty) plane. Solid lines denote the solutions obtained
by the characteristic box scheme described in reference 1; the dashed lines
denote those obtained with the quasi-steady approach.
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Figure 4.- Variation of wall-shear parameter and displacement thickness with X/c for
NACA 0012 airfoil with transition set at X/c - 0.06; the effective angle of
attack is given by equation (26).
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attack is given by equation (28).
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NACA 0012 airfoil with transition set at X/c -0.07; the effective angle of
attack is given by equation (28).
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