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A growing need exists for Improved fault tolerance, reliability, and
testability In distributed systems which support Comand, Control and
Comuanications and Intelligence (C3 1) activities. The objective of this
study Is to provide a foundation for the development of design measures
and guidelines for the design of fault tolerant systems.* Taxonomies of
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are characterized. Reliability and availability experience for ten
typical computer systems is reported in a consistent format, and the
data are analyzed from the perspective of a distributed system user.
Previous work on the identification of problems in distributed systems
and design methods for their solutions is discussed. Key issues in the
design of fault tolerant distributed systems are identified. Fault
location techniques for specific computer configurations found in C -I
applications are described in detail. The study is a continuing effort,
and a comprehensive design methodology will be developed based upon the
material presented in this report.
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This report covers the first half of a study of fault tolerance, reliability,
and testability In distributed systems that support command, control,
communications, and Intelligence (C31) activities. The study Is motivated by
the need for continuous avallabilIty of the computing function in the C31
applications and by the Increasing utilization of distributed computing In
this field. The study Is Intended to provide a framework for the
characterization of fault tolerance provisions, their evaluation against the
needs of C31 activities, and recommendations for Improvements In fault
tolerance, reliability, and testability where these are warranted.

The methodology utilized Includes reviews of the general literature of fault
tolerant and distributed computing with particular emphasis on reports
generated by DoD agencies related to C31 activities; on-site reviews of the
reliability experience of selected DOD facilities; collection of pertinent
reliability data from non-DoD facilities where these can be obtained; and
original research in areas not adequately covered by prior Investigations.

As part of the effort reported here, taxonomies of fault tolerance and of
distributed systems were developed (Sections 2.1 - 2.3), and functional needs
of C31 activities for fault tolerance have been characterized (Section 2.4).
The rellabllIty and avallablIlty experience of ten typical computer systems
(including two Air Force applications) Is reported In a consistent format, and
the data are Interpreted from the point of view of a user of distributed
systems (Section 3). A framework for the Investigation of design
methodologies for distributed systems Is described (Section 4.1), and previous
work Is summarized and key Issues In design are Identified (Sections 4.2 and
4.3). Fault location techniques applicable to specific computer
configurations found in C31 applications are described In detail (Section 5).

The study Is continuing, and a comprehensive design methodology will be
developed based on the work reported here.
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PREFACE

A growing need exists for improved fault tolerance, reliability,
and testability in distributed systems which support command, control,
communications, and intelligence (C3) activities. This interim re-
port identifies those system functional needs, design motivations, and
key design issues, and presents a logic which can be used for compar-
ative analysis and evaluation of fault tolerant distributed system
reliability, testability, and effectiveness. The results presented
are based upon current operational experience and previous studies in
the areas of fault tolerant design and distributed computing. This
report is intended to provide a foundation for the development of
measures and guidelines for the design and evaluation of fault toler-
ance, reliability, and testability in distributed systems.
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SECTION 1- I IR 1iO

This Is an Interim report generated on RADC Contract F30602-81-C-0133,

Rellablilty/Testability/Design Considerations for Fault Tolerant Systems by

SoHaR Incorporated. The study Is particularly aimed at applications In the

command, control, communications, and Intelligence area (C31). At the time of
the writing of this report, approximately one-half of the twenty-eight month
duration of the project had elapsed. The major goal of the present report Is
to describe the fault tolerance, reliability and testability found In present

C31 systems, or In systems that are technically similar to those In the C31
field.

Distributed systems are coming Into Increasing use throughout the digital
processing field because of the flexibility, performance, and reliability
advantages which they offer. Examples of benefits In flexibility are (a) the
ability to route computing tasks to the most suitable processor (as contrasted
with the local processor that may not be very efficient for a given task), (b)
the ability to add processors Incrementally as the computing load increases,
and (c) the ability to Introduce technical advances gradually, one processor
at a time, while retaining existing computers on-line, thus avoiding the major
software and systems problems that arise when dedicated computers are replaced
by newer models. Performance (throughput of computing tasks) Is enhanced
because distributed computing allows any temporarily Idle computer to be
utilized for sharing the load at a busy site, and, similarly, reliability Is
Improved because other processors can be uti I Ized to take up the load of a
failed one unill It Is repaired.

All of these benefits are particularly welcome In C31 applications. Major new
techniques are being Introduced In several functional areas, and the
flexibility offered by distributed systems Is highly desirable to support a
smooth transition to these. The performance advantages are valuable because
of the high ratio of peak load to average load, and the resulting oversizing
(in terms of average load) that Is necessary If dedicated computers are used

at each site. The reliability advantages of distributed systems translate
directly into survivability, perhaps the most highly prized attribute In a C31
system.

A number of other RADC projects address architectural aspects of distributed
systems and configurations for specific applications. The present study Is
particularly concerned with those aspects of reliability, fault tolerance, and
testability that are applicable to broad classes of systems. The definitions
and classifications of systems presented here, the experience on current
systems. and the techniques described In this report will be analyzed and
Integrated (together with additional Information) during the remainder of this
study. The final report will constitute a guideline for achIevIng
reliability, fault tolerance, and testability In the design of distributed
systems for C31 applications.

-Section 2 of this report Introduces the terminology for distributed systems
and fault tolerance, presents classlfication schemes (taxonomies) for both of

. . .. . . ._ . . . .. . ... .... . . Ii



these concepts, and, in the final part of the section, discusses the
objectives and problems in achieving fault tolerance In distributed systems.

Section 3 deals with the reliability of current systems that employ components
or techniques that will be applicable to distributed systems In the future.
In none ot the Instances for which data are presented do present systems meet
all of the criteria for a truly distributed system that were described in
Section 2. Nonetheless, the examination of the current data Is essential
because It is the basis from which planning for the future must proceed. Due
to the cooperation received from a number of Government and private
organizations, the long-term (mostly one year) reliability experience of ten
systems is presented in a consistent format, with allocation of failures to
hardware, software, and other causes. This collection of data may also be of
Interest to readers outsIde the field of distributed systems. The final part
of Section 3 presents a preliminary Interpretation of these data for future
C31 systems.

Section 4 discusses design Issues and methods In distributed systems. That
part of the report Is primarily Intended to define the constraints within
which guidelines for fault tolerance, reliability and testability must be
developed. The motivation of the developer/user, the current state of
supporting technologies (primarily In networking), and the approaches of
established design methodologies are reviewed. The contributions made In the
development of specific distributed systems are summarized In the final part
of that section.

Section 5 contains an example of a formal fault location technique for several
configurations that were repeatedly encountered In current military systems
that employ distributed processing of modest scope (a limited number of
computers). Fault IocatIon Is a signIficant aspect of the testability of
distributed systems. Prof. K. H. Kim, a consultant to SoHaR on this effort,
originated the concepts used in Section 5 and generated the program design for
fault location that Is presented In the Appendix. Sections 4 and 5 constitute
examples of individual Issues and techniques that must be mastered for the
successful application of fault tolerance In distributed systems.

2



SECT ION 2 - FAULT TOLERANCE AND) D ISIR IBT1M SYSTUGN

This section Introduces basic concepts of fault tolerance and distributed
systems as a foundation for the remainder of the report. Section 2.1 def Ines
key terms that are used throughout the report, section 2.2 contains a taxonomy
of fault tolerance measures applicable to distributed systems, and section 2.3
describes the classification of distributed systems. Finally, section 2.4
describes functional needs In fault tolerance and distributed systems.

2.1. DEFINITION OF KEY TERMS

2.1.1. Error, Failure, and Fault

The terms error, fault, and failure are often used Interchangeably In
technical literature. However, with the Introduction of systems that continue
to operate when components cease to perform as specified, distinctions among
various levels of failures, causes, and effects become necessary. The
definitions of these terms used In this report are shown In figure 2-1.

An erro~r exists when the output of a computer system does not meet user
requirements, or when the computer Is In a state that does not support user
needs. The system Itself has fai.led~, I.e., execution of a program on this
system has resulted In a filuire. To cause this failure, a ftaul.t must have
been present In either the hardware or the software. Hardware faults are
frequently caused by deterioration of Initially fault-free devices. Because
random processes contribute to the deterioration these hardware faults are
said to produce random failures. Software faults, as well as hardware design
faults, have been present from the time the system was placed Into service.
They have not resulted In observed errors because of lack of observation or
because the external event or triLgger~ to activate them had not been present.

2.1.2. Hardware Fault Tolerance

Hardware fault tolerance Is the ability of the system hardware to continue a
specifiled level of operation In the presence of one or more hardware faults.
This ability Is most often achieved by the use of replicated components. The
defi nition Implies that the system must continue to function as specified for
all Inputs; thus, a system capable of operating In a degraded mode In which a
restricted set of Inputs can be processed Is not fault tolerant.

2.1.3. Software Fault Tolerance

Software fault tolerance Is the ability of a system to provide uninterrupted
operation In the presence of program faults through multiple luplamentations1
of a given functional process. Although this definition was first proposed by
Elmendorf more than a decade ago EELiwE72], there remains much Inconsistency
In the usage of this term In the software engineering literature. For
example, other techniques such as fault containment and robustness have also
been characterized as fault tolerant despite the fact that they do not provide
for alternate and Independent execution of a function.

3
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2.1.4. Distributed Svstams

The term "distributed" when used In conjunction with "processing" or "system"
has become one of the vaguest terms In the field of computing. In an
Introduction typical of many papers on distributed processing, Enslow EENSL78J
spoke of the problem as follows:

"Words have only one purpose in a technical context - the transmission
of information. When they fall to do that. they lead to confusion and
misunderstanding. 'Distributed data processing' and 'distributed
processing' Illustrate that axiom. Like many other words in the lexicon
of the computer professional, these have become cliches through overuse,
losing much of their original meaning In the process."

Since the publication of that article, an ;ncreasing number of vendors, system
analysts. and users have adopted the term with a resultant further corruption
in Its meaning. Thurber's ETHUR8OJ definition of a distributd processing
system, which shall be used in this report, consists of a set of six
conditions:

1. The system has at least two processors (processing elements; hostO
etc )

2. Each processor has a main storage module and other memory subsystems
as required.

3. There is no system-wide shared memory

4. There Is a communications medium termed the "communlcatlons
subnetwork"

5. All process communication occurs via messages between processors over
the communications subnetwork

6. A message Is modeled as a stream of bits broken into three major
sections: header. Information text, and trailer.

This definition was chosen after examining some of the major Air Force C31
systems In which dispersed computers perform asssoclated functions and are
linked with various types of communication lines. The dispersed computers may
be grouped into tightly coupled networks in which one or more mainrrame
computers controls an array of sensors, displays, or other devices. Fault
tolerance measures can be applied to both the I Inks between these computing
centers and within the centers themselves.

Most currently operational large distributed systems consist of a "main"
computer Installation and "satellite" nodes. The main computer Installation
contains one or more computers which collectively control the network.
Failure of the main computer will result In either a severely degraded or
nonfunctional network consisting only of satellite nodes. Each satellite node
may have one or more computers which control local (I. e., not connected with
other satellites) Input and outpVt devices. Failure of one or iore of these
network. Thus, fal ure of any single node results in the loss OT some system

15
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processing capability, but does not necessarily result In a total system

fallure. Each node on a decentrallzed system may Itself be a centralized
distributed system. For example, the ARPANET consists of a large number of
mainframe computers which control an extensive local network of satellite
minicomputers, Intelligent terminals, and output devices. None of these

nodes, however, controls any other node on the system.

This definition Is functional for describing current Air Force distributed
systems from the scale of fighter aircraft avionics to the scale of the WWMCCS
network. It Is also consistent with the current use of the term In the
commercial computing Industry. Finally, networks which conform to more
limited deTInitions of distributed processing such as [ENSL78 and ENSL81] are
also Included In this definition.

2.2. TAXONOMY OF FAULT TOLERANCE MEASURES FOR DISTRIBUTED SYSTEMS

Taxonomies for the classification of both fault tolerance methods and network
architectures are necessary to partition the topic of fault tolerance In
distributed systems Into homogeneous and manageable subtopics. The objective
of this section Is to develop a framework for classifying fault tolerance
measures for distributed systems. The basis of this taxonomy Is the
conceptualization of a computer network as nodes and links. The node Is
defined as everythIng on the computer side of the I/0 buffer, and the link Is
defined as the network system beyond the I/0 buffer unt Il that of the next
node.

Figure 2-2 shows the taxonomy. Fault tolerance for distributed systems can be
Implemented either with or without reconfiguration of the network. The left
hand sloe ot the trqe shows fault tolerance Implementation with
reconfiguration consisting of node substitution, I Ink substitution, or both.
Reconflguratlon Is the highest level of fault tolerpnce for a distributed
system, and requires a network management system. Commercially available
protocols and network architectures allow for the reconfiguration (I. e., the
disconnection or reconnection while the rest of the network remains
unaffected) of secondary network processing elements. However, most work on
network reconfiguration after failure of principal processing nodes has been
on either a theoretical level or on experimental systems.

The right hand side of the tree shows how fault tolerance Is applied without
network reconfiguration. In this case, recovery after a failure Is achieved
by returning all nodes and links to an operational status. Restoration of
communication through a I Ink Is achieved by one of several strategies: time
based (e.g. NAK/ACK) for transient failures, alternate types of communication
links for longer term faults (e.g. use of optical communications In the event
of extended electromagnetic disturbances), or the use of an alternate route of
the link (e.g. a replicated bus running along different sides of an aircraft
to mitigate the effects of battle damage). The restoration of a node Is
achieved through computer hardware or software fault tolerance techniques.

6
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This division of fault tolerance measures provides a framework for further
discussion and analysis, but should not be Interpreted as meaning that use of
techniques in one classification prevents use of techniques In another class.
For example, a fault tolerant computer must have boh hardware and software
fault tolerance. Similarly, achieving fault tolerant communication links may
Involve time, type, and space tactics, and may also Include use of an
alternate link as an additional backup measure.

2.3. TAXONOMIES OF DISTRIBUTED SYSTEMS

The taxonomy used In this work on reliability, maintainability, and fault
tolerance characteristics of distributed computer systems was tal lored to
operational Air Force systems and analogous non-military systems. It utilizes
a small number of categories that are well defined and within each of whIch
uniform reliability problems are found and solutions can be applied. Section
2.3.1 describes other taxonomy schemes In the literature and explains why they
are unsuitable for the purposes of this work. Section 2.3.2 uses the
hierarchical model of network architecture to define two taxonomies. Section
2.3.3 describes the lower level taxonomy (designated as the "network"
taxonomy), and section 2.3.4 describes the upper level "application" taxonomy.

2.3.1. Earlier Taxonomies of Distributed Systems

The taxonomy one adopts for distributed systems is determined by the technical
point of view. Indeed, so many taxonomies of distributed systems have been
presented In the literature that It Is possIble to develop a classification
scheme for the taxonomies EGREE77, BANN81].

Most taxonomies take a topological approach by defining primitives (e.g.
nodes, switches, and links) and then classifying the ways In which they can be
linked together. The scheme most often cited In the literature using this
approach is that of Anderson and Jensen [ANDE75]. The topological view Is
problematic because other aspects of the network can have more Impact on the
system characteristics. For example, the computing system of a major Los
Angeles newspaper and that of a C31 Instal lation both consist of two
replicated mainframe computers and two front end processors. Although these
systems are topologically similar, they are very different In most other
aspects.

Authors such as Thurber CTHUR78] and Jensen, at. al [JENS76J use switching
methods (I. e., no switching, circuit switching, message switching, and packet
switching) In their classification schemes. This approach falls to consider
differences In local and long haul computer networks, and also falls to
consider topological and operational aspects of a network. For example, the
Ethernet ESHOC82J is topologically a linear bus system (I. a., a variety of
nodes are connected to a single communications channel) In which there are no
discrete switching elements. Thus, one might place this network In the no
switching classification. However, the Xerox Implementation of a network
using Ethernet Is based on fixed length mestage packets, and It Is therefore
often characterized as a packet switching network.

i



Orther authors have attempted to address the many aspects of distributed
systems by developing elaborate taxonomies. One such classification scheme
has f ive levels and owe than sixty categories [BANNSI]. Unfortunately, the
complexity of this approach makes It Impractical.

2,3.2. TXUMrny Used for This Study

The taxonomy f or this study regards distributed system architectures as a
series of layers, a concept which has been prominent since the development of
ARPANET In the late 1960s [KLEi78J, EISOel). The top layers Include the
application program and associated display terminal (or other 1/O device)
control characters. Intermediate levels Interf ace the applications program to
the host computer and the Intercomputer communication system (often designated
the "subnetwork). The bottom layers control node access to the communication
subnetwork and actual data transmission.

Figure 2-3 shows the seven level ISO Reference Model EISO81] which Is the
basis of much of the current work In distributed systems. The dotted IInes
between the levels at the two nodes demonstrate the notion of transparency, 1.
e., viewing each level as communicating directly with Its counterpart at the
receiving node without regarding the Intervening levels through which the data
actually passes during the transfer. The desired result Is to decouple
application programs and data from lower levels which control the actual
operation of the network. Figure 2-4 shows how these layers are aggregated
for this study. Reliability, maintainability, and fault tolerance
characteristics of either grouping of layers will be considered separately,
with the resultant development of two corresponding taxonomies.

Because the lower layers of f igure 2-4 are affected by the nature of the
network, (e.g. local or long haul, transmission rate and medium, performance
characteristics of the node hardware, etc), the taxonomy for this level Is
designated as the *network" taxonomy and Is discussed In subsection 2.3.3.
The upper layers are related to the particular applications tasks and date,
and the associated taxonomy Is therefore designated the "application level"
taxonomy, which Is described In sections 2.3.4.

2.3.3. Ntokjxw

Figure 2-5 shows the overall structure of the network taxonomy. The left
branch Includes three types of networks confined to a small physical area and
the right branch describes two types of dispersed networks. The distinction
between these branches Is the ratio of the communication link bandwidth to the
computing node processing throughput, a quantity which governs the efficiency
with which computing nodes can Interact, In localized networks, where links
have capacities In the Megabit per second and higher range, this ratio Is
generally on the order of a few percent. In dispersed networks, where long
distance links normally have capacities of less than 20,000 bits per second,
it is several orders of magnitude lower.

9
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The three subclassifications of the localized computer networks shown In
figure 2-5 are mobile, collocated, and proximity computer networks. The
latter designation refers to a network whose nodes are located within a radius
of approximately 5 km (the predominant definition of local computer networks
for office automation purposes).

Because of size and weight limitations, mobile localized networks generally
consists of mini and microcomputers. The distinguishing features of this
category are the Iimited maintenance and diagnostic resources which may be
applied during operation, timing and program length constraints, and the time
critical nature of Interruptions and recovery procedures. The major
operational example of an Air Force system In this classification is AWACS. A
developmental microprocessor based system currently exists at Wright Patterson
Air Force Base ELARI81]. Network reliability problems Include failure
detection, Isolation, and reconfiguration due to either component malfunctions
or battle damage. These functions must be performed both automatically
because human operators may be fully occupied with other tasks and rapidly
because of the real time applications.

Networks of collocated computers, the second subclassification, are fixed
ground based computers Interconnected to achieve higher system reliability,
throughput, or task Integration. Systems In this category are distinguished
from the previous one by fixed locations and the resultant relaxing of
constraints on component weight and size, diagnostic provisions, and
maintenance capabilities.

Reliability problems for this category of distributed systems Include local
failure detection, Isolation, and reconfiguration. In most cases, links
between the computers do not contribute significantly to the network failure
rate.

Distributed systems In the proximity subclasslfication are ground based
networks In which nodes are located In the same general vicinity but are not
physically adjacent. These systems are currently designated as "local area
networks". The major distinctions of this category are the internode distance
and the use of serial (rather than parallel) communication on the links. Two
examples of Air Force systems are the FILAN specification now being developed
at RADC EFILA823 and Ballistic Missile Defense (BND) systems now being
developed by the U. S. Army EALF081. A third example Is the combination of
computers on an AWACS aircraft, on fighter aircraft beIng control led by the
AWACS, and at a ground station. Network reliability problems for these
systems Include remote failure detection and isolation (the malfunctioning
node may be Inaccessible because of distance or battle considerations),
reconfiguration, and disconnection of a "babbling node". As a consequence of
the Increased Internode distance, problems on the link related to noise and
signal propagation time must also be considered.

Figure 2-5 shows two subclassifications for dispersed computer networks: (1)
dispersed computers, I. e., a network with large computers scattered over a
wide geographical area, and (2) dispersed terminals, i. e., a network with one
or more computers located at a central site which support sensors, terminals,
and other specialized devices over a wide geographical area.
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The prime military example of the first subclassification Is the Worldwide
Military Comand and Control System (WWMCCS), a system which Includes sites In
Europe, North America, the Pacific, and Asia EGA078J. Other example systems
which were surveyed are shown In table 3-1. Network reliability problems
Include ensuring the Integrity of communication links to other computers,
error detection and correction of the transmitted data, remote failure
detection and Isolation of both computers and communication links, and
establishment of alternate links to disconnected nodes.

The distinguishing characteristic of the second subclasssification of
dispersed systems Is the presence of geographically separated terminals (and
other i/0 devices) and a central computing facility. If the computing
facility contains more than one local computer, that part of the network falls
into the localized classification while the portion concerned with the remote
terminals falls In this category. Military examples of such systems Include
NORAD and PAVE PAWS EGA078] which have both multiple col located maInframe
computers and links to remote sites. Network reliability problems Include
ensuring the Integrity of the communications link to the terminals, error
detection and correction of transmitted data, remote failure detection and
Isolation of communication links and terminals, and rerouting of
communications to critical disconnected terminals.

2.3.4. Application Level Taxonomy

Figure 2-6 shows the taxonomy for the application level. The two major
divisions are based on the need for shared programs and data among two or more
computing nodes. The left branch of the taxonomy comprises those applications
which do not Involve shared programs or data. The right branch consists of
two classes of shared programs or data: replication and partitioning.
Partial replication Is a special case of partitioning.

The primary military example of a computer network falling Into the unshared
subclassification is a single AWACS aircraft. The navigation, communication,
display control, and central computers perform unrelated tasks and, although
the first three computers Interface with the fourth, there are no common
programs or data. A second military example is the NORAD computer complex
EGA078J In which three separate computer systems perform distinct but
Interrelated functions. Network reliability problems In this category are
task scheduling after reconfiguration (if It is possible to reallocate tasks
from a failed node onto working nodes), network recovery on the application
level, and Interprocess communication for both co-resident tasks and those
resident on different processors.

PAVE PAWS Is the best example of a computer network In which shared programs
and data are replicated. Network rellabilIty problems at the applications
level Include updating procedures and concurrency control, network recovery,
and Interprocess communication. Because of the complexity of Implementing
partitioned distributed programs and data bases, no examples were Included In
this study. Network reliability problems are concerned with Interprocess
communications, concurrency control (I. e., assuring that a READ request Is
honored only after all earlier WRITES are performed), programs and data
redundancy measurest and network recovery.

1' 13
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2.4 FUNCTIONAL NEEDS FOR FAULT TOLERANCE IN DISTRIBUTED SYSTEMS

This section describes typical Air Force C31 needs In both distributed
computer systems and for fault tolerance In these systems. Because the aim of
this study Is to advance the state of the art, this section emphasizes needs
that are not currently being met. However, it should be noted that some fault
tolerant capabilities In distributed computing do exist at present.

2.4.1 Functional Needs in Distributed CMuting

There Is a pervasive need In C31 applications to access programs and data from
remote files or real-time data sources, to combine these with local programs
and data, and to cause actions to be taken on output derived from the combined
data. A typical case Is the Identification of the launch point of an Incoming
missile from (a) a file of potential launch sites that may be In a local data
base and (b) track information that Is coming In from one or more remote
sites, and then to notify affected commands of the results of this
Identification. When data sources have been selected In advance, this
computation can proceed without operator Involvement, and the results placed
on hardwired communication links. However, when the situation demands a more
general solution, It Is desirable that an operator on a properly privileged
terminal be able to set up an equivalent computation by means of the computer
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statements shown In figure 2-7 (A).

Ideally, the operator need only Identify the desired procedure (DATAMERGE),
the type of data (A and B), and the disposition of the output (creation of a
file MERGED). The distributed computer system will then (1) select the most
suitable and available computer for this procedure, (2) access the most
current sources for data A and B, and (3) store the resultant file In the most
accessible device. This capability Is not Implemented In currently
operational systems,

Instead. the operator Is forced to select a computer, to Identify sources for
the programs and data, and to tell the system where to store the result as
Indicated in figure 2-7 (B). In routine situations these operator actions are
trivial, and a strong argument can be made that the ability of current systems
to automate the access (item 2 in the previous paragraph) Is a major
achievement. However, what If the routinely programmed computer for this
procedure is already fully loaded, the routinely accessed programs and data
sources have not been updated (but another source has been), and the routine
storage device Is down or does not have sufficlent capacity for this file?
All of these difficulties are much more likely to arise In exactly those
situations when C31 systems must perform 'for real t .

Therefore, a substantial Incentive exists for achieving the capabilities of
figure 2-7 (A). A major problem Is the tendency of present support software,
particularly the compilers, to bind an application to a specific computer.
Typical application programs can only be run on one specific type of computer
after compilation Into object code as Indicated In figure 2-8 (A). Even a
routine modification such as adding memory will require recompilation In many
cases. In order for a distributed system to assign application programs to
any available computer, it is necessary to separate those portions of the
compilation which translate source code from those that provide the computer
adaptation as shown In figure 2-8 (B). While there are tendencies In that
direction, much more effort seems necessary to meet the functional needs of
C31 users.

2.4.2 Functional Needs for Fault Tolerance

An analogous situation to that of distributed programs and data exists for
fault tolerant features In distributed systems. Ideally, the operator should
be able to Indicate simply that fault tolerance (or perhaps a specific degree
of fault tolerance) Is desired, and the computer system should then configure
Itself to provide the required back-up elements as Implied by the Instructions
shown In figure 2-9 (A). However. the best available technology toward this
end Is In fixed redundant Installations with the ability to automate back-up
programs and data storage (not always efficiently). In case of a computer
failure, the user must select the alternate, purge files that may contain
Improper programs and data, and Identify a suitable restart point as Indicated
in figure 2-9 (B).

There are few specifIc obstacles to achieving the desired fault tolerance
capabilities once the problem of assigning suitable alternate computers has
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been solved. Thus, an Improvement In the functional capabilities relative to
distributed computing will pave the way for a significant Improvement.in
practical fault tolerance.
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SECTION 3 - RELIABILITY OF CURT SYSTEMS

The relIabIlIty experience on current systems represents a starting point
for what might be expected for future systems and for determining the types
of rellability Improvements that would be most effective for these. The
first part of this section presents data on ten current systems. the second
part analyzes the data, and the third part evaluates the outlook for future
systems based on the current experience.

3.1 CURRENT EXPERIENCE

As part of thIs study, relIabIlIty and avaIlabIlIty data on ten current
systems were obtained In a consistent format. All of these systems serve
applications In which It Is Important that computer services be continuously
available throughout a specified portion of the day, In some cases for 24
hours, and therefore all of them Incorporate redundancy for at least a
portion of the local computer Installation. None of them uses resources at
another node to substitute for failed or overloaded local resources, and In
this regard they are not representative of the operation of future
distributed systems. Expectations about the reliability of distributed
systems are derived as extrapolations from the experience discussed here and
are presented In the last part of this section.

The systems for which reliability data were obtainable span a wide range of
applications, from telephone switching systems to airline reservations and
banking. The systems are not comparable in terms of complexity. In
particular, the diversity of tasks handled by the FAA en route air traffic
control system makes this a uniquely complex application area. In some
cases avalIabilI ty or relIabIlIty goals had been establIshed whereas In
others It was Intended to provide the best service possible. Any grouping
Is somewhat arbitrary, and comparisons between systems must take into
account the wide differences in requirements, development and procurement
constraints, and operational practices. The data are presented to show
that:

a. availability data are being collected In a consistent format in a
variety of applications

b. several systems are available more than 99$ of their expected
operating time

c. the causes of failures are fairly similar, and are distributed
about evenly between hardware, software, and other classifications.

Four of the systems exist In almost Identical form in many locations, whereas
the others are singular Installations. Table 3-1 shows the downtime and
related data for systems that are Installed In multiple locations.
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TABLE 3 - 1 EXPERIENCE OF MULTIPLE INSTALLATION SYSTEMS

System Bell FAA Federal Reserve Bank
No. 4 ESS En Route ATC Dataphone 50 Med iur Speed

No. Installed 55 20 13 14

Op. hrs/yr. 8760 7665 3000 3000

Avallab. goal 99.99% - 96% 98.5%

Actual avalIab. 99.99% 99.6% 99% 98.8%

Downt Ime
Avg. hrs/yr 0.75 30 30.3 34.9
Caused by

Hardware 25% 40% 38% 39%

Software 35% 30% 35% 51%

Other 40% 30% 27% 10%

The Bell No. 4 Electronic Switching System is Intended to operate 24 hours
every day of the year; the En Route Air Traffic Control System is shut down
for maintenance approximately 3 hours each day during the early morning hours
and a back-up system Is then used to handle the light traffic load; both
Federal Reserve Funds Transfer Systems operate approximately 12 hours a day on
weekdays only.

Several avaIlabli ty requirements have been established for the No. 4 ESS.
One of these Is that the average downtime for an Installation shall not exceed
6 hours over a 40 year operating life (corresponding to an availabilIty of
99.9983%). Other requirements are specific to the application, deal ing with
the number of calls that may be Interrupted and with the number of unit
replacement actions EDAVI81]. The availability requirement for the FRB Funds
Transfer System relates to the availabIlity of each Installation for a given
month. The actual avallabliltles are In each case averages over all
Installations for a calendar year. The Bell and FAA actual availability data
are for 1980, the FRB actuals are for 1981.

Criteria for downtime are that the entire Installation becomes Inoperative or
more than a threshold amount of time (In the case of the FAA this Is one
minute; It Is less for the other systems In Table 3-1). Partial outages that
affect only a limited number of phones, or a single controllerts console, are
not Included In these statistics. Note particularly that failure of a single
computer will typically not result In downtime because back-up is available.

The availability experience of six systems that exist In only a single
Installation Is presented In Table 3-2. Two organizations contributed data on
two systems each. In one case the two systems used exactly the same hardware
configuration but differed in operational details; In the other case there was
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only gross similarity of equipment. The availability goal for each of the
airline systems was 99.6%. Goals for the other Installations were not stated.
The computer applications represented In Table 3-2 differ greatly in the
complexity of the programs, size of data bases, number of access points, and
requirements for real-time output. Differences in avai lability or downtime
therefore do not Indicate that one system Is "better" than another. The data
for the airline systems pertain to 1980. All other data represent 1981
experience.

TABLE 3 - 2 EXPERIENCE OF SINGLE INSTALLATION SYSTEMS

System Airline Military Stanford Gov't
Fit. Inf. Reserv. Syst. A Syst. B Lin. Accel. Fiscal Syst.

Op. hrs/yr. 8760 8760 7835 8630 8518 6535

Actual avallab. 99.89% 99.65% 99.22% 98.40% 98.66% 88.52%

Downtime
Hrs/yr 9.5 31 61 138 114 750
Caused by

Hardware 23% 41% 28% 49% 56% 64%

Software 16% 35% 10% 1% 35% 14%

Other 61% 24% 62% 50% 9% 22%

3.2 ANALYSIS OF CURRENT DATA

Even the most casual review of the data presented In Tables 3-1 and 3-2
Identifies the Bell No. 4 Electronic Switching System as having exceptionally
high availability and correspondingly low downtime. This system is the
product of a specialized organization comprising several thousand
professionals, and, as the designation Indicates, It is the fourth major
design of an electronic switching system undertaken by that group.
Publications on the No. 1 ESS go back at least to 1964 EKEIS64J, and features
of the No. 4 ESS were described as early as 1972 EVAUG72J. The data In Table
3-1 Indicate that the long-term allocation of resources to ambitious and
well-specified reliability goals produces the desired results.

Like Its predecessors, the No. 4 ESS Incorporates dual digital processors and
error correcting code In memory. Redundancy Is Incorporated In peripherals
such that a single failure can not disable more than a small number of I Ines.
In 1980 the average Installation served 22,000 terminations. The computer
program comprised over 2 million Instructions EDAVI81J.

In the early reliability planning for electronic switching systems It was
essumed that most system failures will be caused by simultaneous failures of
redundant hardware components, such as a second processor failing while the
first one was being repaired. Such incidents accounted for only 11% of all
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failures and 9% of the downtime In the data reported In Table 3-1. The
balance of the hardware downtime was due to wiring failures or errors (6%),
necessary shutdowns for fault Isolation (6%). and design errors (4%).
Software failures were the largest single cause of downtime. They accounted
directly for 29%, and they required shutdowns for Intentional test. etc. that
caused another 6% of the downtime. The largest contributor to the "other"
category for the ESS was personnel errors which accounted for 24% of downtime.
Unresolved or unclassifiable problems accounted for the balance of the
downtime reported In that category. No outages due to power supply problems
were reported for ESS. This Is In sharp contrast with the experience on other
systems.

The most significant facts emerging from the analysis of the ESS data are:

a. the unusually high availability of this system

b. the small contribution to downtime from classical failure mechanisms

c. the Importance of software and personnel failures

The FAA en route air traffic control system utilizes computers that are
derived from the IBM 360 series and Incorporate a very effective error
detection and reconf iguration mechanism. Depending on the workload at each
air traffic control center, three or four mainframes are provided of which at
least one Is a spare that Is activated In case of a hardware failure In one of
the other units. The equipment Is representative of computer design In the
early 1960's and was Installed between 1967 and 1972 EGRAY80J. Aithough the
same hardware and basic software are used In each traffic control center,
local modifications and adaptations are authorized to permit each center to
meet Its local needs. This, In addition to the varying traff ic loads. may
account for differences discussed In the following paragraph, It also needs
to be stated that outage of the computer system does not mean cessation of air
traffic control operations at the affected center. There are further back-up
provisions which Impose a higher workload on the controllers but permit safe
handling of controlled aircraft.

The data available on the computer failures of the en route air traffic
control system permit some analysis of the differences between centers. The
following discussion pertains to the number of failures (hardware, software
and unknown, but excluding personnel errors) for the main computer
Installation at each center. Number of failures rather than downtime was
selected so as to exclude (as much as possible) differences In maintenance
proficiency, and personnel errors were deleted for the same reason. The
average number of Interruptions due to the selected causes during 1980 was
162.7 with a standard deviation of 69.2. The lowest number of Interruptions
observed was 15 and the highest number was 357. Fifteen of the twenty centers
(75) were within one standard deviation of the mean (compared to 65% for a
theoretical Normal distribution)* Busy air traffic control centers were
represented among those with a low Interruption frequency as wellI as among
those experiencing an above average number of Interruptions. Because workload
measures were not available, no formal correlation between traffic volume and
failure frequency was undertaken.
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Much of this difference between centers must be due to controllable causes
(maintenance and administrative practices, nature of the local adaptations,
etc.), and It Is Interesting to speculate how much benefit might be derived
from an attack on those causes. If the average frequency of Interruptions
could have been reduced to the low end of the central range (observed mean
minus one standard deviation), and If downtime Is proportional to the number
of Interruptions, then the average annual downtime would have been reduced to
less than 20 hours. This reduction Is greater than that which could
reasonably be expected from reliability Improvement programs in either
hardware or software.

Despite the age of the equipment and the complexity of the computational
tasks, the FAA en route air traffic control computers achieved an availability
of 99.6%. The above analysis suggests that this figure could be further
Improved by control of maintenance and administrative practices.

The Federal Reserve Bank operates two computer data systems: The Dataphone 50
system which is concerned with bulk processing and transfer of computer data
(economic analyses, member bank status reports), and the medium speed system
which handles Individual fund transfer activities. The Dataphone 50 system
was Inaugurated In 1975. and It operates at 50 kilobaud over a dedicated coax
cable. It facilitates point-to-point data transfer between all nodes. The
medium speed system has been In operation since 1970. it Is laid out as a
star network with the central node at Culpeper, Virginia. Its nominal
transmission rate Is 2.4 kilobaud, and it uses a store-and-forward protocol.
A variety of computers are Installed at each of the Federal Reserve Banks and
have access to either network.

Two Interesting observations were made possible on the basis of the material
furnisned on the Federal Reserve Communications System: Outages of the
central node contributed only a minor portion of the total downtime, and
workload did not seem to have a significant effect on the duration of the
outages. The Culpeper Installation, which serves as the central node for the
medium speed system had a total downtime of only 13.5 hours during the year,
compared to an outage of 34.9 hours for the average node. Of the 103 failures
at the central node, 87 were caused by software problems. Ten fai lures were
due to hardware problems, and six of these were reported during one month,
apparently a single problem that was difficult to diagnose. The conclusion
from these observations Is that hardware fault tolerance at a central node can
contribute significantly to the rel lability of a star network, but that It
needs to be supplemented by software fault tolerance techniques In order to
obtain the full benefit of this link structure.

Several Investigators have recently reported a strong correlation between
workload and computer failures EBEAU79, CAST81. IYER82J. In the data on the
medium speed system, downtime during the peak hours for that system (1 pm to 4
pm Eastern Standard or Daylight Saving Time) Is stated separately. The
average outage per location reported during peak time was 7.05 hrs/yr. Since
the average outage for the entire 12 hour operating period was 34.9 hrs/yr.
this Indicates that less than one-quarter of the downtime occurs during that
quarter of the operating day during which the workload Is highest. While
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downtime and failure frequency are not the same, one expects approximately the
same fraction of each to occur during a given time Interval unless special
circumstances prevail. Some explanations for the deviation from the generally
expected relation between workload and failure frequency are:

a. Maintenance and staffing schedules favor availability during the peak
period. Maintenance actions which might reduce equipment availability
during the peak time are avoided. The most experienced operating and
maintenance personnel are at work during the busy period. Special
procedures are In effect to minimize the probability of a failure during
the peak hours.

b. The designation of the peak period may be In error. The workload
analysis might have been conducted at some time In the past when a
different pattern prevailed. Users may deliberately schedule most of
their work during 'off-peak' hours, thereby making these de facto peak
hours.

C. The reported relations between workload and failure frequency may not
apply. Previous studies have been primarily concerned with processing
bound applications whereas the medium speed system Is probably channel
bound. Effects that have not yet been Identified may cause a deviation
from the expected pattern.

AllI three factors might be at work, but on the basis of the procedures
followed In similar systems the major contributor to the observed effect Is
probably (a). The data on the Federal Reserve Commnunications System show that
with proper design and procedures the central node In a star network need not
be the weak IInk, and a disproportionate fraction of the downtime need not
occur during the busiest period.

Data obtained In 1976 on the Stanford Linear Accelerator Computer (SLAC) show
a very pronounced dependence of failure frequency, particularly for failures
due to software, on workload, and this relation Is also evident in the current
data. F Igure 3-1 ill ustrates the sof tware fa IlIure f requency (totalI f or 197 6)
during each one hour period of the day. Note the peak between 11 am and 12
noon, then a decreae during the lunch period, and a secondary peak lasting
from 2 to 4 pm. These are obviously the periods of highest activity on the
system.

Only failures which affected the entire system are Included In Figure 3-1,
primarily failures In the operating programs. Because these programs are
particularly active when a new job Is started, we normalized the failure
frequency relative to the number of job arrivals during each one hour period.
The resulting graph Is shown In Figure 3-2. The peaks during the mid-day
period have been eliminated, and Instead there Is a pronounced singular peak
between 7.am and 8 am. During this period not many now jobs are started, but
there Is a high degree of system activity due to archiving, re-initial ization
of the computer, and sometimes phasing In a new release of the operating
system.

The Government f iscal system described In the last column of Table 3-2
consists of a redundant Installation of I8B4 370/168 computers that service a
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nationwide network of approximately 1,000 terminals that direct queries to the
central data base and can also, with safeguards, update that database. As
evidenced by the high downtime, and the large fraction of that due to hardware
failures, the system appears to be beset by maintenance problems. Over 100
hours of outage due to power and airconditlonlng failures are Included In the
'other causes' classification.

Prime time is In this system defined as a ten hour Interval between 8 am and 6
pm Eastern Time. For a subset of the equipment that Includes the mainframes,
separate failure statistics were kept for prime time and total time. These
Indicate that outages accounted for only 2.2% of the prime time compared to
3.66% of total time. While this again seems to contradict the workload
dependence of failures, It Is In this case due to an established policy which
permitted shutdown of one of the redundant computers for maintenance during
non-prime hours. Any fallure In the active computer then propagated
Immediately to a system outage.

3.3 INTERPRETATION OF FINDINGS FOR FUTURE C31 SYSTEMS

The most encouraging rellabil /ty experience encountered In this survey was
that reported for the No. 4 Electronic Switching System. The most prominent
factors that account for the superior showing appear to be:

a. A large, dedicated development staff

b. Multiple Installations of Identical equipment

c. Extensive diagnostic programs for failure Identification

d. Building on past experience with similar systems

The staffIng practices at Bell Labs provide specIaIIsts In all aspects of
reliability (from device physics through system architecture) within the
project organization. Because of low employee turnover, Individuals or small
groups become highly expert at their assigned responsibilities. Factors (b)
through (d) were also present to a large extent In the other systems for which
multiple Installations existed, and these probably account for lower downtime
that was generally reported for these. None of the systems described on Table
3-1 had a downtime of more than 35 hours per year, whereas all but the airline
systems described on Table 3-2 had downtime considerably In excess of 35 hours
per year.

It is unlikely that the Government can procure C31 systems that have the
legacy of development and operational experience Inherent In a Bell
Laboratories electronic switching system. Nonetheless, emphasis on thorough
development and field testing prior to a committment to operation provides
substantial reliability benefits and should be practiced. The other factors
enumerated above are directly applicable to Government procurements and should
be Identified as requirements In future program plans. With proper attention
to such requirements, It seems possible to achieve availability approaching
99.9% In a dual Installation.
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The analysis presented earlier In this section dwelt heavily on the workload

dependence of computer failures because It Is believed that this is

particularly Important for military C31 Installations. In times of potent'al

or real conflict, the workload In these systems Is expected to Increase very

significantly, and it is under these circumstances that failures will have the

worst effect. Thus, predicting an average availability of 99.9% for C31

equipment can be as misleading as stating that the average depth of a stream

Is one foot which leads to drowning of a party trying to ford that stream and

finds that the maximum depth Is much greater. The availability planning and

prediction must be based on a stated workload that should reflect the maximum

a given installation will be exposed to In case of military conflict.

Availability can be Increased by furnishing additional spare resources 
In

place, or by making remote spare resources accessible in case of a failure.

Distributed systems have a high potential for facilitating the latter approach

but here, again, an additional workload dependence needs to be recognized:

utilization of remote computers requires high capacity data links, and these

might be busy or unusable (EMI, etc.) during the time that they are needed to

support geographically dispersed computing. These factors will be evaluated

In later phases of 
this study.

The star configuration of networks Is of particular Interest In tactical

military systems because It models the command structure. It was therefore

significant to find that at least one network using that structure did not

experience seriously adverse effects from the dependence of such a network on

the continuous operability of a node.
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SECTION 4 -DESIGN ISSUES AND ME7HODS IN DISTRIBUTED SYSTEMS

This section surveys previous work on both the Identification of problems of
distributed systems and design methods for their solutions. Subsection 4.1
provides a framework for describing and analyzing the wide variety of network
design methodologies along with the problems and design Issues they address.
Subsection 4.2 discusses previous work relevant to C31 applications, and
subsection 4.3 sunmmarizes the results as a set of requirements for the design
of fault tolerant distributed systems%

4.1.* A FRAMEWORK FOR DESIGN METH-ODS AND ISSUES

This framework uses three descriptors to characterize design methodologies for
distributed systems: design motivation, stage of network Implementation, and
scope. Design motivation refers to the attribute that Is being optimized
(e.g. cost, throughput, etc.). Stage of network Implementation relates to the
stage of development of networking components, and ranges from fully developed
systems to network designs where neither the processors. links, terminal s, or
software have been developed. Scope Is used to describe the range of design
problems addressed from the formulation of requirements to the final detailed
design.

4.1.1. Design Motivatigns

Motivations for distributed systems affect the approach to the design, the
evaluation crIteria used to make tradeoffs, and f igures of merit used to
assess performance. Past work on distributed systems can be classified on the
basis of these motivations which include Increasing throughput or response
time, lowering communications costs, conforming to the structure of the user
organization, relieving the load on an overburdened system, or Increasing
system reliability and availability.

Increasing system throughput or decreasing response times have been major
motivations for the general research comrmunity, tactical C31 applications,
real time control, and ballistic missile defense. The principal design Issues
have been optimization of task allocation with respect to throughput,
efficient interprocess communication, distributed data bases- and, to a
I mited degree, fault tolerance (the abiI ty to add or delete units In a

distributed system provides this flexibility). Because such systems are
general ly both non-dispersed and under the control of a single local
commnander, distributed computing Is not Inherently superior to a central
processor In these applications. However, because no hardware appropriate for
field and battle conditions has the requisite throughputs. the use of several
smaller units operating In parallel Is a viable alternative.

Lowering communications costs has been of primary concern to both DoD and
non-DoD agencies that operate general purpose computing facilities serving
dispersed users, The major design Issue Is the tradeoff of the cost of local
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processing (e.g. for display formatting and local editing on CRTs) versus
that of communication links with the capacity to transmit unreduced data to a
central site for processing. Associated issues are the management and
maintenance of a long-distance communications network, optimal task allocation
with respect to cost (generally a nearly static proposition), mln!mIzation of
system response time to user actions, and optimal choice of compatible
hardware and software components. While high reliability Is one of the design
goals of these systems, fault tolerance Is generally not. One significant
exception, however, Is the use of dual processor minicomputers (e.g. Tandem or
Stratus) as front-end processors. Such systems are generally used on
reservation or telephone ordering systems where high reliability Is a
requirement for marketing and customer relations.

Conforming to the structure of the user organization Is also of concern to all
classes of users. The primary C31 manifestation of this goal as the governing
facTor In distributed system design Is evident In the structure of WWMCCS in
which computing centers are associated with each of the major functions.
Another, much smaller scale example, Is the Xerox Ethernet based office
automation network. The major Issues are designing such a network in
accordance with user and organizational requirements, providing for the
configuration management and maintenance of a coherent network given the
presence of heterogenous nodes, and failure diagnosis. Task allocation is not
a consideration because nodes are generally not under the control of a central
system supervisor. While communication costs. rellability, and network
throughput must be within acceptable levels, these concerns are usually not as
Important as In networks motivated by the previous two considerations.

Relieving the load on an overburdened central computer Is often a motivation
for central computing facilities at major defense, scientific, and commercial
sites. Generally, load relief involves Installation of dedicated processors
such as front end communication processors, Interactive session processorsj or
back end data base machines. Major design Issues are compatibility,
throughput, and cost. An associated Issue may be system reconfiguration and
fault tolerance which is enabled by the presence of many interconnected
computers. As was the case with the economically motivated system, task
allocation is considered In the Initial design, but will generally not occur
dynamically unless automatic reconfiguration is provided as part of the fault
tolerant Implementation.

The final motivation, Increasing reliability and availability,. is of primary
interest in the present study. The major design considerations Include
availability and effectiveness requirements, reconfiguration strategies (on
the node, link, or system level), and acceptable degraded operating modes.
System design requirements associated with throughput. performance, and cost
define constraints for the highly reliable design. Most work on such systems
has been performed In ar academic setting, and It has been concerned with
relatively narrow Issues (e.g. the number of nodes or link outages that can be
tolerated in a switching network). This work has not considered rellabilIty
Improvement as an Integral part of a design that Is primarily motivated by the
Issues previously discussed (increasing throughput, reduced communications
cost, etc.). The Integration of reliability enhancing design techniquesiog
especially In the area of fault tolerance - Into a general design methodology
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has not been adequately addressed; the second phase of the present

Investigation will be aimed at that area.

4.1.2. State of Network Development

For the purposes of this section, we consider four stages of system
Implementation:

(1) the network Is already Implemented, and the methodology deals with
its Interconnection with other networks

(2) network components (i.e. nodes, links, and software) and architecure
have been developed, and the methodology deals with the optimal
Interconnection strategies

(3) cc.mputing nodes on the network have been developed and hardware
Interfaces are available, and the methodology deals with the
Interconnection and control of these computing resources

(4) no network components have been developed, and the methodology deals
with general characteristics of networks.

The first stage Is of importance to C31 systems on both the tactical and
strategic levels. Examples Include the interconnection of several tactical
air defense C31 (e.g. AWACS and ground-based radar) systems Into a single
Integrated tactical Information center or the linking of radar detection sites
(e.g. PAVE PAWS) with a central command site (e.g. NORAD). Literature on the
design of networks In the first classification (i.e. networks of networks)
centers on the concept of there being a single "gateway" that serves as an
Interface between networks. Because of the early stage of development of this
concept, most of the published literature addresses compatibility Issues,
standards (e.g. ISO X.25), and the problems associated with getting such
gateways to work at acceptable levels. Issues associated with fault
tolerance, high throughput, or cost (beyond the minimum acceptable levels) are
seldom treated In the literature.

The next stage, the design of networks around existing and (more or less)
fully Implemented architectures, has been treated In a number of design
methodologies of various scopes (see next subsection). The Issues addressed
by these methodologies Include the distribution of applications, placement of
nodes, and choice of links (if several types are supported, e.g. telephone and
dedicated lines). Design motivations Include economics, performance,
organizational, and reliability. Examples of commercially available
architectures Include II14's SNA and Xerox's Implementation of Ethernet.

The third classification is relevant to tactical C31 systems involving the
interconnection of smaller Individual computers and to strategic systems which
may Involve different types of processing performed on various machines (e.g.
co-processors used together with an upgrade of the 427-M computers).
Methoaologies come in the form of articles and reports documenting the
experience of researchers In constructing these networks. The methodologies
deal with Issues such as the design of the communication links, inter-computer
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protocols, operating system modifications, and those Issues listed In the
previous paragraph. Examples of "home-grown" networks Include Installations
at Lawrence Livermore Labs and the China Lake Naval Weapons Center. Primary
design motivations are related to Increased throughput and relieving the load
on existing mainframes.

The final classification Is relevant to those C31 systems which are designed
without the use of any developed computers. The motivations for such systems
are Increasing with the growing capabilities of microprocessors coupled with
externally Imposed constraints on weight, power consumption, and volume.
Several methodologies have arisen from ballistic missile defense applications.
All Issues mentioned In previous paragraphs are relevant, and additional
Issues Include the structure of the computer hardware, commnunication links,
and the entire system software.

4.1.3. Scope of the Design Methodolggie

An Important characteristic of any design methodology Is how much of the
problem It covers. Nagle, et. al. [NAGL79J point out that design
methodologies for fault tolerant distributed systems must begin at the system
definition, or requirements level and proceed through to Implementation.
Different methodologies designate various steps In the design of
computer-based systems; Figure 4-1, taken from Sloane and Wrobleski [SLOA82J.
shows that used at TRW. Many design methodologies In the literature do not
address applications which are sufficiently specific that all the steps in
Figure 4-1 are appropriate. Others have been developed for problems posed by
the distributed system Itself, not by any application Induced requirements.
Thus, for the purposes of this study, three general scope descriptors will be
used:

Requirments-The methodology addresses the formulation and development of
system requirements from functional or mission requirements stated in
non-computer like terms,

ArhI.agtuC2 - The methodology addresses specific Issues in distributed
systems design Including protocols, task allocation, distributed
operating systems, data bases, etc.

Comunictions - The methodology addresses Issues related to choice of
communication media, problems In their Implementation, and monitoring of
the network l inks.

4.2. PREVIOUS WORK

This section reviews some of the recent work on the Identification of design
Issues and methodologies In distributed systems. Table 4-1 presents a
grouping of the methodologies and a summary description based on the framework
described In Subsection 4.1.
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TABLE 4-1 DESIGN METHODOLOGIES AND RELATED TOPICS REVIEWED IN THIS SECTION

REFERENCE APPLICATION MOTIVATION DEVELOPMENT SCOPE

Alford BMD Throughput No components Reqts.
EALF081] Reliability developed Arch.

Meter, Lemolne BMD Throughput No components Arch.
and Non EMEIE81J Reliability developed

FltzGerald & Eason Business Economic Developed Reqts.
EFITZ78J Response time Sys. Arch.

Reliability

Frankul Business Economic Developed Commu.
[FRAN82J Sys. Arch.

DICIcclo, at. al. Unspec. Organizational Developed Reqts.
EDICI79" (inter-network) Sys. Arch.

Popek Unspec. Reliability No components Reqts.
EPOPE81 3 developed

Glen & Zimmerman Unspec. Performance Developed Reqts.
EGIEN79] Network

4.2.1. DesIgn of Distributed Systems In BMQ Applications

Current design concepts for The Ballistic Missile Defense (BMD) systems
emphasize local networks of computers. The primary design motivations are
Increased throughput, decreased response time, and Improved availability.
Such systems are generally not designed around any existing computers or
networks, and thus, the entire range of distributed system design Issues must
be considered. Software Issues Include communications protocols, design of
the distributed operating system (I.e. replicated and nonreplicated modules,
Interprocess communication, etc.), design and Implementation of a distributed
data base system, and task allocation.

Alford, et al. [ALFO8I] have devised a distributed computing design system
that Is based on a methodology with eight top-level steps and a large number
of lower level tasks and sub-tasks. The eight overall steps are system
requirements definition, data processing (primarily In the area of operating
systems, not communications) subsystem engineering, process design (i.e.
defining and placing processing nodes and allocating computing tasks),
sequential program design, code and unit test. Integration and test, and
operation and maintenance. The design methodology Is unique In clearly
providing for the definition of critical functions, network reconfiguration,
end alternate paths In the requirements phase and propagating these Issues In
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the subsequent design steps. Its main contribution, however, Is that It
formalizes and structures the design process to the extent that many of the
details, Information Interfaces, and error checking can be computerized.

Van TIIborg and JasInksi [VANT81] deal with design Issues In operating
systems. The three major areas In the design of BMD distributed operating
systems are Interprocess communication (both within a node and between nodes),
database management, and task allocation (during design, normal operation, and
reconfiguration). The design objectives of Interprocess communication
protocols are (1) minimizing demands on processor throughput, (2) detecting,
preventing, or avoiding deadlock, (3) reducing the amount of handshaking
needed to synchronize the data exchange, and (4) ensuring that transmitted
data Is received undamaged. Issues In the design and operation of database
systems Include (1) where to put data bases with respect to the processors
which will access them, (2) the extent to which the data should be replicated
In order to reduce access times, and (3) how to minimize access times subject
to database consistency and Integrity requirements. Issues In task allocation
Include both distributing the tasks to the various nodes and scheduling them
according to precedence and timing constraints.

4eier, Lemolne, and Nam EMEIE81J concentrate specifically on the Issue of
dynamic task allocation In an advanced Low Altitude BMD system. There are
known task scheduling algorithms which can solve problems such as minimizing
response time for a set of tasks subject to timing and precedence constraints.
However, few of them are tractable for large systems. These authors evaluate
computationally feasible (though not necessarily optimal) algorithms for
effectiveness against specific threat scenarios by means of simulations. This
approach can be quite useful In the development of reconfiguration and
re-allocation schemes for fault tolerant systems.

4.2.2. Business Systems

Many large business oriented computer networks are quite similar to strategic
C31 systems on all but the application specific level. Both environments use
dispersed mainframe computer installations connected by a communications
network, use similar communications hardware and software, and have similar
reliability requirements. Thus, although requirements on the application
level may differ somewhat, literature on the design and implementation of
these systems Is of relevance to this study.

The primary design motivation of distributed systems In business applications
Is the provision of an acceptable level of service at minimum cost and
development time. As a result, such systems generally rely on commercially
available networking systems which Integrate hardware and software Into a
ready-made architecture that can be tailored to the requirements of the user.
Examples of such products Include IBM's System Network Architecture (SNA),
Initially designed for automated tellers, and Xerox's Ethernet, Intended for
office automation applications. Formulation of user requirements Is the focus
of most design methodologies in this area (of which there are a number);
Issues that may appear minor and subtle to the network designer can be major
contributors to the success or failure of the network (e.g. placement of CRTs,
consideration of power, space, and temperature requirements, etc.).
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Requirements formulation for distributed systems In business applications must
focus on three Issues: (1) user requirements of network performance, (2)
traffic that the network must bear, and (3) cost and time constraints.
Options available to the system designer Include CPUs, front end commnunication
processors and PABXs, modems, tandem switching centers, multipiexers.
concentrators, message switches, and coummon carrier services.

FitzGerald and Eason EFITZ78] define a ten-step procedure which can be grouped
Into three phases; pre-requirements, requirements, and Implementation. The
pre-requirements phase Involves problem definition (in user terms), approach
development, background Information gathering on the organization, examination
of the "people problems" and other associated Issues affected by the
distributed system, and generation of functional requirements (in user terms).
The second phase consists of formulating system requirements and constraints,
generating design alternatives that meet the requirements subject to the
constraints, and choice of the best system. The Implementation phase Involves
convincing management of the needs for the system, purchase and Installation
of the system, acceptance testing, development of operating and maintenance
procedures, performance monitoring, and fi~ne tuning.

Th Is procedure d Iffeors f rom the prev Ious BMD app I Icat ton i n the f olIIow Ing
ways:

1. Because of the unwritten "organizational culture" with which the
analyst may not be familiar, a large proportion of the requirements
phase must be devoted to understanding not only explicit and
quantifiable requirements but also Implicit criteria which will
affect the acceptability of the design.

2. The reluctance of most organizations to Invest in distributed systems
research and development necessitates the use of commercial ly
availiable components with service and support from the vendor, Thus,
most of the work In the development of design alternatives Involves
examination of the performance specIf ications and any credible
reliability data of system components -- not on design of new
devices.

3. The non-technical nature of the user organization requires special
attention to "human factors" engineering In both the hardware and
software, relations with the decision-making entities (i.e.
management), and training beyond that required to operate specific
software packages or systems.

System design Issues are quite similar In other aspects. Certain load factors
can be predicted (e.g. the transmission of administrative and financial
Information at predetermined Intervals), while others can not (e.g. the
Interactive entry of customer orders). Concerns on the validity of
transmitted Information are often central for applications such as automated
bank telleI r term Inoals just as they are f or C31 appI Icat Ions. System
availability and reliability for applications such as airline reservations are
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crucial to the economic wellI being (I.e. survival) of organizations just as
they are In defense settings.

Frankel CFRAN82J concentrates on one aspect of system design -- topology of
the communications network -- and on one criterion -- cost. Figure 4-2A shows
six nodes connected to a center. In this example, the nodes are simple CRT
terminals and the center Is a minicomputer, but the considerations can be
extended to any star network. Figure 4-213 shows the same functional
configuration Interconnected as a single multidrop line. The motivation for
the muitidrop configuration Is cost: network A has a monthly cost twice that
of network B at 1982 rates. However, other motivations mW. favor network a.
For example, If link bandwidths are a constraint (as opposed to the processing
capacity at the central node), or If the rel iabl Ity of the IInks Is low
compared with that of other components, then A Is preferable. On the other
hand, If the multidrop link Is a higher capacity line or consists of redundant
paths, then such considerations would favor network B over A, although not at
the same cost advantage.

4.2.3. Networking Considerations

This subsection discusses design approaches and methodologies In terms of the
network rather than In terms of an application. Major problems In this area
include the Interconnection of heterogeneous networks and computer systems as
wellI as general software Issues such as distributed operating systems or data
bases.

Glen and Zimmerman [GIEN79J concentrate on the problems of network
Interconnection, and provide solutions In the form of analogies to
heterogeneous computer networks, In which special Interfaces must be provided.
Figure 4-3 Is a pictorial representation of the problem: given the fact that
networks A and B are geographically dispersed and computationally
Incompatible, how do users X and Y commnunicate.
The primary design motivation Is to ensure transparency to the end user.

In general terms, the method proposed by the two authors Involves transferring
the message from the user node to the network gateway (which may be a single
processor or two "gateway halves", one located at each network), routing It
through the gateway to the second network, and then passing It through the
second network to the appropriate destination node. Such a strategy Involves
addressing (i.e. a local address for the gateway on network A, a global
address designation on the gateway for network B, and a local address
designation for node Y on network B), routing (through network A to the
gateway, from the gateway to network B, and through network B to the
destination), and the matching of Incompatible protocols for error detection,
flow control, and terminal control (by means of definition of a third protocol
with Interfaces to those of networks A and B).

The problem of interconnecting different networks through the Installation of
additional hardware and software Interfaces and the Implementation of
additional layers In the communications protocol may minimize the Impact on
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existing systems but can cause reductions in throughput and reliabil ity. For
example, the presence of only single gateways between the networks poses
significant reliablilty problems. However, if multiple gateways and network

entry points are used, additional scheduling, addressing, and contention
resolution issues have to be addressed. The additional complexity caused by
hierarchical addressing and routing schemses can also resuit in reliability
problems in both data Integrity and correct execution of the protocols.
Finally, the use of an intermediate protocol across the gateway further
decreases throughput and relaiabili Fty.

Alternate approaches are available. For example, the more closely the
internal networks resemble each other, the less complex the interface. CCITT
standard X.75 dictates some degree of Internal network commonality EDICI79J,
and greater smilarities can further reduce intercommunications problems.

DiCicio, et. al. EDICI79J] also discuss advantages to using packets rather
than virtual circuits a a means of ntawork interconnection for detecting a

failure in the message cascade. Although their approach can lead to increases
in throughput and error detection capability, it still contains drawbacks from
the reliability - and especially from the fault tolerance - point of view.

Popek EPOPE81 describes the reliability problems associated with a
distributed data base. Partitioning is a means of preventing error
propagation and is an important means of reducing the time necessary for
restart and recovery. Redundancy is the means by which error detection occurs
as well as a necessary part of any recovery process. Because distributed

systems lend themselves to both partitioning and redundancy, they have
considerable potential for highly reliable and available operation.

One of the major problems In distributed data bases Is ensuring the Integrity
of the data In the event of a system crash. Three general techniques are
available for this purpose: atomic transactions, two phase commit, and the
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transaction log. Atomic transactions are bracketed by "Begin Transaction" and
"End Transaction" designations. In the event of a failure, It 15 the system's
responsibility to ensure that all partially completed sequences of
Instructions are removed and allI compieted transactions are stored In the
system's permanent memory. The two phase commit procedure Involves a
supervisor, a data sender, and a data receiver (all of which might be
procedures resident on a single host). The supervisor queries both the
transmitter and receiver on their status, and when both are ready, It coummands
the sender to transfer the data to the receiver. At the completion of the
transfer, the supervisor commnands the receiver to comit the transaction, and
the receiver returns with a commnit acknowledge signal. If the system crashes
before the commit acknowledge, upon recovery, the system retains the previous
value. Both the atomic action and two phase commit procedure require a
transaction log In which Intermediate values are stored and can be recalled In
the event of a failure.

While such constructs are not unique to distributed data bases, their
Implementation over a slow and noisy network poses throughput and reliability
problems. For example, the requirements of four messages In order to write an
Item to a non-resident data base may be unacceptable In many C31 applications.
Thus, alternative techniques, examples of which are contained In the reference
[POPE81), are necessary.

4.3 KEY ISSUES IN THE DESIGN OF FAULT TOLERANT DISTRIBUTED SYSTEMS

From the analysis of the design methodologies discussed above, certain key
I ssues can be I dent Ifiled whi1ch vwI Il govern the des Ign of f aulIt tolIerant C31
systems. Such systems must have the ability to:

1. Detect and Identify failures on nodes and links
2. Re-establish contact to nodes In the event of a link failure by

either (a) using an alternate link along the same path, or (b)
establishing an alternate path.

3. Restore critical computer functions by either (a) reconfiguring the
node to restore full capabilities on a local level or (b)
re-allocating and scheduling tasks among other nodes.

4. Retain all critical data (and access to It)
5. Detect and recover from (or prevent) deadlock In the contention for

resources, execution of tasks, or accessing of data.
6. Restore (or prevent) errors In data transmission and storage.
7. Access other critical networks In the event of a failure of the

primary gateway.
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SECTION 5 - FAULT LOCATION TECHNIQUES

The ability to locate (identify) faults is a key requirement In the
implementation of fault tolerance. Most work in fault location has been
carried out at the logic level FBREU76", and only a few authors have addressed
fault location In networks of digital processors. Where the latter approach
has been taken, as In EBLOU77], there has been emphasis on general-'
applicability of the techniques rather than on specific Implementations. To
supplement that work, detailed fault location techniques for connected
processors are described here on the basis of examples for specific
configurations. All of the examples utilize a combination of pre-processors
and mainframes with segmentation (switching provisions) between the
pre-processors and the mainframes. The pre-processors may be signal
processors, communication concentrators, or the gateway through which
interactive processes are connected to the mainframe. The techniques
described here are still applicable, with obvious simplifications, where no
pre-processors are Involved.

Three examples are treated here, all of them representative of configurations
that were encountered in the study of existing fault tolerant or linked
computer systems. Common assumptions and notation are discussed first. The
subsequent headings In this section then describe fault location for

Single user segmented dual computer systems

Single user segmented dual computers with shared memory

Multiple user segmented dual computer systems

Fault location Is defined as a process that Is Initiated after an error has
been detected and after output devices that might be adversely affected by
diagnostic procedures have been disconnected from the computers. Faults are
assumed to be solid at the system level. This Includes cases In which an
Internal transient fault has placed the computer Into a state In which no
further processing in accordance with requirements Is possible.

5.1 ASSUMPTIONS AND NOTATION

A typical system of this type Is shown In Figure 5-1, and the capital letter

symbols used there are referred to In the following text.

5.1.1 AauMilons

(1) Test Initiation and evaluation. In order to locate the source of the
fault, there must be at least one accessible reliable component that can then
test other components adjacent to It and thereby create a directory of
functioning components. The following sequence of operations will be followed
In each test. First, the user selects (randomly, If necessary) a reliable
component and Initiates a prestored self-test routine. If this falls, another
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component Is selected. The first reliable component Identified by this
process then stimulates another unit under test (UUT) to execute a predefined
diagnostic routine, and It expects to receive the results generated by this
routine. If no results are returned within a specified time, the UUT Is
marked as malfunctioning. If results are returned, the reliable component
compares them with a stored benchmark and accepts the UUT as operative only if
all results agree.

(2) User Involvement. As a baseline for the fault location procedures, a
substantial amount of user Involvement has been assumed. While the sequence
of units to be tested Is Identified In the procedures presented below, the
actual Issuance of commands to Implement the sequence is assumed to be
performed by the user. In principle it is possible to store the sequence and
Issue it as a single command. However, the conditions encountered in the
early part of the test affect the actions to be taken In later ones.
RecogniTion of these conditions, which may Involve the Interpretation of
outputs generated by a malfunctioning computer, Is In general best handled by
a trained human observer, possibly with the aid of some computer functions.
The performance of fully automated diagnostics for an unrestricted fault set
on arbitrary computer architectures is a specialized research area outside the
scope of the effort reported on here. Likewise, in the baseline approach, the
user is expected to select an appropriate repair or reconfiguration action
after the fault coneItion has been Identified by the procedures described
here. Certain sequences In the procedures are arbitrary, e. g., whether to
start the test with processor C or D In Figure 5-1. In order to generate a
repeatable procedure, processor C was selected as the first UUT. A
knowledgeable user may decide on the basis of past history or Immediate
observations that D is more likely to be at fault and therefore start the test
there. These deviations are considered permitted but they are not an
essential part of the user Involvement In the test procedures.

(3) Perfect test coverage. Generally, the time and storage cost for a test
Is proportional to the thoroughness of the testing of a hardware component.
It was assumed that sufficlent resources can be allocated for a test that
gives a very high assurance that it will not pass a malfunctioning component
(nearly 100% test coverage). The failure of software used for testing was not
allowed for. To the extent that actual diagnostics do not yield 100$ test
coverage, a malfunctioning component might be declared operable and a failure
will then occur in a later test step or during operation. User Involvement
can alter the sequence of testing so that another operable combination of
components can be configured.

(4) Two-way transmission. It was assumed that links can carry test-related
messages In both directions. The bandwidth required for this purpose Is small
because the stimulus Is usually expressed as a single command, and the result
can be compressed.

(5) Distinction between processors and links. It Is often difficult to draw
a clear distinction betw , failures In a link and in a processor connected to
that link. If a malfunction disables processor P's communication with all Its
neighbours Q1 .... Qn, then the failure Is attributed to the processor
although It might be a common failure in all links. On the other hand, If the
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failure leaves at least one commnunication path between P and Qi operable, then
the failure Is attributed to the affected links although It might be a failure
In the processor that affects a portion of the commuunications capabilities.

(6) Irrecoverable faults. The purpose of locating faulty processors Is to
remove them from the net and to resume real-time operations. However, there
must be at least one normally functioning path between the Input (S In Figure
5-1) and the user (U). Faults which do not leave such a path are not worth
locating because the system can not be automatically restored to useful
service. The fault location procedures therefore stop as soon as an
Irrecoverable fault has been Identified.

(7) Preprocessors w Ith shared memory (appI IcablIe to 5.3 onlIy) . A test of a
preprocessor Involves use of shared memory and therefore tests the shared
memory. It Is assumed that the shared memory has 'error correcting code that
masks transient and Isolated permanent memory faults. Therefore only solid
f alIures atf ecti ng substanti al areas of the memory w Ill af fect preprocessor
operation. Memory Is regarded as functioning If at least one preprocessor
passes tests Involving shared memory. Links to the shared memory are treated
as part of the preprocessors served by them since a preprocessor without
access to shared memory Is not suitable for normal operation.

5.1.2 Notation~ Ad IjoA gf Iult

Three types of tests are used In the fault location procedures:

Type I - Direct user test

Type 2 - Test with only forward Information flow

Type 3 - Test with reverse Information flow

Examples of the notation used and of the application of these tests are given
below.

Type I - notation U -t-> C

This denotes a test In which the user (U) stimulates computer C and receives
results from It. This test Is applicable only to processors directly
accessible by the user, such as C or D In Figure 5-1.

Type 2 - notation C -t-> A

This type of test Is used for establishing operabiI ty of the preprocessors
and associated links. It Is assumed that the selection of the tester (C) and
of the UUT (A) Is made by the user, and that the user has v Is IbII Ity of the
outcome (at least pass/fail) of the test.

Type 3 -notation Ad-4-> C

This means that A, while being stimulated through D, tests C (backward flow of
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Information). The lower case letter Is used In Ilieu of a subscript. If U
-t-> C has failed while U -t-> D and D -t-> A have succeeded, It Is not clear
whether C has failed or whether the link fromn the user to C Is Inoperable. By
sending the test Initiation order through D for A to test C, an Independent
means Is found for determining whether C Is operable.

Two symbols connected by a dash represent the link between the elements
designated by the symbols, e. g., U-O stands for the link between the user and
computer D, and A-C stands for the link between computers A and C.

5.2 S INGLE USER SEGMENTED DUAL COMPUTER SYSTEMS

The fault location procedure presented below applies to the single user
segmented system without shared memory. The structure connected by the broken
line In Figure 5-1 Is not present for this case.

The procedure consists of f irst testing the processors connected to the user
Interface, C and D (and, by Implication, the links to the user). After these
have been found to be operational, the processors at the source Interf ace, A
and B, and their backward links (to C and D) are tested. The links from A and
B to the source are considered to be part of the latter and are not explicitly
validated In this procedure. If the preprocessors check out on the test
described here and yet no useable Information Is received In the operational
mode, failure of the source links or of the source Is Implied.

The normal, forward directed (upward In Figure 5-1), part of the test Is
flowcharted In Figures 5-2 through 5-4. Where failures were encountered In
tests Initiated directly by the user (of the form U -t-> X), backward tracing
Is used In later phases of the test to determine whether the failure affects
an ent Ire computer or onlIy the user I Ink or I nter f ace. Certa In otheor I Ink s
are also diagnosed separately from the processors which they serve by means of
backward directed tests. These diagnostics are shown In Figures 5-5 through
5-8. Not all computer Installations that use the strucuture of Figure 5-1 may
have the capabili ty to perform backward directed tests. This capabilI ty Is
not essential for a determination of the operational status 0I. e., which
processors are accessible and working properly), but where It Is not provided
many link failures can not be distinguished from processor failures,

A sulmmary of the diagnostic Information obtained at each step of the fault
location procedure Is shown In the lower part of each figure. The case number
Is the number sequence shown In the rectangular boxes after each test. The
designatlon 'testedt used In the summary means that the components or links
were Identifiled as operational In the sequence performed up to this point. In
some Instances a computer can be identif led as operational In the test
sequence alIthough I t can not be accessed I n normalI operat Ion due to fa IlIures
In other processors or links. These computers are designated as 'non-usable I
In the diagnostic summaries (single asterisk). In other cases, the
diagnostics can not distinguish between processor failures or simultaneous
fai lures In allI links to a processor; this situation Is identif led by a double
asterisk In the summaries. From the operational point of view, It makes no
difference whether the processor or all links have failed.
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Case~as -- FailedCmoet etdN.o

1CNo e 1 1ae

1. None D, 2 t-

.1 A1.2- C.1 2.

1. DorU> C 1t>AD

1.2.21 1.2.2 C

2CompC onent 0etd ik

21 None- 0 1
21.1 None- B.D 2

21.2 DCorU-CDBO - 0 1

22 C or U-CD~i- none 0

FIGURE 5 - 2 FAULT LOCATION PROCEDURE OF SECTION 5.2, PART 1
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SUM ARTFDAGOTC

Casease Coonnt TeIdN.o

Components Tested Links

1.1.1 None A, C, D 3
1.1.1.1 None A, B, C, D 4

1. 111 None A, B, C, D 5
111111 None A, B, C, D 6

1.1.1.1.1.2 B-C A, B, C, D 5
1.1.1.1.2 A-C A, B, C, D 4
1.1.1.1.2.1 A-C A, B, C, D 5
1.1.1.1.2.2 A-C, B-C A, B, C*, D 4
1.1.1.2 B or B-D A, C, D 3
1.1.1.2.1 B or B-D A, C, D 4
1.1.1.2.1.1 8-0 A, B, C, D 5
1 .I. 1.*2.1.2 B** A, C, 0 4
1.1.1.2.2 8 or B-0, A-C A, C, D 3
1.1.1.2.2.1 8-0, A-C A, BC 0 4
1.1 .1 .2.2.2 B**, A-C A, C4,D6 3I

*non-usable **processor or all connections have failed

FIGURE 5 -3 FAULT LOCATION PROCEDURE OF SECTION 5.2, PART 2
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Casea Comonnt TetdN.o

1.1.2.1 AorA1.B1CD2

11..221.1. A-C22. A,1BC.2D2

1..... A-C> BC A,> -B, C, D- B

1.1.22 A orA-D o - C, D' 2
1.1..2.1 A-C or B-D A, C, CD 3
1.1.2.21.1 A-C.B- A, B, C, D' 4
1.1.2.2.1.2 A-C.B A, SoC, CD 3
1.1.2.2..2 A"D, B oA BC C, ' 2
1.1.2.2.21 A", B-C BCpD 3
1.1.2.2.2.2 A", B" C, Doo. 2
1,1.o2lsa A p;ocesso or all cncin hav 2ald*

FIGURE2.1 A- 4 FAUL LOCTO AROC DUR OFSCIN 3.,PR

_ _ __ol~ _ _ _ _ _ I , ,CD



SUMAYOFAGNSTC

Cseas Faile CopnnsTetdN.o

1.2.1 DoU1.2A1C2

1.2.1.1 DoUD ABC> 3

1.2.1..1 U-0A,.B.1,.1.2

1.2.11.1. D - A,-t- BD DC, 0 B

1.2.1.1.1.2 U-O -D AsB C, 2*
1.2.1.12 0 or U-D & -)A, So C 3
1.2.1.1,21 U-D,- A, B,. Cs D' 4
1.2.1.1.2.2 0"s - A,. B, Co 3O
1.2.1.12 D or U-OB&r-C As oC 2

1.2.1.2.1 U-D# B or B-C A, Co DO 3
1.2.1.2.1.1 U-00 B-C A, B', Co DO 4
1.2.1.2.1.2 U-D, B"* A, Ce 0* 3
1.2.1.2.2 B"*, 0"* A, C 2

n fo-usable "' processor or all connect Ions have felled

FIGURE 5 - 5 FAULT LOCATION PROCEDURE OF SECTION 5.2. PART 4
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1.2.2 D~rU-DA~1.2.C2

1.2.2.1. UDAor-C B Ct I'

1.2.2.1 U1.2 A.2' , ,D

1.2.2.1.2UA"BCD3

1..21. D4- orA-I-~ rACB

1.2.22 D or U-D A or A-C

1..2B* orD AB-C-C8 C, (nn-pe. 3

*non-usable **processor or all connections have failed

FIWWR 5 - 6 FAULT LOCATION PROCEDURE OF SECTION 5.2, PART 5



SUMMRYFSDAGNT IC

2.11 o U- B 0212

2.11. Ct- orUC A. -t- DC3

2..11. U- A. B.-- C', Dt- A

2.1.1.1.1.1 dUComoet Ate No. CofD

2.1.1.2 C or U-C 8 -)A , D2
2.1.1.12. UC, Ar-C A, B, C' 0 3
2.1.1.1.21 UC A, BC* D 3:
2.1.1.1.1.1 U-C ,AoA BD 2~ D
2.1.1.2.1. U-C. A- or A , C D 3

2.1.1.121.1 U-C. A-O At, B, C'. D 4

2.1.1.2.1.2 U-C. A" B. C', D 3
2.1 .1 .2.2 A", C"* B. D 2

rofl-nusable processor or ail connections have failed

FIGURE 5 - 7 FAULT LOCATION PRODECURE OF SECTION $~.2o PART 6
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2.1.2 CorU-,Bo2.1.2

21 2.1.1 U-C.1.2,.21 ',D

2.1.2.1.1.2UC "A '

2.o21. Ct- oB(-I-) rBDA

2.1.22 C or U-C, A or A-OD
B or B-V orD'-(non-roperA,)D1

2.1non1usable *8 ocsr or all concion hav fale

FIGURE1.1. -CFAL 9OCTIO AEUR OF SCIO 5.2 PAT42.1..1..2 UC, ** A C* 0I



The detalled procedure for performing these tests Is presented In a design
language based on Pascal In the Appendix. Where case designations are used In
the appendix, they correspond to those shown In the flowcharts; however, not
all case designations shown on the flowcharts are mentioned In the design
language version of the test procedure.

5.3 SINGLE USER DUAL COMPUTERS WITH SHARED MEMORY

The fault location procedure presented under 5.2 above Is also effective for
the case where the two processors have shared memory (the broken line in
Figure 5-1 represents the connection). The analysis presented below
Interprets the outcomes of the procedures of 5.2 for the case of shared
memory.

it is assumed that any failure in the shared memory will result In failure of
tests for both Processor A and Processor B. Therefore, if either Processor A
or Processor B Is found to be operational It may be assumed that the shared
memory is functioning correctly. Conversely, when both processors are found
to be inoperative there is a high probability that the shared memory has
failed, although this case cannot be distinguished by the gross diagnostics
used here from a simultaneous failure of A and B or from a failure of all
backward connections (lines going down in Figure 5-1). The detailed test data
will usually permit differentiation between processor and memory failures.

The diagnostics furnished by the tests shown In Figures 5-2 through 5-8 are
analyzed in Table 5-1. If a test case results in a definitive finding
regarding the shared memory (either usable or not usable , this finding will
also be valid for all subsidiary test cases, and they are not separately
listed. Thus, the finding that the shared memory Is usable for 1.1.1 Implies
that It is also usable for all cases 1.1.1.x.x.x where x may represent either
a I or a 2. The fIgure numbers shown In the table are valId untIl a new
figure number Is shown.

A fIndIng of 'not usable ' for the shared memory can arIse eIther from
Inability to access either one of the processors using the memory, or from the
observation that both are Inoperative. In the former case, the status of the
memory Is really unknown, and this Is Indicated by a single x In the table.
In the latter case, It Is highly likely that the shared memory has failed,
although, as Indicated above, other possibilities cannot be completely ruled
out, and this case Is designated by xx In the table.

54

L __ __ _ __ _



r

TABLE 5 - 1 SHARED MEMORY DIAGNOSTICS

Case Shared Memory Further Ref.
Usable Not useable Diagnostics Figure No.

Required

1.1.1 x 5-2

1.1.2 x
1.2.1 x
1 .2.2 x
2.1.1 x
2.1.2 x
2.2 x

1.1.2.1 x 5-4
1.1.2.2 x
1.1.2.2.1 x
1.1.2.2.2 x
1.1.2.2.2.1 x
1.1.2.2.2.2 xx

1.2.2.1 x 5-6
1.2.2.2 xx

2.1.2.1 x 5-8
2.1.2.2 xx

5.4 MULTIPLE USER SEGMENTED COMPUTER SYSTEMS.

A typical configuration of this type Is shown In Figure 5-9. It will be
recognized that this figure is Identical with Figure 5-1 except for the
connecTIons at the user and source ends. To capItalIze on the sImilarity, it
is convenient to divide the fault location procedure into three phases that
establish the operability of (1) the user Interface, (2) the computer network
proper and (3) the source Interface. Phase 1 and Phase 3 procedures are
developed In detail below. Phase 2 procedures represent an adaptation of
those described In Section 5.2.

At the start ot Phase I, each user must determIne the accessIbIlIty of
computers C and D by a sIgn-on procedure. When thIs Is completed, there wIll
be an access log within C and D which will be of the form (U1)(U2)(U3) where
each term wIll have a value of 1 if UI has logged In and a value of 0
otherwise. Thus, If the access log for computer C Is 101, this means that
users Ul and U3 can access this computer and user U2 cannot. Any 0 value
represents a diagnostic for an Inoperative user link. In addition, the
ensemble of the access logs determines the procedure to be followed In Phase
2. For that purpose, the outcomes of Phase 1 can be classified In the
following manner:

la. One or more users can access both C and D
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lb. C and D can both be accessed, but not by the same user(s)

Icl. C can be accessed by one or more users, D cannot be accessed

lc2. D can be accessed by one or more users, C cannot be accessed

Id. Neither C nor D can be accessed by any user.

The classification of Phase 1 outcomes is derived from the access log codes
generated within the C and D computers as shown In Table 5-2. The "I"
prefixes have been omitted in the table.

TABLE 5 - 2 CLASSIFICATION OF PHASE 1 OUTCOMES

Access Access Log D
Log C 111 110 101 011 100 010 001 000

111 a a a a a a a ci
110 a a a a a a b cl
101 a a a a a b a cl
Oil a a a a b a a ci
100 a a a b a b b ci
010 a a b a b a b cl
001 a b a a b b a cl
000 c2 c2 c2 c2 c2 c2 c2 d

If Phase I produces an outcome In the Ia. classification, Phase 2 can be
Initiated by any user who can access both computers, and the procedure of
SecTion 5.2 can be applied without modlfication. If Phase 1 produces an
outcome In the lb. classification, separate actions by two users wIll be
necessary during the Phase 2 procedure. The user who can access C (but not D)
proceeds in accordance with case 1.2 on Figure 5-2, and the user who can
access D (but not C) proceeds In accordance with case 2.1 In Figure 5-2. If
the Phase 1 procedure results In a icl. classifcation, only the case 1.2
procedure can be Initiated, and if it results In a Ic2. classificatlon only
the case 2.1 procedure can be initiated. Where Phase 1 terminates with a Id.
classification the system Is not recoverable, and no Phase 2 activity can be
conducted.

A similar classsification of Phase 2 outcomes Is utilized to determine the
Phase 3 procedure. These classifications are based on the operability of the
A and B computers (these are also sometimes referred to as preprocessors) In
accordance with Table 5-3.

TABLE 5 - 3 CLASSIFICATION OF PHASE 2 OUTCOMES

Computer Computer B
A Operable Not Operable

Operable 2a 2bI
Not Operable 2b2 2c
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With both preprocessors operative (case 2a), the fault location technique can
distinguish between a source failure and a failure of a single link associated
with a sensor. When only one of the preprocessors Is operative (cases 2b1 and
2b2), this distinction can not be made. When both preprocessors are
Inoperative, no diagnostics of the source subsystem are possible.

Testing of the sources and links In Phase 3 Involves observation by the A and
B computers of predefined characteristics of the Input data stream, such as
frequency of bit value transitions, frequency of start of cycle characters and
absence of alarm characters. The observations at each processor are In the
fol lowing designated as (S1)S2) where a value of 1 for Si designates an
operable condition (predefined characteristics are present), and a value of 0
designates an Inoperable condition. Thus, If the observation at computer A
has a value of 10 this means that source Si appears operable and source S2
appears Inoperable. The classification of the combined observations from
computers A and B (for Phase 2 outcome of 2a) during Phase 3 Is shown In Table
5-4.

TABLE 5 - 4 CLASSIFICATION OF PHASE 3 OUTCOMES

Computer Computer B
A 11 10 01 00

11 3a 3b 3b 3c

10 3b 3d 3bb 3e

01 3b 3bb 3d 3e

00 3c 3e 3e 3f

These classifications have the following meaning

3a. Both sources fully usable

3b. One source f ulIly usable ; one source usable on one link only

3bb. Both sources usable on one link only

3c. Both sources accessible from only one preprocessor

3e. Only one source accessible from one preprocessor

3f. No sources accessible

For a Phase 2 outcome of 2bl. only the last column In Table 5-3 Is applicable,
and for a Phase 2 outcome of Wb. only the last row In Table 5-3 Is
applicable. A Phase 2 outcome of 2c Is Indistinguishable from a Phase 3
outcome of 3f .
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APPENDIX

DESIGN OF A FAULT LOCATION PROGRAM

A computer program for the fault location procedure described In Section 5 has
been designed. The specIfIc fault location procedures are listed here in a
Pascal-like design language. EE and 1] are used as shorthand notations for
"Begin" and "End", respectively. < Routine name > indicates transfer to a
routine tint Is listed later.

A.1 SINGLE USER SEGMENTED DUAL COMPUTER SYSTEMS

Reference Figure 5-1. The shared memory Is not present In this case.

prdure locate;
cae(U -t-> C) Df

pass: "case 1: C & (C-U) are ok"
ase (U -t-> D) 2f

pass: "case 1.1: D & (D-U) are ok"
L= (ID -t-> A) of
pass: "case 1.1.1: A & (A-D) are ok"

<locate-1.1.1>;
fall: "case 1.1.2: A or (A-D) is malfunctioning"

<locate-1 .1 .2>
and "case 1.1";

fail: "case 1.2: O or (D-U) Is malfunctioning"
La (C -t-> A) of
pass: "case 1.2.1: A & (A-C) are ok"

<locate-1.2.1>;
fall: "case 1.2.2: A or (A-C) Is malfunctioning"

<locate- 1.2.2>
and"case-1 .2"

Mnd"case-1;

fall: "case 2: C or (C-U) is malfunctioning"
rims (U -t-> D) 2f

pass: "case 2.1: D & (D-U) are ok"
- This case Is similar to case 1.2 except that -
--- C is Interchanged with D and A with B

fall:
-- The system is not recoverable --

mnd" Iocate"
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cna (D -t-> B) 21

pass: "case 1.1.1.1: B & CB-D) are ok"
[LLL (C -t-> A) than mark '(A-C) Is ok'

&L2 mark '(A-C) Is malfunctioning';
I (C -t-> B) tb~o mark '(B-C) Is ok'

&I= mark '(B-C) Is malfunctioning']];

fail: "case 1.1.1.2: B or (B-D) Is malfunctioning"
[II (C -t-> A) ±b~a mark 'CA-C) is ok'

&IS& mark '(A-C) Is malfunctioning';
If (C -t-> B) JIMa mark 'B & (B-C) are ok and

(8-0) Is malfunctioning'
&LU mark 'B Is malfunctioning or

(B-C) & (B-D) are malfunctioning']]

proedueIocate- 1.1.2

Q= (D -t- > B) at

pass: "case 1.1.2.1: B & (B-D) are ok"
[Li-t (C -t-> A) ±hbn mark 'A & (A-C) are ok and

CA-D) Is malfunctioning'
s~ mark 'A Is malfunctioning or

CA-C) & (A-D) are malfunctioning';
i~t (C -t-> B) ±bWn mark '(B-C) is ok"

&Lga mark ' (B-C) I s malf unct Ion Ing']];

fail: "case 1.1.2.2: B or (B-0) Is malfunctioning"
[ILLI (C -t-> A) tJ=a mark 'A & (A-C) are ok and

(A-D) Is malfunctioning'
n.LU mark 'A Is malfunctioning or

CA-C) & CA-D) are malfunctioning';
I (C -t-> B) than mark 'B3 & (B-C) are ok and

CB-D) Is malfunctioning'
n.La mark 'B Is malfunctioning or

(B-C) & CB-D) are malfunctioning']]

n" Iocate-1 .1 .2"1.

procedure locate-i .2.1;
rna (C -t- > B) 21

pass: "case 1.2.1.1: B & (B-C) are ok"
gmas (Bc -t-> D) af

pass: "case 1.2.1.1.1: D & (B-C)) are ok and
CD-U) Is malfunctioning"

J11 (Ac -t-> D) tha mark tCA-D) is ok'
Alms mark 'CA-)) Is malfunctioning';
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fail: "case 1.2.1.1.2: D is malfunctioning or
CB-O) & (0-U) are malfunctioning"

IL(Ac -t-> D) than mark ID & (A-D) are ok and
(B-D) & (0-U) are malfunctioning'

j~d~ase1.2..11; &ae mark ID or CA-D) Is malfunctioning'

fail: "case 1.2.1.2: B or (B-C) Is malfunctioning and
both are unusable and (B-0) Is also unusable"

z=h (Ac -t-> D) Q.t
pass: "case 1.2.1.2.1: D & CA-D) are ok and

CD-U) Is malfunctioning"
It (Dac -t-> B) than mark 'B & CB-D) are ok and

(B-C) Is malfunctioning.
D, (A-D), B, and (6-0) are unusable'

aimn mark 1B Is malfunctioning or

fall "cae 12.1..2"(B-C) & 
(B-D) are malfunctioning;

mark ID Is malfunctioning or CA-D) & CD-U) are malfunctioning.
B, D, (B-C), CA-D) and (6-0) are unusuabie.'

mW"case 1.2.1.2"

wng"locate-1 .2.1"

prcedure locate-i .2.2
r"a (C -1-> B) at

pass: "case 1.2.2.1: B & (B-C) are ok"

pass: "case 1.2.2.1.1: D & CB-D) are ok and
CD-U) Is malfunctioning"

It (Dbc -t-> A) than mark 'A & (A-D) are ok and
CA-C) Is malfunctioning.
CA-D), A, and (A-C) are unusuable;

Alan mark 'A Is malfunctioning or
CA-C) & CA-D) are malfunctioning';

fail: "case 1.2.2.1.2"1
mark ID Is malfunctioning or (8-0) & CD-U) are malfunctioning'

mg "case 1.2.2.1";

fail: "case 1.2.2.2: B or (B-C) Is malfunctioning"

-- The system Is not recoverable-

wAg "locate-i .2.2"
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A.2 SINGLE USER DUAL COMPUTERS WITH SHARED MEMORY

The fault location procedure presented under A.1 above Is also effective for
the case where the two processors have shared memory (the broken line
connection In Figure 5-1 Is present). The notes and procedures presented
below Interpret the outcomes of the procedures of A.1 for the case of shared
memory.

(1) "case 1.1.1": Preprocessor A passed a test and thus It Is reasonable to
conclude that shared memory M Is ok.

(2) "case 1.1.2.1": M is ok.

(3) "case 1.1.2.2":
EEit (C -t-> A) then mark 'A & (A-C) are ok and

(A-D) Is malfunctioning and
M is ok'

Slse mark 'A Is malfunctioning or
(A-C) & (A-D) are malfunctioning';

If (C -t-> B) then mark 1B & (B-C) are ok pnd
(B-U) is malfunctioning and
M is ok'

em LUmark 'B is malfunction'ng or
(B-C) & (B-D) are malfunctioning')J;

i1 M has not been validated then mark IM may be malfunctioning']J

(4) "case 1.2.1": M Is ok.

(5) "case 1.2.2.1": M is ok.

(6) "case 1.2.2.2": M may be malfunctioning.

(7) "case 2.1": This case is the same as case 1.2 except for exchanging C
with D and A with B.

(8) "case 2.2": (U -t-> C) a (U -t-> D) - fall": M's status Is unknown.

A.3 MULTIPLE USER SEGMENTED COMPUTER SYSTEMS.

Reterence Figure 5-9. The fault location procedure consists of three phases
that are described In the following. Additional notations Introduced are

MS - The set of elements Identified as malfunctioning
WS - The set of elements validated as working

ArGu& phasel; "Identification of usable main processors"

A ((UI -t-> C)(U2 -t-> C)#(U3 -t-> C)) 2L
(pass,passpass): "S 'C,(C-UI), (.-U2),(0-U3)3"

mark 'C, (0-U1), (C-U2), & (C-U3) are ok'g

62



(pass,pass,fail): "WS = EC,CC-U1),(C-U2)J; MS =E(C-U3)J
mark 'C, (C-Ul), & (C-U2) are ok and

(C-U3) Is malfunctioning';
(pass,fail,pass): "INS * EC,(C-Ul),(C-U3)J; MS - [(C-U2)J"

mark 'C, (C-Ul), & (C-U3) are ok and
(C-112) Is malfunctioning';

(pass,fail,falI): "WS = EC,(C-U1)J; MS -[(C-U2),(C-U3)]"
mark 'C & (C-Ul) are ok and

(C-U2) & (C-U3) are malfunctioning';
(fat l,pass,pass): "WS = EC,(C-U2),(C-U3)J; MS = E(C-U1)J"

mark 'C, (C-U2), & (C-U3) are ok and
(C-Ul) Is malfunctioning';

(falI,pass,falI): "INS = [C,(C-U2)J; MS - (C-Ul),(C-U3)]"
mark 'C & (C-U2) are ok and

(C-Ul) & (C-U3) are malfunctioning';
(faii,fail,pass): "WS - EC,(C-U3)]; MS - [(C-U1),(C-U2)J"1

mark 'C & (C-U.3) are ok and
(C-U1) & (C-U2) are malfunctioning';

(fail,fail,fail): "MS = CC or [(C-U1),(C-U2),(C-U3)JJ"1
mark 'C or [(C-U1),(C-U2),(C-U3)J Is malfunctioning'

aad"case";

--same as above except that
(1) C Is replaced by D,
(2) WVS - I ---J 3Is replaced by lVSnew = WSold + [ ---J3, and
(3) MS - E-3 Is replaced by MSnew - Mold + C-.-

mig"case"l

n"phasel".

If neither C nor D can be used by any user, then the system is
Irrecoverable and the fault location procedure stops.

The actions taken during Phase 2 are chosen on the basis of the results
of Phase 1. The possible results of Phase 1 can be classified Into the
following cases:

uaa 1.a: Both C and D can be used by the same user.
e.g., Both (Ul -t-> C) and (U1 -t-> D) resulted In "pass".

gma 1.b: There Is no user who can use both C and D but C can
be used by one user Ul and D can be used by another user Uj.
e.g., MIU -t-> C),(U1 -t-> D)) resulted In "Cpass,fail)"
while ((U2 -t-> C),(U2 -t-> D)) resulted In "(faillpass)".

gma 1.c: Only one main processor, C or D. can be used by any user.
This can be divided Into two subcases.

urs1.c.1: C Is usable but D cannot be used by any user,
urn 1.c.2: D Is usable but C cannot be used by any user,
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case 1.d: None of the main processors are usable.

In the last case (case 1.d), there Is no Phase 2 actions. In other
cases, the actions taken in Phase 2 are the same as some parts of the fault
location procedure described in Section 5.2. The detaIls of the Phase 2
actions are as follows:

procedure phase2; "Diagnosis of processors"

gase results-of-phasel 21

1.a: "This corresponds to case 1.1 in the fault location procedure In Section
5.2. Using the same procedure, the operability of processors and their
interconnections can be obtained.";

1.b: "This also corresponds to case 1.1 In the fault location procedure In
Section 5.2 except that whenever C needs to communicate with a user,
e.g., in the case of C -t-> A, Ui Is Involved, whereas whenever D needs
to communicate with a user, UJ Is Involved.";

1.c.1:"This corresponds to case 1.2 In the fault location procedure In Section
5.2. Using the same procedure, the operability of processors and their
Interconnections can be obtained.";

1.c.2:"This corresponds to case 2.1 in the fault location procedure In Section
5.2. Using the same procedure, the operability of processors and their
Interconnections can be obtained";

1.d: "The system is Irrecoverable." stop

nng"case"

MW "Phase 2".

The actions taken during Phase 3 depend on the results of Phase 2. These are
classified into the following cases.

gam 2.a: Both preprocessors are usable.

gam 2.b: Only one preprocessor is usable.

zase 2.b.1: A Is usable but B cannot be used by any user.

ga 2.b.2t B Is usable but A cannot be used by any user.

gam 2.c: None of the preprocessors are usable.

Here it Is assumed that a preprocessor can tell the operability of a source by
watching If readable Information comes from the source. Therefore, A -t-> S1
means that A observes the Information coming from source SI and then mkes a
report on the status of Si.
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The details of Phase 3 are as follows:

pradure phase3; "Diagnosis of sources"

zma results-of-phase2 al

2.a: "A & B are usable"
MeE~ ((A -t-> Si),(B -t-> Si) af

(pass,pass): mark 'Si, (Si-A), & (Si-B) are ok';
(pass,faii): mark 'Si & (Si-A) are ok and

(Si-B) Is malfunctioning';
(fall,pass): mark 'Si & (Si-B) are ok and

(Si-A) Is malfunctioning';
(faii,fail): mark 'Si or E(SI-A),(Si-B)) Is malfunctioning'
*oftcase"3

zaa ((A -t-> S2),
- same as above except that Si Is replaced by S2 -

mnf"cas."3l;

2.b.l: "A Is usable"
FeLase (A -t-> SI) Qgt

pass: mark 'Si & (Si-A) are ok';
fail: mark 'Si or (Si-A) Is malfunctioning'
MNndcas.";

uaa (A -t-> S2) al
pass: mark 'S2 & ($2-A) are ok';
fall: mark '52 or (S2-A) Is malfunctioning'
end"case"JJ;

2.b.2: 01B Is usable"
M- same as In case 2.b.1 except that A Is replaced by B --- 3

2.cs "The system Is Irrecoverable." stop

sng"case"

ang~phases".

A.4 EXTENSIONS OF THE TE04NIQUES

A.4.1 Fault location In a Redued Gofinuration

After a malfunctioning component has been located# the component Is
functionally removed from the system and the rest of the system continues to
amwaste The removal of the component Is recorded In the system
sfatus table. If another fault Is detected later, a slightly modified versionI
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of the fault location procedure described earlier Is followed.

The modIflatlon Is that In each component the test Is preceded by an
examination of the system status table to determine thether the component In
question has been functionally removed. The cmpoqent test will follow only
If the component has not been removed, and then t4ne previously described
procedures will be used.

A.4.2 Dlagnostic Information Contained In Reports from Fault Detactors

It Is possible to skip certain steps In the fault location procedure
described In Section 5.4 by exploitingthe Information contained In the reports
made by fault detectors. There are two types of components capable of
detecting faults: preprocessor and main processor. A preprocessor Is capable
of telling whether a source Is functioning or dead. On the other hand, a main
processor may be capable of telling If a preprocessor Is dead or not.
Moreover, If the two preprocessors have been assigned to process the same
data, then a main processor should be able to detect a mismatch between the
outputs of the two preprocessors. In all these cases, a preprocessor which
detected a fault should send a report to all the users.

Z= 1: Preprocessor Y reported "Source Si Is dead".

There are six possible paths from a preprocessor to the users.
case 1.1: The other preprocessor Y1 made the same report.

onclusulJa : Source Si Is Indeed dead.

gas 1.2: Preprocessor Y' did not make the report.
LoQ.luskQf: Link (SI-Y), preprocessor Y', or all the paths

from Y' to users are malfunctioning.

Z 1.3: The report from Y did not come through all six paths.
co.nnlaa: There are malfunctioning components on those

paths which the report did not come through.

G 2: Main processor Z reported "Preprocessor Y Is dead".
There are three links from a main processor to the users,

as 2.1: The other main processor Z' made the same report.
conclusilns Preprocessor Y Is Indeed dead.

z=se 2.2: Main processor Z' did not make the report.
LOc1JlJuL s Link (Y-Z)t main processor Z', or all the links

from Z' to users are malfunctioning.

rim 2.3: The report from Z did not come through all three links.
radaa. l: The links which the report did not com through

are malfunctioning.

urn3s Main processor Z reported "The outputs of the two
preprocessors disagree".
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ras 3.1: The other main processor Z' made the same report.
£QcluslLn: At least one of the preprocessors Is malfunctioning.

L= 3.2: Main processor Z' did not make the report.
cngl in: Main processor Z' or all the links from V to

users are malfunctioning.
case 3.3: The report from Z did not come through all three links.

conclusion: The links which the report did not come through
are malfunctioning.

The knowledge obtained as above can be used to shorten to a certain
extent the fault location procedure to follow. However, it will Increase the
complexity of the overall fault location procedure and will not change the
worst-case execution time of the location procedure. Therefore, the decision
on whether to exploit the Information contained in the fault report or not
should be made with a consideration of the operational mode of the network
(e.g., dual redundant operation, concurrent processing of different data,
etc.), time constraints, logical complexity constraints, etc.

The fault location procedures described earl ier do not distinguish a
malfunctioning processor from an Isolated processor. For example, failures of
CA-D), (B-C), and (D-U) will make B, D, and (B-D) useless. Such finer
resolution as distinguishing a malfunctioning processor from an Isolated
processor cannot be obtained without adding some links to the system.
However, such additional Information is useful primarily for the maintenance
action (whether to repair or a processor) rather than for fault tolerance and
run-time reconfiguration.
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