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This report covers the flrst half of a study of fault tolerance, reliablility,
and testabllity In distributed systems that support command, control,
communications, and Intellligence (C31) activities. The study Is motivated by
the need for continuous avallability of the computing function in the C3I
applications and by the Increasing utiilzatlon of distributed computing In
this fleld: The study ls Intended to provide a framework for the
characterizatlion of fault tolerance provisions, thelr evaluation against the
needs of C3| activities, and recommendations for improvements in fault
tolerance, rellability, and testability where these are warranted,

The methodology utillzed Includes reviews of the general [(terature of fault
folerant and distributed computing with particular emphasls on reports
generated by DoD agencles related to C3| activities; on-site reviews of the
rellability experlence of selected DoD facilitles; collection of pertinent
relfabiiity data from non-DoD faclllties where these can be obtalned; and
original research in areas not adequately covered by prior Investigations.

As part of the effort reported here, taxonomies of fault tolerance and of
distributed systems were developed (Sections 2.1 ~ 2,3), and functional needs
of C3] activities for fault tolerance have been characterlzed (Section 2.4).
The rellabl) ity and avallability experience of ten typical computer systems
(including two Alr Force applications) Is reported in a consistent format, and
the data are interpreted from the point of view of a user of distributed
systems (Sectlon 3). A framework for the Investigation of design
methodologles for distributed systems Is described (Section 4.1), and previous
work Is summarized and key issues In design are ldentifled (Sectlons 4.2 and
4.3). Fault location techniques applicable to speclfic computer
confligurations found in C3| applications are described In detall (Section 5).

The study Is contlnuing, and a comprehensive design methodology will be

devejoped based on the work reported here,
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PREFACE

A growing need exists for improved fault tolerance, reliability,
and testability in distributed systems which support command, control,
communications, and intelligence (C3I1) activities. This interim re-
port identifies those system functional needs, design motivations, and
key design issues, and presents a logic which can be used for compar-
ative analysis and evaluation of fault tolerant distributed system
reliability, testability, and effectiveness. The results presented
are based upon current operational experience and previous studies in
the areas of fault tolerant design and distributed computing. This
report is intended to provide a foundation for the development of
measures and guidelines for the design and evaluation of fault toler-
ance, reliability, and testability in distributed systems.
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SECTION 1 — INTRODUCT ION

This 1s an Interim report generated on RADC Contract F30602-81-C~0133,
Rellabillty/Testabllity/Design Considerations for Fault Tolerant Systems by
SoHaR Incorporated. The study Is particulariy almed at appliications In the
command, control, communications, and intelligence area (C31)., At the time of
the writing of this report, approximately one-half of the twenty-elght month
duration of the project had elapsed. The major goal of the present report Is
t+o describe the fault tolerance, rellfability and testabliity found In present
C3! systems, or in systems that are technically similar to those In the C3I
fleld.

Distributed systems are coming Iinto Increasing use throughout the digltal
processing fleld because of the flexibllity, performance, and rellability
advantages which they offer. Examples of beneflts In flexIbility are (a) the
abllity to route computing tasks to the most sultable processor (as contrasted
with the local processor that may not be very efficient for a glven task), (b)
the abillity to add processors Incrementally as the computing load Increases,
and (c) the ability to Introduce technical advances gradually, one processor
at a time, whlle retalning existing computers on=1ine, thus avolding the major
software and systems problems that arise when dedlcated computers are replaced
by newer models. Performance (throughput of computing tasks) Is enhanced
because distributed computing allows any temporarily idle computer to be
utllized for sharing the load at a busy site, and, similarly, rellabllity Is
Improved because other processors can be utilized to take up the load of a
falled one umil 1t Is repalred,

All of these beneflts are particularly welcome in C3| applications. Major new
techniques are belng Introduced In several functlonal areas, and the
flexibil ity offered by distrlbuted systems Is highly desirable to support a
smooth translition to these. The performance advantages are valuable because
of the high ratio of peak load to average load, and the resulting oversizing
(In terms of average load) that Is necessary If dedicated computers are used
at each site, The rellabllity advantages of dIstributed systems transiate
directly into survivablllity, perhaps the most highly prized attribute in a C3I
system,

A number of other RADC projects address architectural aspects of distributed
systems and confligurations for speclfic appllications, The present study Is
particularly concerned with those aspects of rellabllity, fault tolerance, and
testabil ity that are applicable to broad classes of systems. The definltions
and classifications of systems presented here, the experlence on current
systems. and the techniques described In thls report will be analyzed and
Integrated (together with additional Information) during the remainder of this
study. The final report will constitute a guidelline for achleving
rellabillty, fault tolerance, and testabllity In the design of distributed
systems for C3| appllcations.

‘Section 2 of this report introduces the terminology for distributed systems
and fault tolerance, presents classlfication schemes (taxonomlies) for both of
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these concepts, and, In the final part of the section, dlscusses the
obJectives and problems in achieving fault tolerance In distributed systems,

Section 3 deals with the relliability of current systems that employ components
or techniques that will be applicable to distributed systems In the future,
in none ot the instances for which data are presented do present systems meet
all of the criteria for a truly distributed system that were described In
Section 2. Nonetheless, the examinatlon of the current data Is essential
because It Is the basls from which planning for the future must proceed. Due
to the cooperatlion received from a number of Government and private
organjzations, the long-term (mostly one year) rellability experience of ten
systems is presented In a consistent format, with allocation of fallures to
hardware, software, and other causes. This collectlion of data may also be of
Interest to readers outside the fleld of distributed systems., The final part
of Sectlon 3 presents a prellminary Interpretation of these data for future
C31 systems.

Sectlon 4 discusses design Issues and methods In dlstributed systems. That
part of the report Is primarily Intended to defline the constralints within
which guldelines for fault tolerance, rellabi!ity and testabllity must be
developed. The motlivation of the developer/user, the current state of
supporting technologles (primarily In networking), and the approaches of
establ ished design methodologies are reviewed. The contributions made iIn the
development of speciflc distributed systems are summarized In the final part
of that section,

Section 5 contalns an example of a formal fault location technlque for several
configurations that were repeatedly encountered In current military systems
that employ distributed processing of modest scope (a |imlted number of
computers). Fault locatlon Is a significant aspect of the testabillty of
distributed systems. Prof. K. H. Kim, a consultant to SoHaR on this effort,
origlnated the concepts used In Section 5 and generated the program design for
fault location that Is presented in the Appendix. Sections 4 and 5 constitute
examples of Individual Issues and techniques that must be mastered for the
successful application of fault tolerance In distributed systems.




SECTION 2 ~ FAULT TOLERANCE AND DISTRIBUTED SYSTEMS

This section Introduces baslc concepts of fault tolerance and distributed
systems as a foundation for the remainder of the report. Section 2.1 deflnes
key terms that are used throughout the report, section 2.2 contalns a taxonomy
of fault tolerance measures applicable to distributed systems, and section 2.3
describes the classlfication of distributed systems. Finally, sectlon 2.4
describes functlonal needs In fault tolerance and distributed systems.

2.1. DEFINITION OF KEY TERMS
2.1.1. Error, Fallure, and Fault

The terms error, fault, and failure are often used Interchangeably In
technical |lterature. However, with the introduction of systems that continue
to operate when components cease to perform as specified, distinctions among
various levels of fallures, causes, and effects become necessary. The
definitions of these terms used In this report are shown in figure 2-1,

An error exists when the output of a computer system does not meet user
requirements, or when the computer Is in a state that does not support user
needs., The system Itself has falled, l.e., execution of a program on thls
system has resulted In a fallure. To cause this fallure, a fault must have
been present In either the hardware or the software. Hardware faults are
frequently caused by deterioration of Initially fault-free devices. Because
random processes contribute to the deterloration these hardware faults are
sald to produce random failures. Software faylts, as well as hardware design
faults, have been present from the time the system was placed into service,
They have not resulted In observed errors because of lack of observation or
because the gxternal event or irigger to activate them had not been present.

2.1.2., Hardware Fault Tolerance

Hardware fault tolerance Is the abl| Ity of the system hardware to contlinue a
specifled level of operation In the presence of one or more hardware faults.
This ability is most often achleved by the use of replicated components. The
definition impiles that the system must continue to function as specified for
all Inputs; thus, a system capable of operating in a degraded mode In which a
restricted set of inputs can be processed Is not fault tolerant,

2.1;3. Software Fault Tolerance

Software fault tolerance Is the ablllty of a system to provide uninterrupted
operation In the presence of program faults through multiple implementations

« Although thls deflnltion was first proposed by
Elmendorf more than a decade ago [ELME72], there remains much Inconslstency
in the usage of this term in the software englneering |lterature, For
example, other techniques such as fault containment and robustness have also
been characterized as fault tolerant despite the fact that they do not provide
for alternate and Independent execution of a function,
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2.1.4. Distributed Systems

The term "distributed™ when used In conjunction with "processing" or "system'
has become one of the vaguest terms In the fleld of computing- (In an
Introduction typical of many papers on distributed processing, Enslow [ENSL78]
spoke of the problem as fol lows:

"Words have only one purpose In a technical context — the transmission
of Information., When they fall to do that. they lead to confusion and
misunderstanding. 'Distributed data processing' and 'distributed
processing'! Illustrate that axlom. Like many other words In the [exicon
of the computer professional, these have become cliches through overuse,
losing much of thelr original meaning In the process."

Since the publication of that article, an increasing number of vendors, system
analysts, and users have adopted the term with a resultant further corruption
In Its meaning, Thurber's [THURB0] definition of a distribudted processing
system, which shall be used In this report, consists of a set of six
conditlons:

~ .
1. The system has at least two processors (processing elements; hostd® .

etc )

2. Each processor has a maln storage module and other memory subsystems
as requlired,

3. There Is no systemwlide shared memory

4, There Is a communications medium termed the "communlcaf‘lons
subnetwork"

5. All process communicatlion occurs via messages between processors over
the communications subnetwork

6. A message Is modeled as a stream of bits broken Into three major
sections: header. Information text, and traller.

This definitlon was chosen after examining some of the major Alr Force C3I|
systems In which dispersed computers perform asssocliated functions and are
Ilnked with various types of communication iines. The dispersed computers may
be grouped into tightly coupled networks in which one or more malnrrame
computers controls an array of sensors, displays, or other devices. Fault
tolerance measures can be applled to both the |inks between these computing
centers and within the centers themselves,

Most currently operational 'arge distributed systems consist of a "main"
computer Installation and "satellite"™ nodes. The main computer Installation
contalns one or more computers which collectively control the network.
Fallure of the maln computer will resuit in elther a severeiy degraded or
nonfunctional network consisting only of satellite nodes. Each satellite node
may have one or more computers which control local (1. e., not connected with

other satelllites) Input and ou‘l’pl'l‘l' evices, Fa ‘_ur? o onr or more of these
network. Thus, fallure of any single node resuits In The ioss ot some system

5
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processing capability, but does not necessarily result In a total system
fallure. Each node on a decentralized system may Itself be a centralized
distributed system. For example, the ARPANET conslists of a large number of
malnframe computers which contro! an extensive local network of satellite
minicomputers, Intelligent terminals, and output devices. None of these
nodes, however, controls any other node on the system,

This definition Is functional! for describing current Alr Force distributed
systems from the scale of flghter alrcraft avionics to the scale of the WWMCCS
network. It Is also consistent with the current use of the term In the
commercial computing Industry. Flinally, networks which conform to more
limited detinitions of distributed processing such as [ENSL78 and ENSL81] are
also Included In this definition,

2.2. TAXONOMY OF FAULT TOLERANCE MEASURES FOR DISTRIBUTED SYSTEMS

Taxonomles for the classlflcation of both fault tolerance methods and network
archltectures are necessary to partition the topic of fault tolerance In
distributed systems Into homogeneous and manageable subtoplcs., The obJective
of thls section Is to develop a framework for classifying fault tolerance
measures for distributed systems. The basis of this taxonomy Is the
conceptual izatlon of a computer network as nodes and links. The node Is
deflined as everything on the computer side of the 1/0 buffer, and the link Is
defined as the network system beyond the 1/0 buffer untll that of the next
node,

Flgure 2-2 shows the taxonomy. Fault tolerance for distributed systems can be
Implemented elther with or without reconfliguration of the network. The left
hand sige ot the tree shows fault tolerance Implementation wlith
reconfliguration consisting of node substitution, !ink substitution, or both,
Reconflguration Is the highest level of fault toterance for a distributed
system, and requires a network management system. Commerclally available
protocois and network architectures allow for the reconfiguration (1. e., the
disconnection or reconnection whiie the rest of the network remalns
unaffected) of secondary network processing elements. However, most work on
network reconflguration after fallure of princlpal processing nodes has been
on elther a theoretical level or on experimental systems,

The right hand side of the tree shows how fault tolerance Is applled without
network reconfiguration. In this case, recovery after a fallure Is achleved
by returning all nodes and Ilnks to an operational status. Restoration of
communication through a iink Is achleved by one of several strategles: time
based (e.g. NAK/ACK) for transient fallures, alternate types of communication
|Inks for longer term faults (e.g. use of optical communications In the event
of extended electromagnetic disturbances), or the use of an alternate route of
the |Ink (e.g. a replicated bus running along different sides of an alrcraft
to mitigate the effects of battle damage). The restoration of a node Is
achleved through computer hardware or software fault tolerance technlques.
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This dlvision of fault tolerance measures provides a framework for further
discusslon and analysls, but should not be interpreted as meaning that use of
techniques In one classlflication prevents use of techniques In another class,
For example, a fault tolerant computer must have both hardware and software
fault tolerance. Simllarly, achlieving fault tolerant communication |Iinks may
Involve tIime, type, and space tactics, and may also Include use of an
alternate link as an additlional backup measure,

2,3, TAXONOMIES OF DISTRIBUTED SYSTEMS

The taxonomy used In this work on rellabliity, malntainability, and fault
tolerance characteristics of distributed computer systems was tallored to
operational Alr Force systems and analogous non-mllitary systems, 1t utlllzes
a small number of categories that are well defined and within each of which
uniform rellabllity problems are found and solutions can be appliled., Section
2.3.1 describes other taxonomy schemes In the |iterature and explalns why they
are unsultable for the purposes of thls work. Sectlion 2.3.2 uses the
hierarchical model of network architecture to define two taxonomles. Section
2.3.3 describes the lower level taxonomy (designated as the "network"
taxonomy), and section 2.,3.4 describes the upper level "applicatlion®™ taxonomy.

2.3.1, Eariler Taxonomles of Distributed Systems

The taxonomy one adopts for distributed systems is determined by the technical
point of view, Indeed, so many taxonomles of distributed systems have been
presented In the |lterature that It ls possible to develop a classlification
scheme for the taxonomies [GREE77, BANN81J.

Most taxonomies take a topologlcal approach by defining primitives (e.g.
nodes, switches, and links) and then classifying the ways In which they can be
| Inked together. The scheme most often clited In the |literature using this
approach Is that of Anderson and Jensen [ANDE75]. The topological view Is
problemetic because other aspects of the network can have more Impact on the
system characteristics. For example, the computling system of a major Los
Angeles newspaper and that of a C3| Installatlion both consist of two
replicated mainframe computers and two front end processors. Although these
systems are topologlically similar, they are very different In most other
aspects.,

Authors such as Thurber [THUR78] and Jensen, et, al [JENS76] use switching
methods (I, e., no switching, circult switching, message switching, and packet
switching) In thelr classification schemes. This approach falls to consider
differences In local and long haul computer networks, and elso falls to
conslider topological and operational aspects of a network. For example, the
Ethernet [[SHOC82] Is topologlically a |Inear bus system (I, e., a variety of
nodes are connected to a single communications channel) In which there are no
discrete switching elements, Thus, one might place this network In the no
switching classificatlon. However, the Xerox Implementation of a network
using Ethernet Is based on fixed length message packets, and It Is therefore
often characterized as a packet switching network.
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Other authors have attempted to address the many aspects of distributed
systems by developing elaborate taxonomles., One such classiflcation scheme
has five levels and more than sixty categories [BANN81]. Unfortunately, the
complexity of this approach makes It Impracticsl.

2,3,2. Iaxonomy lUsed for This Study

The taxonomy for this study regards distributed system archltectures as a
serles of layers, a concept which has been prominent since the development of
ARPANET In the Jate 1960s [KLEI78], [1S081]. The top layers Include the
application program and assoclated display terminal (or other 1/0 device)
control characters. Intermediate levels Interface the applications program to
the host computer and the intercomputer communication system (often designated
the "subnetwork"). The bottom layers control node access to the communication
subnetwork and actual data transmission.

Figure 2-3 shows the seven level 1SO Reference Model [1S081] which [s the
basls of much of the current work in distributed systems. The dotted [Ines
between the levels at the two nodes demonstrate the notion of transparency, I.
e., viewing each leve! as communicating directly with Its counterpart at the
receiving node without regarding the Intervening levels through which the data
actual ly passes during the transfer. The desired result |Is to decouple
application programs and data from lower levels which control the actual
operation of the network. Flgure 2-4 shows how these |ayers are aggregated
tfor thls study. Rellablllty, malntainabllity, and fault tolerance
characteristics of elther grouping of layers will be considered separately,
with the resultant development of two corresponding taxonomles.

Because the (ower {ayers of fligure 2-4 sre affected by the nature of the
network, (e.g. local or long haul, transmission rate and medium, performance
characteristics of the node hardware, etc), the taxonomy for this level Is
designated as the "network™ taxonomy and Is discussed In subsection 2.3.3.
The upper layers are related to the particular appllications tasks and data,
and the assoclated taxonomy Is therefore designated the "appllication level|"
taxonomy, which Is described [n sections 2.3.4.

2.3.3. Natwork Taxonomy

Flgure 2-5 shows the overall structure of the network taxonomy. The left
branch Includes three types of networks confined to a small physical area and
the right branch describes two types of dispersed networks. The distinction
between these branches (s the ratio of the conmunication |ink bandw!dth to the
computing node processing throughput, a quantity which governs the efficlency
with which computing nodes can Interact. In localized networks, where |links
have capacities In the Megabit per second and higher range, this ratio Is
generally on the order of a few percent. In dispersed networks, where long
distance )inks normally have capacities of less than 20,000 bits per second,
1+ |s several orders of magnitude lower,
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The three subclass!ifications of the locallzed computer networks shown In
figure 2-5 are moblle, collocated, and proximity computer networks. The
latter designation refers to a network whose nodes are located within a radlus
of approximately 5 km (the predominant definition of {ocal computer networks
for office automation purposes).

Because of slze and welght |imitations, moblle localfzed networks generally
consists of minl and microcomputers., The distingulshing features of thls
category are the |imlted malntenance and dlagnostic resources which may be
applied during operation, timing and program length constraints, and the time
critical nature of Interruptions and recovery procedures. The major
operational example of an Alr Force system In this classification Is AWACS., A
developmental microprocessor based system currently exists at Wright Patterson
Alr Force Base [LARI81]. Network rellabillty problems Include fallure
detection, Isolatlion, and reconfiguration due to elther component malfunctions
or battle damage. These functions must be performed both automatically
because human operators may be fully occupled with other tasks and rapidly
because of the real time appilcations.

Networks of collocated computers, the second subclassiflication, are fixed
ground based computers Interconnected to achleve higher system reliability,
throughput, or task Integration, Systems In this category are dlstingulshed
from the previous one by fixed locations and the resuitant relaxing of
constraints on component weight and size, dlagnostic provisions, and
malntenance capabilities.

Reliabillty problems for this category ot distributed systems Include local
fatiure detectlion, Isolation, and reconfiguration. In most cases, |inks
between the computers do not contribute significantly to the network fallure
rate.

Distributed systems In the proximity subclassification are ground based
networks In which nodes are located In the same general vicinlty but are not
physically adjacent. These systems are currently designated as "local area
networks". The major distinctions of this category are the Internode dlstance
and the use of serlal (rather than parallel) communication on the links, Two
examples of Air Force systems are the FILAN specification now being developed
at RADC [FILA82] and Ballistic Missile Defense (BMD) systems now belng
developed by the U. S. Army [ALFO81]. A third example Is the combination of
computers on an AWACS alrcraft, on fighter alrcraft belng controlled by the
AWACS, and at a ground statlon. Network relfabliity problems for these
systems Include remote fallure detection and Isolation (the malfunctloning
node may be Inaccessible because of distance or battle considerations),
reconfiguration, and disconnection of a "babbling node™. As a consequence of
the Increased Internode distance, problems on the |ink related to noise and
signal propagation time must also be consldered.

Figure 2-5 shows two subclassifications for dispersed computer networks: (1)
dispersed computers, 1. e., a network with large computers scattered over a
wide geographical area, and (2) dispersed terminals, |, e.,, a network with one
or more computers located at a central site which support sensors, terminals,
and other speclallized devices over a wide geographical area,
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The prime ml|itary example of the first subclassiflication Is the Worldwlde
Milltary Command and Control System (WWMCCS), a system which Includes sites In
Europe, North America, the Pacific, and Asla [GAO78]. Other example systems
which were surveyed are shown In table 3~1., Network rellability problems
include ensuring the Integrity of communication |Inks to other computers,
error detection and correction of the transmitted data, remote fallure
detection and Isolation of both computers and communication |inks, and
establ ishment of alternate |Inks to disconnected nodes.

The distingulshing characteristic of the second subclasssificatlion of
dispersed systems s the presence of geographically separated terminals (and
other 1/0 devices) and a central computing facility. |f the computing
faclility contalns more than one local computer, that part of the network falls
Into the locallzed classlfication while the portion concerned with the remote
terminals falls In this category. Mlllitary examples of such systems include
NORAD and PAVE PAWS [GAO78] which have both multliple collocated malnframe
computers and |Inks to remote sltes. Network rellability problems Include
ensuring the Integrity of the communicatlions |Ink to the terminals, error
detectlion and correction of transmitted data, remote fallure detection and
Isolation of communication |Iinks and terminals, and rerouting of
communications to critical disconnected terminals.

2.3.4. Application Level Taxonomy

Flgure 2-6 shows the taxonomy for the appiication level. The two major
divisions are based on the need for shared programs and data among two or more
computing nodes. The left branch of the taxonomy comprlses those applications
which do not Iinvolve shared programs or data., The right branch consists of
two classes of shared programs or data: replication and partitioning.
Partial replication is a speclial case of partitioning.

The primary milltary example of a computer network falling Into the unshared
subclassification Is a single AWACS alrcraft, The navigation, communication,
display confrol, and central computers perform unrelated tasks and, although
the first three computers Interface with the fourth, there are no common
programs or data. A second milltary example Is the NORAD computer complex
[GA078] In which three separate computer systems perform distinct but
interrelated functions. Network rellabliity problems In this category are
task schedul ing after reconfiguration (if It is possible to reallocate tasks
from a falled node onto working nodes), network recovery on the appllication
level, and Interprocess communication for both co-resident tasks and those
resident on different processors.

PAVE PAWS Is the best example of a computer network In which shared programs
and data are replicated. Network rellablility problems at the applications
jevel Include updating procedures and concurrency control, network recovery,
and Interprocess communication. Because of the complexity of Implementing
partitioned distributed programs and data bases, no examples were Included In
this study. Network rellability problems are concerned with interprocess
communicatlions, concurrency control (1, e., assuring that a READ request Iis
honored only after all earller WRITES are performed), programs and data
redundancy measures, and network recovery.

13
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2.4 FUNCTIONAL NEEDS FOR FAULT TOLERANCE [N DISTRIBUTED SYSTEMS

This section describes typlcal Alr Force C3| needs In both distributed
computer systems and for fault tolerance In these systems. Because the aim of
this study Is to advance the state of the art, this section emphasizes needs
that are not currently being met. However, it should be noted that some fault
tolerant capabilities In distributed computing do exist at present.

2.4.1 Eunctlonal Needs In Distrlbuted Computing

There Is a pervasive need in C3| appllications to access programs and data from
remote flles or real-time data sources, to combine these with local programs
and data, and to cause actlions to be taken on output derlved from the comblned
data. A typlical case |s the identification of the launch point of an Incoming
missile from (a) a file of potentlal launch sites that may be In a local data
base and (b) track information that Is coming In from one or more remote
sltes, and then to notify affected commands of the results of this
Identification. When data sources have been selected In advance, this
computation can proceed without operator Involvement, and the results placed
on herdwired communication |inks. However, when the situation demands a more
geners| solution, It Is desirabie that an operator on a properly privileged
terminal be able to set up an equivalent computation by means of the computer
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statements shown In figure 2-7 (A),

E Ideally, the operator need only ldentify the desired procedure (DATAMERGE), i

the type of data (A and B), and the disposition of the output (creation of a
file MERGED). The distributed computer system will then (1) select the most
sultable and avallable computer for thls procedure, (2) access the most 4
3 current sources for data A and B, and (3) store the resultant flle In the most
accessible device. This capability Is not Implemented In currentiy
operational systems.

Instead, the operator is forced to select a computer, to ldentify sources for
the programs and data, and to tell the system where to store the result as
Indicated in figure 2-7 (B). In routine situations these operator actions are
trivial, and a strong argument can be made that the abllity of current systems
to automate the access (item 2 in the previous paragraph) Is a major
achievement. However, what if the routinely programmed computer for this
procedure Is already fully loaded, the routinely accessed programs and data
sources have not been updated (but another source has been), and the routine
storage device Is down or does not have sufficlent capacity for this flie?
All of these difflculties are much more likely to arise In exactly those
situations when C3I systems must perform 'for real?.

Therefore, a substantial Incentive exlsts for achleving the capabilities of
figure 2-=7 (A). A major problem Is the tendency of present support software,
particularliy the compilers, to bind an application to a speciflic computer.
Typical application programs can only be run on one speclflc type of computer
after compilation Into object code as Indicated In fligure 2-8 (A). Even a
routine modification such as adding memory will require recompllation in many
cases. In order for a distributed system to assign application programs to
any avallable computer, it is necessary to separate those portions of the
compilation which translate source code from those that provide the computer
adaptation as shown In figure 2-8 (B). While there are tendencies in that
direction, much more effort seems necessary to meet the functional needs of
C31 users.

2.4.2 FEunctional Needs for Fault Tolerance

An analogous sltuation to that of distributed programs and data exists for
fault tolerant features In distributed systems. I|deally, the operator should
be able to Indicate simply that fault tolerance (or perhaps a speciflc degree
of fault tolerance) Is desired, and the computer system should then configure
{tself to provide the required back-up elements as Implled by the Instructions
shown In figure 2-9 (A)., However. the best avallable technology toward this
end Is In fixed redundant installations with the abl|ity to automate back-up
programs and data storage (not always efficliently). |In case of a computer
fallure, the user must select the alternate, purge files that may contain
Improper programs and data, and ldentify a suitable restart point as Indicated
in figure 2-9 (B).

€ AT TR e T T

There are few specific obstacies to achleving the desired fault tolerance
capabilities once the problem of assigning suitable alternate computers has

15




e —

ON1S$S3004d Vivd Q3LNGI¥LSIQ NI SA3IAN TYNOILONNG L - Z 3un9ld

W o
110V INTWHND 1538 °8 wvaal v
1
ﬂ VHd TV ¥31NdW0J ._.uuzzouw_U
34n@3D08d N3 3¥NG3708d ON3
7 NO Q39¥3W IAVS
Q393N IAVS

A N0 8 vivad ‘X NO Vv viva
J9Y3WVIVA 3¥NA3O0Y¥d

VHdV ¥3LNdW0D 193NNOD
\. y

g8 vivg ‘v viva
39Y3IWVIVA  I¥NA3ID0Ud




USER A USER B USER C
APPLICATION APPLICATION APPLICATION
PROGRAM A PROGRAM B PROGRAM c_ _
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A. DEDICATED COMPUTER APPROACH
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B. DISTRIBUTED COMPUTING APPROACH

FIGURE 2 - 8 BINDING OF APPLICATIONS TO COMPUTERS
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been solved. Thus, an Improvement In the functional capabilities relative to
distributed computing will pave the way for a significant Improvement .In
practical fault tolerance.
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SECTION 3 — RELIABILITY OF CURRENT SYSTEMS

The relfabllity experience on current systems represents a starting polnt
for what might be expected for future systems and for determining the types
of reltabllity Improvements that would be most effective for these, The
first part of thls section presents data on ten current systems. the second
part analyzes the data, and the third part evaluates the outlook for future
systems based on the current experlence.

3
L 3.1 CURRENT EXPERIENCE

[ As part of thls study, rellabllity and avallablility data on ten current
systems were obtained In a consistent format. All of these systems serve
applications In which it Is Important that computer services be contlinuously
avallable throughout a specifled portion of the day, In some cases for 24
hours, and therefore all of them Incorporate redundancy for at least a
portlon of the local computer Installation. None of them uses resources at
another node to substitute for falled or overloaded local resources, and In
this regard they are not representative of the operation of future
distributed systems. Expectatlions about the rellabillty of distributed
systems are derlved as extrapolations from the experience dlscussed here and
are presented In the last part of this section.

The systems for which rellability data were obtalnable span a wide range of
appl Ications, from telephone switching systems to airline reservations and
banking. The systems are not comparablfe in terms of complexity. {n
particular, the diversity of tasks handled by the FAA en route alr traffic
control system makes thls a uniquely complex application area. In some
cases avallablllty or rellablllity goals had been establIshed whereas In
others It was Intended to provide the best service possible. Any grouping
Is somewhat arbitrary, and comparlisons between systems must take [nto
account the wide differences In requirements, development and procurement
constraints, and operational practices. The data are presented to show
that: .

a, availablilty data are being collected In a consistent format In a
variety of applications

b. several systems are avallable more than 99% of thelr expected
operating time

c. the causes of fallures are fairly similar, and are distributed
about evenly between hardware, software, and other classiflcations,

Four of the systems exist In almost identical form in many locations, whereas
the others are singuiar Installations., Table 3-1 shows the downtime and !
related data for systems that are Installed In multiple locations., :
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TABLE 3 = 1 EXPERIENCE OF MULTIPLE INSTALLATION SYSTEMS

System Bell FAA Federal Reserve Bank
No. 4 ESS En Route ATC Dataphone 50 Medlum Speed
No. Installed 55 20 13 14
Op. hrs/yr. 8760 7665 3000 3000
Avallab. goal 99.99% - 96% 98.5%
Actual avallab, 99.99% 99.6% 99% 98.8%
Downt Ime
Avg. hrs/yr 0.75 30 30.3 34.9
Caused by
Hardware 25% 40% 388 39¢
Software 35% 30% 35% 51%
Other 40% 30% 27% 108

The Bell No. 4 Electronic Switching System is Intended to operate 24 hours
every day of the year; the En Route Alr Traffic Control System Is shut down
for maintenance approximately 3 hours each day during the early morning hours
and a back-up system Is then used to handle the [ight trafflc load; both
Federal Reserve Funds Transfer Systems operate approximately 12 hours a day on
weekdays only.

Several avallability requirements have been established for the No. 4 ESS.
One of these Is that the average downtime for an installation shal! not exceed
6 hours over a 40 year operating |lfe (corresponding to an avallabllity of
99,9983%) . Other requirements are specific to the application, dealing with
the number of calls that may be Interrupted and with the number of unit
replacement actions [DAViI81]., The avallabillity requirement for the FRB Funds
Transfer System relates to the availability of each Installation for a glven
month, The actual avallablilities are In each case averages over all
Iinstallations for a calendar year. The Bell and FAA actual avalliabllity data
are for 1980, the FRB actuals are for 1981,

Criteria for downtime are that the entire Installation becomes Inoperative or
more than a threshold amount of time (In the case of the FAA this Is one
minute; It Is less for the other systems In Table 3-1), Partial outages that
affect only a |imited number of phones, or a single controller's console, are
not Included In these statistics. Note particularly that fallure of a single
computer will typlcally not result In downtime because back-up is avallable.

The avallabiility experience of six systems that exist In only a single
Instal lation Is presented In Table 3-2, Two organizations contributed data on
two systems each. I[n one case the two systems used exactly the same hardware
configuration but differed In operational detalis; In the other case there was
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only gross simllarity of equipment, The avallablllity goal for each of the
airline systems was 99.6f. Goals for the other installatlions were not stated.
The computer applications represented In Table 3~2 differ greatly In the
complexity of the programs, size of data bases, number of access polnts, and
requirements for real-time output. DIfferences In availablllty or downtime
therefore do not Indicate that one system Is "better" than another. The data
for the alriine systems pertaln to 1980, All other data represent 1981
experlence,

TABLE 3 - 2 EXPERIENCE OF SINGLE INSTALLATION SYSTEMS

System Alriine Milltary Stanford Gov't
Fit, Inf, Reserv, Syst, A Syst. B Lin, Accel. Fliscal Syst,
Op. hrs/yr. 8760 8760 7835 8630 8518 6535
Actual avallab. 99.89% 99.65% 99,22% 98.40% 98.66% 88.52%
Downtime
Hrs/yr 9.5 31 61 138 114 750
Caused by
Hardware 23% 41% 28% 49% 56% 64%
Software 16% 35% 108 1% 35% 14%
Other 61% 24% 62% 50% 9% 22%

3.2 ANALYSIS OF CURRENT DATA

Even the most casual review of the data presented In Tables 3-1 and 3-2
ldentifles the Bell No. 4 Electronic Switching System as having exceptionally
high availability and correspondingly low downtime. This system Is the
product of a speclialized organization comprising several thousand
professionals, and, as the designatlion Indicates, It Is the fourth major
design of an electronic switching system undertaken by that group.
Publications on the No. 1 ESS go back at least to 1964 [KEIS64], and features
of the No. 4 ESS were described as early as 1972 [VAUG72]. The data in Table
3-1 indicate that the long-term allocatlon of resources to ambltious and
well-specifled rellability goals produces the desired results,

Like Its predecessors, the No. 4 ESS iIncorporates dual digltal processors and
error correcting code In memory, Redundancy is Incorporated in peripherals
such that a single faliure can not disable more than a small number of |lnes.
In 1980 the average installation served 22,000 terminations. The computer
program comprised over 2 milllon Instructions [DAVI81].

In the early rellability planning for electronic switching systems !t was
assumed that most system fallures will be caused by simul taneous fallures of
redundant hardware components, such as a second processor falling while the
first one was being repalired, Such Incidents accounted for only 11% of all
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fallures and 9% of the downtime In the data reported in Table 3-1. The
balance of the hardware downtime was due to wiring fallures or errors (6%),
necessary shutdowns for fault Isolation (6%), and design errors (4%).
Software fallures were the largest single cause of downtime. They accounted
directly for 29%, and they requlired shutdowns for Intentional test. etc. that
caused another 6% of the downtime. The largest contributor to the "other"
category for the ESS was personnel errors which accounted for 24% of downtime,
Unresolved or unclassiflable problems accounted for the balance of the
downtime reported In that category. No outages due to power supply problems
were reported for ESS. This Is In sharp contrast with the experlence on other
systems.

The most significant facts emerging from the analysis of the ESS data are:
a. the unusually high avallablllity of this system
b. the small contribution to downtime from classical fallure mechanlsms
c. the Importance of software and personnel fallures

The FAA en route alr traffic control system utlllzes computers that are
derived from the IBM 360 series and Incorporate a very effective error
detection and reconfiguration mechanism. Depending on the workload at each
alr trafflc control center, three or four malnframes are provlided of which at
jeast one Is a spare that Is activated In case of a hardware fallure In one of
the other units, The equipment is representative of computer design In the
early 1960's and was Installed between 1967 and 1972 [GRAY80]. Although the
same hardware and basic software are used In each traffic control center,
local modifications and adaptations are authorized to permit+ each center to
meet Its local needs. Thls, in additlon to the varylng traffic loads. may
account for dlifferences discussed In the following paragraph. 1t also needs
to be stated that outage of the computer system does not mean cessation of alr
trafflic control operations at the affected center. There are further back-up
provislons which Impose a higher workload on the controllers but permlt safe
handlIng of controlled aircraft.

The data avallable on the computer fallures of the en route alr traffic
control system permit some analysis of the differences between centers. The
following dlscusslon pertains to the number of fallures (hardware, software
and unknown, but excluding personnel errors) for the maln computer
Installation at each center. Number of fallures rather than downtime was
selected so as to exclude (as much as possible) differences In malntenance
proficlency. and personnel errors were deleted for the same reason., The
average number of Interruptions due to the selected causes during 1980 was
162.7 with a standard devlation of 69.2. The lowest number of Interruptions
observed was 15 and the highest number was 357, Flifteen of the twenty centers
(753) were within one standard deviation of the mean (compared to 65% for a
theoretlical Normal distribution), Busy alr traffic control centers were
represented among those with a low Interruption frequency as well as among
those experlencing an above average number of Interruptions, Because workload
measures were not avallable, no formal correlation between traftfic volume and
fallure frequency was undertaken,
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Much of this difference between centers must be due to controllable causes
(maintenance and adminlstrative practices, nature of the local adaptations,
etc,), and it is Interesting to speculate how much beneflt might be derlved
from an attack on those causes. |f the average frequency of [nterruptions
could have been reduced to the low end of the central range (observed mean
minus cne standard devliation), and If downtime Is proportional to the number
of Interruptions, then the average annual downtime would have been reduced to
less than 20 hours. Thls reductlion Is greater than that which could
reasonably be expected from rellability Improvement programs In efther
hardware or software,

Despite the age of the equlpment and the complexity of the computational
tasks, the FAA en route air traffic control computers achlieved an avallablilty
of 99.68. The above analysls suggests that this figure could be further
improved by control of malntenance and adminlstrative practices,

The Federal Reserve Bank operates two computer data systems: The Dataphone 50
system which Is concerned with bulk processing and transfer of computer data
(economlc analyses, member bank status reports), and the medium speed system
which handles Individual fund transfer activities. The Dataphone 50 system
was lnaugurated In 1975. and 1t operates at 50 kilobaud over a dedicated coax
cable. 1t facilitates point-to~point data transfer between all nodes. The
medlum speed system has been in operation since 1970. {1+ s lald out &8s a
star network with the central node at Culpeper, Virginla. Its nominal
transmission rate s 2.4 kilobaud, and {t+ uses a store-and-forward protocol.
A varlety of computers are installed at each of the Federal Reserve Banks and
have access to either network.

Two interesting observations were made possible on the basls of the material
furnisned on the Federal Reserve Communlications System: Outages of the
central node contributed only a mlinor portlon of the total downtime, and
workioad did not seem to have a signiflicant effect on the duration of the
ocutages, The Culpeper Installation, which serves as the central node for the
medium speed system had a total downtime of only 13.5 hours during the year,
compared to an outage of 34.9 hours for the average node. Of the 103 fallures
at the central node, 87 were caused by software problems. Ten fallures were
due to hardware problems, and six of these were reported during one month,
apparentiy a single problem that was dlfflcult to dlagnose. The concluslon
from these observations Is that hardware fauit tolerance at a central node can
contribute significantly to the rellabliity of a star network, but that It
needs to be supplemented by software fault tolerance technliques In order to
obtaln the full benefi+ of this 1ink structure.

: Several Investigators have recently reported a strong correlation between
| workioad and computer fallures [BEAU79, CAST81. IYER82]. In the data on the
.t medium speed system, downtime during the peak hours for that system (1 pm to 4
pm Eastern Standard or Dayllight Saving Time) Is stated separately, The
average outage per locatlion reported during peak time was 7.05 hrs/yr. Since
the average outage for the entlire 12 hour operating period was 34.9 hrs/yr,
this Indlcates that Jess than one-quarter of the downtime occurs during that
quarter of the operating day during which the workload Is highest. Whiie
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downtime and fallure frequency are not the same, one expects approximately the
same fractlion of each to occur during a given time Interval unless speclal
clrcumstances prevall. Some explanations for the deviation from the generally
expected relation between workload and fallure frequency are:

a. Maintenance and staffing schedules favor availabiiity during the peak
perlod. Maintenance actions which might reduce equipment avallabliflty
during the peak time are avoided. The most experienced operating and
maintenance personne! are at work durlng the busy perlod. Speclal
procedures are In effect to minimize the probabllity of a fallure during
the peak hours,

b. The designation of the peak perlod may be In error. The workload
analysis might have been conducted at some time In the past when a
different pattern prevalled. Users may dellberately schedule most of
thelr work during toff-peak! hours, thereby making these de facto peak
hours,

c. The reported relations between workload and fallure frequency may not
apply. Previous studies have been primarlily concerned with processing
bound appllications whereas the medium speed system Is probably channel
bound, Effects that have not yet been identifled may cause a deviation
from the expected pattern.

All three factors might be at work, but on the basls of the procedures
followed In simllar systems the major contributor to the observed effect Is
probably (a). The data on the Federal Reserve Communications System show that
with proper design and procedures the central node In a star network need not
be the weak |ink, and a dlisproportionate fraction of the downtime need not
occur during the buslest period.

Data obtained In 1976 on the Stanford Linear Accelerator Computer (SLAC) show
a very pronounced dependence of fallure frequency, particuiarly for fallures
due to software, on workload, and this relation Is also evident In the current
data. Flgure 3~1 [llustrates the software fallure frequency (total for 1976)
during each one hour perjod of the day. Note the peak between 11 am and 12
noon, then a decrease during the lunch perlod, and a secondary peak lasting
from 2 to 4 pm., These are obvlously the perlods of highest activity on the
system.,

Only fallures which affected the entire system are Included In Figure 3=~1,
primarlly fallures in the operating programs. Because these programs are
particularly active when a new job 1s started, we normallzed the fallure
frequency relative to the number of Job arrivals during each one hour period.
The resulting graph Is shown In Figure 3-2, The peaks durling the mid-day
period have been el iminated, and instead there [s a pronounced singuilar peak
between 7 am and 8 am. During this perlod not many new jobs are started, but
there is a high degree of system activity due to archiving, re~Initialization
of the computer, and sometimes phasing in a new release of the operating
system,

The Government fliscal system described In the last column of Table 3-2
consists of a redundant Installation of IBM 370/168 computers that service a
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nationwide network of approximately 1,000 terminals that direct querles to the
central data base and can also, with safeguards, update that database. As 1
evidenced by the high downtime, and the large fraction of that due to hardware
fallures, the system appears to be beset by malntenance problems. Over 100
hours of outage due to power and alrconditioning fallures are Included In the
tother causes' classiflcation.

Prime time is In this system defined as a ten hour Interval between 8 am and 6
pm Eastern Time. For a subset of the equipment that includes the malnframes,
separate fallure statistics were kept for prime time and total time. These
Indicate that outages accounted for only 2.2% of the prime time compared to
3 3.66% of total time. While this again seems to contradict the workload :
dependence of fallures, It Is In this case due to an establlshed pollicy which
permitted shutdown of one of the redundant computers for malntenance during
non=-prime hours. Any fallure In the active computer then propagated
Immedlately to a system outage.

3.3 |INTERPRETATION OF FINDINGS FOR FUTURE C31 SYSTEMS

The most encouraging rellabil ity experience encountered In this survey was
that reported for the No. 4 Electronic Swltching System. The most prominent
factors that account for the superlor showing appear to be:

o s

a. A large, dedicated development staff

b. Multiple Installations of Identical equlpment

c. Extenslive diagnostic programs for fallure Identiflcation
d. Bullding on past experlence with simllar systems

The staffling practices at Bell Labs provide speciallists In ail aspects of
relfabllity (from device physlics through system archltecture) within the
project organization., Because of low employee turnover, Individuals or small
groups become highly expert at thelir assigned responsibliities. Factors (b)
through (d) were also present to a large extent in the other systems for which
multiple Installations existed, and these probably account for lower downtime
that was generally reported for these. None of the systems described on Table
3=1 had a downtime of more than 35 hours per year, whereas al! but the alrline
systems described on Table 3-2 had downtime considerably In excess of 35 hours
per year,

It Is unllikely that the Government can procure C3| systems that have the
legacy of development and operational experience Inherent in a Bell
Laboratorles electronic switching system. Nonetheless, emphasis on thorough
development and fleld testing prior to a committment to operation provlides
substantial rellabliity benefits and should be practiced. The other factors
enumerated above are directiy applicable to Government procurements and should
be identlified as requirements In future program plans. W!th proper attention
to such requirements, |+ seems possible to achieve avallabli|ity approaching
99.9% In a dual Instailation,




e

The analysis presented earller In this section dwelt heavily on the workload
dependence of computer fallures because i1t Is belleved that this is
particularly Important for military C3! installations. In times of potent‘al
or real confllct, the workload In these systems !s expected to Increase very
significantly, and It Is under these circumstances that fallures will have the
worst effect. Thus, predicting an average avallabllity of 99.9% for C3I
equipment can be as misleading as stating that the average depth of a stream
is one foot which leads to drowning of a party trying to ford that stream and
finds that the maximum depth Is much greater. The avallabl ity planning and
prediction must be based on a stated workload that should reflect the maximum
a glven Installation will be exposed to In case of milltary conflict.

Avallabllity can be Increased by furnishing additlonal spare resources In
place, or by making remote spare resources accesslble In case of a fallure.
Distributed systems have a high potential for facilitating the latter approach
but here, again, an additional work load dependence needs to be recognized:
ut!lllzation of remote computers requires high capaclty data |links, and these
might be busy or unusable (EMI, etc.) during the time that they are needed to
support geographically dispersed computing. These factors will be evaluated
In later phases of this study.

The star configuration of networks Is of particular Interest In tactical
military systems because 1t models the command structure. |t was therefore
significant to find that at least one network using that structure did not
experience serlously adverse effects from the dependence of such a network on
the continuous operablllty of a node.
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SECTION 4 — DESIGN ISSUES AND METHODS IN DISTRIBUTED SYSTEMS

This section surveys previous work on both the identiflication of problems of
distributed systems and design methods for thelr solutlions. Subsection 4.1
provides a framework for describlng and analyzing the wlde varlety of network
design methodologles along with the problems and design Issues they address.
Subsection 4.2 dlscusses previous work relevant to C31 applfcations, and
subsection 4.3 summarlzes the results as a set of requirements for the design
of fault tolerant distributed systems.

4.1, A FRAMEWORK FOR DESIGN METHODS AND {SSUES

This framework uses three descriptors to characterize design methodologles for
distributed systems: design motlivation, stage of network Implementation, and
scope. Deslgn motivation refers to the attribute that Is being optimlzed
(e.g. cost, throughput, etc.,). Stage of network Implementation relates to the
stage of development of networking components, and ranges from fully developed
systems to network designs where nelther the processors. |Inks, terminals, or
software have been developed. Scope Is used to describe the range of design
problems addressed from the formulation of requirements to the final detalled
design,

4.1.1. Design Motlvatlons

Motivations for distributed systems affect the approach to the design, the
evaluation criterla used to make tradeoffs, and flgures of merlt used to
assess performance. Past work on distributed systems can be classifled on the
basls of these motivatlions which Include Increasing throughput or response
time, lowering communications costs, conforming to the structure of the user
organization, relieving the load on an overburdened system, or Increasing
system rellablilty and avallability,

Increasing system throughput or decreasing response times have been major
motivations for the general research community, tactical C3| applications,
real time control, and balllstic missile defense. The principal design Issues
have been optimlizatlion of task allocation with respect to throughput,
efficient Interprocess communication. distributed data bases. and, to a
I imited degree, fault tolerance (the abllity to add or delete units In a
distributed system provides this flexIbillity)., Because such systems are
generally both non-dispersed and under the control of a single local
commander, distributed computing Is not inherently superior to a central
processor In these applications. However, because no hardware appropriate for
field and battie conditions has the requisite throughputs. the use of several
small{er unlts operating In parallel Is a viable alternative,

Lowering communications costs has been of primary concern to both DoD and
non-DoD agenclies that operate general purpose computing faclilitlies serving
dispersed users. The major design Issue is the tradeoff of the cost of local

30




processing (e.g. for display formatting and local edlting on CRTs) versus
that of communication |lnks wlth the capaclty to transmit unreduced dats to a
central slite for processing. Assoclated Issues are the management and
malntenance of a long-distance communications network, optimal task aliocation
with respect to cost (generally a nearly static proposition), min!'mization of
system response time to user actlons, and optimal cholce of compatible
hardware and software components. While high reilabliity Is one of the design
goals of these systems, fault tolerance Is generally not, One significant
exception, however, Is the use of dual! processor minlcomputers (e.g. Tandem or
Stratus) as front-end processors, Such systems are generally used on
reservatlon or telephone ordering systems where hlgh rellabllity Is a
requlrement for marketing and customer relations.

Conforming to the structure of the user organization [s also of concern to all
classes of users. The primary C3| manifestation of this goal as the governing
factor In distributed system design Is evident In the structure of WWMCCS In
which computing centers are assoclated with each of the major functions.
Another, much smaller scale example, Is the Xerox Ethernet based office
automation network. The major Issues are designing such a network In
accordance with user and organizational requirements, provlding for the
configuration management and maintenance of a coherent network given the
presence of heterogenous nodes, and fallure diagnosis. Task allocation Is not
a conslderation because nodes are generally not under the control of a central
system supervisor, While communication costs. rellabllity, and network
throughput must be withln acceptable levels, these concerns are usually not as
Important as In networks motlvated by the previous two considerations.

Relleving the load on an overburdened central computer is often a motivation
for central computing facilitlies at major defense, scientific, and commerclal
sites. Generally, load rellief Invoives Installation of dedicated processors
such as front end communication processors, Interactlve sesslon processors, or
back end data base machines. Major design Issues are compatibility,
throughput, and cost. An assoclated Issue may be system reconfliguration and
fault tolerance which Is enabled by the presence of many Interconnected
computers. As was the case with the economicaily motivated system, task
allocatlion Is consldered In the Initial design, but will generai{y not occur
dynamically unless automatic reconflguration is provided -as part of the fault
tolérant Implementation,

The final motivation, Increasing rellabllity and avallablilty, 1s of primary
Interest In the present study. The major deslign conslideratlions Include
avallabl| ity and effectliveness requirements, reconflguration strategles (on
the node, |ink, or system level), and acceptable degraded operating modes.
System design requirements associated with throughput. performance, and cost
defline constraints for the highly reifable design., Most work on such systems
has been performed in ar academic setting, and It has been concerned with
relatively narrow issues (e.g. the number of nodes or |Ink outages that can be
tolerated In a switching network), This work has not considered rellabillity
Improvement as an I1ntegral part of a design that Is primarily motivated by the
Issues previously discussed (Increasing throughput, reduced communicatlions
cost, etc.). The Integration of rellability enhancing design techniques --
especially In the area of fault tolerance — Into a general design methodology
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has not been adequately addressed; the second phase of the present
Investigation will be almed at that area.

4.1.2. State of Network Development

For the purposes of thls sectlon, we conslder four stages of system
Imp | ementation:

(1) the network |s already Implemented, and the methodology deals wlth
Its Interconnection with other networks

(2) network components (l.e. nodes, |inks, and software) and archltecure
have been developed, and the methodology deals with the optimal
Interconnection strategies

(3) ccmputing nodes on the network have been developed and hardware
Interfaces are avallable, and the methodology deals with the
Interconnection and control of these computing resources

(4) no network components have been developed, and the methodology deals
with general characterlstics of networks,

The first stage Is of Importance to C3| systems on both the tactical and
strategic levels. Examples Include the interconnectlion of several tactical
alr defense C31 (e.g. AWACS and ground-based radar) systems Into a single
Integrated tactical Information center or the |inking of radar detectlon sites
(e.g. PAVE PAWS) wlth a central command site (e.g. NORAD). Literature on the
deslign of networks In the flrst classiflication (l.e. networks of networks)
centers on the concept of there belng a single "gateway"™ that serves as an
Interface between networks, Because of the early stage of development of this
concept, most of the published |lterature addresses compatiblllty Issues,
standards (e.g. 1S5S0 X.25), and the problems assoclated with getting such
gateways to work at acceptable levels. |Issues assoclated with fault
tolerance, high throughput, or cost (beyond the minimum acceptable levels) are
seldom treated In the |lterature.

The next stage, the design of networks around existing and (more or less)
fully Implemented architectures, has been treated In a number of design
methodologies of varlous scopes (see next subsection). The Issues addressed
by these methodologlies include the distributlon of applications, placement of
nodes, and cholce of IIlnks (1f several types are supported, e.g. telephone and
dedicated Ilines). Design motivations Include economics, performance,
organlzational, and reliablility, Examplies of commerclaily avallable
archltectures Include IBM's SNA and Xerox's Implementation of Ethernet,

The third classification Is relevant to tactical C3| systems involving the
Interconnection of smaller Indlvidual computers and to strategic systems which
may involve different types of processing performed on various machines (e.g.
co-processors used together wlth an upgrade of the 427-M computers).
Methodologles come in the form of articles and reports documenting the
experlience of researchers In constructing these networks. The methodologlies
deal with Issues such as the design of the communication |inks, inter-computer
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protocols, operating system modiflications, and those Issues listed in the
previous paragraph., Examples of "home-grown™ networks include Installations
at Lawrence Livermore Labs and the China Lake Naval Weapons Center. Primary
deslign motivations are related to Increased throughput and relieving the ioad

on existing mainframes.

The final classification Is relevant to those C3! systems which are desligned
without the use of any developed computers. The motivations for such systems
are Increasing wilth the growing capabllltles of microprocessors coupled with
externally Imposed constraints on welght, power consumption, and volume.
Several methodologles have arlsen from ballistic missile defense appllications.
All Issues mentloned In previous paragraphs are relevant, and addlitlonal
issues Include the structure of the computer hardware, communication |inks,
and the entire system sofiware,

4.1.3. Scope of the Design Methodojoglies

An important characteristic of any deslgn methodology Is how much of the
problem It covers. Nagle, et. al. [NAGL79] point out that design
methodologles for fault tolerant dlstributed systems must begln at the system
definltion, or requirements level and proceed through to Iimplementation,
DIifferent methodologles deslgnate varlous steps In the deslgn of
computer-based systems; Figure 4-1, taken from Sloane and Wrobleskl [SLOA82],
shows that used at TRW. Many design methodologles In the [[terature do not
address app!icatlions which are sufficlently speclfic that all the steps in
Figure 4-~1 are approprlate. Others have been developed for problems posed by
the distributed system Itself, not by any application Induced requirements.
Thus, for the purposes of thls study, three general scope descriptors will be

used:

ReguirementsThe methodology addresses the formulation and development of
system requirements from functlonal or misslion requirements stated In

non-computer |lke terms,

Archltecture - The methodology addresses specific issues In distributed
systems design Including protocols, task allocation, distributed

operating systems, data bases, etc.

Communications - The methodology addresses issues related to choice of
communication medla, problems In thelr Implementation, and monitoring of

the network | inks.

4.2, PREVIOUS WORK

This section reviews some of the recent work on the Identiflication of design
Issues and methodologles In distributed systems. Table 4~1 presents a
grouping of the methodologles and a summary description based on the framework
described in Subsection 4.1.
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TABLE 4~1 DESIGN METHODOLOGIES AND RELATED TOPICS REVIEWED IN THIS SECTION

REFERENCE APPLICATION MOT I VAT ION DEVELOPMENT SCOPE

Al ford BMD Throughput No components Reqts.
[ALF081] Rellabl| Ity developed Arch,
Meler, Lemoine BMD Throughput No components  Arch,
and Nam [MEIE81] Rellablllty developed
FltzGerald & Eason Busliness Economic Developed Reqts.
[Fi1TZ78] Response time Sys. Arch.

Rellabll Ity
Frankel Bus|ness Economlc Developed Commu
[FRAN82] Sys. Arch.
DiClicclo, ot. al. Unspec, Organizational Developed Reqts.
[oic179] (Inter-network) Sys. Arch.
Popek Unspec., Rellabil ity No components Reqts.
[POPES1] developed
Gien & Zimmerman Unspec. Performance Developed Reqts.
[GIEN79] Network

4.2.,1. Design of Distributed Systems In BMD Applications

Current deslign concepts for The Balllstic Misslle Defense (BMD) systems
emphasize local networks of computers. The primary design motivatlons are
Increased throughput, decreased response time, and improved avallablility,
Such systems are generally not designed around any ex!sting computers or
networks, and thus, the entire range of distributed system design Issues must
be considered. Software Issues Include communications protocols, design of
the distributed operating system (l.e. replicated and nonreplicated modules,
Interprocess communication, etc,), design and implementation of a distributed
data base system, and task allocation.

Alford, et al. [ALFO81] have devised a distributed computing design system
that Is based on a methodology with elght top-level steps and a large number
of lower level tasks and sub-tasks., The elght overall steps are system
requirements deflinlitlion, data processing (primarily In the area of operating
systems, not communications) subsystem engineering, process design (l.e,
defining and placing processing nodes and allocating computing tasks),
soquential program design, code and unit test. integration and test, and
operation and malntenance. The design methodology Is unique In clearly
providing for the definition of critical functions, network reconfiguration,
and alternate paths In the requirements phase and propagating these issues In

33

din - etk e




the subsequent design steps. I|ts main contribution, however, Is that It
formal izes and structures the design process to the extent that many of the
detalls, Information Interfaces, and error checking can be computer!zed.

Van Tllborg and Jasinks! [VANT81] deal with design Issues In operating
systems. The three major areas In the design of BMD distributed operating
systems are Interprocess communication (both within a node and between nodes),
database management, and task allocation (during design, normal operation, and
reconfiguration), The design obJectives of Interprocess communication
protocols are (1) minimizing demands on processor throughput, (2) detecting,
preventing, or avolding deadlock, (3) reducing the amount of handshakling
needed to synchronlze the data exchange, and (4) ensuring that transmitted
data Is recelved undamaged. |Issues In the design and operation of database
systems Include (1) where to put data bases with respect to the processors
which will access them, (2) the extent to which the data should be repl!cated
In order to reduce access times, and (3) how fo minimize access times subject
to database consistency and Integrity requirements., Issues In task allocatlion
Include both distributing the tasks to the various nodes and scheduling them
according to precedence and timing constralnts,

Meler, Lemoine, and Nam [MEIE81] concentrate speciflically on the Issue of
dynamic task allocation In an advanced Low Altitude BMD system. There are
known task schedullng algorithms which can soive problems such as minimizing
response time for a set of tasks subject to timing and precedence constraints,
However, few of them are tractable for large systems. These authors evaluate
computationally feasible (though not necessar!iy optimal) algorithms for
effectiveness against speclfic threat scenarlos by means of simulations. This
approach can be quite useful In the development of reconflguration and
re~-al locatlion schemes for fault tolerant systems.

4.,2.2, Buslness Systems

Many large business orlented computer networks are quite similar to strategic
C3| systems on all but the application specific level. Both environments use
dispersed mainframe computer Instaliations connected by a communications
network, use simliar communlications hardware and software, and have similar
relfabllity requirements. Thus, although requlirements on the app!ication
level may dlffer somewhat, |lterature on the design and Implementation of
these systems Is of relevance to this study.

The primary design motivation of distributed systems in business applications
Is the provision of an acceptable level of service at minimum cost and
development time., As a result, such systems generally rely on commerclally
avallable networking systems whlich Integrate hardware and software Into a
ready-made archltecture that can be tallored to the requirements of the user,
Exampies of such products Include IBM's System Network Archltecture (SNA),
inltially designed for automated tellers, and Xerox's Ethernet, Intended for
office automation applications, Formulation of user requirements is the focus
of most design methodologles In this area (of which there are a number);
Issues that may appear minor and subtle to the network designer can be major
contributors to the success or fallure of the network (e.g. placement of CRTs,
consideration of power, space, and temperature requirements, etc.).
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Requirements formulation for distributed systems In business appllications must
focus on three Issues: (1) user requirements of network performance, (2)
traffic that the network must bear, and (3) cost and time constralnts.
Options avallable to the system desligner Include CPUs, front end communication
processors and PABXs, modems, tandem swl!tching centers, multiplexers.
concentrators, message swlitches, and common carrfer services.

FitzGerald and Eason [FITZ78] define a ten-step procedure which can be grouped
Into three phases: pre~requirements, requirements, and Implementation. The
pre~requirements phase Involves probiem definition (In user terms), approach
development, background Information gathering on the organization, examination :
of the "people problems™ and other assoclated Issues affected by the 1
distributed system, and generation of functional requirements (In user terms), {
The second phase conslists of formulating system requirements and constraints,
generating design alternatives that meet the requirements subject to the
constraints, and cholce of the best system. The Implementation phase involves
convincing management of the needs for the system, purchase and Installation
of the system, acceptance testing, development of operating and malntenance
procedures, performance monitoring, and flne tuning.

This procedure differs from the previous BMD applicatfon In the following
ways:

1. Because of the unwritten "organizational culture®” with which the
analyst may not be famiilar, a large proportion of the requirements
phase must be devoted fo understanding not only expiicit and
quantiflable requirements but also Impliclit criterlia which will
affect the acceptabliiity of the design.

2. The reluctance of most organizations to Invest In distributed systems
research and development necessitates the use of commerclally
avaliable components with service and support from the vendor. Thus,
most of the work In the development of design alternatives Involves
examination of the performance specliflcations and any credible
rellabll ity data of system components -- not on design of new
devices,

3. The non-technical nature of the user organlization requires speclal
attentlon to "human factors" engineering In both the hardware and
software, relations with the declision-making entities (l.e.
management), and tralning beyond that required to operate speciflic
software packages or systems,

System design Issues are quite simllar In other aspects, Certaln load factors
can be predicted (e,g. the transmission of administrative and flinanclal
Information at predetermined Intervals), while others can not (e.g. the
Interactive entry of customer orders). Concerns on the valldity of
transmitted Information are often central for appilcations such as automated
bank teller terminals just as they are for C3| applications. System
availabllity and rellabiiity for applications such as airlline reservations are

37

reom@Far




cruclal to the economic well beling (l.e., survival) of organizatlons Just as
they are In defense settings,

Franke! [FRAN82] concentrates on one aspect of system design =-- topology of
the communications network -- and on one criterion == cost. Flgure 4-2A shows
six nodes connected to a center. In this example, the nodes are simple CRT
terminals and the center |s a minicomputer, but the considerations can be
extended to any star network. Figure 4-2B shows the same functlonal
conflguration Interconnected as a single multidrop {ine. The motivation for
the multidrop configuration Is cost: network A has a monthly cost twice that
of network B at 1982 rates. However, other motlvations may favor network a.
For example, If |Ink bandwldths are a constralint (as opposed to the processing
capacity at the central node), or If the rellabllity of the links Is low
compared wlth that of other components, then A Is preferable. On the other
hand, If the multidrop link is a higher capacity |Ine or consists of redundant
paths, then such considerations would favor network B over A, although not at
the same cost advantage.

4,2,3. Networking Conslderations

Thls subsection discusses design approaches and methodologles In terms of the
network rather than In terms of an applicatlon. Major problems in this area
include the Interconnection of heterogeneous networks and computer systems as
wel | as general software Issues such as distributed operating systems or data
bases.

Glen and Zimmerman [GIEN79] concentrate on the problems of network
Interconnectlion, and provide solutlons In the form of analogles tfo
heterogeneous computer networks, iIn which speclal Interfaces must be provlided.
Figure 4-3 Is a plictorial representation of the problem: gliven the fact that
networks A and B are geographically dispersed and computationally
incompatible, how do users X and Y communicate.

The primary design motivation Is to ensure transparency to the end user,

In general terms, the method proposed by the two authors Involves transferring
the message from the user node to the network gateway (which may be a single
processor or two "gateway halves", one located at each network), routing It
through the gateway to the second network, and then passing It through the
second network to the appropriate destination node, Such a strategy Involves
addressing (l.e, a local address for the gateway on network A, a global
address designation on the gateway for network B, and a local address
designation for node Y on network B), routing (through network A to the
gateway, from the gateway to network B, and through network B to the
destination), and the matching of incompatibie protocols for error detection,
flow control, and terminal control (by means of definition of a third protocol
with Interfaces to those of networks A and B).

The problem of Interconnecting different networks through the Iinstalliation of

additional hardware and software Interfaces and the Impiementation of
additional layers In the communicatlions protocol may minimize the Impact on
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FIGURE 4 - 3 INTERCONNECTION OF HETEROGENEOUS NETWORKS (FROM [GIEN82])

exlsting systems but can cause reductions In throughput and rellability. For
example, the presence of only single gateways between the networks poses
significant reliability problems. However, If muitiple gateways and network
entry polnts are used, addltlonal schedullng, addressing, and contention
resolution Issues have to be addressed., The additional complexity caused by
hlerarchlcal addressing and routlng schemes can also result in rellabllity
problems In both data integrity and correct execution of the protocols.
Finally, the use of an Intermedlate protocol across the gateway further
decreases throughput and rellabl|Ity,

Alternate approaches are avallable., For example, the more closely the
Internal networks resemble each other, the less complex the Interface. CCITT
standard X.75 dlctates some degree of Internal network commonality [DICI79],
and greater simllarities can further reduce Intercommunications problems.
DiClclo, et. al. [DICI79] also discuss advantages to using packets rather
than virtual clrcults as a means of network Interconnectlion for detecting a
fallure In the message cascade. Although thelr approach can lead to Increases
In throughput and error detection capability, It stiil contalns drawbacks from
the rellabllity -—- and especlally from the fault tolerance — polint of view,

Popek [POPE81] describes the rellabiilty problems assoclated with a
distributed data base. Partitioning Is a means of preventing error
propagation and Is an Important means of reducing the time necessary for
restart and recovery. Redundancy Is the means by which error detectlon occurs
as well as a necessary part of any recovery process, Because distributed
systems lend themseives to both partitioning and redundancy, they have
conslderable potential for highly rellable and avallable operation.

One of the major problems In distributed data bases Is ensuring the Integrity
of the data in the event of a system crash. Three general techniques are
avallable for this purpose: atomic transactions, two phase commit, and the
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transaction log. Atomic transactions are bracketed by "Begin Transactlon" and
"End Transactlon" designations, In the event of a fallure, It Is the system's
responsibllity to ensure that all partially completed sequences of
Instructions are removed and all completed transactions are stored In the
system's permanent memory. The two phase commit procedure involves a
supervisor, a data sender, and a data recelver (all of which might be
procedures resident on a single host). The supervisor queries both the
transmitter and recelver on thelr status, and when both are ready, It commands
the sender to transfer the data to the receiver. At the completlion of the
transfer, the supervisor commands the receiver to commlt the transaction, and
the recelver returns with a commlt acknowledge signal. |f the system crashes
before the commlt acknowledge, upon recovery, the system retalns the previous
value. Both the atomic action and two phase commit procedure require a
transaction log in which Intermediate values are stored and can be recalled In
the event of a fallure.

While such constructs are not unique to distributed data bases, thelr
Implementation over a slow and nolsy network poses throughput and reliability
problems. For example, the requirements of four messages In order to write an
Item to a non-reslident data base may be unacceptable In many C3| applications.
Thus, alternative techniques, examples of which are contalned in the reference
[POPEB1], are necessary.

4.3 KEY ISSUES IN THE DESIGN OF FAULT TOLERANT DISTRIBUTED SYSTEMS

From the aralysis of the desigh methodologles discussed above, certain key
Issues can be Identifled which wil! govern the deslign of fault tolerant C3|
systems, Such systems must have the abllity to:

1. Detect and ldentlfy fallures on nodes and |Inks

2, Re-establish contact to nodes In the event of a link fallure by
elther (a) usling an alternate |ink along the same path, or (b)
establishing an alternate path,

3. Restore critical computer functions by elther (a) reconfiguring the
node to restore full capabilities on a local level or (b)
re-allocating and scheduling tasks among other nodes.

4. Retain all critical data (and access to It)

5. Detect and recover from (or prevent) deadlock In the contention for
resources, execution of tasks, or accessing of data.

6. Restore (or prevent) errors In data transmission and storage.

7. Access other critical networks In the event of a fallure of the
primary gateway.
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SECTION 5 = FAULT LOCATION TECHNIQUES

The ablilty to locate (ldentify) faults Is a key requirement in the
Implementation of fault tolerance. Most work in fault location has been
carrled out at the loglc level [BREU76], and only a few authors have addressed
, fault locatlion In networks of digital processors. Where the latter approach
f has been taken, as In [BLOU77], there has been emphasis on general’
applicabllity of the technlques rather than on speclific Implementations, To 4
supplement that work, detalled fault location techniques for connected
processors are described here on the basls of examples for specific
conflgurations. All of the examples utilize a combinatlon of pre-processors
and mainframes wlth segmentation (swlitching provislions) between the
pre-processors and the malnframes. The pre-processors may be signal
processors, communication concentrators, or the gateway through which
interactlive processes are connected to the mainframe. The techniques
described here are stiil applicable, with obvious simpli1ficatlions, where no
pre-processors are Involved.

i

Three examples are treated here, all of them representative of conflgurations
that were encountered In the study of exIsting fault tolerant or |linked
computer systems. Common assumptions and notatlion are dlscussed first., The
subsequent headings In this section then describe fault location for

Single user segmented dual computer systems
Single user segmented dual computers with shared memory
Multiple user segmented dual computer systems

Fault location Is defined as a process that Is Initiated after an error has
been detected and after output devices that might be adversely affected by
dlagnostic procedures have been disconnected from the computers. Faults are
assumed to be solid at the system leveli. Thls Includes cases In which an
internal transient fault has placed the computer Into a state In which no
further processing In accordance with requirements Is possible.

5.1 ASSUMPTIONS AND NOTATION

A typlcal system of this type Is shown In Figure 5-1, and the capital letter
symbols used there are referred to In the following text.

5.1.1 Assumptions

(1) Test Inltlation and evaluation, In order to locate the source of the
fault, there must be at least one accessible rellable component that can then
test other components adjacent to It and thereby create a dlirectory of
functioning components. The following sequence of operations will be followed
In each test. First, the user selects (randomly, If necessary) a rellable
component and inltiates a prestored self-test routine. [f this fails, another
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component |s selected. The first reliable component Identifled by this
process then stimulates another unit under test (UUT) to execute a predefined
dlagnostic routine, and It expects to recelve the results generated by thls
routine. I!f no results are returned within a speciflied time, the UIT Is
marked as mal functioning. If results are returned, the rellable component
compares them with a stored benchmark and accepts the UUT as operative only If
all results agree.

(2) User involvement. As a basellne for the fault location procedures, a
substantial amount of user Involvement has been assumed. Whlle the sequence
of unlits to be tested Is Identifled In the procedures presented below, the
actual Issuance of commands to Implement the sequence Is assumed to be
performed by the user. In principle It Is possible to store the sequence and
Issue It as a single command. However, the condlitions encountered In the
early part of the test affect the actlons to be taken In later ones.
Recognition of these conditlions, which may Involve the Interpretation of
outputs generated by a malfunctioning computer, Is In general best handled by
a trained human observer, possibly with the ald of some computer functions,
The performance of fully automated dlagnostics for an unrestricted fault set
on arbltrary computer archlitectures |s a speciallzed research area outside the
scope of the effort reported on here. Llkewlse, In the basellne approach, the
user |s expected to select an appropriate repair or reconflguration action
after the fault condltion has been Identiflied by the procedures described
here. Certaln sequences In the procedures are arbitrary, e. g., whether to
start the test with processor C or D In Figure 5-1. In order to generate a
repeatable procedure, processor C was selected as the flirst UUT., A
knowledgeable user may decide on the basis of past history or Immedliate
observations that D is more [lkely to be at fault and therefore start the test
there., These deviatlions are considered permitted but they are not an
essentlial part of the user Involvement In the test procedures.

(3) Perfect test coverage. Generally, the time and storage cost for a test
Is proportlonal to the thoroughness of the testing of a hardware component,
It was assumed that sufflclent resources can be allocated for a test that
glves a very high assurance that It wili not pass a malfunctlioning component
(nearly 100§ test coverage). The fallure of software used for testing was not
allowed for. To the extent that actual diagnostics do not yleld 100§ test
coverage, a malfunctioning component might be declared operable and a fallure
will then occur In a later test step or during operation. User Involvement
can alter the sequence of testing so that another operable combination of
components can be configured.

(4) Two-way transmission. |t was assumed that |Inks can carry test-related
messages In both directions. The bandwldth required for this purpose is smail
because the stimulus is usually expressed as a single command, and the result
can be compressed.

(5) Distinction between processors and links, It is often difficult to draw
a clear distinction betw .~ failures In a IInk and In a processor connected to
that link, |f a malfunction disables processor P's communication with all Its
nelghbours Q1 .... Qn, then the fallure Is attributed to the processor
although It might be a common fallure In all links. On the other hand, If the
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fallure leaves at least one communication path between P and Q1 operable, then
the fallure Is attributed to the affected |inks although it might be a fallure
In the processor that affects a portion of the communications capabilities.

(6) Irrecoverable faults. The purpose of locating faulty processors Is to
remove them from the net and to resume real-time operations. However, there
must be at least one normally functioning path between the Input (S In Figure
5=1) and the user (U). Faults which do not leave such a path are not worth
locating because the system can not be automatically restored to useful
service. The fault location procedures therefore stop as soon as an
Irrecoverable fault has been ident!ified.

(7) Preprocessors with shared memory (applicable to 5.3 only). A test of a
preprocessor Involves use of shared memory and therefore tests the shared
memory. |t Is assumed that the shared memory has error correcting code that
masks translent and Isolated permanent memory faults. Therefore only solld
fallures atfecting substantial areas of the memory wlll affect preprocessor
operation, Memory Is regarded as functloning If at least one preprocessor
passes tests Involving shared memory., Links to the shared memory are treated
as part of the preprocessors served by them since a preprocessor wlthout
access to shared memory s not sultable for normal operation.

5.1.2 Notation and Types of Jests

Three types of tests are used In the fault location procedures:
Type 1 ~ Direct user test
Type 2 - Test with only forward information flow
Type 3 - Test with reverse Information flow

Examples of the notation used and of the application of these tests are glven
below,

Type 1 - notation U =+=> C

This denotes a test In which the user (U) stimulates computer C and recelves
results from It. This test Is applicable only to processors directly
accessible by the user, such as C or D In Figure 5-t.

Type 2 - notation C =t=> A

This type of test is used for establishing operabl)ity of the preprocessors
and associated links, 1t Is assumed that the selection of the tester (C) and
of the UUT (A) s made by the user, and that the user has visibility of the
outcome (at least pass/fall) of the test.

Type 3 - notation Ad =-t=> C

This means that A, while being stimulated through D, tests C (backward flow of
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Information). The lower case letter Is used In {leu of & subscript, If U
=t~> C has falled while U =t=> D and D ~t=> A have succeeded, !t Is not clear
whether C has falled or whether the |Ink from the user to C Is Inoperable. By
sendIng the test Inltiation order through D for A to test C, an Independent
means Is found for determining whether C Is operable.

Two symbols connected by a dash represent the iInk between the elements
designated by the symbols, e. g., U-D stands for the !Iink between the user and
computer D, and A-C stands for the |ink between computers A and C,

5.2 SINGLE USER SEGMENTED DUAL COMPUTER SYSTEMS

The fault location procedure presented below applies to the single user
segmented system wlithout shared memory, The structure connected by the broken
llne In Flgure 5=1 Is not present for this case.

The procedure conslsts of flrst testing the processors connected to the user
Interface, C and D (and, by Implication, the links to the user), After these
have been found to be operational, the processors at the source Interface, A
and B, and thelr backward links (to C and D) are tested. The links from A and
B to the source are considered to be part of the |atter and are not expiicitly
valfdated In this procedure. (f the preprocessors check out on the test
described here and yet no useable Information Is received In the operational
mode, fallure of the source links or of the source Is Impllied.

The normal, forward directed (upward In Flgure 5-1), part of the test Is
flowcharted In Figures 5-2 through 5-4. Where fallures were encountered In
tests Initlated directly by the user (of the form U =t-> X), backward tracing
Is used In later phases of the test to determine whether the fallure affects
an entire computer or only the user |ink or Interface. Certaln other |lnks
are also diagnosed separately from the processors which they serve by means of
backward directed tests. These diagnostics are shown in Flgures 5-5 through
5~8. Not all computer installatlons that use the strucuture of Fligure 5-1 may
have the capability fto perform backward directed tests, This capabllity Is
not essentlal for a determination of the operational status (l. e., which
processors are accessible and working properly), but where It Is not provided
many |ink fallures can not be distinguished from processor fallures.

A summary of the dlagnostic Information obtalined at each step of the fault

location procedure is shown In the lower part of each figure. The case number

Is the number sequence shown in the rectangular boxes after each test. The
designation 'tested' used In the summary means that the components or |lnks

were identifled as operational In the sequence performed up to this point. In

some Instances a computer can be identifled as operational In the test E
sequence although I+ can not be accessed in normal operation due to fallures 4
In other processors or |inks. These computers are designated as 'non-usable !

In the dliagnostic summaries (single asterisk). In other cases, the
diagnostics can not distingulsh between processor fallures or simultaneous

fallures In all links to a processor; this situation s [dentified by a double

asterisk In the summaries. From the operational point of view, it makes no

difference whather the processor or all |inks have falled.
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Pass U =te> 0 Fall

Case 1 Case 2

1.1 1.2 2.1 2,2

: System Is nof
IOI.I 101.2 ‘.2" '.2.2 2.1.‘ 2.'.ﬂ recoverab'e

SUMMARY OF DIAGNOSTICS

Case Falied Components Tested No. of
Components Tested Links

1 None C 1

1.1 None c,D 2

1.1.1 None A,C,D 3

1.1.2 A or A~D c,D 2

1.2 D or U-D c 1 )
1.2.1 D or U-D A,C 2 3
102.2 D or U-D, A or A-c c 1 k
2 C or U=-C none 0

2.1 C or U=C D 1

2.1.1 C or U=C B,D 2

2.1.2 C or U-C, B or B=D D 1

2.2 Cor U=C, D or U-D none 0

FIGURE 5 -~ 2 FAULT LOCATION PROCEDURE OF SECTION 5.2, PART 1
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Pass Fall

D -t-> B

T.1.1.1 T.1.1.2

1.1.1.].1 0101-1.2 1.1.1.2.1 1.1.1.2-2

—1

11.1.1.1.1.1 14042 Baaaa2a] fotaazal faa2aal jaa2.a2) flaa2.2.0) 4111222

SUMMARY OF DIAGNOSTICS

Case Falled Components Tested No. of
Components Tested Links

1.1.1 None A, C, D 3

1.1.1.1 None A, B, C, D 4

Telolelad None A, B, C, D 5

1.1.1.1.1.1 None A, B, C, D 6

t.d.1.1.4.2 BC A, B, C, D 5

1-1.1.1.2 A-C A. B' C. 0 4

1.1.1.1.2.1 A=C A’ B’ C. D 5

1.1.1.1,2.2 A-C, B=-C A, B, C%, D 4 :
1.1.1.2 B or B-D A, C, D 3 :
1.101.2.1 B or B=D A’ C. 0 4 ’
1.1.1 020101 B-D A' B’ C, D 5 1
Telele2.1.2 BR* A, C, D 4 1
1101 0202 B or B-D' A-c A’ C, D 3

1.1.1.2.2.1 B~D, A-C A, B, C, D 4

1.1.1.2.2.2 B#*, A=C A, C*, D 3 ]

® non-usable ** processor or all connections have falled
FIGURE 5 = 3 FAULT LOCATION PROCEDURE OF SECTION 5.2, PART 2 o 1
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Pass Fall

1.1.2.1 1.1.2.2

P T g

1e1.2.1,.1 1.1.2.1.2 1.1.2.2,1 1.1,2.2.2

—

1:1.22.2.1 { {1.1.22.2.2

b2

| faza20] izi2z2) .1.2.2.1.1' 1122.12

SUMMARY OF DIAGNOSTICS

Case Falled Components Tested No. of
Components Tested Links
1.1.2 A or A-D C, D 2
1.1020, A or A-D B’ C' D 3
1e162.1.1 A-D A, B, C, D 4
1.162.1.1.1 A=D A, B, C, D 5
1.162.1.1.2 A-D, B-C A, B,C, D 4
1.1.24142 A% B, C, D 3
101.2.1.2.1 A*’ B, c’ D 4
1e1e241.,2.2 AX%, B=C B, C%, D 3
1e1.2.2 A or A-D, B or B-D C, D* 2
101624201 A-D, B or B-D A, C, D* 3
1e1:242.1.1 A=D, B=D A, B, C, D* 4
1.1.2.2.1.2 A=D, B¥* A, C, D* 3
1.162:2.2 A%, B or B~D c, D* 2
1e102:2.2.,1 A¥%, B=D B, C 5 3
10102:202.2 ARE, Bi& C, D% (not oper.) 2

*# non-ysable ** processor or all connocﬂons have falled
FIGURE 5 = 4 FAULT LOCATION PROCEDURE OF SECTION 5.2, PART 3 x




Fall
Pass T —to> B
1.2.1.1 1.2.1.2
‘—ﬂl
1 1\02.1.102 1.2.1‘2.1 ‘&'
l [ 4 X
1] et e .1 .1.1
12.1.1.1.4 1.2.1.1.1.2’ 1.2.1.1.21“1_.3_1_1;23. 12,12
SUMMARY OF DIAGNOSTICS
Case Falled Components Tested No. of
Component¢ Tested Links
1.241 D or U=-D A, C 2
Te2.1.1 D or U=D A, B, C 3
1.2.1.1,1 U-D A, B, C, D® 4
1.2.1.1.1.1 U=D A, B, C, D¥ 5
1e2.1414142 U=D, A-D A, B, C, D*® 4
1e2414142 D or (U~D & B=D) » B C 3
142.1.1.2.1 U=D, B=D A, B, C, D® 4
1:2:.1.1,2,2 D% A, B, C 3
1.241.2 D or U=D, B or B~C A, C 2
1.2.1.2.1 U=D, B or B-C A, C, D® 3
1e241:2.141 U=D, B=C A, B*, C, D* 4
1.24142.1.2 U-D, B#» A, C, D® 3
102614242 B, D#% A, C 2
')

non=usable %*%* processor or all connections have felled

FIGURE 5 =~ 3 FAULT LOCATION PROCEDURE OF SECTION 5.2, PART 4




11.2.2.1.1

122.1.1.1

12.2.1.12

Pass

1.2.2.‘

Case

1.2.2
1.2.2.1
1e2.2.1,1
1e2.2.1.1.1
1.2.2,1.1.2
1.2.2.1.2
1.2.2,2

# non-usable

C -t-> B

SUMMARY OF DIAGNOSTICS

Tested No. of
Components Tested Links

Fal led Components

D or U=D, A or A-C
D or U~D, A or A-C
U‘D' A or A~C
U=D, A-C
U=D, Aw®
D or (U-D&B-D), A or A-C
D or U=D, A or A=C,

B or B=C

31

Fall

1.2.2.2

ystem Is no
recoverable

1
2
8, C, D% 3
A%, B, C, D* 4
8, C, D% ;

c* (non-oper.) 1
## processor or all connectlons have falled

FIGURE 5 = 6 FAULT LOCATION PROCEDURE OF SECTION 5.2, PART 5




Pass D —t=> A Fall ,-{ '
*
2.,1.1.1 2.1.1.2 3
2.1.1.1.1 g.1.1.2 2.1.1.2.1 E,i,t,E,ZI
ﬁ y ’f
2.1.1.1.1.1]) §2.1.1.1.1.2] j2.1.1.1.2.1] R.1.1.1.22 ‘2.1.1.2.1.1 | 12.1.1.2.1 /
SUMMARY OF DIAGNOSTICS "
Case Falled Components Tested No. of
Components Tested Links
2.1.1 C or U-C B, D 2]
2.1.1.1 C or U-C A, B, D 3;
2.1.1.1.1 U=-C A, B, C*, D 4
2.1.11.141 U=C A, B, C*, D 5
2.1.1.1.1.2 , 8~C A, B, C%, D 4
2.1.1.1.2 C or (U=C & A=C) A, B, D 3
2.1.1.1.2.1 U=C, A~C A, B, C*, D )
2.1.1.1.2,2 Cx» A, B, D 3
2.1.1.2 Cor U=C, A or A-D 8, D0 2
2.10102.1 U-C’ A or A-D B' C’. 0 3 M
2.1.1.2.1.1 U=C, A~D A%, B, C*, D 4 .
2.1.1.2.1.2 U=C, AR® B, C*, D 3
2.1.1.2.2 AR, Che B, -2
* non-ysable ** processor or all connections have falled ;
FIGURE 5 = 7 FAULT LOCATION PRODECURE OF SECTION 5.2. PART 6 !
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Pass Fall

2.1.2.1 [2.1.2.2

System Is no
» recoverable
2.12.1.1.1] 12.1.2.1.1.2

SUMMARY OF DIAGNOSTICS

Case Falled Components Tested No. of
Components Tested LInks

2.1.2 Cor U-C, B or B-D D 1
2.1.2.1 C or U-C, B or B~D A, D 2
2.1.2.1.1 U-C, B or B=D A, C*, D 3
2.1.2.1.1.1 U=C, B~D A, B%, C%, D 4
2.1.2.1.1.2 U=C, B*#* A, C%, D 3
2.142.142 Cor (U~C&A=C), Bor B=D A, D 2
2.1.2.2 Cor U=C, Aor A-D,

B or B~D D% (non-oper,) 1

# pon-usable #% processor or all connections have falled

FIGURE 5 = 8 FAULT LOCATION PRODECURE OF SECTION 5.2, PART 7
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The detalled procedure for performing these tests Is presented In a design
language based on Pascal In the Appendix. Where case designations are used In
the appendix, they correspond to those shown In the flowcharts; however, not
all case designations shown on the flowcharts are mentioned In the design
language verslion of the test procedure,

5.3 SINGLE USER DUAL COMPUTERS W!TH SHARED MEMORY

The fault locatlon procedure presented under 5.2 above is also effective for
the case where the two processors have shared memory (the broken llne In
Figure 5-1 represents the connection), The analysls presented below
Interprets the outcomes of the procedures of 5.2 for the case of shared
memory .

It Is assumed that any failure In the shared memory will result In fallure of
tests for both Processor A and Processor B. Therefore, If elther Processor A
or Processor B Is found to be operatlonal 1t may be assumed that the shared
memory Is functlioning correctly. Conversely, when both processors are found
to be Inoperative there Is a high probability that the shared memory has
falled, although this case cannot be distinguished by the gross dlagnostlics
used here from a simultaneous fallure of A and B or from a fallure of all
backward connections (lines going down In Figure 5-1). The detalled test data
wlll usually permit differentliation between processor and memory faliures.

The dlagnostics furnished by the tests shown In Figures 5-2 through 5-8 are
analyzed in Table 5-1, If a test case results In a definitive finding
regarding the shared memory (elther usable or not usable , this finding wli|
also be valld for all subsidiary test cases, and they are not separately
listed. Thus, the finding that the shared memory Is usable for 1.1.1 Iimplles
that it Is also usable for all cases 1.1.1.x.x.x where x may represent elther
alora2., The figure numbers shown In the table are valld untli a new
figure number Is shown,

A finding of 'not uysable ' for the shared memory can arise elther from
Inabll ity to access elther one of the processors using the memory, or from the
observation that both are Inoperative. In the former case, the status of the
memory Is really unknown, and this Is indicated by a single x In the table.
In the latter case, it is highly llkely that the shared memory has falled,
al though, as Indicated above, other possibilities cannot be completely ruled
out, and this case Is designated by xx in the table.
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TABLE 5 - 1 SHARED MEMORY DIAGNOSTICS

Case Shared Memory Further Ref,

Usable Not useable Dlagnostics Figure No.
Required

1.1..1 X 5-2

1.1.2 x

1.2.1 X

1.2.2 X

2.1.1 b3

2.,1.2 x

2.2 b

1.1.2-1 X 5-4

1.1.2,2 x

1.1.2.2.1 x

1.1.2.2.2 x

1.1.2.2.2.1 X

1.1.2.2.2.2 Xx

1.2.2.1 X 5-6

1.2,2.2 XX

2.1 .2.1 X 5-8

2.1,2.2 XX

5.4 MULTIPLE USER SEGMENTED COMPUTER SYSTEMS.

A typical confliguration of this type Is shown In Figure 5-9, 1t will be
recognized that this figure Is Identical with Figure 5-1 except for the
connectlions at the user and source ends. To capitallze on the similarity, It
Is convenient to divide the fault location procedure Into three phases that
establIsh the operabillty of (1) the user interface, (2) the computer network
proper and (3) the source Interface. Phase 1 and Phase 3 procedures are
developed in detall below. Phase 2 procedures represent an adaptation of
those described In Section 5.2.

At the start ot Phase 1, each user must determine the access!bliity of
computers C and D by a sign-on procedure. When this Is completed, there will
be an access tog within C and D which will be of the form (U1)(U2)(U3) where
each term wlll have a value of 1 if Ul has logged In and a value of 0
otherwise. Thus, If the access log for computer C is 101, thls means that
users Ul and U3 can access thls computer and user U2 cannot. Any 0 value
represents a dliagnostic for an Inoperative user link. In addition, the
ensemble of the access logs determines the procedure to be followed in Phase
2, For that purpose, the outcomes of Phase 1 can be classifled in the
following manner:

ja. One or more users can access both C and D
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1b. C and D can both be accessed, but not by the same user(s)
1clt. C can be accessed by one or more users, D cannot be accessed

1c2. D can be accessed by one or more users, C cannot be accessed

1d. Nelther C nor D can be accessed by any user, {
The classification of Phase 1 outcomes Is derived from the access log codes .
generated within the C and D computers as shown In Table 5-2., The ™" [
pref Ixes have been omitted in the table, |

TABLE 5 = 2 CLASSIFICATION OF PHASE 1 OUTCOMES

Access Access Log D

logC 111 110 101 011 100 010 001 000
mm a a a a a a a cl
110 a a a a a a b cl
101 a a a a a b a cl
on a a a a b a a cl :
100 a a a b -] b b cl ;
010 a a b a b a b et 3
001 a b a a b b a cl :
000 €2 ¢2 ¢2 c2 ¢2 ¢2 c¢c2 d f

!f Phase 1 produces an outcome |In the l1a., classlflcation, Phase 2 can be
Initiated by any user who can access both computers, and the procedure of
Section 5.2 can be applied without modification. |f Phase 1 produces an
outcome In the 1b. classiflication, separate actlions by two users will be
necessary during the Phase 2 procedure. The user who can access C (but not D)
proceeds In accordance with case 1.2 on Figure 5-2, and the user who can
access D (but not C) proceeds In accordance with case 2.1 In Flgure 5-2. |f
the Phase 1 procedure results In a icl, classifcation, only the case 1.2
procedure can be Iniflated, and If [t results [n a 1c2. ciassification only
the case 2.1 procedure can be Initiated. Where Phase 1 terminates with a 1d.
classification the system Is not recoverable, and no Phase 2 activity can be
conducted,

TS YW

A simllear classsification of Phase 2 outcomes Is uti|lzed to determine the
Phase 3 procedure, These classifications are based on the operability of the
A and B computers (these are also sometimes referred to as preprocessors) In
accordance with Table 5~3,

TABLE 5 ~ 3 CLASSIFICATION OF PHASE 2 OUTCOMES

Computer Computer B

A Operable Not Operable
Operable 2a 2b1
Not Operable 2b2 2c
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With both preprocessors operative (case 2a), the fault location technlique can
distingulsh between a source fallure and a fallure of a single |ink associated
with a sensor. When only one of the preprocessors |s operative (cases 2b1 and
2b2), this distinction can not be made. When both preprocessors are
Inoperative, no diagnostics of the source subsystem are possible.

Testing of the sources and {Inks In Phase 3 Involves observation by the A and
B computers of predefined characterlistics of the Input data stream, such as
frequency of blt value transitions, frequency of start of cycle characters and
absence of alarm characters. The observatlons at each processor are In the
followlng designated as (S1)(S2) where a value of 1 for S| designates an
operable condltion (predefined characterlstics are present), and a value of 0
designates an Inoperable condition. Thus, if the observation at computer A
has a value of 10 this means that source S1 appears operable and source S2
appears lnoperable. The classification of the comblined observations from
computers A and B (for Phase 2 outcome of 2a) durling Phase 3 Is shown in Table
5-4 .

TABLE 5 - 4 CLASSIFICATION OF PHASE 3 OUTCOMES

Computer Computer B
A " 10 ) 00
1" 3a 3b 3b 3¢
10 3b 3d 3bb 3e
01 3b 3bb  3d 3e
00 3¢ 3e 3e 3f

These classiflications have the follow}ng meaning
3a. Both sources fully usable
3b. One source fully usable ; one source usable on one {ink onfy
3bb. Both sources uysable on one !ink only
3c. Both sources accessible from only one preprocessor
3e, Only one source accesslble from one preprocessor
3f. No sources accesslible
For a Phase 2 outcome of 2bl,. only the last column In Table 5-3 Is applicable,
and for a Phase 2 outcome of 2b2. only the last row In Table 5-3 lIs

applicable. A Phase 2 outcome of 2c Is Indistinguishable from a Phase 3
outcome of 3f,
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APPENDIX

DESIGN OF A FAULT LOCATION PROGRAM

A computer program for the fault location procedure described In Section 5 has
been designed. The speciflic fault location procedures are |Isted here In a
Pascai-like design language. [[ and ]] are used as shorthand notations for
¥Beg!In™ and "End", respectively. < Routlne neme > indlcates transfer to a
routine that Is listed later,

A.1 SINGLE USER SEGMENTED DUAL COMPUTER SYSTEMS

Reference Figure 5~1. The shared memory Is not present In this case.

procedure locate;

case (U -t=> C) of

pass: "case 1: C & (C~U) are ok"
case (U -t-> D) of

pass: "case 1.1: D & (D-U) are ok"
casa (D -t=> A) of
pass: "case 1.1.1: A & (A-D) are ok"
<locate~1.1,1>;
fall: "case 1.1.2: A or (A-D) Is malfunctioning®
<locate-1.1.2>
end "case 1.1";

fall: "case 1.2: D or (D-U) Is malfunctioning”
case (C -t-> A) of -
pass: "case 1.2.1: A & (A-C) are ok"
<locate~1.2.1>;
fail: "case 1.2.2: A or (A-C) is malfunctioning"
<locate-1.2.2>
end"case~1,2"
end”case=-1;

fall: "case 2: C or (C-U) Is malfunctioning”®
case (U -t-> D) of
pass: "case 2.1: D & (D-U) are ok"
=~— This case Is similar to case 1.2 except that ——
-== C Is Interchanged with D and A with B ==~

fall:

~=— The system |s not recoverable =--
and"locate"
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procedure locate-1.1.1;
case (D -t=-> B) of

pass: "case 1,1.1.1: B & (B=-D) are ok"
([Lf (C =t=-> A) then mark '(A-C) Is ok!
else mark '(A-C) Is malfunctioning';
1f (C -t=> B) then mark '(B-C) Is ok'
alse mark '(B-C) Is malfunctioning'l];

fali: "case 1.1.1.2: B or (B-D) Is malfunctioning"
CLif (C -t=-> A) then mark '(A-C) Is ok!
else mark '"(A-C) Is malfunctioning';
1f (C =t-> B) then mark 'B & (B~C) are ok and
(8-D) Is malfunctioning!
else mark 'B Is malfunctioning or
(B-C) & (B-D) are malfunctioning']]

end"locate-1.1.1",

procedure locate-1.1.2;
case (D -t-> B) of

pass: "case 1.1.2.1: B & (B-D) are ok"
CCif (C =t=> A) then mark 'A & (A-C) are ok and
(A-D) Is malfunctioning'
else mark 'A Is malfunctioning or
(A-C) & (A-D) are malfunctioning';
1f (C -t-> B) then mark '(B~C) is ok"
else mark '(B-C) is malfunctloning']];

fall: "case 1.1.2.2: B or (B-D) Is mailfunctloning"
[Cif (C =t-> A) then mark 'A & (A=C) are ok and
(A-D) Is malfunctioning!
else mark 'A is malfunctioning or
(A=C) & (A-D) are malfunctioning';
I1f (C -t-> B) then mark '8 & (B~C) are ok and
(B-D) Is malfunctioning!
else mark '8 Is malfunctioning or
(B-C) & (B~D) are malfunctioning']]

end"locate~1.1,2",

procedure locate-1.2.1;
case (C -t-> B) of

pass: "case 1.2,1.1: B & (B-C) are ok"
case (Bc =-t=-> D) of
pass: "case 1.2.1.1.1: D & (B-D) are ok and
(D-V) is malfunctioning™
1f (Ac ~t=> D) then mark *'(A-D) Is ok'
else mark '(A-D) Is malfunctionling';
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fall: "case 1.2.1.1.2: D Is malfunctioning or
(B~D) & (D-U) are malfunctioning"
1f (Ac =t=> D) then mark 'D & (A-D) are ok and
(B-D) & (D~U) are malfunctioning!
else mark 'D or (A-D) Is malfunctlioning!
and"case-1.2.1.1";

fall: "case 1.2.1.2: B or (B-C) Is malfunctioning and
both are unusable and (B-D) Is also unusable"

case (Ac =t=> D) of
pass: “case 1.2.1.2.1: D & (A-D) are ok and

(D-U) 1s mal functioning"

1f (Dac =t=-> B) then mark 'B & (B-D) are ok and
(B=C) is malfunctioning.
D, (A-D), B, and (B~D) are unusable'
alse mark 'B Is mal functioning or
(8~C) & (B-D) are malfunctioning';

fall: "case 1.2.1.2.2"
mark 'D is malfunctioning or (A=D) & (D-U) are malfunctioning.
B, D, (B~C), (A-D) and (B~D) are unusuable,'
and"case 1.2.1,2"

end”locate~1.2.1"

procedure locate-1.2.2
case (C -+-> B) of

pass: "case 1.2.2.1: B & (B-C) are ok"

case (Bc -t-> D) of
pass: "case 1.2.2.1.1: D & (B-D) are ok and

(D-U) Is mal functioning"

1f (Dbc =t=> A) thep mark 'A & (A-D) are ok and
(A=C) Is malfunctioning.
(A-D), A, and (A~C) are unususble;
else mark 'A Is malfunctioning or
(A~C) & (A-D) are malfunctioning';

fall: "case 1.2.2.1.2"
mark 'D Is malfunctioning or (B=D) & (D-U) are maifunctioning!

and "case 1.2.2.1";

falls "case 1.2.2.2: B or (B~C) Is malfunctioning®
-=~ The system |s not recoverable ——-

end "locate-1.2.2"
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A.2 SINGLE USER DUAL COMPUTERS WITH SHARED MEMORY

The fault locatlion procedure presented under A.1 above I|s also effective for
the case where the two processors have shared memory (the broken |lne
connection In Fligure 5-1 Is present). The notes and procedures presented
below interpret the outcomes of the procedures of A.1 for the case of shared
memory.

(1) "case 1.1.1": Preprocessor A passed a test and thus It Is reasonable to
conclude that shared memory M Is ok.

e ’ p—_
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(2) "case 1.1.2.1": M is ok,

(3) "case 1.1.2.2":
[Cif (C =t-> A) then mark 'A & (A-C) are ok and
(A-D) s malfunctioning and
M is ok!
else mark 'A Is malfunctlioning or
(A-C) & (A-D) are malfunctioning';
1f (C -t-> B) then mark 'B & (B-C) are ok and
(B-D) Is malfunctioning and
M Is ok!
alse [[mark 'B is malfunction!ng or
(B~C) & (B~D) are malfunctioning']];
1f M has not been valldated then mark 'M may be malfunctioning®]]

(4) "case 1.2.1": M Is ok.
(5) "case 1.2.2.1": M is ok.
(6) "case 1.2.2.2": M may be malfunctioning.

(7) "case 2.1": Thls case Is the same as case 1.2 except for exchanging C
with D and A with B.

(8) "case 2.2": (U =t=> C) = (U =t=> D) = fal|": M's status Is unknown, 1

A.3 MULTIPLE USER SEGMENTED COMPUTER SYSTEMS. 3

Reterence Figure 5-9., The fault location procedure conglsts of three phases
that ere described In the following, Additlional notations Introduced are

MS - The set of elements Identifled as malfunctioning
WS - The set of elements validated as working

praocedure phasel; "identification of usable maln processors"

A

casa ((U1 =t=> C),(U2 =+=> C),(U3 -t=> C)) af
(pass,pass,pass): ™S = [C, (C-U1),(C~U2),(C~U3)]"
mark 'C, (C-U1), (C-U2), & (C-U3) are ok';

62




(pass,pass,fall): "ws = [C,(C=-U1),(C~U2)]; MS = [(C~U3)]"
mark 'C, (C-U1), & (C-U2) are ok and
(C-U3) Is malfunctioning';
(pass, fail,pass): "WS = [C,(C-U1),(C~U3)]; MS = [(C~u2)]"
mark 'C, (C-U1), & (C~U3) are ok and
(C-U2) Is malfunctioning?!;
(pass, fall, fail): "WS = [C,(C-U1)]; MS = [(C-U2),(C-U3)]"
mark 'C & (C-U1) are ok and
(C-U2) & (C-U3) are mal functlioning';
(fall,pass,pass): "WS = [C,(C-U2),(C=-U3)]; MS = [(C-uU1)]"
mark *'C, (C-U2), & (C-U3) are ok and
(C-U1) Is malfunctioning!;
(fall,pass,fall): "WS = [C,(C=U2)]; MS = [(C=U1),(C-U3)]"
mark 'C & (C-U2) are ok and
(C-U1) & (C=U3) are malfunctioning';
(fail,fall,pass): "WS = [C,(C-U3)]; MS = [(C=U1),(C~U2)]"
mark 'C & (C~U3) are ok and
(C-U1) & (C-U2) are malfunctioning';
(fail,fall,fall): "™™MS = [C or [(C=U1),(C=U2),(C~U3)]]"
mark 'C or [(C-U1),(C~U2),(C-U3)] Is malfunctioning®

end"case";

--= same as above except that
(1) C Is replaced by D,
(2) WS = [~==] Is replaced by WSnew = WSold + [~--], and
(3) MS = [-=-] is replaced by MSnew = MSold + [~=]. =--

and"case"
end"phasel®,

If nelther C nor D can be used by any user, then the system Is
Irrecoverable and the fault location procedure stops.

The actions taken during Phase 2 are chosen on the basis of the results
of Phase 1. The possible results of Phase 1 can be classified into the 3
following cases: ;

case 1.a: Both C and D can be used by the same user,
' 8.g., Both (U1 =-t=-> C) and (U1 =t=> D) resulted in "pass™,

case 1.b: There Is no user who can use both C and D but C can
be used by one user Ul and D can be used by another user U],
8.9., ((Ul =t=> C),(U1 =t=> D)) resulted In "(pass,fall)"
while ({(U2 =t=> C),(U2 =t=> D)) resuited In "(fall,pass)",

case 1.c: Only one maln processor, C or D, can be used by any user,
This can be divided Into two subcases.
case 1.c.1s C Is usable but D cannot be used by any user, ;
case 1.c.2: D Is usable but C cannot be used by any user,
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gcase 1.d: None of the maln processors are usable.

In the last case (case 1.d), there Is no Phase 2 actlons. In other
cases, the actlions taken In Phase 2 are the same as some parts of the fault
location procedure described in Section 5.2. The details of the Phase 2
actions are as fol lows: {

procedure phase2; "Diagnosls of processors"

gase results-of-phasel of

1.a: "This corresponds to case 1.1 in the fault locatlion procedure In Section
5.2. Usling the same procedure, the operablility of processors and thelr
interconnections can be obtalned.";

1.b

"This also corresponds to case 1.1 In the fault locatlon procedure In
Sectlon 5.2 except that whenever C needs to communicate with a user,
e.g., in the case of C -t=> A, Ul Is Involved, whereas whenever D needs
to communicate with a user, UJ Is Involved.";

1.c.1:"This corresponds to case 1.2 In the fault location procedure In Section
5.2. Using the same procedure, the operabllity of processors and thelr
Interconnections can be obtalned.";

1.c.2:"This corresponds to case 2.1 In the fault location procedure In Section
5.2, Using the same procedure, the operabllity of processors and thelr
Interconnections can be obtalned";

1.d: "The system Is irrecoverable." stop

eng"case"

and "Phase 2",

The actlons taken during Phase 3 depend on the results of Phase 2. These are
classified Into the followling cases.

case 2.a: Both preprocessors are usable,

casa 2.b: Only one preprocessor is usable.
case 2.b.1: A Is usable but B cannot be used by any user.
case 2.b.2: B Is usable but A cannot be used by any user,

sase 2.c: None of the preprocessors are usable,

Here It Is assumed that a preprocessor can tell the operabllity of a source by
watching |f readable Information comes from the source. Therefore, A =t=> Si
means that A observes the Information coming from source S1 and then mekes a
report on the status of St.
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The detalls of Phase 3 are as follows:
procedure phase3; "Dlagnosls of sources"
case results-of-phase2 of

2.2: "A & B are usable"
[(Ccase ((A ~t=> S§1),(B -t=> S§1)) of
(pass,pass): mark 'S1, (S1=-A), & (S1-B) are ok';
(pass,fail): mark 'St & (S1~A) are ok and
(S1-B) Is malfunctioning!;
(fall,pass): mark 'S1 & (S1-B) are ok and
(S1=A) Is malfunctioning';
(fall,fall): mark 'S1 or [(S1-A),(S1-B)] Is mal functioning'

and"case”;

case ((A =t=> §2), ===
--—- same as above except that S1 Is replaced by $2 «--
and"case"1];

2.b.1: "A Is usable"
[[case (A -+=> S1) af

pass: mark 'S1 & (S1-A) are ok!';

fall: mark 'S1 or (S1-A) Is malfunctioning!
and"case”;

case (A -t=> S2) of

pass: mark 'S2 & (S2-A) are ok';

fall: mark 'S2 or (S2-A) Is malfunctioning'
end"case” ]];

2.,b.2: "B Is usable"
[C -—~ same as In case 2.b.1 except that A Is replaced by B ~-- ]J;

2.c: "The system Is Irrecoverable." stop
andcase"

and"phase3”,

A.4 EXTENSIONS OF THE TECHNIQUES
A.4.1 Eault Location In A Reduced Configuration

After a malfunctioning component has been located, the component is
functionally removed from the system and the rest of the system contlinues to
ste, The removal of the component is recorded In the system
status table. |f another fauit Is detected later, a slightly modifled version
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of the fault locatlon procedure described earller 1sifollowed.

The modification Is that In each component the test Is preceded by an
examination of the system status table to determine ¥hether the component In
question has been functionally removed. The comporent test will follow only
1f the component has not been removed, and then e previously described
procedures will be used.

A.4.2 Dlagnostic Information Contained In Reports from Fault Detectors

It Is possible to skip certalin steps In the fault location procedure
described in Section 5.4 by exploitingthe Information contalned In the reports
made by fault detectors. There are two types of components capable of
detecting faults: preprocessor and main processor. A preprocessor Is capable
of telllng whether a source Is functioning or dead. On the other hand, a maln
processor may be capable of telling If a preprocessor is dead or not.
Moreover, |f the two preprocessors have been assigned to process the same
data, then a main processor should be able to detect a mismatch between the
outputs of the two preprocessors. In all these cases, a preprocessor which
detected a fault should send a report to all the users,

case 1: Preprocessor Y reported "Source Si Is dead".

There are six possible paths from a preprocessor to the users.
case 1.1: The other preprocessor Y' made the same report.
concluslon: Source Si Is Indeed dead.

case 1.2: Preprocessor Y' did not make the report.
concluslon: Link (Si-Y), preprocessor Y', or ail the paths
from Y' to users are malfunctioning.

case 1.3: The report from Y did not come through all slx paths.
conclusion: There are malfunctioning components on those
paths which the report did not come through.

CAse 2: Main processor Z reported "Preprocessor Y Is dead".
There are three |inks from a maln processor to the users,

case 2.1: The other maln processor Z' made the same rcporf.
conclusion: Preprocessor Y Is indeed dead.

SAse 2.2: Maln processor Z' did not make the report.
conciusion: Link (Y=Z), maln processor Z', or all the |inks
from Z' to users are malfunctioning,

case 2.3: The report from Z did not come through all three |inks,
conclusion: The [inks which the report did not come through
are malfunctioning.

case 33 Maln processor Z reported "The outputs of the two
: preprocessors dlsagree”.
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case 3.1: The other maln processor Z' made the same report.
conclusion: At least one of the preprocessors s mal functioning.

case 3.2: Maln processor Z' did not make the report.
conclusion: Maln processor Z' or all the {lInks from Z' to
users are malfunctioning.
case 3.3: The report from Z did not come through all three !inks.
conclusion: The links which the report did not come through
are malfunctioning.

The knowjedge obtalned as above can be used to shorten to a8 certaln
extent the fault location procedure to follow. However, It wlll Increase the
complexity of the overall fault location procedure and will not change the
worst~-case execution time of the location procedure. Therefore, the declsion
on whether to exploit the Information contalned in the fault report or not
should be made with & consideration of the operational mode of the network
(e.g., dual redundant operation, concurrent processing of dlfferent data,
etc.), time constralnts, {ogical complexlty constralnts, etc.

The fault location procedures described earlier do not distinguish a
mal functlioning processor from an Isolated processor. For example, fallures of
(A-D), (B-C), and (D-U) will make B, D, and (B-D) useless. Such flner
resolution as distingulshing a malfunctloning processor from an Isolated
processor cannot be obtained without adding some |inks to the system.
However, such additlional Information Is useful primarily for the malntenance
action (whether to repair or a processor) rather than for fault tolerance and
run-time reconfiguration.
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