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PREFACE

This Note describes the results of Rand research on distributed

simulation conducted under the project "Computer Technology for Real-

Time Battle Simulation," funded by Project AIR FORCE. The goal of this

project is to improve the technology of computer simulation,

particularly the understandability, modifiability, and speed of

simulations. This Note examines a technique for accelerating a

simulation's execution.

Computerized simulation is a critical tool in many military and

aerospace applications, including weather forecasting, airfoil design,

pilot training, strategic planning and other general scientific and

engineering applications. It is A notoriously expensive tool, consuming

huge amounts of computer time on powerful computers. The speed of

almost all simulations can be dramatically increased by exploiting their

inherent concurrency. Many processors, running in parallel, can

cooperate in the execution of a single simulation and complete it in a

fraction of the time that one processor would require. Because multiple

processor systems, particularly local networks of many inexpensive

processors, are becoming increasingly available, this approach should be

practical in the near future.

David Jefferson, a consultant to The Rand Corporation, is an

assistant professor of computer science at the University of Southern

California.

ReMuS RAR m"



SUMMARY

More than 20 years after its development, computer simulation

continues to be a time-consuming process. It is common for a single

simulation run to take many hours of elapsed execution time even on very

powerful computers. Worse, a simulation may often require many runs to

adequately sample and explore the simulated system's behavior. Despite

the time and associated expense, simulation is the only tool available

for attacking some complex problems in scientific, engineering, and

military domains. Clearly, any generally applicable method for speeding

up computer simulation would be a valuable contribution.

In this Note, the first of two, we address the problem of speeding

up simulation through concurrency. Many processors running in parallel

can cooperate in the execution of a single simulation to finish it in a

fraction of the time required by one processor. Like all other

researchers in the field of concurrent simulation we adopt an object-

oriented view, where each real object in the physical system being

modelled is represented by a logical object in the simulation. Dynamic

interactions between real objects are represented by the exchange of

time-stamped event messages in the simulation.

Several software mechanisms for concurrent, object-oriented

simulation have been proposed in the literature. The best known are

those invented by Peacock, Wong, and Manning (1979) at the University of

Waterloo (Ontario) and by Chandy and Hisra (1981) at the University of

Texas at Austin. Their mechanisms all fall within what we call the

Network Paradigm, and they have shown some empirical success in speeding

Iimena vzuAA0wr M
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up small, simply structured simulations. Our analysis indicates,

however, that all of their mechanisms should be disappointing on large,

realistic simulations. We believe they will inevitably tend to overflow

memory, or to be swamped by management overhead, or to achieve only very

low concurrency.

We propose instead a radically new method for concurrent simulation

called the Time Warp mechanism. Here we describe only the local control

component of the Time Warp mechanism, the part concerned with the actual

mechanics of discrete event simulation. In a future Note we will

present the global control component, the part concerned with smooth and

stable performance on a resource constrained distributed environment.

The Time Warp mechanism has a number of attractive properties.

o It is completely transpakent to the simulation programmer, in

the same way that a virtual memory system is transparent to an

applications programmer. The simulation programmer need not

know that his program is running under the Time Warp mechanism.

He need not provide any extra declarations, advice, or

information. He uses the same conceptual methodology for

building a concurrent simulation as he does for sequential

simulation.

o It can simulate any discrete model. Restrictions, such as a

fixed communication topology, monotonically increasing message

times, and nonzero minimum service times, usually necessary in

the Network Paradigm, are unnecessary with the Time Warp

mechanism.
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o It can be profitably implemented on any MIND architecture. It

depends neither on the number of processors available nor on

the interconnection architecture (shared memory, network,

etc.). It does not even assume that the communication medium

preserves message order. It is completely symmetric and

distributed.

o It cannot deadlock, and it is guaranteed to progress forward in

simulation time.

No other known concurrent simulation method combines all of these

properties. In addition, we believe that the Time Warp method has

greater speedup potential than any of the other concurrent simulation

methods, although this remains to be demonstrated empirically. These

advantages are not without cost, however. The Time Warp mechanism can

be expected to use several times as much memory as other methods to

achieve its speedup.

The Time Warp mechanism is an asynchronous simulation method. This

means that some objects are allowed to progress ahead in simulation time

while others lag behind. Its most unusual feature is the use of

rollback and "antimessages" to automatically correct the temporal

inconsistencies such "time spreads" generate. The Time Warp mechanism

allows an object to simulate forward, in parallel with other objects,

until it receives an event message that "should" have been handled in

its simulated past. When this happens the object is automatically

rolled back to an earlier simulation time. In addition to rolling back

the primary object, however, the Time Warp mechanism must cancel all of

the indirect side effects caused by any messages the primary object sent

kJ
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with time stas greater than the time to which it rolled back. This is

dame by samafag ntimessages, to annihilate the corresponding "ordinary"

messages (tbareby "unsending" the ordinary messages). The receipt of an

antimessage amn ca s a secondary rollback. The Time Warp mechanism can

be describe& as a distributed search over a simulation's "possible

futures" to discover the true course of events.

A proto"y iplmentation of Time Warps is running on a network of

Xerox SIP I1O (Dolphin) processors at Rand. A follow-up Note will

describe this prototype system's performance.
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I. INTRODUCTION

Simulations are among the most expensive of all computational

tasks. One run often takes many hours of computer time to complete.

Further, if the model being simulated is probabilistic, many runs may be

necessary to determine the output distribution. In many scientific,

engineering, and military situations, expensive computers are devoted

almost exclusively to simulation, and simulation is a major bottleneck.

Sometimes if a simulation takes too long it is useless, a classic

example being a weather simulator that requires more than 24 hours to

predict tomorrow's weather from today's data. In such cases it makes

sense to try to speed up simulation by exploiting the parallelism

inherent in most discrete models. If five processors running

concurrently can reduce the weather simulation's elapsed run time from

24 hours to 10 hours (for example), then the increase in hardware cost

for four extra processors may be justified.

This Note is Part I of a two-part report on recent results of

research at Rand under the auspices of the Project on Computer

Technology for Real-Time Battle Simulation (Klahr, McArthur, Narain and

Best, 1982; McArthur and Klahr, 1982), commonly known as the ROSS

Project (Rule Oriented Simulation System). The goals of the ROSS

Project are to develop techniques to improve the understandability and

performance of very large, object-based simulations. Part of the

research effort has been concentrated on a new method, the Time Warp

method, for doing concurrent or distributed simulation. Part I will

first present the fundamental issues in concurrent discrete event
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simulation. A critical analysis of the methods for concurrent

simulation proposed in the literature will follow. We then give a

detailed description of the local control part of the Time Warp

mechanism, the part concerned with the actual mechanics of discrete

event simulation. The discussion examines the concepts of messages,

antimessages, annihilation, and rollback.

Part I will present the global control component of the mechanism,

the part concerned with smooth and stable performance in a concurrent or

distributed environment. The central concepts are global virtual time

and global control state. The global control mechanism deals with such

issues as normal termination, error termination, storage management,

name management, input/output, and message flow control, all in a

simple, unified, and distributed manner. We currently have a running

prototype implementation of the Time Warp system written in Interlisp on

a network if five Xerox SIP 1100 (Dolphin) processors at Rand. A

follow-up report will detail the system's performance on a number of

different simulations as soon as the data are available.

The Time Warp method has several important advantages over other

concurrent simulation methods described in the literature.

o It is completely transparent. The simulation programmer does

not need to know that his program is running under the Time

Warp mechanism. He does not have to interact with it or

provide any extra declarations, advice, or information to it.

He uses the same conceptual methodology for building a

concurrent object-based simulation as he uses for sequential

object-based simulation.
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o The Time Warp system can simulate any discrete model.

Restrictions that are necessary for other concurrent methods,

such as a fixed communication topology, monotonically

increasing message times, or nonzero minimum service times, are

not necessary for the Time Warp method.

o The Time Warp system can be profitably implemented on any

multiple-processor architecture. The mechanism does not depend

on the number of processors available, nor on the system

architecture (shared memory, network, etc.). It does not even

depend on the assumption that message order is preserved by the

communication medium. It is completely symmetric and

distributed.

o The Time Warp mechanism cannot deadlock, and it always

progresses forward in simulation time.

No other known concurrent simulation method combines all of these

properties. In addition, we expect that the Time Warp system will

usually provide greater speedup than any of the other concurrent

simulation methods. These advantages are not without cost, however.

The Time Warp mechanism can be expected to use several times as much

memory as other methods to achieve maximum speedup.
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II. SURVEY OF THE PROBLEM

Discrete event simulation differs semantically from other

computational paradigms primarily because of the notion of simulation

time, which plays a special logical role in the global coordination of

the computation. A simulation on one processor is normally organized as

a collection of procedures, coroutines, or pseudo-parallel processes

invoked according to a special scheduling discipline, lowest simulation

time first. Here we assume the reader is familiar with the broad

outlines of discrete event simulation. General discussion of simulation

methodology and simulation languages can be found in Fishman (1978) and

Franta (1977).

Many methods have been proposed in the literature for implementing

concurrent or distributed simulation, some of which we will discuss

later. They can be broadly classified into two groups, the synchronous

and the asynchronous methods.

In a synchronous method all objects in the simulation progress

forward in simulation time together, in synchrony, with no object ahead

in time of any other. The usual event queue implementations for

sequential simulation are all synchronous methods, and several

generalizations of them for distributed simulation have been published.

In contrast, an asynchronous method permits some objects to simulate

ahead in time while others lag behind. Of course, an asynchronous

method must include some mechanism for ensuring that when an object that

is "behind" schedules an event for execution by an object that is

"ahead" it does not cause any events to be executed in the wrong order.

r. --
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But within that constraint, an asynchronous method tries to maximize the

number of events being executed in parallel. We emphasize that the

difference between synchronous and asynchronous methods is in the

implementation. It is not a semantic difference, and it is therefore in

principle invisible to the simulation programmer.

In Sowizral and Jefferson (1982) we show that synchronous methods

are fundamentally unable to provide any speedup at all for many

simulations, in particular the very common kind of simulation with low

virtual concurrency." We conclude that asynchronous methods are

essential, and therefore we will discuss only asynchronous methods here.

Below we give an overview of the Network Paradigm, which underlies

most previous work on concurrent simulation. Following that we present

an introduction to the Time Warp method. In Sec. III we describe in

much greater detail the methods based on the Network Paradigm along with

our assessment of their strengths and weaknesses. Then in Sec. IV we

give a detailed description of the Time Warp mechanism.

OVERVIEW OF THE NETWORK PARADIGM AND CONSERVATIVE MECHANISMS

For the last several years two main groups have been active in the

field of asynchronous distributed simulation: Chandy and Misra at the

University of Texas at Austin, and Peacock, Wong, and Manning at the

University of Waterloo. In most of their work (Chandy and Misra, 1979,

1981; Peacock, Wong, and Manning, 1979a and b; Peacock, Manning, and

Wong, 1980), they adopt what we will call the Network Paradigm of

distributed simulation.

.4
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In the Network Paradigm, objects in the simulation are represented

as deterministic sequential processes acting as nodes in a network.

Directed arcs in the network represent communication channels between

the objects.. Each object has associated with it a variable called local

simulation time that records the simulation time of the last event

executed by that object and thus measures how far it has progressed in

the simulation. Interactions between objects in the network (called

events, customers, transactions, etc.) consist of time stamped event

messages moving along the network's arcs. Each event message is tagged

with a time stamp that specifies the simulation time for processing the

event.

An object in the Network Paradigm may have several input arcs, and

it maintains separate message queues for each one. An important

assumption in the Network Paradigm is that the communication medium

preserves the order of messages and that the time stamps of the messages

sent along any particular arc must form a nondecreasing sequence. Hence,

each node can easily merge its several input message streams. Note that

this constitutes a restriction on the usual semantics of simulation. In

the terminology of the Network Paradigm, the usual semantics would allow

messages sent along an arc to be in any order, so long as the time stamp

on each message is greater than or equal to the sender's local

simulation time at the moment of sending.

Nodes in the Network Paradigm are processes that continuously

execute the following program:

1. Receive (or wait for) the "next message across all input arcs."
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2. Update the local simulation time for this node to be the value

in the message's time stamp.

3. Perform the actions appropriate to the message. This will

typically involve changing the node's state and sending one or

more time stamped messages along the output arcs of the node.

4. Go to step 1.

Ideally, if each of the n nodes in the simulation were assigned to

a different processor then all could execute concurrently, thereby

achieving an optimal n-fold speedup over the usual single processor

case. But severe problems prevent such ideal behavior from happening in

real simulations. First there is a limit to the amount of concurrency

available for exploitation in any particular simulation. Aside from

that, there are problems arising Trom the nature of concurrent or

distributed computation.

The major problems stem from Step 1 and the definition of the

phrase "next message." The intended meaning is "the message with the

lowest time stamp that is now enqueued or will ever arrive along any of

the node's input arcs." If every input arc has at least one unprocessed

message enqueued, then the "next message" is simply the message with the

lowest time stamp across all of the input queues. Because the queues

are generally ordered by increasing time stamp, this requires examining

only the first message in each queue. The requirement that messages

arriving along each arc must form a nondecreasing sequence (and the

assumption that message orders are preserved during transit) guarantees

that no message can arrive later with an earlier time stamp than the one

selected by this procedure.



-8-

However, it is frequently the case, and in many types of

simulations it is usually the case, that a node will have one or more of

its input queues empty when it tries to receive the "next message."

When this happens the node must wait, because if it accepts any message

from the nonempty input queues, it has no guarantee that later (in real

time) it will not receive, along one of the empty input arcs, a message

with a time stamp earlier than that of the message it did accept. Such

an eventuality would constitute a logical error in the simulation

because it would cause events to be simulated in the wrong time order.

We illustrate the Network Paradigm in Fig. 1 where we see that object D

AD

In this simulation snapshot we show, inside each object, the local time
for that object. In the Network Paradigm, objects A, B and C are all
eligible to execute concurrently, but object D must block because one of
its input queues is empty. If D were now to process the message from C
with time stamp 30, it would risk receiving a later message from B with
a time stamp less than 30. Such an eventuality would cause some
message(s) to be processed out of order.

Fig. 1--Conservative mechanism within the Network Paradigm
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must block, at least momentarily, because one of its input arcs has an

empty message queue.

For concurrent simulation in the Network Paradigm (static

commiunication graph, separate queues for each input arc, messages with

increasing simulation times along each arc) we can define the following

terms. An object is safe at a particular moment if it has at least one

message queued on each input arc. An object with at least one empty

input arc is unsafe. We cani define a conservative mechanism for

concurrent simulation as one in which at any given moment, all safe

objects are considered eligible to execute, but unsafe objects are

suspended until they are safe. Clearly any conservative mechanism with

fair scheduling will be "weakly input/output equivalent" to the usual

sequential event-list simulation mechanism because, assuming both

terminate without memory overflow, runtime error or deadlock, each

object, in the course of computation, will receive the same sequence of

messages (events), will progress through the same sequence of states,

will send out the same messages to other objects, and will produce the

same final output.

The virtues of the conservative strategy can be illustrated in Fig.

2. In a simulation where the network has no fan-in or directed cycles,

each process has only one input queue and is eligible to execute

whenever it has at least one unprocessed event message in that queue.

Deadlock is impossible in this special case, and because no unnecessary

blocking occurs the degree of concurrency is maximal.

But a conservative mechanism by itself is unsatisfactory because

for most simulations (other than simple ones such as in Fig. 2) they are
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Fig. 2--Network where the conservative mechanism works well

hopelessly unstable computationally. They are generally subject to

unpredictable memory overflow or deadlock, and even in the absence of

these problems they allow only limited concurrency in most simulations.

Consider again the situation in Fig. 1. If the rate at which B and

C together produce event messages exceeds the rate at which D consumes

them then messages will back up in one or both of D's input queues,
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eventually overflowing memory. This, of course, is the flow control

problem to which all distributed systems (even the one in Fig. 2) are

subject. But in addition, there is a further problem peculiar to

simulation under a conservative mechanism. If B produces event messages

rarely compared with C, then most of the time D's input queue of

messages from B will be empty and D will be blocked. Meanwhile messages

from C can pile up and eventually overflow memory, even though D might

be intrinsically fast enough to consume event messages at a rate higher

than the sum of the production rates of B and C; the problem is that D

spends most of its time blocked. In many simulations it is impossible

to predict in advance whether this will happen, because it is influenced

by variations in timing, by the details of process scheduling, and by

the nondeterministic (probabilistic) nature of the simulation itself.

If the network contains a directed cycle (and nearly all large,

interesting simulations do) then the conservative mechanism is

vulnerable to deadlock. A momentary pause in the message stream along

one or more arcs of the cycle may cause a local deadlock by "deadly

embrace." In Fig. 3 we see an example where objects B, C, and D are

permanently unsafe. (Here, and throughout most of the rest of this

Note, we use the term "deadlock" to mean "unterminated process(es)

permanently ineligible to execute." We do not require that there be any

recognizable cyclic deadly embrace.) In fact, in this example, with the

pure conservative mechanism, it is impossible for B to process even the

first event message from A. Notice that this is a deadlock caused by

the conservative mechanism; it is not a logical deadlock in the

simulation model. The same simulation executed under the sequential
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A D

Here objects B, C, and D are permanently blocked, not having any
possibility of a message arriving at their empty input queues. Only A
can execute, piling up messages in B's input queue. The simulation will
end in deadlock or memory overflow, depending on whether A terminates or
blocks before filling up memory at B.

Fig. 3--Local deadlock

event list method would complete successfully.

These two problems, memory overflow and deadlock, taken together

contribute to extreme computational instability in large simulations.

On the one hand, if event messages arrive at a node faster than the node

can process them, its message queues will certainly overflow memory (if

the simulation runs long enough). On the other hand, if messages arrive

from several sources and the total rate of arrival is lower than the

node's theoretical capacity to process the messages, then most of the

time one or more of the input message queues will be empty and so again
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either memory overflow (in the other queues) or deadlock is probable.

The likelihood must be extremely remote that a large, complex simulation

will succeed, at every node and around every network cycle, in walking

the narrow path between these two dangers long enough to terminate

normally.

Even if there were a way to avoid these problems there is still a

feeling that the conservative mechanism does not extract enough of the

available concurrencv--that it is too conservative. If we examine Fig.

1 once again, we see that D is blocked until B sends another event

message because it might send one whose time stamp is less than 30. If

in fact B does do that, then D's waiting was necessary. But if after

all that waiting B eventually sends a message with a large time stamp,

say 50, then D's waiting was in vain. It could have safely processed

its messages from C, resulting in increased concurrency as well as less

risk of deadlock or memory overflow. We believe that in real

simulations under a conservative mechanism blocking "in vain" is what

would happen a large fraction of the time.

We have shown that for several reasons pure conservative mechanisms

are unsuitable for concurrent simulation. But the Network Paradigm has

nevertheless been the point of departure for much of the research in the

field, and we shall go into greater depth in Sec. III where we survey

several other proposed mechanisms. Before we do that, however, it is

best to give an overview of the Time Warp mechanism to give the reader

an appreciation of its contrast with the Network Paradigm.
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OVERVIEW OF THE TIME WARP %IECHANISM

The Time Warp method is an asynchronous method that speeds up

simulations by automatically exploiting the concurrency that results

from the programmer's decomposition of a model into interacting objects.

Although it is directly applicable only to simulation, we believe that

it is a particularly elegant example of several principles of

distributed computation that can shed light on the design of systems for

many other applications.

The Time Warp method applies to a larger class of simulations than

does the Network Paradigm. There is no notion of a fixed communication

graph connecting the simulation objects; rather, any object may interact

with any other object at any time. Because no communication network is

presumed, there is no need for an object to have multiple input queues.

Each object has only one input message queue, and all incoming messages

are funneled into it. There is no restriction corresponding to the

requirement in the network model that messages be sent in nondecreasing

order along each arc. For example we permit an object A at simulation

time 100 to send a message with time stamp 200 to object B, and the.

later at simulation time 120 to send a message with time stamp 150 to

the same object B. In all cases, of course, the time stamp on a message

must be greater than or equal to the simulation time of the sending

object at the moment of sending. This ensures that objects cannot

schedule events in the rast.

Throughout the rest of this Note we use the term virtual time in

connection with the Time Warp mechanism to be synonymous with what is

usually called simulation time. Using the new term emphasizes the more
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elastic nature of time introduced with the Time Warp mechanism and also

is consistent with other computer science uses of the word "virtual."

Like the Network Paradigm mechanisms, the Time Warp mechanism is

asynchronous, meaning that there is no global variable that represents

the simulation clock; instead, each individual object contains its own

variable called LVT (Local Virtual Time). An object's LVT acts as the

simulation clock for that object. Because the Time Warp mechanism is

asynchronous, in any particular snapshot of a simulation some objects

will have LVT values greater than others.

The key feature of the Time Warp mechanism is that an object always

receives and acts upon the messages in its input queue one by one in

order of their time stamps until it exhausts the queue. In contrast

with the Network Paradigm, a Time Warp object never waits until it can

"safely" process the next message. It always charges ahead, blocking

only when its input queue is exhausted, and then only until another

message arrives.

This policy of always charging ahead risks the possibility that a

message will arrive at an object whose LVT is less than the time stamp

of the incoming message. In other words, it is possible for a message

to arrive "in the past." Let us call such a message a straggler. It

might appear that the possibility of straggler messages could cause

event messages to be processed out of order--a serious problem as each

message may cause both a state change in the receiving object and the

sending of additional messages. If even one message were to be

processed out of time stamp order, the results of the entire simulation

might be invalid.

. . . .. --
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Because it is almost certain that there will be some stragglers in

the course of a simulation, the Time Warp system provides a mechanism to

ensure the simulation's integrity. Whenever a straggler arrives at an

object's input queue, the Time Warp mechanism automatically restores

that object to a state from a virtual time earlier than the time stamp

of the straggler, cancels any side effects that it may have caused in

other objects (possibly by rolling them back as well), and then starts

simulating all affected objects forward again. We call this complex of

actions rolling back the object. A rolled back object may reprocess

some messages that it processed before, but this time the straggler,

whose late arrival caused the rollback in the first place, will be

processed in its correct sequential position.

The mechanism used to roll back part of a simulation is the heart

of the Time Warp mechanism. Although the idea of rolling back to an

earlier state may seem hopelessly expensive and clumsy at first glance,

the mechanism is in fact quite economical and even elegant. It rolls

back only the objects that must be rolled back, it rolls them back only

as far as necessary, and it rolls them back at the first moment the

information mandating it becomes available. We expect that rolling back

can be done quickly enough and rarely enough so that in large

simulations the increased concurrency achieved will more than pay for

the overhead of the rollback mechanism.

It is helpful to view the Time Warp mechanism as a game of chdnce.

The object of the game is to minimize "losses"--real delay involved in

wasted computation and rolling back. Every time an object processes a

message M with time stamp I it makes a bet that no message with a time
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stamp earlier than time t will arrive later. If it wins that bet no

time is lost. If it loses the bet, the time lost is the delay involved

in restoring the object to an earlier state and running it forward to

the point when message M can be processed. The success of the Time Warp

system is based on the assumption that most simulation programs are

"well-behaved" and that stragglers will arrive rarely enough in the long

run to make the gamble worthwhile.

We might compare this to the game played by paging systems. Every

time a running program makes a memory reference it takes a gamble that

the pagq referenced will be resident in memory. When that gamble is won

there is no time lost and the memory reference proceeds without delay.

When it is lost, the cost is the delay needed for disk accesses and page

table manipulation before the memory reference can proceed. The success

of paging systems rests on the empirical fact that programs are

reasonably well-behaved and that with good replacement strategies the

gamble is won often enough to be worthwhile.

In Sec. III we describe and critique some of the distributed

simulation methods using the Network Paradigm that have appeared in the

literature. Readers interested primarily in the Time Warp mechanism may

wish to skip directly to Sec. IV.



III. METHODS BASED ON THE NETWORK PARADIGM

THE LINK TIME ALGORITHM

Peacock, Wong, and Manning (1979) describe their Link Time

Algorithm as a mechanism in which the sending node for each arc (link)

maintains a link time for that arc. A link time is a lower bound on the

time stamp of the next event message to be sent along that arc and is

periodically communicated to the receiving node, which can use the

information to determine whether it is safe to execute even if the input

queue for that arc is empty of event messages. Although the authors do

not explain the details of how this is done, what they describe seems to

be equivalent to the following mechanism (described by Chandy and Misra,

1979). Each node of the simulation automatically sends extra time

stamped "null" messages along some or all of its output arcs whenever

the local simulation time at that node changes. The null messages have

no semantic content in the simulation and can be treated as "events"

requiring no action. Like real transactions they play a part in the

safe/unsafe decision, and processing them does cause the local

simulation time of the receiving object to advance. They can be

interpreted as "advice" from the sender that the time stamp on the null

message is a lower bound for the time stamps of all future messages it

will send.

Null messages have the positive effect of making the receiving node

safe a greater fraction of the time than they otherwise would be,

resulting in less unnecessary waiting and increased concurrency. In
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Fig. 4 we see that process D has two null messages from process B in its

queue. These messages ensure that D will be safe at.least until it

finishes processing the second message from C. Without these null

messages D would be unsafe until the next real transaction arrives from

B.

The Link Time technique can sometimes result in a greater degree of

concurrency than the unembellished conservative mechanism. But we

P DOI

Null messages are indicated by crossed diagonals. Object A sends 99.9
percent of its "real" event messages to C, but whenever it-does so it
sends a corresponding null message to B to advise it that no more "real"
messages with earlier time stamps will arrive. B in turn passes these
on to D. We see that D is now safe, and will continue to be safe at
least until it finishes processing the message with time stamp 42. If
by that time B has sent on the null message with time stamp 48, then D
will still be safe and can process the real message with time stamp 45
without pausing.

Fig. 4--The Link Time algorithm using null messages

i.
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expect it to get bogged down frequently in excess message processing

when the number of null messages begins to swamp the number of real

messages. This will tend to happen in simulations where most of the

"real" traffic travels on only a few of the arcs. It also tends to

happen when the average number of output arcs per node is greater than

one and there are lengthy (or infinite) paths in the communication

graph, because then the total number of messages (event messages plus

null messages) increases exponentially with time. Because distributed

simulations can be expected to be communication-bound, rather than

computation-bound, it seems desirable to avoid situations where the

number of overhead messages can greatly exceed the number of real

messages.

The most serious problem with the Link Time algorithm, however, is

that it does not address the problems of memory overflow or deadlock.

Peacock et al. do not discuss the memory overflow issue, but they do

describe a deadlock prevention mechanism suggested for use with the Link

Time algorithm. Their strategy is to require a nonzero minimum service

time at each node in the network. This means that at each node there is

some positive number e such that the node cannot both receive an event

message with time stamp t and send one with a time stamp between t and

t+e. The proof that this is sufficient to avoid deadlock is given in

Peacock, Wong, and Manning (1979), where the authors also credit the

result independently to Chandy and Holmes.

This requirement does avoid deadlock, but it constitutes a serious

artificial constraint on the types of models that can be simulated.

Nany of the most frequently used service time distributions
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(exponential, Erlang, lognormal, etc.) do not have a nonzero lower

bound. Queueing models using such distributions for service times

either cannot be simulated or can be simulated only with distortion.

Furthermore, although deadlock is technically avoided, as a

practical matter a "near-deadlock" problem is created that is almost as

paralyzing. When the minimum service time is made small to minimize

distortion in the model, the time and message traffic wasted in avoiding

rLear-deadlock situations can be huge. Suppose we choose a minimum

service time of 0.001, where the mean service time is 1. Then the

situation shown in Fig. 5 might easily arise in a part of some larger

simulation. In the upper section object B would like to receive the

"real" message with time stamp 34 from A but it is blocked for lack of

input from C. It has, however, sent null messages to C and D reflecting

the minimum service time of 0.001. In the middle section those null

messages have been received, and C has sent a null message back to B. B

is not blocked now, but it cannot receive the "real" message with time

stamp 34 from A yet. It again sends null messages, again with time

stamps 0.001 greater than its virtual time, as we see in the lower

section. Clearly, null messages will flow around the B-C-B cycle

counting from 32.000 to 34.000 by increments of 0.001 until finally B is

eligible to receive the "real" message from A. Approximately 2000

Itunnecessary" null messages will be sent and received sequentially, with

no concurrency at all. Increasing the minimum service time will reduce

the number of null messages but will also increase the distortion in the

simulation. Both alternatives are undesirable.
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THE BLOCKING TABLE ALGORITHM

One way to avoid deadlock and possibly increase the concurrency

over that available from the Link Time algorithm (at least

theoretically) is to use the Blocking Table Algorithm (Peacock, Wong,

and Manning, 1979), which continually and incrementally computes an

approximation to the transitive closure of that part of the

communication graph formed by the empty arcs (arcs terminating in an

empty queue). In this way each node knows not only which immediate

predecessors are blocking it (because the queue associated with that arc

is empty) but which of their predecessors are blocking them, etc. From

each of the blockers the node requests a lower bound on the simulation

time at which they will send out their next event message. This

information at each node is then called its "blocking table." (See

Peacock, Wong, and Manning, 1979, for details.) The blocking table

theoretically allows a less localized definition of "safe" and "unsafe"

nodes, so that the decision as to whether a node is eligible to execute

is based on information global to the simulation, rather than on

information from its immediate predecessors only (as in the Link Time

Algorithm). But distributed computation of the transitive closure, even

incrementally as in the Blocking Table algorithm, appears to be

prohibitively expensive for large simulations because even a single

event can both delete and insert new empty arcs into the subgraph of

empty arcs. The time spent doing exact transitive closure would

overwhelm the time spent actually simulating, which is why Peacock et

al. substitute an algorithm such as the Blocking Table algorithm, which

computes a faster approximation to the transitive closure.
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Our judgment of the Blocking Table algorithm is that the number of

messages exchanged while computing the blocking table for each blocked

node would far exceed the number of messages exchanged during actual

event simulation in most cases. The system would spend more time

deciding who goes next in the simulation than it would actually

simulating. The problem would seem to get worse in larger simulations,

although without a more detailed description of the algorithm from the

authors it is not possible to say how much worse. In the absence of

empirical information to the contrary, the viability of the Blocking

Table approach to deadlock avoidance has to be considered unproved.

THE CHANDY-MISRA IETHOD

Chandy and Misra (1981) consider a mechanism, also within the

Network Paradigm, that deals directly with both the deadlock and the

memory overflow problems. First, they require that each message queue

have a fixed finite length. In addition to blocking whenever one of its

input arcs is empty, a node must also block whenever it sends a message

along an output arc where the message queue is full. (The authors

mostly discuss the case where queue lengths are fixed at zero, and thus

every message transmission amounts to explicit synchronization between

sender and receiver.) This technique clearly solves the memory overflow

problem and in fact guarantees that the storage used by a concurrent

simulation is within a constant factor of that used by the usual

sequential event list mechanism, an important advantage.

However, this same mechanism exacerbates the deadlock problem.

Because a node can block while either sending or receiving an event

L.6



-25-

message, a deadly embrace can occur around any undirected cycle in the

simulation network (a cyclic path defined without regard to the

direction of the arcs). Thus, in a large simulation run under this

mechanism there are innumerably more opportunities for deadlock than

there are under an ordinary conservative mechanism. Furthermore, each

deadlock rapidly becomes global. In a connected network when a local

deadlock occurs around a cycle, all other nodes soon block either

because they have at least one empty input arc or they fill up an input

queue sending to a node that is blocked.

Chandy and Misra suggest that concurrent simulations always run in

tandem with a distributed deadlock detection mechanism. The simulation

would proceed in a cycle of alternating episodes of (a) concurrent

simulation until detection of deadlock (using a deadlock detection

algorithm based on a termination detection algorithm of Dijkstra's),

followed by (b) breaking of the deadlock (using a special sequential

process).

Chandy and Misra state that they do not expect the deadlock

breaking process to be a sequential bottleneck, presumably because it is

fast and rarely invoked. We are not sure. Because the use of fixed-

length queues leaves the simulation so vulnerable to deadlock we believe

that the simulation-until-deadlock phase will be highly unstable in any

large, realistic simulation and that the simulation would hardly get up

to speed before some local deadlock around a small undirected cycle

would shut it down. It also appears to us that the mechanism used for

breaking and detecting deadlock and restarting some of the processes

must either perform a global analysis of the system that detects the
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maximum number of processes to restart or some faster analysis that

detects fewer processes but leaves the system in a near deadlock state.

Only empirical evidence will tell whether the overhead for deadlock

detection and breaking will exceed the time saved by concurrency.
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IV. THE TIME WARP MECHANISM IN DETAIL

It seems fair to say that the approaches to concurrent discrete

event simulation that have been investigated so far, while showing some

genuine empirical success in very small, cycle-free simulations

(Peacock, Wong, and Manning, 1979; Chandy and Misra, 1979) leave much

room for improvement in the dimensions of generality, deadlock

avoidance, stability, and potential speedup in realistic simulations.

The remainder of this Note is devoted to describing the Time Warp

mechanism, a radical departure from these methods and one that we

believe avoids the probleias of the Network Paradigm in a clean,

understandable, and elegant manner.

We introduce the Time Warp system by describing messages and

objects and the special queueing discipline connecting them. We then

illustrate the main simulation mechanism by following a typical object

through a complete simulation cycle.

MESSAGES, QUEUES AND OBJECTS

A message in the Time Warp system has six components, as shown in

Fig. 6.

I. The sender: the name of the object sending the message.

2. The receiver: the name of the receiving object.

3. The send time: the virtual time of the sending object when the

message was sent, used to order messages in the output queue of

the sending object.

ill I IIII I I _ i b B llA
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Send time
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Anti-toggl

Text

Fig. 6--The structure of a message in the Time Warp system

4. The receive time, also called the time stamp: the virtual time

at which the message is scheduled to be received, used to order

messages in the input queue of the receiving object.

5. The antitoggle: a bit indicating whether the message is an

ordinary message (indicated by 1) or an antimessage (indicated

by -1). Two messages that are alike in all fields but have

complementary antitoggles are called antimessages of one

another. Antimessages are created only during a rollback, and

their existence is completely invisible to the simulation

programmer.

6. The text: model-dependent event information, indicating

presumably the kind of event, along with any parameter values

needed for the simulation of the event.
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/

In Fig. 7 we show in detail the data structure used to represent an
/

object in the Time Warp system, including the scaffolding necessary to

stpport the rollback mechanism. An object consists of five components.

/

1. The LVT Register holds the LVT for this object. This is the
I

virtual time of the last event processed by the object and,

hence, acts as its local simulation'clock.

2. The Current State holds the variables representing the current

(at virtual time LVT) state of the object, including its random

seeds, if any.

3. The Input Messaxe Queue holds time stamped input messages.

Some of the messages may be in the local past, meaning that

they have time stamps earlier than the object's LVT and have

already been processed; bthers are in the local future, and

have not yet been processed (or else they have been processed

one or more times but with rollbacks in each case).

4. The Output Message Queue holds messages sent by the object to

other objects. Output message queues are similar to input

message queues except that the messages are ordered by the

virtual time of sending, rather than by the time they are to be

received. Some messages in the output queue were sent at times

earlier than the object's LVT in the past, and others (if the

object is in the Coasting Forward phase of a rollback) may have

been sent in the local future.

5. The State Queue holds copies of some of the object's past

states, ordered by the LVT of those states. These states are

saved in case the object must roll back. Not all past states

-It
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The figure shows a snapshot of Object A immediately after it has
processed the input message with time stamp 162.

Fig. 7--The Structure of a Time Warp Object
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need be saved; there must be at least one past state, but if

more states are saved the rollback operation is generally

faster.

For simplicity we will assume no message coincidences occur, no

cases where two messages with equal time stamps (other than a message

and its antimessage) are sent to the same object. All of the mechanisms

we describe can be generalized easily to handle coincidences, but only

at the expense of clarity in this description.

Whenever a message is inserted into a queue, whether it is an

ordinary message or an antimessage, it is inserted at a position

determined either by its sending time or its receiving time. Output

queues are ordered by sending time and input queues are ordered by

receiving time. However, when a message is "inserted" into a queue that

already contains its antimessage, then both the message and the

antimessage are destroyed, and the queue ends up with one fewer message

rather than one more message. Thus, messages and their antimessages

annihilate one another whenever they come into "contact," in a manner

reminiscent of the behavior of particles and antiparticles in physics.

This property is a key part of the rollback mechanism and is suggested

by the following algebraic axioms, which partially specify the queueing

discipline:

-M <> N
-(-'M) = M
InsertC-M.InsertCM,Q)) = Q

where Q is a message queue and -M is the antimessage of 4. It does not

matter which, N or -M, is the ordinary message and which is the
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antimessage, so long as they are complementary. A message and its

antimessage annihilate during the enqueueing operation, no matter what

other messages were enqueued or annihilated in the meantime. (This

latter fact is not captured by the above axioms.)

To show the Time Warp mechanism in detail, we examine the execution

of a typical simulation. We assume, without loss of generality, that

every object executes the basic loop shown in Fig. 8. All computation

declare State-Variables;
begin

loop until termination
Receive(Message); ( Receive contents of the next

event message into the
variable Message. }

Update(LVT); { Increase LVT to the value in
the time stamp of the message I

Update-State; ( Calculate new values for
State Variables using Message
and LVT I

Send-Messages ( Send event messages to other
objects using Message and LVT )

endloop
end;

Fig. 8--An object's sequential control structure

in this loop is considered to be strictly sequential and deterministic,

for reasons to be described later. At each iteration an object

typically reads the next message from its input queue, updates its LVT,

recomputes its state, and sends event messages to other objects. The

Time Warp system exerts no effort to ensure that messages arrive at an

object's input queue in monotonically increasing time order. In

particular a process does not block simply because it cannot guarantee

that a straggler will not arrive. Instead, the simulation proceeds on
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in this loop is considered to be strictly sequential and deterministic,

for reasons to be described later. At each iteration an object

typically reads the next message from its input queue, updates its LVT,

recomputes its state, and sends event messages to other objects. The

Time Warp system exerts no effort to ensure that messages arrive at an

object's input queue in monotonically increasing time order. In

particular a process does not block simply because it cannot guarantee

that a straggler will not arrive. Instead, the simulation proceeds on
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the assumption that there will be none, and that only if one does arrive

should exceptional measures be taken.

When an object processes an input message it does not consume it;

when it sends an output message, it retains a copy. Each object must

save copies of all its input and output messages and some of its past

states as well, in case it has to roll back. Fortunately it is not

necessary to save states and messages all the way back to the beginning

of the simulation. They need to be saved only as far back as a virtual

time called GVT (Global Virtual Time), and GVT increases as the

simulation proceeds so that the amount of storage needed to save past

states and messages stays more or less constant. In Part II of this

study we will show how to perform Time Warp simulation in a fixed amount

of memory on a shared-memory multiprocessor, or a fixed amount per

processor on a network. Because GVT and its influence on the global

coordination of the simulation are the subject of Part II, we cannot

discuss it here in detail. However, there is always enough back

information present in the Time Warp system to perform any of the

rollbacks that are called for.

THE ROLLBACK MECHANISM

Examining the situation in Fig. 7 we see that the object has an LVT

of 162 and is ready to process the input message with time stamp 181.

At this point if a message should arrive with a time stamp greater than

162 (in the future) then that message would simply be enqueued in its

appropriate position (possibly causing annihilation if it is the

antimessage of a message already in the queue) and the simulation would

continue uninterrupted.
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But what if a straggler (time stamp less than or equal to 162)

should arrive? Then the simulation must roll back to the time in the

time stamp of the message. To roll an object back to a time t, we must

cancel all the side effects that occurred as a result of processing

messages with time stamps greater than or equal to t, including indirect

side effects that may have been induced in other objects because of

message interactions. Rolling back one object may thus trigger other

objects to roll back as well. Finally we restore the object to a state

from strictly earlier than time t, and start the simulation forward

again in a manner to be described.

For example, suppose object F sends a message with time stamp 135

to object A in Fig. 7. Because A's LVT is 162, it "should" already have

processed that message. The simulation must roll back to time 135 for

it to proceed correctly. "Rolling back the simulation" does not mean

rolling back every object. The only candidates for rolling back are A

and those other objects directly or indirectly affected by the messages

that were sent by A when its LVT was greater than or equal to 135.

The procedure for rolling back an object, shown in Figs. 9 through

12, consists of several steps. First the system inserts the straggler

(with time stamp 135) into its proper position in the input queue of the

receiver. Of course, if the arriving message is the antimessage of

anothe. message already in the input queue, this "insertion" actually

results in the deletion of a message. Rollback must occur any time a

straggler arrives, regardless of whether it causes an annihilation.
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We will assume that each object's state is saved (by the Time Warp

mechanism) "every once in a while"; exactly when is not particularly

important. We believe that the simple strategy of saving an object's

state every k events at that object, for some small k>=, is

appropriate. The smaller k is, the more efficient (in time) the

rollback mechanism is, but the more it costs in memory to hold the saved

states.

The rollback procedure is divided into three phases: Restoration,

Cancellation and Coast Forward. First, the Restoration phase restores

the object's state variables, including random seeds and LVT, to the

values they had when the last state save was done at a virtual time

strictly earlier than the time stamp of the straggler. Because only a

fraction of an object's past states are saved, the Restoration phase

generally "overshoots" a little and restores a state one or more events

earlier than the one that would allow immediate processing of the

straggler.

Second, the Cancellation phase cancels all side effects in other

objects that resulted from messages sent at or after that given in the

time stamp of the straggler. For each such message this is done (as we

will illustrate in a moment) simpl by sending its antimessage.

Finally, because the Restoration phase generally overshoots a

little, the Coast Forward phase is necessary to correct for the

difference. It simulates tt.e object forward again from the restoration

point to the point where it can receive the straggler. As we will show,

simulation in the Coasting Forward phase is an abbreviated version of

normal forward simulation, and so we refer to it as "coasting." The

.. ...
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Coast Forward phase would not be necessary if the State Queue held a

trace of all past states so that overshooting would not occur.

The Restoration Phase

Let us examine in detail the operation of the rollback mechanism on

Object A. In the Restoration phase (Fig. 9) the system searches A's

State Queue for the latest saved state from a virtual time strictly

earlier than 135 (in this case the state from time 119) ind restores the

object's state variables to the values they had then. This represents a

slight overshoot; if we had saved the state that existed after the

processing of the message with time stamp 121, the Coast Forward phase

would be unnecessary.

Those states in the State Queue having LVTs later than 135

represent a projected future for object A computed on the assumption

that stragglers would not arrive. Because that assumption proved wrong,

those projected future states are now discarded.

The Cancellation Phase

In the Cancellation Phase we must undo all of the direct and

indirect side effects on other objects caused by messages that were sent

by A after virtual time 135. It is not obvious how to do this because

some of those messages might still be enqueued in the future part of the

receiver's Input Queue waiting to be processed, vhile others may already

have been processed and have caused side effects (and also have caused

the sending of more messages to a third set of objects). It is even

possible that some of the messages have been processed and reprocessed

several times as a result of other unrelated rollbacks.
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When an input message with a time stamp of 135 arrives, the message is
first inserted into its proper position in the input queue. Because the
message arrived in Object A's local past, the Restoration Phase of the
Time Warp mechanism must restore A to a previous state, the last one
that was saved at a time earlier than 135. In this case it restores
Object A to the state saved at time 119 and discards those states saved
after time 119.

Fig. 9--The Restoration Phase of the rollback procedure
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Nevertheless, the mechanism that accomplishes the intended effect

is extremely simple: to cancel exactly the side effects of a single

message we simply send its antimessage. Thus, in the example in Fig. 10

the Time Warp system will send antimessages for all of the five messages

that have to be canceled.

The following is an example of how this works for the first of the

five messages, the one sent at simulation time 141 to object B for

receipt at time 142. The Time Warp system first constructs the

antimessage for this message, identical in all respects except that its

antitoggle is -1 instead of 1. Sending an antimessage is exactly like

sending an ordinary message. One copy is inserted into the output queue

of the sender, and another copy is transmitted and inserted into the

input queue of the receiver. When the antimessage is enqueued in A's

output queue it "meets" the original message, and the two are

annihilated. The net effect is to remove the original message from the

output queue so that there is no longer any record at the sender that

the message was ever sent. When the other copy of the antimessage is

enqueued in B's input queue, one of the following will happen:

1. The antimessage may arrive in B's future. If so, it simply

annihilates the original message in the input queue and the net

effect is as though the original message had never been sent.

2. It may arrive in B's past. If so, it is still enqueued in B's

input queue, and still annihilates itself and the original

message. However, because it arrived in B's past, B must roll

back to virtual time 142. This may, of course, cause the

sending of another round of antimessages.
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All messages sent at or after time 135 must be canceled. The Time Warp
mechanism will construct their antimessages and send them exactly as it
would send ordinary messages; it will enqueue the antimessages in A's
output queue, transmit copies to the receivers, and enqueue them in the
receivers input queues.

Fig. 10--Before the Cancellation Phase
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From the second case we see that the rollback mechanism does a

tree-walk in the tree of objects rooted at A, with branches representing

message transmissions. Notice that the "tree" is possibly a cyclic

graph, and that in the course of rolling back object A the mechanism may

in fact cycle back to A. This causes no harm and can be carried out

without danger of infinite loop, deadlock, or any similar hazard.

The Coasting Forward Phase

In Fig. 11 we see object A after all five messages have been

canceled. We are now ready to Coast Forward. The output message sent

at time 121 was not canceled; and, in general, output messages between

the restoration point (119) and the time of the straggler (135) are

never canceled. The reason is that the simulation will take exactly the

same path from time 119 to time 135 as it did before the restoration.

After time 135 it can change course as a result of the new message.

Message 121 is certain to be re-sent, so it is wasteful to cancel it

because the cancellation may cause other objects to roll back

needlessly.

During Coasting Forward the object executes the simulation cycle as

usual, except that every time it "sends" a message, the sending is

inhibited because the sender's output queue and the receiver's input

queue already have copies anyway. Thus, during the Coasting Forward

phase an object only goes through the motions of message transmission.

The significant actio... occurring during Coasting Forward are changes to

the object's L%7 and state.
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Here we see that all output messages sent at or after time 135 have been
annihilated by antimessages. Not depicted in this figure is the fact
that copies of those antimessages are on their way to the receivers of
the original messages. There they will also cause annihilation and,
possibly, more rollbacks.

Fig. 11--After the Cancellation Phase
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The facts that message 121 is "certain to be re-sent" and that the

simulation will take "exactly the same path" during the Coasting Forward

phase that it did originally are consequences of our assumption that the

program body in each object is deterministic. If we were to allow the

body of an object to be nondeterministic, it would be necessary to

eliminate the Coasting Forward phase of the roll back mechanism

entirely, which can be done only if every object's state is saved after

each event at that object. We believe that this alternative would

usually require too much memory. An object can still model

probabilistic behavior without violating the prohibition on

nondeterminism. All that is necessary is to make the random number

seeds part of the object's state so that they can be saved and restored

along with the rest of the state.

It is very important that the messages sent by A between the

restoration time (119 in the example) and the time of the straggler

(135) are not canceled and then re-sent, but are definitely not canceled

and not re-sent. First, this is a great saving of time because the

costs associated with sending messages are almost always the dominant

costs in object-oriented simulation. In addition, this part of the

mechanism is not merely an optimization. It is necessary to prevent the

possibility of rollbacks cascading arbitrarily far back in virtual time.

Without this feature, for example, the antimessage with time stamp 142

sent to B during A's rollback might cause B to roll back to a .ime

earlier than 135. This might happen because the latest state saved for

B had an LVT of 110. B, then, in the course of rolling back to a time

earlier than 110, might have to send an antimessage to A with a time
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stamp of, say, 115, causing A to roll back oven further. A's second

rollback might cause antimessages to be sent to B, causing yet another

rollback, and there is apparently nothing to prevent the possibility of

all objects cascading back to time 0.

However, the inhibition of both the cancellation and re-sending of

output messages sent between 119 and 135 guarantees that the messages

sent by A during and immediately after its rollback (until the next one)

must have time stamps greater than or equal to the 135. As a result, a

rollback to time 135 can cause secondary rollbacks to times no earlier

than 135. More precisely, those objects restore their last saved state

from before 135 and then coast forward without sending any messages

until they get to time 135. This prevents the backward cascade.

In Fig. 12 we see the last stage in the rollback process. The

object is now in the correct state to receive the straggler and continue

simulating forward.

One final note: After the Restoration and Cancellation phases of a

rollback, new messages may arrive and new rollbacks may begin before the

Coasting Forward phase of the first rollback has finished. It is

possible to have any number of rollbacks "in progress" at the same time.

With care in the implementation for handling these possibilities,

Coasting Forward need not be an atomic action and does not have to be

considered part of the rollback mechanism. It is sometimes better to

view Coasting Forward as an alternative mode of forward simulation. An

object stays in Coasting Forward Mode (with message sending Inhibited)

until it completes all rollbacks it has in progress; when no rollbacks

are in progress, it is in Normal ode (sending messages).

i!
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The input message with time stamp 121 is re-received and reprocessed.
As a result, Object A updates its state and "sends" a message to
Object B--an exact copy of the one still in the output queue that
A sent the last time it received message 121 before the rollback.
But because A is in the Coasting Forward phase, the actual sending
of the message (including its enquoueing in A's output queue) is
inhibited. This is why Coasting Forward is faster than ordinary forward
simulation. In this example the rollback procedure is now complete, and
A can start normal forward simulation by receiving the original
straggler with time stamp 135.

Fig. 12--Tha Coasting Forward Phase
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V. DISCUSSION

WEAK CORRECTNESS OF THE MECHANISM

Space does not permit us to develop a mathematical formalism for

the semantics of simulation; hence we cannot make a formal argument for

the correctness of our mechanism. However, we can outline an informal

argument that when the Time Warp mechanism is used to execute a

simulation program it duplicates (with one possible exception) the

input-output behavior produced by the same program when executed under

the sequential event-list mechanism familiar from such languages as

Simscript (Consolidated Analysis Centers, 1976) or Simula-67 (Dahl,

Myhrhaug, and Nygaard, 1970; Birtwistle et al., 1973). The exception

concerns the behavior of an object when it receives two or more messages

with exactly the same time stamp. Some languages take the position that

such coincidental messages are executed in FIFO order; others allow a

priority scheme to determine the order. There are also good arguments

for leaving the order undefined. Under the Time Warp mechanism, all

messages with the same time stamp are delivered to the object together,

as a set. It is then up to the object's program to decide how to handle

the situation. We believe that this is the cleanest and most general

solution to the problem, allowing the object to choose which of the

several conventions is appropriata for the application. Aside from this

issue, the Time Warp mechanism produces exactly the same output as the

event list mechanism.



-46-

The full demonstration of this fact can be made only after a

discussion of the concept of Global Virtual Time in Part II, but we can

present the thrust of the argument. After all of the false projected

futures and all of the rolling back, the net effect is that each object

processes the same events (time stamped messages) as it would according

to the sequential event mechanism, and in the same order (increasing

virtual time). To be sure, some messages having no counterpart in the

sequential mechanism can be generated and sent during the time that an

object is charging ahead not knowing that a straggler is on its way.

But all such "false" messages eventually get canceled, leaving only

those that have counterparts in the sequential mechanism. Also, events

may get processed globally in a different real-time order from the

increasing virtual time discipline imposed by the sequential mechanism;

but locally, at each object, they are processed according to that

discipline, and that is all that matters for input/output equivalence.

This argument relies on the fact that the Time Warp mechanism

cannot deadlock and that under fair scheduling the simulation does make

progress. We address those issues now.

TIE WARP IS DEADLOCK FREE

Earlier we adopted the meaning of "deadlock" to be "unterminated

processes permanently ineligible to execute." This is perhaps a narrow

definition in the context of a concurrent system wherc message

cancellation and rollback are possible. One could define deadlock as

the inability of the computation to progress forward with its mission.

Under this definition a computation that moves forward a little and then
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rolls back over and over again, without at least progressing farther

each time, is deadlocked in the broader sense.

If we adopt the narrow definition of deadlock for the moment we can

prove very simply that under fair scheduling the Time Warp mechanism per

se is deadlock free, although particular simulation runs may deadlock.

A Time Warp object is always eligible to execute (and under fair

scheduling will eventually execute) unless it has (at least momentarily)

exhausted its input queue. Consider a subset of the objects in a

simulation and ask how all of the objects in it might be permanently

blocked. At any moment they can all be blocked simultaneously if and

only if they have processed all of the messages in their input queues.

They will then be permanently blocked if and only if no more messages

arrive from any object outside of the subset.

Such collective permanent blocking in a set of objects is in some

sense a local deadlock. But it does not arise from the Time Warp

mechanism; it simply reflects quiescence in that portion of the

simulated model. Because this argument applies to any subset of the

simulation, it obviously applies to the whole simulation as well. The

whole simulation "deadlocks" only when all objects have exhausted their

inputs. Such a situation is properly interpreted as quiescence or

termination in the simulated model, not deadlock in the Time Warp

mechanism.

In Part II we will prove that any Time Warp simulation is deadlock

free in the broader sense that it will always make progress in virtual

time unless the user's simulation model quiesces or violates one of the

following two semantic rules.

" -Mi- .ONE-... .-. -- -- - - I 1 i
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1. Each object must compute for only a finite amount of time (and

send only a finite number of messages) for each event.

2. There must be no infinite sequence of objects A I' A2' 3 ...

and no virtual time t such that each object in the sequence

sends a message with time stamp t to the next object in the

sequence.

Violation of these conditions is analogous to having an infinite loop or

infinite recursion in the user's program.

Although the full proof of progress depends on precise definition

of the concept of Global Virtual Time in an environment where arbitrary

message delays are possible, we can sketch the argument here for the

case of instantaneous message transmission. In the context of

instantaneous message transmission, let us define the farthest behind

object of a simulation snapshot to be that object whose LVT is minimal

over all objects with at least one unprocessed message in their input

queues. (Assume that there is a unique farthest behind object.) We can

then state that the farthest behind object cannot roll back. The reason

is that it could only roll back if a message were to arrive in its past,

but no object can send such a message. All objects are either blocked

(with no messages in their input queues) or are at least as far ahead as

the farthest behind object and can only send messages (instantaneously)

with time stamps greater than or equal to their LVTs. If we define the

GVT of a snapshot to be the LVT of the farthest behind object, we find

that GVT can never decrease during the simulation. Assuming (1) that

the user has followed the restrictions described above, (2) that there

is always at least one object with an unprocessed message (so there is
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no quiescence) and (3) that scheduling is fair, GVT must actually

increase. The value of GVT is thus a natural measure of progress in the

simulation.

EFFICIENCY

Despite the comforting facts that the Time Warp system does not

deadlock and that it does progress forward, one might still worry that

it might progress forward too slowly--ten steps forward and nine steps

back. Consider that the rollback of one object might start a chain

reaction of rollbacks among other objects. In principle, it is possible

for a single message to cause indirectly a rollback of every object in

the simulation other than the message's sender. Although this is a

matter for empirical testing, there are several general arguments to

suggest that the actual incidence of rollback will be much less than one

might fear, especially in large simulations.

First, when one object rolls back and sends out antimessages, the

number of antimessages and the number of possible secondary rollbacks is

proportional to how far back (measured in events) the object is rolled.

In simulations that are nearly synchronous (in the sense that the

average number of events between GVT and LVT is small) the number of

antimessages should be small. Furthermore, the very act of roll back

tends to make the simulation more nearly synchronous, making other

rollbacks less likely in the near future.

Second, even though the rollback of one object may cause

antimessages to be sent, only a fraction of them will arrive in the

j past" of the receiving object to cause secondary rollbacks. And the
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secondary rollbacks that do occur will not be over as many events, on

the average, as the primary one was. For example, in Figs. 9 through 12

the primary rollback is to virtual time 135; the secondary rollbacks, if

they happen at all, will only be to times 142, 180, 160, 157, or 163.

Third, there are implementation techniques available to further

minimize the number of rollbacks. For example we can cancel messages

in early-to-late order, so that if two or more antimessages are directed

to the same object, usually no more than one of them will cause a

rollback. In our example, Fig. 10, three antimessages will be sent to

object C. The first of them might cause a rollback to virtual time 158;

if so, the next two antimessages, with time stamps 160 and 163, will

probably arrive in C's future and not cause further rolling back.

The result of these considerations is that although antimessages

branch outward from the primary rollback site in tree-like fashion, the

growth of that tree is confined and pruned by several independent

effects. Our prototype implementation will allow measurement of these

effects.

TRANSPARENCY OF THE TIME WARP MECHANISM

One of the most important properties of the Time Warp mechanism is

that it is completely transparent to the simulation programmer. Aside

from writing the program in an object-oriented, message-passing style

the programmer can be almast completely unaware of the presence of the

Time Warp raechanism. No special declarations or initialization are

needed, as might be needed in the Network Paradigm to describe the

topology of the network. No extra logic is necessary to "predict" lower
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bounds on the time stamp of the next message to be sent. Miodels need

not be distorted by adopting either the minimum service time restriction

or the message monotonicity restriction. It is not necessary to know

how many processors are in use, or whether they are connected in a

network or in a shared-memory multiprocessor configuration. Of course

many issues, such as storage management and the assignment of objects to

processors, are much easier for the Time Warp system implementor to

handle on a shared memory architecture such as C.mmp (Wulf, Levin, and

Harbison, 1961) or Cm* (Swan, Fuller, and Siewiorek, 1977) than they are

on a distributed architecture such as the DCS system (Farber et al.,

1973) or an Ethernet system (Net-alfe and Boggs, 1976), but the basic

simulation mechanism remains the same, and the user's programming

process is largely unaffected.

As noted, the Time Warp mechanism does not require that the

communication medium preserve the order of messages; it only requires

that the messages eventually get to their destinations reliably. This

flexibility is provided partly by the rollback mechanism, which allows

event messages to arrive in any order. It derives also from the

definition of the annihilation mechanism, which works properly even when

an antimessage arrives at the destination before the corresponding

ordinary message. (It is possible that an antimessage will actually be

received by an object before the corresponding ordinary message arrives.

The implementor is free to choose how the object behaves in this

situation. Whatever the behavior, the object is certain to roll back

and undo it when the ordinary message eventually arrives.)
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Independence of the order of arrival of messages a property not

only of the local control part of the Time Warp mechanism, but also of

the global control part as well, as we will show in Part II. This means

that the Time Warp mechanism can run correctly, without substantive

change, on store-and-forward networks such as the ArpaNet, although it

remains to be seen whether much speedup can be gained on such an

architecture.

Several other issues are involved in complete transparency whose

full treatment must be postponed until Part II. One is the issue of

errors. When an object in a simulation encounters a computational error

(such as array bounds violation etc.), that error in one object must not

immediately cause the entire simulation terminate abnormally. It is

quite possible that the object will subsequently roll back and

"uncommit" the error. In general, it is only when the farthest behind

object commits an error that the the entire simulation must abort.

Alternatively we can say that an error is only permanent when GVT

catches up to the LVT of the object at the time of the error. The

detection of this latter condition is done by the Global Control part of

the Time Warp mechanism.

Another issue is input/output. If an object executes an output

operation, it is important to buffer that output and not immediately

commit an irreversible, externally visible action. Again this is

because the object might have to roll back and it is important to be

able to cancel all side effects. Output can be irrevocably committed

only when GVT catches up to the LVT of the object ordering the output.

By representing all output devices and files as objects within the
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simulation it is possible to have the necessary logic implemented with

perfect transparency as part of the Global Control mechanism.

The transparency of the Time Warp mechanism does not mean, of

course, that the programmer can be completely ignorant of the basic

principles of concurrent programming. For example, it is important for

efficiency that he design his models in such a way that none of the

objects is a communication bottleneck. But aside from such common sense

considerations in distributed computation there are no extra

restrictions imposed by the fact that he is programming a simulation.

He can concentrate on the logical design of the model, rather than on

the implementation.
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