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SECTION 1

INTRODUCTION

1.1 BACKGROUND INFORMATION

The projection moire method has been used successfully to

determine the out-of-plane motions of large surfaces experiencing

a dynamic response to an impulsive load (References 1 and 2).

This method will perform equally well in situations where the

response of the test specimen is static. Use of this moire method

permits the motion of the test specimen to be determined without

physical contact between the test specimen and the device. If,

then, surface strains can be computed from the out-of-plane moire

deformations of a test object, the projection moire method would

become an economical, noncontact experimental tool in the stress

analysis of complicated structural shapes.

Determination of the surface strains from the surface

deflection data presents some problems because of error magnifi-

cation that results from using inexact experimental data to

compute the second derivatives. Various numerical curve fitting

methods have been used to obtain the higher order derivatives.

Among these, the three methods used most successfully are spline

functions (References 3 to 7), beam functions (Reference 8), and

least square regression analysis (Reference 9).

1.2 PROGRAM OBJECTIVE AND SUMMARY

The primary objective of this program was to determine

surface strains on flat plate specimens experiencing static loads

from out-of-plane deformations obtained with use of the projec-

tion moir6 method. To accomplish this, a four-point bending test

specimen, in conjunction with a four-point bending load device,

was selected as a target since a fairly uniform strain field

exists in the midsection of the loaded specimen. A conventional

method of strain measurement was chosen to provide data for

comparison with the calculated moir6 strains. For this purpose,

1



a number of electrical resistance strain gages were installed on

the test specimen and strain measurements made for each load

condition.

Theoretical strains were also determined to aid in the

evaluation. The small-deflection beam theory was the only

analytical method which permitted deflections and strains in the

four-point bending specimen to be predicted directly. Therefore,

a large-deflection beam theory which integrates the Bernoulli-

Euler beam equations by use of elliptic integrals (References 10

and 11) and a small-deflection plate theory which integrates the

Lagrange plate equation by use of a series of trigonometric

functions (Reference 12) were developed for use with the

four-point bending specimen. The moire deflections and strains

were compared with the analytically predicted deflections and

strains, with the experimentally determined strains from the

electrical gages, and with deflections from dial gages.

2



SECTION 2

EXPERIMENTAL TECHNIQUES

A brief description of the four-point bending test fixture

test specimen, moire device, and strain gage instrumentation is

given in the following paragraphs. The tests performed during

this program are summarized later in this section.

2.1 TEST SPECIMEN

The test specimen, shown in Figure 1, was a 26-inch long,

6-inch wide, 0.25-inch thick flat plate made of 2024-T351 alumi-

num alloy. One side of the plate was prepared for recording

moire fringes by the application of a reflective coating and

installation of fiducial marks as illustrated in Figure 2.

2.2 FOUR-POINT BENDING LOAD DEVICE

A four-point bending load device generally consists of two

knife-edge or cylindrical supports on which a beam can be simply

supported at its ends and two loading points equidistant from

the end supports. When loaded this way, a constant bending moment

is generated in the beam between the loading points.

The four-point bending load device designed and fabricated

for this investigation is shown in Figure 2. This fixture has

several unique features. The beam is supported by the inner load-

ing points and the loads are applied to the ends of the beam by

means of finely threaded power screws. The loading points which

come in contact'with the test specimen are four ground cylindrical

rods, 3/4 inches in diameter and 6 inches long. The loading points

in the ends are guided so that the applied loads are parallel to

each other and normal to the surface of the test specimen. Load

cells incorporated in the inner loading points were calibrated

prior to their use. Loads, i.e., analog voltages, were read on

separate digital voltmeters to an accuracy of +.01 volts or
+0.5 pounds. Loads were accurately balanced, controlled, and

3



LOADN LOAD\

6.0 in MATERIAL: ALUMINIUM ALLOY

115. 24 c m) 2024-T351

26.0 in _______

66.04 Wn

Figure 1. Four-Point Bending Specimen.

Figure 2. Four-Point Bending Load Device.
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applied by turning the power screws and monitoring the loads on

the load cells.

2.3 INSTRUMENTATION

The moire device used in this investigation is described

in Reference 1. For reader convenience, the basic experimental

setup is shown in Figures 3 and 4.

Four Micro-Measurements EA-13-250BF-350 strain gages were

installed in the center and back-to-back on the front and rear

surfaces of the test specimens in the x and y directions so that

they measured the e and E strains (Figure 5). These strainx y
gage circuits were balanced on a 10-channel Vishay bridge balance

and were read on a Vishay strain meter.

A dial indicator gage whose sensitivity is 0.001 inch was

used to measure the deflections at the center of the plate.

2.4 MATRIX FOR EXPERIMENTAL INVESTIGATIONS

The experimental effort conducted in support of the program

objective is summarized in Table 1.

5
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Figure 3. Moire Device with Four-Point Bending
Load Fixture.
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SECTION 3

ANALYTICAL TECHNIQUES

The test specimen was subjected to a range of loads which

would induce both small and large deflections. Hence, it was

necessary to predict the static response of the test specimen by

both small and large deflection theories. A brief outline of

the theories used and the solutions obtained are given in the

following paragraphs.

3.1 SMALL-DEFLECTION PLATE THEORY

The Lagrange plate equation is given by (Reference 12)

a4 w+2 4 w+a4
34w aw + aw -j (1)

4 2 2 4__
ax ax ay ay D

The simple support boundary conditions are

w 0, a-= 0 for x 0 andx=a (2)
ax

The free-edge boundary conditions are

a2 + )2 - 0 for y - +b/2

a- + (2-V) . 0 for y -+b/2 (4)

The deflected surface is assumed in the form of a series

(Figure 5)

w-w I +w 2 (

10



where

2Pa 3  2 ia - -sinm (6)

4bD m=,3,5 j=l m

represents the deflection curve of a four-point bending strip,

and

W Pa 3  Ara' coshM~ + B mr
2 35a m a4 4bB m-1,3,5 I

,ih' in- (7)

A. and B are determined from the boundary conditions (2), (3),
m m

and (4) and are represented by

2v (.1-v) cosham-(l+v) sinham 2 mIre.
(mV- v s acosh +(l-) sin (8)

Am 2 aa~ l i-
m N .+2v-3) sinh a m cahm m + 3V C =1a(8

2v -(l-v) sinha m  2 m _
m = 2 2 sin- 2  (9)

m (V +2v-3) sinh a mcosh a m+(l-v) a iinj a

This series solution converges very rapidly. The first

three terms are sufficient for deflections and the first six terms

should be considered for stresses. The details of the analytical

expressions are given in Appendix A.

3.2 LARGE-DEFLECTION BEAR THEORY

By symmetry the beam is considered to be fixed at A and

only one half of the beam is shown (Figure 6). The Bernoulli-

Euler equations for the beam in the regions BC and AB are

given by

13.i
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D P(x-x) + P cto (yc-y) forx >x > xR (10)
ds c o

dvs= P(Xc-X) + P coto (Yc-y)
3 c 0 C

- P(xBx)-P cotX o(YB-y)

for xB > x > 0 (11)

The boundary conditions are

[diP 0: (12)

[0]s=0 =0 (13)

d;P] to be continuous (14)

These differential equations (10) and (11) are integrated

and the constants of integration are determined from the

boundary conditions (12), (13), and (14). The equations for

Lil L2  XB' YB' Xc, and YC are expressed in terms of

elliptic integrals of the first and second kind and are

given below. The details of the derivation are given

in Appendix B.

L1  K (p,,N) (15)
k 1

1

L= L- (K(p) - k(p,m)] (16)

2p,

YB = k [1- cosN] (17)

+ {-sin*o [K(p,m) - K(p)
YC- YB 0

+ 2E(p) - 2E(p,m)] + 2p cos* 0 cosm (18)

13



1x B = q [3K(P 1 ,N) - 2E(PIN)] (l?)

1 - B - {cosj EK(p,N) - K(p)X B k 2

+ 2E(p) - 2E(p,m)] + 2p sin 0 COSI} (20)

where
ir/2!- o
w'/2

E( ) = I A-p 2 sin2 do

0

are complete elliptic integrals of first and second kind, and
,, dO,

K(p,Ii) = /1..2s n
J p iny.

E (p,') = -p s0n dO

0

are elliptic integrals of first and second kind.

p = sin k 2/4 (21)

P,= l 2cos1 + 2  cos(w/2 + i-4)2)1 (22)
r2 k

k (cot*- cotx (23)

14



k

2 D In O  (24)

si 1 sin *1 0

m sin 2l o (25)
p J

N = sn - I  inai/21

N =sin-
1  1 (26)

Pl J

A numerical solution of these equations for a four-point

bending test specimen is obtained by applying the condition that

the supports are a known distance apart and the length of the

beam can change during loading (References 10 and 11). This
condition is imposed by the use of Equations 19 and 20. A value

for is assumed and Equation 20 is solved for F. The value

of 41 is then obtained from Equation 25 and the value of Ki, P1
and N are then computed from Equations 23, 22, and 26 and

substituted into Equation 19. This numerical iteration is

continued and a set of values for * and ' 2 are fin.lly obtained

after a few trials to simultaneously satisfy Equations 19 and

20.

15



SECTION 4

EXPERIMENTAL AND ANALYTICAL RESULTS

A brief description of the experimental procedure and the

moire, the strain gage, and the dial gage results are given in

the following paragraphs. The analytical results are presented

and compared with experimental results.

4.1 EXPERIMENTAL PROCEDURE

The total number of tests were organized into three

separate categories, e.g., Test Series I, II, and III, as shown

in Table 1. In Test Series I, the moire device was held

horizontally thereby projecting vertical Ronchi rulings. A

preload of five pounds was applied to the specimen to firmly

position the specimen against the supports. The strain gages
were zeroed and the reference moire fringes were recorded. Loads

were. applied to the specimen in increments of 50 pounds to a

maximum load of 305 pounds. At each increment of load, two

photographs of the moirg fringe pattern were taken, and the
meter readings were scanned manually and recorded.

In Test Series II, the moirg device was rotated 900 so

that horizontal Ronchi rulings were projected onto the test

specimen. The moire fringes and strains from strain gages were

recorded by the procedures outlined for Test Series 1.

In Test Series III, a dial gage was positioned to measure

deflection at the center of the specimen. A preload of five
pounds was applied to the specimen to firmly position the speci-

men against the supports, and the initial reading of the dial

gage was recorded. Loads were then applied to the specimen in

increments of 50 pounds to a maximum load of 305 pounds and then

decreased by 50 pound increments to the initial five-pound

preload. Dial gage readings were noted at each increment or

decrement of applied load. The deflection at each load was

obtained as the difference between the dial gage reading at that

load and the preload.

16



4.2 MOIRE RESULTS

The test specimen was considered to be a plate with
223 2w 3 w

curvatures = and =_ in the x and y directions, The moirA

device was used to determine these curvatures. The moir6 device

was held in the horizontal position to determine - and in the
2w3 wvertical position to determine -. Moire fringe patterns for

these cases are shown in Figures 7 and 8. Deflected shapes of the

loaded plates were computed using measurements taken from the

photographs and a program called STRAIN. Deflection data were

fitted to quadratic and cubic polynomials using a least-square

curve fitting routine called LSQ. Slopes and curvatures of the

deflected shapes were determined using a program called PLATE.

The moiri strains are given from the relations

C -Z 32I (27)

C z 6 1(28)

In the case of large deflections, the curvatures are replaced

by the expression

2w

32w__(w / (29)

= - 3/2 (30)
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(a) 5 POUNDS LOAD

(b) 55 POUNDS LOAD

(c) 105 POUNDS LOAD

Figure 7. moird Vrings t~o I)ctci-wile ---W Curvature.
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(d) 155 POUNDS L OAD

~e 25noUNS." A

(e) 255 POUNDS LOAD

ff) 355 POUNDS LOAD
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(a) 5 POUNDS LOAD

(b) 55 POUNDS LOA D

(c) 105 POUNDS LOAD

* 2
Figure 8. moir 6 Fri nqes t~o 2e I o- Curvature.
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(d) 155 POUNDS LOAD

(e) 205 POUNDS LOAD

(f) 255 POUNDS LOAD

(g) 305 POUNDS LOAD

V-iqurc, 8. (Conec I lI (11o
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a2w
The a curvature of the four-point bending test specimen

ay2
is a small quantity compared to and the very small number of

ax
moire fringes are insufficient to accurately determine this

quantity. Therefore, according to References 13, 14, and 15,2wa
ay- curvature is assumed to be -v a w a is given by
ay ax h

a2wE=- _vW = -v E (31)
ax

The =- curvatures are also determined directly from Figure 8
ay

for a few load cases.

The moire deflections and strains are presented for loads

of 50 to 300 pounds in Tables 2 and 3, and in Figures 9 and 10.

The moire deflections computed by program STRAIN were fit to a

.second order polynomial using the least squares routine PLSCF

and a second order Legendre polynomial, and the experimental

points and the fitted curves were plotted using plot routine

PLOTS, Figures 11 and 12.

The scatter of moire experimental data is large at small

loads and the experimental data points cannot be fit by means of

a polynomial. It should be remembered that the plate specimen has

initial imperfections which are of the same order of magnitude

as the deflections corresponding to these smaller loads. This

could be the cause for the large amount of scatter. At higher

loads, the moird experimental points can easily be fitted by

means of second or third degree polynomials and the experimental

scatter is greatly reduced.

4.3 DEFLECTIONS FROM DIAL GAGES

The deflections measured by dial gages are given in

Table 4 and shown previously in Figure 9.
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TABLE 2

MOIRE DEFLECTIONS AND STRAINS
AT THE BEAM CENTER

Deflections Strain (u)

Load W
(Ibs) (in) x y

50 0.045 385.3* -128.44

(363.64)t (-121.22)

100 0.094 765.84 -255.28

(766.34) (-255.46)

150 0.144 1185.90 -394.9

(1186.66) (-394.9)

200 0.193 1599.18 -533.06

(1602.68) (-534.22)

250 0.251 1987.76 -662.58

(2005.52) (-668.52)

300 0.300 2347.38 -782.46

(2398.84) (-818.30)

*Quadratic polynomial curve-fit
tCubic polynomial curve-fit

,, IP Wen IP WP

+ex

-ey

W •Wcen-Wp
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TABLE 3

MOIRE DEFLECTIONS AND STRAINS
THREE INCHES BELOW CENTER

Deflection

Load w Strain (u)

(ibs) (in) x y

50 0.061 465.38* -155.12

(455.3)t (-151.76)

100 0.099 719.76 -239.52

(718.56) (-239.52)

150 0.147 1166.5 -388.82

(1161.9) (-387.3)

200 0.193 1542.78 -514.24

(1537.32) (-512.44)

250 0.252 1981.46 -660.5

(2005.54) (-668.52)

300 0.304 2347.38 -784.32

(2406.96) (-802.32)

*Quadratic polynomial curve-fit
'Cubic polynomial curve-fit

/P '#can 1P

+ ex

ey
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TABLE 4

DIAL GAGE DEFLECTIONS AT CENTER OF BEAM

Load Deflections

(ibs) (in)

50 0.052

100 0.1055

150 0.1590

200 0.212

250 0.266

300 0.322

P P

P P
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4.4 STRAINS FROM ELECTRICAL RESISTANCE GAGES

The strains-recorded frot strain gages are presented in

Table 5 and shown previously in Figure 10.

4.5 ANALYTICAL RESULTS

The deflections and strains predicted from the small-

deflection beam theory are presented in Table 6; from the small-

deflection plate theory in Table 7; and from large-deflection

beam theory in Table 8.
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TABLE 6

DEFLECTIONS AND STRAINS FROM SMALL-DEFLECTION BEAM THEORY

x x
Load WLOAD WCEN W Strain Strain
(ib) (in) (in) (in) u

50 0.1638 .2253 .0615 427 -142.33

100 0.3277 .4506 .1229 853 -284.33

150 0.4915 .6759 .1844 1280 -426.67

200 0.6554 .9012 .2458 1707 -569

250 0.8192 1.1265 .3073 2133 -711

300 0.9830 1.3518 .3688 2560 -853.33

Pf~I~.we PP

+4Ex

OEY

W=Wc n - Wp
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TABLE 7

DEFLECTIONS AND STRAINS FROM SMALL-DEFLECTION PLATE THEORY

w x y
Load WLoad CEN W Strain Strain
W inch inch inch w u

50 0.1522 0.2064 0.0542 346 109

100 0.3045 0.4129 0.1083 693 217

150 0.4567 0.6193 0.1626 1040 326

200 0.6090 0.8257 0.2168 1386 435

250 0.7612 1.0322 0.2710 1733 543

300 0.9135 1.2386 0.3252 2080 652

Wi,

W • Wcen-w load
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TABLE8

DEI'LECTIONS AND STRAINS BY LARGE-DEFLECTION BEAM THEORY

E
ww x y

Load WLoad CEN W Strain Strain
W inch inch inch ii

100 0.3330 0.4577 0.1247 855 -285

200 0.6760 0.9308 0.2547 1724 -575

300 1.0351 1.4182 0.3830 2621 -874

W* WCEN WP

Esx
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SECTION 5

ANALYSIS OF RESULTS

Deflections are compared in Figure 9 and in Table 9, and

strains are compared in Figure 10 and in Tables 10, 11, and 12.

The deflections from dial gages and strains from resistance gages

are considered as standards with which the deflections and strains

by other methods are compared and evaluated.

In comparison with the dial gage deflections, the moire

deflections are smaller by 7 to 13 percent; deflections predicted

by small-deflection plate theory are higher by 1 to 4 percent;

the large-deflection beam theory deflections are higher by

18 to 20 percent; and small-deflection beam theory deflections

are higher by 15 to 18 percent. Thus the small-deflection plate

theory predicts deflections in close agreement to the dial gage
deflections. The deflections determined by the moir4 fringe

technique are more accurate at higher loads. This is due to

initial imperfections of the test specimen which will be of the

same order of magnitude as the deflections at small loads. This

causes considerable scatter of the experimental data points as

seen in Figures 11 and 12. At higher loads, when the deflections

are large, the scatter in experimental data points is reduced and

moir4 deflections agree within 6 percent with dial gage deflec-

tions. Another cause for the large discrepancy noticed between

moire and dial gage deflections was due to the fact that the

initial reference surface was not perfectly flat, as most machined

flat plates have some initial imperfections. The test specimens

were prepared from rolled plate and developed imperfections during

machining which could not be easily removed.

In comparison with resistance strain gage strains, the

moird ex strains computed by second and third order polynomials

are smaller by 0 to 8 percent (Table 10 and Figure 10), whereas

those computed by Legendre polynomials are smaller by 6 to 25

percent (Table 11); the classical beam theory cx strains are
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higher by 1.5 to 3 percent; the large-deflection beam theory ex

strains are higher by 3 to 6 percent; the E strains from classicalx
plate theory are smaller by 16 to 18 percent. Thus the moir6 e x
strains computed by second and third order polynomials are in

close agreement with resistance gage strains, especially at

higher loads, and can be predicted by small-deflection beam theory

over the range of loads considered in this investigation.

The moir6 c strains were determined by two methods. Iny
the first method, since the curvature in the y-direction is

(References 13, 14, and 15):

a 2w 2w
2 21

the ey strain can be approximated by

E -V .y x

2 w
In the second method, 1 curvature is determined directly from

ay
the Moire fringe photographs of Figure 8. The c strains obtainedy
by the first method are compared in Tables 11 and 12 and in

Figure 10. In comparison with resistance gage strains, the e
- y

moire' strains obtained by second and third order polynomials are

higher by 7 to 34 percent; whereas those obtained by a second-order

Legendre polynomial are higher by 6 to 20 percent; the small-

deflection beam theory e strains are higher by 15 to 32 percent;

the large-deflection beam theory e strains are higher by 17 to
y

35 percent. Classical plate theory predicts tensile e-

strains and cannot be compared with resistance gage strains.
The solution strategy used in the classical plate theory is similar

to the one used by Timoshenko for many of the plate bending problems.

But this strategy may not give true solutions due to the type of

loading, boundary conditions, and possibly due to the large aspect

(a/b) ratio of 4 of the test specimen. The -y moird strains

determined by the second method for loads of 150, 200, and 250

44
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pounds are compared in Figure 10 and these are smaller than

resistance gage strains by 0 to 8 percent. Therefore, none of

theanalytical methods considered in this investigation predict

the Fy strains accurately. The Sy Moire strain determined by the

second method is closer to resistance gage strains and therefore

is to be preferred to the first method.

For the loads considered in this investigation, curvatures

determined by large deflection equations (Equations 29 and 30)

did not differ significantly from the curvatures determined by

small deflections and therefore the numerical results are not

presented for these.
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SECTION 6

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are based on the results of

this program.

1. The projection moire method used in this investigation

determines both the deflections and strains accurately in flat

surfaces undergoing large deformations due to static loads.

However, the strains determined by regression analysis using

second and third order polynomials and second order Legendre

polynomials are accurate only for the center portion of the

beam.

2. Of the analytical methods, small-deflection beam

theory and large-deflection beam theory predicted beam deflec-

tions and e strain accurately. Plate theory predicted thex
deflections very accurately. The e strains were not predictedY
accurately by any of the methods investigated.

The following recommendations are made. (1) Other numerical

curve fitting methods such as spline approximations and beam

functions should be tried to obtain accurate second derivatives

from the moire deformations at any position along the span of

the beam. (2) The investigations reported herein should be

extended to evaluate the accuracy of the method for curved

surfaces under dynamic response conditions.
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APPENDIX A

SMALL DEFLECTION PLATE THEORY FOR FOUR-POINT

BENDING PLATE SPECIMEN

BASIC EQUATIONS

The Lagrange plate equation is given by

a4 4w 4w w(A-1)

where w is the downward defliction, q is the intensity of the

load and D is given by Eh The boundary conditions are
12 (.1-v)

2w
w =0 a 0 for x =0, and a

ax (A-2)

a 2w  a 2w
+ Vx- = 0 for y = ±b/2 (A-3)

S2w-+ ( =0 for y ±b/2 (A-4)

The load is symmetrical with respect to the x-axis

(Figure 4) and therefore the deflection surface is symmetrical

with respect to x-axis. Therefore we can consider only the

conditions along the side y - %b/2.

The deflection surface is assumed in the form

w w1 + w2  (A-5)
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where.

2Pa 3  1 I . si -
V Sifi SIa (A-6)

=,bD m-1,3,5 J-1

w -A cosh-..Mk.Si,"Yl sin

2 4b6 A a a a a (A-7)

The constants A. and B are given by

2v ( ) m " (l+v)sinham 2

7 " (Iv.2 2hIem oinifl 2 - (A-8)
m (\P +2v-3)siau COuhOL M (l-\)) Q j.l

m m~
2

SMa2 -(l-v)sinh % .
Cv2+2v-3)sinhucauha M (l-v) a a jol

Where a m a

The moment-curvature relations are given by

-2 
(A-1)

2 2w
14 -D w + a-,.1  (A-l1)

- Lays a 71

M1 - (i- 2W (A-12)
axay

The maximum stresses at the surface of the plate are given by
614 x

CX M -- (A-13)

6M
a' -+ (A-14)

3K
Tx X T Xy h (A-15)

4S



The maximum strains at the surfaces of the plate are given by

E = T z 2w -h .2w (A-16)

3 2 w h 32
=-=w T +w (A-17)

ay By

The value of the first three constants of the trigonometric

series are given by

A1  B1  A3  B 3  A5  B5

-0.21651606 +0.03558502 0.01535823 0.01942625 -0.0001234-0.00012857

GPa r M-c - W 2 f) W- 2b. .g - - a (1-V-2vB Is Icosh +B (1-0 -!qx-sinj j sin
Mh 1 135 L a ai iaU a a fJa

(A-18)

- .... 2, +M*.n1+±~b {[cv)acoh!a(I--s)1a±hM!Xsiun'" (A-19)
h ba

T " 3 ' "(1-v Fu . (A-20)

6 1v) aL (sin::Uflh!4i3 31 a2 !t 3 1

ex a(~ I~ Y _2 (AMh;B M- inh"Tin (A-21)
- !a Zh r3 a*oh~+3 ~~~h~j a a

n-1,3 * -

(1-v) Pa a ~2 (Aqo.hMX4.2I .h!!'4.M sinh= - iw.- (A-22)
S w Eh b ml, 3, 5

cy - a b -1,3,5 1 a a ma .a a

49



APPENDIX B

LARGE DEFLECTION BEAM THEORY FOR A FOUR-POINT

BENDING BEAM SPECIMEN

BASIC EQUATIONS

Let L = L1 + L2 be the length of cantilever and D = El 2

1- V

its flexural rigidity. For a point U between B and C (Figure 5)

the bending moment equals
M, P(xc-x) + P OtocY- = Dd4  (B-i)

where * is the angle between the slope and the horizontal, and

s is the arc length from A to U measured along the elastic

shape. Differentiating with respect to s, we get

d- Pd P Coto -P cos*-P Coto0 sin*O (B-2)
ds' dod

In terms of new variables

L 2 0(B-3

the Equation 2 reduces to

d + C'sin0= 0 (B-4)

du
where C*- L2 2 and p 2 .

L2  k2  an Dsin* 0

Further Equation 4 can be written in the form

l U~k)2 _ C*come + C1  (B-5)

For the solution of the constant C1 we have the boundary

condition

[ I -O (B-6)

=2
0so



Therefore C1 - 0, and

d = 2C*cosO (B-7)

This equation can be integrated to give

fL ds =f r/2 2 de (B-8)

L2 / * /sin 2Or/4-sin 0/2

To bring this Equation 8 to Legendre's standard form, let

P = sinr/4; p sin, = sine/2 (B-9)

In terms of the new variable *, the Equation 8 reduces to

jf/2 d

W2 f g2E7 1/2J7 dT /2' 1L (K(p)Kp)

1 (o (B-10)
where m = Sin - I  Sin

The equation for the length s to the point u is given by

s u = 1 + k {K(p,n)-K(p,!)} (B-i1)

where n = Sin-" Sin -a] ] (B-12)

The equation for the horizontal distance x to the point tl is
given by Cr n

f dx = f ds cos* (B-13)
xB m

Integrating this equation, we get

x - ca#(, (° K(p,i)-K(pn) 2E(p,n)-2E(p,n)]+2p sinoo(coui-co.n)} (3-14)

2 0



The horizontal distance to the end of the cantilever C can be

found by substituting p=ip 2 and n=-r/2 in Equation 14.

xc I XB I 2  (cos o (K(p,Z)-K(p)+2E(p)-2E(p,i)j]2p sin*0 coai} (B-15)

The equation for the vertical distance y to the point U is given

by

YU dy = f ds sin, (B-16)

YB m

Integrating this equation,

(2p coso (cosr-coon)-sino IK(p,i)-k(p,n)+2N(p,n)-2E(p,j)]} (B-17)
YU Y It20 0

The vertical distance to the end of cantilever C is

+!- (2p co*oCOo&-sin#o[K(p,;)-K(p)+2E(p)-2E(p,;)] (B-18)

For a point Q between A and B, Figure 3, the bending moment

equals

no P(XC-X) P Cot*0 (YcY)-P(YB-R)-P CotA,(ye-y) - (B-19)

Differentiating with respect to s, we get

2
D" -P cot P 14P cot d = -k 2 sin, (B-20)
ds2  ods o ds 1snp

where k 2 = (coto-cotxo) P.

52



Equation 20 6an be written as

Sk2 Cos + C (B-21)

For the solution of the constant C we have the boundary2
condition

Ldsl 2 1 0)

Solving for C2
2 2

C2 = 21k2  cos(*1 +1o) - kI2 cosO 1] (B-22)

Now the Equation 21 becomes

diP k 2

= / (Cos*-Cos,)+= cos(*i+*o) (B-22)

Introducing a new variable p, such that

2

2  {cos(*,+* 0 )} 2P12-i + cos* 1  (B-23)

we can integrate the equationJL1 ds d'l d (B-24)
"P 2-i 2_sin 2

0 0

To bring this Equation 24 to Legendre's standard form, let

sin*/2 - p1 sine (B-25)

Then
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L ki N _1(n7 j k(pl'N) (B-26)

1 sin 1
0

where N= sin- -F sin-]

The horizontal distance x to a point Q is given by

fXd = ds cos* (B-27)

0 0

N

dO Nfu.psne L(1
= 2 e o A-p;ne dO - I3[k(P,N)-2E(pc,1 u)) (B-28)

where N = sin- I [- sin*]u p1  2

The horizontal distance xB to the point Q is given by

1 3 k&, - 2E(N)I\ (B-29)

where N = sin- 1 sin-

The vertical distance y to a point Q is given by

y = dY ds sin* - 2p, [1-Nu] (B-30)
f f

01

The vertical distance YB to the point B is given by

.2p,-1
- [-N] (B-31)
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