" AD-A129 416  STRAINS FROM PROJECTION MOIRE DATA(U) DAYTON UNIV OH P3|
: RESEARCH INST B B RAJU ET AL. FEB 83 UDR-TR-82-142
AFWAL-TR-83-3020 F33615-80-C-3401
UNCLASSIFIED F/G 20/11




Iﬁm 2.5

i &

——— E s I-
il 7'

IoI En:u H'g

Y TES

==
(o ]

==
B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




AD A129416

DTG FILE COPY

AFWAL-TR-83-3020

STRAINS FROM PROJECTION MOIRE DATA

B. Basava Raju
Blaine S. West
Andrew J. Piekutowski

Univérsity of Dayton Research Institute
Dayton, Ohio 45469

Final Report for Period September 1981 - March 1982.

February 1983

Abprdvad for public release; distribution unlimited.

FLIGHT DYNAMICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS C

OMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

88 06 16 07y




NOTICE

when Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely related
Government procurement operation, the United States Government thereby
incurs no responsibility nor any obligation whatsoever; and the fact
that the government may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other data, is not to
be regarded by implication or otherwise as in any manner licensing the
holder or any other person or corporation, or conveying any rights or
permission to manufacture, use, or sell any patented invention that .
may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS).
At NTIS, it will be available to the general public, including foreign
nations.

This technical report has been reviewed and is approved for
publication. :

Robert 3. Simmons, 1lLT. USAF Ralph J. Speelman

Project Manager Program Manager
Improved Windshield Protection ADPO Improved Windshield Protection ADPO
Vehicle Equipment Division Vehicle Equipment Division

FOR THE COMMANDER

v
e . 2] ’,/
l‘/ -".' -'// / /j/ A\
.”' . . 8 b
e e e—

““golomon R. Metres
Director

Vehicle Equipment Division : )

"If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization
please notify AFWAL/FIEA, W-PAFB, OH 45433 to help us maintain a
current mailing list".

Copies of this report should not be returned unless return is required
by security considerations, contractual obligations, or notice on a
specific document.

s

g pm——




UNCLASSIFIED

SECURMITY.CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE B!F%ch:;gg%g":ogu
[T, REFORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
AFWAL-TR-83-3020 . AR G {
4. TITLE (and Subtitle) j : S. TYPE OF REPORT & PEROO COVERED
STRAINS FROM PROJECTION MOIRE DATA Final Report for Period

Sept. 1981 - March 1982

[ % Ptali)oﬁnl'ii'ﬁng!acz:?zaf NUMBER
7. AUTHOR(s) [N CON“AC? OR GRANT NUMBER(s)
B. Basava Raj:
iagosata faju F33615-80-C-3401
Andrew J. Piekutowski S—
9. PERFORMING ORGANIZATION nmﬁuo ADORESS 10. PROGRAM ELEMENT. PROJ . K
University of Dayton Research Institute |pp'84213F. Task 192601, |
300 College Park Avenue Project 1926,
. rice € AND ADDRESS 12. REPORT DATE
"pIYght ‘Dynamics Laboratory (AFWAL/FIER) February 1983 E
AF Wright Aeronautical Laboratories, AFSC [73 WUMSER OF PAGES t
Wright-Patterson Air Force Base, OH 45433 63 §
T3 MONITORING AGENCY NAME & ADDRESS(if differsnt from Controlling Office) 18. SECURITY CLASS. (of this report) f
Unclassified %

15a, DECL ASSIFICATION/ DOWNGRADING
SCHMEDULE

6. DISTRIBUTION STATEMENT (of this Report)

aEr—y

Approved for public felease; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEZY WORDS (Continuve en side if y and identity by block mmmber)
Strains from moiré deformations, projection moiré
Static response analysis
Four-point bending test and analysis

~J Large deflection beam theory, plate theory

%AISTRACT (Continue on reverse side if necessary and identify by block number)

The main objective of this program was to determine and evaluate
the surface strains from out-of-plane deformations determined by
the projection moiré method of large surfaces experiencing static
loads. The program consisted of three primary tasks: (1) design
of an experiment consisting of a four-point bending fixture and a
26x6x1/4 inch flat test specimen, moiré device, strain gage
instrumentation, and dial gages, and the collection of experimenta]

data for various static loads; (2) analytical prediction of the,
DD ,'5R%; 1473  xoimion oF 1 nov &8 13 OBsOLRTE andt

JANTS UNCLASSIFIED

SECURITY CLASSIFICATION OF TNIS PAGE (When Date ;m l .




SRCURITY CLASSIFICATION OF THIS PAGE(When Date Entered) . l

Continuation, block 20.

- 52 1> deflections and strains by small and large deflection beam

' theories and small deflection plate theory; (3) computation of
strains from the moiré deflections by a number of numerical
curve fitting techniques; and (4) comparison of the strains
determined from the moiré technique with experimental and
theoretical strains. '

Tests were conducted at loads from 50 to 300 pounds in
50 pound load increments and strains were computed from moire
deflections by using second and third order polynomials and a
second order Legendre polynomial. ‘' Both the deflections and ,
strains were accurately determined for the flat surfaces
investigated. t is recommended that the investigations be
extended to qtaluate the accuracy of the method for curved
surfaces undg¢r\ dynamic response conditions.

UNCLASSIFIED h

SECURITY CLASSIFICATION OF Tui® PAGE(When Date Bntered)




FOREWORD

The effort reported herein was conducted for the Air
Force Wright Aeronautical Laboratories, Flight Dynamics
Laboratory, Wright-Patterson Air Force Base, Ohio, under
Contract F33615-80-C-3401, Project 1926. Air Force administrative
direction and technical support was provided by Lt. Robert
Simmons, AFWAL/FIEA. The work described herein was conducted
during the period September 1981 to March 1982. Project
supervision was provided by Mr. Dale H. Whitford, Supervisor,
Aerospace Mechanics Division, University of Dayton Research
Institute. Experimental support was provided by the Impact
Physics Group of the Experimental and Applied Mechanics Division.

The authors wish to acknowledge the contributions of
Mr. Keith Miller who assisted in the use of PLSCF, PLOTS programs
for curve-fitting the experimental data, and Ms. Susan A. Emery
and Mr. Paul E. Johnson for helping in strain gage instrumentation
and load cell calibration.

. Accession For Vs
I em-3 GRA&I N
- 0

© . TAB
1. ar.snunced O
ITastifieation

nistributionlrv

feall and/or
Pist + Spocial

i

Aveilability Codeg

T




TABLE OF CONTENTS
SECTION PAGE
1 INTRODUCTION 1 3
1.1 Background Information 1
1.2 Program Objective and Summary 1l
2 EXPERIMENTAL TECHNIQUES 3 *
R 2.1 Test Specimen 3
2.2 PFour-Point Bending Load Device 3
' 4 2.3 Instrumentation 5
i 2.4 Matrix for Experimental Investigations 5
3 ANALYTICAL TECHNIQUES 10
3.1 Small-Deflection Plate Theory 10
3.2 Large-Deflection Beam Theory 11
4 EXPERIMENTAL AND ANALYTICAL RESULTS 16
4.1 Experimental Procedure 16
4.2 Moiré Results 17
4.3 Deflections from Dial Gages 22
4.4 Strains from Electrical Resistance Gages 34
; 4.5 Analytical Results 34
5 ANALYSIS OF RESULTS 39
6 CONCLUSIONS AND RECOMMENDATIONS 46

APPENDIX A: Small Deflection Plate Theory for

% Four-Point Bending Plate Specimens 47

: APPENDIX B: Large Deflection Beam Theory for a

‘ Four-Point Bending Beam Specimen 50 )
REFERENCES 55




3 LIST OF ILLUSTRATIONS
|
i
| FIGURE PAGE
i :
5 1l Four-Point Bending Specimen 4
2 Four-Point Bending Load Device 4
3 Moiré Device with Four-Point Bending Load
Fixture 6
4 Schematic View of Moiré Device Illustrating
Components and their Relationship to Target
5 Four-Point Bending Plate Specimen 8 : !
6 Four-Point Bending Beam Specamen 12
7 Moiré Fringes to Determine 3—; Curvature 18
9x
: 32w
8 Moiré Fringes to Determine —x Curvature 20
: oy
% 9 Comparison of Experimental and Analytical
i Deflections 25
’ 10 Comparison of Experimental and Analytical
Strains 26
} 11 Regression Analysis Using a Second-Order,
{ Polynomial Relating Deflections and Span
| Positions 27
: 12 Regression Analysis Using a Second-Order

Legendre Polynomial Relating Deflections
and Span Positions 30

e ik
£




TABLE

10

11

12

LIST OF TABLES

Test Matrix

Moiré Deflections and Strains at the Beam
Center

Moiré Deflections and Strains Three Inches
Below Center

Dial Gage Deflections at Center of Beam
Strains from Resistance Strain Gages

Deflections and Strains from Small-Deflection
Beam Theory

Deflections and Strains from Small-Deflection
Plate Theory

Deflections and Strains by Large-Deflection
Beam Theory

Comparison of Deflections: Moiré, Dial Gage,
Beam Theories, and Plate Theory

Comparisons of ¢_ Strains: Moiré, Resistance
Gages, Beam TheoPies, Plate Theory

Comparison of Moiré Strains (by Legendre
Polynomials) with Resistance Gages

Comparison of e, Strains: Moiré, Resistance
Gages, Beam Thegries, Plate Theory

PAGE

23

24
33
35

36

37

38

40

41

42

43




A.m,Bm

a,b

c*,C,.,C

1772

o

m m O

(p,m)

E(p)

K(p,m)

K(p)

" oot o st |t b e e
L i A oy o

LIST OF SYMBOLS

Points of the symmetry, the loading, and the tip
of the four-point bending beam specimen

Amplitudes of displacements in plate specimen, in.

Length and width of the four-point bending plate
specimen, in.

Constants of integration in the large deflection
beam theory

Flexural rigidity of beam - EI/l—vz, inz-lbs.
Flexural rigidity of plate - Eh3/12(1-v2), in-lbs.
Young's modulus, psi.

Elliptic integral of second kind -

1/2

m
f (1-p% sin?4)1/2 ap

o

Complete elliptic integral of second kind -

n/2

f (1-p2 sin?4) Y2 ay
o

Thickness of specimen, in.

Moment of inertia of cross section of beam -

bh3/12, int.

Summation subscript, 1 and 2.
Elliptic integral of the first kind -
m
J (1-p? sin29)71/2 ap
o -
Complete elliptic integral of the first kind -
T/2 -
J (1-p2 sin?p)"1/2 g
o
Load parameter used in the large deflection beam

theory - {P(Cot¢°-CotA°)/D}l/2, in"1

viii

e T N e LT RE WO




LIST OF SYMBOLS, continued f

K = Load parameter used in the large deflection beam
theory - {P/D Sinwo}l/z, in~1

Ll,L2 = Lengths of the regions AB and BC of the four- :
point bending beam specimen, in.
Mx,My = Bending moments per unit length of sections of a

plate perpendicular to x- and y-axes, respectively

in.~lbs.in 1.

=
]

Twisting moments per unit length of section of a

plate perpendicular to x-axis, in.-lbs.-in L.

Bending moments at points U and Q on the four-
point bending beam, in.-1lbs.

&
03
]

m = Summation subscript, 1,3,5,...®...

m = A parameter used in the large deflection beam
theory - Sin™*[{Sin(¥7¥9_)/2)}/p]

N = A parameter used in the large deflection beam
theory - Sin”'[sin(y,/2)/pl

n = A parameter used in the large deflection beam
theory ~ Sin-l[{Sin(w+wo/2)}/p]

P = Concentrated point load on the beam or total line
load on the plate specimen, 1lbs.

p = A parameter used in the large deflection beam
theory - Sinn/4

P = A parameter used in the large deflection beam theory -
-1/2,. 2 2 _ 1/2
2 {1 cosy,+K,“/K, [cos(T/2 w1+w2)]} .

Q = A point in the region AB of the four-point bending
specimen

q = Intensity of a continuously distributed load, psi.

Rx'Ry = Radii of curvature of the plate in the xz- and

yz-planes, in.

B e VA s g, A




Wil Wopy

W, W

D™

w

oL’ "1eM’ BM

LIST OF SYMBOLS, continued

A variable used in the large deflection beam

. theory = S/L2

= Deflections at any general point, at the point of

load application and at the center of the specimen,
in.
Center deflections of specimen determined by dial

gage and by moiré method, respectively, in.

Center deflections of specimen determined by
plate theory, large deflection beam theory and
classical beam theory, in.

Cartesian coordinates

Lengths of the regions AB and AC of the beam
specimen, in.

Vertical displacements of the loading point B and
the tip of the beam specimen, in.

Aspect ratio parameter of the plate specimen,
mrb/a

Strains in x- and y-directions, uin./in,

Strains in the center and on the outer surface of
the specimen - uin./in.

Strains in the center and on the inner surface of
the specimen - uin./in.

Axial strains in the center of specimen - uin./in.
Bending strains in the center of specimen - uin./in.
Strain in the center of the specimen, determined by

small deflection beam theory and large deflection
beam theory, respectively, vin./in.

Strain in the center of the specimen determined by
plate theory - uin./in.




LIST OF SYMBOLS, continued
Integration variable in the elliptic integral -
sin"1[ (sin6/2) /p]

Slopes of the four-point beam at a general point,
loading point B, and at the tip, C - rad.

Complementary angle of the end slope,

Complementary angle of the slope wl at the loading
point B - 90-w1, rad.

Poisson's ratio

Normal components of stress parallel to x- and
y-axes, psi.

Shearing stress component in x-y coordinates, psi.

A variable used in the large deflection beam
theory - w+wo, rad.




=

SECTION 1
INTRODUCTION

1.1 BACKGROUND INFORMATION

The projection moiré method has been used successfully to

determine the out-of-plane motions of large surfaces experiencing :
a dynamic response to an impulsive load (References 1 and 2).

This method will perform equally well in situations where the
response of the test specimen is static. Use of this moiré method
permits the motion of the test specimen to be determined without
physical contact between the test specimen and the device. If,
then, surface strains can be computed from the out-of-plane moiré
deformations of a test object, the projection moiré method would
become an economical, noncontact experimental tool in the stress i
analysis of complicated structural shapes.

Determination of the surface strains from the surface
deflection data presents some problems because of error magnifi-
cation that results from using inexact experimental data to
compute the second derivatives. Various numerical curve fitting

s

methods have been used to obtain the higher order derivatives.
Among these, the three methods used most successfully are spline
functions (References 3 to 7), beam functions (Reference 8), and
least square regression analysis (Reference 9).

1.2 PROGRAM OBJECTIVE AND SUMMARY

The primary objective of this program was to determine
surface strains on flat plate specimens experiencing static loads
from out-of-plane deformations obtained with use of the projec-
tion moiré method. To accomplish this, a four-point bending test
specimen, in conjuﬂétion with a four-point bending load device,
was selected as a target since a fairly uniform strain field
exists in the midsection of the loaded specimen. A conventional ﬁ
method of strain measurement was chosen to provide data for
comparison with the calculated moiré strains. For this purpose,
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a number of electrical resistance strain gages were installed on
the test specimen and strain measurements made for each load
condition. '

Theoretical strains were also determined to aid in the
evaluation. The small-deflection beam theory was the only
analytical method which permitted deflections and strains in the
four-point bending specimen to be predicted directly. Therefore,
a large-deflection beam theory which integrates the Bernoulli-
Euler beam equations by use of elliptic integrals (References 10
and 11) and a small-deflection plate theory which integrates the
Lagrange plate equation by use of a series of trigonometric
functions (Reference 12) were developed for use with the
four-point bending specimen. The moiré deflections and strains
were compared with the analytically predicted deflections and
strains, with the experimentally determined strains from the

electrical gages, and with deflections from dial gages.




SECTION 2
EXPERIMENTAL TECHNIQUES

A brief description of the four-point bending test fixture
test specimen, moiré device, and strain gage instrumentation is
given in the following paragraphs. The tests performed during
this program are summarized later in this section.

2.1 TEST SPECIMEN

The test specimen, shown in Figure 1, was a 26-inch long,
6-inch wide, 0.25-inch thick flat plate made of 2024-T7T351 alumi-
num alloy. One side of the plate was prepared for recording
moire fringes by the application of a reflective coating and
installation of fiducial marks as illustrated in Figure 2.

2.2 FOUR-POINT BENDING LOAD DEVICE

A four-point bending load device generally consists of two
knife-edge or cylindrical supports on which a beam can be simply
supported at its ends and two loading points equidistant from
the end supports. When loaded this way, a constant bending moment
is generated in the beam between the loading points.

The four-point bending load device designed and fabricated
for this investigation is shown in Figure 2. This fixture has
several unique features. The beam is supported by the inner load-
ing points and the loads are applied to the ends of the beam by
means of finely threaded power screws. The loading points which
come in contact with the test specimen are four ground cylindrical
rods, 3/4 inches in diameter and 6 inches long. The loading points
in the ends are guided so that the applied loads are parallel to
each other and normal to the surface of the test specimen. Load
cells incorporated in the inner loading points were calibrated
prior to their use. Loads, i.e., analog voltages, were read on
separate digital voltmeters to an accuracy of +.0l1 volts or
+0.5 pounds. Loads were accurately balanced, controlled, and
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Figure 1. Four-Point Bending Specimen.

Figure 2. Four-Point Bending Load Device.
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applied by turning the power screws and monitoring the loads on
the load cells,

2.3 INSTRUMENTATION

The moire device used in this investigation is described
in Reference 1. For reader convenience, the basic experimental
setup is shown in Figures 3 and 4.

Four Micro-Measurements EA-13-250BF-350 strain gages were
installed in the center and back-to-back on the front and rear
surfaces of the test specimens in the x and y directions so that
they measured the €y and ey strains (Figure 5). These strain
gage circuits were balanced on a 10-channel Vishay bridge balance
and were read on a Vishay strain meter.

A dial indicator gage whose sensitivity is 0.001 inch was
used to measure the deflections at the center of the plate.

2.4 . MATRIX FOR EXPERIMENTAL INVESTIGATIONS

The experimental effort conducted in support of the program
objective is summarized in Table 1.

aoa e g




VIEWING HEAD WITH PROJECTION HEAD WITH
RONCHI' RULINGS RONCHI RULINGS

i

OUR-POINT BENDING LIGHT SOURCE
LOAD FIXTURE

Figure 3. Moire Device with Four-Point Bending
Load Fixture.
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Figure 5. Four-Point Bending Plate Specimen.
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SECTION 3
ANALYTICAL TECHNIQUES -

following paragraphs.

Es

3.1 SMALL-DEFLECTION PLATE THEORY

34w 34w 34w q
s R e v i
ax ax“ 3y Y b

The simple support boundary conditions are

.

wa=0, — = 0 for x = 0 and x = a
ax

; The free-edge boundary conditions are

[ 22, , 22
+ v—% = 0 for y = +b/2
L y aIx
r 23w 23
—x + (2-V) -7—45 = 0 for y = +b/2
| ay™ ax‘ay :

The deflected surface is assumed in the form of a series
(Figure 5) '

w-w1+w2

10

The test specimen was subjected to a range of loads which
would induce both small and large deflections. Hence, it was
necessary to predict the static response of the test specimen by
both small and large deflection theories. A brief outline of
the the_ories used and the solutions obtained are given in the

The Lagrange plate equation is given by (Reference 12)

(1)

(2)

(3)

(4)

(S)




where
3 g 2 m";j . _MTX

7°bD m=1l,3,5 j=1

lT si
m

represents tﬁe deflection curve of a four-point bending strip,

and

3 -]
2 4 = m=1,3,5 m a m a
7 bD e
s:‘.nl'xm—z;r % s:'an——';rx (7N

A and B_ are determined from the boundary conditions (2), (3),
and (4) and are represented by

(1-v) cosha_-(1+v) sinha 2 mng.
Am = -—1-2\, 3 m m v B z sin-——l (8)
m (V"+2v-3) sinh a_ cosh a_+(1-v)“a j=1 a
m m m
: -(1-v) sinha 2 nrg.
2V m :
m mi (v§+2v—3) sinh o cosh °m+(l'“):°m j=1 a ©)

This series solution converges very rapidly. The first
three terms are sufficient for deflections and the first six terms
should be considered for stresses. The details of the analytical
expressions are given in Appendix A.

3.2 LARGE-DEFLECTION BEAM THEORY

By symmetry the beam is considered to be fixed at A and
only one half of the beam is shown (Figure 6). The Bernoulli-
Euler equations for the beam in the regions BC and AB are
given by




'l J-_:.zs

CROSS-SECTION OF BEAM
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A X9 ——
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Figure 6.

Four-Point Bending Beam Specimen.
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= P(xc-x) + P cotwo(yc-y) for X, > X > Xy (10)

o g

= P(x_~x) + P coty_(y_-Y)

- P(xB-x)-P cotlo(yB-y)

for Xg >x >0 (11)
The boundary conditions are
gi?] = 0 (12)
S
¢=¢2
Wlgg =0 (13)
[-g—;w] to be continuous (14)
¢=¢1 .

These differential equations (10) and (l1l1) are integrated
and the constants of integration are determined from the
boundary conditions (12), (13), and (14). The equations for
Ll' L2' Xgr Ygr Xar and Yo are expressed in terms of
elliptic integrals of the first and second kind and are
given below. The details of the derivation are given
in Appendix B.

L, = 2= K (py,N) (15)
X
1

[
|-

L, [K(p) - k(p,m)] (16)

2

2p
1
yB = k—l- [1- cosN] (17)

Yo = ¥p +'%;{-sinw° IK(p,m) - K(p)

+ 2E(p) - 2E(p,m)] + 2p cosy  cosm}  (18)

13




L
Xy = FI [3K(pl,N) - ZE(pl,N)] (1)
Xo = Xp T %— {cosw° [K(p,m) - K(p)

2
+ 2E(p) - 2E(p,m)] + 2p sinwo cosm} (20)
where
/2
- dé
K(m) = ——=?===
/A

1-p sin2¢

o ~—

'«/z

E@m) = [ A-p? sinle do
o

are complete elliptic integrals of first and second kind,’ and

daé
K(p,m) =
. J /l—-p2 sin§¢
o
T
E(p,m) = f /1-p2 sinqu dé
o

are elliptic integrals of first and second kind.

p = sinn/4 ' (21)
X 2
Py = J'E {l-cosw:L + -k-g-z , [cos(vr/z + wl-wz)]} (22)
1
k, = P (cotdy_ - cotr))
1 D o o (23)
14
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e _ e CEa

k. = P
2 VD siny (24)

-1 |sin V1tV
sin

8l
"

) | (25)
P

sin¥,/2
N = sin~1 [ ! (26)
Py

A numerical solution of these equations for a four-point
bending test specimen is obtained by applying the condition that
the supports are a known distance apart and the length of the
beam can change during loading (References 10 and 11l). This
condition is imposed by the use of Equations 19 and 20. A value
for wz is assumed and Equation 20 is solved for m. The value
of wl is then obtained from Equation 25 and the value of K
and N are then computed from Equations 23, 22, and 26 and
substituted into Equation 19. This numerical iteratian is

1’ Py

continued and a set of values for wl and wz are finally obtained

after a few trials to simultaneously satisfy Equations 15 and
20.




SECTION 4
EXPERIMENTAL AND ANALYTICAL RESULTS

A brief description of the experimental procedure and the
moiré, the strain gage, and the dial gage results are given in
the following paragraphs. The analytical results are presented
and compared with experimental results.

4.1 EXPERIMENTAL PROCEDURE

|
{
|
!
The total number of tests were organized into three \
separate categories, e.g., Test Series I, II, and III, as shown I
in Table 1. 1In Test Series I, the moiré device was held ‘
horizontally thereby projecting vertical Ronchi rulings. A i
preload of five pounds was applied to the specimen to firmly ‘
position the specimen against the supports.  The strain gages
were zeroed and the reference moiré fringes were recorded.
were, applied to the specimen in increments of 50 pounds to a
maximum load of 305 pounds. At each increment of load, two
photographs of the moiré fringe pattern were taken, and the
meter readings were scanned manua}ly anq recorded.

Loads

In Test Series II, the moiré device was rotated 90° so
that horizontal Ronchi rulings were projected onto the test
specimen. The moiré fringes and strains from strain gages were

recorded by the précedures outlined for Test Series I.

In Test Series III, a dial gage was positioned to measure
deflection at the center of the specimen. A preload of five
pounds was applied to the specimen to firmly position the speci-
men against the supports, and the initial reading of the dial
gage was recorded. Loads were then applied to the specimen in
increments of 50 pounds to a maximum load of 305 ﬁounds'and then
decreased by 50 pound increments to the initial five~-pound
preload. Dial gage readings were noted at each increment or
decrement of applied locad. The deflection at each load was

obtained as the difference between the dial gage reading at that
load and the preload.

16
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4.2 MOIRE RESULTS

The test specimen was considered to be a plate with

2 2
curvatures EJ; and 3—; in the x and y directions. The moiré
Ix 3y
device was used to determine these curvatures. The moiré device

2
was held in the horizontal position to determine 3—% and in the
X

vertical position‘to determine 2—;. Moiré fringe patterns for
oy

these cases are shown in Figures 7 and 8. Deflected shapes of the
loaded plates were computed using measurements taken from the
photographs and a program called STRAIN. Deflection data were
fitted to quadratic and cubic polynomials using a least-square
curve fitting routine called LSQ. Slopes and curvatures df the
deflected shapes were determined using a program called PLATE.

The moiré strains are given from the relations

.

2
g = -2 3—%‘ (27)
X X J

2 .

3w
€ = -z{ ] (28)
Y ay?

In the case of large deflections, the curvatures are replaced
by the expression

a2
W
= - ;;7 373 (29)
Rx 3/
w2
B+ (397
Bzw
. ay?
w =z - 2j7§‘ (30)
[+ (&)
X










@ 5 POUNDS LOAD

(b) 55 POUNDS LOAD

(c) 105 POUNDS LOAD

)
\ <

. W
Figure 8. Moire Fringes to Determine 3 Curvature.
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(®) 205 POUNDS LOAD

(fy 255 POUNDS LOAD

2 " %

(g)

Figure 8. (Concluded)
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2

The 34; curvature of the four-point bending test specimen
Ay 2
is a small quantity compared to 3—;, and the very small number of
ax

moiré fringes are insufficient to accurately determine this
quantity. Therefore, according to References 13, 14, and 15,

2 2
2—; curvature is assumed to be -vé—g and the strain sy is given by
3y 9xX
€. = -vgig = -y ¢ (31)
y ax X
azw
The — curvatures are also determined directly from Figure 8
3y

for a few load cases.

The moiré deflections and strains are presented for loads
of 50 to 300 pounds in Tables 2 and 3, and in Figures 9 and 10.
The moiré deflections computed by program STRAIN were fit to a
second order polynomial using the least squares routine PLSCF
and a second order Legendre polynomial, and the experimental
points and the fitted curves were plotted using plot routine
PLOTS, Figures 11 and 12.

The scatter of moiré experimental data is large at small
loads and the experimental data points cannot be fit by means of
a polynomial. It should be remembered that the plate specimen has
initial imperfections which are of the same order of magnitude
as the deflections corresponding to these smaller loads. This
could be the cause for the large amount of scatter. At higher
loads, the moiré experimental points can easily be fitted by
means of second or third degree polynomials and the experimental
scatter is greatly reduced.

4.3 DEFLECTIONS FROM DIAL GAGES

The deflections measured by dial gages are given in
Table 4 and shown previously in Figure 9.
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TABLE 2 -
MOIRé DEFLECTIONS AND STRAINS
AT THE BEAM CENTER
Deflections :
Load W estraln (u)e
(1bs) (in) x b4
50 0.045 385.3* -128.44
| (363.64)+ | (-121.22)
100 0.094 765.84 -255.28
(766.34) (-255.46)
150 0.144 1185.90 -394.9
(1186.66) (-394.9)
200 0.193 1599.18 -533.06
(1602.68) (-534.22)
250 0.251 1987.76 -662.58
(2005.52) (-668.52)
300 0.300 2347.38 -782.46
(2398.84) (-818.30)
*Quadratic polynomial curve-fit
tCubic polynomial curve-fit
W,
Wp P ten Wp
N / 1/’

¥

} T c

+€x




TABLE 3

MOIRE DEFLECTIONS AND STRAINS
THREE INCHES BELOW CENTER

Deflection
w Strain (u)
Load .
(lbs) (in) - &y ey
50 0.061 465.38* [ -155.12
(455.3)+ | (-151.76)
100 0.099 719.76 -239.52
(718.56) | (-239.52)
150 0.147 1166.5 -388.82
(1161.9) | (-387.3)
200 . 0.193 1542.78 -514.24
(1537.32) | (-512.44)
250 0.252 1981.46 -660.5
(2005.54) | (-668.52)
300 . 0.304 2347.38 -784.32
(2406.96) | (-802.32)

*Quadratic polynomial curve-fit
tCubic polynomial curve-fit

r’ Ween JP

}

VVp Vw;

+Ex

W= Ween-Wp
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SMALL-DEFLECTION BEAM THEORY
M. —— .=~ |ARGE-DEFLECTION BEAM THEORY
~-~——— SMALL-DEFLECTION PLATE THEORY

A & & & MOIRE STRAINS

2800} -o---0--—0- STRAINS FROM GAGES

@ @ @ MOIRE STRAINS

n
20003‘

k%

~ LOAD(Ibs)
S.\'-"ﬁ.

Figure ' 10. Compgrison of Experimental and Analytical Strains.
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TABLE 4
DIAL GAGE DEFLECTIONS AT CENTER OF BEAM

Load Deflections
(1bs) (in)

50 0.052
100 0.1055
150 0.1590
200 0.212
250 0.266
300 0.322

W = WCEN-— WP
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4.4 STRAINS FROM ELECTRICAL RESISTANCE GAGES 1

The strains.recorded from strain gages are presented in
Table S5 and shown previously in Figure 10.

4.5 ANALYTICAL RESULTS

The deflections and strains predicted from the small-
deflection beam theory are presented in Table 6; from the small-
deflection plate theory in Table 7; and from large-deflection
beam theory in Table 8.

'
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TABLE 6

DEFLECTIONS AND STRAiNS FROM SMALL-DEFLECTION BEAM THEORY

W W “x “x
Load LOAD CEN W Strain Strain
(1b) (in) (in) (in) u u
50 0.1638 .2253 .0615 427 -142.33
100 6.3277 .4506 .1229 853 -284.33
150 0.4915 .6759 .1844 1280 -426.67
200 0.6554 .9012 .2458 1707 -569
250 0.8192 1.1265 .3073 2133 -711
300 0.9830 1.3518 .3688 2560 -853.33
P Ween P W
y \ / |
P J P
\ +E€x /
\ —€y /
WzWeen-Wp
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DEFLECTIONS AND STRAINS FROM SMALL-DEFLECTION PLATE THEORY

TABLE 7

€ €
Load Wioad v CEN W Str,a‘in Strain
w inch inch inch u u
50 0.1522 0.2064 0.0542 346 109
100 0.3045 0.412Y 0.1083 693 217
150 0.4567 0.6193 0.1626 1040 326
200 0.6090 0.8257 0.2168 1386 435
250 0.7612 1.0322 0.2710 1733 543
300 0.9135 1.2386 0.3252 2080 652
L€
¢ #5 + & -
—| 5
P

W= Ween-Wioad




TABLE 3
DEFLECTIONS AND STRAINS BY LARGE-DEFLECTION BEAM THEORY

i . €y sy
Load Load CEN W Strain Strain
w inch inch inch U u
100 0.3330 0.4577 0.1247 855 ~285
200 0.6760 0.9308 0.2547 1724 -575
300 1.0351 1.4182 0.3830 2621 -874
lP . P
4
Wp WCEN
P P
W= Ween -Wp
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" SECTION 5
ANALYSIS OF RESULTS

Deflections are compared in Figure 9 and in Table 9, and
strains are compared in Figure 10 and in Tables 10, 11, and 1l2.
The deflections from dial gages and strains from resistance gages
are considered as standards with which the deflections and strains
by other methods are compared and evaluated.

In comparison with the dial gage deflections, the moiré
deflections are smaller by 7 to 13 percent; deflections predicted
by small-deflection plate theory are higher by 1 to 4 percent;
the large-~deflection beam theory deflections are higher by
18 to 20 percent; and small-deflection beam theory deflections
are higher by 15 to 18 percent. Thus the small-deflection plate
theory predicts deflections in close agreement to the dial gage
deflections. The deflections determined by the moiré fringe
technique are more accurate at higher loads. This is due to
initial imperfections of the test specimen which will be of the
same order of magnitude as the deflections at small loads. This
causes considerable scatter of the experimental data points as
seen in Figures 11 and 12. At higher loads, when the deflections
are large, the scatter in experimental data points is reduced and
moiré deflections agree within 6 percent with dial gage deflec-
tions. Another cause for the large discrepancy noticed between
moiré and dial gage deflections was due to the fact that the
initial reference surface was not perfectly flat, as most machined
flat plates have some initial imperfections. The test specimens
were prepared from rolled plate and developed imperfections during
machining which could not be easily removed.

In comparison with resistance strain gage strains, the
moiré €y strains computed by second and third order polynomials
are smaller by 0 to 8 percent (Table 10 and Figure 10), whereas
those computed by Legendre polynomials are smaller by 6 to 25
percent (Table 11):; the classical beam theory €y strains are
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higher by 1.5 to 3 percent; the large-deflection beam theory €
strains are higher by 3 to 6 percent; the ex strains from classical
plate theory are smaller by 16 to 18 percent. Thus the moiré €y
strains computed by second and third order polynomials are in

close agreement with resistance gage strains, especially at

higher loads, and can be predicted by small-deflection beam theory
over the range of loads considered in this investigation.

The moiré €_ strains were determined by two methods. In
the first method, since the curvature in the y-direction is
(References 13, 14, and 15):

azw =y 32w
ay2 3#7

the ey strain can be approximated by

E., = =VE N
Y b 4

In the second method, gzg curvature is determined directly from

the Moiré fringe photogzaphs of Figure 8. The ¢ _ strains obtained
by the first method are compared in Tables 11 and 12 and in

Figure 10. In comparison with resistance gage strains, the ¢

moire strains obtained by second and third order polynomials are
higher by 7 to 34 percent; whereas those obtained by a second-order
Legendre polynomial are higher by 6 to 20 percent; the small-
deflection beam theory ey strains are higher by 15 to 32 percent;
the large~deflection beam theory ey strains are higher by 17 to

35 percent. .Classical plate theory predicts tensile ¢-

strains and cannot be compared with resistance gage strains.

The solution strategy used in the classical plate theory is similar
to the one used by Timoshenko for many of the plate bending problems.
But this strategy may not give true solutions due to the type of
loading, boundary conditions, and possibly due to the large aspect
(a/b) ratio of 4 of the test specimen. The € _ moiré strains
determined by the second method for loads of 150, 200, and 250
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pounds are compared in Figure 10 and these are smaller than
resistance gage strains by 0 to 8 percent. Therefore, none of
the analytical methods considered in this investigation predict
the ¢ _ strains accurately. The ey Moiré strain determined by the
second method is closer to resistance gage strains and therefore
is to be preferred to the first method.

For the loads considered in this investigation, curvatures
determined by large deflection equations (Equations 29 and 30)
did not differ significantly from the curvatures determined by
small deflections and therefore the numerical results are not
presented for these.
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SECTION 6
CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are based on the results of
this program.

1. The projection moiré method used in this investigation
determines both the deflections and strains accurately in flat
surfaces undergoing large deformations due to static loads.
However, the strains determined by regression analysis using
second and third order polynomials and second order Legendre
polynomials are accurate only for the center portion of the
‘beam.

2. Of the analytical methods, small-deflection beam
theory and large-deflection beam theory predicted beam deflec-
tions and €x strain accurately. Plate theory predicted the
deflections very accurately. The & strains were not predicted
accurately by any of the methods investigated.

The following recommendations are made. (1) Other numerical

curve fitting methods such as spline approximations and beam
functions should be tried to obtain accurate second derivatives
from the moiré deformations at any position along the span of
the beam. (2) The investigations reported herein should be
extended to evaluate the accuracy of the method for curved
surfaces under dynamic.response conditions.




APPENDIX A
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SMALL DEFLECTION PLATE THEORY FOR FOUR~POINT
BENDING PLATE SPECIMEN

é
|

BASIC EQUATIONS

The Lagrange plate equation is given by i

4 4 4

3w 3w 3w -
gty +r—g=1 (A-1)
IxX X 3y oy D

where w is the downward deflsctxon, g is the intensity of the
load and D is given by -—————7— The boundary conditions are

12 (1-v*) :
w=0 ; azw = 0 for x = 0, and a i
ax? ' (a-2) %
_}
!
' 33; + véf;_} =0 for y = tb/2 (A-3)
| 9y Ix
2 w + (2-v) 2 w ] = 0 for y = tb/2
\;;3 3x2ay (a-4)

The load is symmetrical with respect to the x-axis
(Figure 4) and therefore the deflection surface is symmetrical
with respect to x-axis. Therefore we can consider only the
conditions along the side y = +b/2.

The deflection surface is assumed in the form

W= Wy + Wy (A-5) {
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where

3 » mwz mwR . .
2Pa 1 — . gipe—
w, - - Z % =7 sin—3 sin: (a-6)
"0 rel,3,5 3=l ® 2
al 2 B,y mY . oonmy| mrx
w, = e Z A, cosh=2i+8 =&-sinn=g J in (A-7)
m=1,3,5
The constants A m and Bm are given by
(1- ha_=(1
’ - z_v‘ - v)cosha -(1l+v)sinha — Z ’m( (A-8)
m (v *ZV-J)linham couhum+(1-v) an j=1 ]
-(l-v)ainho 4 2 .
Bp * '2-\"' E nn(:'—‘l}
Com (v +2v-3)sinha cosha +(1-v) a j-l a
(2-9)
where a = E&
m
The moment-curvature relations are 'given by
= 2 2
= (3" W 3°w
M = <D + Vv (A-10)
o5 [y
[ 9X 3y
o 2 2
= [3°W a°w
M, = -D |—3 +V— (A-11)
Y K)'s Ix ]
M __ = D(l=-v) (A~12)
Xy axay

The maximum stresses at the surface of the plate are given by

SMx
Oy = 2 -;z (A~13)

o (A~14)
g, = + =
¥ = n

M

T ® Tou = _4-—% (A=15)
xy xy h _




The maximum strains at the

2
e, =+t2 —3 =
X x
2
- aw
€, =+ 2 —3 =
Y Ay

surfaces of the plate are given by

Iy

T h
+3 -

(A-16)

(aA-17)

The value of the first.three constants of the trigonometric

series are given by

A By

A

3

B,

Ag

-0.21651606 |+0.03558502|0.01535823

0.01%42625

-0.0001234

-0.09012857

| [ 4 2
2] on{ i 1m0 -2vm JcomEEEen, 101 222,y metet) s

( (A-18)

n? {lnnu-v) +28 ) cosh®ILss_(1-v) "—:l-sxnhL“{l}] sin2E 2 _19)

2
T = 4+-3Pa(l-vim : (A*B, ).m-_'xa-g l‘—"! co.h—'x] COI-—-

A m=l,3,

R -

m=1,3,%

s_;_l;v,.m E w?(nyconmiilizs comniilus

m=1,3,5

4 %1—“2’”& al.3, s A‘+l ]-1nh"—:x-fn.-'-%!'colh'—:x}

(a-20)

e, ]nz[A mhn_rx_,, _:x.,m.m]] -m— (A-21)
linh!f-:x] ’lin%! (A=-22)

-cosLX (a-23)
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APPENDIX B

LARGE DEFLECTION BEAM THEORY FOR A FOUR-POINT
BENDING BEAM SPECIMEN

BASIC EQUATIONS

EI
1—v2
its flexural rigidity. For a point U between B and C (Figure 5)

Let L = L, + L2 be the length of cantilever and D =

1

the bending moment equals

Mﬁs P(xc-x) + P cotwo(yc-y) = D%% ' (B-1)

where y is the angle between the slope and the horizontal, and
s is the arc length from A to U measured along the elastic
shape. Differentiating with respect to s, we get

2 )
dy . _p &x _ ay - . - i
DE;% : P 3s P cotwo s P cosy-P cotwo siny (B-2)
In terms of new variables
Lzl o D
the Equation 2 reduces to
2
a®e *
= + C*sing = 0 (B-4)
du
» 2 2 2 P
where C = L2 k2 and k2 * Ssin .

Q

Further Equation 4 can be written in the form
1 gIZSC* e + C
Z |du cos 1 (B-5)

For the solution of the constant c1 we have the boundary
condition

[g%] =0 (B-6)

=y, -
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Therefore C1 = 0, and

%% = / 2C*cos® (B-7)

This equation can be integrated to give

/2

L
1 de
ds = — (B-8)
IJ‘ 2/ o, ¥ sin®1/4-sine/2
l l %o
To bring this Equation 8 to Legendre's standard form, let
P = ginn/4; p sin¢ = sin8/2 (B-9)
In terms of the new variable ¢, tiie Equation 8 rasduces to
"/2 g 1 )
! d¢ G yg = | Py om b (K(p)-K(p,E)] '
b2 7, {l (1-p°sin®e12/2 l (1-painZe¥? F2
_ _l l wl,‘_wo (B'lO)
where m = Sin [— Sin ——) :
1) 2
The equation for the length s to the point u is given by
1 -
Sy =L, + E; {K(p,n)-K(p,m)} (B-11)
- Y+y
where n = Sin”} % . sm[ 5 °] ] (B-12)

The equation for the horizontal distance x to the point U is
given by
Xpe

; n
I dx = I ds cosvy (B=13)
Xg m

Integrating this equation, we get

1 = = -
Xg = %y + E { cosy, [K(p,®)-K(p,n) +2E(p,n)-2E(p,M) J+2p sine (cosm-cosn)} (8-14)
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The horizontal distance to the end of the cantilever C can be
found by substituting b=y, and n=1/2 in Equa+tion 1l4.

Xc = xBﬂ% (cowo [K(p.ﬁ)-x(p)+2!(p)-2!(p,ﬁ)]+2§ sinwo cosm} (B~15)

The equation for the vertical distance y to the point U is given
by

Y u n '
J dy = J ds siny ' (B-16)
¥p m

Integrating this equation,

Y, = Ya*i—z {2p Coﬂo(cos;-coln)-sintolK(p,i)-k(p,n)+2s(p,n)-23(p.ﬁ)l} (B=17)

-

The vertical distance to the end of cantilever C is

Y = Ygti— (2p cosv_cosm-siny_[K(p,m)-K(p)}+2E(p)-2E(p,m ]} (B-18)
2 [o]

For a point Q between A and B, Figure 3, the bending moment
equals

My = P(xc-xH-_P coty (y =y)=P(xy-x) ~P coth  (y,-y) = D%.! (B-19)

Differentiating with respect to s, we get

2
- d d 2 (B-20)
D?;“&- P coty, a§-+P cot A, Eg' = -k, * siny

2
where kl

= (coty,-cot] ) g.




Equation 20 ¢an be written as

2

For the solution of the constant C2 we have the boundary

condition

[%L}_w =2 k, /cbslwlwo)
=¥

Scolving for C2

2

c, = 2[k,> cos (y,+¥,) - k;° cosy,] (B-22)
Now the Equation 21 becomes
2
v . /2 k //’ (cosy=-cosy )+kz cos (P, +¢ )} B-22)
s 1 1z 1*%% ¢
1l

Introducing a new variable Py such that

2

~
(8]

{cos(w1+wo)} = 2p12-1 + cosy, (B-23)

d

1

we can integrate the equation

L U
las = E]t— 1 ay (B-24)
Py -sin %

1
To bring this Equation 2i'to Legendre's standard form, let

Q o

siny/2 = P sind (B=-25)




N
L = -JL a¢ X k(‘) N)
1 Kk £ 2.2, =1
-p, sin 9
o
. =1 .1 . Y1
where N = sin [— sin—il

Py

The horizontal distance x to a point Q is given by

b 4 N
J Q dx = J U gas cosy

o o
N
¢ ae N 1
= ——————— - u - B, — -
xq = 3 z[ Py ‘sin‘e do = f- (31k(p, N )-2E(p, ,N )}
/l-pl!sinze o
o
where N_ = sin~ ! (2 sin¥)
u Py 2

" The horizontal distance Xp to the point Q is given by

xB = %I {3[k(PlIN) - ZE(Per) ]}
=1 [pl . ‘”1]
where N = sin - gin—
1 2

The vertical distance y to a point Q is given by

Yy 2P1
Yy = I dy = I ds siny = < [1-N ]
1 a
o .

The vertical distance YB to the point B is given by
.2p ‘

Yg = —k'l' (1-N]
1
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(B-27)

(B-28)

(B~29)

(B-30)

(8-31)
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