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NOMENCLATURE

a speed of sound

A admittance ratio (Equation (7))

C constant

E acoustic energy per unit volume

f frequency

F amplitude of oscillation prescribed at downstream end

G power spectral density
i T

I acoustic intensity per unit area

k wave number

K modified wave number (Equation (33))

L streamwise length of channel (xe - x a

M Hach number

p pressure

P normalized pressure perturbation (Equation (29))

Q reflection coefficient for interface wave

r radius of curvature

R reflection coefficient for acoustic wave

S cross-sectional area

t time

T transmission coefficient

u x-component of fluid velocity

v phase velocity (Equation (5))

V volume

U normalized velocity perturbation (Equation (29))

w interface wave speed in laboratory frame

W =W/a

x streamwise space coordinate, zero at time-mean shock position,

positive towards subsonic flow

X a normalized shock displacement (Equation (12))

y transverse space coordinate

Z a complex number
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a Ae/A t area ratio of diffuser

Y isentropic exponent (- 1.4)

6 boundary-layer thickness

E amplitude of boundary-layer-thickness variation in interface wave

* argument of R

K wavenumber

X wavelength

function defined by Equation (38b)

v function defined by Equation (41b)

p fluid density

* argument of a

W angular frequency

= W 6 d In S/dx)', normalized frequency

Subscripts

c core flow

e ("exit") downstream end of channel

ex excitation

i imaginary part

g geometric (area)

nJ,k order of harmonics for acoustic, interface, and compound oscillations

m defined in Equation (45)

max maximum

p pressure

s static

t throat

u velocity

w on wall

1,2 immediately before and after shock

a at time-mean shock position

+ downstream-moving acoustic wave

- upstream moving acoustic wave

* interface wave

(~) complex quantity

2



Superscripts

C) time-mean

( )" perturbation quantity

(5) vector

( ) argument of complex number

(~) distance normalized by throat height
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1. INTRODUCTION

Motivated by the desire to improve theoretical flowfield prediction capa-

bilities for the air inlets of supersonic propulsion systems, detailed experi-

mental investigations of nominally two-dimensional, unsteady, transonic dif-

fuser flows were performed at MDRL from 1977 to 1982 under sponsorship of Air

Force Office of Scientific Research (AFOSR). The specific topics and results

are summarized in the Final Technical Report. 1 This effort resulted in a

large and systematic collection of data describing various aspects of both

natural fluctuations and oscillations forced by externally imposed

perturbations. Extensive documentation of the results is available. 2- 6

This data base is suitable for verification of related computer codes

currently under development at several organizations (e.g., NASA Ames Research

Center,7 '8 Air Force Flight Dynamics Laboratories,9 "I0 and Scientific Research

Associates under sponsorship of NASA Lewis Research Center), and has been used

for such purposes.
7-8

Apart from using the results as test cases for computational efforts, a

parallel objective of the work was to identify and characterize the important

physical processes and mechanisms governing the oscillations. Awareness of

the underlying physics provides a rational basis for the judgments and

compromises that must be made in the engineering development process, usually

from incomplete information. Identification of the physical mechanisms is

also essential for the creation of simple theoretical models, which can be

invaluable in formulating objectives for experimental inquiries and providing

a framework for presenting experimental results.

The present report describes the work performed during the last year of

the AFOSR contract. The overall objective was to examine all available

experimental information, relate the various measurements, and interpret

results in terms of a consistent physical model. Special attention was given

to selected problem areas (listed in Section 2) as being of critical

importance. The material of this report is intended to serve as foundation

for relatively simple theories of engineering utility.

The experimental information utilized is extensive, and its detailed re-

view within this report would be prohibitively lengthy. Reasonable famil-
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iarity with References 2-5 and 11 is a prerequisite to the effective use of

the present report.

The analysis is based on data obtained from two different diffuser

models: one with an exit-to-throat area ratio (a) of 2.37 (model B, Refer-

ences 1-3 and 12) and another with a - 1.5 (model G, References 4-6 and 11).

The flow in model B exhausted directly to the laboratory so that the

boundary condition over the exit cross section was closely characterized as a

spatially and temporally constant static pressure. Model G could be operated

in the same way or its exit cross-sectional area could be modulated at

frequencies up to 330 Hz using the rotary device shown in Figure 1b, thereby

imposing an external, periodic perturbation on the flow.

The length of model G could be varied by mounting extension segments of

various length at the downstream end. The distance from the time-mean shock

location to the atmospheric exhaust was varied by this method from 14.4 to

30.5 throat heights.

The principal experimental parameter was the strength of the terminal

shock, characterized by the time-mean Mach number immediately before the

shock, at the edge of the top-wall boundary layer (M ). Ma uniquely deter-

mined the structure of the time-mean flow in both models.

In model G, the boundary layers were attached everywhere for M. < 1.27

(weak shock, no separation (NS)). For M > 1.28, the top-wall boundary layera

separated at the foot of the shock, creating a separation bubble approximately

four throat-heights long. This mode is referred to as strong-shock, or shock-

induced separation (SIS). From M - 1.27 to 1.28 the flow displayed low-
a

frequency, irregular, intermittent transitions between the NS and SIS modes.

The mean flow remained the same in the presence of excitation; the excitation

amplitude was too small for a nonlinear modification of the mean flow. The

addition of duct segments to the downstream end left the flow in the upstream

portion unaltered.

In model B the top-wall boundary layer was separated by the adverse

pressure gradient well downstream of the shock (pressure-gradient-induced

separation (PGIS)), for Ma < 1.3. For stronger shocks, SIS occurred as in

model G.



(a)
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Boundary
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Figure 1. Typical supercritleal flow patterns: (a) unexcited diffuser flow with no separation
(weak shock), (b) excitation of diffuser flow with shock-induced separation (strong
shock), and (c) constant area theoretical model.

The Reynolds number based on throat height was approximately one million

for all cases. Since the dominant top-wall boundary layer was tripped and

turbulent, no significant Reynolds number effects were expected or found.

In unexcited flows, all flow properties displayed spontaneous oscilla-

tions. The shock displacement fluctuations were always confined to fre-

quencies below 300 Hz, and the associated power spectral density (PSD) curves

displayed well-defined peaks. The frequencies associated with the peaks were

defined as the natural frequencies of the system. One to three of these were

observed, depending on the (M L) combination.



The exciter was used in model G only and always in conjunction with the

shortest channel length, and the excitation frequency range extended from 10

to 330 Hz. The independent test parameters in the forced-oscillation runs

thus were Ma and fex* The excitation amplitudes, as measured by the pressure

fluctuation amplitude at a selected, nominal exit station ahead of the exciter

were small, always below 2% of the local static pressure.

Figure la illustrates a weak-shock flow without excitation, and Figure lb

is a strong-shock flow with excitation. Figure 1c shows a constant-area

idealization of the flow, to be used later in discussing certain aspects of

the oscillations.

The principal measured dynamic quantities were the shock position, static

pressures at eight locations on the top wall, and total static pressures in

the core flow over a streamwise range x a < < 8.1. In a past HDC-funded

study, the horizontal velocity components were also determined throughout the

subsonic flowfield for three selected (M a fex ) combinationsll; data from this

source also will be used in this analysis for comparisons.

7



2. OBJECTIVES

The objectives for the fifth contract year reported here were:

1. Characterize the intermittency observed between attached and separated

flow modes at intermediate shock strengths and the effects of this phenomenon

on the shock position and surface-pressure power spectra.

2. Determine the character, amplitude, and phase of the wave reflected

from the shock/boundary-layer interaction region in response to the arrival of

an acoustic wave from downstream.

3. Characterize the oscillation intensity of the overall flowfield and the

amplitude of the excitation in a practical, measurable manner. Determine the

forcing frequencies resulting in peak oscillation intensity (resonance), and

relate these to the natural frequencies.

8i



3. STATISTICAL PROPERTIES OF SIGNALS

3.1 Frequency Content

Numerous power-spectral density (PSD) distributions of shock position and

pressure signals were generated for a variety of (M, fex L) combinations and

sensor locations. Selected examples will be presented of fS as a function of

log1 0 f, which have the property that the area under the curve for a given

spectral band is directly proportional to the energy contained within that

band, thereby facilitating recognition of important frequency rangeq. The

horizontal scale is terminated at 10 kHz, which was the bandwidth of the

pressure measurement system. The shock position measurement system had a flat

response to 4 kHz.

The shock-displacement PSD's have a relatively simple structure in all

unexcited cases (Figures 2a and 3a). The fluctuations are confined below 300

Hz, and the principal features are well-defined peaks. One to three peaks

were found in weak shock cases and always one peak in strong shock flows. The
peaks are clearly defined but have a significant width, indicating that the

motion is only approximately periodic. In excited flows the PSD is dominated

by a single, sharp peak at the excitation frequency with a peak height greater

than those associated with the higher harmonics and the natural fluctuation

background.

The PSD's of pressure signals for all flow conditions and sensor

locations are more complex than those for shock displacement.

A typical PSD of a total pressure signal in model G, for SIS mode with

300 Hz excitation (Figure 2b) illustrates that contributions to the total

fluctuation energy come from three different sources:

(a) Natural fluctuations, represented by the peak at 196 Hz, which is the

frequency where the unexcited shock displacement PSD has its only peak.

(b) Boundary-layer turbulence, represented in the figure by broadband

contzibutions from approximately 400 Hz to 10 kHz and probably beyond. This

contribution peaks at about 2 kHz for this particular PSD.

(c) Forced oscillations, represented by the group of sharp peaks, at the

excitation frequency and at its higher harmonics. Harmonics up to the 9th can

be observed, indicating that the waveforms of the forced pressure fluctuations

may be quite distorted.

9
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Figure 3. Power-spectral density distributions of (a) shock displacement and (b) top-wail pressure
fluctuations. Model B, Me= 1.20, no excitation.



The relative magnitudes of the three contributions depend on the model,

the flow conditions, and the location of the sensor.

Contributions from forced oscillations are controlled experimentally by

changing the area modulation amplitude and are easily identified by ensemble-

averaging. In general, contributions of forced oscillations were dominant in

the case of weak shocks and comparable to random contributions in case of

strong shocks. They were completely absent from all model B experiments.

Figure 3b is an illustration of a wall pressure spectrum in an unexcited model

B flow, PGIS mode.

Natural pressure oscillations are identified by distinct spectral peaks,

but the quantization of their contribution is not straightforward, and no

formal procedures were attempted to separate their contributions from turbu-

lence. The shadings in Figures 2 and 3 are intended to emphasize the exist-

ence of two different mechanisms; the boundary between them is based on

judgment only and not on any quantitative interpretation of the data. The

relative intensity of natural oscillations in comparison to turbulence is a

property of the flow and could not be controlled in the present experiments.

Figure 4 is a bar chart illustrating the observed trends in shock

displacement and static-pressure fluctuation intensities for weak/strong

shocks and models G/B. In each case, the intensities were normalized by the

intensity observed in model G under strong-shock conditions. The bar heights

are typical values, meant to illustrate overall trends; actual data may differ

significantly depending on the precise flow conditions. The following points

are made in connection with Figure 4:

(a) The natural pressure-oscillation intensities are an order of

magnitude higher in model B.

(b) The natural shock oscillations are also greater in model B, but not

in the same proportion as the pressures. The ratio of shock and pressure amp-

litudes is much less in model B; the shock in this model thus is less sensi-

tive to pressure perturbations. The sensitivity reduction is attributed to

the greater rate of area increase (for reasons discussed in Section 5.1).

(c) Pressure and shock oscillation amplitudes both increase with shock

strength.

(d) Turbulence is a significant or major contributor to pressure fluctu-

ations, but only the low-frequency portion influences shock motion.

12
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In case of weak shocks, the static and total pressure PSD's taken in the

core flow show comparable natural oscillatory contributions. In strong-shock

flows, however, the natural frequency peaks are shown more clearly by the

total pressure spectra than by the static pressure spectra. This result

suggests that velocity perturbations play a larger role in the oscillations

when the shock is strong, a conclusion that is supported by other sources of

information (Section 4.2).

Interactions between the excitation and turbulence are minimal, even

though the higher harmonics of the excitation frequency are comparable to the

turbulence frequencies. This observation is supported by LDV data, which show

that the magnitude and spatial distributions of all nonperiodic fluctuations

(i.e., turbulence plus natural oscillations) are the same for excited and un-

excited flows, other parameters being equal. These two fluctuation modes thus

appear to coexist without mutual interference.

The interaction between excitation and natural frequencies also appears

to be limited. Contrary to expectations, no particularly striking resonance

behavior exists when the excitation frequency is equal to any one of the

natural frequencies. This apparent discrepancy prompted additional inquiries

(Section 2, Task 3) whose conclusions will be presented in Section 8.

3.2 Length Scales

Space-time correlations of shock displacement and pressure signals of all

types, obtained for several unexcited flows in both models, indicate high cor-

relation over streamwise distances comparable to the overall length of the

diffuser. 12 In the case of forced oscillations, the forced oscillatory con-

tribution is coherent over the entire flowfield; streamwise amplitude

distributions of pressure and velocity fluctuations, obtained from ensemble-

averaged data, show a high level of organized behavior from the shock to the

exciter. 5 The systematic behavior is found for all (M, fex ) combinations.

These observations establish the conclusion that large streamwise length

scales distinguish the natural and forced oscillations from turbulence, which

is generally associated with correlation distances of the order of the

boundary-layer thickness.

14



3.3 One-Dimensional Models

Simple theoretical models permitting crude but rapid estimates of the

principal oscillatory features are of considerable utility, provided their

limitations are understood and taken into consideration. In light of the

foregoing results, some of the assumptions implicit in using unsteady, quasi-

*one-dimensional, inviscid, linearized models 13914 become evident.

The neglect of turbulence contributions is clearly a major assumption,

justifiable only in the low-frequency range where the turbulent fluctuations

do not interact strongly with the overall oscillations. Turbulent fluctu-

ations may, however, provide a sufficiently high perturbation level in the

low-frequency range to excite large-scale oscillations, if they are unstable

or associated with low damping.2 ,3 Removal of turbulence from the model pre-

cludes the possibility of predicting the amplitude of such oscillations.

Forced oscillations are represented by sharp peaks in the spectra and can

be treated justifiably as single-frequency oscillations. Natural oscillations

are only approximately periodic, presumably because they represent a selective

response to the broadband excitation environment provided by turbulence. They

too can be modeled as a single-frequency oscillation, although expectations

concerning the prediction quality should be lower in comparison to fixed-

frequency excitation cases.

Quasi-one-dimensional models thus have a reasonable promise of being able

to predict some aspects of low-frequency, longitudinal oscillations, such as

natural frequencies and shock displacement amplitudes for given pressure

stimuli. However, the model cannot predict total pressure losses (dissipa-

tion) nor any oscillation property dependent on those losses, such as ampli-

tudes associated with natural oscillations. Being one-dimensional, the model

is inherently unsuitable for the prediction of transverse distributions (dis-

tortion) at the diffuser exit.
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4. ELEMENTARY WAVES

The observed oscillatory patterns, whether forced or natural, are sus-

tained by waves propagating and reflecting within the channel. The present

studies of these patterns indicate that two types of elementary waves are

present. One type is the well-known acoustic wave; in general, both the

upstream- and downstream-propagating waves are evident. There is also

overwhelming evidence that the boundary-layer/core-flow interface supports

transverse, traveling waves similar to the Tollmien-Schlichting waves en-

countered in perturbed laminar boundary layers. The waves observed in these

experiments propagate in initially turbulent boundary layers, and their pro-

perties, known only to a limited extent, may differ from the laminar waves in

various ways. The possibility of different behavior is emphasized here by

using the term interface waves for the observed waves.

When appropriate, waves will be treated in one-dimensional terms,

describing sinusoidal time-dependence in terms of complex exponentials. A

complex number, Z, will be described either in terms of its real and imaginary

part, or as an exponential expression containing the absolute value and an

argument. The following notation will be used:

- Zr izi = ze
i  .

The physically observable quantity is the real part, Zr. The properties

considered are generally functions of x and t, and will appear in one of the

following forms:

Z(X, t) - A(x)e iWt [g(x)e i(x) -i( r+iwi)t (2)

or

W t -i[w rt-g(x)J
Z(x, t) = [g(x)e Ie , (3)

16



where g(x) and g(x) are the spatial distribution of amplitude and phase angle,

respectively. The bracketed expression in the exponent of Equation (3) is

used to define a phase velocity (v) as the velocity of an observer for whom

the bracketed quantity appears to be constant, and thus the condition

[(Wrt - g(x)] - const (4)

is satisfied locally. In differential form:

v (-) - • (5)
(-const dx

The phase velocity represents the local speed of propagation of net perturba-

tions; it is generally a function of x.

4.1 Acoustic Waves

The channels used in these experiments were slender without abrupt area

changes, and the pressure fluctuations were small compared with the local

static pressure. It is therefore reasonable to think of acoustic waves as

having nearly planar wave fronts normal to the flow direction and propagating

everywhere at the local speed of sound with respect to the fluid. The one-

dimensional description implies that waves can propagate either upstream or

downstream, but not in the transverse direction. The time-mean flow proper-

ties (velocity and pressure) depend on the streamwise coordinate, but this de-

pendence will be neglected in the discussion of certain selected aspects of

the oscillatory behavior.

Acoustic waves are, by definition, isentropic, involving concurrent

variations of both pressure and velocity. The relation between the two is

given by

Fa (6)
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where the + and - signs apply to downstream- and upstream-moving waves,

respectively.

In general, both wave families are present at any given location. The

relation between them can be conveniently characterized by the admittance

ratio, defined as

pau'
A - • (7)

The admittance ratio is a function of position only. The argument of

is the phase angle of the (net) local velocity perturbation with respect to

the (net) local pressure perturbation.

4.2 Interface Waves

Forced oscillation experiments with strong shock flows produced extensive

evidence of transverse displacements of the boundary-layer/core-flow interface

that form a traveling wave moving downstream.

The properties of the interface wave differ drastically from those of

acoustic waves. Interface waves are initiated by shock-displacement oscilla-

tions, associated with concurrent variations of the shock strength. The com-

bination of time-dependent shock position and strength modulates the post-

shock boundary-layer properties, which are then convected downstream forming

the interface wave. The motion is maintained by and superimposed on the time-

mean wall shear layer. Since convection is an essential part of the mecha-

nism, the wave can travel only downstream. The average phase velocity of the

wave (in the present experiments) is well below the local core flow speed,

i.e., much less than the speed of a downstream acoustic wave.

The most detailed documentation of this wave is given in terms of LDV

measurements for a strong-shock flow excited at 300 Rz. 11 In this case

interface waves were on both the top- and bottom-wall boundary layers. The

two waves were 1800 out of phase, i.e., a thickening on the top was associated

with thinning at the bottom, at all locations. The velocity asymmetry may

have been caused by the asymmetric nature of the excitation method. LDV data

show that the structure of the velocity perturbations is inherently two-
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dimensional (in the two-dimensional mean flow of the experiment), in contrast

to the nearly planar acoustic waves. Since the wave motion directly involves

the boundary layers, the velocity fluctuations are especially intense in the

outer regions of the layers.

Time-dependent pressures were measured on both walls and at one inter-

mediate height within the core flow. These data suggest that the actual

spatial distribution of the pressure perturbations is a weaker function of y

(i.e., it is more nearly one-dimensional) than the velocity perturbation

field.

The spatial structure of the pressure field is analyzed in Appendix A on

the basis of displacement and streamline curvature considerations. According

to the estimates, the streamwise pressure variation in the core flow is

determined by the instantaneous displacement-thickness distribution. Since

the Mach number of the core flow is high, relatively small displacement-

thickness variation is sufficient to induce significant pressure variations.

The model implies that pressure and velocity perturbations are 1800 out of

phase, in agreement with experiment and in conflict with acoustic theory.

Transverse pressure variations exit across both boundary layers, because

of streamwise curvature effects. As shown in Appendix A, these variations are

proportional to the product of 365 and are therefore larger on the top wall

where both 9 and 6' are large. As illustrated in Figure 5, the curvatIt, con-

tribution on the top wall is in phase with the core flow perturbatiorl, thereby

explaining why fluctuations measured on the top wall are greater than those in

a core flow. Figure 5 also illustrates how the small curvature contribution

on the bottom wall permits the top and bottom pressure perturbations to be in

phase (as found experimentally), despite the fact that the velocity

perturbations are 1800 out of phase.

The relation between the velocity and pressure fields is more complex

than the simple connection given in Equation (6) for acoustic waves. Within

the core flow, the pressure and velocity fluctuations are of the same order,

but in the boundary layers, the (Eulerian) velocity perturbations are greater

than those of an acoustic wave for the given pressure perturbation.

The pressure and velocity fluctuations estimated in Appendix A permit the
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Figure S. Conjectured Instantaneous transverse pressure distributions In Interface waves at a fixed
location, at time Intervals of a half-period. The sign of the pressure gradient within each layer
corresponds to the sign of streamline curvatures. The Interface waves on the two walls are out
of phase by r, but the pressure variation seen by the top and bottom transducers are in phase.

(A-li)) in the manner done for acoustic waves (Equation (7)). A* is of the

order unity, in agreement with data. If the admittance calculation were based

on perturbations existing within the boundary layer, its values would be in

the range 10-30, in agreement with experimental trends.
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Interface wave amplitudes must have a definite upper limit since both

6 and e are constrained to some fraction of the local channel height. The

pressure perturbations associated with interface waves in slender channels are

thus limited to relatively modest values (several percent of the local static

pressure). In contrast, the amplitude of longitudinal waves associated with

forced oscillations is determined by the externally imposed excitation level,

with no obvious limitations. It seems therefore possible that interface waves

may be unimportant not only for weak shock flows but also for strong shocks,

provided the amplitude of the external excitation is sufficiently large.

Detailed measurements are available only for streamwise distances

comparable to one wavelength of the interface wave. Under these conditions,

it is difficult to establish any rate of change of amplitude. The amplitudes

of the undulations appear to increase in the streamwise direction, but the

thickness of the boundary layer and most other mean flow properties also vary,

with the result that no statement can be made concerning the growth (or

damping) rates of interface waves in the observed mean flow.

At the current level of understanding, it appears worthwhile to experi-

ment with one-dimensional models of the interface waves, disregarding their

inherent two-dimensionality and describing them with the same formalism of

complex numbers as that used for acoustic waves (Section 4). It is

emphasized, however, that pressure and velocity perturbations are not related

by Equation (6), and only a single, downstream-moving family of waves exists,

moving with some phase velocity w(x) < (x). Quantities associated with a

one-dimensional interface-wave model will be designated by the subscript ( ),.
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5. BOUNDARY CONDITIONS AT THE SHOCK

5.1 Acoustic/Acoustic Reflection

The arrival of an upstream-propagating, plane acoustic wave at the shock

(assumed also plane and normal) will create a reflected wave propagating in

the opposite, downstream direction. For sinusoidal waves, this reflection

process can be described by a complex reflection coefficient R, defined as

Re" (8)

By virtue of Equation (3), R also describes the reflection of the velocity

perturbations:

S(9)

Positive t values indicate that the reflected wave is delayed with respect to

the incident wave. The reflection coefficient is uniquely related to and is

equivalent to the admittance ratio at x - 0. Using Equations (6), (7), and

(8),

=I a ko
I - A(10)

and

[ ( + - 2 2 •1/ 2tAt)2 + A2
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Specification of R is a homogeneous boundary condition: if satisfied by some

p'(x,t), then it is also satisfied by Cp'(x,t), where C is any constant.

The reflection coefficient for plane acoustic waves reflecting trom a

plane normal shock in a mildly varying area channel was derived by Culick.
14

The analysis makes use of the fact that the normal shock relations are valid

at any instant across the shock, even if it is in motion. The calculated

reflection coefficients (after correction of minor errors in Reference 14) are

given in Figure 6. The absolute values of R are small; for the condition of

the present experiments, they are always below 1%. Thus a plane, normal shock

represents a virtually anechoic termination. Figure 6b shows that the

streamwise area change introduces a phase delay that increases with frequency

and decreases with the rate of area change.

In addition to triggering a reflected wave, the arrival of a sound wave

to the shock also causes shock displacement. The formulation of Reference 14

was used to calculate the shock displacement as function of the shock Mach

number and the frequency in the following normalized form:

P2 (d In S) a = f(M0, Q), (12)
2

where p is the amplitude of pressure oscillations immediately downstream of

the shock. The results, given in Figure 7, show that the displacement ampli-

tude decreases sharply as the frequency exceeds a relatively low cutoff value,

approximated as

2 (d ln S )
f * A 2 "- - " - - o a ( 1 3 )

2,t dx

The shock displacement thus behaves as a low-pass-filtered version of

post-shock pressure fluctuations. The pressure fluctuation spectrum created

by the thick, highly turbulent boundary layers in the subsonic region usually

contains large contributions above the frequency given by Equation (13), but
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these fluctuations will not cause intense shock movements. The selective

sensitivity of the shock is responsible for the significant differences

between the shock displacement and pressure spectra, as illustrated in Figures

2 and 3.

Figures 6 and 7 both indicate that the participation of the shock in the

overall oscillations becomes less significant as the frequency increases; both

the reflected wave strength and the shock displacement amplitudes diminish

rapidly beyond the cutoff frequency. Conversely, the absence of reflection at

high frequencies prevents the organization of high-frequency disturbances into

an oscillatory pattern encompassing the entire flowfield.

Appendix B contains a discussion of shock-strength dependence on shock

speed, along with the problems of treating the time-dependent upstream

boundary represented by the shock.

These computations assume that the terminal shock is a plane, normal

shock. It is well known that strong shocks are configured as a lambda

pattern, the reflection from which would be necessarily nonplanar. The

separation bubble and its bounding free shear layer would also respond to the

arrival of a sound wave in some unknown fashion. Strong-shock reflections

thus differ drastically from their weak-shock counterpart, as do the

respective oscillatory patterns. No analytical study of this process is

available, and no experimental work appears to have been focused on it.

5.2 Acoustic/Interface Reflection

The arrival of an acoustic wave to the shock perturbs the strength and

location of the shock, which in turn perturbs the properties (thickness) of

the post-shock boundary layer. The perturbed thickness then initiates a dis-

placement wave that emanates from the vicinity of the shock foot. The details

of the process are complex, especially if the shock is strong. However,

compared to the length of the channel, the phenomenon is local and may be con-

veniently viewed as a reflection process in which an incident acoustic wave

creates a reflected interface wave, in addition to the already discussed

acoustic reflection. Experimental data suggest that the absolute value of

such a reflection coefficient is large, possibly in excess of unity.
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In the spirit of linearized, one-dimensional theory, the acoustic/

interface reflection can be characterized by a complex reflection coeffici-

ent, g. Noting that the velocity and pressure perturbation fields of the

interface wave are related differently than those in acoustic waves, separate

reflection coefficients need to be defined for pressure and velocity:

= R£_ (14)

u=Q _u u. (15)

Experimental data suggest that p and % depend strongly on the shock

strength. Precise values are not known, but trends of absolute values, in-

ferred from model G data, are as follows:

R Qp Qu

Weak shock << I R < Qp << I R < Qu <

Strong shock > 1

As mentioned in Section 4.2, the interface wave amplitudes may be limited

because the associated transverse motions cannot become too large in slender

channels. Therefore the linear Equations (14) and (15) apply only to small

amplitudes, and that both 9p and 9u are nonlinear, decreasing functions
of p' beyond a certain p' amplitude.
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6. BOUNDARY CONDITIONS DOWNSTREAM

In the experiments conducted under this contract, two different down-

stream boundary conditions were used: simple open-end or periodic area

modulation. The characterizations of the two differ considerably.

6.1 Open End

6.1.1 Acoustic/Acoustic Reflection

The arrival of a downstream-moving acoustic wave results in the reflec-

tion of an upstream acoustic wave, the process being described by a complex

reflection coefficient R
--e

R "n, -e " (16)

The classical condition for an open end is constant pressure (zero

perturbation amplitude), which occurs if the incident and reflected pressure

waves exactly cancel each other, i.e., if

p'(x, L) - 0, (17)

which implies a real reflection coefficient:

R - 1- (18)
~e

6.1.2 Interface/Acoustic Reflection

The arrival of an interface wave to an open end creates a complicated

perturbation, the net result of which can only be an upstream propagating

acoustic wave, since interface waves can move only downstream. The reflection

is an interface/acoustic type and can be characterized by complex reflection

coefficients:

R gep 208 (19)
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- (20)

where the perturbation quantities on the right sides are those associated with

an arriving interface wave.

6.2 Externally Imposed Perturbation

The flowfield behavior in the immediate vicinity of the exciter was

complex and of no interest for the purposes of the contract. Furthermore, the

specification of a boundary condition as a time-dependent cross-sectional area

would introduce unnecessary complications into a theoretical description.

These difficulties were bypassed by monitoring the time history of the wall

static pressure at an arbitrarily chosen location in the constant-area

channel, several duct-heights upstream of the exciter. For the purposes of a

theoretical description, the measured pressure history is used as a specifi-

cation of the net pressure perturbation

Z,(L,t) - Fe-iwt, (21)

where p' includes contributions from all three waves:
e

S4+ p+ (22)

F is the amplitude, and w is the frequency of the excitation, both considered

real. The phase angle at this location is thus specified as zero, and thereby

x M Ie = L serves as the reference location for phase angles.

6.3 End of Core Flow

The existence of the interface wave presupposes the existence of a

clearly defined interface, i.e., a distinct boundary layer. Boundary layers

always exist behind the shock, but their streamwise extent is limited. Under
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a strong-shock condition, the top- and bottom-wall boundary layers merge about

6-8 throat-heights downstream of the shock, beginning a transition to a fully

developed channel flow. At the merger point, the two interfaces disappear,

and the transverse wave motions supported by them are no longer possible. The

merging region thus acts as a boundary, accounting for the observation that

natural oscillation frequencies scale with the length of the core flow in

strong-shock cases4 (which are known to be dominated by interface waves).

The merger (and the reflection process) occurs over a finite streamwise

extent, and little is known about details. It is reasonable tn assume,

however, that it generates pressure perturbations that propagate in both

directions as acoustic waves. If we consider this process as being local,

then it can be modeled as the conversion of an arriving interface wave into

two acoustic waves. The corresponding reflection and tranmission coefficients

to be applied at the merger location are

+ & (23)

and

2: - cR . (24)

Nothing is known about actual values; at present they can at best be

considered as adjustable constants, to be varied within reasonable limits to

match experimentally determined amplitude and phase-angle distributions.
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7. OSCILLATIONS

The elementary waves of Section 4 may combine into various oscillatory

patterns, depending primarily on the boundary conditions applied. All

patterns must contain the upstream acoustic wave, which is the only one cap-

able of moving in that direction. Since there are two types of downstream

waves, the relative magnitude of these is an important basis for classifi-

cation. We distinguish three cases, depending on the ratio of the interface/

acoustic wave amplitudes:

a) acoustic oscillations, R >> Q, modeled by taking Q = 0,

b) compound oscillations, R * 0, Q * 0, and
~c) interface oscillations, R << Q, modeled by taking R = 0.

Case (a) represents classical acoustics, closely describing the weak-

shock oscillations in model G and the observations made in Naval Weapons

Center investigations (References 16 and 17). In case (c) flows, the

downstream propagation is dominated by the interface waves. Case (b) is a

intermediate situation in which both acoustic and interface waves participate

significantly in downstream propagation. Strong-shock oscillations in MDRL

models are described by case (b), although the simpler limiting case (c) might

be adequate in some situations.

7.1 Acoustic Oscillations

Classical acoustics 18 and aeroacoustics 19 are disciplines in advanced

stages of development, allowing accurate prediction of oscillatory properties,

as long as the system conforms to the assumptions implicit in the concepts of

linear acoustics. In the following, we discuss theoretical predictions for

the simple, constant-area model of Figure ic.

7.1.1 Energy Considerations

It is possible to define quantities called acoustic energy per unit

volume (E) and acoustic intensity per unit area (1), such that they obey an

integral conservation relation for a fixed volumel 9 :

ST v - -f d (25)
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or, for a one-dimensional situation,

L

ESdx = - [IS] (26)

0

The integral on the left side represents the energy content of the volume

V that is attributable to the presence of acoustic waves, and the right side

describes the energy flux carried in and out of the volume by acoustic

waves. For one-dimensional flows, E and I are both scalars and are defined

asl9

E = (P + U)2  (27)

and

I = yj(P + RU)(U + RP) , (28)

where

P .. , U - u, (29)

YP a

The above definitions apply at any instant in time-dependent flows. For

engineering purposes, the time-mean values are of more interest.

In the case of constant-amplitude, periodic oscillations, time-averaging

of Equation (26) yields zero on the left side, and the acoustic energy fluxes

at the two ends of the region are therefore equal. The time-averaged acoustic

energy flux into the system at the shock (i.e., at x - 0) can be written as

y-a (I + R2)7p- +(P2 ;i ] + =_P 2  1+ R2)A +'I + A (30)

where the second expression states the flux in terms of the real part of the

admittance ratio.
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Equation (30) permits some interesting conclusions. Setting M = 0

recovers a result well known from the classical acoustics of stationary

media. In this case, the system gains or looses energy according to Ar being

positive or negative. If Ar = 0, the reflection coefficient is unity

(Equation (10), hard-wall end-condition) and the system simply conserves the

energy it initially contains.

If M > 0, the first term inside the bracket still corresponds to gain or

loss depending on the sign of Ar, while the second term is always positive and

therefore always a gain. The net energy exchange is negative (loss) if the

real part of the admittance ratio is within the range:

- < A <- M. (31)r

The net energy flux is zero at both limits and positive outside the Ar range

defined by Equation (31).

For idealized reflections from a plane shock (Section 5.1) A * -r , the

reflection coefficient is nearly zero, and therefore most of the incident

acoustic wave energy is lost through the shock, thereby strongly damping the

oscillations. In steady state (forced oscillations), the energy lost through

the shock is replaced by an identical gain at the downstream end (at x L).

7.1.2 Solutions of the Acoustic Wave Equations

The flow in the configuration of Figure Ic is described by assuming a

one-dimensional, inviscid, isentropic, subsonic flow of a perfect gas at a

given, constant mean Mach number. The region of interest is bounded by a

plane normal shock at its upstream end (x - 0) and will be specified to have

reflective properties characterized by a known reflection coefficient R.
-iWt

Assuming that all fluctuating properties vary as e , a general solution for

pressure perturbations can be obtained in the form (Reference 14)

/ f e- z \ -i(!e +t k
t(x, t) - (Fe + Pe ) e (32)
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where

K (33)

and P+ and P_ are complex constants corresponding to downstream and upstream
waves. w is the oscillation frequency and is, in general, a complex con-

stant. w with a nonzero imaginary part describes growing or decaying os-

cillations, depending on whether w is positive or negative.

Special cases of Equation (32) will be discussed in the next two

sections.

7.1.2.1 Natural Oscillations with Open Duct-End

Imposition of the homogeneous conditions discussed in Section 6.1.1

(Equation (17)) results in a homogeneous problem whose solution can be shown

to exist only if w assumes discrete values, given as

-( 2R 2n - On + i [In R] , n - i, 2, 3.... (34)
2Ln-1

These values are the natural (eigen) frequencies of the system. The

imaginary part of w depends on the absolute value of the reflection

coefficient only and describes a decaying or growing oscillation, depending on

R being less than or greater than unity. If R - I the oscillations occur at a

stationary amplitude (forced oscillations).

The frequency (real part of w) is independent of R but depends on the

phase angle *. Positive * (phase delay) reduces the natural frequency, the

effect being especially strong for low harmonics where * is comparable to

(2n - On.

If R is a specified complex number, Equation (34) unambiguously

determines the natural frequency of the system. However, if the upstream

boundary condition is to reflect the behavior of a normal shock, then *
depends on the frequency in the manner illustrated in Figure 6b. Thus there
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exist two relations between the real part of w and that must be satis-

fled: Equation (4) and the relation illustrated in Figure 6b. The w valuesn

satisfying both relations determine the correct natural frequencies.

The procedure of finding the solution can be illustrated graphically.

Using the normalization of w introduced in Section 5.1, the real part of

Equation (34) can be rewritten as

* (n - O)n - 2 r.2 [d In . (35)

These relations are shown in Figure 6b as dashed lines for n - 1, 2, 3. The

intersection of the dashed lines with a continuous line for a selected

yields the desired frequencies. The results approximate sequences of integer

numbers; in the illustrated example the approximate proportions are 1:3.1:5.6.

Having determined 9n' the magnitude of the reflection coefficient is directly

given by Figure 6a.

The frequency dependence of R may be important in practical prediction

attempts. In the following, however, we simplify discussions by consider-

ing R as a fixed, known quantity.

Having obtained the natural frequencies, it is a simple matter to calcu-

late the streamwise distributions of local amplitudes and phase angles for the

pressure perturbations, both of which depend parametrically on R, R, 0, and n.

The effects of varying R on the second harmonic (n = 2) distributions are

illustrated in Figure 8 for a typical Mach number of 0.78. The amplitude dis-

tributions show that a nodal point exists only if R - 1, which is expected

since complete cancellation of two wave trains can occur only if they have

identical amplitudes. If R * 1, then a minimum occurs near (but not exactly

at) the location of the nodal point in the R - I case. The phase-angle

variations for the R - I case display an abrupt change of 1800 at the nodal

point. Between the nodal points, the net perturbations move in the upstream

direction, indicated by the negative slope of distributions. The abrupt

change at the nodal point (characterizing the R - 1 case) becomes an

increasingly gradual transition as R tends from unity. If R < 1, the
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transition is a rapid decrease of g, while for R > 1, the change is a rapid

increase of g. The latter implies upstream propagation of the net

perturbations for a narrow x/L range (from the minimum of the g(x) curve to

its maximum).

Figure 9 illustrates how the distributions change as the reflection phase

angle (*) is varied. Increasing phase angle causes a smaller multiple of the

wavelength to be included in the region, paralleling the reduction of the

associated natural frequency (Equation (34)).

7.1.2.2 Forced Oscillations

The imposition of a specified amplitude at the downstream end according

to Equation (21) results in an inhomogeneous problem, whose solution describes

a stationary oscillation (w real). The efflux of energy at the shock is non-

zero but it is replaced by an equal, steady influx of energy at the driven

end. After considerable manipulation, the solution for pressure perturbations

is

£'(x, Q) W i[Wt+i(x)(F - g(x)e -  , (36)

where g(x) and g(x) are real-valued functions defined by the relations

1/2

gWx) R 2 + 2R cos 1/2x * (37)+ R2 + 2R cos (2KL+ *)

and

g(x) - K(x - L) - i(x), (38a)

where

37



00

-0

+ 1800

90 0.1.4060.5.

t 138



-(x) R-sin- 2 sin K(x Q (38b)

~/i + R2 + 2R cos (2KL + € + R2 + 2R con (2Kx

* Similar procedures yield the velocity perturbations:

-a h(x) e- i[wt+h(x)J (39)

where h(x) and h(x) are real functions defined as

1/2
hx [I + R2 - 2R cos (2Kx +t)(0

h(x) = ~: ~Z(40)1 + R 2 + 2R cos (2AL + 0

and

h(x) = iK(x - L) - v(x), (40a)

where

V(x) s- 1 R 2  cos (ii O K(x -L) 1 C41b)

S+ R2 + 2R cos (2KL + A '+ R2 - 2R cos (2Kx + 4)

For the present problem, the absolute value and the argument of the

admittance A can be derived as

1/2

A(x) [I +3R2 - 2R cos (2Kx +4 (42)
S+ R2 + 2R cos (2Kx + 4)

and
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IR
tan[A(x)] l 2 sin (2Kx + ).(43)

These simple analytical expressions permit a clear illustration of reflection

effects on forced oscillatory solutions.

(a) R - I. The upstream and downstream waves have equal amplitudes and

form a resultant wave traveling upstream at a constant phase velocity

of v _ a(l - F2) / M. The local amplitude of the net oscillation changes as a

function of x, as determined by the function g(x). Since the two elementary

waves are of equal amplitude, a complete, steady cancellation can occur at

specific locations (nodal points). If M + 0, then the phase velocity tends to

infinity, corresponding to the standing waves found in classical organ-pipe

oscillations. There is no energy transfer between the system and the

environment at either end, with or without flow.

(b) R - 0. There is no reflected wave originated at the shock, and the

pattern consists of a single wave-family, propagating upstream at a phase

velocity v - a(i - R). The amplitude is unchanging; the waves simply pass

through the system. There are no nodal points for either velocity or pres-

sure, and there are no standing waves for any value of the Mach number.

(c) 0 < R < 1. The reflected wave amplitude is less than that of the

arriving wave, precluding a total cancellation of the two families. As

formally indicated by Equation (37), the amplitude is never zero, and thus

there can be no nodal points. The functions p(x) and v(x) are not zero, and

the phase velocity is a function of x.

Consideration of Equation (37) permits solution of the experimentally

important problem of finding the reflection coefficient from a known (experi-

mentally determined) streamwise amplitude distribution. The problem is par-

ticularly simple if g(x) has at least two extrema. Designating conditions at

the upstream-most minimum and maximum of g(x) by subscripts min and max, re-

spectively, the following relations can deduced from Equation (37):

gmax - groingmax +groin
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and

M (45)

n xmax Xmin

where xm is the smaller of Xmax or xmi n . If the first extremum is a minimum,

tten 0 is positive and the reflection involves a delay. Figure 10 illustrates

how this procedure can be reduced to simple graphic clues concerning the mag-

nitude and argument of the reflection coefficient. The procedure should be

used with caution because it presupposes the validity of acoustic theory and

streamwise constancy of the cross-sectional area.

7.2 Oscillations Incorporating Interface Waves

Failure of the acoustic theory to account for important features of

strong shock oscillations and the experimental evidence of strong interface

waves in such oscillations suggests that interface waves be incorporated in

g(x) "I

g(1) R

1.0

I I
I I

0 II I

00 1.0

XI X2

x/L
(.P~l4ZSWU-IS

Figure 10. Amplitude distribution for a forced acoustic oscillation and Its relation
to the reflection coefficient.
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the one-dimensional theoretical description. The present section presents

evidence that the inclusion of this mechanism improves agreement with experi-

mental results.

Using the elementary wave description of Section 4 and applying the

upstream boundary conditions of Sections 5.1 and 5.2, the pressure perturba-

tion field is written as

P"(x, t) - P + Re + ,e eiWt (46)

where the terms in the bracket describe the upstream acoustic, the downstream

acoustic, and the interface waves. Also,

k - (47)
a(1 l i

and

* -- (48)
aW

where w is the speed of the interface wave in the laboratory frame and W is

its value normalized by the speed of sound.

Setting - 0 reduces Equation (46) to the case of classical acoustics,

while setting R = 0 corresponds to the limit of a vanishing downstream

acoustic wave. This limiting is termed interface oscillation to distinguish

it from the general case involving all three waves, which will be referred to

as compound oscillation.

7.2.1 Interface Oscillations

This case, obtained from Equation (46) by setting R - 0, is formally

similar to acoustic oscillations, but quantitative differences in the wave

speeds put the solution into a different category. In acoustic oscillations,
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the downstream wave is faster than the upstream wave, whereas in interface

oscillations, the two are of comparable magnitude.

It is easily shown that the superimposition of two waves of equal ampli-

tude traveling in opposite directions produces a resultant traveling wave that

moves in the direction of the component wave with the smaller speed. The

resultant wave speed, V, is given by the relation

-T =  u+ - )" (49)

The upstream wave is always acoustic, so that u - a - u in both acoustic

and interface oscillations. In the acoustic case, u+ - a + u; therefore u+ is

always greater than u, and the resultant wave always propagates upstream.

For interface waves, u+ - w, which may be either smaller or greater than a -

u. The condition for downstream propagation thus is

w < (a -U)

or (50)
< ( ( - 1).

Equation (50) may well be satisfied; therefore the interface oscillation model

has the potential of accounting for the observed downstream propagation of the

resultant wave in strong shock oscillations.

If the amplitudes of the two wave-trains are not equal, then the

criterion for downstream propagation is more complex; the larger amplitude

wave tends to dominate the pattern.

In order to examine natural interface oscillations, we apply the boundary

condition of Equation (17) to Equation (46), with R - 0.

£'(L, t) - P_e + e e - 0 • (51)

From this equation, the natural frequencies are found os

a+ - 1)% - 1 + i [ln Q], j = 1,2,3. • • (52)

43



The similarities between Equations (52) and (34) (describing acoustic

oscillations) are evident. Comparison of Figures 8 and 11 shows that the

amplitude distributions are virtually identical in the two cases. The most

immediate conclusion of practical importance following from this finding is

that interface oscillations cannot be distinguished from acoustic oscillations

on the basis of amplitude distributions alone; the streamwise distribution of

phase angles must also be considered. Comparison of Figures 8 and 11 shows

that (between the nodal points) the phase velocity is negative for acoustic

and positive for interface waves. This distinction exists only

if W > (1 - M). If the opposite is true, then the phase velocity is negative

in both cases. If W 1 - M, then the phase velocity is infinite

(dg/dx - 0), standing waves result, and the amplitude and phase distributions

agree exactly with classical organ-pipe solutions, obtained assuming a

stationary medium.

Even though the amplitude (and for the r < I - M case, even the phase

angle) distributions may be identical, the frequencies associated with each

case are not; the interface oscillation frequencies are significantly lower

than the corresponding acoustic ones.

Equation (52) suggests that the natural frequencies associated with

interface oscillations vary inversely with L, in apparent contrast to

experiments demonstrating independence of geometric length. The paradox can

be resolved by identifying L with the length of the core flow and the open-end

reflection with the more complex process occurring in the merging region, as

described in Section 6.3. The boundary condition here is presumably different

from the simple p' - 0 constant condition of Equation (17), but at the present

stage of limited understanding, the application of more complex models would

be premature. Since the value of wjr does not depend on Q and its dependence

on . becomes increasingly weaker for increasing J, the natural frequencies

given in Equation (52) are probably reasonable despite uncertainities in the

value of .
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7.2.2 Compound Oscillations

Compound oscillations are, by definition, those appreciably affected by

both interface and downstream acoustic waves. Depending on the relative

amplitude of the two competing downstream waves, different types of oscilla-

tions may result.

For small amplitudes, the ratio or P,/P is controlled by the ratio of

reflection coefficients Q/R. For large amplitudes, this dependence may not be

the case because the acoustic wave amplitude may be made large by applying

large amplitude excitation, whereas the interface wave amplitude must remain

below the inherent limit discussed in Section 4.2.

Figure 12 illustrates how apparent contradictions in three known relevant

experiments can be resolved in terms of compound oscillations. The figure

shows regions of positive and negative v (downstream- and upstream-moving

resultant waves). The axes correspond to the acoustic and interface limits.

Limit imposed by the
slenderness of channel

.>O

V Interface NWC
oscillations V (References 16 and 17) J

U V'
m v<0

Acoustic
Uoscillations

* Strong-shock

1o MDRL

(References 4-6)
• '---Weak-shock

Downstream acoustic wave amplitude, p 15

Figure 12. Rep. t i of compound oscillations and their relation to three experimental
observnatoas. Scales are artrary.
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MDRL experiments 5 always involved small-amplitude perturbations, and the

interface wave strength was controlled by Q; the result is an upstream-moving

net wave for weak shocks and downstream net wave for strong ones.

The third case shown describes investigations at Naval Weapons Center

(NWC) 16 ,17 of large-amplitude oscillations in a direct-connect ramjet experi-

ment. The oscillations appear to follow acoustic predictions, in conflict

with MDRL results since the terminal shock was strong (M a 1.5) and its

oscillations would be expected to generate significant interface waves. In

the NWC experiment, the oscillations were driven by a large-amplitude combus-

tion instability (k 20%), which set a high level for the longitudinal waves,

apparently well over the maximum possible amplitude for the interface waves.

The dominant elements of the oscillations were thus the two acoustic wave-

families, and the wave resulting from them naturally follows acoustic

predictions.

The natural frequencies for compound oscillations in our idealized model

(Figure ic) are determined by applying the boundary condition of Equation (17)

to Equation (46):

[e-ik L ikL ikL] -iwt£(,t) [eP + Re 0;+ e ~ e =0 •(53)

The roots of this equation (obtained by numerical procedures) form a

sequence of complex numbers, labeled by the subscript k - 1, 2, 3. . ., in the

order of increasing magnitude of their real parts. As illustrated in Figure

13, compound natural oscillations are possible at more frequencies than the

number of natural modes for acoustic oscillations. For 0 < Q < 2, there are

only two acoustic frequencies for the illustrated case, but no less than five

compound natural frequencies were found. If Q is decreased towards zero, then

the k - I mode approaches the lowest (n - 1) acoustic mode, while the k - 4

mode becomes the second (n - 2) acoustic mode. The k - 2 and 3 compound modes

have no equivalent acoustic patterns, although the k - 2 case comes close to

the fundamental acoustic mode in the Q + 0 limit.

Each complex root (natural frequency) is associated with a particular

spatial distribution of amplitudes and phase angles. Figure 14 illustrates a

family of such distributions for k - 2, with Q as a parameter proportional to
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Figure 13. Natural frequencies for compound oscillations (k I to 5) and Their relation to acoustic
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the interface wave contribution. Comparison of Figures 8 and 13 indicates

that the Q + 0 limit does not reproduce the n = 2 acoustic oscillation mode.

Figure 15 shows a comparison of measured pressure amplitude and phase

distributions with theoretical results for natural acoustic and natural

interface oscillations. M, W, and the reflection coefficients were chosen to

maximize agreement with the data. The amplitude distributions are close in

both cases, but the phase-angle distributions predicted by acoustic theory

bear no resemblance to the data. Furthermore, the frequency of the acoustic

oscillations (second harmonic) is 47% higher than the frequency at which the

data were taken. In contrast, the compound prediction displays a qualita-

tively correct phase-angle distribution and frequency within 6% of the

experimental case.

This comparison is highly qualitative for several reasons: the theory is

for a constant-area channel exhibiting natural oscillation, while the experi-

mental model had variable area and the data apply to a forced oscillation.

The comparison nevertheless shows that by including the physically observed

interface wave mechanism, it is possible to predict amplitude and phase

distributions that are qualitatively in agreement with experimental results,

using physically reasonable choices for the unknown parameters built into the

formulation.

In its present form, the one-dimensional, constant-area formulation is a

convenient and precise way of stating arguments in favor of a theoretical

model. Further work needs to be done by extending the model to variable-area

channels, justifying the one-dimensional approach in view of the inherent two-

or three-dimensional structure of the pressure and velocity field, and includ-

ing calculation of the velocity perturbations, in which transverse variations

are more prevalent than in pressure perturbations. Finally, experimental

information concerning the values of reflection coefficients is needed.
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8. RESONANCE

Extreme values of shock displacement or pressure fluctuation amplitudes

in inlet diffusers are of direct engineering concern for obvious operational

and structural reasons. Large amplitudes were expected to occur in these

experiments when the excitation frequency was equal to any of the natural

frequencies. However, no conspicuously large pressure or shock displacement

amplitudes were found under such circumstances (Reference 5), which prompted

investigations into possible causes.

The definition of the problem at the outset of the inquiry was to deter-

mine the conditions necessary for resonance and to determine if resonance

occurred in the present experiments. This problem formulation raised

conceptual questions as to what consitutes a resonance. No generally

applicable, satisfactory answers were found to these questions.

Progress was made, however, by attacking the data interpretation issue

from a different point of view. The phenomenon of principal engineering

interest is the occurrence of extreme oscillation amplitudes for certain flow

properties. Resonance is of interest because it is an important (but not the

only) mechanism capable of creating such situations. Vice versa, maximum

amplitudes are not necessarily associated with resonance, e.g., overdamped

systems may display maximum response in the limit of zero excitation fre-

quency. It is concluded that a less general but more useful definition of the

problem is to investigate conditions leading to maximum amplitudes of selected

system properties.

In the following, we first discuss resonance in terms of a simple mathe-

matical model and then compare the findings with a real system (for which a

mathematical model may not exist).

8.1 Resonance in a Hathematical Model

We consider the constant-area, inviscid, linearized acoustic model de-

scribed in Section 7.1. The system is a one-dimensional continuum, and its

state at any instant is described by distributions of amplitudes and phase

angles, not by a single variable such as a simple linear oscillator (e.g., a
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spring-mass system). As indicated by Equation (34), the natural oscillation

frequencies are complex, including an imaginary part that describes the rate

of amplitude decay if R < I and the system is left undisturbed. The decay is

caused by energy lost from the system through the upstream boundary which is a

source of localized damping. (Real systems may involve loss mechanisms dis-

tributed throughout the system such as turbulent dissipation; these are not

represented in our simple model.) The natural frequencies form a one-

parameter family and therefore a single set of modes since only longitudinal

perturbations are allowed.

The system can be forced to execute steady-state oscillations by pre-

scribing the pressure amplitude at its downstream end. This excitation, which

is one of many possible methods, results in the oscillatory patterns described

in Section 7.1.2.2. The pattern is described by Equation (36), rewritten here

as

j( C1 [I + R + 2R cos (2Kx + *) ei (54)

where C1 is a constant coefficient given as

CI I + R2 + 2R cos (2KL +)] 1/2, (55)

where

K W (56)

aU - i2)

Both w and K are real. The customary interpretation of resonance is that

resonance occurs when C1 has a maximum. It follows from Equation (55) that C1

has a maximum if the frequency assumes the following (real) values:

I(, _ R12) [(2n I)- .n - 1, 2, 3*.. (57)
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Comparison with Equation (34) indicates that resonance occurs if the excita-

tion frequency is equal to (the real part of) any one of the natural fre-

quencies. The spatial distributions of amplitudes and phase angles in the

natural and forced oscillations are similar, but not identical, since p'(L) is

zero in the natural mode and finite in the forced mode.

It follows from Equations (55) and (57) that in resonance C 1 = 1/(1 - R) and

the maximum normalized pressure amplitude in the system is (1 + R)/(I - R).

If R - 1, the system is loss-free and the amplitudes tend to infinity, indi-

cating that the steady net inflow of energy at the downstream end is not com-

patible with a steady-state oscillation.

This calculation is straightforward. However, consider the problem of a

hypothetical experimenter who deals with this ideal system and wants to deter-

mine the resonant frequencies. He does not know R and *, but can set
excitation frequency and measure pressure amplitude and phase at a finite

number of locations from x = 0 to L.

Figure 16 (based on Equation (54)) illustrates how the measured local

pressure amplitude would vary, should five sensors be located at 0.25 L inter-

vals. Frequencies are normalized by the first natural frequency. The problem

is apparent: sensors located at different locations indicate peak amplitudes

at different frequencies. The amplitude distribution changes constantly as

the excitation frequency is varied; the peaks of the distribution shift and

change magnitude concurrently, and a fixed sensor detects the net result of

both types of changes. The reliable detection of resonance thus requires,

even in this simple system, knowledge of the entire pressure distribution with

good spatial resolution and for densely spaced frequency values over the

frequency range of interest. The acquisition of such an extensive data set

may be beyond economic feasibility even for a research-oriented

experimentalist, and almost certainly for an engineer doing development work.

8.2 Resonance in a Real System

The supercritical diffuser flows investigated in this project include

many complexities not represented in the simple model of the previous

sections: some of the more important are briefly discussed.
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Figure 16. Acoustic oscillation amplitudes detected at various locations in a constant-area channel as
functions of excitation frequency. fI is the fundamental frequency for open downstream
end, R =0.1 and =600. Arrows indicate natural frequencies.

The flowfield is two-dimensional and even if it were uniform and

inviscid, it could possess two sets of natural modes with appropriate natural

frequencies. The excitation technique applied may excite motions belonging to

one family, while natural oscillation modes might belong to another.

Excitation of a damped mode could explain the apparent absence of resonance,

even though the system may be capable of responding with high amplitudes to a

different type of excitation.

The flow is significantly nonuniform in both the streamwise and trans-

verse directions and contains regions of intense time-mean dissipation. It is

not clear if these regions also strongly attenuate acoustic waves, but they

are likely to do so. The effects might be the broadening and reduction of

resonant peaks.

Perhaps the most important aspect of dealing with real flows is that

there is no manageably simple theoretical model available upon which to base a

search for resonance phenomena. Mechanisms other than simple acoustic-wave

propagation clearly play an important role, and some of them (convection and
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turbulent diffusion) tend to obscure the more sharply defined patterns created

by wave motions.

Experimental difficulties and economic limitations further aggravated the

situation. The excitation amplitude and frequency varied concurrently (Refer-

ence 5), and the effects attributable to each could not be separated. The

spatial resolution was insufficient, and the statistical processing necessi-

tated by the low signal-to-noise ratio further reduced the number of cases

that could be investigated.

The conclusion is that the resonance issue, in its originally posed,

broad form, could not be resolved for both conceptual and practical reasons.

8.3 Extreme Amplitudes

The resonance question proved unmanageably broad, and perhaps also not

necessary. For most practical purposes, it may be satisfactory to know the

conditions that lead to extreme values of some selected system property.

One such obvious property is the shock oscillation amplitude. For small

amplitudes, the shock responds linearly to the pressure oscillation amplitude

immediately behind the shock (Section 5.1). For the simple model of Section

7.1, the largest shock oscillation amplitudes occur when p' at x - 0 is max-

imum. Equation (37), with x = 0, supplies the amplitude at the upstream end

as

g(0) 1 2 + R2 + 2R cos 1/2. (58)

I + R2 + 2R cos (2KL + f)

For a given R, the shock motion amplitude is maximum at resonance (which is

clearly defined for this model, see Equation (57)). At resonance,

WWI + R 2 + 2R coo (59)
[g(O)max 1 - (

which shows that the shock amplitude increases indefinitely as R + I and that

the * - 0 (closed-end like) reflection produces the largest amplitudes.
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If attention is focused on a single system property (as opposed to

variation of entire distributions), determination of a maximum of this

selected property as a function of system parameters is a well-defined,

feasible task, even in a real system.

It is important to associate the results with appropriate dimensionless

parameters. The experience of this project clearly indicates that the pre-

shock Mach number (F a) is the most significant independent variable, pre-

ferable to conventionally used overall pressure ratios. F has a decisive
influence on development of the post-shock boundary layer and the reflective

properties of the shock (Appendix A), thereby controlling major elements

entering into the determination of the oscillatory flow.

Inviscid, linearized theory suggests the following normalization of the

shock-displacement:

X P 2  d in S

Presentation of experimental data in this form shows no simplification of the

results in comparison to a straightforward dimensional plot. One possible

improvement might be to base normalization on the effective (geometric minus

displacement) area. Since shock oscillation effectively prevented determina-

tion of boundary-layer properties in the immediate vicinity of the shock, this

type of normalization was not possible.

References 2 through 6 contain extensive information which include

various extreme values. These values form valid information whether or not

their occurrence coincides with a resonance condition.
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9. SU1JMARY AND CONCLUSIONS

Detailed investigations of data obtained in both natural and forced dif-

fuser flow oscillations indicate that unsteady boundary-layer effects appear

in the form of downstream-moving transverse waves carried by the boundary-

layer/core-flow interface. These waves, called interface waves, become more

intense as the terminal shock strength increases and may dominate over

downstream-moving acoustic waves when shock-induced separation is present in

the flow.

Preliminary calculations indicate that a quasi-one-dimensional descrip-

tion of these waves may be possible on the same level of complexity as conven-

tional, one-dimensional acoustic calculations. Incorporation of the interface

waves accounts for important observations, including the downstream-directed

motion of the wave resulting from superposition of the upstream acoustic and

the interface waves.

The success of such a theory depends on availability of information

concerning the reflection of acoustic and interface waves from the shock and

from an open-end duct and the behavior of the interface wave at the location

where boundary layers on opposite walls merge. Investigation of these

processes is required for further progress towards characterization of

supercritical oscillations.

The present study dealt with an intentionally simple system to illustrate

major features of the proposed modeling assumption. A calculation method

aimed at a quantitative prediction capability will have to include a stream-

wise area variation and appropriate modeling assumptions for the prediction of

velocity perturbations in the presence of interface waves.
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APPENDIX A: PRESSURE PERTURBATIONS IN INTERFACE WAVES

Consider Figure A-1, showing a constant-area duct with a displacement

wave on the bottom wall (the top-wall boundary layer is omitted for

simplicity). Assume that the boundary-layer/core-Elow interface locations is

given by

6(x) = 6 + 6', (A-1)

where

6' CCOS (iKX -WO (A-2)

and

K A) (A-3)

The core-flow cross-sectional-area per unit-width of channel is then

Sc -S -6 s - ( +6-) = 6=, + SA4

from which follows

S' -6'. (A-5)
C

U.

SS

E~

Figure A-1. Interface wave structure.
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The phase relation between stdtic pressure and velocity perturbation is

easily deduced by considering the flow in a coordinate system mo" Lng with the

wave, i.e., in the downstream direction, with velocity w. In this frame, the

shape of the interface is constant in time, and an observer would see a steady

flow in a variable-area duct with a (spatial) average velocity of

(c - W).

Use isentropic relations (in a linearized form) to estimate the pressure

variations:

- , 
(A-6)

c I - 2  
S

where M is the Mach number seen in the moving frame:

U -W
R. c R (A-7)

a

Using Equations (A-4), (A-5), and (A-7),-Equation (A-6) becomes

NC U) (A-8)-[ 1 1;PC I -(M- W2 Sc "

Equation (A-8) shows that the core pressure perturbation pattern is

frozen in the frame moving with the wave. A stationary sensor located in the

core flow will detect the passage of this pattern past a fixed point.

Equation (A-8) also shows that a maximum of Pc' occurs where 6' has a

minimum: the two quantities are 1800 out of phase.

For isentropic, adiabatic, steady flows the following general relation is

known to hold:

dp - - pu du, (A-9)

which can be specialized for the steady flow in our moving frame as

p,. -Pc c- u,. (A-10)
c cc C c
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Equation (A-10) indicates that the core flow pressure and core flow

velocity are out of phase by 1800, in agreement with experiments.
5

Equation (A-10) can be used to define a quantity A*, in analogy to

acoustic admittance, as follows:

p 
-uc aM-WA* (A-11)

A, is thus independent of x, in agreement with data and in conflict with

acoustic theory (Equations (42) and (43)). Measurements of u' and p' show A*

to be near 1, which compares with values of 1-2 obtained by substituting

approximate, average values of R and W in the right side of Equation (A-Il).

The pressure sensed by a fixed, wall-mounted probe differs from the core

pressure because of streamline curvature effects (see Figure A-I). In order

to estimate this pressure differential, we use the following simple form of

the y-momentum equation:

2

_R =(A-12)
by r

where r is the local radius of curvature of the streamlines. We assume the

following transverse variations (with x held constant) for the three

quantities appearing on the right side:

P PC = independent of y, (A-13)

u =UCf (Y/6) (A-14)

for y ; 6• c

and

. i ' h(y/6), (A-15)
r r
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where f and h are appropriate functions left temporarily unspecified.

The radius of curvature for the boundary-layer edge, re, is calculated

from Equation (A-2):

c dx2

Substituting Equations (A-13) to (A-16) into (A-12) and integrating from

y - 0 to y - 6 results in

P, - P -
-_ =YM I K 2g 6-, (A-17)
PC

where I is a definite integral given as

1

I mf f(n)h(n)dl . (A-18)

0

The value of I depends on the velocity and curvature distributions assumed.

Reasonable assumptions yield I = 0.2-0.5, but the exact value is not too

important for the present purposes.

Equation (A-17) is an estimate of the pressure differential caused by

streamline curvatures, while Equation (A-8) gives the pressure change caused

by streamwise core area variations. Combining two equations gives the net

pressure fluctuation detectable by wall-mounted transducers:

-(-W)2 + 62 2  6 (_. (A-19)

PC I (M1 )2 J6

The two contributions inside the bracket are of the same order of

magnitude. These contributions are also in-phase; thus, the wall pressure
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fluctuation magnitudes are greater than core pressure amplitudes, as also

observed experimentally.

The estimates presented here relate pressure perturbations to boundary-

layer displacement effects. The results indicate phase relations among core

flow velocity, core pressure, and wall pressure that are in agreement with

experiment.
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APPENDIX B: TREATMENT OF TIME-DEPENDENT LOCATION OF UPSTREAM BOUNDARY

The computation of reflection coefficients is motivated by the need to

use them as upstream boundary conditions in simple, linearized calculations of

the post-shock flow. It is desirable to treat the flow as having a fixed

upstream boundary at the time-mean shock location. It is relatively easy to

compute conditions immediately behind the shock; however, the shock is not

stationary and the results cannot be assigned directly to the time-mean shock

location.

Figure B-i illustrates the pressure distribution prevailing in the

channel when the shock is stationary at the time-mean shock position; an

instantaneous distribution is also shown. The pre- and post-shock pressures

for stationary shocks located at various positions in the channel fall on the

static loci as shown. During oscillation around x , the post-shock pressure

does not lie on the static post-shock pressure locus because of dynamic,

nonstationary effects. When the shock is moving upstream, its speed is added

to the speed of the approaching flow to obtain the speed relative to the

shock, which determines the shock pressure rise. During upstream motion, the

post-shock pressure at any location is thus greater than the static value for

the same location. The opposite is true during downstream movement, and the

post-shock pressure is below the static value. The locus of the post-shock

pressures in a dynamic situation can be shown to be an ellipse superimposed on

the static locus. The vertical dimensions of the ellipse increase with shock

velocity, i.e., with the (x'w) product.
a

Since the calculated post-shock pressures exist on the downstream face of

the moving shock, the boundary conditions are known for a sinusoidal boundary

in the x-t plane (lower part of Figure B-I). It is desirable to deal with a

straight-line boundary in this representation (x = = const), which can be0

achieved by a linear extrapolation of the instantaneous subsonic pressure dis-

tribution to the time-mean shock position, using the slope of the time-mean

subsonic pressure distribution as shown in the top part of Figure B-1. The

difference between the extrapolated and time-mean value at x is the desired0

equivalent perturbation (p') associated with the stationary x location.
e a
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Figure B-I. Inslantaneous pressure distributions near an oscillating shock in a divergent channel.
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This procedure can be applied equally to the velocity perturbations,

permitting the computation of admittance ratios and, eventually., the

reflection coefficients. The calculations in Reference 14 and the earlier

Reference 15 employ this approach, although it is not clarified graphically by

either source.
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