
Ii AD-A129 404 ADA/APSE: A SUCCESSOR TO CORAL 66 IN THE 80'S(U) ROYAL I/
SIGNALS-AND RADAR ESTABLISHUENT MALVERN (ENGLAND)I T A WHITE JAN 83 RSRE-MENO-3540 DRIC-BR-87073UNCLASSIFIED F/G 9/2 NIImoIISIIMIE

IIIoIIIIIII

L-0

11111 1L. 4 11.6W

MICROCOPY RESOLUTION TEST CHART

F- NATIONAL 9VAfAU OF STANOADS 1063-

1 11 U! R87b

RSRE

M EMORANM No. 3544k

ROYAL SIGNALS &RADAR.
ESTABLISHMENT

Adi/APSE: A SUCCESSOR TO CORAL 8 IN THE Ws?

Author: T AD White

MINISTRif OF lCE,
3RSREl MALVERN, lk

woltee.1

A~- I

U-0 0 4144b

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 3540

TITLE: Ada/APSE: A SUCCESSOR TO CORAL 66 IN THE 80's?

AUTHOR: T A D White

DATE: January 1983

SUMMARY

This paper briefly describes the historical context of, and the features
offered by, the MOD standard real-time language, CORAL 66, and the recently
developed US DoD standard language for embedded systems, Ada. It also
sketches the principles behind the development of the APSE.

Ada/APSE will almost certainly replace CORAL 66 as the UK MOD preferred
language in the mid- to late-8Os.

Mention is made of the MID preferred software design method MASCOT, and its
role after a transition to Ada/APSE is explained.

4

This memorandum is for advance information. It is not necessarily to be
regarded as a final or official statement by Procurement Executive. Ministry
of Defence

Copyright

C

Controller HMSO London

1983

180/59- i-

Contents

1 Introduction

2 CORAL66

2.1 History

2.2 Features

2.2.1 Types and Expressions
2.2.2 Block Structure
2.2.3 Procedures
2.2.4 Independent Compilation
2.2.5 Control Structure
2.2.6 Access to Computer Hardware

3 Ada and APSE

3.1 History

3.2 Features

3.2.1 Types
3.2.2 Packages
3.2.3 Separate Canpilation
3.2.4 Generic Program Units
3.2.5 Exceptions
3.2.6 Tasks
3.2.7 Machine Representations and Foreign Languages
3.2.8 APSE

4 MASCOT

5 Concluding Rmarks

IA-:

.. 4 :,uocd []

f, i:l~ /O"

. 't '2 114

-1 -- 1';:

1 Introduction

CORAL66 (1, 2] and Ada [3] are computer languages designed to
address the same problem area. However, the sixteen years which
separate their designs has left them with little else in common.

In the late fifties and early sixties limitations of slow and
expensive hardware meant that great importance was placed on the
maximum utilisation of computers' components. Programs were
generally small and could be understood by one or two programmers
who were themselves inexpensive to hire - even though they were
specialists in what quickly became regarded as an "art". CORAL66
(Computer On-line Real-time Applications Language), an advanced
language in its time, was designed to encourage the use of
high-level languages during a period when intimate knowledge of a
computer was required to achieve an efficient program.

The late seventies and early eighties have seen the introduction
of chips which are cheap and disposable, and so fast and
capacious as to be incomprehensible to the layman. Meanwhile,
computers have been embedded in a greater variety of
applications, including continuous processes, which are required
to give reliable service: industrial plant, communications
networks and civilian air traffic control are examples; more
extreme examples are life-critical systems such as nuclear power
stations and weapons systems where failure of the embedded
software could result in accidental loss of life. Such large
systems are rarely completely understood by one person; indeed,
they are generally developed by teams of software engineers who
work independently of one another and who are expensive to hire.
It is now recognised that the production of a computer system is
a task which must be brought under the management, quality
control, and technical disciplines already used in other branches
of engineering. Ada, or more strictly, the Ada Programming
Support Environment (APSE) [4), has been designed to fulfil these
goals.

-2-

.~~~

2 COA 6

2.1 History

The primary initiative behind the development of OCRAIA6 was the
UK Ministry of Defence (MoD) requirement to introduce a standard
high-level language into those defence applications which at the
time were being implemented almost without exception in assembly
language. The new language was to allow the progrumier direct
access to the hardware of the computer in order to make it
attractive to assembler programmers and therefore a serious
alternative. However, the language was to encourage the use of
advanced programing language constructs which would enable
better programs to be written more easily, with greater clarity
and with improved integrity. Arguments levelled against the
adoption of high-level languages also had to be countered: these
were firstly that high-level languages resulted in larger
programs which therefore ran more slowly, and secondly that the
very need for a high-level language compiler implied the need for
a large host cauputer on which programs could be developed.
Design aims of CRAI6 therefore included a requirement that
ompilers produced efficient object code and were themselves
small enough to be efficient when run on a modest mini-conputer.
The features of the language owe much to the then recently
published Algol60 language which itself never received more than
academic interest.

2.2 Features

The features of aORAIA6 are informally described to show how data
may be represented, how it may be protected, and how a program
may be split into modules; in addition, the control structure is
illustrated; finally, it is shown how the programmer is given
access to the underlying machine to construct more complex data
Structures and interface to the target operating system.

(bviously a paper of this short length cannot describe the
features of the language in detail; C(RAL66 is fully specified in
British Standard BS5905 [2].

Examples of COAL66 source text follow the typographical
convention of the British Standard.

2.2.1 Types and Expressions

Data objects in ORA6 belong to one of only three types:
ITEGER, FIXED or FLDATIG.

It was the belief that the proper realm of computers was that of
numbers; the progrmmer was required to exercise his own mind in
order to express his ideas in digits. CORAI6 thus provides types
to represent (as closely as possible in finite word length) the
mathematical integer and real nambers. the real numbers are of
two types: floating point numbers and fixed point numbers - the
latter required because of the expense and poor performance of
contemporary floating point hardware.

34

-3-- i;

Thus, the CORAL66 programmer can declare numerical data objects:

INTEGER quantity ;

FLOATING height, range

FIXED(16,8) amps, volts

The usual arithmetic operators (+, -, *, / and parentheses) are
provided to allow the construction of expressions.

For example, a programmer may write expressions:

quantity + 1

2 * pi * range

volts / amps

(a- b) * (a+ b)

to achieve the obvious effects.

Arrays, based on these primitive types, are also available to the
CORAL66 programmer.

2.2.2 Block Structure

CORAL66 retained an important concept popularised in Algol60
whereby programming language statements are bracketed together to
form a block, and more importantly, where objects declared within
such blocks are given restricted scope. The concept of blocks is
retained in all modern algorithmic languages of good design.

Thus, a CORAL66 programmer can write a program fragment:

BEGIN
FLOATING volts, amps

* example block;

without concern that, by declaring new objects, he may be
inadvertantly misusing other objects of the same name.

Local scope is also an early recognition of the importance of
information hiding which allows the programmer to deny others
access to, or even knowledge of, his owm local objects.

2.2.3 Procedures

The concept of blocks and locally declared objects is used to
powerful effect in procedures. Procedures are named fragments of
program text which are written once but may be used many times.
They may be provided with data from the main program and may
return results to it.

14

For example, let us assume that the calculation of sines is
required. The sine function can be embodied in a (typed)
procedure, so:

FLOATING PROCEDURE sine (VAILI FIATING argument)
BEGIN

FILOTING result

... here wuld appear the source

... code for the sine function

ANSWER result
END sine

Procedures were orginally introduced to allow code to be invoked
from several places within a program and thus save precious
space. This ability, with that of hiding local data objects or
other unnecessary detail from the procedure's user, was the
beginning of ideas to allow software fragments to be reusable -
it can be seen that more sophisticated algorithms can be built up
from simpler reusable fragments in what has been termed bottom-up
fashion.

Furthermore, with a top-down view of program development,
procedures allow a problem to be divided into smaller
sub-problems each of which can be solved independently of the
others.

2.2.4 Independent Compilation

Independent compilation recognises that there may be data and
procedures which can sensibly form a collection to be used by
programmers who need know nothing of the detailed program text.
Independent compilation also recognises that programs may be too
large to manage in a single compilation.

For example, assume a programmer knows nothing of the algorithmic
details of a 'sine' procedure provided in a software library. He
may nonetheless use it. For example, he may be able to write:

CORAL example program
LIBRARY trig functions

FLOATING PROCEDURE sine (VAUJ FLITING)

SEG E " my program
BEGIN

... here would appear some use of the

... library 'sine' function, for example

... the assignment of an expression:

... height := range * sine (elevation)
D my program

FINISH

While providing obvious advantages, the independent compilation
mechanism is severely limited by its ability to perform only name

-5-

checks on objects declared in other segments.

2.2.5 Control Structure

COPAL46 provides the classical Algol60-derived control structure
for the assignment of values, the call of procedures, tests,
loops and the transfer of control (jumps).

Thus, the CORAL66 programmer may assign values:

discriminant := sqrt (b * b - 4 * a * c

he may test values:

IF height = 100 AND weight - 50 THEN ...

he may iterate a known number of times or until a condition is
satisfied:

FCR i : 1 STEP 5 UNTIL 100 DO ...

FCR i : i + 1 WHILE i >= maximum DO ...

and finally he may transfer control to another named position in
the program text:

GOTO end

2.2.6 Access to the Computer Hardware

The design of CPAL466 had to accommodate the construction of more
sophisticated data objects; it also needed to allow the
programmer to interact with real-time facilities provided by his
machine. The solution adopted by COOAL66 to these problems, for
which at the time no widely accepted solutions existed, was to
allow the programmer easy direct access to the computer hardware.
The aims of COA L66 were thereby fulfilled, namely the provision
of high-level language constructs where appropriate, but the
availability of efficient machine level features where
inefficiency may otherwise result. By this method it was hoped to
attract programmers away from the exclusive use of assembly
codes.

Thus, a COMAL66 programmer may specify, and can discover, the
exact computer location of his data objects; he can then
manipulate the objects directly - but only with reduced compiler
checking. He is, in addition, allowed to write in machine-level
code.

For example, a programmer may declare an object at a specified
location:

ABSOLWTE (INTEGR peripheral out / 10)

he may discover the location of a data object and manipulate it:

x :LOCTION (height) ;

-6

x] :- [x] + 1 (this will have altered 'height'

with the effect that he may develop more sophisticated data
structures:

last of list [current] a LOCATION (next of list [last])
data of list I current := result ;
next of list [current] := LCRTION (last of list [next])

He may also descend into code, when machine facilities will be
available:

COMMr this code is a nonsense example;
CODE BEGIN

SETA .0.1
AM2A .0.1
JNPA .SELF - 1

END code example;

7

°.
4

3 Ada and APSE

3.1 History

The initiative for the development of the language Ada and its
Programming Support Evironment (APSE) came from the US
Department of Defense (DOD) who wished to reduce their
expenditure on software for embedded computer systems. The DoD
had realised that much unnecessary expense was due to the large
number of computer languages they supported. They wished,
therefore, to follow the UK MoD example by introducing a single
standard language throughout the US services, and by so doing to
unify the language support that would be required.

Users' requirements for a standard language were drawn up and
refined in a series of requirements specifications, the last two
of which were known as the Ironman [5] and the Steelman [6].
Evaluation of many existing languages against the requirements
showed that no contemporary language satisfied the DOD needs; the
design of a new language was therefore proposed.

Four candidate languages were designed; code-named Blue, Green,
Red and Yellow they were evaluated against the requirements and
against each other, with the result that the Green and the Red
[7] languages were taken on to a further stage of development. A
second evaluation resulted in the Green language of
CII-Honeywell-Bull being chosen to be the proposed DOD standard.

The language was named Ada after Augusta Ada Byron, Countess of
Lovelace, who, as assistant to the nineteenth century
mathematician Charles Babbage, became the world's first
programmer.

It is the DoD's declared intention to protect the Ada programming
language standard from misuse; to this end they have established
a trademark and will require that compilers wishing to be known
as "Ada" compilers shall have undergone testing and validation by
the DoD or an agent of the DoD.

However, a new language is not enough. It had become apparent to
those experienced with the specification, design, development,
management and maintenance of large computer systems that a
computer language by itself is not adequate. Additional goals of
formal system requirements specification, program design,
provability, software quality and maintainability are now as
important as a technically competent language. It is recognised
that a language needs software tools to support it. The ideas of
support tools gave rise to the idea of the Ada Programming
Support Environment (APSE).

.he development of the APSE followed similar lines to the
developent of Ma itself; users' requirements were refined in a
series f documents which culsinated in the publication of the
Stow . [4]. Stoneman identified several *layers" in a mRort
vw mwnt: the MASE (the Kernal APSE) which would contain the
machine dependencies; the WPSE (the Minimal APSE) which would
interface to a host operating system through the KAISE and would

j 8

be that minimum set of tools which would allow simple text
preparation, compiling and linking of an Ada program; and the
APSE, which also interfaces through the PSE and is an
open-ended set of tools to support the whole life-cycle of a
software system.

It is not believed yet possible to reach international agreement
on the details of a support environment so that one standard
environment satisfying the Stoneman requirements seems unlikely.
Currently (December 1982) there are four known efforts to realise
the Stoneman requirements for an APSE: in the US the Air Force
are procuring their Ada Integrated Evironment (AIE) and the Army
their Ada Language System (ALS); the UK MoD hopes to procure the
MCHAPSE [8] - a Minimal APSE, but with an additional capability
to support the telecommunications language CHILL [9]; there is
also an initiative in Europe.

It is perhaps interesting to note that Ada and APSE represent a
triumph of international co-operation. The US DOD adopted a
policy of open development for the Ma requirement specification,
the Mda language itself, and the requirements for the APSE. Thus
each stage of development was open to, and received, comuent and
criticism world-wide. Since the adoption of the Green language as
Ma further development has taken place and this too has been an
exercise in international co-operation.

Furthermore, the significant European contribution to the
development of Aa and the requirements specificiation for the
APSE should not go unrecorded here - indeed, da was designed by
a team led by the Frenchman Jean Ichbiah and Stoneman was written
in the major part by Professor J Buxton of the University of
Warwick.

3.2 Features

The features of Ada are informally described to show, in
comparison to OORAL66, how data may be represented, how it may be
protected, and how a program may be split into modules. Some
consideration of the da tasking model and access to the
underlying machine is also given.

Obviously a paper of this short length cannot describe the
features of Ma in sufficient detail to do the language justice.
Neither can it fully describe the APSE. da is defined in the da

Language Reference Manual (LM) [3), the APSE in the Stoneman
[4].

Examples of da source text follow the typographical convention
of the LOM, with the exception of the omission of bold typeface.
One lexical convention, which may be strange to the COAJLA6
programmer, is the use of an underscore character () in
multi-word identifiers to represent what would otherwisi have
been a space, thus: ELAPSED TIME.

3.2.1 Types

Computers have left the realm of numbers and are given the

VA

-9-

-~ 'E t

ability to manipulate all kinds of objects which have types
specified by the programmer. The programmer now no longer has to
do his mental exercises to express his ideas in numbers, he can
define types to reflect the properties of the objects he wishes
to manipulate. In addition, the compiler is given the opportunity
to carry out significantly more checks.

Thus, if an Ada programmer wished to describe the colour of a car
he may write an enumeration type to specify the colours
available:

type COLOUR is (BLUE, BROWN, RED, WHITE, MErALLICGREE)

COLOUR OFCAR : COLOUR ; - the colour of a car is a colour

COLOUR OF CAR : WHITE

Ada types are strictly controlled. The Ada programmer needs to be
more precise in his usage but receives the advantages of a
readable program text which is checked by the Ada compiler.

For example, if having defined the type COLOUR, an Ada programmer
defines objects of type 'SKILL':

type SKILL is (WHITE, YELEW, GREEN, BLUE, BLACK) ; - eg judo

SKILL OFCOMPETITOR . SKILL

he would need to qualify use of the value 'WHITE' which appears
twice. Thus:

COLDUR OF CAR := COLOUR (WHITE

but

SKILL OFCOMPETITOR :- SKILL (WHITE)

The Ada programmer can define operations on his types as
illustrated in the package DIRECTIONS.

Ada predefines the usual numeric types, a two-valued boolean
type, and a character type to reflect the ASCII character set
(ASCII is similar to the ISO-7-UK character set). Furthermore, it
provides facilities to construct array types, record and pointer

* types. For example:

type SCHEDULE is array (DAYS OF-WEEK) of BOOLEAN

type DATE is
record

DAY : INTEGER range 1 .. 31
MONTH : NAMEOF Ma ;
YEAR : IrER-range 0 .. 4000

end record

-10-
- I - - -- i _

type LINK is access LIST CE L

A subtype facility is provided which allows the programmer to
constrain the values of a previously declared type available to
an object.

For example:

type DAYS OF-WEEK is (NDAY, TUESDAY, WHNESDAY, THURSDAY,
FRIDAY, SATURDAY, SUNDAY) ;

subtype DAYS OF WEEKEND is DAYS OFWEEK range SATURDAY .. SLNDAY;

Additionally, derived types may be created where a new distinct
type is modelled on an existing type. For example:

type 'LTS is new FLMATING 0.0 .. 240.0

type AMPS is new FLATING 0.0 .. 13.0

Notice that derived types recognise the true logical separation
of a type, and its values, from another type, and its values
(here we have volts and amps), even though the values may be
based on the same underlying type (here the floating numbers).
One is tempted to remember first-form introduction to physics
equations when, on completion of a solution, the master would
amend an apparently correct answer by adding the appropriate
units eg x is not 3 but 3 voltsl

The ability to clearly separate these logical properties carries
a price, of course. The programer m.y need to inform the
compiler explicitly that, for example, an operator '/' operates
not only on numbers, but also between values of type 'volt' and
values of type 'amp' (producing one assumes a value of type
'ohm'). This information need only be presented to the compiler
once, thereafter the programmer reaps the benefits of much
improved checking.

3.2.2 Packages

Ada extends the ideas of blocks and procedures by providing
facilities to package type definitions, operators and procedures
into logical collections. The Ada programmer is given great
control over the objects in his packages and will only release
those details which are necessary to his users. P0reover, there
is proper appreciation of the differences between the
specification of a package (ie what it does) and its
implementation (ie how it does it). Ada separates the two
concepts so that a programmer using a package sees its
specification (and may guess how it works), but only the package
author sees the package body (ie Implementation) ad knows
precisely how the package achieves its goal. 2he author may of
course alter his method, but not the specification, without
affecting his users. Should, however, the package author intend
to alter his package specification the da cmpiler will be able

- 11 -(

IIt

to report back the identity of those dependent packages which
have been affected by the alteration.

The example is a package for a type DIRECTION and some operations
on the values a direction can take. A user of the package would
see the package specification, given first, and will know how a
direction behaves, but he would not see the package
implementation details (the body):

package DIRECTIONS is

type DIRECTION is (NOMRI, WET, SOIXH, EAST, DONT CARE)
function TURN LEFT (SOME DIRECTION : DIRECTION)

return DIRECTION
function TURN-RIGHT (SOME DIRECTION : DIRECTION)

return DIRECTION
function ABOUT TN (SOME DIRECTION : DIRECTION)

return DIRECTION

- rest of specification

end DIRECTIONS

package body DIRECTIONS is

function UN LEFT (SOME DIRECTION : DIRECTION
return DIRECTION is

begin
if SOME DIRECTION = DONT CARE then

raisi CANT TUN ;
elsif SOME DIRECTION - EAST then

return oRTH
else

- rest of function T LEFT

end TURN LEFT;

- remainder of source text of package body

end DIRECTIONS

Thus, the ideas of information hiding and the separation of
specification and implementation have been given formal language
constructs.

3.2.3 Separate Compilation

* :. Separate compilation is a vastly more powerful concept than the
k. independent compilation facility offered by O PJA . Whereas

Independent compilation will check no more than the availability
of the object to be used, separate compilation requires that full
checking take place as if the abject had been declared in the
same module as its intended use.

Moreover, the Ma language definition adits not only compilation

-12- 4

units but also separately compiled subunits. 7hus, the full
definition of certain Ada objects are not given imediately
within the compilation unit which references them. They are
specified as a stub and a defining subunit is supplied
separately. Hierarchical program development is thereby
encouraged.

Complete details of separate compilation are given in the IR;
the description reveals the freedom given to programmers (and the
consequent responsibilities placed on them), how programs may
exploit separate compilation during their developnent, and how
packages etc. are available for use.

3.2.4 Generic Program Units

Generic program units are a natural extension of the concept of
the procedure. Just as a procedure may be parameterised to
receive different values of a given type so generic program text
can be parameterised to receive type information. They can thus
abstract the manipulation of objects of many types.

For example, the manipulation of lists is generally independent
of the type of element to be included in the list. List
operations can be abstracted by generic program text, as shown:

generic

SIZE : TURAL
type ELEMENT is private

package ON LISTS is

procedure APPEND (L : in out LIST ; E : in ELEMT)
function HEAD (L : in LIST) return ELEMENT
procedure TIL (L : in out LIST)

OVERFLOW, UNDERFLOW : exception;

end CN LISTS ;

Once generic program text has been accepted by the compiler it is
possible to instantiate copies at which time generic parameters
are supplied to tailor the row instance to the programmer's
requirements.

Since generic program text can be used to support many instances,
it is obvious that, once the generic program text has been
written and tested (or even formally proved), the instances
themselves can be used with far greater confidence. Such a
facility is yet another facet of reusable software.

3.2.5 Exceptions

It has long been fashionable to escape from an unexpected or
exceptional condition by jumping in panic to @me named portion
of program text. 2be Ada exception introduces into the language
firstly the idea that things may go wrong, end secondly provides

-13-
14

_____ ___

a mechanism to assist the programmer to write correct and
understandable program text to deal with his exceptional
condition.

It is perhaps worth noting that the exception is provided to
assist the programmer in dealing with the unusual condition
rather than the rare but predictable event.

The example shows the declaration, use and handling of a supposed
failure in a process which is monitored by a meter:

exception : PROCESS FAILURE; - a declaration

if WEADING > 75 then
begin

- we have a high, but feasible, reading:
- attempt to overcome the imbalance

end

if READING > 100 then

-- the reading *cannot" happen
- assume something is wrong
raise PROCESS FAILURE ; - raising an exception

exception

when PROCESS FAILURE => - handling an exception
carry out-remedial action:

-issue warning of failure

Several exceptions are predefined by the language; for example,
CONSTRAINT ERROR and NUKERIC EIRR are predefined exceptions to
trap the attempt to assign aF illegal value to an object and to
trap the failure to deliver a numerical result within the desired
accuracy, respectively.

3.2.6 Tasks

Ada has defined within it a method for realising entities whose
execution proceeds in parallel. The parallel processes are termed
'tasks'.

There are many models for parallel processing, the Ma task model
is just one; it carries advantages and m disadvantages. The

144

4LwW
__ _ __ _ __ _ __ _ __ _ _ _ _

model is an asymmetric one where tasks have entries; an entry of
a task can be called by other tasks. A task accepts a call on one
of its entries by executing an accept statement. 'he acceptance
of an entry call is known as a rendezvous and it is during a
rendezvous that synchronisation and the passing of parameters
takes place.

Tasks, like packages, display the ability to separate the
specification (in this case, how another programmer would see the
task) from the body (ie the sequential source text which performs
the task's actions).

Tasks may be declared directly or as a example of a task type.

For example:

task PR rECTEDITA, is

entry EAD (N : in INDEX; E : out ELEEIMT) ;
entry WRITE (N : in INDEX; E : in ELEKENT) ;

end PRTETED DAT ;

task body PRrECTEDDATA is

TABLE : array (INDEX) of ELEMET

begin

loop

select

accept W AD (N : in IDEX; E out ELEMENT) do
E :- TABLE (N)

end WAD

or

accept WRITE (N: in INDEX; E : in ELEMENT) do
TABLE (N): E;

end WRITE;
end select;

ernd loop;

end PR T C E DTA

3.2.7 Machine Representation and Foreign Languages

Ada acknowledges that oebedded programs, while developed on a
host omputer with generous facilities, may be executed on target
machines which are poorly adowed with spare capacity.
Furthermore, it is recognized that there is considerable
investment in software written in languages other than Ada. 7o
enable the progrimer to optimise his program in terms of the

is
'4

-
I1

target machine and existing software modules machine
representations, code and foreign language inserts are allowed.
Thus, the programmer is allowed to specify the representation of
this data, descend into code (but only in a strictly controlled
fashion), and interface to foreign languages to import into his
Ada program subprograms (procedures) written in a language other
than Ada. Examples give the flavour of these low-level
facilities:

for SKILL use - the type SKILL is defined in 3.2.1
(WHITE => 1, YELL0W => 2, GREEN -> 3, BUIE -> 4, BLACK -> 5);

Note that a 'use clause' such as that given does not imply that
the abstraction of the type is degraded in any way; so that, for
example, an expression 'YELLC5 + 1' will have no meaning in spite
of the observation that YELLOW is represented by the value 2 and
GREEN, a possible meaning for the expression, is represented by
the value 3.

An example to give the idea behind interfacing to a foreign
language is given:

package C AL66TRIG FUNCTIONS is

function SINE (ARGENT : FLOAT) return FLOT
function COSINE (ARGUEr : FLOAT) return FMAT

private

pragma INTERFACE (CORAL66, SINE)
pragma INTERFACE C (ORAL66, COSINE

end CORAL66 TRIG FIICTIONS ;

The IrM contains exhaustive description of the representation

specifications available.

3.2.8 APSE

As mentioned briefly it has been realised that no programming
language, however good, is sufficient in itself. The Ada language
is unlikely to be regarded as a success in the UK, in spite of
its technical advantages, unless it can offer positive advances
in other areas.

It is hoped that the APSE will provide these advances. The APSE
philosophy will enable the programmer to work more effectively
since within each similar APSE product there will be: firstly, an
interface, standard to all similar APSEs, which is provided to
hide details of a host operating system by ensuring that a
defined set of primitive facilities are available - the interface
and primitives are embodied in the Kernal APSE (CAPSE); secondly,
a basic but useful set of ccopetent tools, which exploit the
facilities provided by the KAPSE - this set of tools is known as
the MPSZ, and, in the UK, it is hoped that they will be provided
by the PCMPSE product; and thirdly, the ability to exploit the

* imuch improved standardisation of the Ada language and APSE

-16-

j "
iI

interfaces which should encourage the production of AM tools
which address all aspects of the software life-cycle, and
furthermore allow the easy migration of such tools from
installation to installation.

-17-

14

4 !MSCOT

Within the UK defence community it has become practice to assist
software development with the design method MASCOr [10]; indeed,
reference is often made to the pair CCt%4/NkS= since the MASCOr
ACP diagram, produced by the design process, is realised by
constructing a network of modules specified in the programing
language CORAL66. However, the use of CORAL66 is not inherent in
MASCOT, which is language irdependent.

It would be incorrect to attempt to compare C(IRAI66/MASCOr with
Ada or Ada/APSE ie a language and software design method with an
unsupported language or with a language supported to the great
extent expected of an APSE. The proper comparison it that chosen
- the comparison of the programming language CORA66 with the
programing language Ada.

MASCOT may well be incorporated into the UK APSE since it is an
established technique and, moreover, the advance desired of the
introduction of Ada is that offered by the APSE, which, as a
general support environment, should assist software design.

14

S

i - 18 -

i " o I

5 Concluding Rmarks

Ibis brief paper has discussed the features offered by the
computer languages CAL66 and Ada; it has further described the
support offered to Ma by the Ada Programing Support
Eviroment, the success of which is recognised to be of
paramount importance since experience in the K, with its present
language standard, has shown that the production of a software
system is an undertaking for which a programing language, by
itself, is not enough.

-19-

14

References

[1] Woodward P, Wetherall P ard Gorman B, official Definition
of COOAL66, 1140, 1970.

[2] Specification for the Cputer Programming Language
CORAL66, BS5905, November 1980.

[3] Reference Manual for the Ada Programming Language, US DDD,
July 1982.

[4] Requirements for Ada Programing Support Dwironments
(Stoneman), IS DD, February 1980.

(5] Requirements for High Order Computer Programming Languages
(Ironman), US DoD, January 1977.

[6] Requirements for High Order Computer Programming Languages
(Steelman), US DD, June 1978.

[7] Red Language Reference Manual, Intermetrics, March 1979.

[8] Requirement Specification for the Minimal Ma/CHILL
Programming Support Environment - the MCHAPSE, RSRE, July
1982.

[9] CHILL Language Definition (Rec.Z.200), CCITr, March 1982.

[10] 1The Official Handbook of MASC, MSA, December 1980.

20

k-20-
r-

_ _ _ _ __....

DOCUMENT CONTROL SHEET

Overall security classification of sheet ssified ...

(As far as possible this sheet should contain only unclassified information. If it is necessary to enter
classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S)

1. DRIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security
Memorandum 3540 Classification

I I Unclassified
5. Originator's Code (if 6. Originator (Corporate Author) lame and Location

known) Royal Signals and Radar Establishment

5a. Sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) Name and Location
Code (if known)

7. Title

Ada/APSE: A Successor to Coral 66 in the 80's?

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference rapers) Title. place and date of conference

8. Author 1 Surname, initials g(a) Author 2 g(b) Authors 3,4... 10. Date pP. ref.

White, T A D I I
11. Contract lumber 1?. Period 13. Project 14. Other Reference

15. Distribution statement Unlimited

Descriptors (or keywords)

continue on separate oiece of paper

Abtract This paper briefly describes the historical context of, and the features
offered by, the MOD standard real-time language, CORAL 66, and the
recently developed US DoD standard language for embedded systems, AdA.
It also sketches the principles behind the development of the APSE.

Ad/APSE will almost certainly replace CORAL 66 as the UK MOD preferred
language in the mid- to late-8Os.

Mention ia made of the MOD preferred software design method MASCOT, and
its role after a transition to Ada/APSE is explained. '4

K

I

