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ABSTRACT

The formation of singularities in smooth solutions of the model Cauchy
problem

v, + Q(u)x + a"’(u)x =0, xeRrR, te o=
u({x,0) = “o(")

is studied. The constitutive functions ¢, s R+ R are smooth, a : l+ + R
is a given memory kernel, subscripts denote partial derivatives, ' = g74t
and * denotes the convolution on (0,t)]. Under physically reasonable
assumptions concerning the functions ¢,§ and a it is shown that a ssooth
solution u develops a singularity in finite time, whenever the smooth
datti uy becomes "gufficiently large® in a precise sense.
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E ! SIGNIFICANCE AND EXPLANATION

Problems arising in continuum mechanics can often be modeled by
quasilinear hyperbolic systems in which the characteristic speeds are not
constant. Such systems have the property that waves may be amplified and
solutions that were initially smooth may develop discontinuities (“shocks”) in
finite time. Of particular interest are situations in which the destabilizing
mechanism arising from nonlinear effects can coexist and compete with
dissipative effects. An interesting situation arises when the amplification
and dissipative mechanisms are nearly balanced and the outcome of their
confrontation cannot be predicted at the outset. Examples are provided by
quasilinear second order wave equations with first order frictional damping;
it has been shown that when the initial data are sufficiently smooth and
“small” in suitable norms, classical solutions exist globally in time.
However, if the smooth initial data become sufficiently "large” in a precise
sense, the smooth solution develops a singularity in finite time, no matter
how smooth one takes the data. Thus the dissipative mechanism is not

sufficiently powerful to prevent the breaking of waves for large enough data. & :

A considerably subtler dissipative mechanism is induced by memory effects

of elastico~viscous materials. Using energy methods Dafermos and Nohel [1)
have studied the motion of a one-dimensional homogeneous viscoelastic body
(governed by equations (1.2), (1.3) below). They show that the memory term in
(1.3) induces a weak dissipative mechanism under physically reascnable
constitutive assumptions, which, for sufficiently “small™ and smooth initial
displacements and velocities, prevents the breaking of waves; indeed, a unique
classical solution exists globally in time, and the solution decays as

t » », A natural and open question (except in very special cases) is whether
this weak dissipative mechanism can alsc prevent the breaking of waves for
large enough smooth initial data; experimental evidence suggests that it
cannot.

In order to gain a deeper understanding of this complex phenomenon we
study the simpler model problem stated in the abstract, under comparable
constitutive assumptions concerning the functions ¢, and a. Here the weak
dissipative mechanism which is induced by the memory term acts exactly as the
one for the viscoelastic problem for sufficiently smooth and small data (cf.
{8]). 1In this paper we show, under physically reasonably constitutive
assumptions, that this weak dissipative mechanism casaot overcome the shock
forming tendency of the nonlinear Burgers operator ;— + ¢(uv) wvhen ¢ is
convex; indeed, a singularity develops in the smooth Solution ¥n finite time,
vhenever the smooth initial datum uy(x) has u",(x) <0 and (-u:’(x)) is
sufficiently large.

It is possible to gain some insight into the problem under study by
considering the following simple example without memory terms:

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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u +uu +au=0
t x

u(x,0) = uotx) (xe@e R,

in (0.1) §ho memory term is replaced by au where a > 0 is a oomstant, and
0(9) = u /2, is a strictly convex function on R. If u, is smooth
(c.(m)), (0.1) has a unique classical solution u valid on a maximal
intérval R x [0,2.), 0 < T < o, Suppose the solution u of (0.1) exists
globally in t. Differentiale (0.1) with respect to x obtaining

2
utx+uun+ux+cux-o.

Putting w = u, and noting that w_ + uv, is the derivative of w along the
characteristic curves x(t,E) of (8.1) defined by the ODB

% = ulx(t,£),t), x(0,E) =E,

we see that w satigfies the ODE

(0.2) i’- + '2 +aw =0, wix,0)= ua(x) .

along the characteristics, where g; - L +u 3—. Integration of (0.2) shows

that 1f w'(x) > =a (x € B), w= 85 rifiaing BBonded for all € > 0 and the

smooth solution u of (0.1) exists globally; if, however, ua(x) < -a for
u!(x)

some X, then w= u > = as t - i‘ log i.e., the classical

c + u",(x)'
! solution u of (0.1) develops a singularity in the first derivatives in
finite time, no matter how smooth the initial datum u, is taken. This
slementary wmethod does not, unfortunately, extend to the problem with memory
terms under study, and for this reason our analysis is different and
necessarily considerably more technical.
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FONIATION OF SINGULARITIES FOR A CORSERVATION IAN WITE NEMORY
fesa Malek-Madani® and Johm A. Wohel
I. INTRODUCTION.
In this paper we study the model initial value probles

. * O(I)x + l"’(ll)' =0, xeR t@[0)
(1.1

u(x,0) = uﬁtx) .
vhere ¢,§ : R+ R are given smooth constitutive functions, aal’OI is a given
kernel, subscripts denote partial derivative, ' = &/4t, and wvhere * denotes the usual
convolution operator

(£2g) (t) = {t £t - T)g(n)ar .
The goal is to investigate the formation of singularities in finite time of classical
solutions of (1.1) vhen the datmm u, is smooth. The motivation for studying equation
(1.1) 4is provided by the more complex problem of the motion of a one-~dimensional
' homogeneous viscoelastic dody governed by the equation
)

tt
together with aygrepciate initial and homogeneous boundary conditions; in (1.2) the stress

-0, =0, (1.2)
O 1is relsted to the strain w, by the constitutive relation
t
oln) = é(a) +{ at{t = Tielw (x,T))dr . (1.3)
Under appropriate physical asswmptions concerning ¢,¢ end a, the “memory” term ia (1.3)

induces & weak dissipation mechanism into the structure of the solutions of (1.2). It has

been shown (af. Dafermoa and Wohel (1)) that under physically proper assumptions om

"Department of Mathematics, Jobas Wopkins University, Baltimore, Maryland 21218
Partislly supported by the Mathematics RTesearch Ceater. .

Sponsored by the United States Army under Oontract Wo. DAAG29-80-C-0041.




4, $, % and on the initial data u, aad o, the initisl-boundery value problem (1.2)
has & uwnique global cz solution, if the initial data are sufficiently smooth and “ssall®
in an appropriate sesse; moreover, this solution deceys in a preciss sense as t ¢ &, )
sinilar behavior is exhibited by the solution u of (1.1) with u satisfying periedic
boundary conditions (cf. Wohel {8)). These two results are of spevial interest since vhen

a'(t) 2 0, (1.1) reduces to the Burgers equations, while (1.2), (1.3) reduce to the
quasilinear wave equation u,, = n(u‘):- Por these prodlems it is well known (of. Lax (S])
that under appropriate convexity assumptions on ¢ there are smooth solutions which
develop a singularity in the highest Miv-dm in finite tims, no matter how smooth and
small one chooses the initial datum. Thus a'(t) § 0 induces a weak digsipation mechanism
which prohibits the breaking of waves when the initiasl asplitude of these waves is amall.

This paper considers the natural question of how “large” one must chooee the smooth
initial datum in order that the shock forming structure of (1.1) overoomes this
diasipation. Indeed, in Theorem 2.3 we show, under natural assumptions converning the
constitutive functions ¢, ¥, the kernel a, and datum u,, that the classiocsl
solution u of (1.1) develops a singularity in u, (and hence also in o) in finite
tims for smooth and sufficiently "large” datum Uge Our ultimate objective is to prove
such a result for the complicated prodblem (1.2), (1.3), and with ¢ § ¢.

Iquation (1.1) has a simpler structure than (1.2) due to the fact that (1.1) has only
one family of "genuinely nonlinear® characteristics and one "linearly degenerate”
cheracteristic due to the convolution term. Our approach examines the variation of the
solution of (1.1) along characteristics with the aid of Riemann invariants. A similar
approsch (under active study) appears promising for the more ocomplicated higher order
problem (1.2), (3.3); this latter equation has three families of charscteristics (only two
are genuinely nonlinear), and thus, in general (1.2), (1.3) does not have Riemama
invariants. Introducing the genexalised Riesann invariants (cf. Johm {4]) there is reason
to expecot that much of our analysis can be adapted for (1.2), (1.3).

mmuxnumtummummmuuquum
governing viscoelastic materials can de found in the work of Tordella {19). Ia addition
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some results on the loss of regularity in solutions of the eguations goveraing viscoslastic
fluids, for smooth and sufficiently large dats, have been cbtained by Siemrod [9), aad for
dissipative hyperbolic wolterra problems by Gripemberg {2] amd Eattori (3) for the specisl
cases of (1.2), (1.3) vhen % E ¢. DBy methods similar to ours in spirit they also anslyse
the behavior of solutions along characteristics; however, they do mot stuly the
generalisation to the more natural and more difficult situation in which ¢ ¢ §.

In Section 2 we state and discuss our assumptions and the maia results its proof is
presented in Section 3. In Section ¢ we prove two auxiliary results in the proof. W
thank our colleagues, particularly C. M. Daferwos, R. Glassey, J. U. Kin, and R. Slemrod

for helpful discussions.

2. ASSUMPTIONS AND STATEMEWTS OF RESULT.

The basic constitutive assumption concerning ¢ 1is
secim) and ¢$°() >0, (<) >0, ¢(0) =0 . (2.9)
The conatitutive assumption concerning ¢ is
veci® ana ¢°() >0, 9i0) =0 . (2.2
In addition, we assume that ¢ and § are related as follows. There exists a coastant
8 >0 such that
0 <¥'(u) <B4'(u), uen,. $2.3)
Obviously, (2.3) is more restrictive than the assumption $°(0) > a(0)9°'(0) (i.e. (2.3)
at u=0 with 8 = a(0)”') which was sufficlent for the analysis of global soluticas of
(1.2), (1.3) in [1) for smooth and sufficiently small data. Assumption (2.3) simplifies
our relatively technical analysis of the development of singularities for solutioms of
(1.1)s in Remark 2.3 below we point out how (2.3) can be relaxed. OCoacerning the ssmocy
kernel a2 we assume that it is positive, decreasing and convex in the sense
aectoe), niarre a0, Q2.0
vhere the strict inequalities hold at ¢t = 0., Pinally, we asswume that the datwmm "

satiefies
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u, € lz(l) [ (2.9)

obesrve that u, @ l:(l) implies u, € c‘(l).

Undex assumptions which include (2.1), (2.2), (2.4), (2.5) as special cases the Cawchy
problem (1.1) has & unique classical local solution. Por this argument (2.3) s not
used. Nore precisely, the following local result, proved by an energy method coupled with
a contraction mapping argument, holds (ct. Nohel [8)).
Proposition 3.1. Let a',a" € (0,), ¢.0 €C'(R), ¢(0) = $(0) = 0, #'(+) >0, and let
there exist a constant « such that $'(E) > x>0 (£ €R). If uy e EX(R),

there exists T > 0 and a unique solution u @ c'(-(o,ﬂ) of (1.1) such that
g By O @ CL10,T1 123 (m)).
Remark 2.2. It is also shown in [8] that the unigque solution u exists on a maximal

interval (0.!0) X Ry 4f 'ro <®, then

lim_ sup I [uz(x,t) + u:(x,t) + u:(x,t) + n:e(x,t) + n:x(x.t) + u:x(x,t)ldx -e,

t*‘l'n R

Our main result is
Theorem 2.3. let the assumptions (2.1)-(2.3) be satisfied, and let Ty > 0 be given.
There exists smooth initial dstum u, such that no C'-smooth solution u of (1.1) can
exists for x € R and t > T,. More precisely, if ::: lug(x)| is sufficiently small,
and na(x) <0 with -z u&(x) is sufficiently large, then the function u (x,t) (ana
hence also u,(x,t}) becomes negatively infinite for some t, < T,, provided the smooth

solution u exists on (o,e,) x R

Remark 2.4. While Theorem 2.3 establishes breakdown of smooth solutions of (1.1) for
sufficiently large data, it does not prove the development of a shock front. Numerical
evidence for this more complex phenomenon has been found by Markowich and Nenardy [7) for
the Cauchy problem associated with (1.2), (1.3) in the special case ¢ £ ¢ when the smooth
data are taken sufficiently large. The corresponding analytical problem is under active

study.

g
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Bemark 2.5. Theorem 2.3 holds if assumption (2.3) is satisfied only at u = 0. Jor, in

this. case there exists a constant B > 0 such that (2.3) holds on the intexval |uj ¢ »,
and the analysis of Sectioan ) can be wodified acoordingly.

Bemark 2.6. It is also clear from the proof (cf. proof of Lesms 3.2) if the asswption
'5"0) <0 and -n; (:.) sufficiently large holds at s single point x4.

3. PROOP OP THEOREM 2.3.
The proof is by comtradiction. Assume that for any T, > 0 and for svery datwm Uy

satisfying (2.5) the unigue smooth solution u of (1.1) exists for (x,t) e R x[o,f‘] and
that wu (x,t) and wu.(x,t) are bounded on R Kloo!")o We bagin by transforming (1.1) to
an eguivalent system. et u Dbe a smooth solution of (.‘l.‘l) on R x[o,‘r'l and introduce

the dependent variable = Dby

t
s(x,t) = [ a'tt - v)plulx,t))ar, (x,t) € R x(o,T,) . (3.1)
(]

Sgquation (1.1) is then equivalent to the system

o, Oo(n)xﬁ s " 0

(x,t) e R -(o.'r‘l » (3.2)
s, - a*(0)9(u) + a"%
together with the initial data u(x,0) = nn(x). 2{x,0) = 0. We next introduce

g= ln,:l'! and the matrices

s = (M0 3 @ = [ areem - eyl

then (3.2) can be written as the equivalent guasilinear systea
B, * MEIG, ¢ BT =0, [x,00 = lug(x),00" .
The 2 x 2 matrix A{Q) has distinct eigenvalues 4'(u) > 0 gnd 0, A well known

tasorem of Lax {8] guarantees the existence of two linearly independent Riemann

invariants r(u,s) and s(u,sz). By definition r and s satisfy




x, s VYr=09p
(3.9 '

53"""’

where r, and . are the right eigenvectors of l(!). A simple ocslculation shows that .
5" [h-"(n)l’ ad g, = (1,0!’. It is then easy to show that

rl{u,8) = g + $(v)

lﬁ.l) -g .

satisfy (3.3), and moreover, by assuwmption (2.1), %'}':"—:'}- $'(n) v 0.
v v ’

We shall study the develogment of a singularity in the classical c'-solution u of
(1.1) along the characteristic x = x(t,{) through any point § € R, defined to be the

unigque solution of the initial value problem
B g)en,  xt0,8) =€ . (3.5)

Asswmption (2.1) and the classical theory of ODE guarantee that x(t,) axists for as long
as the c'-solution u of (1.1) exists and has nx(x.t) (and hence also u,) bounded.

Under the present hypothegses x(t,l) exists for 0¢t<T for any Een
let =x(t,£) denote the charecteristic curve through [ associated with {1.1) which )

satisfies (3.5). The derivative of r along this characteristic is

j‘f Tr, +4%(a)x, =5 +4'(0)u, ¢ ¢ ) (s, + ¢'(u)u )

-z ¢+ ¢*(a) [-0'(\1)\:‘ - txl + ¢'(u) (l’ + 0'(\1)\:3)

Ce<T, .
.'t..t' [ ] t ‘l"

Thus, we may replace (3.2) by the system

%.'t

(o<eg -f') v (3.8}

s, e a'(0)(u) ¢+ a"%(u)

together with the iaitial dsta z(u,s)(x,0) = Q(uotxn, s{u,8)(x,0) = 0, and thea by
(3.4), u= 0-'(3 e 8). It is clear that the abon umtum are valia for as loag as

g




u 1is a classical solution of (1.1), i.e., for (x,t) @ R x[o.!'l. 70 keep he notation
simple it should be understood that when calculating derivatives along a characteristic
x=x(t,f), r= rix(e,f),t) = rlulx(t,k),t), s(x(t,£),t)) and similarly for .

To proceed with the proof of Theorem 2.3, let vw(t,f) # xt(t,z). o< t¢ T,. The
function v measures the variation of two nearby characteristics at time t with respect
to their initial positions and plays a key role in our analysis. When v is different
from sero (1.1) and (3.6) ave equivalent. Note that v(0,() = 1 forany { € R. W will
show that if Iuo(t)l is sufficiently small and -na(t) is sufficiently large, then

v(t,f) approaches sero at a finite time ty <7y, while nt(x(t.ﬁ).e) remains finite
and bounded awvay from zero. Observing that

. o (x(t,£),t)
\lx(x(t.E).t) - '(tlt, (’07)
we then obtain a contradiction of the assumption that u, remains bounded for all

t & {0,7,], and the proof is complete.
Differentiation of (3.5) with respect to £ yields
:‘-:' - 0"(n(:(t.€).t)ug(x(t.i).t). v(i0,E) =1, te (o,r‘l v (3.9)
8ince ¢(u) = r - g, we have
0'(u)n‘ - r; - - rE - .I‘E ' (3.9)

thus

1 1
Tt e T (w
From (3.2) and (3.4) the derivative of u along the characteristic x = x(t,£) 1is
da

x x '

ac
80 that

1 1M
b TV M UT TR
and (3.8) takes the form

av ol

v _ o) & i
at  ¢'(u) l‘; + o' (n) &t v, v(0,§) 1, t e (0,"1 .

The above equation is an ODR for v along characteristics having (0'(-))-’ as an

integrating factor. Thus

b 2




t
‘ I TSy i
o ves - FeEn - oran? £

or equivalently

t
[1+ o0 cmyen [ 4= (x(t,E),T)at) , (3.10)

[ ]
'(tlE) - ¢
" (g (8)) 0 [0 (alx(r,£), 0012 &

for t e [0,7,].
We will now use the following result which provides a bound for u, independent of

na(E). Its proof is given in Section 4.

Lemma 3.1. let the assumptions of Theorem (2.3) be satisfied and let u be a c'--ooth
solution of (9.1) with u, u, u, bounded on lxlo.'r'l. Then for any & > 0 there

exists a number n = n(6,1'1) > 0 such that

sup lalx,t)! € 8§, whenever sup lno(x)l <n . (3.11)
"[0.1"] R

vor a given § > 0 we choose 4, and N in accordance with lesma 3.1. Since

¢'(*) and ¥'{*) are continuvous and sup Ju(x,t)| € §, assumptions (2.1), (2.2),
m=(0,T.)
and (2.3) imply that there exists positive constants “1' 1= 1,,..,4 such that

a, < ¢ (u(x(t,E),t) € a " (ulx(t,f),¢t) 3 a

2’ 3

(3.12)
M x(t T

< e tulx(e )N S

G, -]

for 0€ t <€ ¢t < '1'1. where B is the a priori constant in (2.3). We note that the

constants a, depend on § but not on u")(i)-

i
To proceed with the proof we shall alao need to estimate rE in (3.10), as well as

T - % in (3.9). Fror this purpose note from (3.4), (3.9) that
rg(x(O,E).O) = 0'(\:0(5)\!6(() Eem .
let Cc(f) and C* be defined by




e e

cig) = -0'(:0(())\:6(5)
(3.13)
c® = gup [C(E)] .
ten
We note that C(£) 4is positive whenever "5“) is negative. We will now use the

following auxiliary result; its proof is given in Section 4.

Lesma 3.2. let the assumptions of lemma 3.1 be satisfied. Select the datum ug such that
ug(€) < 0, and thers is & poismt ‘o such that C(E)) = C*. Then there exists

0 < T, <T,, independent of C* (hence of ua(Eo)). such that

- ':' c* < tﬁ“‘t"o)'t) - 'E(""";o)") € - s_.'o - ;_:'.' < rg(‘(‘lto)ct) € - %.' (3.14)

for o<e<1'z.

To complete the proof use equation (3.10) and the inequalities (3.12), as well as the

inequality for rc(x(t,toi.t) in (3.14), to odtain the estimate

¢ (ulx(t,E ))) a.a
—l 1, S 21
v(e,k) € ¥ e () 1-32 3 t) (3.15)
: 2

forxr 0< ¢t< T . By (3.,12) 0'(\:(:(1:.50))) is finite and bounded away from zero for

2 2
4

0< t<T, Thus the right hand side of (3.15) becomes sero at time t3 = c—f-c-;
1%

Since T, 1is independent of n;(ﬁo). we now choose C* (i.e. -ua(ﬁo) > 0) so large

(cf. (3.13)) that t: < ‘1'2.

(3.9), (3.12) and the first inequality in (3.14) ne(x(t,zo),t) remains finite and bounded

while keeping u (£ ) fixed and |u (E )] < n. rinally, by
% *o o' "0

away from sero on 0 < t < T, Bguation (3.7) then provides the desired contradiction

(L. u, becomes negatively infinite at soms time ¢t < t“')a this completes the proof of

1
Theorem 3.2,




4. PROOPS OF LEYMA 3.9 AND 3.2,
a. Proof of Lesma 3.1. It follows from (2.3), (2.4), (3.4) and (3.6) that .

$E (x(e,8),8) < Blat(0) [(irtx(e,E),e)] + lalxtt,E), L)1) .

t
+8 [ av(t - O)lirixte,E),0)] + |alx(t,E),T)])aT
0

(4.2)

s (x,8) € Bla’(0))Dix(x,t)] + Is(x,£)]) + 8 [ a®(t=T)lir(x,0)| + |s(x,T))6n ]

° 1

for 0< ¢t < ‘l"o Let R(t) and 8(t) bDe defined by ]
R(t) = sup |x(x,t)|, 8(t) = sup |s(x,t)| . (4.3)

2SR xER f

Integrating the inequalities (4.2), taking the supremum on the right hand side and uveing

the definitions (4.3), we obtain

t
fetx(e,£),e)] < sup Ix (E)) + Bla'(0)] [ (R(T) + S(T)]aw +
tem 0

‘e

t "
+8 [ [ a"tm - ©)R(T) + g(1)]dran

o 0
(‘.‘)

t tn
Istx,t)] < B1a*(0)] [ [R(r) + &(T)}ar + 8 [ [ a"(n -~ T)[R(T) + 8(t)ldaram
0 )

for 0 <t < T, where ro(E) = p(x(0,£),0) = Q(uo(t)).l(!(o.ﬂ.o)) = 0. We note that the

right hand side of (4.4) is independent of x and E. MNoreover, from the smoothness of

w, u,, and u,, assumption (2.1), and the continuous depsndence of solutions of equation
(3.5) on the initial data, it follows readily ﬂn.t for sach fixed ¢, t < T,, there exists
£ eRr and x(t,f) such r(x(t,f),t) = R(t) and e(x(t,f),t) = 8(t) hold. Therefore,

we can replace the left hand sides of (4.4) by R(t) and 8(t) respectively.

Interchanging the order of integration in the double integrals in (4.4) yields




t
R(e) < sup Ix,(E)| + Bla’(0)] [ (rtx) ¢ s(t)jar + 6 [ a*te-r)im(r) ¢ s(v)ide
[ ]

0
(4.9)

[ ]
8(e) ¢ 281a'(0)] [ (R(t) + s(rilar + 8 [ a’(e=v){R(t) + S(r]]dc
[} 0

for o‘tc'!'. We add the two inequalities in (4.5) to obtain

t
R(t) + BlE) ¢ wop lrgtE)] + [ (a81a'(0)] + 288" (t~0)1 (R(Z) + Br)i&k (4.6
[ 3 ]
for 0< t<T.. Iot Hit) = max (48{a'(0)| + 28a’(t~T)), which is a nonnegative

! [ 3111
function by (2.4). Thus

¢
R(t) + 8(¢) < sup |r ()] + n(L) | ) v ottrier, o<ctcr , 47
) | 0
and the Gronwall inequality ylelds the astimate
R(t) + 8(t) < sup ir,(E)ie(e), scecre,, {4.8)
1

where the positive function ¢£(*) is defined by

t t
fey =1 +u(e) [ (exp[ HMr)ar)as, O0<Ct< 7T
° s

T * (4.9)
since rolt) - Muo(t)). inequality (4.8), equations {3.4), snd the momotomicity of £
isply that '
{9 Cuix,t))| € aup IO(uo(l))lﬂ‘l") (4.10)
]

for (x,t) e R !to,'l"]. mcalling that ¢°'(*) > 0, we cbaerve that (4.10) is eguivalent
to
latx, 1 < 197 taup lotugeEn itz ) TR
R

aff=




|

for (x,t) @ R K[O.!,l. The proof of the lemma now follows from the continuity of ¢ and
¢! and the fact that ¢(0) = 0. '
b. Proof of lamma 3.2. We write the system (3.6) in the equivalent from
ar t
" 2O (ulx(t,E),t)) + [ a"(t-T)d(ulx(t,f),T))ar ,
0

(4.12)

t
six,t) = [ a'(t-t)¥(u(x,1))or, te (o.2.] .
0

Integrating (4.12) with respect to t, differentiating the outcome with respect to £ and
using (3.9), we obtain

t
- \ O (ulx(t,E),v)) -
Te (x(£,€),t) = ~C(E) + a*(0) { S tutx(r £ 07 Fe(XITENT) = s (x(r,6), 1)) e

t T
$ilulx(r L) n)) -
4{ { 8T TN) T atx(r E) o)) [Fg (X(T.E),m) 8 (x(1.£) )l anax

(4.13)
t
- $(ulx,T}) -
g (x,t) {‘ ) Satmr)) Fetxem) sy(x,1))er . ]
Define p and o by
\ pl(t) = sup ltzlx,t)l, g(t) = gup Ilz(x.t)l . (4.14) .
! »ER »eR

Next, we take absolute values of both sides in (4.13), use the definitions (4.14) and

inequalities (3.12) to obtain the inequalities

t
Irg(x(e.£),e)] € c* +8la*(0)] [ [otr) + olr))ar +
0

t v
+8[ [ a*tr = n)lotn) + o(n))anar
o0

(4.15)

t
I%unn<af la*(t = T)lp(t) + a(r)iar ,
0
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where C° is defined in (3.13). Let I(t) =p(t) + alt). As in the proof of Lemma 3.1,
. we can replace the left hand sides of (4.15) by p(t) and o(t). After simplifying the
first inequality in (4.13) by iaterchanging the order in the double integral and addisg the
two inequalities (4.13), we obtain

t
Tte) < c* + 28 [ (la'(0)] + ja'(e - T)]IE(rIeY, O<Cec? . (4.16)
0

Woting that max [1a*(0)] + la'(t = T)1] = 2|a’(0)] (cf. (2.4)), (4.16) becomes

[ 3431
t
L) S c* ¢ ala*(0)] [ Z(rier, OCt<T, (4.17)
0
which, by the Gronwall inequality, implies that
T(t) € ctexpl(48la’(0)]t), octcT . (4.18)
We now choose ‘l;c'r' small enough so that
. tw <X, ceory . (4.19)
Wote that ‘r; depends only on u.(t) and al(*), and ‘r; is independent C*,
Inequalities (4.13) and (4.19) combine to yleld
t
fogtxiedl 3§3¢ [ tetmilen, ocecm. (4.20)
0
We further restrict !'5 00 that
lgtet) <& ocecm, xem. | (4.21)

We obgerve that up to this point the sign of u"’(t) plays no role and the estimates
(4.19), (4.21) hold for any € @ R
We mext turn o estimsting r,(x(t,£),t); the estimate |r (x(t.£),t)] ¢ 3o tor
0 ¢t <7, which follows trivially from (4.19), 1s 00 crule to establish Lemma 3.2. We

. £d b 4




now select the datum uy and & point Eo as specified in the statement of Lemma 3.2. The

goal 1is to obtain a negative upper bound for tt(s(t,to).e)u this is cbtained from the ‘ .
tirst equation in (4.13) as follows. Using (3.12) and estimating the two integrals om the

right hand side of (4.13) as in (4.13), (4.16), and then using (4.19), we obtain the »
estimate i

. (v ,£),t) - 8. (x(¥,E),T)ar

t
. oinixlr,L),1))
lat(0)} {, ’.(‘(,(t,t),ﬂ)l L3 {4

t T 3

o(r - ) LlnlxtrL)n)) -
o{ { 87T = M) et )y F(R(T L)) - sptx(rE ) lmar  (4.22)

< 3c*8la*(0)it ,

for 0< t< T, putting £ = Eo in (4.13) and then using (4.22) gives

2
z;(x(t,{o).t) < =C* + 3c*8la'(0) (¢, oceeTy, (4.23)
vhoro'r;uimpomhntof C*. ‘Then choosing °<‘l‘z<'l'; small enough and :
independently of C* we obtain ‘ " 4&
c*
:;(x(t,to).t) < - reg 0< ¢t < T, . (4.24)

This, together with the crude lower bound (- % C*) already mentioned proves the second
set of desired inequalities in (3.14). These combined with (4.21) (which of course holds
[ 2 2K X ’2 < 'r;) yield the first set of inequalities in (3.14), and the proof of lesma

3.2 is wmc
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