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ABSTRACT

The formation of singularities in smooth solutions of the model Cauchy

problem

ut + (u) +a u -0, x e a t e 10-)

u(x.0) -u 0(x)

is studied. The constitutive functions s, R* I are smooth, a ta £*a

is a given memory kernel, subscripts denote partial derivatives, - /dt

and * denotes the convolution on 10,t]. Under physically reasonable

assaiptions concerning the functions # ,# and a it is shown that a smooth

solution u develops a singularity in finite time, whenever the smooth

datus uo becomes "sufficiently largo" in a precise sense.
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810HIPICAIMt AND =PLAATION

Problems arising in continuum mechanics can often be modeled by
quasilinear hyperbolic systems in which the characteristic speeds are not
constant. Such systems have the property that waves may be amplified and
solutions that were initially smooth may develop discontinuities (sbocksJ) in
finite time. Of particular interest are situations in which the destabilizing
mechanism arising from nonlinear effects can coexist and compete with
dissipative effects. An interesting situation arises when the amplification
and dissipative mechanisms are nearly balanced and the outcome of their
confrontation cannot be predicted at the outset. Rxasmples are provided by
quasilinear second order wave equations with first order frictional dVming,
it has been shown that when the initial data are sufficiently smooth and
asmall in suitable norms, classical solutions exist globally in time.
However, if the smooth initial data become sufficiently "largo in a precise
sense, the smooth solution develops a singularity in finite time, no matter
how smooth one takes the data. Thus the dissipative mechanism is not
sufficiently powerful to prevent the breaking of waves for large enough data.

A considerably subtler dissipative mechanism is induced by memory effects
of elastico-viscous materials. Using energy methods Dafermos and Nobel [1)
have studied the motion of a one-dimensional homogeneous viscoelastic body
(governed by equations (1.2), (1.3) below). They show that the memory term in
(1.3) induces a weak dissipative mechanism under physically reasonable
constitutive assumptions, which, for sufficiently "small" and smooth initial
displacements and velocities, prevents the breaking of waves; indeed, a unique
classical solution exists globally in time, and the solution decays as
t + -. A natural and open question (except in very special cases) is whether

this weak dissipative mechanism can also prevent the breaking of waves for
large enough smooth initial data, experimental evidence suggests that it
cannot.

In order to gain a deeper understanding of this complex phenomenon we
study the simpler model problem stated in the abstract, under comparable
constitutive assumptions concerning the functions #,# and a. Here the weak
dissipative mechanism which is induced by the memory term acts exactly as the
one for the viscoelastic problem for sufficiently smooth and small data (cf.
[8] ). in this paper we show, under physically reasonably constitutive
assumptions, that this weak dissipative mechanism cmot overcome the shock
forming tendency of the nonlinear Burgers operator - + #(u) when # is
convext indeed, a singularity develops in the smoothololution fn finite time,
whenever the smooth initial datum u0(x) has u'(x) < 0 and (-ul(x)) is
sufficiently large. 

0

it is possible to gain some insight into the problem under study by
considering the following simple example without memory termst

The responsibility for the wording and views expressed In this descriptive
summary lies with NNC, and not with the authors of this report.



ut + uU x +u-O
Qt " +x O

u(x,0) - Uo(x) (x 0 2) i

in (0.1) he memory tern is replaced by ou where a ) 0 is a constant, aend
- u /2, is a strictly convex function on a. Ifa 0  s smooth

(C (i)), (0.1) has a uniqu classical solution u valid on a maximal
itrval I x [0,2n), 0 < T( e. Uuppee the solution u of (0.1) exists

globally In t. Differentiale (0.1) with respect to x obtaining

2
Utx + UXx % +  uX m 0K

Putting v ux  and noting that v + uw Is the derivative of v along the
characteristic curves x(tA) of (4.1) defined by the 003

ax
- u(x(t),t), x(0,9) -dt

we see that w satisfies the ODE

&r 2(0.2) + w + aw 0, v(x,O) - u'(x) ,

along the characteristics, where + .u Integration of (0.2) shows
that if U(x) -a (x e ), V -t rdlains unded for all t 0 and the

0smooth solution u of (0.1) exists globallyl if, however, u1(x) < -0 for

Sam x, then v U - as t 5 log , i.e., the classical

solution u of (0.1) develops a singularity in the first derivatives in
finite time, no matter how smooth the initial datum u0  is taken. This
elementary method does not, unfortunately, extend to the problem with memory
terms under study, and for this reason our analysis is different and
necessarily considerably more technical.
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FO CZOr 313UW&AMZU POR A CMIUVYZC ON 3U3 Uw

raea walek-madani and aon A. Nobel

in this paper we tud, the model initial value problem

u *(u) x *a8'e(u)= 0.d 3639 t e,m)
t a so3a o-

~44u(z,S) - Uo(x),

whereo . , 3. 3+ atre give. meothl @oetiuvo fumoto, a a 3. 3 i s a gie

kerne]l, subscri~ptJ deote4 arti4Al deivai, - 4/t and whr * denaotes the lmea

t
(fpv)(t) - I fit - TV d

0

Ihet goal. is8 t o inveiN1gate 4 the ferealtie.o of ingaitR iest in finiteJ tn of clinical

soutions8 of (1.*1) when thet latin 0 is Jmoth. The motivation too studying equation

(1.*1) is provided by the sowe osqplex proble. of the motion of a ome-dimesiosal

hamogseeous visolastic body governe~d by7 the equation

ut - #s.' (1.2)

together with 8a erieatA initial and hoogeneous boundary ondit ie in (1.2) the strems

C is rolated to the strain ux by the coastitutive relation

t

e(m ) =*U () f a(t - T)(xT))dT • (1.3)

0

Under appro tiate iphyvei ae tem L of erning * , s nd a the imo tero fn (1.sc 3)

indue s a ea dieiptieo m poaiepr into tho tu e ot 8 of (1,2). nt has

been ohom (of. emoe d obel 1) tht inde physialy proper a i on

rat of tma , l s non University, Ualtie, Nzyland 21 .)

1artally ip sei byte intia nthmmsoeeusr beor.

psrelted by the Usrnd iae h d ensttut i o. Me ---i0o.

t!
momu iu im Hi a t-T#((~)d



A 4# * ad an the Initial data u nd SI, the iaital-hosmdey WW Puodb (1.2)

h a unique globel 02  MolutLem, it the initial asta ame ufffieeary smooth al *sins

In an appropriate mgos moreover, this solutiom do"s in a pemimes s e n w. t

imiular behavior Isl ehibited by the solution u of (1.1) with u satifying pearieft

boundary conditions (ao. Nbel I)). "ese two resulto are of special interest sincebamen

ao(t) i 0 (1.03 redue to the Surgers equations, while (1.2), (1.3) reduce to the

quanilinea wave equation t - u( - for the" problem It in wel I (of. fax [51)

that nad appropriate onevexity am mtiasn there am mooth solutions which

develop a singularity in the highest derivatives in fiaite time, no matter how mooth and

mall on Chooses the initial dateo. thus a' (t) a induces a weak disipatike mnhalim

which prohibit* the breaking of wves who the initial amplitude of these waves Is ml.

2his paper considers the natural question of how largew me most chane the mooth

initial datum In oeder that the shock farming structure of (1.1) overcomes this

dissipation. indeed, in 2heorem 2.3 we show, under natural assmtions cncerning the

constitutive functions *, the kernel a, And datum u, that the classic l

solutice u of (1.1) dewelcpe a singularity in ux  (and home also in ut) in finite

time fos mooth and sufficiently "largem datoum . or ultimat* objective is to prove

such a result for the compliated problem (1.2), (1.3), and with * .

Xquation (1.1) has a simpler structure than (1.2) doe to the fact that (1.1) has only

one fmily of 9enuinely nonlinearO characteristics and on e'linearly doenrate"

characteristic due to the convolution term. Our approach exmines the variation of the

solution of (1.1) along characteristics with the aid of liemnn Invariants. A similar

approach (under active *tud) appears promising far the more omplicated hiw order

problem (1.2), (1.3)' this latter equation has three femilies of obaraeterietios (o y two

are ienuluely noeliear), and thus, in general (1.2), (1.3) doe not have renmna

invariants. Introducing the genjralised Rieman invariants (of. oha [41) there is

to eapeft that mush of our analysis can be adapted for ( 1.2), #11.3).

om aperimena evidene foe the breakdown of msoth solutioms of medol "uatn

governing visoolaftie ma terials can be fod in the wt of Terdella [ i) o In adul

iiil-2-



mom results on the loe of regularity in solutions o the equatlss werniag vismeele.st

fluids. fo soth and sufficiently large data, hwe been ebbaeie by Slaw" 19], and e

diasipative hydpebolle voltrra problems by ipaab=t (2) nd matti (23 for the special

cases of (1.2), (.2) wha # N #. by metbods smilar to o's Is spirit they alasal.

the behavior of asiutios along charcterist~ia however, they do met e*te the

gameralisatioa to the ore natural and mate difficult situation in which 9 0#.

In Section 2 we state and discuss our assuptios and the maim reealtr Its ~ Is

presented in Section 3. In Section 4 v prowe two auxiliary tesults La the proof. O

thank our colleagues, particularly C. N. Dfeemafs, A. Gles"ye J. 5. Mi,, m N. ilesral

for helpful discus ions.

2. ABWIYRn Am SATUIMZY' OF .3A3W.

The basic constitutive astptLon cooerning * is

* ec 2 (a) and #'(0) 0 O, 40(o) 0 , *(0) - 0 . (2.1)

fte castitutive asaunption concerning 9 is

c a (a) end '(. ) >, (0) - 0 . (2.2)

Zn addition, we aaissI that # and $ are related as foliowe. there exists a instant

> 0 such that

0 ( 0'(u) * I(u), u a t (2,3)

i viouly, (2.3) is more restrictive than the aernuptiom #'(0) > a(0)9'(S) (i.e. (2.3)

at u - 0 with - a() - ) which was sufficient for the analysis of global solutions of

(1.2), (1.3) In I1 fat snooth and ufficiently mall data. As tion (2.3) simlifies

our relatively technical analysis of the developmant of singularities fat solutLema of

M(.t)M in Imark 2.5 below we point out ha (2.3) an be relaxed. Concerning the memory

kernel a we asem that It is positive, decreasing mld conve is the ame

a C 2(0..). (-1)i a ()(t) A0 i 0,1,2) t2.4)

where the strict Inequalities hold at t -0. Finally, we assum that the datak

antilee3-
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observe that U0 a3 (a) Implies UO 4 C (a).

MAeW assumtions which include (2.1), (2.2), (2.4). (2. 5) As epecial 0ase the Caudhy

problem ( 1. 1) has a unique classic"l local solution. for this eratput (2.3) is act

ased. "wse precisely, the folloing local result, prove by an energy method opled with

a contraction mapping Argument* holds (of. Sobel to])

Prcosotion, 2.1. Iagt aaw 0 (Go-)# C. 2 (a), *()-90 0, 9() 0, adlet

there exista& ostaat Ic such that #9(t) it (CItR) Z ge2 (it).

there evists T ), 0 and a Ioas solution U a C (EKI0,YI) of 01.1) such that

ue~uCCf,~L 2 (2)).

Remark 2.2. i t is also shown In 181 that the unique solution u exists on a maximal

Interval 10,YTo) M R1 IfT<" then

lim sup Iju u(x,t) i U2 (Nt +u2 t) + * u(Not) + * u(Not) + a 2(x,t)Idx -*

Our main result Is

Theorem 2.3. Let the assumtions (2.1)-(2.5) be satisfied. and let T, > 0 ho given.

There exists smooth initial datum u such that no C I-smooth solution u of (1-*1) can

exist. for x e a and t )P "are Preciseiw'. it SUP I n0 (z) I is sufficiently small.

and u'(x) -C0 with -inf u l(s) Is sufficenetly large, then the function u%(x,t) (and

hence also ut(x~) beoesngatively Infinite for some t1 I < T, provided the smooth

solution U exists on toot) x 3.

Remark 2.4.* While thecom 2.3 establishes breakdown of smooth solutions of 0. *1) for

sufficiently largo data, It does not prove the developeent of a shook front. umerical

evidence for this mere complex phenomenon has been found by Markovich and fenardy [7 for

the Cauchy problem associated with 0. *2), (1.*3) in the special casem when the smooth

data are taken sufficiently large. The corresponding analytical problem is under active

study.



mawsk 2.5. 5heorem 2.3 bolds If amitino (2.3) Is satisfied only at u - 0. For, in

this. usme tere exists a oastant a , 0 soc that (2.3) helds on the interval Iul I ,

and the analysis of seethe. 3 can be modified ecordlngly.

mark 2.6. it to lseo clear from the proof (of. proof of 3m. 3.2) It the asmtio

,(x O ) ( 0 ald -no- ( O ) sufficietly large holds at a sngl point ng.

3. P3AW OF !1 2.3.

T he p Iof is by contradiction. Assume that for any 2 1 > 0 and for every datu u0

satisfying (2.5) the unique smooth solution u of (1.1) exlets for (xt) a a x(0,2 1 ) and

that u,(at) end ut(xt) are bounded on a 100?T1. We begin by transforming (1.1) to

an equivalent system. TAt u be a mooth solution of (1.1) on R x [,t 1  and introduce

the dependent variable a by

t

B(x.t) a, J '(t - T)#(U(xT))lT, (Nt) 6 i x(O,T ]  (3.1)

Equation (1.1) i then equivalent to the system

ut + (u) 3 +5 O
(x.t) IR x(O 1 ] 1 (3.2)

s t  ' (O)9(u) + e•=*I

together with the Initial data u(xO) - uO(xl, s(x,O) - 0. we next lntrodeoe

- u,u] and the matrics

AW - (#-(U) I 3(Y, t) -'(): -htJ'

then (3.2) om be written as the equivalent quasilinear system

gt + A(,)g3 + p(1't) - 0, !(.,o) - [uo(R),].

fhe 2 x 2 matrix A(g) ba distinct elgenvalues *'(u) ) 0 and 0. A vell known

taorem of Lax 181 guarantees the eistense of two linearly independent Riemama

Invariants r(us) and e(u,s). My definition r enl a satisfy

4V-5
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1

where and w ~ae the right eigenvectors of AM). a simple calculation -1eas that

(1.41(u))l and £2 - 81'. it Is thea as to show that

satisfy (3.3). and mm m by assumtion (2.1), VW 0e~ 0

we shall stedy the development of a singularity In the classical CI-molution u o

(1.1) along the x[fj a x(tC) through any point C 6 as fined to he the

unique solution of the initial value problem

-40,I inx~,C #t) MG (3.5)

Assumtion (2.1) and the classical theory of =I guarantee that x(t A) aiets for as long

as the CI-selute a of (1.1) exists ad has u(xot) (ad hence also st) bounded.

Mawe the present hypotheses x(tA) exist* for 0 4 t C 1 for any C 03.6

?At x(t.C) dene the afteraterfetia carve through I associated with 1 .1) Which

satisfies (3.5). Mhe derivative of r along this characteristic is

it-a r +#I( -at + '(uat4(u) -1 +*(u~ux *(uu

a ta t t 4c1

1how, ws way replace (3.2) by the eystem

%at

togeter with the initial dota rtu,s)(*0O) # *,(x)). s(uus)(z*0) 0,S and then by

(M) a ft r a). It Is slow that the above ealonlatioe are valid. for as lmponge

74-



U is a classical solution of (1.1), I.e., fot (xt) a a x(OTII. Ie keep he notatin

simple it should be understood that when calculating derivatives along a characteristic

x - x(t,C), r - r(z(t,C),t) - r(u(x(t,)),tt)) and simlarly for a.

To proceed with the proof of Theorem 2.3, let v(t,4) a 3%(t,C), 04 t 4 1. as

function v measures the variation of two nearby characteristics at tie t with respect

to their Initial positions and plays a key role in our analysis. When v is diffe t

from zero (1.1) and (3.6) are equivalent. note that v(0,t) I 1 for any 6 I3L ft will

show that if Iuo(C)I is suf ficiently mall and -u() ts suffLoLently large, then

v(t C) approaches zero at a finite time ti < ?I, while uN(X(t,4).t) romains finite

and bounded away from zero. MaervLng that
u, llt, ), o (txlt,4Clt)

u(,C),t) -(3.7)
v(t,C)

we then obtain a contradiction of the ass ption that %x remains bounded fe all

t 46 (0,?1. and the proof in complete.

Differentiation of (3.5) with respect to C yields

- *(u(x(tA),t)ulM(X(tC)t), v(OC) - 1, t 0 [o, 11 , (3.3)t

Bince (u) r -, we have

*'r(u) -rC - a- r, -- (3.9)

thus

orm (3.2) and (3.4) the derivative of a along the characteristic z x(t,C) is
do

-a s x 0 -Ox

so that

"C - ~ 01(u) dt'
and (3.8) takes the form

dv . tL 6 -( J ) rt(+, ) T M I t t a (, 7i
dt 0*-(u) #If*') dt Iv0C ,tCf. 1

The above equation Is an 0OM for v along characteristics having ('C)I as an

integrating factor. TMs

-7-
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0 0 *()

or equivalently

0 (*(t (.C,)1 r (x(tC~)dT)) ,(3.10)

for t e to,T,).

we will now use the following result which provides a bound for a, independent of

u;(C). its proof is given in Section 4.

Lema 3.*1. * Lt the assmptions of Theores (2.3) be satisfied end lot u be a C I-mooth

solution of (1.1) with a, ux, Ut bounded on 3R [O,TI * Then for any 8> 0 there

exists a number VI - VI (., T 0 such that

sup Ia(Xt)I%5 whenever sup au (x)I < VI (.1
nc 10,TJ 1 0

Fror a given 6 0 we choose no and I in accordance with Lema 3. 1. I Snce

*1)and *') are continuous and SUP Iu(x,t)I -C 5, assumptions (2.1), (2.2),

and (2.3) imply that there exists positive constants a. i -1,... ,4 such that

(3.12)

for 0 4 T 4 t 4 T#where 0 is the a priori constant in (2.3). we note that the

constants a~ depend on S but not on 0'(0).1 0

TO proceed with the proof we shall also need to estimate r 4in (3.*10). as well as

r- C in (3.9). Por this purpose note from (3.4), (3.9) that

r (x(0,F9),0) 4 '(u0(E)u;(C) (C e a)

toet C(C) and C* be defined by



C(C) - -4(u0(C) u(C)
(3.13)

- sup IC()1
Cm

11 note that C(C) is positive whenever uO(-) is negative. we w11 nov use the

following anilsary result# its proof to given in Section 4.

Womia 3.2. Let the aMa ItLone of 1am 3.1 be satisfied. Select the datua u0  sah that

UO(C) < 0, and there Is a point 1t 0 such that CK(0) - C* Then there exists

0 -C T2 < , ndendt of C* (hee of u(; R))0 such that

? Co 3 Ce

! - C4 C (x(t,Co),t) - SC(x(to)st) 4 - -, - 4 rt(x(tCo),t) 4 - (3.14)

2, 0lw0 <t 4CT2.

To complete the proof use equation (3.10) and the inequalities (3.12), as well as the

Inequality for rC(*(tCO),t) in (3.14), to obtain the estimate

*'(u(x(t,C as
&A (t,C ) •j MIS)lO)

02

for 0 4 t i T2 . Dy (3.12) *'(u(x(tCM))) Is finite and bounded away fra sero for

0 < t .C2 hus the right hand side of (3.13) becomes sero at tim t' - ; 2

8aine T2 Is independent of u (C), we now choose Co (i.e. -0( K) > 0) so large
0 0

(of. (3.13)) that ta < '2# while keeping Uo(C ) flxed and lu0(C0)l < vi. rinally, by

(3.9), (3.12) and the first inequality in (3.14) u1 (x(t.e0 )lt) remains finite and bounded

away from nero on 0 C t • T2  Basuation (3.7) then provides the desired contradiction

(i.e. ui beomes negatively Infinite at mamse time t 1 C t*)s this completes the proof of

Theorem, 3.2.

-9-
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4. PWov3 O rUW 3.1 MID 3.2.

a. Proof of lem 3.1. It follom ftcm (2.3). (2.4). (3.4) and (3.6) that

4£ (z(tC).t) C Sla (0)I(Ir(x~tC),t)I + le~x~t,C),t)I)

t
+ A f a'(t - ?)1r(x(t.C),T)I + ts(x(t,mr)Tld

0
(4.2)

t*(Iz, t) C Aja't0)~Ir(x,t)l + Is(x,t)l) 4 6 1 au(t-T)[Ir(xr)l + I.(ni)lde
0

for 0 C t T1" Let R(t) and 8(t) be defined by

3(t) - 8op Ir(z~t)I, 3(t) - sap Is(xt)I * (4.3)

Integrating the inequalities (4.2), takingm on the right hand side and wing

the definitions (4.3), we obtain

t

Ir~x(t, ).t)t • sup Ir0 ()1 + Ola'(0)l I [R(T) + 8(T)jd] +
con 0

t it
+ 11 (In - +)( ) 4 *(r)jdtdn

0 0

(4.4)

t t 4
I8(x9t)l - 018'(0)Il I R(1) + S(r)]dT + 6 J aO( - T)(l(r) i(g)IdTdq

0 00

for 0 4 t C ?1* whor r0 (C) - r(x(0,C),S) - $(u 0 ()),.(x(0.1J)0)) - 0. we no"t that the

right hand side of (4.4) is Independent of x and C. Noreover, from the smoothness of

u, ut , and ux, assmtption (2.1), and the continuous dependence of solutions of equation

(3.5) on the initial data, it follow readily that for each fixed t, t t T1, there exists

C CR and x(t,C) such r(x(t,9),t) - R(t) and e(x(t,4)#t) - B(t) hold. Therefore,

we can replace the left hand sides of (4.4) by 3(t) and 8(t) respectively.

Intetchanging the order of integration in the double integrals in (4.4) yields

-10-
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t
su8(0 + 011(011 ft JI) + SCOW)d + 64 at-3() somaJ~d

o 0

for a 4 t 4 1 We add the two Inequalities In (4.5) to obtain

t
+()I it u IrO(9I + *1 491a'(O)j 26.' (t-'fl 3(r) + WIOi14 (4.4)

for 40(4t ?. Let Bit) -VAX (d0fa(@)i + 30alt-r)J. Uijah Isa noftasgtive

function by (2.41. han

3(t + 3(t) 4 sup IT (w) + Bit) ow +3t SM6(T)d, 0 4 t 14 ?1 (4.7)

and the Gromll ifteqaelity yields th, estimate

P(t) + 6(t) 49 suo 1I) IM~). t 4 * (16

where the positive function fi *) is defined by

f(t) -1 4 (t) t (emp! Etrs dmd. 0 Ct4? ( * (4.91

sib". It #(M) inequality (4.6), equations (3.'), GnA the Sometcaiaity of f

imply that

14(u(x~tM) 4 or ,u()If4)(.0

for (x,t) a3 X10*y 1 . vaoalliag, that 41(*) 0. we oberve that (4.14) is equiveleat

to

taaNat)I 'Cl (gap I(()fY)I(.1



for (w~t) 6 a too 916,I* i proof of the 1.m now follows from the continuity of *and
an" the fact that 4(0) - 0.

b. Proof of TAsia 3.2. we write the seym (3.6) in the equivalent from

It t
-r a'(0)$(u(x(t,C),t)) +1 a(-)(~zt~,)d

dt 0
(4.12)

t
s(x,t) -fat-)ux,)d t 41 fO, I

0

Integrating (4.12) with respect to t# differentiating the outcome with respect to Cand

using (3.9). we obtain

4t
r~~(x~~t.C),t)* - cC '0 (u(xI'r.E).T)1
re~,C,0 *'(M + rC),TI Ir (x(r.C),v)-

t I *I~t.)f)
+ a- a(r-4i) Ir~~.C.) Wr(xr.)mn) a- ZTC,)dd

0 0
(4.13)

t
a (x~t) -Jal(t-i) r fr(X,r) a- XT)d

0

Define 0 and 0 by

Pit) - sup Ir,(xit)I. 0(t) -sup Is (xlt)I (4.14)

1N0ft, we take absolute values of both aides in (4.13), afe the definitions (4.14) and

inequalities (3.121 to obtain the inequalities

1rCx~t),t1 Ce + *I0)I J tpot + O(y)JdT +
0

t T
+* f Ia(T - it)[(ii) + O(1l))dildT

0 0

IeC~~t)IC At Ia'(t - 'T)I(P(T) + a()dT

-12-



where CS Is dei8ed in (3.13). ZJt 9(t) - P(t) + a(t). as In the proof of aMM 3.1,

me can replace the left band side of (4.15) by p(t) and a(t). After smpifying the

first Lnequalty in (4.15) by LaterhMag18 the oeder in the duble Lntgra and adding the

two Inequalities (4.15), we obtain

t
1(t) 4 CS (Ia*(o)l + tas(t - r)Ij( )d. 04 t T • (4.16)

0

Noting that max Ia'(S)1 * l'(t - 1)1] 21&'(0)1 (of. (2.4)), (4.16) beoome

t
1(t) 4 CS + 4a'(@J)l Ztr)wa, 0 4 t c T (4.17)

0

which, by the Grmall inequality, Implie. that

Z(t) 4 Cexp(40Ia(0)1t), 0 4 t 4 T• (4.1)

Ve nov choee < 1 wallG mauh a that

WCe
C(t) 4 T- to (0.?] . (4.19)

note that e dends on y yn uO (C) and a(*), and Y is independent C*.
"2 2

Inequalitiee (4.13) a (4.19) mbine to yield

a W ow) I ont. 0 4 t 4 "2 14.20)022

we further retrliot s so that

St(4?t) - ,  3o " 2 en. (4.21)

We aboeave that up to this point the sign of %(C) plays so role and the eetimates

(4.19), (4.21) held for my c a I

We neat tern to estmeting CR1  (tA4)t) the aeti ato Ir.(a(t,1),t)I 4 C for

0 4 t 4 ?;, Whisk follo" trivially from (4.19)o Is too OrUMo to stabih m 3.2. We

-13-
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no eoat tbe datum u0 and a point 0 as specified in the statemt of Zoine 3.2. he

goal Is to obtain a samtlve upper bound for rC(z(tCo),t) this is obtained fm the

first eMation in (4.13) as follows. Using (3.12) and estlmating the two Integrals oan the

right hand side of (4.13) as In (4.15), (4.16), and than using (4.19), we obtain the

estimate
t

*~ *(.(xtC T)) CTxTVC),1)0

0 0o" ) "('

S3C *1a'(0)it

for 0 4 t f 2. Putting C - 0 in (4.13) and then using (4.22) gives

rC(x(t 0 ),t) 4 -C* + 3Ce61a'(0) t, 0 4 t 4 12 (4.23)

wher T*' is Independent of C'. 2hen choosing 0 < T2T m<al enough and

Independently of C* we obtain

C*
r[(x(te o),t) • - -, 0 • t 7 T2 " (4.24)

This, together with the crude lower bound (- 3 ) already mentioned proves the seon

Got of desired Inequalities in (3.14). These combined with (4.21) (which of course holds

0 4C t 4 72 < 5 ) yield the first set of inequalities in (3.14), and the proof of omma

3.2 is complete.
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MSTRAM (cant)

in a given ammory kternel, subscripts denote partial derivatives, d/dt

and * denates the convolution on [0 tI. Under physically reasonable

asuptions concerning the functions * * and a it in shown that a smooth

solution u develops a singularity in finite time, whenever the smooth

datum u 0 becomnes *sufficiently large" in a precise sense.


