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LIST OF SYMBOLS

{a(n)} - primary channel data sequence for
noise canceller, or training sequence
for equaliser.

A (n) - vector of p th order forward prediction
tcoefficients a (1;n), a (2;n),..,a (p;n)

at time n. p p p

A (n) . (1 AT(n))
T

p p
Bp(n) - vector of pth backward prediction

coefficients b p(O;n),b p(1;n), ...,b p(p-l;n)
at time n.

(n) - (B p(n) 1).
th

C (n), D (n) = p order auxiliary vectors at time n.

e (n), e (q,n),e'(n),(i-a,b,c,d) - forward residuals.
p p

e Cqn),-a -b
e (n),ep(q,n), e (n),e (n) - equaliser residuals.

E p(n), E p(n) - energy of residual e p(n).

E (n) - equaliser residual energy.p

F (n) - vector of equaliser weights f (O;n),
f p(l;n),...,f p(p;n) at time n?

F (n) (1 F T(n))
T

p p

G p(n) = energy of residual r (n).thP
k p(n) - p order partial autocorrelation function

at time n.

kp(n) pth order partial cross-correlation
p function at time n.

K (n), L (n) apth stage forward and backward reflection
p p coefficients at time n.

L - total number of equaliser weights.

M - length of fixed memory.

Mp(n) - component of auxiliary vector C (n).
p p+.l
N - number of linear prediction stages.

N (n) a component of auxiliary vector D (n).
p p4.1

p o general order of linear prediction or
equalisation.

qp(n) - mean square of x(n).
pI

p (n) - mean square of a(n).
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Q (n), V (n) - autocorrelation vectors of sequence
xp NO)).

Q (n) - cross-correlation vector between {x(n))
and {a(n)}.

r p(n),r p(q,n),r (n),(i-a,b,c,d) - backward residuals.

R (n), Rp(n) - (p+l)x(p+l) autocorrelation matrix of
p sequence {x(n)1.

Rp(n) - extended correlation matrix for {x(n)}
and {a(n)).

s (n), t p(n) - (p+l) th components of vectors Cp+ (n),
D+l(n), respectively.

v p(n), v p(n) = mean square of x(n-p).

V (n) - extended correlation vector, incorporating
p cross-correlation between {x(n)} and

{a(n) }.

V - decremental factor for fading memory
estimator.

{x(n)) - reference channel sequence for noise
canceller, or input sequence to equaliser.

xp(n) pth order forward predicted value for
datum x(n).

X (n) - pth order vector for sequence {x(n)}.

ap 6(n), ,p(n) M pth order auxiliary scalars at time n.

E e(n), c r(n) - minimised values of energies E (n), G (n),
p p respectively. p

1i - conditioning parameter used in initialisa-
tion of algorithms.
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1 INTRODUCTION

The problem of adaptive channel equalisation has received considerable

attention in recent signal processing and communications literature and a number

of different equalisation algorithms have been proposed. Channel equalisation

is the essential mechanism, for example, in noise cancellation systems [1 11

where the objective is to remove from the signal in the primary channel any

components which are correlated with a secondary or reference channel signal.

In the case of discrete digital signals this can be achieved by passing the

reference signal through an adaptive linear filter whose coefficients are

adjusted to minimise the mean-square difference between the filter output and

the primary signal. It can be shown that the coefficients, when optimised in

this way, satisfy the Wiener-Hopf equation and hence correspond exactly to those

of the optimum Wiener filter associated with the process (assumed to be

statistically stationary). In some applications the coefficients are only

adjusted during an initial 'training period' and are subsequently held constant.

In other situations they are updated at regular intervals and the filter may be

able to track gradual variations in the channel statistics. In this paper we

only consider the case where the coefficients are updated every sample time.

A closely related problem is that of adaptive linear prediction which may

be regarded as a special case of channel equalisation in which the reference

signal is simply the primary signal delayed by one sample interval. This can

also be achieved using a linear filter as described above and the net effect is

V to decorrelate successive samples of the primary signal leaving, ideally, a

white noise sequence. The one-step-ahead linear predictor finds use in a wide

121(3
range of applications such as speech analysis ,system identification[3 and

(4)
maximum entropy spectral analysis



The various algorithms which are commonly used for adaptive channel

equalisation may be separated into four main classes according to whether they

are based on a transversal or lattice-type filter structure and whether the

coefficients are computed exactly or evaluated using gradient or stochastic

approximation [3] methods.

In the context of transversal filter structures, stochastic or gradient

techniques such as the Widrow "Least Mean Square" (LMS) algorithm | 1 are widely

used. They are very efficient computationally, requiring a number of arithmetic

operations (multiplications or additions per sample time) at most proportional

to L, the number of delay stages in the filter. However, their rate of

convergence, which depends on detailed statistical properties of the data, can

be slow and the coefficients tend to fluctuate about their converged mean values

leading to misadjustment noise and coefficient error. The rate at which the

filter can track changes in the statistical environment is therefore limited.

This type of convergence problem is not encountered if the transversal

filter coefficients are determined using a direct .ethod such as the "Recursive

Least Squares" algorithm, which can be related to the theory of Kalman filtering

and has been applied to the channel equalisation problem by Godard . During

each sample interval the inverse of the estimated covariance matrix is evaluated

by applying an exact update technique. The inverse is then used to derive

filter coefficients which are optimal in the sense that they satisfy the

Wiener-Hopf equation with respect to the current covariance matrix and cross-

correlation vector estimates. By defining the estimators for these quantities

to have finite memory length the algorithm can be modified to track temporal

variations in the statistical environment. Because of the matrix computations

which are involved the number of operations required to carry out the Recursive

Least Squares algorithm is proportional to L2 and, being more expensive

2



computationally, it is less widely used than algorithms of the gradient

type. However, Morf and co-workers [)and Falconer and Ljung [1have

shown boy exact least squares linear prediction and channel equalisation

can be performed using a number of arithmetic operations proportional to

L by means of the "Fast Kalman" algorithm, which is very powerful but

does not seem to have received much attention in practice.

Much of the attention which has recently been devoted to adaptive

channel equalisation concerns the use of lattice-type filter structures

which were suggested by Itakura and Saito and can'be shown to have very

good stability properties based on the theory of orthogonal polynomials[839

An adaptive lattice filter comprising N stages can be used to carry out
th

an efficient N order linear prediction for statistically stationary

processes by adjusting the reflection coefficient at each stage (using

direct or gradient techniques) to ensure that the energy of the residual

signal from that stage is minimised. In effect the filter is then being

used to implement the Levinson-Durbin (LD) recursion algorithm[1,[1

a generalised version of which is discussed in detail in Section 1.



Griffiths has pointed out that the set of backward residuals derived from

an adaptive lattice filter could be used instead of the delayed signal values

in a transversal filter when applying gradient techniques to the channel

equalisation problem (12]. The fact that these residuals are mutually uncorre-

lated suggests that the equaliser convergence rate can be greatly improved in

t
general. However, the use of a gradient-type equaliser algorithm will still

lead to problems of misadjustment noise and coefficient error and if these are

to be kept at an acceptable level it may not be possible in practice to make use

of the improved convergence rate which is offered. Furthermore, the behaviour

of the lattice filter in the initial convergence phase when the statistics can

not be stationary has not been fully analysed in this context.

Morf and Leer 131 have shown that the entire L-stage least-squares channel

equalisation process can be carried out exactly using an N-stage lattice-type

structure (where L - N+l) by generalising the underlying LD recursion algorithm

to include the primary channel signal as well as the reference signal and to

take account of non-stationary statistics. This approach is extremely powerful

since it leads to computationally efficient algorithms (the number of operations

is proportional to L) and produces the optimum filter coefficients at every

sample time. Moreover, it is based on a filter structure which has good

stability properties (at least for stationary statistics) and possesses the

desirable property that no stage of the filter affects the operation of any

previous stages. Morf and Lee have produced a number of specific algorithms

based on this theory and Satorius and Pack (141 have successfully applied one *

of them to achieve effective equalisation with simulated data on a computer.

In order to develop a complete least-squares lattice algorithm it is

necessary to define a suitable estimator for the various statistical quantities

which are involved and to include the detailed time evolution of these

4
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estimates within the overall lattice structure. Morf and Lee[13 1 and

Satorius and Pack [11have tackled this problem by introducing a number of

auxiliary vectors and scalars into the problem and carrying out a lengthy

analysis to derive explicit updates in time only for the corresponding trans-

versal filter (equaliser and predictor) coefficients. Satorius and Pack

even make use of the Woodbury inversion lemma in their analysis [11and

although this move can be avoided for the purpose of deriving their final

result it does emphasise the fact that the use of auxiliary vectors and

scalars is closely related to the Kalman-Godard approach in which the

equaliser coefficients themselves are determined using a direct time update

technique [5. It would appear that having solved the Wiener-Hopf equation

by means of the efficient time and order recursion which is incorporated in

the lattice structure, the solution is effectively being derived again in

order to provide time updates for the relevant statistical estimators. This

makes the least-squares lattice approach appear much more complicated than it

really is although the final algorithm is the same whichever analytic route

is chosen.

The purpose of this paper is threefold:

(a) To demonstrate how the necessary updates can be derived much More readily

by means of a very direct analysis which does not involve an explicit

time update for the corresponding predictor or equaliser coefficients and

leads to more efficient algorithms than those employing auxiliary vectors

and scalars;

(b) To develop a detailed algorithm based on a general estimator for the

relevant statistical quantities. This estimator includes as a special

case the growing memory (which is used in the Recursive Least Squares

algorithm) as veil as the growing-fading memory (exponential window)

5 14



and the sliding window, both of which provide an important time tracking

capability.

(c) To compare the efficiency and form of these algorithms with their Fast

Kalman equivalents.

In Section 2 we present a straightforward derivation of the generalised

ID recursion algorithm and show how it leads naturally to the use of lattice

structures for linear prediction (Section 2a) and channel equalisation

(Section 2b). The analysis is expressed in terms of ensemble averages and

serves to provide a clear view of the fundamental way in which the lattice

implementation is related to the basic structure of the algorithm. Detailed

formulae concerning the estimation and update of the relevant statistical

quantities are not necessary for this purpose and so they are discussed

separately in Section 3.

In Section 3 a specific estimator for the various statistical quantities

is introduced for the first time,and the necessary update formulae to generate

complete linear prediction (Section 3a) and channel equalisation (Section 3b)

algorithms are derived in a very simple and direct way. The detailed channel

equalisation algorithm is given in Appendix 1.

The use of auxiliary vectors and scalars to derive the necessary statistical

.. I. update formulae is discussed in detail in Section 4a and the detailed equaliser

algorithm which results is presented in Appendix 2. The strong resemblance

between the auxiliary vector analysis and the use of the Kalman-Godard

technique to solve the least-squares channel equalisation problem directly is

highlighted in Section 4b where the Fast Kalman algorithm is derived quite

simply using sme of the auxiliary vector formulae from Section 4a. The Fast

Kalman algorithm is given in detail in Appendix 3.

6 I



2 GENERAL LATTICE AND EQUALISER STRUCTURE

(a) The N th Order Linear Prediction Lattice

For the purpose of explaining the underlying structure of lattice

equalisation algorithms it is convenient to consider first a general pth order

linear prediction problem which may be stated as follows. Given a data sequence

{x(n) In = 0, 1, ... } find the set of time-dependent coefficients or "predictors"

{a p(k;n) 1k - 1, 2, ...p} which minimises the quantity

E (n) = <e (n)> (2.1)
P P

where e p(n) = x(n) - xp (n) is the forward residual and x p(n) is given by

P

p(n) = - a (k;n)x(n-k) (2.2)

k=l

The angle brackets in equation (2.1) denote a general ensemble average over the

non-stationary process {x(n)} which is assumed to be real and scalar. The

residual e p(n) may be written more concisely as

e p(n) - X(n)Xp(n) , (2.3)

where we have defined the vectors

XT(n) a x(n) x(n-l) ... x(n-p), (2.4)

p

AT(n) - (ap(1;n) ap(2;n) .. eap(p~n)) (2.6)

and the superscript T denotes matrix transposition.

If the forward predictors are regarded as non-statistical variables,

independent of (x(n)}, equation (2.3) allows the forward residual energy E (n)
p

7
.



in (2.1) to be written in the form

E (n) XT (n)R (n)A (n) (2.7)

where

R (n) = <X (n)X (n)> (2.8)
p p p

is the (p+l) x (p4l) covariance matrix of the process {x(n)}. The (ij)th

element of the matrix is given by

[R(n)] <x(n-i)x(n-j)> (0 4 i, i 4 p) (2.9)

which is, in general, time dependent. (In the special case where {x(n)} is a

stationary process, [R p]. is a function of (i-j) only and so Rp is a

(symmetric) Toeplitz matrix).

The matrix R p(n) possesses useful time-shift properties; from equation (2.9)

it is simple to show that the matrix elements satisfy

Rp(n-1) ij (2.10)

and indeed if the data vector X p(n) is partitioned in the form

XT(n) - (n): XT _(n-1) ,(2.11)

it follows that the covariance matrix has the partitioning

q (n) Q T (n)
p p

R (n) = (2.12)

wR

where2

q (n) <x x(n)> ,(2.13)

p i
8



and

Q p(n) = <x(n) Xp 1 (n-l)> (2.14)

An alternative partitioning of R p(n) results from writing X p(n) in the form

xT (n) = XT 1 (n ) :x(n-P)). (2.15)

from which it follows that

Rpn :V (n)\

R (n() = _ (2.16)

p~ ip

where

v p(n) - <x 2(n-p)>

and

Vp (n) - <x(n-p)Xl(n)> (2.17)

Equations (2.5), (2.7) and (2.12) allow the energy E p(n) to be written as

E (n) - q (n) + 2AT(n)Q (n) + AT(n)Rp(n-)Ap(n) , (2.18)
p Pp p P- p

and minimisation of E (n) with respect to A T(n) yields the normal (Yule-Walker)
p P

equations for the forward predictors:

Rp1l(n-l)Ap(n) - -Qp(n) (2.19)

Substitution of (2.19) into (2.18) gives the minimum energy, or mean-square

error,

e
£p(n) min (Ep(n))

- (n) + A T(n)Q (n) (2.20)
p p p

and (2.19) and (2.20) can be combined in the form

9



/ce (n)

Rp(n)Ap(n) = (2.21)

where 0 is the zero p-vector.p

If equation (2.19) were solved by updating the covariance matrix every

sample-time and inverting it directly using a general algorithm such as the

Gaussian elimination procedure a large number of arithmetic operations (O(p 3))

would be required. Alternatively the inverse covariance matrix itself could be

updated every sample time (the Kalman-Godard algorithm [5 1 in which case the

number of operations would be reduced to O(p2). It is well known, however, that

in situations where the statistics are stationary and the covariance matrix

is therefore of Toeplitz form the number of operations required can be reduced

to O(p) by updating the solution every sample time using a recursive procedure

due to Levinson and Durbin (LD) [10] [11] A point which does not seem to be

so widely appreciated is that, by making use of the time-shift properties of

R p(n) it is possible to generalise this procedure so that it applies to the

analysis of time series for which the statistics are not stationary. The

generalised LD algorithm will now be derived.

th
It is necessary to consider in addition the p order backward prediction

problem, associated with the minimisation of the quantity

G (n) - <r (n)> , (2.22)

where the backward residual r (n) is defined as
p

rp(n) . B(n)Xp(n) , (2.23)
p p p

T(n) - (BT ()1)(2. 24)

and BT~n (b (~ (1; n..b (p-l ,n, (2.25)
p \p P p /

is the vector of backward predictors.

10 f



Minimisation of the backward residual energy G (n) with respect to the

backward predictors at time n yields the normal equations

Rp-1 (n)Bp(n) - -Vp(n) (2.26)

where the partitioning in (2.16) has been used. In a fashion similar to that

used in forward prediction, the normal equations may be expressed in the form

R p(n)B p(n) - , (2.27)
p) 

where e r(n) is the minimum backward residual energy.
P

The generalised LD procedure assumes that the p th-order forward

prediction problem has been solved for time n, and that the corresponding

backward prediction problem has been solved at time (n-l); that is to say

that A (n), B (n-l), e(n), e (n-l) are known and satisfy equations (2.21)

p p pth-and (2.27) at the appropriate times. The solution of the (p+l) -order

forward and backward prediction problems at time n may then be written in the

form

(~(n)) 0
Ap+1 (n) + K p+l(n) (n-1) (2.28a)

p

and

Bp+l(n) Lp+(n) + (2.28b)

0hr )C +. (i P )) th

where Kl(n) and L (n) are the (p+) -order forward and backward
P+l p~el

"reflection", or "PARCOR" coefficients. This recursive procedure may be

verified by pre-multiplying equations (2.28a) and (2.28b) by R (n),
p.1

-T T
partitioned according to equation (2.16) when multiplying (A (n) 0) , and

p

according to equation (2.12) when multiplying (0 !T(n-I)) T
. This yields the

p

relations

A.L



E e. ( n) e (n) + K (n) ( n ) (2.29a)
P4.l p p4.1 p

L (n) a - - , (2.29b)
p4. e (n)

p

c r (n) - cr(n) + L (n)k (n) (2.30a)
p4.1 p p4.1 p

k (n)

K (n) = P- (2.30b)
Cr (n-i)

p

where

T -
kp(n) VT+l(n)A p(n) (2.31a)

and
A T

kp(n) Q p+l(n)Bp(n-1) (2.31b)

The identity (n)\

k p(n) = kp(n) = (O BT(n-1)) Rp+l(n) 0 (2.32)

may also be verified by using the two alternative partitionings of R p+l(n) and

taking into account the normal equations (2.21) and (2.27). This equality is

often referred to as the "Burg Lemma". Equation (2.32) for k p(n) or k p(n),

together with the definition of Rp+l(n) from equation (2.8), yields

kp(n) = 0 OT(n-i) Xp(n)XT  (n) AT (n)o0T>
whr (o P+l P+l p 0

= <r (n-l)e (n)> , (2.33)
p p

where the definitions (2.3) and (2.23) of the forward and backward residuals

have been used. k p(n) thus has the form of a partial correlation function

between the forward and backward residuals, and L p(n), K p(n) (equations (2.29b)

and (2.30b)) may be interpreted as partial correlation coefficients.

12.jIK



Equations (2.29), (2.30) and (2.32) provide order recursions for the

forward and backward residual energies:

k2(n)
Ce +(n) = Ce(n) - r (2.34a)

P cr(n-i)P

k 2(n)
(c (n-1) - P - (2.34b)Cp+l~n p e (n)

p

Recursions for the residuals themselves are found by pre-multiplying equations

(2.28) by X T(n) and using (2.3) and (2.23), which yields
p+l

ep+l(n) - ep(n) + Kp+l(n)rp(n-l) , (eo(n) - x(n)) (2.35a)

and

rp+l(n) - Lp+l(n)ep(n) + rp(n-1) , (ro(n) - x(n) . (2.35b)

The order iterations of equations (2.35) may be realised in the "lattice" or

"ladder" network shown in figure 1; they are used to carry out Nth-order linear

prediction by solving the problem recursively for all orders p (0 < p < N). It

can be seen that the solution of the linear prediction problem has been effected

using the "local" lattice correlations k p(n) rather than the data covariance

values, and the reflection coefficients L (n), K (n) instead of the usual
p p

transversal predictor coefficients A (n), B (n). A knowledge of the k (n) per-
p p p

mits a complete evaluation of residuals, reflection coefficients and predictor

values using equations (2.35), (2.34), (2.29b), (2.30b) and (2.28).

We note the following points arising from the preceding analysis.

(i) For stationary statistics the procedure reduces to the conventional LD

recursion associated with Toeplitz covariance matrices. In this instance,

all quantities become time.- (n)-independent, backward energies equal

13



forward energies, and backward reflection coefficients equal forward

reflection coefficients. Equality for the predictors is also attained

in the sense

ap(k) = b p(p-k) , k - 1, 2, ... , p. (2.36)

It is clear that the more general extended LD recursion is well-suited for

situations where it is difficult to realise stationarity - for example,

in speech analysis, where local statistics may vary significantly with

time, or identification of linear systems with time-dependent parameters.

The problem of tracking time-varying characteristics, addressed in Section

3, is one for which the general treatment above is appropriate.

(ii) The backward residuals are orthogonal. This is easy to demonstrate by

evaluating the quantity

h p(n) i <r m(n)r p(n)> (2.37)

Using equation (2.23), this may be written

iT Th m(n) (n) <X M(n)X (n)> Bp (n) . (2.38)

rEquations (2.8) and (2.27) show that h mp(n) is equal to (n) for m -

and zero for p < m. For p > m equation (2.27) may be employed in trans-

pose form to prove h MP(n) zero here also. Hence, we have the orthogonality

relation

<r(n)rp (n)> 8pr C(n) , (2.39)

where
,m- p

- {l,m~pmrp O0, m p

1.4
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It is this property of the lattice filter which Griffiths exploits in

order to accelerate the convergence of noise-cancelling filters which

operate using gradient techniques such as the LMS algorithm [l2

(b) The Lth Order Lattice Equaliser

The general p th order channel equalisation problem amounts to finding the

set of time-dependent equaliser coefficients {f (k;n)Ik 0 0, 1, ... p) whichp

minimise the quantity

(n) <e2 (n)> , (2.40)

p p

where the residual signal

p
e p(n) - a(n) + 2 fp(k;n)x(n-k)

is the difference between the primary signal {a(n)) and the equaliser output

obtained by passing the reference signal {x(n)} through the channel equalisa-

tion filter. e p(n) is, in fact, the desired output from a noise cancellation

system. This problem may be solved in a recursive manner analogous to that

outlined above for linear prediction.

In order to rationalise the notation we define the vector

FT (n) - 1 FT (n)) (2.42)

where

pT(n) - (fp(O;n)f (1;n) ... fp(p;n)) (2.43)

and the extended data vector

-T ) (a n) XT(n" (2.44)

15 F .



The residual signal e p(n) may then be written in the form

ep(n) = (n)X (n) , (2.45)

and the error criterion in (2.40) becomes

(n) - T p(n)Fp(n) (2.46)

where an extended covariance matrix R (n) has been defined as
p

Rp(n) - <Rp(n)-T(n)> (2.47)
p p p

It is easily verified that R p(n) has the partitioning

R : (n) \ n( P
R(n) -(n) (2.48)

pPp !v) (n)
p p

where

v (n) - <x2(n-p)> (2.49)

and

Vp(n) - <x(n-p)Xp 1 (n)> . (2.50)

It may also be partitioned in the form

_q (n) Q (n)

Rp(n) = (.2.51)

- p(n). R (n)

where qp(n) is the mean-square scalar given by

p

Q p(n) is a cross-correlation vector of the form

Qp(n) =<a(n)Xp(n)>, (2..53)

p p

1'



and R p(n) is the covariance matrix defined in equation (2.8).

Use of equations (2.51) and (2.46) permits the minimisation of E p(n) with

respect to F (n), giving the time-dependent Wiener-Hopf equation,P

R p(n)F p(n) - -Qp(n) (2.54)

or

Rp(n)Fp(n) = (2.55)
°p+1/

where

£ (n) = min(E p(n)) (2.56)

The extension of the linear prediction lattice filter to a lattice equaliser

may be deduced from the equation

Fp~n) k (n)O

( = - r (2.57)pr(n) p(n)

which relates the equaliser weights to the backward predictor coefficients and

may be applied recursively. Equation (2.57) may be verified by pre-multiplying

both sides by R p(n) and using (2.55) and (2.48). k p(n) is a partial cross-

correlation function given by the expression

p(n) - p (n)F p 1(n) . (2.58)

It may also be written in the form/o )( 0
kp(n) = BT(n Rp(n) T (n) (2.59)

by making use of equation (2.48) and (2.58) and it then follows from (2.47)

that

kp(n) n < ( (n) X(n)X (n) (~l(n) 0 >

(2.60)
<r (n)e (n)>
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which takes the form of a partial cross-correlation function between backward and

equaliser residuals.

Pre-multiplication of equation (2.57) by X (n) gives the order recursion
p

for the equaliser residuals

(n) - e (n) - r(n) e n an) (2.61)

p

and it follows immediately that the N th-order linear prediction lattice filter

may be extended to apply to the L stage channel equalisation/noise-cancellation

problem (where L = N+l) by means of the configuration illustrated in figure 2

(the equaliser output eN (n) - a(n) is not specifically shown).

A point worth noting at this stage is that the lattice-type algorithm

solves the Lth order equalisation problem by progressively solving the equiva-

lent problem for all orders p < L and making use of recursions in time and

order. Adding extra stages to the filter increases the order of problem

which may be solved without affecting the operation of the previous stages in

any way. This is to be contrasted with the iterative least-squares methods

(eg the Kalman-Godard algorithm) which solve the problem for order L only by

updating the complete coefficient vector solution in time only.

3 REALISATION OF AVERAGES

(a) Estimator and Linear Prediction

The lattice equaliser recursions of Section 2 constitute a complete

algorithm for data processing once suitable estimators for the partial correla-

tion functions k p(n) and k p(n) have been defined. However, as the k p(n) and

kp(n) (equations (2.33) and (2.60)) take the'form of correlations between

various residuals -that is,

is1
-- A

!}:.. ,,



filtered data - any explicit estimator for these quantities will necessarily

render A p(n), B p(n) and F p(n) functions of the data sequence and hence

statistical variables, violating our original assumption of determi.istic

coefficients and predictors. A decoupling of the coefficients and predictors

from the data is therefore essential and so an explicit average for the resi-

dual energies will be defined as follows. Corresponding estimators for the

partial correlation functions will emerge as a result.

The general estimator for the forward energy is chosen here to be
n -

Ep(n) - e -q e(q,n) (, (O< w 1) (3.1)
p 1:p

q-n-M+l

where the forward residual has been re-defined to be a function of two time

epochs n and q,

e (q,n) - A (n)X (q) (x(n) = 0, n < 0) (3.2)
p p p

This separation of data and filter evolution permits time averaging over data

while the filter parameters are held fixed. Equations (3.1) and (3.2) then

yield the expression

E (n) _ T (n)i (n1(n) , (3.3)
p p p p

where the estimator for the covariance matrix takes the form

n

Rp(n) -q - n1 (qX(q) (3.4)
q-n-M+l p

and possesses the simple time update recursion,

R (n) - (n-l). + X(n)X(n)- wA (n-M)XT(n-M) (3.5)

p p p p p
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The general estimator described in equations (3.1) to (3.4) includes a number

of important special cases such as the growing or growing-fading memory esti-

mator and the sliding window estimator whose specific form and relative merits

will be discussed in Section 5. It is likely that the final algorithm would

be applied using one of these more specific estimators, although the analysis

which follows will be carried out using the general form.

It is easily verified that the time-shift properties (2.12) and (2.16)

of the covariance matrix R p(n) also apply to R p(n); together with the

correspondence between equations (3.3) and (2.7) for the forward energy, this

allows the complete lattice structure described in Section 2 to be deployed

with the specific estimators described above. For this reason, we shall

henceforth omit the caret over estimated quantities. The only alterations to

the lattice formalism appear in the definitions and order recursions of

residuals. By analogy with equation (3.2), the backward residual is now

defined by

r (q,n) - Bi(n)Xp(q) , (3.6)
p p p

and the residual recursions are obtained upon pre-multiplying equations (2.28)

by XT(q):
p

e (q,n) - e (q,n) + K (n)r (q-1, n-i) (3.7a)+1p p~l p

rp+l(q,n) L (n)e (q,n) + r (q-l, n-1) . (3.7b)
p4p+4 p p

It will become clear that only a limited number of these residuals will need to *

* be retained for the final algorithm.

The recursion for the partial correlation function k (n) is now easily
p

derived. We make use of the equation

20
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k (n) 0 T(-I R (n) A(n) 0 T (2.32)
p 1

and difference the forward predictors, giving

k p(n) - B0p(n-1 ) Rp+(n) p(n-1)0(38

+ ~ p-T(-1 n)0T )T 3.8

P~l p

The second term in (3.8) vanishes upon use of equations (2.12) and (2.27),

irrespective of (A p(n) - A p(n-1)), and substituting (3.5) (for order p+l)

into the first term gives

R. o Or

+ -T (n1 I +()T (n) - wMXP+(n-M)XTln- (39
Bp (ni 1X~()p+p pl

(IL

x A (n-1)T.

Now, equations (2.16), (2.21) and (2.31a) show that

Rp1 (n-1) iT(n-1) ) ( e (n-1) 0 T k (n-1) (3.10)

and it follows that

k (n) - wk (n-I) + B (n-) X +l(n)XT (n) A (n-I) 0

p/ p / (3.11)
0

it- wM 0 1T(n-1)) Xp+l(n-M)X (n-M) A (n-i) 0 T

Finally, equations (3.2) and (3.6) provide the relationship

k (n) = wk (n-1) + r (n-1, n-i) e (n, n-i)
p p p p

(3.12)

wM r (n-M-i, n-I) e (n-M, n-i)
rp P
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which completes the lattice algorithm for linear prediction. It shows that

four types of forward residual (e p(n, n-1), e p(n, n), e p(n-M, n-i),

e p(n-M, n)) and their corresponding backward residuals must be carried

through the lattice recursions (3.7). Alternative updates for k p(n) may be

found by differencing the terms in (2.32) in a different order; for example,

differencing B p(n-i) before Rp+l(n) gives

k (n) - wk (n-l)+r (n-1, n-2) e (n, n)
p p p p

(3.13)
M
w r (n-M-l, n-2) e (n-M, n)

p p

which can be evaluated using the same set of residuals as are required for

(3.12). It is noted that many other forms are possible as an arbitrary change

in the time argument of either B p(n-1) or A p(n) in (2.32) leaves k p(n)

unchanged.

(b) Estimator and Channel Equalisation

The update for the cross-correlation k (n) is as straightforward toP

derive as that for k (n). First, the equaliser error is re-defined as

-T P

ep(q,n) - FT X(q) (3.14)
p P p

which, from (2.57), has an order recursion

k(n)
e (q, n) e - (qn) - r (qn) (3.15)

er(n) P
p

The estimator for R (n) takes the form

n

Rp(n) w n-qXp (q)XT (q) (3.16)

q-n-M+l p

and is updated through
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R (n) - (n-1) + X (n)T (n) - wMi (n-M)XT(n-M) (3.17)
p p p p p p

From the definition

k(n) - ( (n) Rp(n) (T- (n) O T (2.59)pp p-i

a time update is obtained by differencing Fp-1 (n), then R p(n), in a manner

identical to that for k (n) above. Equations (3.17) and (3.14) then give
p

(n) = wk (n-I) + r p(n, n) e l(n, n-i)

N rp(n-M, n) ep-l(n-M, n-i) , (3.18)

or, alternatively,

k(n) = wk (n-1) + r (n, n-l) e (n, n)p p p p-1

(3.19)

M-w r (n-M, n-1) ep l(n-M, n)
p

(3.18) and (3.19) show that only two types of equaliser residual, or"error",

need be carried through the algorithm - either (e (n, n-1), e p(n-M, n-l)) "

(3.18) or (e p(n,n), e p(n-M, n))in (3.19); the necessary lattice residuals are

provided in either case.

The complete lattice equaliser algorithm in the form so far described is

set out explicitly in Appendix 1 for an equaliser of L = N + I taps. A rough

count of the number of operations involved for the three types of memory is

given in Table 1. Here divisions are counted as multiplications, and

repeated operations (for example, computing k (n) a second time) are omitted.

23
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Algorithm Multiplications Additions

Growing memory 13L - 9 9L - 6

Growing-fading memory 15L - 9 9L - 6

Sliding window 20L - 14 16L - 10

Table I Operation count of algorithm in Appendix 1

4 AUXILIARY VARIABLES AND THE FAST KALMAN ALGORITHM

A variant of the algorithm derived in the last two sections is usually

found in the literature [ 13] .14] It requires fewer residuals to update

the partial correlation functions, but involves a number of auxiliary

variables. The auxiliary vectors and scalars will be derived in Section 4a,

and the resulting least-squares lattice algorithm compared with that of

Appendix 1. The relations derived in this exercise then form the foundations

for the so-called "Fast Kalman" algorithm, which is characterised by purely

time-update recursions, and is described in Section 4b.

(a) Auxiliary Vectors and Scalars

It was noted in Section 3 that the general update for k p(n) in equations

(3.12) and (3.13) involves four types of forward and backward residual. It

is seen that pairs of these residuals, eg (e p(n,n-1), e p(n,n)) differ only in

their second time argument, associated with time evolution of the predictor

coefficients. These residuals may therefore be related by means of an

explicit time update for the predictor coefficients. Such an update is

obtained by first differencing the normal equations (2.21) in the form

e p

R (n)A (n) -wR (n-l)A (n-l) - ( , )
p p p p

p 0
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ie

R (n) (A (n) - A (n-l) + [Rp(n) -wRnl1 A (n-1)

(4.1)

E(n - we e(n-1))

0p

Taking the lower p components of this equation (with the first R p(n)

partitioned as in (2.12)), and making use of (3.2) and (3.5), we obtain the

relationship

Rpl(n-l) (Ap(n) - Ap(n-l)) = - e(n,n-l)Xpl(n-l)

M (4.2)+ wep (n-M, n-I) Xpi (n-M-lI)

Auxiliary vectors C p(n) and D p(n) are now defined, satisfying

Rp(n) p(n) Dp(n) - (n) Xp(n-M (4.3)

If R 1 (n-l) is non-singular, then equation (4.2) may be multiplied by

RP 1l(n-l) to provide a time recursion for the forward predictors in terms of

the auxiliary vectors,

A C n) A p (n-1) - e p(n,n-l)
(C p1 (n-1)

+ wMe (n-M, n-i) (4.4)
p Dp 0-1)

Similarly, differencing the backward normal equations gives a time recursion

for the backward predictors,
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B (n) p (n-) -r n, n-i) (c P0(n))

(4.5)

+ w r p(n-M, n-Dl) 
Dp - (n)

\ 0

If auxiliary scalar variables y p(n), 6 p(n), ap (n) are now defined by the

equations

Y n) (n) n)
- -- ----- R ( (n (Xp(n) Xp(n-M) (4.6a)

(~(n) / n) (X n- R

pp ppp

etc result from pre-multiplication of (4.4) and (4.5) by X T(n), XT(n-N):

pp

(n,n) - (- (n-1)

1 e (n))n-lP

e (n-,n) 1 + WMe (n-) e(n-M,n-l)

(4.7a)

and

r p(n,n) 1 p-l(n) 1+ Hp_l~n) r p(n-,n-1) (7b

(4.7b)

Equations (4.7) allow two pairs of residuals to be eliminated from the lattice

equaliser recursions upon the introduction of three auxiliary scalars.
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In order to complete this derivation of the least-squares lattice

algorithm it is necessary to make use of the following order recursions for the

auxiliary vectors. C P-1 (n) ) r (n () ,(48

C (n) - + Pp(n) (4.8)
p 0 e r (n)

D p-1(n)) r (n-M, n)

Dp(n) = ( n) p B P (n) (4.9)

0 p

These may be readily verified by multiplying both sides of the equations by

the covariance matrix R (n) partitioned in the appropriate manner.
P

Finally, order recursions for the auxiliary sqalars are obtained by

pre-multiplying equations (4.8) and (4.9) by XT (n), XT (n-M). The result is

as follows,

SP (n) 6P(n) (YP- 1 (n) P-l(n)

6p/(n) ap(n) 6p(n) a P-l (n)

(4.10)

r2(n,n) r (n-M,n)r (n,n)
p p I

r (n) r p(n,n)r p(n-M,n) r2 (n-M,n)

In the present context (lattice filters employing auxiliary variables),

equation (4.10) completes the alternative formulation. The corresponding

algorithm is given explicitly in Appendix 2, where the residuals e (n,n),P

r p(n,n), e p(n-M,n), and r p(n-M,n) have been eliminated (using equations (4.7))

in favour of the set (e (n,n-1),r (n,n-1), e (n-M,n-1), r (n-M,n-1).
p p p

A count of operations involved is given in Table 2.
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Algorithm Multiplications Additions

Growing memory 15L-11 8L-5

Growing-fading memory 17L-11 8L-5

Sliding window 34L-25 21L-13

Table 2. Operation Count of Algorithm in Appendix 2

We note that

(1) the reduction in the number of residuals achieved by the introduction of

auxiliary variables applies only to the linear prediction portion of

the equaliser algorithm;

(2) the saving in terms of number of variables has been traded for a decrease

in algorithm efficiency - particularly in the case of the sliding window.

(b) The Fast Kalman Algorithm

Order recursions for auxiliary vectors are the essential ingredients

[71
required to derive the Fast Kalman equaliser algorithm , which is also a

fast, recursive least-squares method, but does not employ a lattice structure;

instead it provides direct time updates for the equaliser coefficients F p(n)

required to implement an adaptive transversal filter. For purposes of comparison

with the least-squares lattice approach we present a derivation of the Fast

Kalman algorithm here.

Differencing equation (2.56) gives

R (n)F (n) - p (n-1)F (n-l) 0 - l
p p p p k~ ~
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V

or p (n) Fn) + [p(n) wRp(nl)] p(n-l)

(.11)

When (3.17) is used for the differenced form of R p(n), the lower (p+l)

components (with R p(n) partitioned as in equation (2.51)) of (4.11) provide

the relationship

R (n) Fp(n)-F (n-i) -- e (n,n-l)X (n) + w e (n-M,n-l)X (n-M),

P \p .pP p p p

(4.12)

where the definition (3.14) of the equaliser residual e p(q,n) has been

employed. Again assuming the non-singularity of R p(n), (4.12) provides the

time recursion for the transversal filter weights, after multiplication by

R (n):
p

F (n) - F (n-I) - e (n,n-l)C (n) + w e (n-M,n-l)D (n) (4.13)
p p p p p p

Equation (4.13) serves as the basis for the adaptive transversal equaliser.

The weights in the vector F (n) can be updated in time, provided that residualsp

e p(n,n-l), e p(n-M,n-l) and auxiliary vectors C p(n), D p(n) are calculable from

quantities known at time (n-1), together with the new data values x(n), a(n).

As the previous weight vector F (n-1) is assumed known, the requisite
p

residuals may be computed using the formulae

(nn-1) - (n-l)Xp(n) a(n) + F (n-l)X p(n) (4.14a)

and
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T (n-Mn-1) F (n-l)R (n-M) - a(n-M)+F T(n-l)x (n-M) (4.14b)
p p p p p

To obtain updates for C p(n) and D p(n), use is made of equations (4.8)

and (4.9) together with the alternative order recursions

C (n) - (C+ e(n) A (n) (4.15)pCp~ (n-1 C e(n) P

0 ) e(n-M,n)

D (n) - + A (n) (4.16)
(Dp (n-l)) e (n) P

which may be verified in a similar manner. These relationships (with p

replaced by p+l)can obviously be used to generate direct time updates for the

auxiliary vectors, provided that the linear prediction quantities involved

(A, B, e, r, c) can also be updated. (For example, equation (4.15) is used to

form C p+l(n) from Cp (n-l), and thus equation (4.8) may, in principle, be used

to extract C p(n) from Cp l(n)).

Assuming knowledge of past vectors Ap+l(n-1), Bp+l(n-1), and energies

e r
C +1(n-i), c (n-i), the time update (4.4) is used in the form
pl pl

Ap+l(n) - Ap+l(n-1) - ep+l(n,n-l)Cp(n-1)

(4.17)

+w Me P(n-M,n-l)D p(n1

to compute A (n). This requires forward residuals e (n,n-1) andp~l p41

ep+ (n-M,n-1) to have been found from Ap+ (n-1) and the latest data vector

using
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ep(n,n-1) X (n-l)X (n) - x(n) + AT (n-l)X (n-1) (4.18a)

p+l p+ p+l l p
ep+l(n-M,n-l) iT A+l(n-l)Xp+l(n-M)

(4.13b)

= x(n-M) + A Tl(n-l)Xp(n-M-l)

A second pair of forward residuals, used in the construction of Cp+l(n),

may now be found,

ep+l(n,n) = A+(n)Xp+l(n) - x(n) + AT  (n)X (n-1) (4.19a)p p

ep+ (n,n-M) AT+(n)Xp+l(n-M)

(4.19b)

= x(n-M) + AT nX (n-M-l)

while the forward energy E p(n) has an update

e e

e + (n) - w C +J(n-1) + ep+1 (n,n-l)e pl (n,n)p l

M (4.20)

w ep+l(n-M,n-l)ep+l(n-M,n)

Equation (4.20) for Ce (n) may be obtained by first substituting the differenced
p

matrix, (R p(n) - R (n-i)) from (3.5) into (4.1) to givep° p
0

Rp(n) + ep(n,n-l)Xp(n) - wep(n-M,n-l)Xp(n-M) -
R Ap n-A((n-l

(4.21)( £(n) -w c e(n-1))
31P

0
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and projecting out the upper component by pre-multiplication with AT(n),
P

together with use of the normal equation (2.21). Cp+l(n) and D p+l(n) are

now constructed from equations (4.15) and (4.16).

Introduce the notation

Mp+ 
1 (n)

SN Pl(n)1

Dp+l (n) = 
p1 I ( ) (4.22b)

where Mp+l(n) and Np+l(n) are (p+1)-vectors, and sp+l(n) , tp+l(n) are scalars;

then equations (4.8) and (4.9) (with p p+l) may be written in the form

Cp(n) - M p+l(n) - Sp+1(n)B p+(n) (4.23a)

Dp(n) = Np+(n) - t p+l(n)B p+(n) (4.23b)

where

Sp+l (n) r;+(n) (4.24a)C+ (n)

rp+1 (n-M,n)
tp+l(n) -~ (4.24b)

Cprl(n)

As Mp+l(n) , N p 1l(n), Sp+l(n) , t,+(n) are known components for Cp+l(n), we

require only an update for B.+l(n) to compute C p(n), D p(n) in equations (4.23).

Equation (4.5) may be rewritten as

3 1
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Bp+l (n )  Bp+l(n-l) r p+l(n,n-l)Cp(n) + wM rp+(n-M,n-l)D p(n) , (4.25)

which is seen to depend in turn on C p(n), D p(n). However, substitution of

Bp+l(n) from (4.23) into (4.25) yields
pI p~~') P l n -l )

Bp(n) rp(n'n-l) r nn) M r (n-Mn-1) r Mn)
Bp () Cr+l(n )  r p+l(n)

Bp+l(n-l) - rp+ (n,n-l)M p+(n) + w Mrp+(n-M,n-l)N p+(n)

ie

(Bp+(n)- r p+l(n,n-l)Mp l(n) + w Mrp+(n-M,n-l)Np+l(n)

Bp+l(n) / M , (4.26)

1 - r p+(n,n-l)sp+l(n) + w rp+l(n-M,n-l)tp+l(n)

which may be evaluated after the backward residuals have been computed from

rp+l(nn-l) x(n-p-l) + BT +(n-l)Xp (n) , (4.27a)

r (n-M,n-l) = x(n-M-p-l) + B T (n-l)X (n-M) (4.27b)p+l p+.l (42b

The auxiliary vectors C (n), D (n) can now be obtained from equations (4.23),
p p

and hence the equaliser weights from (4.13). The complete algorithm is given

explicitly in Appendix 3.

The following points are to be noted.

(i) The Fast Kalman algorithm provides linear prediction residuals ep+I and

r p+ as a by-product of the equalisation computation; in particular, it

may be configured as three transversal filters, executing finite

convolution of the data with the vectors F Ap+l, and B

l'
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(i) The algorithm residuals, e, r, and e are arithmetically equivalent to

corresponding residuals of the lattice equaliser, as both algorithms

perform exact Recursive Least Squares estimation.

Ci)The algorithm is not "expandable" in the same sense as that employing

a lattice configuration; that is to say that for a transversal filter

configuration, increasing the number of weights affects all previous

stages; this may give rise to different numerical properties between

the Fast Kalman and lattice algorithms.

(iv) Auxiliary scalars may be introduced into the algorithm, eliminating

a number of predictor residuals, in a manner similar to that in Section 4a.

(v) As in the case of the lattice equaliser, the data vector X+MCn), as

well as the sequence (a~n), a~n-l), ... , a~n-M)), must be stored for

the sliding window estimator, and X p(n) only for the growing-memory

estimator.

(vi) A count of operations involved in the algorithm given in Appendix 3

is provided in Table 3. It is marginally more efficient than the many-

residual lattice equaliser algorithm.

Algorithm Multiplications Additions

Growing memory 10L + 3 9L + 2

Growing-fading memory 10L + 4 9L + 2

Sliding window 19L + 6 18L +' 4

Table 3 Operation Count of Fast Kalman Algorithm in

Appendix 3
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5 COMMENTS AND CONCLUSIONS

In this paper we have derived two alternative fast algorithms for per-

forming exact least-squares linear prediction and channel equalisation. The

least-squares lattice algorithm is implemented using a lattice filter structure

whose coefficients are evaluated using time and order updates, whereas the

Fast Kalman algorithm is implemented using a transversal filter whose coeffi-

cients are determined using updates in time only. Both of the algorithms

incorporate a general statistical estimator which can be used to track varia-

tions in the local statistics or to converge to an assumed stationary value.

It includes the following special cases which merit some discussion.

i) When M is infinite and w - 1 all data points from zero to n are equally

weighted. We call this the "growing" memory. (The data pre-windowing

condition in (3.2) sets the lower limit of summation at q - 0 in (3.1) and

(3.4)).

ii) When M is infinite and w < 1 the average has an effective memory length

of -1/log ew and registers predominantly local statistics. We call this

the "growing-fading" memory.

iii) In the limit w - I, the average possesses a memory of M time units, and

hence registers only local statistics within that interval. We refer to

this as the "sliding window" memory.

The growing memory estimator provides exact algorithms arithmetically

equivalent to a Recursive Learnt Squares procedure and is suitable for obtaining

a fixed parameter filter in situations where the statistics of the input data are

assumed to be stationary. The adaptation rate decreases with data running time,

and the filter becomes insensitive to changes in data correlation; it is there-

fore likely to prove unsuitable for use in processing long data sequences.

In addition, the forward energies (as defined above) necessarily increase with
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time, aithough overflow may be avoided fairly simply by forming averages

involving division by the time elapsed. The growing-fading memory and sliding

window estimator can track local variations in data statistics and may be used

when non-stationarity is assumed; this is the regime for which the generalised

ID recursion is most appropriate. The growing-fading memory is equivalent to an

exponential window, while the sliding window has a fixed memory of M units,

corresponding to a rectangular window within which all data points are assigned

an equal weight. The growing-fading memory algorithms are seen to be far more

efficient than their sliding window counterparts, which must keep track of the

trailing edge of the window.

The actual estimator for the correlation matrix is

n

R (n) w ~ n-q (q)X T(q) + nw I~ 1 (5.1)
qnMp E p p+l

where I pis a p x p unit matrix. It is evident that the effect of the parameter

n, which renders the algorithms well-conditioned, is "fo7gotten" by the growing

estimator after times beyond the memory length, but is retained for all times

by the sliding window estimator. Although the conditioning parameter causes a

deviation from optimum least-squares adaptation its loss of influence after a

given time may be considered a disadvantage, especially in cases where the

residual energies drop below the available computational accuracy. In this

instance conditioning may have to be reinstated unless the sliding window

algorithm is employed. In either estimator accuracy is limited by residual

statistical fluctuations associated with finite time averaging, by the effect

of the window lagging behind the present data input, and by the frequency dis-

crimination which arises from apodisation.

Since the least-squares lattice and Fast Kalman algorithms compute an

exact solution to the same least-squares problem they must be arithmetically
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equivalent. However they are quite different in structure and this is

fundamentally associated with the fact that the equaliser coefficients in the

Fast Kalman algorithm are explicitly updated in time onlywhereas the coeffi-

cient in the least-squares lattice algorithm are updated using recursions in

time and order. The derivation of the least-squares lattice algorithm pre-

sented in this paper highlights this distinction by avoiding the use of an

explicit time update for the predictor coefficients when generating a time up-

date for the reflection coefficient estimator. This, in turn, avoids the need

to introduce auxiliary vectors and scalars into the least-squares lattice

analysis. The auxiliary variables are required, however, in the

derivation of the Fast Kalman algorithm where an explicit time update for the

equaliser coefficients is essential and can be derived efficiently by making

use of the time and order recursive properties of the auxiliary vectors,

equations (4.8), (4.9), (4.15) and (4.16). It is interesting to note that all

of these relationships together with those which are required for the genera-

lised LD recursion can be derived fairly simply by using the following covariance

matrix inversion lemma

0! 0T A -AT(n
Ro 0(()A)n
(n--------- (5.2a)
p~~ C-1)n0 R1  (n-l p n

-1 -T

(R - (n) :0 B (n)B (n) (.b

0p !

Equation (5.2) applies to the specific estimator R (n) as well as the ensemble
p

average and can be deduced quite simply by inverting equations (2.12) and (2.16)

directly and making use of the normal equations (2.21) and (2.27).
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The Fast Kalman algorithm has been shown to be marginally more efficient

(in terms of arithmetic operations) than the least-squares lattice algorithm,

but is is reported to be relatively unstable (16 ). The least-squares lattice

algorithm on the other hand has a number of desirable numerical properties

which arise from the way in which it progressively reduces the residual

energy in a stage-by-stage manner. The internal accuracy or wordlength

requirements for this type of calculation are generally less stringent, and the

stage-by-stage property ensures that the optimum number of stages can be

determined by inspection as the calculation progresses. The least-squares

lattice algorithm is likely,therefore, to have superior stability properties.

However, the stability of adaptive algorithms in situations of non-stationary

statistics is much more difficult to analyse and less well understood than

those which operate in a stationary environment. For example in the non-

stationary case the stability of a lattice filter is not determined by whether

or not the reflection coefficients have magnitude less than unity, or the

poles of the corresponding transfer function lie inside the unit circle. A

detailed investigation of the stability properties of these algorithms would be

extremely valuable and is likely to be the subject of much further research.
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APPENDIX 1

THE LATTICE EQUALISER ALGORITHM

1) Define the scalars

i) E(n), E(n), C(n-1); e (n), rl(n), r (n-1) (i =a, b, c, d)
p p p p p p

-a -be (n), e (n), k (n), (p O, 1, ...N)

{Comment: Residuals {e (n)1 are to be identified with those of Section3 in
p

the following manner, (e (n) e (n) ec(n) e (n)) (e (n,n-l) e (n-M,n-l)
p p p p . p p

e (n,n) e (n-M,n)), with a similar correspondence for the {r'(n)), and
p p p
-a -b
(ep(n) e (n)) = (e p(n,n-1) e p(n-M,n-l)).}

ii) k p(n), L p+l(n), K p+(n) (p = 1, ... N-i).

2) Initialise the algorithm as follows,

i E ((-)l) = (-2) r nl e (p 0, 1, ... N)
p p p

{Comment: This assignment renders the initial covariance matrix diagonal,

with entries equal to n, which may be set equal to a small, positive value.}

ii) ri(-l) (i = a, b, c, d) - k (-l) - k (-l) - K (-l) - L (-l) = 0, (all p).
P p p p p

3) For each successive value of n, starting at n - 0, and before iteration

over p, assign the following values to p = 0 parameters.

ea(n) - ec(n) -r(n) = r'(n) - x(n)

bro ) n with x(n) 0 for n <0

e (n) eo(n) ro(n) r (n) x(n-M)
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ea (n) - a(n) , -b-1 = e1l(n) =a~n-M)

ce() - E r () w E:e(n-1) + x 2(n) -w Mx 2(n-M)00

{Comnment: This last recursion derives from equation (4.20) for p+l 0).

4) For each value of n, perform the following iterations for p from 0 to

N- 1.

e a (n) e a (n)\r a (n-1)

e a

(n)2 (n) r(-

p+ p

k (n) + (- c a(n) b

ppp p p

a (n1)

c~ (2(n)
rp+ln ' p~nl r

(ni)

p ~ p

k (n)p

k 2n n

rl(n) c - r (n-1)pp
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k (n)
Lp+ (n) = (

e (p) (e c(n) r (n- i)

d d K(n). (n),d
(ii) p l

!C

d L+(n) d + d
p+1l

5) Perform, for p from 0 to N, the equaliser recursions

-a -aa

exlli fucin ofMep reenin (n) oer l l (n)e idw. h

ebn -bCr(n1e

egrow in-aing memory algorithm thisb obtained by setting to zeo1th

reiul e (n e r ( n) to5(aoe (sefciel)mt n

exlii unctiokn 1 of H rprentia n th lovr lii of the wido.) Th

For the sliding window algorithm, is set equal to unity in 1) to 5),

and all residuals retained. (In none of these cases does multiplication by

HN

v need to be performed.) This last algorithm is arithmetically equivalent to

J, [17]
that of Ahmed et al, who employed a oodbury inversion ien to update the

covariance matrix.
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APPENDIX 2

THE AUXILIARY VARIABLE LATTICE EQUALISER ALGORITHM

1) Define the scalars

i) Ee(n), r (n), E (n-i); e (n), e b(n), r (n), r b(n), r (n-1), r (n-1),
-a p b p p p p p p p p

ep(n), ep (n), kp(n), (p 0, 1, N)

ii) kp(n), L p+(n), K p+(n), yp(n), 6p(n), ap(n) (p O, , ... N-l)

2) Initialise as follows

i) Ee(-1) - E (-1) r c(-2) - (p 0 0, 1, N)
p p p

ii) re(-1 ) = rb(-l) - k (-1) (-)- (-l) -L (-l) - y (-l) 6 (-l)
p p p p p p p p

= ct(-l) - 0 (all p)P

iii) Retain the lowest-order auxiliary variables for all n,

y 1 (n) - 6_(n) - a-l(n) - 0

3) For each successive value of n, starting at n - 0, and before iteration

over p, assign the following values to p - 0 parameters

ea(n) - ra(n) - x(n)

with x(n) -0 forn < 0

eb(n) - ro(n) - x(n-M)

ea(n) - a(n) , eb(n) - a(-M)

0 ~ w(n-M)

-(n(n) w c (n) X
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4) For each value of n, perform the following iterations from p from 0 to

N-i.

aa (n) e(n)a ( n  1)

r1-yn a + r (n-1)
p p p

p( a) k p(-) e(n(n) ) Kw(n-i) I rP(n))_HlHp ~ _))L (n-1)

bp~ (n) Cpl (n)b(n1

p l p

~M

k2(n

1P-
l (n) (n-1-)) VP - n1

(k (n) e
SP + (n) p " 1

r~ p rn1

r b n-(n- )
p2

k 2 n)

P + l (n) p (n-1

p.1 p

r (n)
K (n) c -

P4l p r( ~n)
pp

k (n)

L (n) -p~l e(n

Ep
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r

Y (n) (n) (n -ry a(nr (n-1) + W6 Wnrb (n-l)2

P P(1 r W \ p- p P- PJ

P

6p pn-=6~1 (n) +r n - p .if)rnl w1 .. jrni

(n [ 1(n)rn) (n r a p~(n-1)r+ M nl) rb(n1

P -(n) P- + 1- p- 1
P

P P- £rn e 6.in(n-1) Ma1 (r M (n- ),rni)

5) Perform, for p from 0 to N, the equaliser recursions

-- a a

T () p ek (-i(n)) r r p (n)

-b ;b C kr-) bn

e sid n) -y a h (n, n (r)

(b 1 n (i)t pn n ((n)n I)kp (n ip (n-1) + 1() ln) WM6P1W -v(+M~~~)

p-ib p.

( a -
The predictor output is e a(n), and the equaliser output ;a~n).

£Omit eb, rb, ;b f or growing-fading memory algorithm; in addition, set

w 1 for growing memory algorithm. Set w - 1 and retain all residuals for

M
sliding memory algorithim. (As in Appendix 2, w wiii never appear.)

It is clearly more efficient to work with auxiliary variables (1 y- (n))

and (1 + w~ at ()) instead of y Wn and a (n) wherever they occur in 1) to 5)
p p p

above.
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APPENDIX 3

FAST KALMAN ALORITHM

1) Define the (N + 1)-vectors

i) F(n), C(n), D(n), A(n), B~n), M(n), N~n),

and the scalars

ean) b d a b -a -b e
ii) eCn, n), ec~n), e (n), r (n), r (n). e (n), e (n), E (n), s(n), t(n)

{Coumment: these variables correspond to similar expressions in Section 4, for

the single value of p -N).

2) Initialise as follows

Ce r))

A-I) -C(-l) - D(-l) -B(-l) -FC-l) -0.

3) For each value of n, starting at 0, perform the following iterations.

e a()- x(n) + AT(n-l)X N(n-1)

e b (n) - x(n-M) + A7(n-l)X N (n-M-l)

a M b
AWn - A~n-l) - e (n)C(n-l) + w e Cn)D(n-l)

(Commaent: This recursion is equation (4.4) of the text.}

ec (n) - x(n) + T n)X (n-i)

d T
e (n) - x(n-M) + A (nX (n-H-i)

N

a a M Nb d
(n) w E(n-1) + * (n)e (n) -w W ne (n)
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{Comnent: This is the forx'ard residual energy update of equation (4.20).)

(n- e(n)

ra(n) (Cn-l) E: e-(n) ,

(N(n) = d1 (n)

Yrnf) ID~nl)) £(n) kA'n)/

r(n) - x(n-N-l) + BT(n-l)X W(n)

r b(n) - x(n-M-N-l) 4BT(n-l)X (n-M)N

B(n) = (B(n-l) - ra(n)M(n) + wrb(n)N(n) - ra(n)s(n) + w rb(n)t(n)

C(n) = M(n) - s(n)B(n)

D(n) - N(n) - t(n)B(n)

{Counent: This completes the prediction filter algorithm.)

4) ;a(n) - a(n) + F T(n-I)X N(n) ,

-a T

eb(n) - a(n-M) + FT(n-l)Y (n-M)

N

H-b
F(n) - F(n-l) - ea(n)C(n) + w e (n)D(n)

a c
The prediction filter output is taken to be e (n) or e (n), and that of

the equaliser as ea(n).

The specialisations for each of the growing, growing-fading, or sliding

window algorithms are precisely as described in Appendix 1.
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Figure 1 N-stage linear prediction lattice configuration suitable for

non-stationary statistics in data sequence {x(n)}.
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Figure 2 Extension of lattice filter to L-stage equaliser configuration
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