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ABSTRACT :i

This report documents an investigation of
the feasibility of the application of the Finite
Element Adaptive Research Solver (FEARS) computer
program to the Plate Bending Problem. Two methods
of reducing this biharmonic probles to an elliptic
system of two second order partial differential
equations are considered. The first is the split-
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g method and the second is the transformation to . T
the Lame' system of elasticity equations. The FEARS A -° CRA&l o
program is used to solve these reduced systems for 1""‘3 TAB m]
three examples. The results are analyzed and dis- = ‘'4>useed 0 ;
cussed with regard to the computation of displace- “ ‘*“ifleation :

ments, moment, and shear forces. While the Lame' —
system approach is well-founded theoretically, it " . __
poses some computational problems with regard to . isiributjayy
accuracy. The authors feel that the splitting ,;,,fl“'i‘l"it T ———
wethod when monitored by error indicators is the i Y Codes

preferred method for FEARS users even though the .. . Avell and/or

Slat
theory of this method has not been completely ; | Speeial

developed yet. l
ADMINISTRATIVE INFORMATION T
This work was performed under David W. Taylor Naval Ship R&D Center's
(DTNSRDC) Independent Research Program, Program Element 61152, Task Area
ZRO140201, DTNSRDC Work Unit 1844-140. Professor Ivo Babuska of the Institute

for Physical Science and Technology, University of Maryland (Contract
N00167-82-M-0743) is a contractor to DTNSRDC.

INTRODUCTION
The Finite Element Adaptive Research Solver (FEARS) computer program is
#
an adaptive finite element solver with a posteriori error estimates. *Z It

solves boundary value problems for an elliptic system of two partial differ-
ential equations with two independent variables, using first degree elements
which have continuous displacements across element boundaries. Elements with
such continuous displacements are said to be .

The classical plate bending problem is described by a partial differential
equation of the fourth order, the biharmonic equation. It should be possible
to transform this biharmonic problem into an elliptic system of two second

® A complete list of references is given on page 21.
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order partial differential equations, but the problem of obtaining a family of
such transformations has not been solved yet for the general case.

The biharmonic problem can be solved through a reduction to a system of
second order equations by various methods: the Reissner-Mindlin refined plate

formulation 3.4

which provides three fields of vari-hles (displacements and
two rotations), the Hermann-Mioshi method5'6’l’8’9
method>* & 10

solving biharmonic equations are described by Scholz.

and the Hermann-Johnson
which provides a system of four equations. Other methods of
" In addition, the

splitting method first considered by Glowinski12 and Mercier13
8,9,11,14,15

and further
developed by others provides a system of two second order equa-
tions. Finally the biharmonic problem can be transformed into the Lame' system
of elasticity equations by exploiting the fact that the Airy function is bihar-
monic. The last two approaches provide a boundary value problem solvable by
the FEARS program.

This report studies the performance of these two last approaches with
respect to the FEARS program and assesses their advantages and disadvantages.
The second section contains basic information about the FEARS program. The
sample problem, the method of transformation to the Lame' equations, and the
splitting method are described in the third section. The numerical experi-
ments are described and some conclusions and recommendations are presented in

the fourth and fifth sections respectively.

ADAPTIVE FINITE ELEMENT SOLVER FEARS

The FEARS program has been described in two informal r‘eport:s."2 It
solves boundary value problems for linear self-adjoint elliptic systems of
partial differential equations of second order with two field variables in two
dimensions. It also provides error estimates for the finite element solution
with respect to the unknown exact solution of the problem.

FEARS deals with domains which are the union of the interiors of a small
number of open curvilinear rectangles bounded by circular arcs or straight line
segments. These curvilinear rectangles are called 2-D domains and are denoted
by nﬁ, S PR !

The open arcs are called 1-D domains and are denoted by DJ.
j=1.....N1. The vertices of the 2-D domains are called 0-D domains and are

denoted by DY, J=veen N,

J
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The FEARS program solves problems described in the weak form

T T
: ) 3 T ] av] T T
i_f 2 1[3;] Ay [;{.l +VBy [32] * [32 B U+ VCD
L .

+E vaju ds =

3 J,
D4

T T
T d
: j{[:Z] D(xlxz) +vV E(xlxz) } dx1 x,
2

Dl !
h |
where U= | Y1
Y2
and _
2u)|
W= | —
7z |™
i)
ox
ax2
e
x
|2

V and ?z” are defined similarly.

dxldx2

1)

yoeyer e Tt




Further

‘1 is a 4 x 4 symmetric (constant) matrix,

B‘ is a 2 x 4 (constant) matrix,

c1 is a 2 x 2 symmetric (constant) matrix,

YJ is a 2 x 2 symmetric (constant) matrix,

Di(x1.x2) is a 4 x 1 vector valued function with components Sk(x1.x2)

(k = 1,2,3,8),

Ei(x’.xz) is a 2 x 1 vector valued function,

si(s) (where s is arc length) is a 1 x 2 vector valued function.

The trial space used for U and the test space used for V allow the imposi-
tion of both essential and natural boundary conditions. For a discussion of
the physical significance of the matrices with examples, the reader is referred
to the User's Guide.2

The admissible error norm for the a posteriori estimate of the error

-uo (vhere u and uo denote the finite element and exact solutions,

e:uFE FE
respectively) is |||e|||?_p where

sl p 11
- 2e del 12
Melllyy = |2 [ (), 3] | (2)
i i
D2
i
FEARS uses co first degree elements of bilinear type on curvilinear rec-
tangles (which are mapped into bilinear elements on the master syuare) and

adaptively constructs the meshes by refinement where appropriate.

SAMPLE PROBLEM
Let ﬂc:R2 be a bounded simply connected region with a boundary 3Q.
The problem is to find a function U satisfying the biharmonic equation

AAU = f on Q (3)
and the boundary conditions
v _
U=g, o h on 3Q 4)

s e




Assume that there is a smooth function Z such that g=Z and h = .g_: on 3Q.
U is the defiection of the plate. The second derivatives of U are the bending
moments which are of special interest. At present only the problem of a
built-in plate with boundary conditions of the type given by Equation (4) will

be considered.

REDUCTION TO THE LAME' SYSTEM OF ELASTICITY EQUATIONS

Assume that f=0 in Equation (3). Then U is a biharmonic function which
can be regarded as the Airy function for the plane elasticity problem. There-
fore, there exist functions U,y defined on @ such that

™y

%,

_d%u 3(3“1 a"z)
8x13x2 2

sz 3x1
and the functions U4, also satisfy the well-known Lame' equations (for v = 0
where v is Poisson's ratio).

The functions g and h must be transformed into the boundary conditions for
u1.u2. It is not hard to show that u.l.u2
the boundary. However, it must be emphasized that Q is assumed to be simply
connected. (If the plate were free, then the transformed problem would provide
2 on aq,)

The relationship between the traction and the functions g and h is not
complicated, but it involves differentiation along the boundary. The assump-
tion that the functions g and h are defined in terms of the function Z simpli-
fies the transformation. The framework of the FEARS program is especially well
Suited to take advantage of this assumption.

The weak formulation of the problem for the functions uu, is a standard
one. The functions |.|1.u2 satisfy the variational form of the problem (virtual
work condition) and are not subject to any essential boundary conditions.

satisfy the traction condition on

the prescribed displacements for U .u

S
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€ H1 (where H1 is the usual Sobolev space) are functions

eH‘.

More precisely, u,.u,

such that, for v1,v2

B1(u1.u2; v1.v2) = F(v1.v2) (6)

Here the bilinear form B is the usual form of virtual work obtained by taking
E=1, v=0. (E is Young's modulus of elasticity and v is Poisson's ratio.) Then

N

du. ov du, v
B (uy,u,5 "1"’2"[.[ axl axl * axz
qQ 1 1 2 2

™

1 (a“z a“1)(3"2 av1)]
+-2— -yl'i--sg ‘Vlﬁ'-yz dxldxz

The functional F(v1.v2) expresses the virtual work of the traction forces
on the boundary. Integration by parts provides F(v1.v2) in terms of the
function Z. Thus

FC ) =r vy 82z _ W, 322
Vi:V2 X, . 2 B3x, ox.x
Q 1 3x2 1

172
(8)
av 2 v 2 '

132 + ZBZ]dxldxz

axz 8x18x2 3x2 ax§

This functional is of a form which the FEARS program can handle if

T T T TS
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The conditions given by Equations (6), (7), and (8) determine Uyeu,
uniquely only up to rigid body motion. Accordingly, a displacement is speci-
fied at one point and a rotation through another point.

When the functions U, have been obtained, the second derivatives of U
(the bending moments) are provided by Equation (5). An additional integra-
tion must be performed to obtain the values of U. If however, the bending
moments are the main concern, then the functions u1.u2 and Equation (5)
provide them directly.

So far it has been assumed f=0. Now assume that f40 and g=h=0. In this
case a particular solution is needed, which often (e.g., for f=1) can be easily

found. If this particular solution is denoted by Z, then

U=2Z-W
where
AMN = 0 on Q
and
- 9Z . oW
Z =N, ™ n on 3.

This is exactly the case discussed earlier. Now

z %W

] i..3°
sz axlax2

2’y _ 2

3xiajx ox

i,j = 0,1,2 such that i+j = 2 (9)

o]

2

This approach has the following advantages and disadvantages:
1) Advantages. The finite element method for solving elasticity pro-
blems is well-founded theoretically. The error with respect to the energy

DDA L e




norm (which is essentially the L2 norm for the bending woments) can be reli-
ably estimated. The postprocessing approach allows the computation of the
moments at selected points with generally better accuracy along with an error
estimate. Likewise the stress intensity factors can also be computed.

2) Disadvantages. If f#o. then a particular solution Z must be known.
Obtaining the particular solution Z for a general f could be very laborious,
However obtaining Z for a particular f in most applied problems is not that
difficult. Often Z can be found by inspection or some artifice. Similarly
the computation of the displacements (the values of U) could also be quite
laborious. In addition, the accuracy of the numerical solution depends on
the selection of the particular solution. Since values of the moments are
obtained from Equation (9) by subtracting numbers of approximately the same
magnitude, the relative error in the computation of W can result in a much

2

i.3°
Bxlax2

W with greater relative accuracy. If the domain Qis not simply connected,
then additional difficulties arise.

larger relative error in Accordingly, it is necessary to compute

SPLITTING METHOD
Although the theory of this method has been studied by various

authors, 8+ 9+ 13, 14,15, 16

the method is still not very well understood. Today's
theoretical results presuppose assumptions which are rather restrictive and it
is not clear whether these assumptions are really necessary. These basic

assumpt.ions are

(1) The elements used are at least of degree 2.
(2) The mesh is quasi-uniform.
(3) The domain Q is convex.

However , these assumptions do not seem necessary. Computational results
obtained in the course of this investigation strongly suggest that the assump-
tions are sufficient and not necessary conditions.

T




For simplicity, consider the problem given by Equations (3), (4) with
gshz0. The method consists in writing Equation (3) in the form

Au1 = u2
(10)
-Au2 s -f
where the boundary conditions are
u, = 0 (11)
%u,
W =0 (12)
The bilinear form is
32(“1’u2; V19V2) =
au 3v du. 9v
f[ P ax ax1 3x2 +uyv, (13)
1 2 2
3u av au v
ax 5 3 5 1 clxlt:lx2
1 x2 )
and the functional is
Fo(vy,vy) = -_{;]'fv1 dx  dx,, (14)
Then the problem can be written in the standard weak form
(15)

B,(u),uy5 Vy5Y,) = Fp(vy,v)

ey




with

Uge¥, € ﬁ‘. Uy, € H' where H' = jue i | u =0 onan}

The boundary condition given by Equation (11) is essential and the boundary
condition given by Equation (12) is natural. The bilinear form 52 is not
positive definite and Equation (15) is a "saddle point" problem.

The bilinear form 82 and the functional F2 can be used by the FEARS pro-
gram. However, since FEARS employs elements of degree 1, the first condition
is violated. The numerical examples of this investigation also violate the
second and third conditions.

There are various options for error norms in the FEARS program. The
norms

- qu, \2 du, \2 Ju, \2 du, \2
| |u] l2 = ][ L)+ (L) + (2] + (=2 dx,dx (16)
1 | ax ax 9x X 172
Q 1 2 1 2
or

2 2
du du
2 1 1
[l l; = f[ <3x1> + <3x> dx, dx, 7)
Q

2

can be used. For a nonconvex domain the norm ||u||1 of the exact solution u
is infinite. If the solution is smooth then either of the norms ||.[| or
[].]], may be used. If the solution has singular behavior, then only the
norm ||.||, can be used.

This approach has the following several advantages and disadvantages:

1) Advantages. The problem can be solved by FEARS without obtaining

a particular solution. This approach avoids the difficulty stemming from the
arbitrary selection of a particular solution and it also avoids the problem of

10

;
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significance due to subtraction encountered with the previous method. The

method directly computes the displacement and its Laplacian. The assumption
that the domain is simply connected is not required for this method.

2) Disadvantages. The method is not completely understood theoreti-
cally. The saddle point approach does not guarantee monotonic convergence
(which occurs when the bilinear form is positive definite). At present the
convergence of the method has not been established under the conditions of the
FEARS computation. The second derivatives (which are the moments) must be
computed by postprocessing. The error norms used by FEARS do not monitor the
accuracy of the moments.

NUMERICAL EXPERIMENTATION
Consider the three examples given by Equations (3) and (4) where f=64 on
domains S21, ﬂz, 93 and g=h=0 on their boundaries 891. anz. 893.
Example 1 - Uniformly Loaded Circular Plate
a, = {(x,l.xz) | %, +x, < 1}

Q. is partitioned into the five 2-D domains shown in Figure 1.

A,

Figure 1 - Partition of Domain 91

The exact solution is known to be

, -
U= (1 (!1 + 32))2

11




Example 2 - Uniformly Loaded Square Plate

a, = {(x1.x2)| 2, ]<¢ 1,1 = 1.2}

Figure 2 shows the umpartitioned domain Q

.,

2.

Figure 2 - Domain 92

The solution is not available in closed form though there are analytical ex-

pressions for U in series form.
Example 3 - Uniformly Loaded Square Plate With a Slit

Q =92-{(x1.x2)| -1 <x, <0, x2=0}

3 1

3 is partitioned into four equal squares as shown in Figure 3.

A

Pt

Figure 3 - Partition of Domain 93

The exact solution is not available for Example 3.

12




The exact solution is very smooth for Example 1, fairly smooth at the cor-
ners for Example 2, and has a strong singularity at the origin for Example 3.
The trial and test functions are bilinear for Examples 2 and 3, and for

Example 1 they are mapped onto bilinear functions. These examples have
different axes of symmetry which were utilized to a limited extent, but the
material in the tables is organized as though no symmetries were present,

The two approaches of the third section will now be discussed.

REDUCTION TO THE LAME' EQUATIONS OF ELASTICITY
We use the following functions Z and S, .

s i
Z“) = ‘xf+ xg)2
Si” = llxl + 12x
S;” = S;n =z -8)(1x2

(1) _ 2
Sz. = 12x1 + Ux

AL a/3xi‘

@) _ () _ (2) _

2 73 0

"

Sle) = 32x

2
1




The method provides the expected results. The selection of Z barely influenced
the relative accuracy of the computed function W with respect to the energy
norm when the same number of elements was used. The error estimation was very
effective. The main problem of the method is related to the subtraction of the
(1))

with a mesh of 1024 elements. This table displays the values of the second
derivatives of the functions Z and W at the point (.53125, .53125).

values of Z and W. Table 1 shows typical resylts for Example 3 (Z = 2

TABLE 1 - THE VALUES OF THE SECOND PARTIAL DERIVATIVES OF Z AND W
AT THE POINT (.53125, .53125) (EXAMPLE 3, Z = z'V))

2
% 2

o ) e

1 2 x19%2

5.89848 5.72560 1.81340

4.51562 4.51562 2.25781

2
U

Now an accuracy of the order of 5% in 3. , where U=Z-W, means that W must
i3]

have an accuracy in the neighborhood of 1-2%. This restriction on W could be
prohibitive. This problem arises in the most important case when f¥0. If £=0,
then this problem is usually not so severe.

SPLITTING METHOD

As noted in the previous section, convergence is not theoretically guaran-
teed for this method. The solution was computed using both a uniform mesh and
an adaptive mesh with respect to the error estimator of the ||.||  horm given
by Equation (17). The results are displayed in Tables 2-5. In these tables

the computed values of u., and u_, on the line OA are given. (As the meshes are

1 2
refined, more values on OA are computed.) The headings of these tables are as

follows:

(1) The X4- coordinate of the point (x1.0)
(2) The computed value of u1(x1.0)

(3) The computed value of “2("1-0)

14
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TABLE 3 ~ EXAMPLE 2: UNIFORM MZSH

N 64 256 1024

X, “1("1'°) uz(xl.O) “1"‘1’°) uz(xlo) vy (x10) ul(xl.O)

0 1.35644 -9.61960 1.31121 =9.17025 1.29959 -9.05834
.0625 1.29076 -8.995€5
.1250 1.27571 -8.91722 1.26440 -8.80644
.1875 1.22086 -8.48732
.2500 1.21137 -8,57152 1.17114 -8.13994 1.16078 -8.03261
.3125 1.08506 -7.43436
.3750 1.00384 -6.78387 .994969 -6.68236
.4375 .892184 -5.76413
. 5000 .812358 -5.13491 .785777 -4,75807 .778854 =4.66495
.5625 .657709 -3.36783
6250 .536873 -1.93536 .532167 -1.85355
.6875 .406453 -1.00715
.7500 «297489 1.57309 .288256 1.84719 .285755 1.91421
.8125 .176378 4.21680
.8750 .0866609 6.78649 .0859307 6.83454
.9375 .0235262 9.79657

1,0000 JI 0 13.0037 |l 0 13.1088 0 13.1334
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TABLE 4 - EXAMPLE 3: UNIFORM MESH

64 256 1024

F_‘_'é"):‘” ¥ (x,0 u,(x,,0) Y, (x;,0) u, (x,,0)

14.0294 ] 20.5651 0 29.0652

.0366752 9.02679

.097985 3. 21982 .0856739 4.39889

«133943 1.45009
.199010 -1.94006 .185872 | ~.756482 «176257 -.427232

3125 209127 ~1.66725
«3750 .239824 ]-2.66616 «230487 ~2.44152
4375 .239298 -2.84153
5000 .259715 -3.50934 .243199 |-3.06997 «235401 -2.91838
. 5625 219446 =-2.70160
.6250 .198364 |-2.30707 .192882 -2,20784
.6875 157971 -1.44573
. 7500 .127328 -.718524 .120795 |-.468820 .117826 -.418792
.8125 .0764653 .872537
.8750 .039754912.43183 .0388672 2.62922
.9375 .0110272 4.25203
1l ] 6.41809 0 6.40323 ] 6.33992




TABLE 5 - EXAMPLE 3: THE ADAPTIVE MESH

N 64 208 | 634 _
81 v 31 »0) “2 (x—l’o) UIKIOOT “2(‘1 ’ “1 (xlaQT “2 (xl »0)

0 0 14.0294 0 20.5741 0 29.0727
.0625 .0366943 9.02608
.1250 .0918232 3.21720 .0857160 4.39572
.1875 # 134002 1.44502
.2500 .199010 -1.94006 .185894 -.760749 || .176321 -.433832
.3125 P ' h .209179 | -1.67517
.3750 .239801 -2.67162 .230509 -2.45064
.4375 .239270 -2.85175
.5000 .259715 -3.50934 243121 -3.07583 .235305 -2.92978
.5625 .219247 -2.71465
.6250 .198263 -2.31303 .192620 -2.21778
.7500 .127328 ~.718524 .120724 -.475214 || .117593- ~.429559
.8125 .0762835 858996
.8750 .039362 2.42498 .0387926 2.41697
.9375 .0110087 4.24102

1 0 6.41809 i 0 6.40290 0 6.33114




(4) The exact value of u1(x1,0) (when available)
(5) The exact value of u.‘,(x‘,O) (when available)
(6) Number of elements N on the full domain (without using symmetry)

Table 2 shows the results for Example 1. In this case the exact solu-
tion is known. Good results have been obtained especially with respect to the
value of u, (the displacement). The accuracy of the function u
. but not quite as good as that of u
adaptive mesh is uniform.

2 is also good,

1 Because the solution is smooth, the

7 Table 3 shows the results for Example 2. The solution is smooth so the

{ adaptively constructed mesh is uniform. The exact solution is not available,
but the results improve as the number of elements increases. As before, the
function u, is wmore accurate than the function u,. This is to be expected

1 2
since ua H Au1.
Table 4 shows the results for Example 3 when a uniform non-adaptive
mesh i3 used. The exact solution has a strong singularity at the origin and

+ 0, The exact solution is not available. Once more the

u2(x1.0) > as x,

results are good especially with respect to u,.
Table 5 gives the results for Example 3 when an adaptive mesh is used.
Again the method provides good results. The accuracy for an adaptive mesh of
634 elements is comparable to the accuracy provided by a uniform mesh of 1024
elements. |
The results displayed in these tables are typical. Other test computa-
tions were performed which tend to confirm the general behavior shown in these

tables.

. CONCLUSIONS
Although convergence of the splitting method is theoretically guaranteed

. at present only under fairly stringent assumptions, it seems to work very well
also when these assumptions are not satisfied. The method is a mixed one of
the "saddle point” type. 1Its performance is very good with respect to the
displacement u 1 and slightly worse with respect to u, or u,. It is apparent
that the method is reliable, particularly if it is controlled by an error
estimator. Accordingly it is recommended for use,

S 4y
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A reliable extraction of the moments and shear forces from the computed
results would appear to require postprocessing. This problem should be ad-
dressed. It is hoped that the convergence of the method will be theoretically
established under less stringent assumptions that those imposed at present
and will apply to the examples tested in this report. The splitting method
is preferable to the reduction to the Lame' elasticity equations.

The method based on the reduction to the Lame' elasticity equations is
very well founded theoretically, but practically has some essential disadvant-
ages which makes it less attractive. The main disadvantages of this method
are:

. The need for a particular solution.

. The loss of accuracy and increased error due to the
subtraction of the particular solution.

. The necessity of assuming that the domain is simply
connected. (This restriction simplifies the computational
effort considerably.)

. The method does not directly provide the displacements.

It would appear that the splitting method is the preferred method for the
FEARS user.

20
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