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ABSTRACT

This report documents an investigation of
the feasibility of the application of the Finite
Element Adaptive Research Solver (FEARS) computer
program to the Plate Bending Problem. Two methods
of reducing this biharmonic problem to an elliptic
system of two second order partial differential

equations are considered. The first is the split- .............
ting method and the second is the transformation to
the Lame' system of elasticity equations. The FEARS - CsA&I
program is used to solve these reduced systems for TA
three examples. The results are analyzed and dis- 0.- ee o
cussed with regard to the computation of displace- , tatio _
ments, moment, and shear forces. While the Lame'
system approach is well-founded theoretically, it - ------
poses some computational problems with regard to I :ltIbuti, 1 /
acuracy. The authors feel that the splitting
method when monitored by error indicators is the 4 codes
preferred method for FEARS users even though the " peil
theory of this method has not been completely
developed yet.

AI INISTRATI VE INFORMATION

This work was performed under David W. Taylor Naval Ship R&D Center's

(DTNSRDC) Independent Research Program, Program Element 61152, Task Area

ZR0140201, DTNSRDC Work Unit 1844-140. Professor Ivo Babuska of the Institute

for Physical Science and Technology, University of Maryland (Contract

N00167-82-M-0743) is a contractor to DTNSRDC.

INTRODUCTION

The Finite Element Adaptive Research Solver (FEARS) computer program is

an adaptive finite element solver with a posteriori error estimates.1 '2  It

solves boundary value problems for an elliptic system of two partial differ-

ential equations with two independent variables, using first degree elements

which have continuous displacements across element boundaries. Elements with

such continuous displacements are said to be do.

The classical plate bending problem is described by a partial differential

equation of the fourth order, the biharmonic equation. It should be possible

to transfom this biharmonic problem into an elliptic system of two seoond

* A complete list of references is given on page 21.
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order partial differential equations, but the problem of obtaining a family of

such transformations has not been solved yet for the general case.

The biharmonic problem can be solved through a reduction to a system of

second order equations by various methods: the Reissner-Mindlin refined plate

formulation , which provides three fields of vari-hles (displacements and

two rotations), the Hermann-Mioshi method 5 '6 '7 ' 8 ' 9 and the Hermann-Johnson

method 5 '6 '10 which provides a system of four equations. Other methods of
11

solving biharmonic equations are described by Scholz. In addition, the

splitting method first considered by Glowinski 1 2 and Mercier 1 3 and further

developed by others 8 ' 9 ' 1 1 ,1 4, 15 provides a system of two second order equa-

tions. Finally the biharmonic problem can be transformed into the Lame' system

of elasticity equations by exploiting the fact that the Airy function is bihar-

monic. The last two approaches provide a boundary value problem solvable by

the FEARS program.

This report studies the performance of these two last approaches with

respect to the FEARS program and assesses their advantages and disadvantages.

The second section contains basic information about the FEARS program. The

sample problem, the method of transformation to the Lame' equations, and the

splitting method are described in the third section. The numerical experi-

ments are described and some conclusions and recommendations are presented in

the fourth and fifth sections respectively.

ADAPTIVE FINITE ELE4ENT SOLVER FEARS

The FEARS program has been described in two informal reports. 1'2 It

solves boundary value problems for linear self-adjoint elliptic systems of

partial differential equations of second order with two field variables in two

dimensions. It also provides error estimates for the finite element solution

with respect to the unknown exact solution of the problem.

FEARS deals with domains which are the union of the interiors of a small

number of open curvilinear rectangles bounded by circular arcs or straight line

segments. These curvilinear rectangles are called 2-D domains and are denoted

by D2, J=, .,N 2. The open arcs are called 1-D domains and are denoted by D1b2'

J=l,.. .,N 1 . The vertices of the 2-D domains are called O-D domains and are

denoted by DO, j-1...,

2



The FEARS program solves problems described in the weak form

fr~~v1T~ran1 + vTB, [.r~a- i BU+d
ifD2 1LazjiJLazj z JLa Zi u + iu} 12

+ E f vTYjU ds-J fl

T TD(I 2 + vTE(x x2) 1 dxldx2

12[
Di

+Z cj (s) Vdsa

Dj

where u
[ u 2

and

u1

aU2
ax2

V and V are defined similarly.
az



Further

ALi is a 4 x 4 symmetric (constant) matrix,

Bi is a 2 x 4 (constant) matrix,

C is a 2 x 2 symmetric (constant) matrix,

iY Is a 2 x 2 symmetric (constant) matrix,

D (xlx ) is a 4 x 1 vector valued function with components S k(XlX 2

(k = 1,2,3,4),

Ei(xlX 2 ) is a 2 x 1 vector valued function,

£t(3) (where s is arc length) is a 1 x 2 vector valued function.

The trial space used for U and the test space used for V allow the imposi-

tion of both essential and natural boundary conditions. For a discussion of

the physical significance of the matrices with examples, the reader is referred

to the User's Guide.2

The admissible error norm for the a posteriori estimate of the error

• z uFE-uo (where uFE and u0 denote the finite element and exact solutions,

respectively) is IIIaeHi 2 where

IILj11p az Z]I~ (2)
D2Di

FEARS uses C first degree elements of bilinear type on curvilinear rec-

tangles (which are mapped into bilinear elements on the master square) and

adaptively constructs the meshes by refinement where appropriate.

SAMPLE PROBLEM

Let OCR2 be a bounded simply connected region with a boundary an.

The problem is to find a function U satisfying the biharmonic equation

AAU = f on a (3)

and the boundary conditions

U=g, -L = h on a (4)

4



Assume that there is a smooth function Z such that g=Z and h = E on an.
anU is the deflection of the plate. The second derivatives of U are the bending

moments which are of special interest. At present only the problem of a

built-in plate with boundary conditions of the type given by Equation (4) will

be considered.

REDUCTION TO THE LANE' SYSTEM OF ELASTICITY EQUATIONS
Assume that fzO in Equation (3). Then U is a biharmonic function which

can be regarded as the Airy function for the plane elasticity problem. There-
fore, there exist functions ul,u 2 defined on $ such that

2 au
&-U - 2

ax 2 a x 2 +-

2 ax

a - (5)
2

a2 / (au 1 au

la1 x2 2\'ax2  l

and the functions ul,u 2 also satisfy the well-known Lamel equations (for v = 0

where V is Foisson's ratio).

The functions g and h must be transformed into the boundary conditions for

ulu 2 . It is not hard to show that ul,u 2 satisfy the traction condition on

the boundary. However, it must be emphasized that 0 is assumed to be simply

connected. (If the plate were free, then the transformed problem would provide

the prescribed displacements for u1 ,u2 on 30.)

The relationship between the traction and the functions g and h is not

complicated, but it involves differentiation along the boundary. The assump-

tion that the functions g and h are defined in terms of the function Z simpli-

fies the transformation. The framework of the FEARS program is especially well

suited to take advantage of this assumption.

The weak formulation of the problem for the functions U1 ,u2 is a standard

one. The functions ul,u 2 satisfy the variational form of the problem (virtual

work condition) and are not subject to any essential boundary conditions.

__________________________________________________________________

. . . . . . . . . . . . . . . . . . . . . . . .



Nore precisely, ulU 2 . H 1 (where H 1 is the usual Sobolev space) are functions

such that, for V, 2 CH

B1 (Ulu 2 ; vlv 2 ) F(vl,v 2 ) (6)

Here the bilinear form B is the usual form of virtual work obtained by taking

E=1, v--O. (E is Young's modulus of elasticity and v is Poison's ratio.) Then

Bl(UlU2; VlV2) I + ax2 au 2
B1(uu2;v 1 2) - jIw ax ax2 12 2

(7)

1 3U auj(a 2+ 2" 1)(+v2\ + d'ldX

1 2t +-I 1 2

The functional F(vlv 2 ) expresses the virtual work of the traction forces

on the boundary. Integration by parts provides F(v1 ,v2 ) in terms of the

function Z. Thus
= - 32Z 'v2  2

F(vlv 2) - ax- ax 2  ax ax2

(8)

av 12 av2 2Z  dXd

ax2 xax2 ax2 ax 2

2

I ax:
2

S2 " 3  axax2
212

34 - x

4 ax 2

6



The conditions given by Equations (6), (7), and (8) determine ultu
uniquely only up to rigid body motion. Accordingly, a displacement is speci-

fied at one point and a rotation through another point.

k1hen the functions u 1 ,U2 have been obtained, the second derivatives of U

(the bending moments) are provided by Equation (5). An additional integra-

tion Must be performed to obtain the values of U. If however, the bending

moments are the main concern, then the functions UVU2 and Equation (5)

provide them directly.

So far it has been assumed f=O. NOw assume that f0O and g=h=O. In this

case a particular solution is needed, which often (e.g., for f=1) can be easily

found. If this particular solution is denoted by Z, then

U =Z-W

where

AAW 0 on f1

and

Z =W, aZ aw on 3Q.

This is exactly the case discussed earlier. Now

a U a z , ij - 0,1,2 such that i+- 2

1 2 1 2 x1 x2

This approach has the following advantages and disadvantages:

1) Advantages. The finite element method for solving elasticity pro-

blems is well-founded theoretically. The error with respect to the energy

7



norm (which is essentially the L2 norm for the bending moments) can be reli-

ably estimated. The postproceasing approach allows the computation of the

moments at selected points with generally better accuracy along with an error

estimate. Likewise the stress intensity factors can also be computed.

2) Disadvantages. If fjO, then a particular solution Z must be known.

Obtaining the particular solution Z for a general f could be very laborious.

However obtaining Z for a particular f in most applied problems is not that

difficult. Often Z can be found by inspection or some artifice. Similarly

the computation of the displacements (the values of U) could also be quite

laborious. In addition, the accuracy of the numerical solution depends on

the selection of the particular solution. Since values of the moments are

obtained from Equation (9) by subtracting numbers of approximately the same

magnitude, the relative error in the computation of W can result in a much

_2U

larger relative error in i _" Accordingly, it is necessary to compute
axlaX2

1 2

W with greater relative accuracy. If the domain sis not simply connected,

then additional difficulties arise.

SPLITTING METHOD

Although the theory of this method has been studied by various

authors 8,9, 13, 14, 15, 16 the method is still not very well understood. Today's

theoretical results presuppose assumptions which are rather restrictive and it

is not clear whether these assumptions are really necessary. These basic

assumptions are

(1) The elements used are at least of degree 2.

(2) The mesh is quasi-uniform.

(3) The domain i is convex.

However, these assumptions do not seem necessary. Computational results

obtained in the course of this investigation strongly suggest that the assump-

tions are sufficient and not necessary conditions.

8



For simplicity, consider the problem given by Equations (3), (4) with

gahizO. The method consists in writing Equation (3) in the form

Au1 = U2

(10)

-Au2 a -f

where the boundary conditions are

u x 0 (11)

1- (12)
an

The bilinear form is

B2 (ulu 2; v1,v2)

T/! a vu 3v 2 +au 3v 2

b XlU axI + ax2 ax2  2 2  
(13)

vu2  vl + 2 av1
+------L Idxldxax Iax I ax 2ax 21 x I x1 +x2 x2'dlX

and the functional is

F2 (vlov 2 ) = - ffv 1 dx 1 dx2  (14)

Then the problem can be written in the standard weak form

B2 (Ulu2; vl'v 2 ) - F2 (vlv 2) 
(15)

9T



with

01 1 h 1 ere 1 01
UlV 1 E H , u2 ,v2 E H where H u E H u 0 on 991

The boundary condition given by Equation (11) is essential and the boundary

condition given by Equation (12) is natural. The bilinear form B2 is not

positive definite and Equation (15) is a "saddle point" problem.

The bilinear form B2 and the functional F2 can be used by the FEARS pro-

gram. However, since FEARS employs elements of degree 1, the first condition

is violated. The numerical examples of this investigation also violate the

second and third conditions.

There are various options for error norms in the FEARS program. The

norm s

t ., t L 1 + a-- ,2! + ( 2  2+ 2 I, 2 dxx2 (16)

or

iiuii'fj 7 ) u2 dx dx (17)

can be used. For a nonconvex domain the norm I ulI 1 of the exact solution u
is infinite. If the solution is smooth then either of the norms 11.j 1 , or

11.112 may be used. If the solution has singular behavior, then only the

norm II.112 can be used.

This approach has the following several advantages and disadvantages:

1) Advantages. The problem can be solved by FEARS without obtaining

a particular solution. This approach avoids the difficulty stemming from the

arbitrary selection of a particular solution and it also avoids the problem of

10



significance due to subtraction encountered with the previous method. The

method directly computes the displacement and its Laplacian. The assumption

that the domain is simply connected is not required for this method.

2) Disadvantages. The method is not completely understood theoreti-

cally. The saddle point approach does not guarantee monotonic convergence

(which occurs when the bilinear form is positive definite). At present the

convergence of the method has not been established under the conditions of the

FEARS computation. The second derivatives (which are the moments) must be

computed by postprocessing. The error norms used by FEARS do not monitor the

accuracy of the moments.

NUERICAL EXPERIMENTATION

Consider the three examples given by Equations (3) and (4) where f --64 on

domains Q1 1- ' 3 and g=h=O on their boundaries a)R, DQ2, aQ3"

Example 1 - Uniformly Loaded Circular Plate

Q1 = I(xox'2 ) 1 X 1 x 2 < 11

911 is partitioned into the five 2-D domains shown in Figure 1.

X2

1 X

Figure 1 - Partition of Domain Q

The exact solution is known to be

U a (1-(xi + X2))2

11



Example 2 - UnLiformly Loaded Square Plate

" 1(x1 'xz) I IX, < 1, 1 z 1,21

Figure 2 shows the unpartitioned domain 92"

X2

0 A X1

Figure 2 - Domain

The solution is not available in closed for though there are analytical ex-

pressions for U in series form.

Example 3 - Uniformly Loaded Square Plate With a Slit

a3 = S2 - {(xl.x 2 ) -1 < x1 < 0, x2 = 0

3 is partitioned into four equal squares as shown in Figure 3.

2

0 A xi

Figure 3 - Partition of Domain il3

The exact solution is not available for Example 3.

12



The exact solution is very smooth for Example 1, fairly smooth at the cor-

ners for Example 2, and has a strong singularity at the origin for Example 3.

The trial and test functions are bilinear for Examples 2 and 3, and for

Example 1 they are mapped onto bilinear functions. These examples have

different axes of symmetry which were utilized to a limited extent, but the

material in the tables is organized as though no symmetries were present.

The two approaches of the third section will now be discussed.

REDUCTION TO THE LAME' EQUATIONS OF ELASTICITY

We use the following functions Z and 1 *

Z(1) . +- 1 = _ 2 

Z() = 8/x

S() 4x 2 + 12x 2

1 1 2

S(1) = 82x2 Z x
24 1 2

Z()=8/3x 4

13

(2) S(2) =S (2) 0

NJ -2 3

S 4 32 x,

Z() 8x 2 x
2

=M 16 x2

1

(3) (3)Si 32x, x2

(~3) =16 2

13



The method provides the expected results. The selection of Z barely influenced

the relative accuracy of the computed function W with respect to the energy

norm when the same number of elements was used. The error estimation was very

effective. The main problem of the method is related to the subtraction of the

values of Z and W. Table 1 shows typical results for Example 3 (Z a Zt'l)

with a mesh of 1024 elements. This table displays the values of the second

derivatives of the functions Z and W at the point (.53125, .53125).

TABLE 1 - THE VALUES OF THE SECOND PARTIAL DERIVATIVES OF Z AND W

AT THE POINT (.53125, .53125) (EXAMPLE 3, Z = Z ( 1 )

2 2

2x 2 ax ax2

W 5.89848 5.72560 1.81340

z 4.51562 4.51562 2.25781

a2U

Now an accuracy of the order of 5% in axx j-  , where U=Z-W, means that W must

have an accuracy in the neighborhood of 1-2%. This restriction on W could be

prohibitive. This problem arises in the most important case when f4O. If f=O,

then this problem is usually not so severe.

SPLITTING METHOD

As noted in the previous section, convergence is not theoretically guaran-

teed for this method. The solution was computed using both a uniform mesh and

an adaptive mesh with respect to the error estimator of the 1"1I 2 norm given

by Equation (17). The results are displayed in Tables 2-5. In these tables

the computed values of u 1 and u 2 on the line OA are given. (As the meshes are

refined, more values on OA are computed.) The headings of these tables are as

follows:

(1) The x1- coordinate of the point (xl,0)

(2) The computed value of ul(Xl,O)

(3) The computed value of u 2 (xl,O)

14
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TABLE 3 - EXAMPLE 2: UNIFORM MESH

N 64 256 1024

x u 1 U(xlO) u2(X,0) uI(x1l0) u2(X10) U(X 10) uI(Zito)

0 1.35644 -9.61960 1.31121 -9.17025 1.29959 -9.05834

.0625 1.29076 -8.99565

.1250 1.27571 -8.91722 1.26440 -8.60644

.1875 1.22086 -8.48732

.2500 1.21137 -8.57152 1.17114 -8.13994 1.16078 -8.03261

.3125 1.08506 -7.43436

.3750 1.00384 -6.78387 .994969 -6.68236

.4375 .892184 -5.76413

.5000 .812358 -5.13491 .785777 -4.75807 .778854 -4.66495

.5625 .657709 -3.36783

.6250 .536873 -1.93536 .532167 -1.85355

.6875 .406453 -1.00715

.7500 .297489 1.57309 .288256 1.84719 .285755 1.91421

.8125 .176378 4.21680

.8750 .0866609 6.78649 .0859307 6.83454

.9375 .0235262 9.79657

1,0000 0 13.0037 0 13.1088 0 13.1334

16



TABLE 4 - EXAMPLE 3: UNIFORM MESH

64 256 1024

.. (xlo) u2 (x1,0) ul(x10) u2(x1,0) U1(x1,o) u2(-1 ,0)

0 0 14.0294 0 20.5651 0 29.0652

.0625 .0366752 9.02679

.1250 .097985 3. 21982 .0856739 4.39889

.1875 .133943 1.45009

.2500 .199010 -1.94006 .185872 -.756482 .176257 -.427232

.3125 .209127 -1.66725

.3750 .239824 -2.66616 .230487 -2.44152

.4375 .239298 -2.84153

.5000 .259715 -3.50934 .243199 -3.06997 .235401 -2.91838

.5625 .219446 -2.70160

.6250 .198364 -2.30707 .192882 -2.20784

.6875 .157971 -1.44573

.7500 .127328 -.718524 .120795 -.468820 .117826 -.418792

.8125 .0764653 .872537

.8750 .0397549 2.43183 .0388672 2.42922

.9375 .0110272 4.25203

1 0 6.41809 0 6.40323 0 6.33992
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TABLE 5 - EXAMPLE 3: THE ADAPTIVE MESH

N 64 208 634
x1  ol1.0) U2( lp £) .1I1x 1,0) .2 (xL,0)1 .1110) .21( 1,0)

0 0 14.0294 0 20.5741 0 29.0727

.0625 .0366943 9.02608

.1250 .0918232 3.21720 .0857160 4.39572

.1875 .134002 1.44502

.2500 .199010 -1.94006 .185894 -.760749 .176321 -.433832

.3125 .209179 -1.67517

.3750 .239801 -2.67162 .230509 -2.45064

.4375 .239270 -2.85175

.5000 .259715 -3.50934 .243121 -3.07583 .235305 -2.92978

.5625 .219247 -2.71465

.6250 .198263 -2.31303 .192620 -2.21778

•.7500 .127328 -.718524 -.475214 .117593- -.429559

.8125 .0762835 .858996

.8750 .039362 2.42498 .0387926 2.41697

.9375 .0110087 4.24102

1 0 6.41809 0 6.40290 0 6.33114
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(4) he exact value of uI(x1 ,0) (when available)

(5) The exact value of u2 (x1 ,O) (when available)

(6) Number of elements N on the full domain (without using symmetry)

Table 2 shows the results for Example 1. In this case the exact solu-

tion is known. Good results have been obtained especially with respect to the

value of u 1 (the displacement). The accuracy of the function u2 is also good,

but not quite as good as that of u 1 . Because the solution is smooth, the

adaptive mesh is uniform.

Table 3 shows the results for Example 2. The solution is smooth so the

adaptively constructed mesh is uniform. The exact solution is not available,

but the results improve as the number of elements increases. As before, the

function u 1 is more accurate than the function u This is to be expected

since u 2  u 1

Table 4 shows the results for Example 3 when a uniform non-adaptive

mesh is used. The exact solution has a strong singularity at the origin and

U2(X,,0) - - as x 1 - 0. The exact solution is not available. Once more the

results are good especially with respect to u 1 ,

Table 5 gives the results for Example 3 when an adaptive mesh is used.

Again the method provides good results. The accuracy for an adaptive mesh of

634 elements is comparable to the accuracy provided by a uniform mesh of 1024

elements.

The results displayed in these tables are typical. Other test computa-

tions were performed which tend to confirm the general behavior shown in these

tables.

CONCLUSIONS

Althouth convergence of the splitting method is theoretically guaranteed

at present only under fairly stringent assumptions, it seems to work very well

also when these assumptions are not satisfied. The method is a mixed one of

the "saddle point" type. Its performance is very good with respect to the

displacement u 1 and slightly worse with respect to u2 or u. It is apparent

that the method is reliable, particularly if it is controlled by an error

estimator. Acordingly it is recommended for use.

IQ



A reliable extraction of the moments and shear forces from the computed

results would appear to require postproOessing. This problem should be ad-

dressed. It is hoped that the convergence of the method will be theoretically

established under less stringent assumptions that those imposed at present

and will apply to the examples tested in this report. The splitting method
is preferable to the reduction to the Lane' elasticity equations.

The method based on the reduction to the Lame' elasticity equations is

very well founded theoretically, but practically has some essential disadvant-

ages which makes it less attractive. The main disadvantages of this method

are:

" The need for a particular solution.

" The loss of accuracy and increased error due to the

subtraction of the particular solution.

" The necessity of assUning that the domain is simply

connected. (This restriction simplifies the computational

effort considerably.)

*The method does not directly provide the displacements.

It would appear that the splitting method is the preferred method for the

FEARS User.
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