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ABSTRACT
In th i
is paper, we examine the implied faulty sets in the case of the PMC
system level fault model. We show that those sets possess a maximality pro-
perty whenever. the system is one-step r-diagnosatie, no two modules test each

t
other and the number of faulty modules is no larger than r. In addition, we
propose a syndrome-decading algorithm based on that maximality property.
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$ BN INTRODUCTION

d B . Since its introduction in 1967, the PMC system level fault model proposed

by [Preparata, Metze and Chien{[9] has been the subject of much attention.

' Conditions that insure one-siep 7-diagnosability have been proposed in (1], {3]

and [9], and decoding algorithms have been proposed in [2] and in [4]{8].
One of the major stumbling blocks for the synthesis of decoding algo-

rithms for the PMC model is the absence of known useful properties that

result from the assumptions of the model. Thus, the existing algorithms

depend either on strong assumptions on the structure of the testing intercon-
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nection [5), (7], on unproven conjectures [2], or on searches with the associ- W
ated drawback -- namely, backtracking [4] -- or they are insured to work only 1
- . when few faults are present [6] [8].

It seems reasonable to assume that if a PMC model is one-step r-
disgnosable, then well-chosen quantities exist that exhibit useful properties. In
previous work [5]-{8], we used the concept of the implied fauity set to anslyze
the PMC model. The implied faulty set of a module is simply the set of all the
modules in the system that may be deduced to be faulty under the assumption
that the module is non faulty. The usefulness of this concept has been demon-
strated in [5] and [7] for the case of D, , interconnection structures, and in [6]
and (8] for the case in which no two modules test each other, and the number
of fanity modules is small.
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In this paper, we show that the implied fauity sets of one-swep r-
disgnosable PMC models in which no two modules test each other satisfy g
principle of optimality: the module that corresponds to a maximal implied faulty
set is always faulty.
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THE PMC SYSTEM LEVEL FAULT MODEL

Consider a system § of » modules Ug, Uy, ... , Uy—1 and a testing inter-
connection design TID = {(/,/) | U, wests U; }. Ttis assumed that when (/,J)
is in TID, the west outcome g, ; of U; testing U; is 4, —OifU, believes U, w0
be nonfaulty, and a,; = 1 if U, believes U; to be faulty. A complewe set of
test ouicomes; i.e.; an outcome g, , for each (/,/) in TID is called & wdrome:
The diagnosis problem consists in partitioning S into the set Gs of non faulty
modules and the set Fg of faulty modules from the knowledge of one of the
possible corresponding syndromes. In this paper, we assume that the only
faults that may occur are solid, and that the test-fault relationship satisfies at
least the Preparata-Metze-Chien assumption given below.

Hipothesis 1.

() If (4,) is in TID and U, is nonfaulty, then g, ; = O implies that U, is non-
fauty,anda,J-limplbsthnU,isfamty;

(ii) 1 (/) is in TID and U, is fauity, then U, may be nonfaulty or faulty
regardiess of the value of g, ;.

Given (Gg,Fs), Hypothesis 1 implies that only a subset of all possibie syn-
dromes may occur. Determining all possible syndromes that correspond to a
given partition (Gg,Fs) of S is not difficult. On the other hand, the problem
we address in this paper - that is, given a syndrome produced by & partition
(Gs,Fs) of S, find (Gg,Fg) — is much more difficult to solve.

Not all the partitions of S into nonfaulty and faulty modules may explain a
given syndrome. A partition (G ,F) of S is consistent with a given syndrome if
and only if the assumption that sil the modules in G are nonfaulty and all the
modules in F are faulty is consistent with the syndrome. The partition (Gs,Fg)
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is obviously consistent, but unfortunately, many partitions usually exist that are
consistent with any given syndrome. Thus,giwnasymlmoneannm
g identify the faulty modules without additional assumptions.
' ' If we assume that the a priori probability that a set of modules F is faulty
is inversely proportional 10 the cardinality 17 lof F, then it is reasonable o
+ look for the consisient partitions of S that are most likely to ocour: namely, the
consiseent partitions of S in which IF lis minimal. Such partitions, called

minimal consistent partitions are the solutions to the following discrete minimiza-
o] Problem 1: Given a syndrome, find a consistent partition (G ,Fg) of S such
) that 1Fa | < IF | for all the partitions (G ,F) of S that are consistent with the
| syndrome.
k f.:“' | If the number of faulty modules does not exceed 7, at least one consistent
partition, namely (Gg Fs), exists such that 1Fg1 < ». If only one such parti-
tion exists, then finding the partition (Gs,Fg) reduces 1o solving Problem 1 ;
wmll-';' & r. Thus, in the context of our paper, one-step 7-
diagnosability [9] reduces to:
Definition 1: A system S i8 ofie-step r-diagnosable if and only if whenever a
consistent pantition (G F) exists such that |7 | < 7, that pantition is the
unique solution to Problem 1.
IMPLIED NON-FAULTY AND FAULTY SETS

We have reduced the problem of identifying the partition (Gg,Fs) to that

of solving a discres minimisation problem, Problem 1. Qur approsch to this
problem depends on the concepts of implied non faulty and faulty sets.

S SR g e i M k. S
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Definition 2: The implied non faulty set M(U/;) of a module U; (with respect o
a given syndrome) is the set of all the modules in S that may be deduced to be
non faulty under the assumption that U; is non faulty.

Definition 3: The implied faulty set L(U;) of a module U; (with respect to a
given syndrome) is the set of all the modules in S that may be deduced to be
faulty under the assumption that U; is non faulty.

If the module U, is in G, then M(U,) is a subset of G, L(U;) is a sub-
set of Fg, and therefore, M(U;) and L(U,) are disjoint. Thus, if M(U,) and
L(U,) are not disjoint, we may conclude that U, is in F5. Let Fg and G be
the sets defined by

Fo={U, €S| MU)NLW)#=¢),
and
Go-S"'Fo.

The set Fy is a subset of Fg, provided that the basic assumption on the
fauit-test relationship, namely Hypothesis 1, holds. The fact that F is a subset
of Fg does not depend on any assumption concerning the maximum number of
fauity modules, nor on assumptions concerning the structure of the testing
interconnection network. The set F is not difficult to obtain. Given a system
§ and a syndrome, we may compute F and consider the reduced system S,
obtained by deleting Fp from S and the corresponding reduced syndrome
obtained by deleting all the tests links between G and Fj from the original
syndrome. Note that if S is ons-swep r-diagnosable, then S is
one-step (1— | Fol)-disgnossble.

Clearly, if Hypothesis 1 is satisfled and if L(U;) N Gy = ¢ for every
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module U, in G, then the partition (G,Fy) is a solution to Problem 1. Thus,
Definition 1 implies that, in some cases, the set Fg of faulty moduies is the set
Fo

Lemwna I: If Hypothesis 1 is satisfled, if S is one-siep r-diagnosable, if

L(WU,) N Gy = ¢ for every module U; in Gg, and if IFgl & 7, then Fg =
Fo.

MAXIMALITY OF THE IMPLIED FAULTY SETS ;

The set Fo may be computed as soon as the implied non faulty and faulty
ssts have been obtained, and we know that every module in F, is faulty. We i
have no reason to believe that Fj contains all the faulty modules. We could
o] uss the fact (8] that F = L(G), where

P LG)={U, (U, € LWU,),U; €G)

whenever (G F) is  minimal consistent partition, to search for the minimal
consistent partitions, but this search may be tedious. We will now present a
‘ property of the implied faulty sets that holds when the Hakimi-Amin {3}
sufficient conditions for one-step r-diagnosability are satisfied.

-4 | Hopothesis 2 (Hakimi- Amin):

| (i) every module is tested by at least 7 other modules;

(i) no two modules test each other.

We know from [3] that Problem 1 possesses a unique solution whenever
Hypotheses 1 and 2 are satisfiad and the number of faulty modules is not
greater than 7. In such a case, the implied faulty sets possess a property that
gready simplifies the task of decoding syndromes.

Theorem I: If Hypotheses 1 and 2 are satisfied, and if 1 € 1/l < 7, then at

e,
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least one module U, in S exists such that either M(U;) N L(U,) = ¢, or
ILWw,)1 3 v+, or both.

Proof: See Appendix.

We may use Theorem 1 to exhibit a maximality property of the implied
faulty sets. If Fg is non-empty and if F is empty, then at least one module U,
exists so that L(U))N 5 7 +1; thus, the modules U, in § that maximize
1L ) are faulyy.

Corollary 1: 1f Hypotheses 1 and 2 are satisfied, if 1 € IFgl < 7 and if M(U))
N L(U,) = ¢ for every module in S, then the modules U; that maximize -
LWl are in Fs.

" Corollary 1 may be used recursively to generate the set Fg of faulity

" modules in S, and thus, when Hypotheses 1 and 2 are satisfied, an iterative

*greedy-type" algorithm will produce the se: of faulty modules, provided that
the set Fy is first identified.

Algorithm 1.

Step O: Let Fp = { U, € S | M(U,) N L(U,) # ¢}, and letk = 0.

Step 1: Leti, = max { ILW) N (S=F) |U, e S~F, ).

Step 2: If by = O, let F, = F) and stop; otherwise, go to Step 3.

Step 3: LetH, = (U, € S=F, | ILW) N (S =FI)l =n,).

Step 4: Let Fyyy = Fy U H,.

Step S: Letk = k<1, and go to Step 1.

The fact that S contains a finite number of modules implies that Algorithm
1 werminates after a finite number of iterations. Using Lemma 1, Theorem 1
and Corollary 1, we may then obtain the following resuit. .
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Theorem 2: If Hypotheses 1 and 2 are satisfied, and if 175 < 7, the set F,
generated by Algorithm 1 is equal to the set of faulty modules Fg.
APPENDIX: Proof of Theorem 1

Our proof of Theorem 1 is similar to the one used by Hakimi and Amin in
(3l F'irsgwemumetlnttm:esultoftlaetheomdoesmthdd;weu@
partition the system S and using that partition, we exhibit two inequalities
which taken together, lead to a contradiction. Thus, in this appendix we shail
assume that we have a PMC system level model in which:
(A1) every module is tested by at least r other modules,
(A2) no two modules test each other,
(A3) the number of faulty modules §Fg | satisfies 1 < 155l < 7,
(M) M(U,) 0 L(U,) = ¢ for every module U, in S, and
(AS) 12(U))1 g  for every module U, in S.

Let U, be a faulty module in § such that for every faulty module U, in S,
M) n Fgl 3 IMW) N Fgl §))

We now partition our system S into five subsets: ¥y, V5, V3, V and V.

LetV; = M(U,) N Fg. Thus, ¥, consists of all the modules in Fg that
must be nonfaulty if U, is assumed 0 be nonfaulty and U, isin ¥,.

Let V; be the subset of S that consists of all the modules in L(U,) that
are sctually faulty, ie.,
VZ-L(U.) 3] Fs.
Let V'3 be thes set of all faulty modules that are not in ¥y or V/,, ie,,

VimFg —~(Vy UV
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Let ¥, be the subset of S that consists of all the modules in the implied
fauity set of U , that are actuaily nonfaudty, ie.,

V‘ - L(U.) N GS'

Let ¥V 5 be the set of all nonfaulty modules that are not in L(U J), ie.,

it W

VS-GS—VQ.

Clearly, the sets ¥, V'; and V3 form a partition for Fy, and the sets ¥V,
and ¥ ¢ form a partition for Gs.

Fori =1,2,3,4,5and j = 1, 2,3,4, 5, 1et E, ; be the set of testing
links from ¥; into ¥, let v, denote the cardinality of the partition block ¥, let
9 e denote the cardinality of the set of O-links from ¥, o ¥, let ¢;; denote the j
cardinality of the sets of 1-links from ¥; o V;, and lete; ; = &% + ¢, ie.,
¢, is the cardinality of the set of testing links E; ;.

The definition of the partition blocks ¥; implies that the number and type
of testing links between blocks may not be arbitrary.

e g .o

Lemma 2: The testing links sets E, ; satisfy:

Deys=es)=esq4=0

(ii) Ev1, E1,50 E3,15 E4 40 Ea s and E 5 5 consists only of O-links;

(iti) £y 3, E1v0 E325 E340 Eq 1y Ea 2, Eq 3, Es 3 and E'g 3 consist only of 1-links;
(iv) Eq 1y E2 2 E13y Eg 40 Ex sy E3 3 and E3 ¢ consist of both O-links and 1-
links.

Proof: Let U, be in ¥, and let U, be in S. If a O-link from U, to U, exists,
then U; mustbe in ¥y U Vg, and if there is a 1-ink from U, to U, then U,
must be in L(U,) and hence, in ¥, U ¥, We may then conclude that £, ,
and E; ¢ consist of only O-links, that £ ; and E'y ¢ consist of only 1-inks, and

%
¥
14
[ 4
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| thate, ; = 0.
‘? : Let U, bein V3, and let U, be in S. If & O-link from U, to U, exists, then U,
i mustbein¥V, U V3 U ¥g if there is a 1-link from U; to U, then U, must be
i in¥, UV UV,UVs Wemay then conclude that £5 ; consists of only 0-
links, and that E3 ; and £, 4 consist of only 1-links.
LetU, bein¥,, and let U, be in S. By construction, U; is non fanlty and U,
is faulty whenever U; is in ¥y U ¥, U ¥3; U is non faulty whenever U, is in
V4 U Vs We may then conclude that £, £4; and E ¢ 3 consist of only 1-
links, and that E4 4 and E 4 5 consist of only 0-links.
We cammot have any testing links from ¥ 5 1o V' or V4, because whenever a
non faulty module tests a module in either ¥ or V4, it must be in L(U ,),
thusesy = eg4 :- 0. By construction, a module U; in ¥ 5 is non fauity and
thus, E's ; and E 5 3 consist of only 1-links, and E s 5 consists of only 0-links. O

Every module is tested by at least r other modules, and therefore,

€11 + €1 <+ €3] + €41 STV, (2)

€14 <+ €14 + €34 + €44 2 TVe (3)

No two modules test each other, and thus

€11 < vilvi—1)/2, . 4)
eqs € v(ve1)/2, | €)
A €14t ey € Vive 6
i €14 € VoV )]

AL RS, O e PRS-
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The fact that 1L(U,)| § 7 for every module U, in S implies that the number
of 1-links from a partition block ¥; to S cannot be larger than the number of
O-links from S to V;, and therefore,

el +el; +el; +el, el (8)

¢3'4 4 ¢£3 + 89'3. (9)

The maximality of the module U, on which the basic partition is based implies
that no fauity module may find more than v;—1 faulty moduies non faulty, and
thus,

e1 +ef; +e2; < vyvi-D), (10)
and
es1+ed; € vslv=D). (11
Equations (2) and (4) imply
el 3~ v(vi—1)/2—e;;1—e;,. (12)
Equations (3), (5) and (7) imply
€14 > TVe—Vve—e34—vi(ve—1)/2 (13)
Thus, using (6), we obtain
X+Y 30 (14)
where
X=ywe=1vi+vi(vy=1)/2=rvg+ vve1)/2 4 vov,, (15)
and

Y=ey1te+e, (16)
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Using (9), we obtain

Y ey teyyted; +efs an
and using (11), we find that

Y € exy+ef; +vi(vi—1). (18)
Inequalities (8) and (10) yield

e}, +el, +el; +ely+ed) +ed; +efs g e?; +v(ve-1), (19)

edi +ely +efs < vilvi-D), (20) '
' and we may conciude that
‘ ez1+ed; < vilvi-). | Qn
‘ Using (18) and (21), we obtain
Y & v3(v=1) + vo(vy=1). 22

The number of faulty modules is at most 7, i.e.,

vitvy+v3gny (23)

& O v
PR, By N e o e

: and thus
& | {0 =102 + v3(r=1) + vsr=1) € Ty~ = (o ~1)/2. (28

The fact that 1L(U;)1 & r for every module U; in S implies that v, + v, €
r, and thus

V: ‘ T V‘. (25)
Using (14), (15), (16), (22), (24) and (25), we obtain

- : vive = 1y + 2(v=1) = vy (v=1)/2 = rv 4 + v (v~ 1)/2 + (v Iv¢ 3 0.(26)
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Equation (26) may be rewritten as
(Vi=vdf2=(vi=v)¥2~730. @7

It is easy to verify that :
vy~ v2— (v; = v)¥2 € 0125 (28) |

for all values of v; and v, and thus

0.125~7 3 0. (29)

Equation (29) implies that * must be equal to 0, and this contradicts (A3).

We have shown that the five basic assumptions given at the beginning of
the appendix lead to a contradiction and thus may not hold. We can therefore
concliude that if a PMC model satisfies (A1), (A2) and (A3), then (A4) and
(AS) may not hold simultaneously; that is, if (A1), (A2) and (A3) hoid, then
at least one module U; in S exists so that either (i) M(U;) N L(U,;) = ¢, or
i ILw)l 3 r+1, or both

o Y RPN
¢
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