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PREDICTION OF FUTURE OBSERVATIONS
IN POLYNOMIAL GROWTH CURVE MODELS

PART -l*
by

C. Radhakrishna Rao
University of Pittsburgh, Pittsburgh

ABSTRACT

The problem considered is that of simultaneous prediction of future

measurements on a given number of individuals using their past measurements.

Assuming a polynomial growth curve model, a number of methods are proposed

and their relative efficiencies in terms of the compound mean square pre-

diction error (CMSPE) are compared. There is a similarity between the

problem of simultaneous estimation of parameters as considered by Stein

and that of simultaneous prediction of future observations. It is found

that the empirical Bayes predictor (EBP) based on the empirical Bayes esti-

mator (EBE) of the unknown vector parameters in several linear models pro-

posed by the author (Rao, 1975) has the best possible efficiency compared

to the others studied. The problem of determining the appropriate degree

of the polynomial growth curve is also studied from the point of view of

minimising the CMSPE.

AMS Classification: 62C12, 62J07.

Key Words: Empirical Bayes procedure, Compound decision problem, Growth
curves, James-Stein estimators, Ridge regression.

*The paper is based on a talk given at the Indian Statistical Institute,
Calcutta in December 1981, during the Golden Jubilee celebrations.
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1. INTRODUCTION

Let

Yi X3 +E

Y ~ 3.l i1,.. Ii

be k linear models, where Y are observable p-vector random variables, 6.

are unknown m-vector parameters, X is (px m) and x is (mx l) given matrices.

The problem is to predict yl,...,yk given 1 "'' k when the dispersion

matrix of the error term (ci,ni) is of the form

2 Yll Y12 aV (1.2)
Y21 Y22J

where a is unknown and Vj are known. We shall assume that X and V

are of full rank and V22 0 0. Suitable modifications can be made when these

matrices are deficient in rank (see Rao, 1973, pp. 296-302).

If no assumption is made about the joint distribution of (Y.,yi)

then the least squares theory may be applied to estimate B. and y. simul-

taneously. This leads to minimization of

--i 11 -1211 Y- iil (1.3)y- 'VJ [Y21 Y22J y- i
V I.

with respect to 1i and yi" The estimates so obtained are easily seen to be

i . 1l11 (1.4)

lis -1 Zl~~i

where is is the least squares estimator of 8from the model i. The same es-
-- i

timator vi can be deduced by considering a linear function L'Y + a and min-

imizing the mean square error



2

(y -L'Y -a) 2

subject to the unbiasedness condition

E(y -L'Y -a) = 0. (1.5)

Predictors of the type (1.4), which may be called the best linear unbiased

predictor (BLUP), have been studied by Rao (1973, p. 234) and Toutenburgh

(1970). The MSPE (mean square prediction error) of the BLUP, yi in (1.4),is

2 (V -V V V +d'Ud) (1.6)

i 1 22 2111~1 2  -~

where d - x-XV V and U - X -1
. - -11.12 . .. .

In this paper, we examine the possibility of constructing predictors

Y of yi without using the condition (1.5), such that the CMSPE (the compound
i%

MSPE)

k 2
[ 2(yi-yi (1.7)

1

is a minimum. Such a procedure leads to predictors analogous to Stein type

estimators in simultaneous estimation of parameters (see Stein, 1955 and

James and Stein, 1961).

2. BEST LINEAR PREDICTORS (BLP)

If L'Y + a is a linear predictor of yis then the CMSPE is

k 2k

1 E [lyi-xi-Y2 1VI i(Yi-X8i)]

+ E d'Si-'ial 2  (2.1)
1~
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where d = x-X'V 1V and M - L-V V . The first term on the right hand side
. . - 11-.12 .11.12

of (2.1) does not involve L and a, and in order to minimize the CMSPE we

need only consider the second term. It is easily seen that the minimum is

attained for given k when

L - (V 11+XFX')-(V 12+XFx) and a = (x'-L'X)a (2.2)

where

a k-Z a i and a2F - k- l£a Ca-) -a) (2.3)

The optimum values of L and a as obtained in (2.2) involve two functions

a and F of the unknown parameters Ol'."'".k and a2 . If a and F are known,

then the BLP of yi which minimize the CMSPE are

d'[ 9_UF+UlaZ + V IV-1Y

- d'8 + V vy i-1,...,k, (2.4)
- -I2111-i

where U - WV1 X)1 is the least squares estimator of 6. and11- '1 -i

8b - 8X - U(F+U)-I(8.-a) (2.5)
~ i . "

It may be noted that when a and F are known, 6b is the best linear esti-

mator of 8i, i a 1,...,k, in the sense that the matrix

k kb (b b
E J(bi-!i) (b i-i)'-E (b i-B) 8) (2.6)

where bi are any linear estimators of 8i and the expectations are taken fori%

fixed . is non-negative definite. Further, b may also be recognized

as the Bayes estimator of 8 when Y has the multivariate normal distribution

____________________________________________A 'A________ _________
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variance-covariance matrix a F, in the sense that the matrix

E(b -0i (b i- '-E( 8.) b(-bi0 (2.7)i ~ ~I ~ I -

where the expectations are taken over variations of Y i and Si. is non-negative

definite (see Lindley and Smith, 1972).

The average MSPE for the BLP's in (2.4) is

-1 k 1 2

k E + -
k - E J(d'B VV Y.-yi

1 " -i 21!11 ~1

G2(V I V: . +d'Ud)
- 2 -2-12

a 2d'U(F+U)-Iud. (2.8)

Comparing the average MSPE's of the BLUP's given in (1.6) and the BLP's

given in (2.8), we find that the last term in (2.8) represents the reduction

in loss when a and F are known.

3. EMPIRICAL BAYES PREDICTORS (EBP)

The best linear estimator 8b of 8. as defined in (2.5) involves the know-
~1 i

ledge of a and F. If they are not known,we can substitute for them suitable
2

estimates and obtain modified estimators of Natural estimators of a, a

and G - 2 (F+U) are of the form

-1 2
a k Z 8 k - , -

^2 C- o l lI  k 1il~ -1 z..
- - 7('V Y-Y VX3)

1 1
- =- -~l I --

c 2 B- 2
- = 1 (. )s-)
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where c1 and c2 are constants. Substituting these estimates in (2.5) we

obtain

e
B - c wUB (5,-C) (3.1)

where c is a constant to be suitably chosen. The estimator B e which is no

longer linear in Y. may be called the EBE (empirical Bayes estimator, al-

though the terminology may not be appropriate without introducing an apriori

distribution for 5 ). Estimators of the type (3.1) have been considered by

Efron and Morris (1972, 1975) and Rao (1953, 1975).

In the paper (Rao, 1975), the author has shown that when c in (3.1) is

chosen as (k-m-2)/(kp-km+2), where m = rank of X, the expectation of the matrix

k k
( (-a ) (Z a- ( B-S.) (8.-e.) (3.2)

foinyfxe .I is . il~i~ l.

for any fixed k' is non-negative definite, which implies that

i.dz- 2 k 2
1 i -..i E(d' -d'B . ) . (3.3)

Now substituting $i for b in (2.4), we obtain the modified predictor

for yi

i - d '  8 v  V- (3.4)y . -21 ii-i

which may be called the EBP (empirical Bayes predictor).

Upto now we have not made any distributional assumptions. If we assume

a multivariate normal distribution for (Yiy 1 ), then

E(YiJYi) - ' d, 28i+ -IE .(yIY d' +V V- Y
. . .21~I1ii

k k kE](Ei-Y E 7[y -E(y iYi) 2 +E k[E(YiY )-i ]

2 -1l ,e 2
k a(V -!22 -l7 V V1 ) + E (d 6-d) (3.5)

.22 .12i

MhdhN",_X.
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The corresponding expression for the BLUP (1.4) is

E k~ 2y-k a (V V V-V )+ E d'61-d'B) 2  (3.6)

1112-21- 111 1 --

Using the result (3.3), and comparing (3.5) and (3.6), we find that

1 1

where the expectations are taken for any fixed set Si . *6 of the true

values. Thus the EBP's of y1,... 'k are uniformly better than the BLUP's.

4. PREDICTION IN POLYNOMIAL GROWTH CURVE MODELS

Let y ti be the measurement at time t on individual i. We consider the

problem of predicting y+~j on the basis of ylt..t assuming a polynomial

growth curve model

U-t 6 oi 0(t)+...+$ si 0 (t) + Eti (4.1)

where q,(t),",(t),... are orthogonal polynomials such that

r(t)Pm (t) -1 for r- and 0 for r~m

and

V(eti) C12 cov(c tit E i) 0, tout

cov(c tite j) 0, i~'j.

2
Under the model (4.1), the least squares estimators of a ri' a are

yr - ti(t), r-, 01,...,s; i-l1,...,k, (4.2)

ff2  
* 2 - kk(p-s-l). (4.3)

11 01
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Also, for given i

VO a) 2 and cov(Z i 0) 0  r#q.
ri ri qi

We consider different methods of predicting Yp+lli' i= 1,...,k, simultaneously

and compare their CMSPE (compound mean square prediction error).

4.1 BLUP with a subset of terms

If we choose only the first (q+l) terms in the model (4.1), then the

BLUP of yp+li is

p (pl)+.+

YP+l,i Oi0 (p+)+..+ (p+l) (4.1.)

and the MSPE for given i is

2 q  2 s ]2o 1[pr(p+l)] + 2 7 Bri~r(P+l

0 q+l

when in fact the true model has all the (s+l) terms. The corresponding

CMSPE is

q 2 k s2ko2 [[r(p+l)] + I Y 8 rilpr(p+l)] (4.1.2)
0 i=l r=q+l

If all the (s+l) terms in (4.1) are used, then the CMSPE is

ka2  (P+ 2 (4.1.3)r

The omission of the last s-q terms in (4.1) provides better prediction, al-

though the corresponding regression coefficients may not be zero, if

s ]2 k s2ka2  ( [r(P+l)] > 0 [ [ 8rir(p+l)]2  (4.1.4)

q+l i-1 q+l

which might hold when the last regression coefficients are small. The best

choice of q is that value for which (4.1.2) is a minimum.

I
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In practice, the minimization of (4.1.2) over q cannot be carried out
2

since o and 6ri are not known. An estimate of q may be obtained by mini-

mizing an estimate of (4.1.2), which is

s k s 2 s2
k +[(P)]2 + (p l -2k r (p+l). (4.1.5)

0 i-i r-q+ q+l

Since the first term in (4.1.5) does not depend on q, we need only minimize

the expression

k s 2
S[P i (P+)] _ 2ka [ [ir(P+l)] 2  (4.1.6)

i=1 r-q+l q+1

which is analogous to the criteria suggested by Akaike (1973) and Shibata

(1981) in the context of fitting a model to observed data. The emphasis in

our case is on the prediction of future observations and the procedures sug-

gested by Akaike and Shibata for obtaining a good fit to observed data may

not be appropriate.

Table 1 gives the wieghts of 13 male mice measured at intervals of 3

days over the 21 days from birth to weaning, as reported by Williams and

Izenman (1981).

Table 1. Weights of 13 male mice measured at successive
intervals of 3 days over 21 days from birth to weaning

mice ays3 6 9 12 15 18 21

1 0.109 0.388 0.621 0.823 1.078 1.132 1.191
2 0.218 0.393 0.568 0.729 0.839 0.852 1.004
3 0.211 0.394 0.549 0.700 0.783 0.870 0.925
4 0.209 0.419 0.645 0.850 1.001 1.026 1.069
5 0.193 0.362 0.520 0.530 0.641 0.640e 0.751
6 0.201 0.361 0.502 0.530 0.657 0.762 0.888
7 0.202 0.370 0.498 0.650 0.795 0.858 0.910
8 0.190 0.350 0.510 0.666 0.819 0.879 0.929
9 0.219 0.399 0.578 0.699 0.709 0.822 0.953

10 0.255 0.400 0.545 0.690 0.796 0.825 0.836
11 0.224 0.381 0.577 0.756 0.869 0.929 0.999
12 0.187 0.329 0.441 0.525 0.589 0.621 0.796
13 0.278 0.471 0.606 0.770 0.888 1.001 1.105

This could be a recording error, but no change was made
in the present computations.
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In each case, the seventh measurement is predicted using the first six by BLUP,

the formula (4.1.), for different values of q (degree of the polynomial).

The sums of squared differences (SSD) between the observed and predicted over

the 13 mice for each q were as follows.

q: 0 1 2 3 4 5

SSD: 1.7911 0.2063 0.1042 0.1750 0.5991 7.4700

It is interesting to note that the second degree polynomial provides the best

model for predicting the seventh observation, and the predicion becomes worse

as we increase the degree of the polynomial, although higher degree poly-

nomials should theoretically provide a better fit to the data.

Since it is found that a second degree polynomial is the appropriate

model for predicting future observations, we shall explore alternative

methods of estimating the regression coefficients (0oi,51i, 2i) for predic-

tion purposes and examine their predictive efficiencies.

4.2 James-Stein regression predictor (JSRP)

The least squares estimators, a~i z , i 2i and ;2 (with p= 6, s= 3, k= 13),
0 1' 2i

are computed as in formulae (4.2) and (4.3). Using these, the J-S estimators

of 8oi811,8 2i are obtained as follows:

.2 2
J = - 26)O S2 I(SZ ) 2 (4.2.1)

8 ri 28S2 0 "
i

The predictor of Y7i based on the estimators (4.2.1) is

JaJ * (P+l) + i pJ(p+1) + a i 2(p+l). (4.2.2)

It is known that the J-S estimators have smaller compound mean square error

than the least square estimators, which may not imply that any linear function
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of the unknown parameters is better estimated by substituting the J-S

estimators instead of the least square estimators (see Rao and Shinozaki,

1978 and Rao, 1980).

4.3 Shrunken regression predictor (SRP)

Le r - ~(r+'-+'rk ) ada be as computed in (4.3) with p-6, s=3

and k= 13. Then estimate 8ri by shrinking the least squares estimators

using the formula

s r
ari -2 2 8ri' r=O,1,2. (4.3.1)

r

The predictor of y7i based on (4.3.1) is

Y = 80i0 (P+I)+i 2i 2(p+ I)  (4.3.1)

4.4 Empirical Bayes predictor (EBP)

Let

= (a

_i =(0'1'2)

B = (So,8)l,82)'
13

Then the EBE of 8 o ( i a,21) is, as shown in Rao (1975),

e  - (k-q-3)(p-s-l)o B-1  (4.4.1)

.i i k (p -s -l ) + 2 . .. . "

The predictor of y 7 based on (4.4.1), with k-13, q=2, p-6, s-3, is

e a eoJo(P+l) + a eli(p+l) + 8 etJ2(p+l). (4.4.2)

It may be noted that 8 e is also a Stein type estimator (see Efron and Morris,

ir1972 and Rao, 1975) of a vector parameter. Since the estimators 8rl r-O,1,2

... .. ...... .. ... . ... . ... :- --.,.rI, .. ... .... ... ll'Irri'll " [lJ__.__________________.___. ..__._,_,_,__,___. .. ..__________.. ..___. . .. ..... ..__....1__1
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and i- 1,...,13 are all uncorrelated, the problem may also be considered as

the simultaneous estimation of the 39 parameters 0ri. This was not tried in

the present data analysis.

4.5 Ridge Regression predictor

The ridge regression estimator of 6ri is computed from the formula (see

Hoel and Kennard, 1970)

R 2i 8 2 2 2
S (a ) 2. (4.5.1)
Si +32 016

The predictor of y7i based on (4.5.1) is

R aR,,,+l\ + R (P+l)+R y(= pl
Y7i 0 i 1 2i (4.5.2)

The sums of squared differences between observed and predicted values

for the 7-th measurement over the 13 mice for different methods using a second

degree polynomial were as follows:

Method: BLUP JSRP SRP EBP RRP

SSD: .1042 .1044 .0972 .0951 .1047

In the problem considered, ridging (RRP) and James-Stein procedure (JSRP) do

not seem to improve tbe least squares estimators (BLUP) for prediction purposes.

As established theoretically in section 3, the EBP showed the best performance,

while SRP is a close competitor.

It is proposed to study further methods of estimation of regression para-

meters and also transformations of the time axis to improve predictive efficiency.
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