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decrease computation and storage requirements when solving sparse

systems of linear equations. It is known that the algorithm, when

applied to matrices which are not structurally singular, can generate

intermediate matrices which are structurally singular, causing a

breakdown in the elimination process. In this paper we' present the

algorithm in a structured, top-down, form and explain several of the

problems which may occur. We then define a modification of the

algorithm to treat the difficulties. This revised version of the

algorithm will never produce structurally singular intermediate

matrices if the original matrix is not structurally singular. Test

results with this modified algorithm show that it is as effective as

the Markowitz algorithm as a preordering when the block structure of

the new algorithm is recognized and used.
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1. Introduction. In 1971, Hellerman and Rarick [8) introduced the

Preassigned Pivot Procedure ( 3 ) for ordering rows and columns of

unsymmetrlc sparse matrices to preserve sparsity in LU factorizations.

The algorithm was designed for use with the matrices encountered in

linear programming codes. In 1972, they published a modification

called the Partitioned Preassigned Pivot Procedure (P4) E9]. P4 added

an initial stage of permuting the matrix to block lower triangular

form to be followed by applying P3 to each of the irreducible diagonal

blocks.

The P4  algorithm has attained considerable popularity in

application codes, particularly for linear programming problems, even

though, in 1974, Westerberg [18] displayed a nonsingular matrix which

encountered a zero pivot during Gaussian elimination using the P4

ordering. Lin and Mah also encountered difficulties with P4 and

suggested an alternative ordering [10,11,12). (Despite these

difficulties, P4 codes remain in use for linear progranming problems

[1,14,15,16].) Westerberg, Lin and Mah are chemical engineers

Interested in optimization problems encountered in chemical process

modeling. The matrices from linear programiung and from chemical

process modeling have in common the properties that they are very

sparse and their structures are far from symmetric, yet the published

behavior of the P4 algorithm on matrices from these two fields is
dramatically different.
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Even though the P4 algorithm has been used extensively, it has

never been analyzed or compared with other reordering algorithms in a

detailed, careful study. The structural singularity problem has not

been clarified and the possible effect on sparsity of pivoting for

numerical stability is not well understood. A classification of what

types of matrices can be reordered "well" by P4  is unknown.

Furthermore, a comparison of the effectiveness of P4 with the popular

Markowitz reordering [3,13) has not been carried out.

In order to answer some of these questions and better understand

P4 , the authors have carried out a comprehensive study of P4 . In this

paper we report our successes in answering the first of these

questions, which leads to a new modification of the algorithm which

eliminates the structural zero pivot flaw in the original algorithm.

We do not have complete answers to the performance questions; indeed,

the modification to the algorithm raises new questions about the

implementation of the numerical factorization based on this

reordering. Therefore, the performance results in this paper are only

preliminary and more extensive results will be reported later.

This paper is primarily a report of our understanding of the P4

algorithm and of its behavior, particularly in situations where it

produces a necessarily zero pivot in the factorization. In section 2,

a new and precise, yet simple, statement of the P4 algorithm is given.

Section 3 provides definitions of critical terms needed to explain the

weakness of the algorithm, which are illustrated by the sample

3
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matrices in section 4 which cause P4 to fail. An analysis of these

counterexamples uncovers a block structure which is useful for

analyzing p4. This structure leads to a new modification of p4 which

does not fail unless the matrix is structurally singular and which

still retains sparsity of the matrix. The modified algorithm Is

presented In section 5; section 6 contains a discussion of

Implementation considerations for the new modification and some test

results.
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2. The Partitioned Preassigned Pivot Procedure (p4). The purpose of

a reordering algbrithm is to rearrange rows and columns of the

original sparse matrix so that, when Gaussian elimination is applied

to the reordered matrix, the storage and the number of arithmetic

operations is less than if Gaussian elimination were applied to the

original matrix. Attaining either minimal storage or minimal work is

an extremely difficult combinatorial problem, for which it is believed

that practical algorithms cannot exist. The best that is possible in

practice is to apply heuristic reordering algorithms which attempt to

reduce these measures of cost. For example, probably the most simple

and most common reordering algorithms are designed to rearrange rows

and columns so that all of the nonzeros are clustered along the main

diagonal. Such algorithms are called band- or profile-reduction

algorithms. On the other hand, Hellerman and Rarick's P4 algorithm is

designed to produce, by row and column permutations, a bordered block

triangular form (BBTF) of the original matrix:

* 0
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Gaussian elimination often introduces new nonzeros or fill in the

decomposed matrix. A bordered block triangular form may be a

desirable form for performing Gaussian elimination on a sparse matrix

because the fill which results is localized. There may be fill

throughout the border. Fill in the block lower triangular portion of

the matrix occurs locally; the fill within and beneath a diagonal

block depends only on the nonzero pattern of those columns, but not on

any other columns in the matrix. Indeed, if the matrix can be written

in bordered triangular form, that is, with all leading diagonal blocks

of order one, there will be no fill except in the border. Further,

implicit block factorization schemes [4,7J provide a way to factor

such matrices while requiring additional space only for the fill in

the diagonal blocks. The bordered block triangular form is also

useful in the context of large-order linear programs, where the column

orientation of the border meshes well with input/output and updating

requirements [16].

The reasons which argue for the desirability of a bordered block

triangular form apply equally well when the border is empty, that is,

when the matrix is in block triangular form. Non-trivial block

triangular forms exist only for reducible matrices. Fortunately it is

well-understood how to find such forms; the algorithm by Tarjan [17)

as implemented by Duff and Reid [5,61 is a very efficient tool for

this purpose. The major difference between the original P3 algorithm

and the P4 algorithm is that the latter algorithm is essentially the

P3 algorithm applied only to the irreducible diagonal blocks in the

6



finest block triangular form. Analyzing only the diagonal blocks

rather than the entire matrix reduces the size of the matrices

analyzed and thereby reduces the computational complexity. Knowing

that the diagonal matrices are irreducible simplifies the reordering

algorithm. The resulting reordered form of the matrix is a block

triangular form in which each diagonal block is itself in bordered

block triangular form. We assume herein that the p3 algorithm is

applied only to irreducible matrices; in practice these will be the

diagonal blocks of a block triangular form.

a The overall objective of P4 is to find a row and column ordering

such that the factors of the resulting bordered block triangular form

are sparse. The imediate goal of the heuristic reordering is to

choose a small number of columns to be in the border so that the

remaining subsystem will be in block triangular form with a large

number of small diagonal blocks. The border columns are called

spikes. P4 chooses the columns to be spikes, to be put in the border,

on the basis of a tally function which keeps track of the number of

nonzeros in each row. The P4 heuristic uses the tally function to

extend an ordering which has assigned the leading rows and columns of

a bordered block triangular form, as will be described below.

Suppose that i-I rows and columns of a sparse matrix have been

assigned as the leading block(s) in a bordered block triangular form

and that additional columns in the matrix have been assigned as

spikes. We may extend this form an additional row and column at the

7
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possible cost of adding one or more spikes to the border as follows.

Consider only the active entries in the matrix, that is, the nonzero

entries lying in the intersection of rows and columns which have not

1 . yet been assigned. If any row has only one nonzero entry, that entry

can be brought to the (1,1) position by permuting rows and columns;

the remaining part of the row will be zero and so the block triangular

form can be extended by one row. If there is no such row (and there

will not be any such row at the first step), we must choose additional

spikes. The tally function, which keeps track of the number of

nonzeros in each row, indicates those rows of minimum row-count. P4

chooses as a new spike a column which reduces the minimum row count

(ties are broken in a manner which is described in the algorithm).

This process continues until the minimum row count is one. When the

*minimum row count is reduced to one, the rows and columns are permuted

so that the nonzero in a row with only one nonzero is placed along the

main diagonal. This Is the general idea of the P4 algorithm. Note

that at any step, we will choose exactly one fewer spike than the

initial minimum row-count.

As an example, consider the stage of the algorithm represented by

the matrix in Figure 2.2 (where * represents a nonzero)

8

.4



ASSIGNED

COLUMNS* * E

ACTIVE

ACTIVE

Figure 2.2
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At this point, there is a row with two nonzeros in the "active"

part of the matrix and another row with three nonzeros. If the last

column in the active part is chosen as the next spike to be added to

the border, then one row is now a singleton (contains only 1 nonzero).

By interchanging appropriate rows and columns, this nonzero can be

placed in the (1,1) position of the active part of the matrix and we

* have added one more row and column to the block triangular part.

The original presentation of the algorithm is quite complex even

though the major thrust of the heuristic is simple. This is due to

three factors. First, the heuristic is made more sophisticated by

attempting to anticipate the next step in the extension of the

triangular form: a good choice for a spike at one step may reduce the

number of spikes required at the next step. This results in an

purposeful, but complicated, tie-breaking strategy for choosing

1 spikes. Second, it is often the case that the overall fill can be

reduced if spikes can be moved left from the border into diagonal

blocks in the triangular portion of the form. This is possible

whenever more than one row becomes a singleton row when a new spike is

assigned. The Hellerman-Rarick algorithms incorporate this idea,

which has the effect of enlarging the diagonal blocks while reducing

the size of the border. The size of the enlarged diagonal blocks

somewhat obscures the BBTF structure and reduces the effectiveness of

implicit block solvers, but moving the spikes left usually does reduce

the fill in an explicit factorization. Last, the original

presentation of the algorithm predates the widespread use of

10
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structured languages in scientific programming; a presentation in a

structured language simplifies understanding the algorithm

dramatically. For this reason, we now give a precise description of

the Hellerman-Rarick P4 algorithm in a PASCAL-like language.

The algorithm appears as four procedures. Procedure

HELLERMANRARICK P4 is the main driver which begins by putting the

matrix into block triangular form, each of whose diagonal blocks are

irreducible. Next the procedure applies a simplified version of P3 to

each (irreducible) diagonal block. The second level procedure,

APPLYP3_TO DIAGONALBLOCK, indicates how a stack of spikes is created

as the minimum row count is decreased at each stage. The third level

procedure, CHOOSE_AGOOD COLUMN-TO REMOVE, describes the rules for

choosing the spike to be removed from the active matrix and placed in

the border. The other third level procedure,

ASSIGNITANDPOSSIBLYSOME_SPIKES, determines which columns,

including some spikes, are to be assigned to the block triangular

form.

11
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PRDEDt1RE HELLERMAN-RARICK-P4;

BEGIN

OBTAIN lRR EDUCIBLE BLOCK FORM;

£Use Tarjan's algorithm or equivalent.3

FOR I :- 1 TO NUMBER OF DIAGONAL BLOCKS 00

APPLY P3 TO DIAGONAL BLOCK( I);

END;



IKMCEDURE APPLY P3 TO DIAGONAL BLOCK(I);

[ During the application of P3 to the diagonal block, we speak of an "active"

subnatrix. Initially all rows and columns in the diagonal block are active.

Columns become inactive by being chosen to be spikes and/or by being assigned

into final position in the nested block bordered triangular form. Rows

become inactive by being assigned to final position. The row-counts in the

procedures which follow refer only to the active submatrix. ]

BEGIN

REPEAT

' Remove columns from the active matrix (and call them spikes) until

the triangular part of the bordered form can be extended, i.e., until
the row-count of some row in the active matrix is reduced to one. ]

WHILE MIN ROW COUNT > 1 0

BEGIN

CHOOSE_A_GOOD_COLUMNTO-REMOVE;

PUT IT ON THESPIKE.STACK;

[ Extend the triangular portion of the bordered triangular form by

assigning a column which has the only nonzero in some row of row-count

one, and perhaps also assigning some spikes from the stack. Assign as

many rows as columns. J

CHOOSEA_GOOD COLUMN TO REMOVE;

ASS IGN IT AND POSSIBLY SOME SPIKES;

UNTIL

All rows and columns are assigned

13



PROCEDURE CHOOSE A GOOD COLUMN TO REMOVE;

4Choice is based on removing a column which locally promotes continuing

the triangular form as much as possible, that is, reduces the row-

counts of as many minimum row-count rows as possible. Tiebreaking part

of the heuristic is invoked only when there are several columns which

reduce a maximum number of minimum and low row-count rows. I

BEGIN [ MIN ROW COUNT := minimum row count in active submatrix. ]

CANDIDATES :- set of active columns which maximally intersect rows with

minimum row-count;

IF more than one candidate AND all candidates intersect only a single

minimum-count row THEN

BEGIN

NEXT LARGERROW COUNT :a the second smallest row-count of rows which

intersect CANDIDATES;

CANDIDATES :- columns in CANDIDATES which maximally intersect rows

of row-count NEXT-LARGER ROW COUNT;

END;

Choose column from CANDIDATES which has max. number of nonzero entries;

[ We assume that columns are chosen in order of decreasing index. ]

14
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PROCEIURE ASSIGN IT'AND POSSIBLY SOME SPIKES;

BEGIN [ Assign a selected column and a nonzero entry in a singleton row

to the next diagonal position. For each additional singleton nonzero

in the selected column we can also remove a spike column from the stack

and assign it. ]

Q :- number of nonzero entries of the selected column which are the only

nonzeros in their corresponding rows of the active matrix.

J :- column index of chosen column;

I := row index of some singleton nonzero entry in column J;

ASSIGN (I, J);

[ IF Q> 1 THEN ]

FOR INDEX := 2 TO Q DO

BEGIN

K :- column index of spike on top of stack;

I := row index of some unassigned singleton nonzero entry in column J;

ASSIGN (I, K);

END;

[ Assume that singleton rows are assigned in order of increasing index.]

15



3. Singularity, Structural Singularity and Structural Stability. The

P4 algorithm reorders sparse matrices in an attempt to reduce the

computational requirements for Gaussian elimination. It does so

knowing only where nonzero entries are found in the matrix, but not

knowing their values and without knowing how the matrix will be

affected by fill. Equivalently, the P4 algorithm is an algorithm for

numbering or labelling the nodes of a directed graph, where the

nonzero entries correspond to edges of the graph. This numbering

prescribes the row and column interchanges which take place before the

numerical decomposition or elimination process occurs. Nowhere in the

published definition of the algorithm is there any suggestion that

additional interchanges are permitted: It is an algorithm for

permuting a sparse matrix into a form upon which Gaussian elimination

proceeds without any interchanges, whence the name "preassigned pivot

procedure". It is a prescription which is the same for all sparse

matrices which have a common graph, irrespective of the numerical

values assigned to the entries in the matrix or the edges in the

graph.

It is a fundamental result that Gaussian elimination may be used

to perform an LU decomposition of an arbitrary nonsingular matrix if

and only if rows and/or columns are interchanged when necessary to

*avoid division by zero. It is, of course, also generally necessary in

numerical practice to provide for additional interchanges to prevent

numerical instabilities. However, the use of the P4 algorithm as a

preassigned reordering of sparse matrices requires further discussion

16



of the strictly mathematical or symbolic requirements for

interchanges.

The graph of a sparse matrix is said to be structurally singular

if there is no assignment of nonzero values to the edges in the graph

such that the resulting matrix is nonsingular. Equivalently, the

*original matrix and all other matrices which have nonzeros in the same

locations are singular matrices. For example, any matrices with

identically zero rows or columns are singular, as are all three by

three matrices whose nonzeros fall only in the positions indicated in

Figure 3.1. The graph of any such matrix is structurally singular.

Figure 3.1

A useful criterion for detecting structurally singular graphs is

the complete transversal criterion: a graph is structurally singular

if and only if there is no column permutation which gives a complete

assignment or transversal,* that is, reorders the matrix so that the

diagonal entries in the permuted matrix are all nonzero [2]. Given a

complete transversal it is clear that prescribing the numerical value

one to the nonzeros which lie on the diagonal of the permuted matrix

17
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and the numerical value zero to all other nonzeros results in a matrix

which is a permutation of the identity and is evidently nonsingular.

The permutation which exhibits a complete transversal provides

very useful information about the matrix, but it does not necessarily

provide an ordering which is compatible with the preservation of

sparsity. Conversely, it is necessary for a reordering which does not

allow interchanges in the elimination process to label the graph in

such a way that the permuted and modified diagonal elements are

nonzero during the elimination. Neither the Markowitz nor the p4

algorithm are guaranteed to place original nonzero elements on the

diagonal, i.e., exhibit a complete transversal. Both algorithms

depend on fill due to the modification of elements to produce nonzero

entries at the appropriate place on the diagonal at the appropriate

time. Both may fail to exhibit a transversal because that goal is

incompatible with their sparsity-preserving heuristics.

An algorithm like P4 has the disconcerting property that we

cannot determine, a priori, if Gaussian elimination without

interchanges will succeed on the reordered sparse matrix. An ordering

for which this is not a concern could be called a structurally stable

ordering. A suitable definition of this term is: a reordering

algorithm is structurally stable if for every graph which is not

structurally singular there is an assignment of nonzeros to the edges

of the graph such that (mathematical) Gaussian elimination on the

permuted matrix succeeds without interchanges. Conversely, a

18
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reordering scheme is not structurally stable if there is some graph

which is not structurally singular, and yet, for all possible

assignments of nonzeros to instances of the graph, Gaussian

elimination on the reordered matrix encounters a zero diagonal

element.

It should be evident that structural stability does not imply

numerical stability, but the lack of structural stability guarantees

the existence of problems for which we have complete failure. It has

been known for some time that the P4 algorithm is not a structurally

stable reordering; in the next section we present several

counterexamples which show this. An analysis of these

counterexamples provides a understanding of how the instability

arises, and leads, In section 5, to rather minor changes to the

algorithm which result in a structurally stable reordering.

19
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4. The P4 Algorithm is not Structurally Stable. The P4 algorithm was

used in several application programs, particularly for linear

programming problems, in the early 1970's. However, in 1974,

Westerberg presented a nonsingular matrix which encountered a zero

pivot during Gaussian elimination using the p4 algorithm. The nonzero

pattern of the matrix was:

* a

.................

* 0 e

figur. 4.1

Values can be assigned to the nonzero elements which make the matrix

nonsingular, but not so that Gaussian elimination can be performed

without interchanges. This matrix, as ordered, is not permuted by the

P4 algorithm. Note that the element in the (7,7) position is zero and

that it will remain zero during Gaussian elimination.

20
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Clearly the graph is not structurally singular, since

interchanging either rows seven and eight or columns seven and eight

exhibits a complete transversal. Yet the (7,7) element in the matrix

and in its (partial) LU decomposition is always zero. We describe the

zero pivot in the (7,7) position as a structurally zero pivot, since

it is zero for all possible assignments of nonzeros to the graph. The

primary question we pose is whether there are simple modifications to

the algorithm which will automatically detect and correct, or prevent,

the occurence of such structurally zero pivots. If there are such

modifications, how much must the algorithm be modified in order to

have such a guarantee? The remainder of this section and the next

will address those questions.

The P4 algorithm naturally partitions a sparse matrix into a

block structure which is a refinement of the block structure of the

bordered block triangular form. This refined blocking can be

understood by examining procedure APPLYP3_TODIAGONAL.BLOCK in

section 2. Each execution of the REPEAT loop which is the main body

of the procedure creates a new block on the diogonal of the matrix.

The procedure call immediately preceding the UNTIL clause defines the

block itself. Each such block consists of the assigned column with a

singleton row and possibly also some spikes from the stack. The size

of the block is the value of the variable Q in procedure

ASSIGN IT AND POSSIBLY SOME SPIKES, which is the number of rows in the

chosen column which have been reduced simultaneously to singletons.

For the Westerberg matrix, the blocks are indicated in Figure 4.1.

21



One by one blocks in the structure are the result of the ordering

heuristic assigning to the next diagonal position the nonzero element

in a row which has exactly one nonzero entry in the active matrix. It

is clear that structurally zero diagonal elements can occur only in

blocks of order greater than one. The fact that structurally zero

pivots only occur in larger diagonal blocks suggests an obvious

modification: allow row interchanges, but only among rows in a single

diagonal block. (The ordering of rows within such a block is not

specified in the original description of the algorithm.) Such

interchanges do not change the block structure which the ordering

induces, but they do allow us to decompose matrices in which none of

the diagonal blocks are structurally singular.

The use of row interchanges within diagonal blocks removes

Westerberg's matrix as a counterexample. Unfortunately there are

other difficulties with this approach. One difficulty is that the

diagonal block may have fill from earlier blocks in the columns which

were removed from the spike stack. Knowing that a diagonal block is

not structurally singular may require knowledge of these fill elements

and their use in the complete transversal. Fill entries are not

"free" in the same sense as original nonzero elements, since they are

subject to the algebraic constraints which generate them. Do they

really demonstrate that a nonsingular instance of the block exists?

Consider the two by two block resulting from one step of Gaussian

elimination on the three by three example in Figure 3.1: The graph of

this block is not structurally singular, but no instance of the three

22



by three matrix exists such that the resulting two by two block is

nonsingular. Despite these difficulties, it can easily be shown that

row Interchanges within diagonal blocks is sufficient to avoid

structurally zero pivots in the final diagonal block. A complete

analysis would attempt to show that structurally nonsingular matrices,

reordered by the P1 algorithm, result in diagonal blocks all of which

are not structurally singular.

Unfortunately this result is not true. Consider the 8 by .8

matrix whose nonzeros lie in-the indicated positions:

I I

G=

I . i": i '  I f *i ' * * " * ...

-I-------------------- 4-------------

Figure 4-2

23



. . . 4IlAs before, the matrix Is written in the form which P4 produces; P4

ib "! does not reorder the matrix. The P4 algorithm defines three diagonal

blocks, the second of which is rank-deficient -- no matter how it is

permuted, there will be a zero pivot. This matrix is not structurally

singular (interchange rows five and eight to exhibit a complete

transversal), but it has a P4-induced diagonal block which is
structurally singular. Thus we must consider modifications which

change the induced block structure if we hope to produce a

structurally stable modification of the algorithm.
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5. The Precautionary Partitioned Preassigned Pivot Procedure (PS).

The final counterexample of the previous section demonstrated that

rank-deficient diagonal blocks may be encountered with the P4

algorithm, even when the matrices to which it is applied are not

structurally singular. Identifying the source of the structurally

singular pivot in the counterexample suggests a simple modification of

the algorithm which is structurally stable in general.

The difficulty in the counterexample G in Figure 4.2 arises

from the fourth column in the second block. Four columns are assigned

to this block because four rows are reduced to singletons

simultaneously. But the minimum row count at the beginning of the

REPEAT iteration which constructs this block was three, which is

exactly the number of dense columns in the block. By simply

restricting the size of a diagonal block to be no larger than the

minimum row count at the beginning of its construction, the problem of

structurally zero pivots is solved. Equivalently we restrict the

spikes being brought off the stack to being only those which were

designated as spikes during the construction of this block. This has

the side-effect of leaving more spikes in the final border, but will

prevent the occurence of structurally zero pivots.

That this modification is sufficient in general depends on two

observations: first, with this modification all diagonal blocks,

except possibly the last block, will be dense; second, the final

diagonal block, after fill, will never be structurally singular. We

shall now Justify these claims.
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The general structure of a diagonal block assigned by the

(unmodified) P4 algorithm is indicated in figure 5.1. The first

column is the column of row singletons, which is dense within the

block because the rows in the block are exactly the rows in which the

singletons are found. The second group of columns were the topmost

columns on the stack of spike columns, the columns added to the stack

during the construction of this block. These columns are dense within

the block by the nature of the heuristic. At each step some subset of

the rows with minimum row count have their row count reduced by one;

the final set of singleton rows is exactly the subset of the initial

minimum row count rows whose row count is reduced by one at each step.

But this implies that each of the final singleton rows has a nonzero
entry in each spike assigned during this iteration. These spikes form

dense columns within the block. The remaining columns, the third

group of columns in Figure 5.1, are the excess spikes removed from the

stack, spikes assigned to the stack during earlier iterations. The

contributions of these spike columns to the diagonal block are

unknown. In the worst case these columns may not add to the rank of

the diagonal block, as demonstrated by the counterexample.
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The modification to the algorithm prevents assignment of any,

columns from this third group, whether they cause structural

singularity in the diagonal block or not. The diagonal block which is

produced by the P5 algorithm is a dense submatrix formed from rows of

the leading, dense, columns. A high level description of the modified

! algorithm is presented below, with the modifications to the P4

' algorithm indicated in italics.
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PROCEDURE ASSIGN IT AND POSSIBLY SOME SPIKES MODIFIED;

BEGIN

Q :- number of nonzero entries of selected column which are the

only nonzeros in their corresponding rows of the active

matrix;

J1 :- column index of chosen column;

I : row index of some singleton nonzero entry in column J;

ASSIGN (I, J);

FOR INDEX := 1 TO MAX (Q-1. number of spikes stacked at this stage)

00

BEGIN

K :a column index of spike on top of stack;

I :- row index of some unassigned singleton nonzero-in column J;

ASSIGN (I, K);

END;

END;

With this modification, there may be some spike columns remaining

on the stack when the algorithm is finished. Thus we also need to

modify the top level P3 procedure:
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PRIWEDURE APPLY P3 TO DIAGONAL BLOCK(I)_MODIFIED;

BEGIN

REPEAT

WHILE MIN ROW COUNT > 1 00

I GIN

CHOOSE_A_GOODCOLUMN_TOREMOVE;

PUT IT ON THESPIKESTACK;

CHOOSE A_GOOD_COLUMNTOREMOVE;

ASSIGNITANDPOSSIBLY SOME SPIKES;

UNTIL

All columns are either assigned or designated as spikes;

ASSIGNSPIKESREMAINING ON THE-STACK

END;

4-.

The other two procedures, HELLERMANRARICKP4 and

CHOOSEA_GOOD-COLUMN TO-REMOVE, are unchanged for the P5 algorithm.

The new procedure required here, ASSIGNSPIKESREMAINING ON THE-STACK,

will be discussed later.
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The matrix that results from the P5 algorithm is obviously in bordered

block triangular form:

i -I
D1

I S

tD2
D3 B

---------------------------I 6

I I I
I I I

... . .!- - I*

I I I
I I I

*DpI I

----------------------------------------------------------------

S II I
Figure 5.2

All of the leading diagonal blocks, 0j, are dense: they are not structurally

singular. The final diagonal block, S, may be structurally singular.

However, after the fill from Gaussian elimination, the filled final block, S,

cannot be structurally singular. Showing this fact will demonstrate that our

modifications are always effective in removing the problem of structurally

zero pivots. It is natural to attempt a proof using characterizations of the
A

graph of S. However, we encounter the difficulty that the fill elements are

dependent on algebraic constraints and so are not free. We side-step these

problems by creating a procedure for constructing counterexamples: recall

that a graph is not structurally singular if we can assign nonzeros to its

edges so that the resulting matrix is nonsingular.
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Our procedure requires several tools from linear algebra which address

singularity of matrices. The first is the Schur complement theorem, which

states that if a nonsingular matrix A is partitioned as

" A1

A. ---------

A2 A22

where All is nonsingular, then the Schur complement or Gauss Transform,
A
A22, of All in A, is nonsingular. The second result we need is that no

perturbation A + E of A is singular if the Euclidean norm of E is less

than the smallest singular value of A.

Assume that we have a graph which is already labelled by the P5

algorithm, and assume that the graph is not structurally singular. We can

assign values to the edges of the graph in such a way that the resulting

matrix A is nonsingular. Our goal is to show that we can assign values to

the nonzeros in such a way that A and all of its leading diagonal blocks D

are nonsingular. If we can do this much we can apply the Schur complement

theorem treating the entire triangular portion as a single block to assert
A A

that S is not singular. But this demonstrates that the graph of S is

not structurally singular since we will have shown the existence of a

nonsingular instance of the graph. This in turn demonstrates that the P5

algorithm is structurally stable.
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Consider then the assignment of the nonzero values of A. Since A is

not structurally singular it has a complete transversal. We begin by

assigning the value one to all entries on the transversal and zeros

elsewhere: call the resulting matrix AI" The ordering produced by P5 does

not assign the entries on the transversal to the diagonal of A1 , which

means that the diagonal blocks Dj may yet be rank-deficient. The matrix A,

is a permutation of the identity matrix, which implies that all of its

singular values are one. Note that a diagonal block Dj is singular if and

only if some (or all) of its columns are identically zero. A block D ofDj

order p and rank q < p contains q columns of a p by p permutation

matrix. Since all of the entries of D are allowable nonzeros in the

graph, we can choose p-q new entries, one in each of the p-q null

* i columns, which would produce a p by p permutation matrix if they were each

assigned the value one. Let E be the p by p matrix containing the value

one-half (or any other nonzero values of magnitude no larger than one-half)

in the positions corresponding to these new entries and zeros elsewhere. It

is evident that D + E is nonsingular. Let E be the matrix which isDj Ej

zero except in its leading diagonal blocks, which are E Then the matrix

A - A1 + E will have the properties we desire. This matrix is nonsingular,

since the Euclidean norm of E is no greater than one-half, smaller than

the smallest singular value of A1. But A also has the property that all

of its leading diagonal blocks are nonsingular. It must then be true that
A
S is nonsingular.

With this result in hand, we can now state the requirements for the
undefined procedure ASSIGNSPIKES.REMAINING ON THE-STACK. The Ps algorithm

32

i n m mum N



will be structurally stable if this procedure assigns the rows and columns
A

of S in any way which exhibits a complete transversal of S. One way in

which this may be done is to symbolically factor the reordered matrix to

obtain the graph of the Schur complement and then apply a transversal-

finding algorithm, such as in [6). Although not necessarily the most

efficient algorithm, this does guarantee that the overall algorithm is
A

structurally stable. In practice this final block, S, may be nearly dense,

in which case the factorization may be carried out with the ordering

specified a posteriori by a dense factorization algorithm.
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6. Discussion of the PS Algorithm and Test Results. The ordering

produced by PS has a block structure which can be put to good use in

solving linear equations. In this section we discuss how we might

take advantage of this block structure. We present fill statistics

for an experimental implementation of a P5 factorization code for a

small number of test matrices, with comparative results for a P4 code

and for the Harwell MA28 implementation of the Markowitz ordering.

Finally we indicate how modifications to the algorithm, particularly

those to preserve numerical stability, interact with the block

structure.

We must use two variations of the usual LU factorization to take

full advantage of the special matrix structure which results from the

P5 ordering. The first exploits the reducible form of the matrix, and

is applicable to the P4 and Markowitz orderings as well. The second

variation makes use of the special block structure which results from

applying the P5 algorithm to an irreducible matrix. We summarize

these two computational techniques and then show how they can be

combined effectively for the overall P5 matrix structure.

Most ordering schemes for unsymnetric matrices begin by finding

the finest block triangular or reducible form for the matrix, because

the majority of the work in ordering and in factoring the matrix can

be confined to the diagonal blocks. Suppose that A is a reducible
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matrix and has been permuted to block triangular form as illustrated

in figure 6.1. Here each of the blocks Aii is square and

irreducible.

All: Xi

A21 A22 ,X b2

X3 b3A31 A32 ! A33

--- --- --- -- --

I L_ _ - _

a S

s a
a a

digoa blck Aii j tadas h Udcmitosfth

An jAn2 jn3 0 .-

Figure 6.1

The linear system in figure 6.1 can be solved very efficiently by

factoring each of the diagonal blocks independently rather than by
computing an LU decomposition of A. If we know the original off-

diagonal blocks A1 .j c < , and also the LU decomPositions of the

diagonal blocks Aii L11U11 , then the overall system can be solved

, by solving in turn
*L U x-

L22 U22 x2  b2 -' 21 x1,

and in general

Ltt U11 xi * bi - "Atj xj

Jul -11
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We will refer to this technique as the reducible factorization. The

reducible factorization clearly saves computation in the factorization

phase because no operations are required outside the diagonal blocks.

This saves both storage and computation in the solution phase when A

is sparse. since the off-diagonal blocks in an ordinary block

factorization, Li z Aj U-1, usually suffer from fill. The filled

blocks LIj are more expensive to store and to use as operators than

the unfilled original blocks.

The second technique for exploiting block structure will be

applied to the irreducible diagonal blocks of the matrix in figure

6.1. Suppose that Ai is nonsingular and has been partitioned as

where D and S are square, and D is nonsingular. Then an

alternate to computing an LU decomposition of A11  is to compute a

asymmetric block LU factorization

AA [D' :1 [! 0 [01 B 18]

where S - S- C B.
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This block factorization is the basis for an implicit block

factorization. Alan George [7] recognized that this form can be used

to solve linear equations without storing D-1 B, provided that we can

AA

solve equations with D and S. The matrix D'1B is needed to

compute S, but for this its columns can be computed one at a time and

then discarded.

A

Suppose that the LU factors of D and S have been computed.

Then the system Ai y = f can be solved by the following sequence of
operations, in which the vectors f, y, and z are partitioned

conformally with the partitioning of Aii:

1) Solve D zI = f, for zj;
2) Solve S = f CZ1  for z2;

3) Set Y2 z2;

4) Form w By2;

5) Solve D u w for u;

6) Set Y- Z "u.

Since we did not store D-1 B, the multiplication by this product is

accomplished implicitly by the fourth and fifth steps.

The primary advantage of this approach is that it saves storage,

since the fill in the off-diagonal blocks is not saved or stored. It

may require additional computation, however, because the steps which

realize D 1B implicitly may require more work than if D-1B were

stored. We require the solution of two systems involving 1 instead

of one. The implicit form may represent less computation in certain
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circumstances, as when B is very sparse and D'1B is not, or when D

has special structure which makes solving systems very easy. One such

case is when D has a block triangular structure for which we can use

the reducible factorization discussed above.

The ordering produced by the P5 algorithm allows us to put all of

these ideas to use simultaneously. The first stage of the algorithm

is to find a reducible, block triangular form for the matrix, as in

figure 6.1. We can use the reducible factorization at this outer

level to confine our factorization to the diagonal blocks Ai1. At

this middle level of the blocks A11  we can use the implicit block

factorization since the P5  algorithm produces a bordered block

triangular form for Aii, as illustrated in figure 5.2. Our notation

for the blocks in the implicit factorization partitioning of Ali

suggests our intention: we associate the block triangular part of

figure 5.2 with D and the other subblocks in Figure 5.2 with the

subblocks of the same name in Aii. Since D is in block triangular

form we can use the reducible factorization to solve equations with D.

I

Our suggested factorization and solution schemes for the matrix A

is to use the reducible factorization for the outermost partitioning,

the implicit block factorization for the diagonal blocks Ai1  and

again the reducible factorizatlon for the subblock D within each

block A11 . The effect of the first reducible factorization Is that

fill is confined to the diagonal blocks A11. The effect of the
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implicit block factorization is to confine the fill within A11 to its

diagonal blocks D and . Using a reducible factorization for D

confines the fill within D to its diagonal blocks -- but these are

already full. Thus, the only fill in the overall scheme is the fill

within the Schur complement blocks for the border, . Fill occurs

nowhere else in the matrix.

The usual cost of changing the form of the factorization to save

space is to increase computation. We have used alternative

factorizations at three levels, but the only computation penalty we

bear is that we must solve two (not more) systems with each of the

block triangular blocks D. Even at the innermost level this is

balanced by not having to multiply by the filled border blocks D'B;

the fill results in Tables 6.1 and 6.2 suggest that this fill and the

cost of using it is considerable. In addition the dense diagonal
i.

blocks may may permit the efficient use of vector hardware on machines

like the CRAY-I.

We have made preliminary tests on the P4 and Ps algorithms, using

a collection of chemical process flow problems obtained from A.

Westerberg, and using a small number of LP bases from the sparse

matrix collection of Iain Duff and John Reid. We used the P code of

Btsschop, Levy and Meeraus [1], and modified this code to produce a P5

code. Both codes were used to provide orderings only -- a

modification of the Harwell MA28 code [4] was used to perform a sparse

symbolic factorizatton and to allocate sparse data structures. In
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addition the symbolic factorizer was used to determine the structure
A

of S and the transversal assignment in MA28 was used to obtain a
A

suitable ordering for S. In addition, we used the Harwell code to

provide two different Markowitz-like orderings. In one we used no

pivoting for numerical stability which gives a pure Markowitz pre-

ordering which is directly comparable to the P4 and P5 orderings. For

the other we used the numerical pivoting options of MA28 with a pivot

tolerance of 0.1 to provide a numerically stable ordering.

These orderings were used in conjunction with the Harwell MA28B

subroutine to perform sparse Gaussian elimination withot pivoting.

The MA28 subroutines provide for a reducible factorization for a

matrix in block triangular form and this capability was used for all

orderings. This results in a factorization which is implicit at the

outer block triangular level, but explicit within each diagonal block.

Neither the P4 nor the Markowitz ordering permit us to do any better

than this, since the structure of the diagonal blocks does not allow

use of the implicit factorization ideas. For the P5 ordering we
A

computed the fill in the Schur complement blocks S within each outer

diagonal block, the sum of which is the fill for a reducible and

implicit factorization. To demonstrate the power of the alternative

factorizations with the P5 ordering we have included the fill results

for using the outer reducible factorization with an explicit

factorization for the diagonal blocks; in addition, for the chemical

process models in Table 6.1 we give the fill for an explicit LU

factorization of the entire matrix.
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The results of our testing are summarized in Tables 6.1 and 6.2.

We expect that the fill from the P5 ordering without using the

implicit factorization to be greater than the fill from the p4

ordering and that is borne out in general. However, the the major

result is the effect of using the block structure of the P5 ordering,

which changes the picture entirely. The reducible and implicit

factorization for the P5 ordering is clearly superior to P4  and is

quite competitive with the pure Markowitz ordering. The other

surprising result is the frequency with which the P4  ordering

demonstrates that it is not structurally stable by leaving explicit

* zero entries on the diagonal of the reordered matrix.

Any production implementation of the P5 algorithm must take into

account that structural stability by no means guarantees numerical

stability. Even though zero pivots are avoided, smail pivots can

arise as with any sparse ordering for general problems which does not

recognize numerical values. Any pivoting which is restricted to the

innermost diagonal blocks will not disturb the block structure of the

matrix as ordered by P5. Thus partial or complete pivoting within a

diagonal block of the bordered block triangular form can be used to

improve numerical stability. Pivoting restricted to certain sets of

rows or columns is not sufficient to guarantee numerical stability in

general, but it may suffice for certain classes of problems. The

results we obtained on our limited test set are not particularily

encouraging -- typically the innermost diagonal blocks had very low

*order, usually one, which does not provide much opportunity for
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pivoting. In addition we have encountered at least one real problem

for which an inner diagonal block was numerically singular.

The only form of numerical pivoting which is known by the authors

to be used with the P4 algorithm uses partial pivoting across rows.

Such pivoting results in the interchange or Oswap" of columns in the

border with assigned columns. This interferes with the heuristic's

means of maintaining the sparseness of the factored matrix, to the

extent that the P4 algorithm is not useful on problems where extensive

pivoting results ([16)). Such pivoting within the P5 algorithm

interferes with the reducible and implicit block factorization. It is

possible that the combination of complete pivoting within diagonal

blocks and threshhold pivoting between diagonal blocks and the border

may result in fewer interchanges than would occur with P4 , but this

would be at the cost of destroying the block form.

Completely reliable numerical factorizations with preservation of

sparsity with the P5 ordering may require more dramatic means. Two

possibilities now under consideration are to develop a further

extension of the Hellerman-Rarick algorithms to incorporate the sizes

of the numerical entries in the heuristic or to extend sparse least

squares algorithms to provide a (completely stable) LQ factorization

of the bordered block triangular form. Any successes with these

approaches will be reported later.
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