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1. INTRODUCTION

This paper develops models of the transient behavior of Markovian

repairable item provisioning systems. A multi-echelon structure of re-

pair and resupply is of concern. It is desired to develop analytical

solution techniques for exact models of systems with finite numbers of

items and finite repair capacities (i.e., a finite number of repair

channels at each repair facility). This is in contrast to Dyna-METRIC

[see Hillestad (1981) and Hillestad and Carrillo (1980)], which is an

approximate model assumIng an infinite calling population of item and

ample repair capacities.

Most multi-echelon repairable item work has concentrated on

steady state solutions and revolves around the METRIC type of model,

which assumes an infinite population of items which can fail and an

infinite repair capacity, so that no queue ever forms at the repair

Pt. f
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facility [see Sherbrooke (1968) and Muckstadt (1973), for example].

Recently, the METRIC type of model has been extended to provide tran-

sient solutions for a time varying environment (Hillestad and Hillestad

and Carrillo, op. cit.), and is called Dyna-METRIC.

Exact models for finite item populations and repair capacities

have been studied by Gross, Miller, and Soland (1981), but for steady

state solutions only. This paper presents results on transient solu-

tions for such problems.

For convenience in describing the various multi-echelon systems

studied, the following classification scheme is adopted. A system is

described by seven symbols, in the format (n1,n2 ,n3/n4,n5/n6,n7 ).

Tabie I provides the definitions of n1 through n7.

A. As an example of the classification scheme, consider a military

supply system with five bases, base and depot repair, base and depot

TABLE I

SYSTEM CLASSIFICATION SCHEME

Symbol Definition

n 1 Number of bases (1,2,...)

n2  Number of levels of repair (1,2,...)

n3  Number of levels of supply (1,2,...)

n4  Number of item types (1,2,...)

n5  Number of levels of indenture (0,1,...)

n Size of item population (f or a)

n7  Capacity of repair facilities (f or )

-2-
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spares, tvo types of items with no indenture, finite calling population

size (finite numbers of items), and finite repair capacities. This

system would be represented as (5,2,2/2,0/f,f). The same system with

infinite calling population and infinite repair capacity (Dyna-ETRIC

asumptions) would be denoted (5,2,2j2,0/,-e). The most general system

descriptor vould be (b,r,s/k,j/f,f); that is, a system with b bases,

r levels of repair, s levels of supply, k item types, j levels of

indenture, and finite calling populations and repair capacities. To

describe fully any system, it would still be necessary actually to draw

the network structure; nevertheless, this classification scheme will be

most useful in delineating the systems under discussion.

Our goal is to present exact models of Markovian repairable item

provisioning systems which can be solved numerically for exact transient

state probabilities and other performance measures. We are also con-

cerned with the practical problem of algorithmic implementation on a

computer. It is possible to solve nontrivial, fairly complex, systems

using the algorithmic approach of "randomization." We have developed

highly efficient algorithms for two cases [(1,1,1/1,O/f,f) and (2,2,2/

1,O/f,f)], and discuss generalizations of these situations.

The approach we use is a two stage procedure. The first stage

is a method of modeling called SERT and the second is an algorithm based

on the randomization technique [the reader is referred to Gross and

Miller (1982) for a full methodological discussion of these]. A good

discussion of the advantages of the randomization procedure as a numeri-

cal analysis tool is found in Grassmann (1977).

-3-
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2. SEU MODELING APPROACH

Since we assume a finite Markovian system (all failure times and

repair times are independent exponential random variables), the system

can be fully described by its infinitesimal generator matrix

Q - liram
At-0O At

where P(At) - {Pij(At)}; Pij(At) E Pr{system is in state j at time

t + At I in state i at time t} . The matrix Q is finite, say N x N

since we are assuming a finite number of items in the system. For

complex systems, N can be quite large (this will be seen later), so

it is necessary to have algorithms as efficient as possible, both in

running times and storage demands made on the computer.

It is not necessary to store this N x N Q matrix if we use

the SERT modeling approach. Briefly [for more detail see Gross and

Miller, op. cit.], we must describe the State space, the types of Events,

the transition Rates (the off-diagonal nonzero elements of the Q matrix),

and the Target states, that is, the state to which the system goes when a

given type of event occurs.

Given a state space S of size N with s denoting a given

state of the system (s e S), and an event space E of size E with

e denoting an event of type J (ej e E), it is necessary to consider

a rate vector and a target state vector for each ej which we denote

by r and t , respectively. The dimensions of rj and tj are

1 x N . Since in these models E << N , it is much more efficient with

respect to computer storage requirements to work only with the r1  and

tj vectors, rather than the N x N Q matrix, as the former requires

consideration of only 2.E. elements rather than N2

" 4-
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The SERT modeling procedure wlll be illustrated on the (1,1,1/1,0/

f,f) and (2,2,2/l,O/f,f) system to follow.

3. RANDOMIZATION COMPUTATIONAL TECHNIQUE

Transient solutions to Markovian queues require solving the set

of differential equations

W'(t) W 'r(t)Q

where W(t) is the vector of transient probabilities, i.e., ir(t) =

(W (t)1 , where rT t) EPr{system is in state j at time t} and w'(t)

is the vector of derivatives with respect to time, i.e., w'(t) - {f'(t)}- j

Many numerical techniques can be used to solve these linear, first

order differential equations; for example, numerical integration [see

Maron (1982)). We choose instead a technique referred to as randomiza-

*tion (see Gross and Miller, op. cit., or Grassmann (1977)], which is

ideally suited to the SERT modeling of Markovian systems.

Randomization is based upon the ability to transform the continu-

ous parameter Markov process analysis to an analysis of a discrete pa-

rameter Markov chain (MC) whose transition times are generated by a

Poisson process.

Consider the continuous parameter process we are modeling. It

jI remains in a given state s until one of many (E possible) events occurs,

which then changes its state to, say, s' (if it is an event of type

s' - ti). Since all times are exponential, the time to the nextej8

event is the minimum of exponentials which is also exponential. Hence,

if we look at the process only at transition times, it is a discrete

paraeter Markov chain, whose holding (transition) times are exponentially

distributed.

I l " , I L .. .. '...i
i  
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Since the mean of the holding time in state s may depend on a ,

we do not quite have a Pois~qn process generating these transitions. To

states (this always exists since S is finite) as 1/A and considerget around this, we denote the mean of the minimto holding time over all

Poisson process with rate A as a generator of the transitions. De-

cause this generates transitions at a greater rate than desired (since A

is the maximwn of the state-dependent rates), we must thin the process

to model the actual state-dependent holding times by adjusting the

discrete parameter MC transition probability matrix. Without the ad-

ustment, the embedded discrete parameter MC has transition probability

matrix P - {p} , Pij o qij / i qi * The parameter A is

max Z qij " Adjusting the P matrix for the thinning operation gives
i joi
the transition probability matrix P {pij} , where

Thus, the computing formula for ff(t) m {its(t) is

N e-At (At)n
Ss(t) 1 E 0 Os(n) nI ')

n0O i'O

where s (n) is the probability that the system is in state s after

n transitions generated by the Poisson (A) process, and e -At(At)n/n!

is the probability that there are n transitions of the Poisson (A)

process in time (O,t) . The 5s(n) can be determined using and

(O) in the standard MC way; that is,

f(n) (

0(n -)F ,(2)

-6-
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where ir(O) is the starting state probability vector. The infinite sum

in (1) must be truncated at some appropriate point (see Gross and Miller,

op. cit.) which can be set to guarantee a bound on the error.

• Using the target and rate vectors from the SER procedure, we can

compute the _(n) vectors recursively in a manner more efficient than

using (2) by the following algorithm:

() 0(o) = W(O)

(ii) O(n + 1) is computed from 0(n) as follows:

(a) s(n+ 1) sW(n) (3)

then

(b) for j 1 1,2,...,E , and s C S , add

sn) (rj/A) to tj(n + 1)
5ts

What this algorithm does is to operate simultaneously on all com-

ponents of (n + 1) using the components of 0(n) and the transition

probabilities from P . Note that (r s/A) is p ; that is, thes stJ

probability of going from state s to state tj  s (the target states

that event j causes the system to switch to when it is in state s )

given an occurrence of the Poisson (A) process. The term

(1- i rj/ A) is the probability of ignoring an occurrence of the
J1s

Poisson (A) process, which is called thinning and which leaves the sys-

tem in state j (a null event).

This algorithm is very efficient for sparse Q matrices, which in

the situation we generally have for repairable item systems, since it

avoids the zero multiplication that would result from using the matrix

multiplication of (2).

.10.IWk
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4. SIMPLE NETWORK MODEL: (l,l,i/l,0/f,f) SYSTEM

The simplest case of a repairable item system is the simple ma-

chine repair model shown in Figure 1. The situation modeled has a popu-

lation consisting of M items desired to be operational at all times and

Y spares to support the system. There are c repair channels, so that

a maximum of c items can be undergoing repair simultaneously. If more

than c items require repair, a queue forms at the repair facility.

Failure and repair times are exponentially distributed random variables

with the mean time to failure of any item denoted by l/X and the meanItime to repair an item denoted by 1/p ; i.e., X and p are the failure

rate and repair rate, respectively. The total number of items in the sys-

tem is M + Y E N and if s items are in repair, then N - s items

are at the operating node, so that when s > Y , the population is oper-

ating at less than the desired strength of M

For modeling purposes, the operating node of the two-node network

pictured in Figure 1 can be considered to be an M channel queue, so

M Operating Unitsz
,ii Failed Units CX Min(MN-s)]

Y Spares

Repair Facility
c channels

Repaired Units [p Min(s,c)]

Figure l.--(l,l,l/l,0/f,f) system.

-8-
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that if there are more than M units at this node (s < Y), the queue

represents on-hand spares. If no queue is present and some "servers"

are idle at the operating node (s > Y), then the population is operating

at degraded strength (as mentioned above).

Utilizing the SERT methodology, the state of the system s can

be considered to be the number of items in or awaiting repair (in re-

supply). The size of S is N - M + Y + 1 , since s - 0,1,2,...,M + Y

There are only two types of events (E = 2). The first type of

f f fevent is a failure. The rate vector for failures is r N (ro,

rs, ..., r) , where

f OMA 04s Y
rs = (M + y -s)X Y < s N

and the target state vector is t (t0, tf, "''' tf, "''' tN) , where

tf.(s + i S-O,l,...,N-1i

t s I~suN

since a failure increases the number in resupply by one, except when N

are in resupply. In this case a failure cannot occur, but we show tNf

as N ; that is, a "mythical" failure does not change the state.

The second type of event is a service completion. The sth com-

ponent of the rate vector rr is

rr 0- s s c

{cu c 4 s - N

and the corresponding sth component of the tr vector is

s 1s

-9-

-1 
1



T-468

We can now apply the SERT multiplication algorithm (3), which reduces to

(i) (o) W i(o)

(ii) (a) For a - 0,1,...,N , set

( f rr + r

(n + 1) (n) r A r

then

(b1) For s - 0,1,...,N , add

f
r
s(n) - to 0f(n + 1)

t

(b2) For s 0,1,...,N , add

r

r
0s(n) "-. to 0r(n+l)

'1S

From O(n) , we can obtain n(t) rather easily using equation

(1), and use W(t) to obtain system performance measures, such as sys-

tem availalility, which we define as the probability that the desired

number of components (N) are operating at time t ; that is,

Y
A(t)- 7 (t)

Sao0

Various other measures such as expected backorder level, expected

number of units operating, etc., can also be readily calculated from

7 (t).

Computational efficiency for system performance measures can be

gained by using 0(n) and then converting to continuous time (see Gross

and Miller, op. cit.), for example, defining

-10
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yA n = I 0Psn),
s-O

we have

T e-At(At)n
A (t) I A n n

n-0

This algorithm has been coded as an interactive FORTRAN program

called REPTRAN1. Sample input and output [A(t) vs. t] are shown in Fig-

ures 2 and 3, respectively. Also shown is the equivalent (l,l,/l,/,.)

calculations--the Dyna-METRIC model. This has also been coded up as

part of the REPTRAN1 program.

Finite source, finite repair models (-,-,-/-,-/f,f) are referred

to as "closed queuing network" models, for these types of models can

4] indeed be viewed as closed queuing networks [the (iii/1,0/ ,) of

REPTRAN1 is the simplest closed network, namely, a two-stage cyclic

queue].

5. SPECIAL CASE: (2,2,2/l,O/f,f)

We now present an implementation of the techniques discussed pre-

viously to the computation of transient probabilities and availabilities

of a (2,2,2/l,O/f,f) system. (It has been coded as a FORTRAN program

called REPTRAN2.) The system is shown in Figure 4. Items of one type

move around a network with six nodes, namely, operational at Base 1 (BUl),

in or awaiting repair at Base 1 (BRI), operational at Base 2 (BU2), in or

awaiting repair at Base 2 (BR2), operational (ready spares) at depot (DU),

and in or awaiting repair at depot (DR). The description of the system

will follow the approach used earlier. The number of operating machines

-11
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$ RUN REPTRAN1

THIS IS REPTRANt PROGRAM

DO YOU WANT A HARDCOPY (Y OR N) I
N
DO YOU WANT TO PRINT ALL OUTPUT (Y OR N) ?
Y
Type: Initial tine (assume zero),final time, time increment
0,15,1
NUMBER OF TIME POINTS = 16 NUMBER OF TIME PERIODS = 15
Case number: I
DO YOU WANT TO RUN A CLOSED QUEUEING NETWORK OR A DYNAMETRIC MODEL
TYPE I OR 2 ACCORDINGLY

Type: M,C,Y,EPSILON
3,2,2, .001
Type number of lambda values to be used
2
"Type lambda values
.2,. .3

Type times of shift of lambdas (start w/ 0)
0,6
Type number of mu values to be used
2

Type mu values

Type times of shift of Mu (start w/0)
0,10
Do you want to type in an initial prob. vector ? (Type Y or N)
If you type N, progrZM assumes (1,0,0,...,0) as
initial prob. vector.

N

DO YOU WANT TO RUN ANOTHER CASE?
Y

Case number: 2
DO YOU WANT TO RUN A CLOSED OUEUEING NETWORK OR A DYNAMETRIC MODEL
TYPE 1 OR 2 ACCORDINGLY
2

TYPE LAMBDAI,LAMBDA2 AND THE TIME AT WHICH THE CHANGE OF LAMBDA OCCURS

TYPE MUI,MU2,MU3

TYPE THE TIMES WHERE THE NUS CHANGE VALUES

Figure 2.--Sample input for REPTRANl: Closed queuing network
and Dyna-METRIC runs.

-12-
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AVAILABILITY AVAILABILITY VS. TIME
1.0 2 2

2

* 2

* 1
*2

* 1 2
0.9+2

*1 2
*2

0 . 8 
2

* 2

* 1
*2

2

0.7 +

0.

0.1
0. . . . . . . . - . 0 0 1 . 2 0 1 . 4
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Base 1

F BRl BUlI.......- Depot

DR

DU

Base2 2, --

BR2 -. BU2:

Figure 4.--General schematic for a

(2,2,2/1,O/f,f) repair-

able item system.

at Base 1 equals the maximum of the desired number, MS1, and the number of

machines at node BUl (#BUI); similarly for Base 2.* The number of spares

*available at the depot spares pool is the number at node DU (#DU). The num-

ber of busy repair channels at Base 1 equals the minimum of the number of re-

pair channels, BCl, and the number of items at node BRI (#BR1); similarly for

Base 2 and the depot. Thus, the system parameters (failure and repair rates)

and the number of machines at each node give us total information about the

system. Knowledge of how machines move around the network completes the de-

scription of the system. The only point which must yet be specified in detail

is the assignment rule for filling backorders to the depot.

Consider the situation where the number of machines at node DR (#DR)

is greater than the spares allocated to the depot, DS. In this case there

will be no machines at node DU and a backorder level of #DR - DS at the depot.

*Quantities with "#" preceding them are system state variables; quanti-
ties without # are either node designators, event descriptors, or preset param-
eter values.

-14-
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The question arises concerning the allocation of the next machine to compl2ete

repair at the depot: To which base should it be given? We most define an al-

location function based on the state of the system. For now. let us define

the state of the system as the number of machines at each node*:

s-(#BUl, #311, #3112, #312, 1DR, #DU)

The number of backcorders at the depot from Bases 1 and 2, respectively, are

#BDl - BS1 - (#3131 + #B11)

#BD2 - 352 - (#1112 + #312)

where BS1 and 352 are the numbers of spares allocated to Bases 1 and 2,

respectively. Possible allocation functions are

ALi s)- 1 if #BDl > #BD2

orALI~) h1 if #BD2 > #BDl

1 if #BDl/BSl > #BD2/BS2
ALL2 (s)

2 if #BDl/BSl > #BD2IBS2

In che program REPTRAN2 we use a randomized generalization of the second alloca-

tion function: Let PROB.ALL(9) be a function that equals the probability of

assigning the repaired machine to Base 1. The assignment rule is given in

Table 11. The weights Wl and W2 are supplied by the user and reflect his

TABLE II

ASSIGNMENT RULE FOR SENDING A REPAIRED MACHINE
FROM DEPOT IN BACKORDER SITUATION

Probability Probability
Condition of Assignment of Assignment

to Base 1 to Base 2

Wl *#BD > W2 * #D2 1 0

Wl *#BDlW-W2* #BD2 1/2 1/2

Wl *#BD < W2* #BD2 0 1

*Because it is a closed system, we shall see later that 3,can be
charcteize byfever state variables.
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strategy for favoring one base over the other when both have backordered

units.

n The description of the system is now complete and we proceed to

describe the Markov model of the system using the SERT approach. This

1requires (i) identifying the state space (as a vector), (ii) defining
the event set, and for each event (iii) computing the vector of transi-

tion rates, and (iv) computing the vector of target states. The randomi-

zation algorithm can then be used to compute transient probabilities to

any user-specified accuracy (e). The events are given in Table III;

once the state space is described as a one-dimensional vector, steps

(iii) and (iv) are straightforward.

In general, the state space appears to have six dimensions, but

jbecause of one-for-one ordering and conservation of the total number of

items in the system, the state space actually has a lower dimension.

TABLE III

* THE EVENTS THAT ACCOUNT FOR ALL THE STATE CHANGES OF
A (2,2,2/l,O/f,f) SYSTEM WITH A SINGLE TYPE OF ITEM

Name Description

BlR Repair completed at Base 1

B2R Repair completed at Base 2

IFB Failure at Base 1 (base repairable)
F2B Failure at Base 2 (base repairable)

F2D Failure at Base 1 (depot repairable)

F2D Failure at Base 2 (depot repairable)

DR1 Repair completed at depot and sent to depot
spares pool if not backorder situation;
otherwise sent to Base 1

DR2 Repair completed at depot while backorder
situation and sent to Base 2

- 16 -



The description of the state space breaks into two situations: no depot

spares available, and some depot spares available,

S - So S +
0 +

where

s O - states with depleted depot spares pool

S+ M states with nondepleted depot spares pool.

First consider SO . In this case, it is possible to describe the state

of the system with four numbers:

(#BUl, #BDI, #BU2, #BD2)

It is known that #DU - 0 and the remaining machines are at node DR.

The feasible states of S are subject to two constraints:

#BUl + #BDl 4 BSI

#BU2 + #BD2 4 BS2

and thus S is a Cartesian product,
0

so  a 1 x T2
where

T1 - {(#BDI, #BUI): #BDl + #BUl < BS1}

T2 - {(#BD2, #BU2): #BD2 + #BU2 < BS2}

These sets are shown in Figure 5. (The notation T is used because the

spaces are triangular.) Note that the number of points in T and T are

1T11 - (BSl+l)(BSI+2)

and

IT - (BS2+l)(BS2+2)
21 2

respectively, and the number of states in SO  is the product

,Soi (BSl+l) (BSl+2)( S2+) BS2+2)
4

. - 17 -
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#BUl

0 1 3

#BD1 2

3 . .

0#BU2

0

2.
#BD2T2

4.

4) 5.

Figure 5.-Examples Of state space
to describe individual
bases; in the case BSlI
4 and BS2 - 5.

Nov let us consider the states where the spares pool at the depot is not

empty, S+. . In this case the state of the system can be described by

three numbers:

(Drnil, #BU2, #DU)

The constraints on these are

*BUl 4 BSl

P #BU2 04 BS2I 1 4 #DU 4 DS
We can condition on the value of #DU to get S+ into the form
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S+U 's'l S 2 V.. 'jVSDS

where S consists of states with exactly i machines in the depot

spares pool; such a set is depicted in Figure 6. Note that each S is a

rectangle and

- (BSI + l)(BS2 + 1)

Thus

jS+ (BSi + 1)(BS2 + 1)DS

and the total number of states is

isi . (BSI+1)(BS1+2)(BS2+l)(BS2+2) + (BSI + l)(BS2 + 1)DS

Examples of state space sizes are given in Table IV.

Although in principle we can apply the randomization algorithm to

a system whose state space is described in this complex multidimensional

* form, we choose to work with one-dimensional state spaces. We made this

choice for two reasons. First, one general implementation of the ran-

domization algorithm will work on all systems after they are put into

#UB2

0 12 4* 0 1 2 3 4

#U1 2 . . . . . .S i

S4 .. . . . .

Figure 6.--The state space describing
status of bases given that
depot spares are available;
BS1 4 and BS2 - 5.

-19-
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TABLE IV

SIZE OF THE STATE SPACES OF (2,2,2/1,0/f,f) SYSTEM
BS1 FOR SELECTED VALUES OF BS1, BS2, AND DS

S B2 DS SoI + IS+ - Isi

2 2 2 36 18 54

4 4 2 225 50 275

6 6 2 784 98 882

8 8 2 2025 162 2187

10 10 2 4356 242 4598

12 12 2 8281 338 8619

18 18 2 36100 722 36822

24 24 2 105625 1250 106875

one-dimensional form, and it seems to decrease the problems in verifying

the program. Second, and even more important, working directly with

vectors rather than structures such as

DSS - T1I x T 2 Vtj S S t

i-1

will speed up the algorithm by a significant factor because it is much

faster to "fetch" and "store" an element of a one-dimensional vector

than it is to "fetch" and "store" an element of a complicated multidi-

mensional array. We estimate that this speeds up REPTRAN2 by a factor

of four or more.

Thus, let us consider putting the elements of

DS
S T1 x T2 V S

-20-
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into a one-dimensional form. First consider TI; this triangular shaped

region can be transformed into a linear space L1 by placing the rows end

to end,

L- = {00, 01, 02, 03, 04, 10, 11, 12, 13, 20, 21, 22, 30, 31, 401

Doing the same thing for T2 yields L2; thus,

So  M T1 x T2  L x L

becomes a two-dimensional set which can be linearized again by placing

the rows end to end as shown graphically in Figure 7. The first IS01

elements of our one-dimensional vector will correspond to the states in

S in linear order as presented in Table IV.

The remaining IS+j elements in the one-dimensional vector will

correspond to the states in S+ arranged linearly as follows:

DSS += Si ,
i-1

where S is depicted in Figure 6. Each Si is put into one-dimensional

form by putting rows end to end (as in Figure 7). Finally, these DS

SO  L1 x L2

0 11

00 • • ...

01
02 dimensional

1 02 •version

40 . . ..

00 01 02 50iL 2

0000, 0001, ... , 0050, 0100, 0101, ..., 0150, ... , 4000, 4001, ... , 4050

Linear version

Figure 7.--Depiction of linearization of the Cartesian product
being transformed into a one-dimensional space.

-21-
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one-dimensional S 's are put end to end starting with S and ending with

SDS. (Thus the last state in this one-dimensional listing is (BS1, BS2,

DS), which corresponds to BS1 units "up" at Base 1 (#BU1 - BS1), BS2 units

up" at Base 2, and DS units in the spares pool at the depot, i.e., a

perfect system with no failed units. The first state listed in the one-

dimensional version of the state space is (0, 0, 0, 0), which corresponds

to BSI units in repair at Base 1, BS2 units in repair at Base 2, and DS

units in repair at the depot.)

This completes the description of the state space of this (2,2,2/

1,0/f,f) system as a one-dimensional vector. It is used by the program

REPTRAN2. A major part of REPTRAN2 is subroutines that take the param-

eters and rates and compute one-dimensional vectors of transition rates

and one-dimensional vectors of target states for each event in Table III.

It then uses the randomization algorithm logic to compute transient state

probabilities and availabilities as described in Section 2.

The program REPTRAN2 can also compute transient probabilities for

(2,2,2/l,0/f,f) systems whose underlying rates (failure and repair rates)

change at discrete points in time (on a lattice time scale)--up to five

changes are accommodated for each underlying rate.

We note that by setting certain parameters to special values,

REPTRAN2 can handle the corresponding special cases. If DS - 0, we lose

the second level of supply and get a (2,2,1/1,0/f,f) system. If FB1 - 1

then all failures at Base 1 are base repairable and Base 1 does not in-

teract with the depot: thus Base 1 is a (1,1,1/1,0/f,f) system and Base

2 and the depot form a (1,2,2/1,0/f,f) system, or (1,2,1/l,0/f,f) if DS - 0.

- 22 -
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6. COMPUTER RUNS

The REPTRAN2 program has been run for various (2,2,2/1,O/f,f)

systems as described in Section 5. The program executes in quite short

times for systems with large state spaces. It also compares the prob-

I abilities computed by the Dyna-METRIC model for corresponding (-,--/
-A

-,-/1,4) systems, which are also a part of the REPTRAN2 code. [For the

Dyna-METRIC developments, details for these corresponding systems, see

Gross, Kioussis, and Miller (1982).] Furthermore, it is reassuring that

when REPTRAN2 was run on a system whose parameters gave rise to a

(1,1,1/1,0/f,f) subsystem (as discussed in Section 4), the program gave

the same answers as REPTRAN1.

REPTRAN2 is interactive and the user has the option of running

either the Dyna-METRIC model or the closed queuing network model for a

(2,2,2/1,0/.,.) system. Availability is defined as the probability that

the number of machines "up" at a base meets or exceeds the number desired

to be operating, and is the primary measure outputted.

We ran a few sample cases to get an idea of how well this program

performs (with reference to time) in computing exact transient solutions.

The sample cases we ran are described in Table V. For each case, all the

necessary parameters (which the user must supply) are listed. The fail-

ure rates and repair rates shift at the times indicated for each case.

For example, in Case la: At time t o . 0 , the failure rate of a

machine at Base 1 is X1 = .4 ; then at time tl = 6 , this rate changes

to X = .6 . At time t0 - 0 the repair rate of a single repair chan-

nel at Base 1 is I = .5 ; then at time t 1 10 , this rate changes

to i = .75. Similar changes occur for the failure and repair rates

at Base 2 and the repair rate at the depot.

-23-
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TABLE V

PARAMETER VALUES OF THE SAMPLE CASES SOLVED USING REPTRAN2

.1 A. Input Parameter Names

Symbol Meaning
t

BSi Allocation of total stock to Base i (operating machines plus
spares), i - 1,2

MSi Desired number of working machines at Base i

BCi Number of repair channels in repair shop at Base i

FBi Proportion of items failing at Base i, base repairable

t Time zero
0Time of shift in mean failure rate, Base i

t~i Time of shift in mean repair rate, Base i
t O) vit i mean al repi rate, Base is

Xi(to0) Initial mean failure rate, Base i item

Ai(txi) Shifted mean failure rate, Base i items

11i(tO Initial mean repair rate, Base i items

Pi(t 4) Shifted mean repair rate, Base i items

Wi Weighting factor for filling depot backorders for Base i

DS Number of depot spares

DC Number of depot repair channels

"D(tO) Initial mean depot repair rate

tD Time of shift in mean depot repair rate

D D(tD) Shifted mean depot repair rate

E Error tolerance

-24-
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Table V--continued

B. REPTRAN2 Run Description

BS1 MS1 BM1 FBi X1 (t 0 ) 1 (tx) u 1(t 0 ) U1 (t 1i

BS MS2 BC2 xB A2 (t 0 ) X2 tx) 112 ( 0 ) U 2 (

DS DC Wi W2 Jto DtD

la 
Cases

4 2 2 .7 .4(0) .6(6) .5(0) .75(10)

5 3 2 .5 .4(0) .6(8) .6(0) .9(12)

2 2 .4 .6 .3(0) .45(11)

* .001

lb

4 2 2 .7 .4(0) .6(6) .5(0) .75(10)

5 3 2 .5 .4(0) .6(8) .6(0) .9(12)

2 2 .5 .5 .3(0) .45(11)

* .001
-

2a

4 2 2 .7 .2(0) .4(6) .5(0) .75(10)

5 3 2 .5 .1(0) .15(8) .4(0) .6(12)

*2 2 .4 .6 .3(0) .45(11)

.001

*,25-
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Table V--oontinsed

2b

4 2 3 .7 .2(0) .3(6) .5(0) .75(10)

5 3 3 .5 .1(0) .15(8) .4(0) .6(12)

2 3 .4 .6 .3(0) .45(11)

.001

3

4 2 2 .7 .2(0) .3(6) .5(0) .75(10)

5 3 2 .5 .1(0 .15(8) .4(0) .6(12)

2 2 .4 .6 .3(0) .45(11)

.00001
4

8 4 4 .7 A4(M .6(6) .5(0) .75(10)

10 6 4 .5 .4(0) .6(8) .6(0) .9(12)

4 4 .5 .5 .3(0) .45(11)

.001

5

18 14 2 .6667 .2(0) .3(6) 1.(0) 1.5(10)

13 10 2 .6667 .143(0) .2143(6) 1.(6) 1.5(10)

3 4 .3 .5(0) .75(10)

.0001

The seven cases in Table V were salved exactly over 16 time

points {0,1,...,151. The CPU execution times are shown in Table VI, as

weil as the size of the state apace of the model. Also shown is the set

of time points at which rate changes (failure or repair) occurred.

"1* -26-
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TABLE VI

SIZE OF STATE SPACE AND RUNNING TIMES FOR REPTRAN2
SOLUTION OF VARIOUS (2,2,2/1,0/f,f) SYSTEMS

System Size of Homogeneous Time CPU
Number State Space Interval (sec.)a

I la 375 0, 6, 8, 10, 11, 12 10.18

lb 375 0, 6, 8, 10, 11, 10 10.48

21
2a 375 0, 6, 8, 10, 11, 12 8.07

2 375 0, 6, 8, 10, 11, 12 8.87

3375 0, 6, 8, 10, 11, 12 9.04

4 3366 0, 6, 8, 10, 11, 12 190.25

5 20748 0, 6, 10 1393.73

aRunning time is approximately proportional to size of

state space x number of event types x number of occur-
rences of Poisson process.

The seven cases in Table VI were also solved using the Dyna-

METRIC approximate model (2,2,2/1,0/-,-). For this comparison it was

necessary to select failure arrival rates at each base. We chose an ar-

rival rate of MS1 * A1 at the Base 1 repair shop and MS2 * X2 at the

Base 2 repair shop. For systems operating at moderate to high availa-

bilities, these should be approximately correct.

We show the computer input and output for case 5 given in Table V

as Figures 8 through 12. The interactive input is shown, first modelled

as an exact queuing network (2,2,2/1,0/f,f) and then modelled as a Dyne-

METRIC model (2,2,2/1,0/,). Both models were solved for availabilities

and then superimposed on three plots. The exact availabilities are

- 27 -
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TYPE: INITIAL TIME (assume zero),FINAL TIME, TIME INCREMENT
0,15,1

NUMBER OF TIME POINTS = 16 NUMBER OF TIME PERIODS a 15

CASE NUMBER 1
DO YOU WANT TO RUN A CLOSED QUEUEING NETWORK OR A DYNAMETRIC MODEL

TYPE 1 OR 2 ACCORDINGLY:1' 1

TYPE BSI,MSI,BCI,AND FBI
18,14,2, .6667

BS1 : 18 MS1 : 14 BCI : 2 FBI 0.6667

TYPE BS2,MS2,BC2,AND FB2
13,10,2,.6667

BS2 : 13 MS2 : 10 'BC2 : 2 FB2 :0.6667

TYPE DS,DC,UI,U2

DS 3 DC 4 Ul :0.5000 U2:0.5000
TYPE NUMBER OF FAILURE RATES TO BE USED IN BASE I

TYPE THE FAILURE RATrES

TYPE THE TIME WHERE THOSE CHANGES IN RATES OCCUR (START WITH 0)
0,6
TYPE NUMBER OF REPAIR RATES TO BE USED IN BASE 1

2

_..j'YP.E THE REPAIR RATES
1 ., 1.5

TYPE THE TIME WHERE THOSE CHANGES IN RATES OCCUR (START WITH o)
0.10
TYPE NUMBER OF FAILURE RATES TO BE USED IN BASE 2
2

TYPE THE FAILURE RATES(BASE 2)
.143. .2143
TYPE THE TIME WHERE THOSE CHANGES IN RATES OCCUR (START UITH 0)

0,6
TYPE NUMBER OF REPAIR RATES TO BE USED IN BASE 2

, 2

TYPE THE REPAIR RATES (BASE 2)
* 1.0,1 .5

TYIFE THE TIME UHERE THOSE CHANGES IN RATES OCCUR (START WITH 0)
0,10
TYPE NUHBER OF REPAIR RATES TO BE USED IN DEPOT

2

'TYPE THE REPAIR RATES (DEPOT)
; .!5, .7S

TYPE THE TIME UHERE THOSE CHANGES IN RATES OCCUR (START UITH 0)
0,I0
TYPE THE DESIREu MAGNITUDE OF THE ERROR(EPSILON)
.001

Figure 8.--Sample input for REPTRAN2 case 5, closed queuing network.

-28-
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DO YOU UANT TO RUN ANOTHER CASE?(Y or N)

CASE NUMBER 2
DO YOU WANT TO RUN A CLOSED OUEUEIN6 NETWORK OR A DYNAMETRIC MODEL
TYPE 1 OR 2 ACCORDINGLY

1.TYPE THE TIME AT UHICH THE FAILURE RATE AND THE REPAIR RATE CHANGE AT BASE
6,10
TYPE THE TWO FAILURE RATES FIRST AND THEN THE TWO REPAIR RATES

2.8,4.2,1.0,1.5
TYPE THE STOCK LEVEL AT BASE 1 AND THE PROPORTION OF THE FAILED ITEMS GOIt

BASE REPAIR 1
4,.6667
TYPE THE TIME AT WHICH THE FAILURE RATE AND THE REPAIR RATE CHANGE AT BASE

TYPE THE TWO FAILURE RATES FIRST AND THEN THE TWO REPAIR RATES (BASE 2)
1.43,2.143,1.0,1.5
TYPE THE STOCK LEVEL AT BASE 2 AND THE PROPORTION OF THE FAILED ITEMS GOIf

PASE REPAIR 2
3, .6667

TYPE THE TIME AT WHICH THE REPAIR RATE CHANGES AT THE DEPOT
10
TYPE THE TWO REPAIR RATES ('FOR DEPOT)
.5,.75
TYPE THE STOCK LEVEL AT THE DEPOT

3

Figure 9.--Sample input for REPTRAN2 case 5, Dyna-METRIC.

plotted using the symbol "1" and the approximate Dyna-METRIC availabili-

ties are plotted using the symbol "2." For time points where the symbol

"1" fails to appear, it coincides with the "2." "Availability 1" is

availability at Base 1, "Availability 2" is availability at Base 2, and

"Availability 3" is simultaneous availability at both Base 1 and Base 2.

29
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AVAILABILITY I AVAILABILITY I VS. TIME
1.0 2 2

1 2

2 2

2
*** 2

* 1 2

0.6 +

.0.

0.0ITIM
0.430
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KAVAILABILITY 2. AVAILABILITY 2 VS. TINE
1.0 2 2

* 2
*1 2 2 2 2

* 12 2
* 2

*1 2

0.9 + 2
* 2

*2

0.5~

03

TIM

Fiuel:-Sfl upu o ETRN ae5

1:coe*uuigntok

2:D*-ERC

*viaiiisa ae2

0.631
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AVAILABILITY 3 AVAILABILITY 3 VS. TINE
1.0 2 2

2 2

* 22
2 2

II
* 2

+ -
+ 1

I i t

• 1

0.0; 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12-0 130

TIME

Figure 12.--S1mple output for REPTlA,2 cast 5,

1: closed queuing network,
2 : Dyna-METIRIC,
simultaneous availabilities at
both bases.
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7. CONCLUSIONS

The SEPT modelling technique and randomization computing algo-

$1 rithm [methodology developed in Gross and Miller (1982)] has been ap-

plied and implemented for computing transient performance measures of

multi-echelon repairable item inventory systems. We have shown t-iat it

is feasible to compute exact probabilities for systems with large state

spaces (20,000 or more states). Furthermore, for the types of systems

under consideration, we believe that significantly larger cases are

feasible using a truncated state space approach; that is, lumping the

vast number of very low probability states together as one.

For example, in a (l,l,l/l,0/f,f) case with 31 states (M - 20,

Y 10), we found that the probabilities of s units in resupply for*

s 15 was zero to at least three significance figures. Lumping states

s 15, 16, ..., 31 together would reduce the problem from 31 states to

*16, a savings of almost 50%. We estimate in the 20,000 state space

example that such a procedure would easily cut the number of states in

half.

We have used the SERT modelling technique on a (b,2,2/k,l/f,f)

system [see Gross, Kioussis, and Miller (1982)]. This has not been

coded, but for moderate b and k , using the truncated state space

approach, development of an efficient code should be feasible. Con-

ceptually, of course, the most general (b,r,s/k,j/f,f) system could be

* modelled using SERT; the problem, of course, is the state space size for

cases other than those with very small values of b , r , s , k , and j

The truncated state space approach offers the most promise for treating

these models.
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