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1. INTRODUCTION

This paper develops models of the transient behavior of Markovian

e -

repairable item provisioning systems. A multi-echelon structure of re-
pair and resupply is of concern. It is desired to develop analytical
solution techniques for exact models of systems with finite numbers of

items and finite repair capacities (i.e., a finite number of repair

iy o L

channels at each repair facility). This is in contrast to Dyna-METRIC
! [see Hillestad (1981) and Hillestad and Carrillo (1980)], which is an
f;; i approximate model assuming an infinite calling population of items and
ample repair capacities.
Most multi-echelon repairable item work has concentrated on
steady state solutions and revolves around the METRIC type of model,

which assumes an infinite population of items which can fail and an

infinite repair capacity, so that no queue ever forms at the repair
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facility [see Sherbrooke (1968) and Muckstadt (1973), for example].
Recently, the METRIC type of model has been extended to provide tran-
sient solutions for a time varying enviromment (Hillestad and Hillestad
and Carrillo, op. c¢it.), and is called Dyna-METRIC.

Exact models for finite item populations and repair capacities

have been studied by Gross, Miller, and Soland (1981), but for steady
state solutions only. This paper presents results on transient solu-
tions for such problems.

For convenience in describing the various multi-echelon systems

studied, the following classification scheme is adopted. A system is

described by seven symbols, in the format (nl,nz,n3/n4,n5/n6,n7).

Table I provides the definitions of n, through n,.

- ) - As an example of the clagsification scheme, consider a military

supply system with five bases, base and depot repair, base and depot

i Bps. i e
L]

TABLE I

SYSTEM CLASSIFICATION SCHEME

‘ Symbol Definition
~§ é n, Number of bases (1,2,...)
i n, Number of levels of repair (1,2,...)
‘FE, j n, Number of levels of supply (1,2,...)
3 n, Number of item types (1,2,...)
ng Number of levels of indenture (0,1,...)
ne Size of item population (f or =)
n, Capacity of repair facilities (f or =)
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' spares, two types of items with no indenture, finite calling population

size (finite numbers of items), and finite repair capacities. This

system would be represented as (5,2,2/2,0/f£,f). The same system with

¢ infinite calling population and infinite repair capacity (Dyna-METRIC

assumptions) would be denoted (5,2,2/2,0/®,@), The most general system

descriptor would be (b,r,s/k,j/f,f); that is, a system with b bases,

r levels of repair, s levels of supply, k item types, 3 levels of
indenture, and finite calling populations and repair capacities. To A
i' describe fully any system, it would still be necessary actually to draw
1 the network structure; nevertheless, this classification scheme will be
most useful in delineating the systems under discussion.

Our goal is to present exact models of Markovian repairable item

provisioning systems which can be solved numerically for exact transient

Y. state probabilities and other performance measures. We are also con- J

cerned with the practical problem of algorithmic implementation on a

LA

computer. It is possible to solve nontrivial, fairly complex, systems
using the algorithmic approach of 'randomization." We have developed
highly efficient algorithms for two cases [(1,1,1/1,0/f,f) and (2,2,2/
1,0/£,£)], and discuss generalizations of these situations.

The approach we use is a two stage procedure. The first stage

is a method of modeling called SERT and the second is an algorithm based
on the randomization technique [the reader is referred to Gross and
Miller (1982) for a full methodological discussion of these]. A good

discussion of the advantages of the randomization procedure as a numeri-

cal analysis tool is found in Grassmann (1977).
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2. SERT MODELING APPROACH
Since we assume a finite Markovian system (all failure times and
repair times are independent exponential random variables), the system

can be fully described by its infinitesimal generator matrix

Q = lim IP!AtZ-II
Aes0 Bt

where P(At) = {pij(At)}; pij(At) = Pr{system is in state j at time
t + At | in state i at time t} . The matrix Q is>finite, say N XN ,
since we are assuming a finite number of items in the system. For
complex systems, N can be quite large (this will be seen later), so
it is necessary to have algorithms as efficient as possible, both in
running times and storage demands made on the computer.

It is not necessary to store this N X N Q matrix if we use

the SERT modeling approach. Briefly [for more detail see Gross and

Miller, op. cit.], we must describe the State space, the types of Events,
the transition Rates (the off-diagonal nonzero elements of the Q matrix),

and the Target states, that is, the state to which the system goes when a

given type of event occurs.
Given a state space S of size N with s denoting a given
state of the system (s € S), and an event space E of size E with

ej denoting an event of type j (ej € E), it is necessary to consider

a rate vector and a target state vector for each e which we denote

j 1
by 5? and tj , respectively. The dimensions of rj and tj are

1 XN . Since in these models E << N , it is much more efficient with

respect to computer storage requirements to work only with the rJ and

o

-

vectors, rather than the N x N Q matrix, as the former requires

consideration of only 2¢E°N elements rather than Nz .

-4-
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The SERT modeling procedure will be illustrated on the (1,1,1/1,0/

f,£) and (2,2,2/1,0/£,f) systems to follow.

3. RANDOMIZATION COMPUTATIONAL TECHNIQUE E

Transient solutions to Markovian queues require solving the set

of differential equations
T'(t) = m(t)Q
where m(t) is the vector of transient probabilities, 1.e., w(t) =

{nj(c)} » where 7 _(t) = Pr{system is in state j at time t} and 7'(t)

b
is the vector of derivatives with respect to time, i.e., m'(t) = {WS(C)} .
Many numerical techniques can be used to solve these linear, first

order differential equations; for example, numerical integration [see

Maron (1982)]. We choose instead a technique referred to as randomiza-

tion [see Gross and Miller, op. eit., or Grassmann (1977)], which is

‘ ideally suited to the SERT modeling of Markovian systems.

Randomization is based upon the ability to transform the continu-

[ Y
L 4

ous parameter Markov process analysis to an analysis of a discrete pa-
rameter Markov chain (MC) whose transition times are generated by a
Poisson process.

1 Consider the continuou§ parameter process we are modeling. It
remains in a given state s until one of many (E possible) events occurs,
which then changes its state to, say, s8' (if it is an event of type
R g' = ci). Since all times are exponential, the time to the next
event is the minimum of exponentials which is also exponential. Hence,

if we look at the process only at transition times, it is a discrete

parameter Markov chain, whose holding (transition) times are exponentially

distributed.
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Since the mean of the holding time in state s may depend on 8 ,
we do not quite have a Poisson process generating these transitions. To
get around this, we denote the mean of the minimom holding time over all
states (this always exists since S is finite) as 1/A and consider a
Poisson process with rate A as a generator of the transitioms. Be-

cause this generates transitions at a greater rate than desired (since A

is the maximun of the state-dependent rates), we must thin the process
to model the actual state-dependent holding times by adjusting the
discrete parameter MC transition probability matrix. Without the ad-

justment, the embedded discrete parameter MC has transition probability

matrix P = {pij} » Py " qij/jgi Qg - The parameter A {is

max Z qij + Adjusting the P matrix for the thinning operation gives
i 3%
the transition probability matrix P = {pij} , where

Y q
oo My

T Ao
jsi

pij =

Thus, the computing formula for m(t) = {ﬂs(t)} is

* N ~Ae n
SCRIPRPIERC e e, 89
n=0 i=

where ¢s(n) is the probability that the system is in state s after

n transitions generated by the Poisson (A) process, and e-At(At)n/h!

is the probability that there are n transitions of the Poisson (A)

process in time (0,t) . The ¢_(n) can be determined using P and

wi(O) in the standard MC way; that is,

¢(m) = m(0) (B)"
= ¢(n ~ 1)? ’
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where 1(0} is the starting state probability vector. The infinite sum
in (1) must be truncated at some appropriate point (see Gross and Miller,
op. cit.) which can be set to guarantee a bound on the error.

Using the target and rate vectors from the SERT procedure, we can
compute the g(n) vectors recursively in a manner more efficient than
using (2) by the following algorithm:

1) 6(0) = (0)
(i1) g(n + 1) 1is computed from g(n) as follows:

E
] o
@ o a+1) = o (a) + [1-I5— ©) ‘
then
(b) for j=1,2,...,E, and s € S, add

¢s(n) . (r'Z/A) to ¢ .(n+1) .

ed

s
What this algorithm does is to operate simultaneously on all com-
ponents of ¢(n + 1) using the components of ¢(n) and the transition

probabilities from P . Note that (ri/A) is p ; that is, the

h|
s,t
probability of going from state 8 to state tg S (the target state

that event j causes the system to switch to when it is in state s )
given an occurrence of the Poisson (A) process. The term
a - Z?-l ri/ A) 1is the probability of ignoring an occurrence of the
Poisson (A) process, which is called thinning and which leaves the sys-
tem in state j (a null event).

This algorithm is very efficient for sparse Q matrices, which is
the situation we generally have for repairable item systems, since it
avolds the zero multiplication that would result from using the matrix

multiplication of (2).
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4, SIMPLE NETWORK MODEL: (1,1,1/1,0/f,f) SYSTEM

The simplest case of a repairable item system is the simple ma-
chine repair model shown in Figure 1. The situation modeled has a popu-
lation consisting of M items desired to be operational at all times and
Y spares to support the system. There are c¢ repair channels, so that
a maximum of c¢ items can be undergoing repair simultaneously. If more
than ¢ items require repair, a queue forms at the repair facility.
Failure and repair times are exponentially distributed random variables
with the mean time to failure of any item denoted by 1/) and the mean
time to repair an item denoted by 1/p ; i.e., A and u are the failure
rate and repair rate, respectively. The total number of items in the sys-
tem is M+ Y =N and if s items are in repair, then N - s items

are at the operating node, so that when s > Y , the population is oper-

ating at less than the desired strength of M . i
For modeling purposes, the operating node of the two-node network

pictured in Figure 1 can be considered to be an M channel queue, so

M Operating Units

Failed Units [A Min(M,N-s)]

Y Spares

MY = N

]
Repair Facility

¢ channels

Repaired Units [y Min(s,c)]

Figure 1.--(1,1,1/1,0/f,f) system.

-8 -




that if there are more than M units at this node (
represents on-hand spares. If no queue is present a
are idle at the operating node (s > Y), then the pop
at degraded strength (as mentioned above).

Utilizing the SERT methodology, the state of
be considered to be the number of items in or awaiti
supply). The size of S is N=M+ Y + 1, since

There are only two types of events (E = 2).
event is a failure. The rate vector for failures is

f f
Tgs ooy rN) » Where

£ {MA 0€Ss<€Y
r-
S M+ y -9 Y<s<N
f £ £
and the target state vector is E = (to, tl’ ceey t
£ s+1 s =0,1,...,N -
ts'
N s =N

since a failure increases the number in resupply by
are in resupply. In this case a failure cannot occu
as N ; that is, a "mythical" failure does not chang

The second type of event is a service complet

r
ponent of the rate vector r is

r {su 0<s<g ¢
r =
s cu c<s <N
and the corresponding sth component of the Ef ve
{s -1 1<s <N
tf =
8 0 s=0,

T-468

s < Y), the queue
nd some "servers"

ulation is operating

the system s can
ng repair (in re-~
s =0,1,2,...,M+Y .
The first type of
f

f f
r = (ro, tl, ooy

-

f

g? o tg) , Where

1

one, except when N

f
r, but we show tN
e the state.

ion. The sth com—

ctor is
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We can now apply the SERT multiplication algorithm (3), which reduces to
(1) ¢(0) = m(0)

(ii) (a) For s = 0,1,...,N , set

rf + l‘r
8 -]
dgn+ 1) = ¢ () - |1 - 1B,

then
(bl) For s = 0,1,...,N , add
£
Ts
¢S(n) ° T to ¢ f(n + 1)
ts
(b2) For s = 0,1,...,N , add
L
¢, (n) + £ to ¢ (a+1).

t
S

From g(n) , we can obtain E(t) rather easily using equation
(1), and use E(t) to obtain system perforﬁance measures, such as sys-
tem availalility, which we define as the probability that the desired
number of components (M) are operating at time ¢t ; that is,
Y
A(r) = ] m_(6)
s=0
Various other measures such as expected backorder level, expected
number of units operating, etc., can also be readily calculated from
m(e) .
Computational efficiency for system performance measures can be
gained by using g(n) and then converting to continuous time (see Gross

and Miller, op. cit.), for example, defining

- 10 -
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Y
An = sgo ¢8(n) ’
we have
T -At n
A(t) = z Ane ant) .

n=0
This algorithm has been coded as an interactive FORTRAN program

Sample input and output [A(t) vs. t] are shown in Fig-

called REPTRAN1.
Also shown is the equivalent (1,1,1/1,0/®,®)

ures 2 and 3, respectively.
This has also been coded up as

calculations--the Dyna-METRIC model.

part of the REPTRAN1 program.
Finite source, finite repair models (-,-,~/-,-/f,f) are referred

to as "closed queuing network" models, for these types of models can
indeed be viewed as closed queuing networks [the (1,1,1/1,0/«,») of

REPTRAN] is the simplest closed network, namely, a two-stage cyclic

queue].

S. SPECIAL CASE: (2,2,2/1,0/f,f)
We now present an implementation of the techniques discussed pre-

viously to the computation of transient probabilities and availabilities
(It has been coded as a FORTRAN program

of a (2,2,2/1,0/£,£) system.
Items of one type

called REPTRAN2.) The system is shown in Figure 4.
move around a network with six nodes, namely, operational at Base 1 (BUl),

in or awaiting repair at Base 1 (BR1l), operational at Base 2 (BU2), in or

awaiting repair at Base 2 (BR2), operational (ready spares) at depot (DU),
The description of the system

and in or awaiting repair at depot (DR).
The number of operating machines

will follow the approach used earlier.

-11 -
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* $ RUN REPTRANI1
THIS IS REFTRAN! PROGRAM

DO YOU UWANT A HARDCOPY (Y OR N) 7

N

DO YOU WANT TO PRINT ALL OUTFUT (Y OR N) ?

Y

Type: Initial time (assume zevo),final time, time increment
0,15,1

NUMBER OF TIME FOINTS = 16 NUMEBER OF TIME FERIQODS = 1§
Case number: 1 :
DO YOU WANT TO RUN A CLOSED QUEUEING NETWORK OR A DYNAMETRIC MOLDEL
TYPE 1 OR 2 ACCORDINGLY

1

Type: M,C,Y,EPSILON

3,2,2,.001

Type number of lambda values to be used

2

Type lambda values

-2,-3

Type times of shift of lambdas (start w/ 0)
0,6

Type numirer of mu values to he used

2

. Type nu values

-
.J' n?d

Type times of shift of mu (start w/0)
. 0,10
Do you want to type in an initial prob. vector ? (Type Y or N)
If you type N, program assumes (1,0,0,...,0) as
initial prob. vector.
N

D0 YOU UANT TO RUN ANOTHER CASE?

Y

Case number: 2

0 YOU UANT TO RUN A CLOSED QUEUEING NETUWORK OR A DYNAMETRIC MOREL
TYFPE 1 OR 2 ACCORDINGLY

2

TYPE LAMBDA1,LAMBDA2 AND THE TIME AT WHICH THE CHANGE OF LAMEDA OCCURS
iby.9,6

TYPE MU1,MU2,MU3

.5'.5’.75

TYPE THE TIMES WHERE THE MUS CHANGE VALUES

Figure 2.--Sample input for REPTRAN1l: Closed queuing network
and Dyna-METRIC runms.




AVAILABILITY AVAILABILITY VS, TIME 1
1.0 2
* 2
*
* 2 !
* 1
- * 2 - - - _ -l
E 3
* 1 2
0.9 + 2
* 1 2
* 2
* 1 2
* 1 2
* 2
* 2
1 *
0.8 + 2 1
*® 1 1
* 2 1
*
* 2
* 1 1
*
s *
0 . 7 + 1
*
. * 1
*
*
4 *
*
€*®
9.6 +
) *
7 *
. *
4 *
2 »
' *
P 3

Q.0 +XEERPLEBELERERLIRREEFERERERRERPRERREPRRERRPRRERLRR LR PR RS Rk bk Rk kk b

0.0 1.0 2.0 3.0 4.0 S5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.9
0

' TIME

Figure 3.--Sample ocutput for REPTRAN1: Closed queuing network
(1) and Dyna-METRIC (2) runs.
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Figure 4.--General schematic for a
(2,2,2/1,0/£,£) repair-
able item system.

at Base 1 equals the maximum of the desired number, MS1l, and the number of
machines at node BUl (#BUl); similarly for Base 2.* The number of spares
available at the depot spares pool is the number at node DU (#DU). The num-
ber of busy repair channels at Base 1 equals the minimum of the number of re-
pair channels, BCl, and the number ofvitems at node BR1 (#BR1); similarly for
Base 2 and the depot. Thus, the system parameters (failure and repair rates)
and the number of machines at each node give us total gpformation about the
system. Knowledge of how machines move around the network completes the de-
scription of the system. The only point which must yet be specified in detail
is the assignment rule for filling backorders to the depot.

Consider the situation where the number of machines at node DR (#DR)
is greater than the spares allocated to the depot, DS. In this case there

will be no machines at node DU and a backorder level of #DR - DS at the depot.

AQuantities with "#" preceding them are system state variables; quanti-
ties without # are either node designators, event descriptors, or preset param-
eter values.

- 14 -
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' The question arises concerning the allocation of the next machine to complete
repair at the depot: To which base should it be given? We must define an al-
location function based on the state of the system. For now, let us define
the state of the system as the number of machines at each node*:

s = (#8U1, #BR1, #BU2, #BR2, #DR, #DU) .

The number of backorders at the depot from Bases 1 and 2, respectively, are

#8D1 = BS1 - (#BU1 + #BR1)
! #BD2 = BS2 - (#BU2 + #BR2)
where BS1 and BS2 are the numbers of spares allocated to Bagses 1 and 2, :

respectively. Possible allocation functions are

{1 if #BD1 > #BD2
ALL1(s) =
2 if #B8D2 > #BD1
- or
{1 if #BD1/BS1 » #BD2/BS2
ALL2(s) =
2 if #BD1/BS1 > #BD2/BS2

In the program REPTRAN2 we use a randomized generalization of the second alloca-
tion function: Let PROB.ALL(*) be a function that equals the probability of
assigning the repaired machine to Base 1. The assignment rule is given in

% Table II. The weights W1 and W2 are supplied by the user and reflect his

TABLE II

P ASSIGNMENT RULE FOR SENDING A REPAIRED MACHINE
FROM DEPOT IN BACKORDER SITUATION

Probability Probability
Condition of Assignment of Assignment
to Base 1 to Bage 2
W1l * #BD1 > W2 * #BD2 1 0
W1 * #BD1 = W2 * #BD2 1/2 1/2
Wl % #BD1 < W2 * #BD2 0 1

*Because it is a closed system, we shall see later that g can be
characterized by fewer state variables.

- 15 -
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strategy for favoring one base over the other when both have baékotdeted
units.

The description of the system is now complete and we proceed to
describe the Markov model of the system using the SERT approach. This
requires (i) identifying the state space (as a vector), (ii) defining
the event set, and for each event (iii) computing the vector of tranai-~
tion rates, and (iv) computing the vector of target states. The randomi-
zation algorithm can then be used to compute transient probabilities to
any user~specified accuracy (€). The eveuts are given in Table III;
once the state space is described as a one-dimensional vector, steps
(i11i) and (iv) are straightforward.

In general, the state space appears to have six dimensions, but
because of one~for-one ordering and conservation of the total number.of

items in the system, the state space actually has a lower dimension.

TABLE III

THE EVENTS THAT ACCOUNT FOR ALL THE STATE CHANGES OF
A (2,2,2/1,0/f£,f) SYSTEM WITH A SINGLE TYPE OF ITEM

Name Description

B1R Repair completed at Base 1

B2R Repair completed at Base 2

F1B Failure at Base 1 (base repairable)

F2B Failure at Base 2 (base repairable)

F1D Failure at Base 1 (depot repairable)

F2D Failure at Base 2 (depot repairable)

DR1 Repair completed at depot and sent to depot
spares pool if not backorder situation;

otherwise sent to Base 1

DR2 Repailr completed at depot while backorder
gituation and sent to Base 2

TR R PP g g
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.54 The description of the state space breaks into two situations: no depot
? spares available, and some depot spares available,
? A S=8,Vs,
where

S, = gtates with nondepleted depot spares pool.

d

’3 SO = gtates with depleted depot spares pool
! +
!

First consider SO . In this case, it is possible to describe the state

of the system with four numbers:

(#8U1, #8BD1, #BU2, #BD2)
It i3 known that #DU = 0 and the remaining machines are at node DR.

The feasible states of So are subject to two constraints:

#BUl + #BD1l < BS1

#BU2 + #BD2 < BS2

and thus 30 is a Cartesian product,

' So = T1 X T2

where

T1 = {(#BD1, #BUl): #BD1 + #BUl < BS1}

72 = {(#BD2, #BU2): #BD2 + #BU2 € BS2}

These sets are shown in Figure 5. (The notation T 1is used because the

spaces are triangular.) Note that the number of points in T1 and T2 are

[N

_ (BS1+1) (BS1+2)
7,1 2

and

It I « (BS2+1) (BS2+2)
2 2

respectively, and the number of states in S0 is the product

S | - ABSL*L)(BS1+2) (BS2+1) (BS2+2)
Y 4

A P ORI W

-17 -
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#BU1
o 1 2 3 4%
0 . . . . .

#BD1 2 - . . Tl
3 . .
4 o ]
#BU2
o 1 2 3 4 5
0 . . . . . .
1 e . . . .

#BD2 T
3 . . . 2
4 . .
5 .

Figure 5.--Examples of state space
to describe individual
bases; in the case BSl =
4 and BS2 = 5.
Now let us consider the states where the spares pool at the depot is not
empty, S+ « In this case the state of the system can be described by
three numbers:
(#BU1, #BU2, #DU)
The constraints on these are
#BUl1 < BS1
#BU2 < BS2
1 < #DU € DS

We can condition on the value of #DU to get S+ into the form

- 18 -
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s,Us Vs,V .. Vs
‘é? : where Si consists of states with exactly i wmachines in the depot
g % spares pool; such a set is depicted in Figure 6. Note that each S1 is a
';ﬁ rectangle and
IS, | = (Bs1 + 1)(8S2 + 1)
Thus

| IS, | = (BS1 + 1)(BS2 + 1)Ds

and the total number of states is

Is| = <BSL+D) (BSl+2)4(BSZ+1) (BS2+2) . (5ot 4 1)(BS2 + 1)DS

Examples of state space sizes are given in Table IV.

Although in principle we can apply the randomization algorithm to

a system whose state space is described in this complex multidimensional

. form, we choose to work with one-dimensional state spaces. We made this
choice for two reasons. First, one general implementation of the ran-

domization algorithm will work on all systems after they are put into

#uB2
: « 0 1 2 3 4 5
: 0 . . . . . .
i 1 3 . . - . .

#UBl 2 . 0 . . . ) s

4 . . . . . .

: Figure 6.~-The state space describing

b status of bases given that

] depot spares are available;
BS1 = 4 and BS2 = 5,
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TABLE IV

SIZE OF THE STATE SPACES OF (2,2,2/1,0/f,f) SYSTEM
FOR SELECTED VALUES OF BS1, BS2, AND DS

BS1 BS2 DS lsol + s | = |s]
2 2 2 36 18 54
4 4 2 225 50 275
6 6 2 784 98 882
8 8 2 2025 162 2187
10 10 2 4356 242 4598
12 12 2 8281 338 8619
18 18 2 36100 722 36822
24 24 2 105625 1250 106875

one~dimensional form, and it seems to decrease the problems in verifying
the program. Second, and even more important, working directly with
vectors rather than structures such as

DS

s=T,xT,VUs,

i=1
will speed up the algorithm by a significant factor because it is much
faster to "fetch" and "stofe" an element of a one-dimensional vector
than it is to "fetch" and "store”" an element of a complicated multidi-~
mensional array. We estimate that this speeds up REPTRANZ by a factor
of four or more.

Thus, let us consider putting the elements of

DS
s-rlxrzui\njlsi
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into a one-dimensional form. First consider Tl; this triangular shaped
region can be transformed into a linear space L1 by placing the rows end

to end,

L1 = {00, 01, 02, 03, 04, 10, 11, 12, 13, 20, 21, 22, 30, 31, 40} ]

Doing the same thing for T2 yields L2; thus,

becomes a two-dimensional set which can be linearized again by placing
the rows end to end as shown graphically in Figure 7. The first ISOI
elements of our one-dimensional vector will correspond to the states in
So in linear order as presented in Table IV.

The remaining |S+[ elements in the one-dimensional vector will
correspond to the states iﬁ S+ arranged linearly as follows:

DS
Sy = l:i Sy

where Si is depicted in Figure 6. Each Si is put into one-dimensional

form by putting rows end to end (as in Figure 7). Finally, these DS

So= Ly xL
r=-==-=-==== |
00 1 ° . ® eee
| 1
01 |. . . |
L ' ! 2 dimensional
1 02 ,° . . 1 version
[ (
1. I ;
40 e o e ! ‘
Lo I
00 01 02 50
L2

oooo, o001, ..., 0050, o100, 0101, ..., O150, ..., 4000, 4001, ..., 4050
Linear version

Figure 7.--Depiction of linearization of the Cartesian product
being transformed into a one-dimensional space.

- 21 -
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' one-dimensional Si's are put end to end starting with Sl and ending with

dimensional version of the state space is (0, 0, 0, 0), which corresponds

(N
,3 SDS' (Thus the last state in this one-dimensional listing is (BS1l, BS2, :
%% DS), which corresponds to BSL units "up" at Base 1 (#BUl = BS1), BS2 units é
_ % "up'" at Base 2, and DS units in the spares pool at the depot, i.e., a ;
’g perfect system with no failed units. The first state listed in the one- E
i 3

to BSl1 units in repair at Base 1, BS2 units in repair at Base 2, and DS
units in repair at the depot.)

4 This completes the description of the state space of this (2,2,2/
1,0/f,f) system as a one-dimensional vector. It is used by the program

REPTRAN2. A major part of REPTRAN2 is subroutines that take the param-

eters and rates and compute one-dimensional vectors of transition rates

R and one-dimensional vectors of target states for each event in Table III.
It then uses the randomization algorithm logic to compute transient state
probabilities and availabilities as described in Section 2.

The program REPTRANZ can also compute transient probabilities for
(2,2,2/1,0/£,f) systems whose underlying rates (failure and repair rates)
change at discrete points in time (on a lattice time scale)--up to five
changes are accommodated for each underlying rate.

' We note that by setting certain parameters to special values,
REPTRAN2 can handle the corresponding special cases. If DS = 0, we lose
the second level of supply and get a (2,2,1/1,0/f,f) system. If FBl =1
then all failures at Base 1 are base repairable and Base 1 does not in-

teract with the depot: thus Base 1 is a (1,1,1/1,0/f,f) system and Base

2 and the depot form a (1,2,2/1,0/f,f) system, or (1,2,1/1,0/f,£) if DS = 0.

F ~22 -
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6. COMPUTER RUNS

The REPTRAN2 program has been run for various (2,2,2/1,0/f,f)

systems as described in Section 5. The program executes in quite short
times for systems with large state spaces. It also compares the prob-
abilities computed by the Dyna~-METRIC model for corresponding (-,-,-
-,=/®,®) systems, which are also a part of the REPTRAN2 code. [For the
Dyna-METRIC developments, details for these corresponding systems, see
Gross, Kioussis, and Miller (1982).] Furthermore, it is reassuring that
when REPTRAN2 was run on a system whose parameters gave rise to a
(1,1,1/1,0/£,£f) subsystem (as discussed in Section 4), the program gave
the same answers as REPTRANI1.

REPTRAN2 is interactive and the user has the option of running
either the Dyna-METRIC model or the closed queuing network model for a
(2,2,2/1,0/+,) system. Availability is defined as the probability that
the number of machines "up" at a base meets or exceeds the number desired
to be operating, and is the primary measure outputted.

We ran a few sample cases to get an idea of how well this program
performs (with reference to time) in computing exact transient solutions.
The sample cases we ran are described in Table V. For each case, all the
necessary parameters (which the user must supply) are listed. The fail~
ure rates and repair rates shift at the times indicated for each case.

For example, in Case la: At time t. = 0 , the failure rate of a

0

machine at Base 1 is Al = .4 ; then at time tk = 6 , this rate changes }
1 E
to Al = 6 . At time tg = 0 the repair rate of a single repair chan-

nel at Base 1 is M- .5 ; then at time tu = 10 , this rate changes
1

to ul = .75 . Similar changes occur for the failure and repair rates

at Base 2 and the repair rate at the depot.

-23 -
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; TABLE V
.gg PARAMETER VALUES OF THE SAMPLE CASES SOLVED USING REPTRAN2
ég A. Input Parameter Names
j Symbol Meaning
i
L BSi Allocation of total stock to Base i (operating machines plus
f spares), i = 1,2
»
; MSi Desired number of working machines at Base 1
!
‘ BCi Number of repair channels in repair shop at Base i
FBi Proportion of items failing at Base i, base repairable
to Time zero
ty Time of shift in mean failure rate, Base i
i
tu Time of shift in mean repair rate, Base i
i
: A, (ty) Initial mean failure rate, Base i items
« itto
. ) Aty ) Shifted mean failure rate, Base 1 items
; i
. ui(co) Initial mean repair rate, Base i items
' ui(cu ) Shifted mean repair rate, Base i items
i
wi Weighting factor for filling depot backorders for Base i
DS Number of depot spares
DC Number of depot repair channels
uD(to) Initial mean depot repair rate
f
; th Time of shift in mean depot repair rate h
? uD(tD) Shifted mean depot repair rate
4
i € Error tolerance
?:' ----------- - - - - - - - - - - - - - en ea e . = @ - - - - - -
{ ¢
7
4 ' -2 -
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A -
z‘,aﬂ-&-ﬁi‘x‘fﬁu Y-

B. REPTRANZ Run Description

ul(tul)

uz(tuz)

.5(0)

.6(0)

.75(10)
.9(12)

.75(10)

.9(12)

BS1 MS1 BC1
BS2 MS2 BC2
DS DC Wl
€

1la

4 2 2

5 3 2

2 2 A

.001

1b

4 2 2

5 3 2

2 2 5

.001

2a

4 2 2

5 3 2

2 2 .4

.001

FB1 xl(co) Al(tll)
FB2 Az(to) Az(tkz)
w2 uD(to) uD(tD)
Cases
o7 .4(0) .6(6)
S .4(0) .6(8)
.6 .3(0) .45(11)
.7 .4(0) .6(6)
.5 .4(0) .6(8)
.5 .3(0) .45(11)
.7 .2(0) 4(6)
.5 .1(0) .15(8)
.6 .3(0) L45(11)
- 25 -

.75(10)

.6(12)
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' Table V--comtinued
2b
4 2 3 .7 .2(0) .3(6) .5(0) .75(10)
5 33 .5 .1(0) .15(8) .4(0) .6(12)
2 3 4.6 .3(0) .45(11)
.001
R
‘ 4 2 2 .7 .2(0) .3(6) .5(0) .75(10) ‘
J 5 3 2 .5 .1(0) .15(8) .4(0) .6(12) |
2 2 4% .6 .3(0) .45(11) |
.00001
: P
‘? 8 & 4 .7 .4(0) .6(6) .5(0) .75(10)
E : 10 6 4 5 .4(0) .6(8) .6(0) .9(12)
‘ 4 4 5L .3(0) .45(11)
, ' .001
s T T T TT ST T T TT
é 3 18 16 2 6667  .2(0) .3¢6) 1.¢0)  1.5(10)
g : 13 10 2 6667  .143(0)  .2143(6)  1.(6) 1.5(10)
4 t 3 4 S5 .5(0)  .75(10)
,f . .0001

QAR

The seven cases in Table V were solved exactly over 16 time
points {0,1,...,15}. The CPU execution times are shown in Table VI, as
well as the size of the state space of the model. Also shown is the set

of time points at which rate changes (failure or repair) occurred.

by | - 26 -
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IO TABLE VI
.?4 SIZE OF STATE SPACE AND RUNNING TIMES FOR REPTRAN2
‘fa SOLUTION OF VARIOUS (2,2,2/1,0/f,f) SYSTEMS
; System Size of Homogeneous Time CPU
: : Number State Space Interval (sec.)a
‘q la 375 o, 6, 8, 10, 11, 12 10,18
1 1b 375 o, 6, 8, 10, 11, 10 10.48
. 2a 375 0, 6, 8, 10, 11, 12 -  8.07
2b 375 o, 6, 8, 10, 11, 12 8.87
3 375 0, 6, 8, 10, 11, 12 9.04
4 3366 o, 6, 8, 10, 11, 12 190,25
5 20748 0, 6, 10 1393.73

aRunning time is approximately proportional to size of
’ state space X number of event types X number of occur-
L a . rences of Poisson process.
{
1

The seven cases in Table VI were also solved using the Dyna-

METRIC approximate model (2,2,2/1,0/w,»). For this comparison it was

necessary to select failure arrival rates at each base. We chose an ar-

a et I o -

rival rate of MS1 * Al at the Base 1 repair shop and MS2 * Xz at the
Base 2 repair shop. For systems operating at moderate to high availa-

3 bilities, these should be approximately correct.

We show the computer input and output for case 5 given in Table V
ié as Figures 8 through 12. The interactive input is shown, first modelled
 @ : as an exact queuing network (2,2,2/1,0/f,f) and then modelled as a Dyna-

' ?_ 4 METRIC model (2,2,2/1,0/®,), Both models were solved for availabilities

and then superimposed on three plots. The exact availabilities are
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TYPE: INITIAL TIME (assume zero),FINAL TIME, TIME INCREMENT

0,15,1

NUMBER OF TIME FOINTS = 16

CASE NUMBER : 1

00 YOU UWANT TO RUMN A& CLOSED
TYPE 1 OR 2 ACCORDINGLY

1

TYPE BSt,M51,BC1,AND FBI
18,14,2,.6647

BSt : 18 MS1 : 14 BCt :

TYPE BS2,452,BC2,AND FB2
13,10,2,.6467

BS2 : 13 Ms2 : 10 'BC2

TYFE DS,DC,W1,U2
3’4’ .5, .5

Ds 3 DC = 4 W1 :0.5000
TYPE NUMBER OF FAILURE RATES YO BE USED IN BASE 1

2
TYPE THE FAILURE RATES

.2,.3

TYPE THE TIME WHERE THOSE CHANGES IN RATES OCCUR

0,48

TYPE NUMBER OF REFAIR RATES TO BE USED IN BASE 1
l’

_..JYFE THE REPAIR RATES
1.,1.5

TYPE THE TIME WHERE THOSE CHANGES IN RATES OCCUR

0,10

TYPE NUMBER OF FAILURE RATES TO BE USED IN EASE
q

TYFE THE FAILURE RATES(RASE 2)

-143,.2143

TYPE THE TIME WHERE THOSE CHANGES

0,4

TYPE NUMBER OF REFAIR RATES TQ RE
ﬁ

TYFE THE REPAIR RATES (BASE 2)

1.9,i.5

TT#E THE TIME UHERE THOSE CHAMGES

0,10

TYFE NUMBER OF REFAIR RATES TO BE

2

TVFE THE REPAIR RATES (DEFPOT)

25,479

TYPE THE TIME WHERE THOSE CHANGES

9,19

TYME THE DESIREU MAGNITUDE OF THE

«001

QUEUEING NETWORK OR

IN RATES OCCUR

USED IN BASE

IN RATES OCCUR

USED IN DEFOT

IN RATES OCCUR

ERRORCEPSILON)

NUMBER OF TINE FERIODS = 15

A DYNAMETRIC MODEL

(START WITH

(START WITH

(START WITH

(START WITH

(START WITH

Figure 8.--Sample input for REPTRAN2 case 5, closed queuing network.
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DO YOU WANT TO RUN ANOTHER CASE?(Y or N)
Y ‘
CASE NUMBER : 2
00 YOU UANT TO RUN A CLOSED GUEUEING NETUORK OR A DYNAMETRIC MODEL
TYPE 1 OR 2 ACCORDINGLY
.2 .
TYPE THE TIME AT WHICH THE FAILURE RATE AND THE REPAIR RATE CHANGE AT BASE
6,10
TYPE THE TWQ FAILURE RATES FIRST AND THEN THE TWD REPAIR RATES
2.8,4.2,1.0,1.5
TYPE THE STOCK LEVEL AT BASE 1 AND THE PROFORTION OF THE FAILED ITEHS GOI!
EASE REPAIR 1
4,.6667
TYPE THE TIME AT WHICH THE FAILURE RATE AND THE REPAIR RATE CHANGE AT BASE
4,10 :
TYPE THE TWO FAILURE RATES FIRST AND THEN THE TWO REPAIR RATES (BASE 2)
1.43,2.143,1.0,1.5
TYFE THE STOCK LEVEL AT BASE 2 AND THE PROPORTION OF THE FAILED ITENS GOI!
DASE REPAIR 2
3,.4647
TYFE THE TIME AT WHICH THE REFAIR RATE CHANGES AT THE DEFOT
10 )
TYFE THE TWO REPAIR RATES (FOR DEFOT)
.5,.75
TYPE THE STOCK LEVEL AT THE DEPOT
3

Figuré 9.-~Sample input for REPTRAN2 case 5, Dyna-METRIC.

plotted using the symbol "1" and the approximate Dyna-METRIC availabili-
ties are plotted using the symbol "2." For time points where the symbol
"1" fails to appear, it coincides with the "2." "Availability 1" is

availability at Base 1, "Availability 2" is availability at Base 2, and

"Availability 3" is simultaneous availability at both Base 1 and Base 2.
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AVAILABILITY 1 AVAILABILITY 1 VS. TIME
1.0 2 2

- - e - R - L - . .. P e mmeeait e e ———————— - ——

#E P REERE P EEREEEREETRRDREFEFEEEREEF P EEEENE R

* .
0.0 +HREXPREFEFKERRIRERELEEEREREERPEERRIRRRRERRR R KRR LR KR SRR kR SR AR
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14
9
TIME

Figure 10.--Sample output for REPTRAN2 case 5,
1: closed queuing network,
2: Dyna-METRIC,
availabilities at Base 1.
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) AVATILABILITY 2 . AVAILABILITY 2 VS. TIME
1.0 2 2
" 2
* 1 2 2 2 2
* } 2 2
: * 2
h £ 1 1
#* 1 2
*®
0.9 + 2
* 2
* 2 1
E
* 1 1
*
*
*
0.8 + 1
* 1
*
*
* 1
*
¥
* 1
0.7 +
. *
E 3
E
*
*
%
*
D.6 +
*
é *
£ *
%z— :
i *
*
»

Q.9 +HFERT T RE kPR R PR R R R AR RRERRRKP RN R RREE PRSP R PR R RS RS R R RSN
o-o "o 2.0 3-0 4.0 s-o 6-0 7.0 8-0 9-0 10.0 ‘1-0 ‘2.0 13-0
9

TINE

Figure 11.~-Sample output for REPTRAN2 case 5,
1: closed queuing network,
2: Dyna-METRIC,
availabilities at Base 2,

] B -3 -
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AVAILABILITY 3 AVAILABILITY 3 VS. TIME
1.0 2 2

1

e R AP

2.2

4 . E 3
*

¢
G.a +ﬁ$*$+*$**+$***+#***+****+****+****#****#****+****+**#*+**#*+****#*‘1
0.9 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 t1.0 (2.0 13.0

b R P G kW E LR KEEERE RN EEHE G R KRR R

|
e

0
TIME

| ; Figure 12.--Sample output for REPTRAN2 case 5,
- 3 1: closed queuing network,

s 3 2: Dyna-METRIC,

simultaneous availabilities at
both bases.

§ i ’ - 32 -
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7. CONCLUSIONS

The SERT modelling technique and randomization computing algo-
rithm [methodology developed in Gross and Miller (1982)) has been ap-
plied and implemented for computing transient performance measures of
multi-echelon repairable item inventory systems. We have shown tuat it
is feasible to compute exact probabilities for systems with large state
spaces (20,000 or more states). Furthermore, for the types of systems
under consideration, we believe that significantly larger cases are
feasible using a truncated state space approach; that is, lumping the
vast number of very low probability states together as one.

For example, in a (1,1,1/1,0/f,f) case with 31 states (M = 20,

Y = 10), we found that the probabilities of s units in resupply for

s 2 15 was zero to at least three significance figures. Lumping stateé
s = 15, 16, ..., 31 together would reduce the problem from 31 states to
16, a savings of almost 50%. We estimate in the 20,000 state space
example that such a procedure would easily cut the number of states in
half.

We have used the SERT modelling technique on a (b,2,2/k,1/f,f)
system [see Gross, Kioussis, and Miller (1982)]. This has not been
coded, but for moderate b and k , using the truncated state space
approach, development of an efficient code should be feasible. Con-
ceptually, of course, the most general (b,r,s/k,j/f,f) system could be
modelled using SERT; the problem, of course, is the state space size for
cagses other than those with very small values of b , r , s , k, and jJ

The truncated state space approach offers the most promise for treating

these models.
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