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ABSTRACT

This interim report covers research performed from
October 1, 1981 through September 30, 1982, on electron-beam
excited plasma turbulence and electromagnetic emission, on
propagation of intense electromagnetic radiation in the
earth's ionosphere, and on laboratory experiments on particle

beams and plasma waves.
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I. Introduction

This interim report describes work performed under AFOSR
grant #80-0022 during the period October 1, 1981 to September
30, 1982. The subject of research has been the theory of
"Plasma Wave Turbulence and Particle Heating Caused by Electron
Beams, Radiation, and Pinches." The period covered is the third
stage of a comprehensive research program concerned with the non-
linear behavior of plasma subjected to intensely energetic sources.
One of the significant developments in plasma physics over
the past decade has been the theoretical and experimental progress
made in our understanding of nonlinear plasma wave evolution in
response to external sources: A wide variety of radiation sources

5,6 and of electron

such as lasers,l’2 microwaves,s’4 and radar,
beam sources, such as solar electron streams7’8 and laboratory
beams9 can excite plasma wave instabilities in target plasmas.
The waves saturate into a turbulent spectrum,10 and may heat the
plasma, accelerate plasma particles, and/or emit their own radi-

ation. Such processes have been linked to inertial11

12

and magnet-

ic controlled thermonuclear fusion schemes, radar communications

in the earth's ionosphere, and electromagnetic emissions from

7,8 15

beam-plasma systems in the solar wind and in the laboratory.
The phenomena also bear heavily on certain fundamental questions

of plasma turbulence, such as wave collapse in phase space,
13,14

and the nature

electric-field envelope-soliton evolution,

of the so-called '"strong turbulence."13

1
i
i
1
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I1. Summary of Accomplishments

In the following summary, we include the accomplishments
of our program from October, 1981 to September 1982. The
foundation for the present program of research was laid during
earlier sponsorship, under AFOSR #F49620-76-C-0005, from August,
1976 through September, 1979, and under AFOSR 80-0022 during
the period from October, 1979 through September, 1981.

Our research has been divided into three main areas:

1. Radiation and turbulence created by electron beams incident
upon plasmas.

2. Turbulence created by radiation incident upon plasmas.

3. Laboratory studies of beam-plasma systems and plasma turbu-
lence.

We shall discuss recent accomplishments in each of these areas

separately. Details can be found in the Appendices.

A. Turbulence and Radiation Due to Beams

i) Plasma Wave Turbulence Excited by Beams

Our research has centered upon fundamental properties of
the Langmuir turbulence excited by a warm electron beam passing
through a pre-existing plasma, and the electromagnetic emission
from such turbulence. It is essential to note that the spectrum
and intensity of the radiation cannot be predicted without a
thorough knowledge of the spectrum and intensity of the under-

lying plasma wave turbulence.




In past years, we have demonstrated that the dominant
nonlinear physical effect governing the plasma wave turbulence
is the ponderomotive force of the plasma waves on the density.
In our studies of the resulting wave-wave interactions, we
considered the background plasma traversed by the electron
beam to be in thermal equilibrium.

More recently, we have studied effects associated with a
background plasma possessing ambient non-thermal low-frequency
density fluctuations and a non-thermal electron distribution.
Some of these effects are described in Appendices A, B and C.
We now briefly summarize the resulting picture of beam-excited
Langmuir turbulence:

In the absence of significant background density fluctua-
tions, the waves grow until they are large enough to undergo
an induced scatter down to a low wave-number 'condensate' of
spectral energy. The condensate is eventually unstable
to modulational instability, which causes energy flow to
higher wave numbers, where the waves are damped by an enhanced
(nonthermal) level of background plasma electrons with phase
velocities lower than the beam velocity. Due to Landau damping
off this nonthermal feature of the background electron distribu-
tion, the Langmuir spectrum cuts off abruptly at wavenumbers
which are only a few times the wavenumber of the beam-resonant
waves. Hence, the nonthermal feature prevents the self-focusing,
or '"collapse" of electron plasma waves down to very small scale

sizes. The resulting steady state turbulence is described in
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Appendix B. Based on the numerical analysis, we have also
macGe a movie of the evolution of this turbulence in two

dimensions, which dramatically shows wave packet evolution

and the spatial structure of the turbulence. i

It is worth noting that precisely such a nonthermal

feature has been found experimentally in real plasmas, such as

the background solar wind plasma in which electron beams excite
Langmuir waves and electromagnetic emission during Type II1 %
solar radio bursts. For this case, we find steady state
turbulence with the correct intensity (on the order of the ]
largest spacecraft-measured turbulent intensities), and

predict a scale size for electron plasma wave turbulence on

the order of 5 or 10 km, also in agreement with measurement.

The virtues of studying beam-excited electromagnetic emission
during Type II11 bursts is that the best measurements of beam

properties, emission, and Langmuir turbulence exist for such

a beam-plasma system.

In two-dimensional numerical work, we have studied the
effect of enhanced background density fluctuations (e.g. low-
frequency turbulence) on the nonlinear evolution of the beam-
unstable Langmuir waves. By solving the Zakharov equations with
initial low-frequency turbulence present, it has been found
that background density fluctuations on the order of one ten-
thousandth of the background density can stabilize the wave
growth. The physical basis for this stabilization is the

fast scattering of waves out of resonance with the beam as a

3 A By GG 0 VSR an ¢ oo et M Seay oo mee




result of interaction with the density fluctuations. The
requisite level of density fluctuations increases with the
growth rate (proportional to the beam density).

A new statistical theory [Appendix A), which we have
developed with Dr. D.F. DuBois for electron plasma wave
evolution in the presence of a near-gaussian distribution of
background density fluctuations, tends to confirm our numerical
results. The kinetic equation which we have developed for
plasma waves contains the physical effects of absorption, emission,
scattering and diffusion of the wave spectrum. Our point of
departure is the coupling between dynamically active high-
frequency waves and passive (given) low frequency turbulence.
The development is very general, encompassing both resonant
and nonresonant processes, with careful attention to the condi-
tions for validity of the statistical treatment.

We have solved the kinetic equations for a number of special
cases. In the case of density fluctuations of scale size much
longer than the wavelength of the beam-modes, a process of
small-angle scattering or diffusion occurs, spreading the
Langmuir waves into an isotropic distribution of angles.

Since waves propagating oblique to a (warm) beam are damped
by it rather than amplified, an isotropic distribution is
stable. We have calculated the Langmuir wave spectrum under
these conditions [Appendix A].

In very recent work [Appendix C], we have solved the
kinetic equations for the case of a spectrum of density

fluctuations containing scale sizes equal to and shorter than




the wavelength of the beam-modes. Here, there occurs a
process of multiple back-scatters off the ambient density
fluctuations. Energy is carried to higher wavenumbers, where
it is dissipated by thermal or non-thermal Landau damping by
the background plasma electrons (we consider both thermal and
nonthermal background electron distributions). Even for very
small levels of background density fluctuations, the amplifica-
tion of plasma waves by the beam may be saturated linearly by
this scattering process. For still smaller levels, nonlinearity
is responsible for saturation, but even in this case, the early
scattering by the background fluctuations will alter the non-
linear evloution (work in progress).

It is possible that such scattering plays an important
role in relativistic beam-plasma systems, where Buneman and
ion-acoustic turbulence may be excited by return currents.
This low-frequency turbulence can then suppress the beam-
excited Langmuir turbulence and affect the level of electro-
magnetic emission (work in progress).

We have also explored the basis for a statistical theory
of the dynamical (Zakharov) equations of the beam-driven
plasma turbulence, by studying intrinsically chaotic behavior
of the solutions to the dynamical equations as a function
of the beam growth rate. These studies were performed
under assumed conditions of adiabatic ions, and with a trunca-
tion to a few Fourier modes. With three coupled modes, strange
attractors and limit cycles were observed in phase space.

With up to seven modes included, limit cycles and chaos and




intermittency were also observed, as well as the development
of fast (non-adiabatic) time-scale behavior. It is likely
that a statistical treatment of the electron plasma-wave turbu-

lence is only possible in regimes that show chaos.




ii) Radiation from Beam-Plasma Systems

In Appendix D, we describe preliminary results of a cal-
culation of emission of intense high-frequency radiation from
a relativistic beam incident upon a plasma. This work is

highly relevant to the recent experiments of Benford15

in
which megawatts of radiation at tens-of-gigahertz frequencies
were found to emanate from laboratory beam-plasma systems.

The mechanism considered here is Compton up-conversion of
relativistic-beam-excited Langmuir waves into high-frequency
transverse radiation, which has been proposed tentatively by
Benford as a possible explanation for his experimental results.
The detailed calculation has been undertaken by an advanced
graduate student, David Newman. Further work will form part

of his PhD thesis.

The preliminary result is that this mechanism may not be
as efficient as previously thought. One problem is that although
(weak) amplification is predicted for radiation emitted by
Langmuir waves parallel to the beam axis, the radiation
associated with oblique Langmuir waves experiences damping.
Hence, for a beam widely dispersed in angle (as in the Benford
experiments), there will be a competion at each angle between
amplification and dissipation. This competion will hinder or
suppress the emission and may render this particular mechanism
less viable as a theoretical explanation for the experiments.

In the case of low density sub-relativistic beams, for
which we have developed a deep understanding of the underlying

Langmuir turbulence (see Section IIA.(ii) and Appendices A - C




B LT - BT I o A Y e e b, WA SRR PR A e 7 iRk

in this proposal), we have carried out calculations of the

emission near the plasma frequency and the second harmonic.

A manuscript is currently in preparation, but we include here
a brief summary of our findings. We have taken our best
numerically-determined beam-excited Langmuir spectra and used
them as input for calculations of emission of radiation, both
in the presence and absence of weak levels of background
density fluctuations.

In a quiescent plasma, second-harmonic emission is enabled
kinematically by the broad shape of the long-wavelength
(condensate) part of the Langmuir spectrum. The intensity of
this part of the spectrum is sufficient to enable second
harmonic generation by plasma coalescence to be a reasonably
efficient emission mechanism. Fundamental emission seems
most likely to occur by parametric instability of the condensate
into radiation and ion-acoustic waves. The thresholds and
mean free paths for this process are favorable.

In the presence of a low level of density fluctuations,
fundamental emission can occur by conversion of the Langmuir
waves off the local density gradients associated with the
fluctuations. We have developed a kinetic equation which
describes this process. It also includes anomalous absorption
of the emitted radiation by the inverse (so-called Dawson-
Oberman) process. Conditions have been determined when
this reabsorption is sufficiently strong that the plasma is
"optically thick" to this conversion mechanism, and emission

is reduced.

e e




Finally, we remark on the progress of our research concern-
ing emission mechanisms which are independent of Langmuir waves
in beam-plasma systems. Our statistical theory [Appendix A]
contains a preliminary treatment of the so-called plasma
laser effect, in which long wavelength waves (Langmuir or
electromagnetic) are destabilized by nonresonant interaction
with beam-excited Langmuir waves, in the presenece of low-
frequency turbulence. The preliminary result is that this effect
is weak, unless the low frequency spectrum happens to be
narrowly centered upon the beam-resonant part of the Langmuir

spectrum.

B. Intense Radiation Incident on Plasmas

Prior work on the modification of the ionosphere by high
power HF radar has now appeared as a publication ('"Solitons
and Ionospheric Heating'--see Publications since October, 1981).
Related work has just been submitted for publication [Appendix

E]. This research was described in the last interim report.
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C. Laboratory Program on Beam-Plasma Interaction - R. Stern

i) Background

As a bridge between experiments and theory, a new labora-
configuration has been explored and developed, in which beam-
plasma interactions can be measured under conditions which are
especially suitable for computational modeling. This work,
carried out in collaboration with Prof. N. Hershkowitz (U. of
Wisconsin) during his sabbatical stay at the University of
Colorado as a visiting professor, is being reported as a Ph.D.
thesis at the University of Colorado by T. Intrator (now a
post-doc at Wisconsin), and was submitted for publication (see
Appendix F).

The laboratory program on beam-plasma interactions is
intended to measure the production of electromagnetic emission
due to the passage of electron beams through plasmas. The
purpose of the experiments is to set up, under controlled
conditions, a variety of electron beam/plasma configurations
which will enable the dominant parameters of the interaction
to be measured. These measurements can then be compared
with the theoretical predictions, and also generate new
information for further consideration.

The appropriate apparatus in which such a study can be
carried out is the DP device. Although limited to relatively
low beam energies, it has several unique advantages. First,

it is a quasi-steady-state instrument, in which beams are
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generated at precisely synchronized intervals with a high
repetition rate (KHz). This allows the time-evolution of
the beam/plasma interaction to be followed exactly. This
contrasts with single-~-shot experiments, in which the shot-
to-shot variation can completely mask the time dependence. ]
Secondly, the beam and the plasma properties are independently
variable. Finally, it is the only configuration in which
complete and self-consistent measurements of the important
properties, including low-frequency density fluctuations and
particle distribution functions, can be carried out.

The basic device was acquired from Bell Laboratories in
October 1981, and is now fully instrumented. Figure 1 illus-
trates the device; shown are two chambers, respectively an

electron-beam source and a plasma generator section, axially

connected to each other. Figure 2 is a photograph of the
chambers integrated with the instrumentation module, consisting
of 1) vacuum pumps and controls, 2) gas handling circuit,

3) power supplies and 4) probes. Figure 3 shows the overall
experimental configuration, including electronics and input/
output devices. Every one of the experimental segments is
fully operational; calibration runs have been completed, and

a program of systematic measurements is now in progress.
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ii) Beam Properties

Tests on plasma generation and electron beam injection
were initiated in January, 1982. We have successfully operated
the experiment in its basic mode, single-sided injection of an
electron beam into a plasma. Figure 4 shows typical Langmuir
probe traces in the "target'" plasma. These are records of the
current drawn to a small, one-sided metal disc in the plasma,
as a function of the voltage difference between the disc and
the plasma container. Trace A corresponds to the background
plasma, in the absence of a beam, with an electron density of
108 cm-3 and an electron temperature of 1.4 eV. Note that as
the voltage sweeps downwards from the right, the large electron
current is '"turned off," with the current decreasing in an
exponential curve below the plasma potential (about 1.5V),
leaving only the smaller ion current below about -15V.

During the beam injection, the probe trace changes to B.
The effect of the beam can be seen in the lower graph, which
plots the difference (B-A) between the above traces. The
beam introduces an additional current due to streaming electrons,
which is seen to be fairly constant between -3 and -18V. This
current represents a beam density of 20X of the background
density. Below -18V, the additional current "turns off" (just
as the background plasma electrons did below 1.5V), corresponding
to an electron beam energy of about 20 eV. Note that the probe
traces represent integrals of the electron velocity distribution
functions, so that their energy voltage derivatives can provide

the functions directly.
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It should be noted that the data in Figure 4 illustrates
a high density and high energy beam in which the salient
properties are clearly visible. Most of our work utilizes a
lower density beam which can be classified as a warm beam, or
bump-on-tail. We can, at this point, generate a reproducible
beam of 40 eV or more, with a density of up to 207 of the back-
ground plasma. Extension of this to greater energies, if
necessary, should present no technical difficulties.

iii) Wave Excitation

Tests on wave generation and diagnostics were initiated
in June. We have begun to study both externally driven and
nonlinearly generated (beam-excited) ion-acoustic waves in
the plasma. Figure 5 shows a plot of the measured dispersion
relation for these waves when driven externally. The solid
line represents the predicted dispersion relation based on the
electron temperature as measured by a Langmuir probe, corres-
ponding in this case to a wave phase velocity of 2x105 cm/sec.
(The dotted lines show the approximate accuracy of this predic-
tion, * 20%X). The plotted points correspond to measurements
of the wavelengths at varying frequencies, obtained by measuring
phase changes while physically displacing the probe, illustrated
in Figure 6.

Wave excitation by the injected electron beams has been
attained, and is illustrated below. We recall that the

velocity of a 20 eV electron beam is nearly 3x108 cm/sec,

more than 3 orders of magnitude higher than the ion acoustic

wave phase velocity. The electron beam therefore couples
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directly to an electron-plasma wave of very high frequency,
GHz in our case. This, in turn, gives rise to secondary
excitations, including ion-acoustic waves at the lower end

of the spectrum. Figure 7 shows a spectral analysis of the
low frequency response of the plasma during electron beam
injection. The response at 300 KHz is ion acoustic turbulence
which may be associated with parametric instability of
fundamental emission driven by the nonlinear Langmuir wave
spectrum (see Section II1.A(ii) of this report). The response
at 580 KHz may be the ion acoustic turbulence from the non-
linear scatter of beam-excited Langmuir waves into lower
wavenumbers (see Section 1I.A(i) of this report).

iv) Work in Progress

Current work involves continued construction of wave
diagnostics, especially at higher frequencies. Wave genera-
tion and observation for high frequency modes, both electro-
static and electromagnetic, will complete instrumentation for

full observation of the beam/plasma interaction.
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"Beam-Plasma Instability in the Presence of Low Frequency
Turbulence," M.V. Goldman and D.F. DuBois, Phys. Fluids 25,
1062-1072 (1982).

"Solitons and Ionospheric Heating," J. Weatherall, J.
Sheerin, D. Nicholson, G. Payne, and M.V. Goldman, J. Geophys.
Res. A 87, 823-842 (1981).

"Intense Ion Transport in Electrostatic Ion Cyclotron
Waves,'" R.A. Stern and N. Rynn, Proceedings of the 1982 Inter-
national Conference on Plasma Physics (October, 1982).

"Chaotic (Strange) and Periodic Behavior in Instability
Saturation by the Oscillating Two-Stream Instability,' D.A.

Russell and E. Ott, Phys. Fluids 24, 1976-1988 (November, 1981).

B. Papers Submitted for Publication During the Period of

this Report

"Steady State Turbulence with a Narrow Inertial Range,"
[ ]
J.C. Weatherall, D.R. Nicholson, and M.V. Goldman, accepted

for publication by Physics Fluids (1982),
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' "Direct Ion Transport Measurements by Optical Tagging,"
R.A. Stern, D.N. Hill, and N. Rynn, accepted for publication
in Physics Letters A (1982).

"Solitons and Ionospheric Modification," J.P. Sheerin,

J.C. Weatherall, D.R. Nicholson, G.L. Payne, M.V. Goldman,

and P.M. Hansen, accepted for publication by J. Atmos. Terr.
Phys. (March 1982).

"Backscatter Cascade of Beam-Modes off Ambient Density
Fluctuations," D.A. Russell and M.V. Goldman, submitted to
Physics Fluids (1982).

C. Preliminary Reports

"Preliminary Results Concerning Compton Conversion of
Langmuir Waves into High Frequency Electromagnetic Waves
in the Presence of an Ultra Relativistic Electron Beam,"

David Newman.

I D. Invited Papers Presented Between October, 1981 and

September, 1982

"Emission of Electromagnetic Waves from Beam-Plasma
Systems," M.V, Goldman, University of California at Berkeley,
April, 1982.

"Theory of Emission of Radiation from Beam-Plasma Systems,'
M.V. Goldman, Institute for Theoretical Physics, University

of California at Santa Barbara, Goleta, California, March 1982,
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"Status of Observations of Type 111 Solar Radio Wave
Emission,'" M.V, Goldman, Institute for Theoretical Physics,
University of California at Santa Barbara, Goleta, California,
March, 1982, é

"Turbulence and Wave Particle Interaction in Solar Terres-
trial Plasmas," M.V. Goldman, G. Dulk, J. Toomre, and D. Smith,

invited paper at AGU Meeting, San Francisco, December, 1981.

-=-This list does not include the invited talks of Prof. Stern.

A complete list will be furnished with our next proposal.--

E. Abstracts of Contributed Talks

"Steady State Langmuir Turbulence," J.C. Weatherall,

M.V. Goldman, and D.R. Nicholson, paper 8F6, Bull. Am. Phys. Soc.,
vol. 26, pg. 1026, October 1981. (New York meeting of the
Plasma Physics Division of the American Physical Society.)
"Beam Instability in a Plasma with Low Frequency Turbulence,"
Martin V. Goldman and D.F. DuBois, paper 9U3, Bull. Am. Phys.
Soc. vol. 26, pg. 1062, October 1981. (New York meeting of
the Plasma Physics Division of the American Physical Society.)
"Evolution of Bump-on-Tail Instability During Type IIl
Solar Radio Bursts," M.V. Goldman, D. Smith, B. Hafizi, J.
Weatherall, and D. Nicholson, paper 4T18, Bull. Am. Phys. Soc.,

vol. 26, pg. 940, October 1981. (New York meeting of the Plasma
Physics Division of the American Physical Society.)

"Effect of Density Fluctuations on Beam Unstable Langmuir
Waves," M.V. Goldman, J.C. Weatherall, and D.F. Smith, AGU

Fall Meeting, San Francisco, December, 1981.
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"Scattering and Collapse of Langmuir Waves During Type
III Solar Radio Bursts," B, Hafizi, J.C. Weatherall, M.V.
Goldman, and D.R. Nicholson, AGU Fall Meeting, San Freicisco,
December, 1981,

"Intrinsic Stochasticity of Beam-Driven Langmuir Waves,"
D. Russell and M.V. Goldman, AGU Fall Meeting, San Francisco,
December, 1981.

"Solitons and Ionospheric Modification,'" D.R. Nicholson,
P.J. Hansen, G.L. Payne, J.C. Weatherall, M.V. Goldman and
J.P. Sheerin, URSI XXth General Assembly, Washington, D.C.,
August 10-19, 1981, Symposium on Active Experiments, Ionospheric
Modification Session.

"Modulational Interaction of Nonlinear Waves and Recurrence,"
B. Hafizi, 23rd Annual Meeting of Plasma Physics Division of

APS, October, 1981.

F. Conferences Organized

Martin V. Goldman was organizer of an International Work-
shop on Plasma Physics, at the Aspen Center for Physics, June,

1980, 1981, 1982.
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Beam-piasma instability in the presence of low-frequency turbulence

Martin V. Goldman

Department of Astro-Geophysics, University of Colorado. Boulder, Colorado 80309

D.F. DuBois

Theoretical Division, Los Alamos Nasional Laboratories, Los Alamos, New Mexico 87545

{Received 18 August 1981; accepted 26 March 1982)

General equations are derived for a linear beam-plasma instability in the presence of low-
frequency turbulence. Within a “quasilinear” statistical approximation, these equations contain
Langmuir wave scattering, diffusion, resonant and nonresonant anomalous absorption, and a
“plasma laser” effect. It is proposed that naturally occurring density irregularities in the solar
wind may stabilize the beam-unstable Langmuir waves which occur during type III solar

emissions.

i. INTRODUCTION

The saturation of beam-induced instabilities of electron
plasma waves can occur through a wide variety of different
mechanisms. Cold beams can produce relatively coherent
waves which saturate by electron trapping.'? Warm beams,
or cold beams which have broadened,’ are traditionally ex-
pected to saturate by quasilinear plateau formation.® Yet,
under certain circumstances, nonlinear wave-wave interac-
tions are faster, and can dominate. Such ponderomotive
force effects include induced scatter off screened ions,* mo-
dulational instability,™ and collapse.®® The first process can
be treated statistically by weak turbulence wave-wave inter-
action techniques,* and the latter two processes are currently
being studied by “strong™ turbulence methods such as the
direct interaction approximation. '’

These nonlinear saturation processes are usually stu-
died in a spatially homogeneous plasma. Conditions often
arise, however, when random background density inhomo-
geneities are important, and may even predominate over
nonlinear mechanisms in the saturation of beam instabilities.

Refraction and scattering in the random index of re-
fraction variations may cause the regions of nonlinearity to

' beisolated and sporadic.’"?

| Nishikawa and Ryutov'? have studied the relaxation of

a relativistic electron beam in a plasma with random density
+  inhomogeneities. Their statistical treatment is based on the
| angular Fokker-Planck diffusion of Langmuir rays into an
almost isotropic distribution of spectral energy density. A
key point in their analysis is that the angle-averaged quasi-
linear growth rate is always negative. Hence, angular diffu-
sion provides access to dissipative regions of phase space
which can stabilize the instability.

However, Fokker-Planck diffusion explicitly assumes
that the density inhomogeneities have a characteristic scale
sizeg, ' which is much larger than the Langmuir wave scale
1 size, k . '. When this inequality is relaxed, the density inho-

mogeneities may cause anomalous resistivity to occur. This
can be due to resonant large angle scattering, or to nonreson-
ant beating to large wavenumbers. The first process is relat-
' ed to the Dawson-Oberman resistivity.'* The second has
been invoked as a mechanism which stabilizes Langmuir
collapse.'

| The purpose of this paper and its seque!'® is to present a

unified treatment of the effects of a given “external” distri-
bution of density fluctuations on the evolution of beam-un-
stable Langmuir waves. Since we do not make the WKB
approximation (k, »¢), both anomalous resitivity and
Fokker-Planck diffusion effects are contained in appropri-
ate limits of what turns out 1o be a relatively simple, general
integral equation for the Langmuir spectral energy density.
In addition, this equation contains “beat™ emission due to
the Langmuir wave scattering off the density fluctuation.
Such scattering to higher wavenumbers has been suggested
as playing an important role in the observed evolution of
beam-driven Langmiur waves in the presence of external
ion-acoustic turbulence in the vicinity of Jupiter's bow
shock.'” Our equation provides a quantitative basis for
studying this evolution. It is also highly relevant to the phen-
omenon of type III solar radio waves,’® since background
low-frequency turbulence is always present in the solar
wind,'” and is often at such high levels that an electron
stream passing through them will be influenced in Lang-
muir-wave and radio-wave emission. Still another potential
application is to laboratory relativistic beam-plasma systems
in which a return current can excite ion-acoustic fluctu-
ations, or in which the beam significantly disturbs the den-
sity homogeneity. Here also, Langmuir and electromagnetic
emission may be affected.

In the second paper'® we will show that our equations
are relevant to the effect known as plasma laser emission.?
This effect is closely related to anomalous resistivity. When
the beam disturbance and the density spectrum are centered
about wavenumbers for which the damping rate is negative
(i.c., at phase speeds in the up-slope portion of a bump-on-
tail electron velocity distribution function), then the anoma-
lous resistivity changes sign. The existence and nature of this
effect depends strongly on the spectral shape of the low-
frequency turbulence, and may also be sensitive to higher-
order renormalization.

There is an interesting analogy between the present the-
ory in the WKB limit, and statistical theories of Vlasov tur-
bulence. The Langmuir ray plays the role of the electron
trajectory. The ray moves in the effective external “field”
which is the varying refractive index associated with the ex-
ternal density fluctuations. The simplest closure for the
Langmuir kinetic equation is analogous to the quasilinear
closure for the electron distribution function in a given ran-
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dom external field. The conditions for a simple Markoffian
quasilinear description require a broad spectrum of ion den-
sity fluctuations which provides a small correlation time,
again analogous to the Vlasov case. When g, €k, this gives
the quasilinear diffusion of Langmuir rays.'* However,
when 2k<gq,, large angle scattering and anomalous resistiv-
ity effects are obtained.

For both the Vlasov equation and the Langmuir equa-
tion the effects of higher-order renormalization in the ran-
dom external fields are analogous. Even a closure approxi-
mation which contains such renormalization relies on the
assumption that the statistics of the external fields (or den-
sity fluctuations) are near Gaussian.?"-? Effects such as par-
ticle (or ray) trapping are ignored. This assumption is much
easier to justify when the density fluctuations are indeed ex-
ternal. In the more general formulation, self-consistency
must be addressed,'® and this means that the statistics of the
fluctuations can no longer be taken as ad hoc. In the case of

“Vlasov turbulence, this means that Poisson's equation for
the field fluctuations must be taken into account. This finds
its analog in Langmuir turbulence in the second Zakharov
equation for ion-acoustic fluctuations driven by the Lang-
muir pondermotive force. When a self-consistent treatment
of the density fluctuations is required, we should be more
suspicious of closure approximations, in general. However,
there are no guarantees that the statistics of external fluctu-
ations will be near Gaussian in any given application.

In many respects, our theory is quite general, since we
do not specify the nature of the coupling between the waves
and the beam or background particles, but merely represent
such coupling by a fixed wave damping rate, which may be
positive or negative. Many of the present considerations will
apply, with only trivial modifications, to other kinds of
waves in a dissipative medium with random irregularities.
Since we do not make the WKB approximation, our treat-
ment is more general in this respect than the work of Besier-
ies and Tappert,?* who performed careful, systematic studies
of geometrical-optic ray propagation in random media.

The plan of this paper is as follows: In Sec. 11 we shall
set up the basis for a statistical theory, and set forth the
essential and convenient approximations to be employed. In
Sec. 111 we shall make the simplest quasilinear closure and
show its consequences in the case of a short density-fluctu-
ation correlation time: a simple integral equation for the
Langmuir spectral function. Section IV is devoted to esti-
mates of the consequences of the basic equation for the Lang-
muir waves driven by a stream of solar electrons during type
I1I bursts. It is found that these waves can be stabilized by
density fluctuations with ¢, <k, and ¢, =2k, . The Appen-
dix contains a solution of the kinetic equations for an iso-
tropic distribution of Langmuir waves in the presence of
long-wavelength density fluctuations.

In a second paper'® we will discuss in more detail a
number of technical points such as the criteria for the valid-
ity of the Markoff quasilinear description, the nonresonant
cases including the plasa-laser effect, the complications of
long density correlation times (or narrow spectra), higher
renormalization schemes, and the generalization of this ap-
proach to include transverse radiation.
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1I. GENERAL STATISTICAL THEORY

Let us assume that the given spectrum of density fluctu-
ations is spatially homogeneous (in the statistical sense).
Then the Langmuir spectral function will also be spatially
homogeneous, and is given in terms of the Langmuir field

E(r,t) by

Wikt - [2 exp(— hor)(BirarBO). ()
" a4 ) Q9P ’

We wish to work entirely in terms of the slowly time-varying

complex envelope field, & which is related to the Langmuir
field E by

E=|[&exp(—iw,t)+ & *exp(+iw,t}]. (2)
If we insert (2) into (1), and neglect oscillations at 2w, then
Wkt)=(1/16m)[F (k) + F{ - kt)], 3)

where the Langmuir envelope correlation function is
3
Flkt)= I -"—'-, exp ( — &r)(% (r.t}F(0,1))
(2m)

=lim,__(|&kt)?)/V. @)

Our object is to write a suitable equation for the envelope, &,
from which a kinetic equation may be derived for the distri-
bution function, F. Then, # may be found, using (3). We
shall make the following essential assumptions:

(A). The external density fluctuations &n are known sta-
tistically, and have properties which enable a closure of the
equation for F. The averaging, ( ), is assumed to be over an
ensemble of realizations of the random density 6a.

(B). Coupling to the beam and background particles
shall be through a fixed linear external “damping™ rate, y,.
which may be negative or positive in appropriate regions of k
space. Since y, is given and fixed, we are ignoring the reac-
tion of the waves back on the particles, and there will be no
quasilinear plateau formation or particle trapping. Al-
though our treatment is perfectly general, we shall often
have in mind the situation where ¥, is given in terms of the
electron distribution function, by the usual (quasilinear}
expression,

3
r W,
h= v k_’z J‘d ‘wkd, folw, — k). (5)

(C). We shall assume that there are no mean fields, that

is,
(6n) = (&) =0. (6)
(D). As already mentioned, we assume spatially homo-
geneous turbulence.

For convenience in the present treatment, we also make
a number of additional assumptions, which can be relaxed in
a more general treatment.

(E). the envelope field & is taken as electrostatic, so that
&= -V

(F). Nonlinearities in & (or F) will be neglected; that is,
&n will be considered as entirely external. In general, there is
a self-consistent contribution, 8n, which is nonlinearly driv-
en by the Langmuir field. Put more simply, we neglect the
ponderomotive force. Some of the consequencies of ponder-
omotive force are simple, and can be inserted trivially as
corrections to the linear kinetic equations if necessary. For
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example, the weak turbulence effect of induced scattering off
ions can easily be added.'* Modulation instability and col-
lapse, however, are not easily incorporated.'°

(G). We shall assume that y, is not sensitive to the vari-
ation 8. This can be justified explicitly for the case of ion-
acoustic turbulence in the solar wind (5n/n = 10~*). This
restriction can be lifted, in general, as shown by Besieris and
Tappert.®?

Our starting equation for the Langmuir field envelope
& incorporates all of these assumptions, and furthermore,
makes strong contact with previous work on the Zakharov
equation. In fact, our basic dynamical equation is precisely
the first Zakharov equation, in which the density fluctuation
8n is treated as external:

Ve[ild, + 7))+ Vi +6n(r 1)) &(r, 1) =0. )

Here, 7, & has the Fourier transform y, & (k), where ¥, is the
(growth or) damping given by (), with n neglected (or by
any other expression independent of 57 and of #). The units
are the same as in previous work, although & can be consi-
dered to have dimensional units since the equation is linear
and homogeneous in &. The transformation to convert (7)
into dimensional units is

t—w,t, t—2kpt/\3, Sn—bn/2n, (8)
where w, and k, are the plasma frequency and Debyc
wavenumber, respectively.

The field & is assumed to be longitudinal. We have
taken the divergence to remove explicit coupling to the enve-
lope of the transverse plasma waves. Alternately, we can
take the longitudinal part of 6n% to accomplish this. In
Fourier space, Eq. {7) is then equivalent to

(40, + 1) — k3 ] B(k,) + —,‘;zan(q)i,i.-s’w. ~@=0.
[ ]

9
Next, multiply by &(k,)*, and subtract the complex conju-
gate equation, with k, and k; interchanged. The result may
be written as

G~k Mk, o) = = = Tonlallkik Mk, — gk,
L]

— ik, .k, + 1)'izi2] (10)
where f is the dyadic
fik, ko)=F(k,)&(k,)*, (1)
and G ~' is the operator
G~k ka) = id, + 74, + 1, + (k] — kD). (12)
We now take the ensemble average of (10}, noting that,
(177 (kKo )mF(k,)8, o, + (17V )5tk .k,), (13)

by the assumed transiational invariance of the statistically
averaged plasma, here, (56f) = 0. The quantity F (k) defined
by Eq. (4) is simply

F(k)=Tr F(k), (14)
which, from the average of (10), obeys

i9, + 27, )F (k)
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=- -:7Z<6n.l?-(6f(k — k) ~ &k k + q)]k). (15)

q
The equation for 8t is obtained by subtracting the average of
Eq. (10} from Eq. {10) itself
G - l(k I'kl)&f(kl'kl)

1 a a L L
= — —V-Jn.. -« [k F(ks) — Flk, Mk, ]
1 .. P
- [ 7 26'-. [k|k|’6f(k| -ek;) — 6'(k"k2 +akkk;]
.

- ( -:7 360, 1k, 1k, — gk} — Bk, K, + q"iziz})]'

(16)
Equations (15) and (16) are our basic statistical equations.
Together, they generate a hierarchy very similar to the Kli-
montovich equation hierarchy in Vlasov turbulence. The op-
erator G ~' is analogous to the Vlasov operator, F is analo-
gous to the particle distribution function, and én to the field.
The term on the right side of Eq. (15) is analogous to the
usual correlation function associated with fluctuations in the
acceleration term. When the two terms in the braces, are
ignored, we have 6f proportional to §nF, which, when insert-
ed into (15), gives the usual quasilinear closure. In the next
section, we discuss the consequences of this simple closure
scheme.

The conditions for the validity of this closure are similar
to the usual Viasov quasilinear case. Some complications
arise because of the dispersive nature of Langmuir waves and
will be discussed in a second paper.'® For completeness we
merely list these criteria here with only a brief discussion:

(i) The density fluctuations are a quasi-Gaussian ran-
dom process.?'#?

(i) ((6n*) /%) 7.0, €1 1m
where the appropriate correlation time of the density fluctu-
ations is

7. = [inf|2(k + g,) + Sw,/3g|dq]) ™", (18)
where 4gq is the half-width of the density fluctuation spec-
trum which is centered about g = ¢,,. [Note that the infin Eq.
(18) indicates that one takes the combination of signs which
gives the smallest value of the expression within the absolute
value signs.)

(iii) (4q)*r. <1. (19)
The last criterion which does not arise in Vlasov quasilinear
theory appears because of the dispersive nature of Langmuir
waves [i.e., the g% term in Eq. (25)]. It turns out to be neces-
sary so that the density correlation function decays to a neg-
ligible value for 7> 7.

Conditions (i) and (ii) are sufficient for the neglect of
terms in the weak turbulence perturbation expansion be-
yond the quasilinear terms. Condition (i) allows the neglect
of the effect of irreducible correlation functions of order
greater than two provided condition (ii) is satisfied. The strict
definition of a quasi-Gaussian process is given in Refs. 21
and 22.

iil. QUASILINEAR CLOSURE

We neglect the two terms in braces in Eq. {16). The
solution may then be written as

M. V. Goidman and D. F. DuBors 1084




stk = + 3 [ @G~ Tk kb o, 1)

Xk kolk ol (FTo) ~ FEK)],  (20)
where we have used the results that
FlloJ=( (k)8 (k,)*) = — ok, F k)
The Green’s function G is obtained from (12):
G(r—Tk,k)
- [ —iexpn, —n, +i(k3 —k])e—-7), 157
o, <t
(causal condition).  (21)
Combining (20) with (15) gives us a kinetic equation in the
quasilinear approximation:

9, + 2, F (kt)
1 L
- ngdw(q,x Lt +7)1/2)

ok QPG ( ~ Tk — gk
+GU—-Tkk—q[FkT)-Fk—q7), (22)
and where the density correlation function is
Clat ~ e+ 1)/ 2)=(1/V)(bn , ((1)on . A)).

Here, the dependence on ¢ - Tis associated with the spectral
frequency (i.c., the ion-acoustic timescale, if these are ion-
acoustic waves), and the dependence on (f + 7)/2 represents
an evolution time scale for the entire correlation function.

We shall assume that C'is independent of 1 + 7and that
its dependence on 7=t — Tis known and may be expressed in
the following simple general form:

Clgri=C,exp(— v,Tlcosw, 7,
‘where o, is an oscillation frequency, v, is a relaxation rate,
and C, is the spectral function for densxty correlations 6n,.
All of the quantities in (22) are assumed to be set by extemal
conditions and given independently. For example, if we are
dealing with ion-acoustic waves, w, = ¢,q and v, represents
the damping rate of such waves (in appropnate units}. An-
other possibility is purely relaxing density fluctuations, for
which @, = 0. The shape and magnitude of the spectral
function C, is also taken 10 be given or measured. We shall
employ various models of C,.

In terms of the above equmon for C, and (21)for G, the
basic kinetic equation may be written as’

@, + 2 FElt) = -2£er’(2 ),x,u 7

where

K (rj=p> C,exp " (cos 7R, + cos TR_)/2,  (23b)
u m RGP, (23¢)
Femy, +7%+% (23d)
R, mk-q-k*to,. (23¢)

The first term on the right side of (23a) is the “scattering-
out” term, and the second is the “scattering-in™ term. In the
basic three-wave interaction, k is the “incident” wave, k — q

1065 Phys. Fhids, Voi. 25, No. 6, June 1962
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is the scattered wave, and g belongs to the density fluctu-
ation. The angular factor u?. is largest in the forward or
backscattered direction. The quantity I represents the sum
of the damping rates of the three waves; one or more of these
may be negative. The quantity R, represents the total fre-
quency mismatch between the three waves. Resonant pro-
cesses correspond to R, close to zero.

We note that Eq. (23a) is intrinsically non-Markoffian,
however, since it is an integral equation of the convolution
type, it may be solved by Laplace transform. This method,
and its implications will be treated later.'®

A. Time asymptotic Markoffian resonant limit

If conditions (i} and (ii) for the quasilinear approxima-
tion are satisfied, then Eq. {23a) can be further simplified by a
Markoffian approximation if F, (¢ ) is sufficiently slowly vary
ing on a scale determined by 7. :

(iv) g;ln \F(t)|-r. <. (24)

In this case F, (T)and F, _ (T} in Eq. (23a) can be replaced by
F,(t)and F, _ (t}. The details of this argument will be pre-
sented in the second paper.

This equation can be further simplified in the time
asymptotic Jimit 3 7, for the case where the resonance con-
ditions

=¢-2qto,=0 (25)
can be satisfied over some range of the q spectrum.

The result is independent of the sign and magnitude of
I provided the following condition is met

v Ir. <l (26)
The derivation of this condition will be discussed in more
detail in the second paper.'® Condition (v} states that the
decay or growth of the kernel X *(¢) is inconsequential on
the scale of the decay due to phase mixing with correlation
time 7.

If conditions (i) through (v) are satisfied, Eq. (23a) re-
duces to a simple Markoffian equation for the evolution of
Fik t)

O, + 2 )F k)= —~2/"F (k1) + SE"(e), (27a)
,;;n_.{ ("2")' 42 [BR,)+8(R.)).  (2Tb)
S = (‘; 5 Cut (BR .1+ BR_IF I~ @)

(27¢)

The significance of the 6-function condition (25), R = 0,
in this limit, is that it guarantees energy conservation
between the Langmuir wave at wave vector k, the low-fre-
quency turbulence at frequency, w , = + w, and wave vec-
tor q, and the (scattered) Langmuir wave at k — g. In phys.
ical units this condition is

o, [l+ Jk*/kp) =0, +w,[1+ §1k—ql*k}]. (28)

When the low-frequency turbulence is ion acoustic, we have
w, = 1 csq. wherecs = (6,/M)''? is the ion sound speed.
When the density fluctuations are on a large spatial scale
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compared with the Langmuir wavelength, we have the diffu-
sion limit.

1. Diffusion kmit (q, <k,) [Fig. 1(a)]

This limit corresponds precisely to quasilinear diffusion
in Vlasov turbulence, and could have been obtained by using
geometric optics approximations (based on the slow vari-
ation of &n) in the original equation (7). We expand the §
functions by assuming g<k:

q 7
R}~ —2kq) — 2L <L
SR, )=bw, q) 2 %

Wealso expand F(k — q) in Eq. (23) for S{", to second order
in q. The result may be put in the standard form

Slw, — 2kq). (29)

- 2/'F)+ ST = %D,,F(k). (30)
/]
where the diffusion coefficient, D is [(D'*' + D'™))/2, and
3
D} kj=r (‘2'7‘)‘, Clak,abw, — 2k-q). (31)

The kinetic equation (27) now becomes a diffusion equation,
and is completely analogous to the quasilinear diffusion in
Vlasov turbulence. In the limit |, | =csq<kg, or, indimen-
sional units when

(m/M)'"*<k /kp, (32)

the frequency @, in (25) is negligible, and the underlying
scattering is elastic. The corresponding diffusion was studied
by Niskikawa and Ryutov,'? in their work on beam-plasma
interaction. In this limit, the diffusion occurs in angle only
[see Fig. 1(a)]. The density fluctuations then drive the Lang-
muir spectrum toward isotropy. This may stabilize the beam

(a)

1

!—-
1 9 (b)
.1
q
- (c)
k-q [
ira [\ g (d)
by
— (e)
g i

F1G. 1. Momentum matching configurations for vanious resonant three-
wave interactions involving low-frequency turbulence at wave vector q. In
each case, k is the momentum of the incident wave, and k — q of the scat-
tered wave: (a) Diffusion limit, g€k (b) General elastic scattering,
|k — q! = k. (c} Elastic backscatter. (d) Conversion of s transverse wave at
k; off “long™ wavelength turbulence, q, into a Langmuir waveatk, — g. (¢)
Inelastic backscatter: (k — g is shorter than & by an amount ~(m/M)'"’.
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modes.'* For the case of shorter scale density fluctuations
the elastic scattering limit may also be taken, and both
anomalous absorption and isotropization take place.

2. General elastic scattering(lw,/ <q¢. k.q,) and
anomalous absorption from intermediate scale density
Auctuations (q, =2k, )

Wesee from Eq. (27), that, when w, is neglected in R  ,
the steady-state kinetic equation becomes

3
— 24" F+ 5] = (‘;—”%C(w’.ﬁ(k—ql’—k’l
X [F(k) = F(k - q)]. (33)

It is evident that (33) vanishes for an isotropic Langmuir
distribution

F (k)= F(]k|).
Even though we are not in the diffusion limit ¢, €k, , the
scattering-off density fluctuation is now in angle only, and
may drive the Langmuir waves towards isotropy [Fig. 1{b)].
The condition for the neglect of |, | is Eq. (32) in the limit
of small g, or the limit of large ¢,

(m/M)'"*<q/qp. (34)

Itisinstructive to examine ;" alone, in the general elas-
tic limit. We may write

k| 2 -
w=rf oy a2 56— 2 (35)

For an isotropic density fluctuation spectrum, C (q) = C(|q|),
the angular integrations may be performed, leading to

l o«
= ;j; dq Clglf (g/2k), (36)

where the function f(x} is defined by
Six)=x(1 - 2x’p, x<1,
=0, x>1I.
[ (x)rises toalocal maximum of about 0.2atx = 1/v/10, falls
to a minimum of zero at x = 1/v/2, and rises monotonically
to a value of | at x = 1, before cutting off discontinuously to

zero at larger x. Next, we suppose that C(g) is peaked at
@. <2k, and has a width 4¢<k /2. Then,

Y= S1g./2 K(6n0r)) g3, (37a)
or, in dimensional units,
2
Ay (16n %) fﬂw (37)

18° a2 g
This represents anomalous absorption, and is very similar to
the formula derived by Dawson and Oberman'* for the
anomalous resistivity of electromagnetic waves near the
plasma frequency. An important difference for the Lang-
muir wave case is the function fl{g, 2k ), which is negligibly
small unless ¢, =2k. The condition g, = 2k corresponds to
backscatter, in which the wave vectors k and k — qare equal
and opposite [see Fig. l{c)). This configuration is favored
because of the angular factor, »* . This condition is very
restrictive on the relation between k, and g, . For example, if
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@. > 2k, , the factor f vanishes identically. The electromag-
netic case is much less restrictive. In this case, there appears
on the left of Eq. (28), the electromagnetic wave dispersion
relations, @, (1 + ¢?k /2), rather than the Langmuir wave
dispersion relation, @, [1 + 3k ?/2k{,). As s consequence,
the condition R = O becomes, in the elastic limit

¢ = (/37)kT. L (38)
Hence, k;<g,. and the scattered (or, more precisely, the
“converted” wave) wave vector is — q [see Fig. 1(d)]. For
this case, one has :

" =Clgul

(2 ) (é-i)’&(q’ Ak YN3),

7z (16n?) kb S

Y = 1 Lﬂ,l—) -q_’__w" 3 (39)

* a result which has been derived by Dawson.'* This formula,

which is valid for transverse waves with k- €g, , is much less

restrictive than (34). In the literature,2?* Eq. (39), rather

than Eq. (37) appears to have been applied to Langmuir

waves. In these applications, the role of the emission terms,
S, has also been ignored.

3. Inelastic scattenng and cascade [Fig. 1(c)]

For wavenumbers close to (m/M)!’?, the frequency
can no longer be neglected, and changes in wavenumber are
associated with the scattering process. Then the (energy con-
serving) delta functions in Eq. (27) tells us that

g=2%kqtcs {40a)
Hence, for backscatter {q]|k and ¢ > k ), this gives

§=2k tc5, (40b)
or .

k—g= —k Fcs. ; (40c)

The scattered wavenumber can therefore be increased or de-
creased by cg = 0.82 (m/M )'/?, relative to the incident
wavenumber. This effect is most pronounced when & is not
significantly higher than c;. We note from Eq. (40b} that, in
order for g to be positive, k cannot be less than cs/2. It
appears from Eqs. (27a) and (27b) that steady state may result
from a cascade of scatterings which may occur toward both
higher and lower wavenumbers (subject to k> ¢5/2). A cas-
cade to higher wavenumbers has been suggested for beam-
driven Langmuir waves in the presence of lon-woustxc tur-
bulence near Jupiter.'” - ¢

B. Nonresonant anomalous absorption ("> 0) for oboﬂ
scale density fluctuations (k, <g,)

) All of the time-asymptotic phenomena discussed so far
_ were resonant, and could have been obtained from semi-clas-
_ sical “Golden-rule” arguments involving Feynman dia-

grams for creation and annihilation of Langmuir waves "
’ . effect; this is a situation where the density fluctuation spec-

{(plasmons) and ion-acoustic waves (phonons). .

_ However, another class of phenomena is present for
. which the resonant conditions R 2 = 0 cannot be satisfied.
The first example occurs for ¢, > 2k and ¢,%¢;. In the non-
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resonant case, again assuming conditions {i}{v), the first
nonzero term is obtained by keeping the terms proportional
to 7 in exp({—Trj=1—-rr+.., Ft—1) =F,(t)
— 1(0/0t) F,(t)..., etc. in the 7 integration of Eq. (23). The
full result will be reported in the second paper. Here, we will
discuss only one special case in detail.

Letusassume "=y _, = 7,. corresponding, for exam-
ple, to Landau damping at high ¢,. We further assume
R=¢*»T, ci. Then, the nonresonant contributions to Eqgs.

(27a) and (27b) can be wn'tlen as

2 Y. .
7" = fu p Clqllk-q® = (41)
= f o ‘)' Claidr It 2 Fa .- @)

The emission term S & will be small because Fis small at the
{high) wavenumber g, where C peaks (recall F peaks at k,
<4g,.) The anomalous absorption term 5" given by Eq. (41),
in this limit, was written down without derivation by Galeev
etal.,'® in connection with Langmuir mean fields damped by
ion-acoustic waves. In their case, the ion-acoustic waves
arise due to sound wave emission from density cavities driv-
en by ponderomotive force. We note that ;7 is independent
of |k| as long as |k|<g,, so this constitutes a uniform damp-

. ing of long wavelength Langmuir turbulence by short wave-

length ion-acoustic waves. According to Galeev er al.,'’ this
damping can stop the collapse®® of Langmuir solitons in
fully developed Langmuir turbulence.

Here we consider a different application, in which a
bump-on-tail electron distribution drives resonant Lang-
muir waves unstable in a certain equation of k space. Hence,
in the kinetic equation, (27), we may consider wave vectors k
for which y, is negative. If, then, C (q) peaks atg,»k,and g,
lies in the region of strong Landau damping, ¥,, then y;", as
given by expression (41), will tend to stabilize the beam
modes. In order to estimate the size of ¥2", let us assume that
C (q) is isotropic, and has a width 4¢ about ¢,. We may then
aproximate (41) as

2
y;'s e ; 3§ Cliar =, ——"5;';? D,y

where g. g, + Aqis the point of maximum Landau damp-
ing, 7,.. The largest y,_ can be is of order w, for g, of order
4y, 80, in dimensional units, the maximum value of 4" is

8 | on |2
7| e 271 n
Very weak beam-mode growth rates, y,, may be stabilized

by the effective damping, ¥2¥. If y4* is not large enough to
provide stabilization, we must consider nonlinear contribu-

(44)

" tions to the effective damping and emission terms.

In the second paper'® we will consider the plasma laser

trum is peaked about a value g, which lies in the range of
wave vectors 4k which correspond to unstable beam modes
near w, /v, . Then it appears possible to destabilize very long

~.
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wavelength Langmuir waves by a plasma laser effect,*’ in
which ﬁ”“_,p,.m is negative. We consider expression (41) once
more (assuming ‘¥, . o €7, | €q°). Now, ¥4 Will be negative,
since q lies in the range of momenta corresponding to unsta-
ble beam modes (i.e., waves whose phase velocity lies in the
up-slope portion of the electron distribution function). For
the broad spectrum (r,—0) case considered in this paper the
plasma laser effect can be wiped out on integration over ¢,
which averages over stable and unstable regions of y,; it
appears that the stable regions will dominate over the unsta-
ble regions, and the system will be stable in this case. The
plasma laser effect can work in principle for a narrow band
width spectrum. In Sec. 1V, we discuss some applications of
the stabilization of beam modes already discussed (cases A
and B).

IV.APPLICATION TO BEAMS ASSOCIATED WITH TYPE
NI SOLAR RADIO EMISSION

A type 111 solar radio burst occurs when a stream of
electrons, emanating from the sun, propagates into the solar
wind. The sequence of events leading to the observed burst is
thought to be this: The stream excites Langmuir waves by a
bump-on-tail instability;*® the Langmuir waves saturate by
nonlinear mechanisms such as quasilinear plateau forma-
tion’” and/or ponderomotive force effects;'® and the turbu-
lent Langmuir waves emit electromagnetic radiation by two-
plasmon coalescence and/or conversion off (ambient)
ion-acoustic waves.>* The effect of independently generated
low-frequency turbulence on this sequence of events has not
been studied systematically. Such turbulence may saturate
the Langmuir waves linearly or in conjunction with the non-
linear mechanisms. It may also affect the emission and prop-
agation of the electromagnetic waves.

A. Short density fluctuations

Gurnett ez al.' have shown that nonthermal levels of
ion-acoustic waves are very common in the ambient solar
wind. The Helios 1, 2 spacecraft antennae have picked up
sporadically intense electric fields in the frequency range
from 1 to 10 kHz a1 0.47 a.u. These fields have been inter-
preted as ion-acoustic waves, Doppler-shifted by the solar
wind speed, v, = 500 km sec™' + 100 sec™". Since v, is
much greater than the ion sound speed, the wavelength of
this turbulence is 4, = 100 m. Typical electric field peaks are
between 10 and 100 2V m~'. The spacecraft instrumenta-
tion measures the average of the logarithm of the intensity of
the waves, but is limited by a characteristic resolving time of
50 msec. For stationary broadband structures convecting
past the antenna at the solar wind speed, this implies that
scale sizes smaller than or equal to 25 km register only in
terms of a logarithmic average. Hence, the measured electric
fields associated with the 100 m ion-acoustic turbulence may
be grossly underestimated.

If we assume that the electrons respond adiabatically to
the low-frequency fields, then the associated density fluctu-
ation level is
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l on l— el E
n i 2k, T,
A S o
= l.85x10“‘( ~ )( E )( 100K ).
100 m 100 4V/m T

{45)
where e is the electron charge, T, is the electron temperaiure
(1 —2x10° °K at } a.u.), and £ is the electric field.

Let us now consider the consequences of a type I11 burst
electron stream passing through "hese density fluctuations at
0.5 a.u. Assuming an ambient plasma electron density of 15
cm ~*, and therefore an electron plasma frequency of. [, =35
kHz, an electron stream of velocity one-third the speed ¢
light will give rise to Langmuir waves of wavelength, 4,

= vy/f, = 3km. Hence, we are in the regime 4, »4,, 0r g,
>k, which is the limit of nonresonant anomalous absorp-
tion, discussed in Sec. IIIB. The Debye length is A, =~ 7 m at
this density and T = 10° °K, s0 ¢,4,, |, and we are in the
regime of heavy Landau damping, where Eq. (44) gives the
applicable anomalous absorption of long wavelength modes.
With [6n/n|=2X 107%, we find ¥"/w, = 10~*. This is too
low to stabilize typical growing beam modes, for which the
growth rate is 7,/w, = 107’-107°. On the other hand, if
[6n/n| has been underestimated by an order of magnitude or
more {due to the logarithmic averaging of intensities) stabili-
2ation by anomalous absorption may occur. We note that the
damping rate, v, of ion-acoustic waves in always larger than

. (m/M)(gAp)=107>. This is sufficient to guarantee the con-

dition I" > 0 required for stabilization (in the linear approxi-
mation) even without phase mixing effects.

B. Large scale density fluctuations

An altogether different possibility arises when we con-
sider the possible effect of very large scale density fluctu-
ations. Measurements?®*° of interplanetary scintillations
have established'’ the existence of density fluctuations with
g, ' between 50 and 200 km, and én/n of order 107,
Hence, ¢, <k, , and the etfect on the Langmuir waves is
Fokker-Planck diffusion. In the elastic limit, the k space
diffusion occurs in angle only. We treat this case, for simpli-
city, assuming (m/M )''* ¢k /kp. As shown by Nishikawa
and Ryutov,'’ the diffusion coefficient [given by our Eq. (31),
with w, = 0] for a cylindrically symmetric Langmuir spec-
trum diffusing in polar angle 6 only. is

3 -
“"'"J' ‘d f dé’
Gﬂk’Toq ’

wm® <'uné

Ddo)=

Cig.0')sin8 cos" 6°
sin” @ (sin® @5in’8’ — cos? @ cos 26°)"
{46)
For a spherically symmetric density fluctuation spectrum,
C(q9.0') = C(g), peaking at ¢, , this reduces to

1 a
b= & (L) L o
12 &k \ kdp n*

and the Fokker-Planck equation resulting from (27) and {30}
becomes (in physical units)
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8, + 27, )F(k, cos 6) — -.L;a.,b‘ sin 69, F (k, cos 6) Fo=5/27 - /’) (57) '
sin ‘

= S (k, cos 8). (48)
Here, we have added an electron spontaneous emission term,
S, on the right side. For the case of a bump-on-tail in 2 back-
ground plasma, this consists of two pieces: Cerenkov emis-
sion from the beam, and combined Cerenkov and brems-
strahlung emission from the background plasma.

For the type 1II bursts under consideration ki,

= 1.5%1072, g,/k=5x 107>, s0 the characteristic diffu-
sion timeis D~ ' = | sec. One e-folding time for a beam mode
is on the order of 10 sec, so the diffusion should be rapid.

We first look for a steady-state solution to the linear
diffusion equation (48), in which the spectrum is close to

isotropic:
F(ky)= Folk) + Fi(ky), (49a)
|F\|€Fp p=cos 6. {49b)

Insert this into Eq. (48) and average over the polar angle

-

2%F,+ 2y, F, =8 (50)
A bar indicates a polar angle average

R 1 +1

Fai== | dufi (s1)
The anisotropic part of the damping-growth rate y, , is

ri=r—¥ (52)

The kinetic equation for the anisotropic part of the distribu-
tion function, F,(u) is obtained by subtracting (50) from (48):

2y,Fo— —— 3, Dsin 83,F,
sin &

=S8, = 2yF, - dy.F, — r.F\). (53)

The general procedure is to solve Eq. (53) for F,, and insert
into (50) to enable the evaluation of ¥,F,. The last terms in
parentheses on the right side of Eq. (53) can be neglected,
since |F, | €F;, by assumption. In our particular problem, the
angle-averaged growth rate, |¥| is much smaller than the
‘anisotropic part of the growth rate, |y,|, at most angles, so
the term 7F, is also negligible. Finally, we assert that
|S,1€|¥.Fo| =3 {¥,/7|, which can also be shown to be true at

almost all polar angles, 8. Hence, the right side of (53) is

negligible, and may be set equal to zero. A first integral of

(53) then gives

a = _-L ' 4
F d"' r . 5
o D si“ 0 f" ' ( ’

Furthermore, the quantity y.F,, required in (50) is easily
shown, with the help of (53) and (54), to be

rF, = —Fg, (55)
where
: I
=l [u—p’r”’ J' d’ r.] >0. (56)

The solution to the kinetic equation (50) for the (dominant)
aagle-averaged Langmuir distribution is, therefore,
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A realizable stationary state requires ¢} < 7. For sufficiently
large |6n/n)*, D becomes large, and g,><7. In that case, (57)
represents a detailed balance between the angle-averaged
spontaneous emission, S, and the angle-averaged damping.
Even though y, is negative at forward angles for k near w,/
vy, the angle-averaged, 7, , will always'? be positive, for any
quasilinear distribution of electrons, and stabilization can be
achieved.

In the Appendix we have numerically evaluated the
Langmuir energy density, Wy(k ), using (57), and (3), and
shown that the condition for g,2<¥, is [6n/n!>3x 1074,
which is well satisfied for the irregularities observed''2%3?in
scintillation measurements. Typically,'' §n/n is measured at
107%

Under conditions associated with a type III burst,
(A16), we obtain the isotropic spectra shown in Fig. 2. Only
the case dv/v,=1/3 is of interest to us here. The spectral
energy rises to MWok)=3x10* k,T in the interval
1.5 <kvy/w,<13.5. Note, these are larger wavenumbers
than the wavenumber kvy/w, = (1 — 4v/v,)"' = 1.5 of the
fastest growing beam mode. For this case, the integrated, or
spatial energy density, is

E*  [dk W]k
amnk,T ) 27 nk,T
which is only two orders of magnitude larger than the equi-
librium value. Hence, when this linear diffusive saturation
mechanism operates, it is extremely effective at limiting the
energy density in Langmuir waves. Langmuir energy densi-

=3x10""', {58)

107
6 75
10° | l’ N
N
! N
] \\
/ N
105r ] SN
I \\\
:m ,' \
) ! \\
ot !
]
I'
103 /]
o2 o —
(o} 2 4 [ ] 10 12 14
lvolu’

FI1G. 2. Solution to Eq. (A23) for the isotropic spectral energy density in
Langmuir waves under conditions appropriate to type 11! solar radio emis-
sion. The solid line spectrum corresponds to the set of parameters in (A 16).
The dashed line spectrum corresponds to the same set of parameters, except
with 4v/v = |.
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ties this low are not uncommon*' during type 111 bursts. It is
unlikely, however, that such levels can give rise to electro-
magnetic emission, even though the isotropic distribution of
Langmuir waves at large wavenumbers does permit the kine-
matics of second harmonic emission to be satisfied.

In steady state we find that conditions (ii}-{v} are well
satisfied in this case.

C. Density fluctuations with g, = 7(24.)

The cases we have just considered were based on mea-
sured density fluctuations at g, €k, , and g, %k, . In both
cases, levels of |8n/n: on the order of 10~ were required to
saturate the beam-unstable modes. Such levels appear to
have been observed by scintillation techniques, for the case
qn <kL .

In the limit ¢, » k, , spacecraft measurements yield |6n/
n! values which appear to be marginally too small. Here, the
nonresonant effective damping, (44}, applied. If we compare
this with the resonant effective damping, {37), we note that
the resonant damping is larger by the factor k }, 74k I . This is
true, however, only provided we interpret (8n/n)" in (37) to
be |6n/n|?, defined by
2 2A
Vet (7 dgqcia (59)

n le 2@ Josans
This is necessary, in order for the function fig/2k ) to be set
equal to one. Since k 2, /44 { is typicaily 2 X 10°, the require-
ment on |n/n|. for saturation is

|6n/n|. >4 %105, (60)

Such low-frequency density fluctuations are required at
A, =1km. Convecting past a spacecraft antenna by the solar
wind, these fluctuations would appear at about 400 Hz. Un-
fortunately, Gurnett er al.'® find instrumental difficulties in
resolving these frequencies in the solar wind.

The anomalous damping given by Eq. (37), is also a
likely candidate for stabilizing Langmuir waves. Our deriva-
tion of that formula was based upon an isotropic density
fluctuation spectrum. For a spectrum peaked along the
beam axis, the damping should be even larger.

Finally, we note that this process is really scattering,
rather than damping, and the emission term ought to be tak-
en into account. Moreover, the scattering is not elastic, for
k, /kg, is only slightly above (m/M )'/2. The scattering rate
does appear 10 be fast enough to prevent a buildup of reso-
nant beam modes, as in the case of long-wavelength density
fluctuations. We are currently studying both processes, nu-
merically.

V. CONCLUSION

We have derived general statistical equations governing
the evolution of beam-unstable Langmuir waves in the pres-
ence of low-frequency (externalj turbulence. These equations
include the physical effects of scattering, diffusion, resonant
and nonresonance broadening. For a broad spectrum of den-
sity fluctuations a simple Markoffian quasilinear description
is obtained.

Oneimportant application has been developed in detail.
It has been found that the Langmuir waves driven by solar
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clectron streams during type 111 solar radio emissions can be
stabilized by ambient solar wind density fluctuations at lev-
elsof 8n/n = 1073, observed at wavenumbers ¢, €w, /v, or
q, =2wp/v,. It is likely that the Langmuir wave intensities
are saturated by the density fluctuations at rather low levels.

This has important implications for the theory of type
111 electromagnetic emission. The emissions below 1 MHz
have traditionally been interpreted as second harmonic
emissions, arising from Langmuir wave coalescence. Recent
spacecraft measurements have cast considerable doubt both
as to the identity of the emissions as second harmonic,?* and
as to whether the Langmuir waves are sufficiently intense to
produce either fundmental or harmonic emission.’' Both
Lin ef al.?® and Goldman®**® have suggested that density
fluctuations in the ambient solar wind may be affecting the
propagation of fundamental emission, thus causing it to be
misinterpreted as second harmonic emission.

If the emissions below 1 Mhz are indeed at the funda-
mental, it may be possible to produce them independently of
Langmuir waves. Melrose has suggested that the electro-
magnetic version of the plasma laser effect could lead to the
production of fundamental emission by the beam in the pres-
ence of the density fluctuations. Our result that the Lang-
muir waves are kept at low intensities by measured density
fluctuations makes this idea worth pursuing.

The nonresonant extention of this theory as described
in the second paper also describes the electromagnetic plas-
ma laser effect. The major difficulty with this effect is that
only the density fluctuations with wave vector q in a narrow
range (with ¢ 2 w, /v, ) contribute to the growth of long-
wavelength electromagnetic waves; density fluctuations
with nearby and remote wave vectors will stabilize the
waves. Evidently, there is a need for further detailed work in
this area.

It is worth commenting upon the relationship of our
present results to earlier work on nonlinear saturation®'®*
of bump-on-tail instabilities, such as those associated with
type 111 bursts. Studies of spatial collapse, or self-focusing of
Langmuir waves by density fluctuations driven self-consis-
tently by ponderomotive force, show that 8»/n is of order
(E *)4mnk, T. At the threshold for collapse, this implies §n/
n of order 1073, which is far below the levels of “‘external”
density fluctuations in the solar wind, whose effects we have
studied here. 1t would appear, therefore, that the solar wind
is not sufficiently homogeneous for some of these nonlinear
saturation mechanisms to operate globally, and that scatter-
ing off external density fluctuations (with n/n between
10-* and 1077 is the dominant mechanism for saturating
the beam-unstable Langmuir waves. A word of caution is in
order, however.

The theory of Langmuir wave self-focusing and col-
lapse is dynamical in nature, whereas the present theory is
statistical. The validity of the statistical external density
fluctuations have statistics which are close to Gaussian.

It is not known whether this is the case for the density
fluctuations in the solar wind; Gaussianity is probably un-
likely, because long time average values of 6n/n are orders of
magnitude below peak (S0 msec averagej values.'® Numeri-
cal studies of dynamical Langmuir ray trajectories in the
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presence of large scale density fluctuations, with én/
n = 1077, clearly reveal spatial pockets in which Langmuir
wave levels are nonlinear.'' It may be that such regions have
been detected by spacecraft and play a role in type 111 emis-
sions. However, recent’® two-dimensional numerical studies
of the dynamical Zakharov equations in the presence of ex-
ternal density fluctuations show a pervasive linear satura-
tion of beam-unstable modes for relatively low values of 8n/
n.

The general area is clearly worth pursuing further, not
only for its implications for the type 111 problem, but also for
its relevance to other beam-plasma systems, such as the
beams and Langmuir waves produced by Jupiter's bow
shock,'” and relativistic laboratory electron beams capable
of producing intense electromagnetic emission.>’
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APPENDIX: ISOTROPIZATION DUE TO ANGULAR
DIFFUSION OF LANGMUIR WAVES OFF LARGE SCALE
DENSITY IRREGULARITIES

In this appendix, we evaluate the linear isotropic de-
tailed balance result for the Langmuir spectral function

Fy=8/27, (A1)

for conditions relevant to the interplanetary electron stream
associated with type III solar radio bursts. In addition, we
estimate a lower bound on 6n/a, in order for the quantity g, %,
defined by Eq. {56) to satisfy

‘lz < ?v (Az)

as required for the steady state found in Eq. (57). Finally we
show that (A2) guarantees the condition for the anisotropic
part of the distribution function, F, to be small, namely,

\F\|<Fo ' (A3)

Let us assume a gentle bump distribution function of
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the form
n - 2
Som = (2#)’7240‘ exp(— (V?A:;)) ) (Ad4)

The quasilinear growth rate formula, Eq. (S), then yields

72! = 02 (v/Avz exp ( ~ 2°/2), (AS)
where

N=(n/8)"w,(n, /0wl /k *vAv, (A6)

7=(v,/8v)w,/kv, — ), (AT)

and u = cos 6, where @ is the polar angle between k and v,,.

The maximum beam growth rate, y.*'’ | m. corresponds to
= — landu = |, and is given by a negative damping,

L' = — e ve/40. (A8)

For typical type I1I burst conditions, | 7}'| - 'is on the

order of 1-10 sec. The angle average of the “damping™ rate
given by Eq. (AS5) is

w'=0b_50, (A9)
where

b, =[exp(2’/2| + exp (-2, /2))]/2,
and

2z, = (v/Av)w,/ kv, + 1). (A10)

We note that 3" is positive and <|#{’'| ., at most wave
numbers, due to the exponential factor b_ Stabilization oc-
curs because the beam takes more energy from the waves (at
angles such that z > 0 than it gives to them (z <0} in an iso-
tropic distribution.

In order to evaluate g7, we need the quantity

1
J'd;t’ Yi=0[exp(=2/2)+ b, —pub_).  (All])
(7]

We shall find a spectrum, F,, which peaks at w, /kv, < 1, s0
{A1l) is largest for |z| <1, or for 0 <u<1. Hence, from Eq.
(s6),

8. <7224 Av/v,)/D. (A12)
The inequality (A2) then implies the condition for a station-
ary isotropic state, as

{2 /b_)Av/v,)¢D, (A13)
or, using Eq. (48),

("_a )1/2 v_' ( L )l/!b _ V:<
n Uo \ 4, -
This gives us a lower bound on {8a/n| for the validity of the
isotropic detailed balance result, (A1).

It is easy to verify that this lower bound also guarantees
that |F,|¢F,. From Eqgs. (50}, (53}, and (55) it follows that

FI/Fy = £[(&/7)3/D)). (A15)

Since (A13) guarantees that g} /7<1 and 7/D is generally
also small (in our case ¥€|¥|m., <D ), it follows that the ani-
sotropic part, F,, is small compared with F,,

How large must |6n/n| be in order to satisfy the condi-
tion (A 14)? We consider typical conditions for an electron
beam associated with a type I1I burst

bn I (Al4)
n

M. V. Goldman and D. F. DuBois A4




n,/n=10""-10"%

v,/ ug=10"2, (A16)
auv/v, = 1/3,
k /g, = 100.
Thus, we must have
i
ont 3107 (A17)
N fwn

which is below the mean level of density fluctuations ob-
served by scintillation measurements.'!**° This mean level,
as quoted by Smith and Sime,"' is 8n/n = 107>,

For fluctuations smaller than |8a/n|,,., nonlinearity
must be taken into account in the saturation of the beam
modes. Assuming that the conditions for validity of (A1) are
met, what kind of spectrum results? The Cerenkov emission
produced by the beam given in Eq. (A4) is

S, = 16702 6, (vo/v, ko 7k ) exp ( — 22/2).
The angle-averaged emission is

— k 12

5, = 16700, 42 —"(%) [@lz,) -z )], (A9
where 6, = k, T, is the electron temperature, in energy
units, and where, the Gaussian error integral is defined as

(A18)

P (z) = (2m)~ "2 duexp( — u’).

In order to join smoothly to the equilibrium distribu-
tion at large and small k_ values, we include, in the denomi-
nator of (A1), both Landau and collisional damping,

Yo=(n/8)w} /k v, exp ( — w}/2k 0}, {A21a)
Y.=(12727)"'w,kp*/n)In A, (A21b)
and the corresponding spontaneous emission terms which
can be defined by the detailed balance condition. They are,

respectively, Cerenkov and bremmstrahlung emission from
the background plasma

S, =20y, S.=20y.. (A22)

From Eq. (3), the energy density in Langmuir waves is
W, = Fo/87. In Fig. 2, we plot

5,720+ (v, +7.)
8y +vL +7.)

as a function of u=kv,/w,, for the parameters of (A 16), and
also for v,/4v = 6. Throughout the enhanced region, beam
emission dominates the background emission processes
(A22). Beam damping is the main dissipation process, except
at small k values, where collision-damping is dominant, and
at large k, where Landau damping is dominant. In the curve
with 4v/v, = 6, the beam damping is dominated by collision

(A20)

W, k)/6 = (A23)
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damping for 2 5 3. In the enhanced region we see mode ener-
gy from four to six orders to a magnitude greater than the
equilibrum value of 6, per mode.
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Abstract

Coupled two-dimensional wave equations are solved on a
computer to model Langmuir wave turbulence excited by a weak
electron beam. The model includes wave growth due to beam-plasma
interaction, and dissipation by Landau damping. The inertial
range is limited to a relatively small number of modes such as
could occur when the ratio of masses between the negative and
positive ions is larger than in a hydrogen plasma, or when there
is damping in long wavelength Langmuir waves. A steady state is
found consisting of quasi-stable, collapsed wave packets. The
effects of different beam parameters, and the assumed narrow in-
ertial range are considered. The results may be relevant to
plasma turbulence observed in connection with type III solar

bursts.




I. Introduction

There are many examples of plasmas in astrophysics and in
1-3

the laboratory in which Langmuir turbulence is produced
either by charced particle streams or intense electromagnetic
radiation. This turbulence is thought to have an important

role in limiting the growth of instabilities and providing a
mechanism for the dissipation of energy through particle heating,
as well as enabling the emission of electromagnetic radiation at
the plasma frequency and its harmonics. For these reasons, an
understanding of the nonlinear behavior of Langmuir waves has
been sought in connection with type III solar radio b\:lrsts,d'6
which are produced by a beam of electrons ejected into the cor-

7

ona during a flare; plasma wave emission from Jupiter’ due to

electrons streaming from Jupiter's bow shock; ionospheric modi-

8

fication™ caused by intense radio pulses sent into the ionosphere;

and the radiation and heating in laboratory beam and laser
plasmas.g'10

In the case when an electron beam passes through the plasma,
the development of Langmuir wave turbulence is believed to be the
result of nonlinear wave-wave interaction: namely, as the waves
which are unstable because of the presence of the electron stream
grow in amplitude, they begin to couple nonlinearly to other waves.
Another possibility involves the interaction of the waves back on
the beam particles. This is studied by quasi-linear theory.

Generally, the difficulties with the theory for particle-wave satur-

ation of the beam instability is that it predicts energy levels of

P e et




Langmuir waves in excess of the thresholds for nonlinear wave
processes.n Furthermore, the beam appears to lose a substan-
tial fraction of its energy to Langmuir waves within some 100

12 This is inconsistent with

beam instability growth times.
the observed propagation of particle streams; for example,

type III streams persist out to the earth, well beyond the

20,000 km they propagate during 100 beam instability growth
times. Quasi-linear calculations13 which allow for the finite
duration of the stream show that reabsorption of the waves by
beam particles can permit the beam to propagate further. None-
theless, since the reabsorption is slow and involves nonlinear
wave energies, wave-wave interaction will occur and will probably
be the dominant nrocess. Here, we will consider only

turbulence due to wave-wave processes.

The theoretical ideas on the nonlinear plasma wave evolution
are the following. First, there is the exvonential growth of
waves which are unstable because of the electron beam or radia-
tion. When these waves reach a critical amplitude, various
wave instabilities can occur. 1In the case of the beam plasmas,
these instabilities can remove energy from resonance with the
beam so as to limit the loss of beam energy to Langmuir waves.

A further consequence of the instabilities is the formation of

14 The nonlinear stage

a broad distribution of Langmuir waves.
of this wave-wave interaction was discovered by Zakharov15 to

cause the localization of plasma waves by trapping in regions




of low plasma density. This process leads to the collapsels'16

of wave packets to very small dimension, at which dissipation
(for example by Landau damping or Langmuir wave breaking) can
occur.

The general features3

of the energy svectrum of a turbulent
system of Langmuir waves are indicated schematically in Figure
la. We identify three ranges of wavenumbers. First, there is
a small wavenumber region (labelled the "condensate") which is
formed by a cascade of energy from the injection wavenumber, ko'
into wavenumbers below ko. Second, there is a dissipa-

tion region of wavenumbers greater than k n .ZkD for which Landau
damping is significant JkD is the Debye wavenumber).

In analogy with fluid turbulence, the intermediate region of wave-
number space is called the inertial range, and is involved in the
transfer of wave energy from the injection to the dissipative re-

17-19 ¢ the nonlinear wave equations

gions. Computer solutions
(as written in Sec. II) suggest that the wave-wave process out-
lined above, including collapse, can produce such an energy spectrum.
(We should add, however, that in systems which are very strongly

19-21 or which have significant ion-acoustic noisezz'23

pumped
collapse may not be essential to the turbulent equilibrium. 1In
addition, for systems with other sources of dissipation besides
Landau damping by thermal electrons, an equilibrium state may be

possible without catastrophic collapse.)




In this paper, we will present results of two-dimensional
computer solutions which demonstrate that a steady state can
be maintained by the collapse of wave packets. Previous two-

dimensional modelss':w'm'24

of beam-plasma systems have not
included damping, so they do not describe a steady state. 1In
our model, the injection of energy is through the beam-plasma
instability caused by a weak electron beam; the dissipation is
due to Landau damping from thermal electrons. We will limit
the size of the inertial range in order to accomodate the finite
number of modes in the numerical grid. As discussed in Sec.
I1I, this can be accomplished by adopting a mass ratio of m/M =
1/25. WwWith this mass ratio, the inertial range is compressed,
as indicated in Fig. 1l(b). The presence of nonthermal electrons with
phase velocitie§ less than the beam velocity can also reduce the iner-
tial range by damping small wavenumber modes; this is depicted in
Fig. 1(c). These two ways of shortening the inertial range are
mathematically equivalent. We will present our numerical results
in Secs. IV and V in the context of the m/M = 1/25
model. Applications to physical systems (such as the type
I1I plasma) can be sought through a transformation of variables;
these will be presented later in Sec. VI.

The steady state we find consists of quasi-stable collapsed
wave packets. We will study in Sec. V how the wave energy in

the turbulent state scales with the beam parameters of intensity




and temperature.

comment (in Sec.

Using scaling argquments, we will further

VI) on the characteristic length scales

in the turbulent system; namely, whether most of the wave
energy will be found in the long wavelength condensate or in

the small compact wave packets.

I1. The Nonlinear Wave Equations

The mathematical description of nonlinear Langmuir waves

which we shall use is due to Zakharov,15

who derived two coupled
equations describing the slow time scale behavior of the envelope

of the electric field and the plasma density fluctuations;

(la)

. (1b)
E is the envelone field; the total electric field is given by

SIE(,Dre iUt + Bx(t,Dreivpt ; (2)

8:
n is the variation of the ion density from its average, n,i
wp is the background electron plasma frequency, wy =
m and M are the electron and ion masses, respectively; the elec-
4tn_e?
tron Debye length is Ae = k51= (___g__)k
KTq
temperature, assumed here to be much greater than the ion

(41m°e2/m) )
: Te is the electron

temperature; and x is the is Boltzmann's constant.




[}

These equations contain all of the physics of electrostatic
Langmuir waves and quasi-neutral ion sound waves; in addition,
they include the refraction of Langmuir waves by the density
variation, and the effects on plasma density due to the pondero-
motive force of the inhomogeneous electric field. These equations
can be derived from a simple fluid model by separating all quan-
tities into high and low frequency components (the plasma electro-
static oscillations are high frequency, and the ion-acoustic fluc-
tuations are low frequency), and by assuming that the displacement
of electrons in the high frequency motion is much less than the
scale length of the slow variations. The electric field energy
density must necessarily be small compared to the thermal energy
density; lflzlen << n_kT,.

The damping terms Vo and v; are operators in real space which

represent Landau damping. The term v_ can be negative for waves

e

which are driven by an external source, such as a beam of particles.
Equation (1) describes a wide variety of nonlinear wave-wave
phenomena. For a turbulent system of waves, an analytic descrip-

25 of turbulence

tion is very difficult, and a statistical treatment
arising from the ponderomotive force is not completely developed.
In this paper, we will use a computer to model the Lanamuir wave

turbulence.




I11. A Computer Model of Langmuir Turbulence

Many of the computer solutions2:20:26 g5 Langmuir turbulence
based on equation (1) are done in one dimension. However, it is
well known that one dimensionalcalculations do not produce all
the physical phenomena contained in the wave equations. The
most significant difference is that the nonlinear evolution of
wave packets can result in a spatial collapse only in more than

19,20 of the one dimensional work over-

one dimension. The authors
come this difficulty by resorting to a powerful electromagnetic
pump which adds energy to the system so fast that the one dimen-
sional soliton structures are forced to smaller and smaller sizes.
Nonetheless, in weakly pumped systems that are of interest in
astrophysical plasmas, it has been shown by direct comparison24
of one and two dimensional solutions that the collapse time in
two dimensionsis much faster than the evolution of the soliton
structures in one-dimension.

Although it is desirable to study Langmuir turbulence in
more than one dimension, finding solutions to the Zakharov
equations in just two dimensions is a fo.midible task for a
computer in terms of the time and memory required. The best
two dimensional solutions utilize a system with 642 grid points,
but these do not begin to incorporate all of the important

length scales. This difficulty is similar to the problem in fluid

turbulence in which the dynamic scale lengths are determined by




the largest eddies, while the dissipation occurs in the smallest
eddies. In the plasma, energy is injected by a beam or.electro-
magnetic pump into waves with relatively long wavelength. For

example, Langmuir waves resonant with an electron stream travel-

ling at velocity Vi will have a wavelength

A v
1 b
5 (7;) >\e ' (3)

where Ve is the thermal velocity of the background plasma

electrons. The initial evolution of these waves is likely

to involve a cascade or scattering into other wavemodes.24

2

When the pump is relatively weak (i.e., W < (Allxe)_ , M/M;

where W is the pump energy in dimensionless units, W = (El2/8nn°KTe),

this scattering will produce a "condensate"3'27

of Langmuir waves
vhich exhibits wave packets propagating more slowly than the ion

sound speed; this condensate can be characterized by wavelengths

A
52 2 3/Mm ), : (4)

Eventually, the wave energy may become large enough to drive
modulational instabilities and produce self-focusing. The

result would then be a "collapse" of wave packets to smaller
sizes, which according to theory, proceeds at an accelerating

rate until they reach such small scales that they become rapidly
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Landau damped by thermal electrons:

A3
2_1T N SAe R (5)

Therefore a realistic solution must include all of the length
scales Al, Az, and A3 which span a couple of orders of magni-
tude.

Fortunately, some important physics can be learned by
using a grid which includes only those scale lengths Al and
Az. This is often the case when the grid spacing is chosen
to accommodate the wavelength of the pump at the expense of the
shortest length scales which constitute the dissipation region.

This approachs'la’24

has been successful in describing the ini-
tial development of weakly pumped systems, including the non-
linear saturation of the beam instability and the formation of
collapsing wave packets. Of course, the grid is too coarse to
follow the evolution of the collapsing wave structures. There-
fore an understanding of the -asymptotic steady state is lacking
from these solutions.

The way in which we overcome this problem of disparate length
scales is to use a mass ratio, M/m = 25, As can be seen from
Eq. (4) , this will effectively reduce the condensate length

scale to such an extent that it can be included in a 64x64 point

grid with a grid spacing determined by the small dissipation
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length scale, which is of the order of a Debye length. We are
then able to solve a model problem for Langmuir turbulence in
two-dimensions which contains all of the relevant physics of
the beam-plasma instability, nonlinear wave-wave interaction,
and wave dissipation through Landau damping. Although the
choice of the mass ratio is a matter of convenience, this solu-

28 Lith

tion may have a physical realization in the laboratory
heavy negative and positive ion plasmas.

The numerical calculation is performed on complementary
grids jin real space and wavenumber space. The fieldsn and ¢ . -
(where E = Vy) are defined at each point on a grid in x,y space
having NN points with a separation Ax and Ay = Ax. These
fields can be represented in terms of their Fourier components
on grids in kx' ky space with Ak = 2n/Nax. For a
field A§ at the qgrid point (m,3j) such that x = (m-1)Ax, y =

(j-1)Ay, the transform is given by

N
! Az expl-i(27/N) (m-1) (k_~1)]
1 j=1Ax x (6)
eXP[-i(Zn/N)(j-l)(ky—l)] .

T ez

.
A N2

All quantities in real space are periodic with period NAx
and NAy. A certain segment in k space is not allowed to
contain any energy; this step is taken to avoid the problem

of aliasing. In this paper, we will use N = 64.
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The numerical technique is known as the split-step Fourier

method29 and was invented by Tappert to solve the Korteweg

deVries and nonlinear Schrodinger equations. It combines
features of the "splitting” method%owhich was used by G.I.

Marchuk on the diffusion equation, and the Fourier method31

used by Orsag on the Navier-Stokes equation. The technique
has been applied specifically to the Zakharov equations by
17,32
Pereira, Sudan, and Denavit, '~ and by the present authors in
5,8,16,18,24
other papers.

The basic concept is the following. The Zakharov equations

are cast into the form of a vector equation

_+LA=[~\]

where A is a very large vector consisting of the components

X

Eg (the k = 0 components of the electric field, ¢ (the
electric potential), n (the ion density), and n (the time
derivative of the ion density. L is a linear operator, ac-
tually a constant in k-space, and N is a nonlinear operator,
which is in real space. Therefore, we solve for 3A/3t in L
two parts at each time step: one part in k-space involving
only the operator ;, and a second part involving only the

-~

nonlinear term, N. The advantage in doing this is that it

allows the spatial derivatives to be evaluated very accu-
rately in k-space, while at the same time forming nonlinear

products, such as nE and IEIZ, in coordinate space.




Using the analytically known stationary soliton as an
example, the method proves to be stable and accurate. Also,
in initial value solutions with no growth or damping of
waves, conservation laws for |E|2 and n are checked and found
to hold true. The code has been used successfully to study
parametric instability and ILangmuir wave collapse, giving

results which have been supported with analytic theories.ls'18

The problem is set up as follows. In wavenumber space,
the 642 Fourier components of the electric field can be

plotted as a function of their wavenumbers kx and k The

v
beam-induced emission of Langmuir waves amplifies those wave-
vectors centered around the wavevector Eb having a bandwidth
8k (see Fig. 2). The interaction of these modes with the
beam is given by the growth rate y. The dissipation processes

affect those Langmuir wavevectors which have relatively large

wavenumbers (k R % kD) where the landau damping, Vo r becomes

important. In our simple model, changes in the particle distribution

functions19'33'34

due to the waves are rot included. The ions are assumed
to be cold (Te >> Ti) so that the weak damping of ion-acoustic

waves, V,, is due to Landau damping by electrons. As an initial
condition, all the Langmuir modes are given a small amount

of randomly phased electric field amplitude; there are no exter-

nally applied density fluctuations. With this prescription,
equations (1) are solved in time by the split-step Fourier

method.

The numerical values for these parameters are given as

M
ko = 0.11 kj a =25

Y = 0.002 w, bk = 0.018 kj
§k = 0.072 kp Ax = 5.4 le

e~ e LT R T

tvatnai et AR —— -
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and the damping rates by the formulae

v =0.22/7 (_1_) 3exp(—~l—)w (8)
e k)‘e 2k2A§ P
T
= (Mlmk "e X
v; = (E) (M) (E_) k . (9)

Although these Landau damping rates are derived using a
Maxwellian electron distribution and straiqht line particle
trajectories, we will continue to use them even when the
fields are large. The choice of growth rate y has no special
meaning, but it will turn out to be a good selection for the
statistical steady state on this grid size - other solutions
with different y will be discussed later.

The central beam-driven wavenumber, Al = 21r/ko = 60 Ae,
is such that it lies between the subsonic condensate, 1, >

2

90 Ae’ and the dissipation region, A, < 30 Ae. The bandwidth

3
8k corresponds to beams with significant dispersion in velocity.
It should also be noted that although 642 wavenumbers are present,
in practice only 422 modes are used because of the aliasing
technique. Because these modes include both forward and back-

ward wavevectors, the largest wavenumber is given by k =0.42 kD.

max

IV. Numerical Results
The numerical calculation follows the evolution of Langmuir
waves from their initial noisy conditions to a quasi-steady state

driven by the beam-plasma interaction.35
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Those waves which are unstable because of the beam initially
experience a period of exponential growth. During this time,
wave packets appear in the coordinate space grid with increasing
amplitude and size 27n/8k associated with the bandwidth, &k, of
the pump waves. These wave packets travel at the Langmuir group
velocity in the direction of the beam.

The first indication of nonlinear wave interaction is seen
in wavenumber space as a spreading of wave energy into modes
adjacent to the pump modes (see Fig. 3). As described by a
perturbation theory,36 this process is due to a four wave inter-
action involving three pump modes and a fourth wave whose fre-
quency mismatch with the pump waves is not too large, i.e. no
greater than the frequency bandwidth in the pump. As the wave
spectrum broadens, this effect causes the wave packets to con-
tract in real space. However, at the time of Fig, 3, this
interaction is slower than the beam instability growth time.

There is evidence for other types of nonlinear interaction
at later times. As seen in Fig. 4, as the wave energy spreads
into a large number of modes, it tends to "condense" into smaller
wavenumbers. This may be associated with an induced scattering
process,24 because each time a Langmuir wave scatters or decays,
it will lose energy and momentum to ion modes.

As the wave energy is passed into the smaller wavenumbers,
the beam instability is saturated and the pump waves stop growing.

In real space, wave packets affected by these long wavelength

o - G e e s A ARG v e
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instabilities distort and may break up into parts, but they
do not disperse. Instead of propagating at the group vélo—
city of the pump waves, these wave packets are nearly sta-
tionary. Because of this feature, they can be identified
with the low wavenumber condensate, rather than the beam modes.
As more energy fills the condensate, these long wavelengths
also become unstable. 1In coordinate space, the wave packets
steepen by refracting into density wells created by their own
ponderomotive force. The collapsing wave packets are stablized
when they reach scale sizes where Landau damping can occur.
Surprisingly, the resulting wave structures are relatively
stable, and exist over many periods of beam growth time, Y-l.
In fact, they tend to disappear only when they are disrupted
by the density well of a nearby wave packet.
The collection of collapsed wave packets trapped in density cavi-
ties. represents the final state of the system. The electric
field amplitude appears as in Figq. 5. A comparison of Fig.
5 with Fig. 6, which is a simultaneous plot of density contours,
shows the correspondence between regions of large electric field
amplitude and low density. Over the course of time, these wave
packets vary in shape, but remain roughly the same size. As
mentioned before, they will occasionally interact with each
other, and either coalesce or break up. Sometimes new wave
structures are born. On the average, there is a constant number

of collapsedwave structures in the system.
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The steady state continues over several beam growth periods

Y-l for which the calculation is continued. During this time,

the electrostatic energy in the beam modes, wp =be§m|Ei|2/8nnoKT,
remains fairly constant, as seen in Fig. 7a. The acoustic wave
energy, ws = E n%/ng also saturates at a low value, as shown in
Fig. 7b.

The steady state was also investigated on a grid of 32x32
points using a smaller time step. On the average, 2 to 3 col-
lapsed wave packets occurred in the grid, which was 1/4 as large
in area as the one reported here. The saturated values of Wp,
W, and ws are consistent with those in Fig. 7a and Fig. 7b,
although fluctuations around the mean values are larger. We
followed this steady state for 100 beam growth periods, and
found no evidence of any change.

The steady state implies that the rate at which energy is
generated in the pump modes is matched by the transfer and
damping of energy in the dissipation regions. The evidence that
the transfer of energy does not occur directly, but involves many
intermediate modes and perhaps a number of distinct processes,
is found in the wave spectra of the electric field and density.
Figs. 8 and 9 show the Fourier components of the electric field
and density averaged over two growth periods Y-l spanning the
steady state. The electric field amplitude tends to decrease
monotonically from small to large k despite the fact that the
pump modes have intermediate wavenumbers. This suggests that

a considerable fraction of the energy removed from the beam waves




finds its way into the low wavenumber condensate. The interesting
feature of the density spectrum is that it is peaked in a ring
centered at k = 0 with radius kn = 0.05 kD.

In real space the 1length scale 21r/kn will be the average dis-
tance of separation between wave packets (the highest real space
plasma density occurs in the region between wave packets which is
filled with the plasma expelled by the ponderomotive force. These
density fluctuations, which are generated by the collapsing wave

packet, could have a role in scattering the Langmuir waves.19

The final tranéfer of énergy from the condensate into the
damped region seems to be accomplished by modulational processes;
as energy accumulates in the low wavenumber modes, it spills out
into higher and higher wavenumbers until it becomes damped. This
nonlinear interaction is of the same nature as the one described
in the context of Fig. 3 as the mechanism for broadening the
pump bandwidth, except now the condensate modes replace the pump
modes as the source of wave energy. The manifestation of this

process in real space is the collapsed wave packets.

Given the two-dimensional spectrum of the electric field
in Fig. 8, we can construct the one-dimensional energy spec-
trum for this problem. This is done by first calculating

partial sums, Zi' of energy contained in modes between wave-

Ak’ k.
i ~ i : :
numbers k; - —5~ < k| < k; + —5=. The interval &k; is
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chosen so that the volume in k-space is constant, i.e., the
interval contains N points, and volume NAkz, where Ak is the
spacing of the grid. The one-dimensional energy spectrum,

W(ki) is then given by

Ly
Wiky) = — amk, . (10)

This function is plotted, using sums over N = 20 points, in
Fig. 10 (after multiplying by kD to make it dimensionless).

The area under this curve gives the total energy, W. Because
the inertial range is very small, we do not compare the scaling
with the conventional Kolmogoroff power law. However, it is

extremely interesting that the two-dimensional energy distri-

i
NAk
wavenumber. For this spectrum we find

bution e(ki) = 5, Seems to decrease exponentially with increasing

(k) "~ (1.2/k2) exp(-k/.059 kp) (11)

Finally, we wish to identify the characteristic length
scales of this turbulent system. For example, the contour
plot of electric field amplitude in Fig. 5 could be misleading
if the small, collapsed wave structures contained only a small
fraction of energy, despite their large amplitude. Therefore,
we analyze the distribution of energy (as distinguished from the
energy density) in Fig- 11 . Fig.11 is constructed by de-

finding two contour levels of electric field amplitude, E; and E,

—
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(where E, > Ez). The region of real space with electric field
amplitude |E| > E1 contains 1/3 of the total electrostatic energy:
it is most lightly shaded in the fiqure. The region with amplitude
lE| < E, also contain 1/3 of the total electrostatic energy, and
is most darkly shaded. Fio 11 shows that a large - frac-
tion of wave energy in this system is contained in the small wave

packets. We will discuss this feature of turbulence again in

Sec. VI.

V. Further Numerical Results with Different Beam Parameters

The complexity of the nonlinear interaction makes it
difficult to establish by analytic argument the above inter-
pretation of the numerical results. However, we can test
some of these ideas by changing parameters in the model and
noting the effects on the final turbulent state. We are free
to change certain parameters which affect the characteristics
of the beam; these are the beam-plasma growth rate and the
bandwidth of the beam modes. -

The same numerical experiment as described in the previous
section was done for seven different beam-plasma growth rates
ranging from y/wp = 0.00025 through y/wp =0.005. The maximum
growth rate of the kinetic beam instability due to a Maxwellian
bump-on-tail electron distribution having density n, << ng, central
velocity v >> 5;5, and temperature E;E = Avg such that (Avb/vb)3 >>
n,/n, is given by

n, v,=Av
y = /78 228275

= . (12)
n " Avy P
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Because the growth rate is proportional to the number density in
the beam, by changing y we are effectively studying different
strength beams. As in the earlier example, a steady state is
established in all these cases consisting of collapsed, quasi-
stable wave packets. The values of peak electric field amplitude,
the depth of the density depletion, and the average number N of
the wave packets in the grid area are given as a function of the
growth rate in table 'L Although it would be desirable to study
a Qider range of growth rates, we are aéain faced with certain
numerical limitations. At the lower range of growth rates,
there are only a small number of collapsed wave packets in the
system. In order to simulate smaller growth rates, it would

be necessary to increase the grid area to accomodate the small

density of wave packets, which means increasing the number of
modes. At the larger range of growth rates, the electric
field amplitudes are very intense and the density fluctuations
are no longer small (n ~ no), so that the model Egs. (1)
are no longer valid. Therefore, we must be satisfied with this
range of growth rates.

The total electrostatic energy in the final steady state is
plotted as a function of growth rate, y, in Fig-12. .. The energy
density increases approximately linearly with y.

The other feature of the beam instability which can be changed
is the bandwidth, which is related to the temperature of the beam.
For the Gaussian bump-on-~tail electron distribution the bandwidth

37
§ is approximately (Avb/vb)ko.

The bandwidth can be changed by
adding (or subtracting) pump modes. The examples up to this point
were done with 25 pump modes. Now we do other cases involving 49

pump modes and 16 pump modes, keeping the same central wavevector,
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ib, as before. 1In general, the energy in the system is greater

with a given growth rate for the larger bandwidths. These results
are plotted in Fig, 13 as a function of growth rate.

Let us attempt to understand these results as a balance
between the rate at which energy is added to the pump modes
by the beam-plasma instability, and the rate at which energy
is lost from the pump modes by scattering processes. The addi-

tion of energy, A._, proceeds at a rate proportional to the

in
beaﬁ—plasma instability growth rate, y, and the energy in

the pump modes,

Pin _ J IEX.)|2/8n 13)
dt Y o o

where the index o denotes all the pump modes. Furthermore,
if we assume that the scattering of pump waves is described
by a three wave decay instability, then the rate at which

energy is lost from the pump waves into the decay waves is

given as

dAout = IS 2
d—t—'- = 2 g wi(kS)IE(kB)l /8w (14)

where the index B denotes all the decay modes, and wi(fs) is
the instability growth rate at the wavevector EB’ An energy

balance is found by equating (3) and (14):
y JE&)I?2 = w, (k) |EK,) |2 (15)
o a 8 i "B 8 *

To some extent, the spectrum E(k) can be regarded as uniform

over a broad region of k space: IE(E)I v Eo' Therefore, the

sum on the left side of Eq. (15) can be approximated as
le(ka)l v EN_ (16)

W’ — "_..
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where N = Y 1 is the number of pump modes. For the right
a
side of equation (15}, we adopt for wi(Fe) the maximum growth

rate for the decay instability,38 wg v wp/16, and write

) (E)lf(i)lzmw-ﬂzzn (17)
B“’i B B 16 “o'B

where NB = g 1 is the number of decay modes. The number of pump
modes N, is equal to the bandwidth of the pump, akz, times the
density of modes. The scatter of Langmuir waves will be into
wavevectors with IFBI < liél' since this interaction necessarily
involves a loss of wave momentum to the ions. Thus, we estimate
the number of decay modes, NB' to be this volume of k space,

nkg, times the density of modes. The ratio of the number of pump

modes to decay modes is given by

N 2
ﬁg n sz . (18)
B wko
By substituting (6) and (17) into Eg. (15), and using
Eq. (18), we find the relation
16 8k, 2
W v = v() , (19)
P m ko

8k, 2
ko
the steady state solutions found by the computer. The straight

Wb is plotted as a function of y( in Fig. 14 for all of

line shows that the scaling law is appropriate to this set of

numerical experiments.
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From Eq. (L9), together with Eqg. (12), which gives
the dependence of y on n, and Tp» We may conclude that the rate,
pr, at which a beam loses energy in a fully evolved turbulent
plasma is proportional to the square of the beam number density
and inversely proportional to the beam temperature.

Next we discuss to what extent these results can be generalized

to real mass ratio plasmas.

VI. Comments on Turbulence in Physical Systems

Most astrophysical systems affected by streaming electrons
(such as the solar corona during type III bursts) are hydrogen
plasmas with electron to ion mass ratio of 1/1836. 1In this section
we will examine how the above results, based on light to heavy mass
ratio of 1/25, can be scaled to real beam-plasma systems.

In practice, Egs. (la) and (1lb) are solved in dimensionless form,
and the realization of a physical system is made by the appropriate
transform;tions5 of the time, length, electric field, and density.

These transformations contain explicit dependence on the mass

ratio. By using m/M = 1/25, we produce an injection region such
that both it and the region which is Landau damped (k >0.2 kD) can
be contained in the same limited grid [see Fig. 1(b)]. I1f, instead,
we make the transformation using the'mass ratio m/M = 1/1836, then
we have a more typical injection region, but now there is damping

in relatively small wavenumbers (k >0.02 kD) as in Figurel(c). These
are both valid ways of interpreting the numerical results. In order
to make the connection between the case when m/M = 1/1836 and our

model solutions, we make the following transformation:

! . 1836 X .. 1836, ,x
(wpt) = (—73—)wpt ’ (i;) = (—75—)(X;) '
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. _ ,.25 n_,. _ (.25, 0_
W = (m)w ’ (g) - (1836) (n ) ’
o]
m,- _ 1
& = 1836 . (20)

While both cases have the advantage of supplying the damping
necessary to produce an assymptotic steady state, they each
deprive the system of an extended inertial range. Let us
consider the effect the assumed narrow inertial range might
have on the physics of the turbulence.

Our model demonstrates the saturation of the beam
instability by scattering of Langmuir waves, the creation
of a condensate, and the formation of collapsing wave packets.
This development of wave turbulence is observed in other
computer solutions24 which do not have the damping, so
effectively have lafger (though still incomplete) inertial
range. Therefore, we are encouraged to believe that this
behavior is physically relevant, independent of the size of
the inertial range.

On the other hand, the characteristics of the final
turbulent state are probably sensitive to the distribution
of energy throughout k space. For example, it is likely
that the lack of a large inertial range in our model will
tend to exaggerate the fraction of energy which is contained
in the smallest scales. Evidence from self-similar solutions 33
suggests that while collapsing wave packets may have
spectacular amplitude, they will contain a relatively

small fraction of the wave energy by the time they reach their
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smallest size. This could mean that the dominant length scale
in the system is the relatively long wavelength "background"
condensate length scale rather than the short scale of the
collapsed wave packet.

We can make the following physical argument regarding
the fraction of the total energy contained in the collapsed
wave packets. The energy in the smallest length scales can
be determined by balancing the dissipation in the short
wavelengths with the energy produced in the pump waves:

v, = pr . (21)

As before, Wb is the energy in the pump waves and y is the

beam-plasma instability growth rate. W, is the energy in

the small length scales, estimated as

1 vyma 42
We = 8mnkTy EIE(kC)' (22)

where the index 7z denotes those modes associated with

the smallest wavelengths. We identify W with N
the energy in the core of the collapsed wave packets. The
effective damping rate, Vs can be estimated by the Landau

damping rate at the wavenumber k, = 2n/),, where 1A, is the

c'

characteristic dimension of the collapsed wave packets. We

will assume that A, is not sensitive to the rate of energy
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injection, y. Forming the ratio of Wc to the total enerqgy

W we obtain

W W

L -_rRPX . (23)

w W\’c

For the turbulent state described in Sec. II1I we found

W,
WB = ,15; the size of the wave packets is about 54Ax, which gives
Ac = 25 ke: and the growth rate is y = .002 wp' The damping
Vo is given by Eg. (8) evaluated for the wavenumber k =
2n/Ac. For these parameters, Eq. (23) implies that about

15% of the total energy is found in the small length scales.
This is consistent with Fig .11 which shows that about 1/3

of the energy is contained in the cores of the collapsed wave

packets.

Using real electron and ion masses, the ratio y/vc will
be smaller because y will transform according to Egq. (20)
but unless the dissipation region is to be different from the
usual Landau damping, the length Ag (and therefore the damping
rate, v.) should not be transformed. From this we conclude that

W

WE would be smaller

by a factor of 25/1836. Therefore, very little energy may ac-

with a realistic inertial range, the ratio

tually be in the smallest length scales.

With the mass ratio m/M = 1/1836, the example in section III

corresponds to a beam instability with growth rate y = 3 x 10‘5w

P
and principle wavenumber k° =0.013 kD' in which there is a large

amount of damping for wavenumbers k > 0.02 kD. Despite the fact that

Y is very large (10-6(»p is more realistic), this has some

semblance of reality for the type III case because the
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nonthermal component observed40 in the electron distribgtion
function in the ambient solar wind will introduce damping in
wavenumbers such as the above. With these parameters, the
electrostatic energy in Langmuir waves saturatcs at W= 2.0 x 10-4
and the wave packets will have dimensions of the order of 300 Ae'
With a Debye length at 1/2 A.U. of about 5 m, the wave packet
scale sizes will be of the order of 1 or 2 km. Unfortunately,
this is still less than the resolution of interplanetary space-

craft measuring type 11I bursts4’11

(the smallest observable
size is of the order of 10 km).

Finally, it should be pointed out that although the two
dimensional calculations are an improvement over one dimension,
the real behavior of collapsing wave packets in three dimensions
might be significantly different from our model. One might

expect from analytic arguments16

that wave packets would collapse
much faster in three dimensions, and might even contain a smaller
fraction of the total wave energy than in the two-dimensional

case.
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VII. Conclusions

We have shown that in a simple two-dimensional model of beam-
induced Langmuir turbulence consisting of a long wavelength
regime in which instability adds energy to the system, and a
short wavelength regime which provides damping, an equilibrium
turbulent state is possible in which the collapse of wave packets
enables the transfer of energy between the two regimes. This
steady state consists of quasi-stable collapsed wave packets
trapped in density cavities, which persist over a period much longer
than the collapse time. The final turbulent energy level is found
to be a function of the intensity of the beam and the beam
temperature.

From the wave spectra we found that the greatest concentra-
tion of wave energy tends to occur in the wavenumber region of
the condensate. This brings up the question of how important
the smallest wave structures are to the gross properties of the
turbulent system. Unfortunately, the answer is not provided by
the present work because of the inadequate resolution in the grid.
However, it seems possible from physical arguments that the ratio
of energy in the collapsed wave packets to the total energy in

weakly pumped systems will be small.
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TABLE I

Turbulence parameters with different beam growth rates

Y/wp Emax/(81rnoJ<Te)!5 nmax/no N
0.25 x 1073 0.3 0.16 1
0.50 x 1073 0.4 0.2 3
0.93 x 107> 0.4 0.32 4
1.3 x 1073 0.4 0.32 5
2.0 x 1073 0.5 0.50 9
2.5 x 1073 0.6 0.64 13
5.3 x 1073 1.0 1.6 15
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Fig. 1:

Fig. 2:

Fig. 3:

Fig. 4:
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FIGURE CAPTIONS
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Energy spectra of Langmuir waves:

a) hypothetical spectrum for a turbulent plasma;
b) turbulent spectrum with a small mass ratio;

c) turbulent spectrum allowing for Landau damping

due to a suprathermal tail on the electron distribution.

Numerical grid of Langmuir wavevectors in the beam-
plasma model. There is a region in wavenumber space
of 25 modes growing at a constant rate due to the

beam. Larger wavenumber modes are Landau damping.

Early nonlinear development of Langmuir waves in wave-
number space. Numbers represent relative electric
field amplitude (those less than 3 are not plotted).
The box outlines the 25 pump modes, each one having
relative amplitude of 240. The total pump wave energy

is W_= 0.001.
is W,

Later nonlinear development of Langmuir waves shows
the tendency of wave energy to be scattered into

small wavenumber modes. The units of electric field
amplitude are ten times larger than Fig. 3. (Numbers
less than 50 are not plotted). Total pump wave energy

is Wp = 0.010.
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Contours of electric field amplitude in real space
grid at the time of the steady state. The highest

contour (in the center of the collapsed wave packets)

has amplitude E O.S(SHHOKTe)%. The lowest contour

has amplitude E

5
0.08(8nnoKTe) .

Contours of ion density at the same time as Fig. 5.
The contours with the largest magnitude are found

in the center of the density cavities: &n = -0.5 ng

Development of the turbulent state

a) The electrostatic energy in the pump modes (Wp) and
the total electrostatic energy in Langmuir waves (W)

as a function of time. (Time is in units of w;I).

b) Mean squared density, (n/no)z, as a function of time.

Root mean squared Langmuir wave spectrum. The amplitude
per mode goes from Ek/(Bﬂnom'Pe);5 <1.2 x 10”3 (the
lightest shading) to E /(87n_xkTg)® > 1.1 x 107> (the

darkest shading).

Root mean squared density spectrum. nk/no goes from
.0005 (the lightest shading) to .005 (the darkest

shading).

One-dimensional energy spectrum, kDW(k), as a function

of wavenumber, k/kD.

Distribution of electrostatic energy in the turbulent
system. Each of the shaded regions contains 1/3 of
the total energy. The lightest shade has the larger

values of electric field amplitude.




Fig. 12 Total electrostatic energy in Langmuir waves in the
final turbulent state for various beam instability

growth rates.

Fig. 13 Total electrostatic energy in Langmuir waves for three

different pump bandwidths and various beam growth rates.

The middle curve is the same as Fig. 11.

3 Fig. 14: Final electrostatic energy in Langmuir waves plotted
as a function cof dez for eleven different numerical

examples of steady state turbulence. 1
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Abstract

We study the effects of a given non-thermal low-frequency
density-fluctuation spectrum on the amplification of Langmuir
waves by a "bump-on-tail" beam of electrons. The density-
fluctuation spectrum is assumed to contain a uniform distribu-
tion of wavelengths ranging from much shorter than the beam
mode wavelength to of the same order. This permits multiple
large-angle (back) scatters to occur. One dimensional numerical
solutions of the kinetic equations are found which yield
criteria for linear saturation of the beam instability by a
cascade of backscatters to high wavenumber. We also determine
the relevant time scales and spectral shapes in both the ;
stable and unstable regions. Linear damping and Cerenkov
emission by a possible non-thermal tail of electrons is taken
into account.

An application is made to the beam-modes observed simul-
taneously with density fluctuations off the Jovian bow-shock.
It is shown that the observed level of density fluctuations
is sufficient to saturate the unstable Langmuif waves, although
non-thermal Landau damping may prevent a cascade to very high

wavenumbers.
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I. Introduction

Wave instabilities in plasmas rarely occur under.the
idealized background conditions assumed in textbook treatments.

In space plasmas, non-thermal conditions are often observed
in both the ambient particle and wave spectra. Solar wind
electron streams and the Langmuir waves they excite propagate
through this non-thermal environment. Even slight non-thermal
background features can greatly alter the linear evolution of
the waves, and hence, possible subsequent nonlinear evolution.

In laboratory relativistic beam-plasma systems, return
currents may excite low-frequency turbulence such as Buneman
or ion-acoustic waves. The plasma waves excited by the rela-

tivistic beam may then see these modes as part of the background

plasma and be affected or even saturated by the interaction.
In a recent theoretical treatment, Goldman and DuBois1
studied the general problem of beam-plasma instability in the
presence of low-frequency turbulence. Kinetic equations were
derived for the evolution of Langmuir waves in the presence
of a given stationary spectrum of low-frequency turbulence
and a given stationary electron distribution function.

The kinetic equation was solved only for the case of a
low-frequency spectrum containing wavelengths much longer than
the wavelength of the beam-unstable modes. The Langmuir

spectrum then became essentially isotropic due to multiple

small-angle-scatter (angular diffusion) off the long-wavelength

density-fluctuations. Since Langmuir waves oblique to a




bump-on-tail electron-distribution-function are damped rather
than destabilized, a saturated steady state was created.

In the present work, we are concerned with the resonant
effects of an ambient low-frequency spectrum of shorter wave-
lengths. A uniform distribution of wavelengths is assumed,
ranging in size from the beam-mode wavelength (w2wvb/wp)
down to shorter wavelengths. The given spectrum is assumed
to consist of ion-acoustic turbulence, and we take it to be
one-dimensional and isotropic.

We find that Langmuir waves undergo a series of backscatters
off the given spectrum. This cascade to higher wavenumbers
continues until sufficient linear dissipation occurs, or until
wavenumbers higher than a cut-off determined by the density
spectrum cut-off are encountered. In the absence of a significant
non-thermal electron tail at velocities below the "bump,"
the cascade continues up to wavenumbers which are on the order
of a Debye wavenumber or half the maximum wavenumber of the
density spectrum, whichever is smaller. However, a non-thermal
tail on the ambient electron distribution can terminate the
cascade at even lower wavenumbers, due to non-thermal Landau
damping (with non-thermal Cerenkov emission also taken %nto
account).

We explore numerically the conditions under which satura-
tion of Langmuir-wave growth may occur. However, it is important

to note that even when the instability is not saturated by
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"linear" scattering off the given density fluctuations, such
scattering may affect subsequent nonlinear evolution, since
a broadened spectrum is created at the linear stage.

There are a number of subtle and even unexpected results
which are elucidated in the present paper. Although it is
well-known that nonlinear scatter off density fluctuations
produces a casca@e towards small k. (we shall show why this

is so in Section III, by resorting to simple "Golden Rule"

arguments), the linear scatter will produce a cascade
towards higher k.

A second surprising result has to do with the failure of
a conventional estimate as to when the unstable beam-modes are

saturated. The usual heuristic argument is to compare the

rate of out-scatter to the growth rate. However, just because
the out-scatter rate may be larger is no guarantee of saturation.
This is because there are also scattering-in terms. 1In the
absence of linear dissipation, there will always be as much
in-scatter as there is out-scatter, so that scattering alone
can never result in saturation. The estimatibn of when satura-
tion can occur is therefore a subtle business involving the
interplay of scatter and linear dissipation. 1In this paper we
provide numerical criteria for saturation and find the proper
time-scales for 'net" out-scatter, taking in~scatter and
dissipation into account.

One application of these results and one of the motivations

for the present study has to do witbP Langmuir waves driven




by electron beams in the solar wind. There are two principal
examples:

1. Beams originating at the sun during flare activity,
and propagating out into interplanetary space where they excite
Langmuir waves, which subsequently give rise to "Type I1I" or
other radio-wave emission.

2. Beams created by quasi-perpendicular shocks such as
planetary bow-shocks. Such beams go out along tangential
magnetic field lines, and have been measured in elegant detail
near the earth's bow shock. Near the Jovian bow-shock, the
excited Langmuir waves have been studied by the Voyager 1
spacecraft, and observed to coexist with ambient low-frequency
turbulence and apparently to cascade to higher wavenumbers.

We shall apply some of our numerical results to these
problems, since the magnitude and shape of the density fluctua-
tion spectrum, the shape of the electron distribution and beam,
and the intensity of the Langmuir wave spectra are known in
great detail in these examples. Our object will be to define
thresholds for linear saturation and time-scales for cascade
and to compare with experiment. We conclude that Langmuir
waves are often observed at sufficiently low levels
(|€|2/41rn@e << 10™%) that density fluctuations as small as

4 could have been responsible for their saturation.

én/n & 10~
For more intense Langmuir waves, the saturation is probably
nonlinear, but density fluctuations may still play a role in

the early shaping of the spectrum.
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The plan of this paper is as follows: 1In Section II,
we summarize the results of space-craft measurements on electron-
distribution functions, beam-excited Langmuir waves and
associated low-frequency turbulence. The reader more interested
in the general results of our calculations than in the phenomen-
ology of the solar wind, may wish to skip Section II.

In Section III we write down the basic equations to be
solved, and give a heuristic Golden Rule derivation which
enables us to understand why the cascade goes to high k, and
what are the conditions for neglect of nonlinear terms in the é
scatter. We also introduce our model of the density fluctuation !
spectrum and the electron velocity distribution.

In Section IV we study the solutions of the kinetic

equations and describe the threshold that separates saturated

from unbounded behavior in terms of the density fluctuations
and the electron distribuition. Concluding remarks appear in

Section V.
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I1. Review of Measurements of Beam-Excited Langmuir Waves and

Simultaneous Low-Frequency Turbulence in the Solar Wind

A. Beam-waves near planetary bow-shocks

We begin with a concise summary of the Voyager 1 measure-
ments in the vicinity of the Jovian bow shock.2 Fig. 1 shows
Langmuir waves excited by a beam of energy ~10 keV. The waves
are measured as the spacecraft moves towards the bow shock.

The Langmuir waves are first observed when the spacecraft
crosses the beam boundary, defined by a magnetic field line
tangent to the bow shock. The beam electrons are carried out
from the bow shock along this field line, so the beam
propagatées roughly orthogonal to the spacecraft and solar wind
velocities. However, Langmuir wave packets réceiving energy
from the beam are convected by the solar wind towards the bow
shock. Growth begins as the waves are swept into the beam
region. The waves saturate and subsequently disappear when

the bow shock is crossed. Since waves are continually swept

in and out of the beam region we assume a steady-state spatially
amplified and saturated spectrum of waves in the laboratory

frame.

The spacecraft moves through this spatial region where
measurements yield the time history shown in Fig. 1. Neglecting
the wave-packet group velocity in comparison with the solar
wind speed Vew? a time interval At in the solar wind frame is
related to a laboratory-frame spatial interval, Axy¢» by

Axlf = vswAt. Assuming the Voyager spacecraft moves with a
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laboratory frame velocity, Vi essentially parallel to the
solar wind, a time-interval,Atv,measured from the Voyager is

related to At by

In Fig. 1, we see that the total time of observation of
Langmuir waves is Atgbs & 8 minutes and that the initial rapid
growth interval is At%r & 2 minutes. Since Vy R 17 km/sec,

and Vew ™ 400 km/sec, we find

Atsr Ry, 6 secs

Atgbs& 20 secs

These times will be useful for purposes of comparison with the
results of Section IV. .

At the time marked A in Fig. 1, the observed Langmuir
frequency spectrum (not shown) is very narrow (less than 1%),
while at times marked B and C it has progressively broadened
to s«round 10% of the plasma frequency. If this broadening

is attributed to a cascade to higher wavenumbers, then this

corresponds to a maximum Langmuir wavenumber of kAD A 0.18,

where AD is the Debye length (about 18 meters).

A typical electric field strength from Fig. 1 is E = 100 uV/m,
3

The mean background density and temperatures are n = 0.45 cm
and T = 3 x 104°K, so the usual dimensionless measure of the
Langmuir wave energy density is quite low (i.e., linear,

rather than nonlinear)




E2

= TTnk T

W N5 x 1077

In Fig. 2, we see low-frequency waves, interpreted as
ambient ion-acoustic wave turbulence, measured onboard the
Voyager simultaneously with the beam-excited Langmuir waves.
The low-frequency spectrum extends to around 500 Hz. Since

v >> c

sw s? (cs = the ion-acoustic speed), the low-frequency

dispersion relation is essentially w = [ RN At 500 Hz,
an ion-acoustic wave propagating parallel to the solar wind
would have qu = 0.14., (The lower frequency part of the spec-

trum would give smaller values of qA..) Ion-acoustic waves

D.
propagating parallel to the electron beam with wave number Qy

would be at an angle near 90° to the solar wind so

quD >> 0.14

Once again, the lower frequency part of the spectrum would

give smaller values of qAD.
The integrated broadband electric field strength of the

ion-acoustic fluctuation is found to be Ei.a. Ry 10 uV/m.

This corresponds to a density fluctuation relative to the

background density of

én _ ®Bin 71070
n kBTq qXD

Hence, with qAD = 0.14, we find

$n _ -4

-
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Gurnett et 81.2 argue for a smaller value of q)\D, based on a
peak in the ion-acoustic spectrum at 100 Hz rather than 500
Hz, whereas we may argue for a larger value associated with
Qy, - Since the two effects oppose each other, it is not
unreasonable to consider %? = 5 x 10"4 as a typical strength
for the nonthermal low-frequency density fluctuations.

Finally, we remark that Gurnett et al. were the first to
make the explicit suggestion that the observed broadening of
the Langmuir.spectrum may be due to multiple backscatter from
the ambient non-thermal density fluctuations. One of the purposes
of the present paper is to explore quantitatively the feasibility

of this mechanism.

B. Nonthermal electron distributions

One may Qiew the scattering of Langmuir waves off density
fluctuations as a mechanism for shifting Langmuir energy density
around in k-space. Of crucial importance are those shifts which
take energy from a region where a (stationary) background beam
can drive the waves unstable to a region where the background
electrons can Landau damp the waves. Hence, the non-thermal
distribution of electrons in the vicinity of the beam should
be taken into account, so that the magnitude of the (non-thermal)

Landau damping can be found and incorporated in the kinetic

{ equations. Generally, in the solar wind, the electron distribu-

tion beyond a few hundred eV is highly non-thermal, and the

associated Landau damping is much stronger for a Maxwellian

o
| | I
-
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plasma at the (several-eV) temperature associated with the
bulk of the electrons. (As we shall see, Cerenkov emission
from the tail alsc needs to be taken into account.) Figure
3 shows a typical non-thermal distribution;xfhigh energy elec-
trons in the solar wind. It is taken from ISEE-1 measurements

in the vicinity of the earth's bow-shock.3

Note the bump-on-
tail at v % “Vp = 21 x 103 km/sec, corresponding to a beam of
energy V1 eV. Note also, the highly isotropic non-~-thermal
tail at lower velocities. It is this region which is explored
by Langmuir waves scattered to progressively higher k, since
such waves have lower phase velocities. Numerical mo&els of
Landau damping based on Fig. 3 are incorporated into some of
our solutions to the kinetic equations in Section 1IV. We

also remark that such velocity distributions are common in
interplanetary space remote from bow shocks. For example,

Lin et al.4 have consistently found such non-thermal tails

in the solar wind both before and after the passage of streams
of solar electrons associated with Type III solar radio wave

emission. The .temperature of the tail is typically from 10

to 1000 times that of the background plasma temperature.

C. Type III emissions

Langmuir waves have often been found in the solar wind in

association with Type III solar radio-wave emission, and are

thought to be associated with such emissions. The largest

energy density ever found was on the order of

aup TR TR BN W) W Wy = —

-
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2 5

- _E -
Woax = 4nnkBT R 4 x 10

whereas values two or more orders of magnitude smaller are
much more common. Typical electron beams have energies like

25 keV, which correspond to le R 10~2

for beam-resonant
Langmuir waves. Hafizi et al.5 and others have explored the
nonlinear saturation of such waves.

Here, we remark that ion-acoustic waves are often indepen-
dently excited in the solar wind, probably driven by heat
flux instabilities.6 Lower frequency density fluctuations are
also observed. At the lowest observable frequencies (2100 Hz)
the (Doppler-shift determined) wavenumbers of the ambient
density fluctuations are at roughly the same wavenumber as the
Langmuir waves. Typical intensities are 6n/n # 10'4. Hence,
it is of interest to consider the possibility that the beam-
driven Langmuir waves are saturated by large-angle scatter
off ambient density fluctuations, particularly in the presence

of the non-thermal electron-distribution-function tails commonly

found in the solar wind. 1In Section IV we shall consider some

——

examples of when this may be possible.

—
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II1II. Kinetic Equations

A. General considerations

The kinetic equations which govern the evolution of Langmuir
waves in the presence of a given stationary spectrum of ion-
acoustic waves are well-known. A rigorous derivation has been

given recently.1

Since we are concerned here only with
resonant three-wave interactions, we first present a short
heuristic quantum-mechanical '"derivation" based on "Golden
Rule'" arguments. This has the advantage of including nonlinear
as well as linear scatter, so one condition for a completely
"linear" derivation can easily be defined and the differences
between the linear and certain nonlinear terms clearly under-
stood.

We shall employ occupation numbers nL and ni to describe

the "intensity! of the Langmuir waves and background ion-

acoustic waves. They are defined as follows

L L2
ho, 0y = <|E£]' >/4nV (1a)
i_ i2 2.2, _ 2,, 2 ‘
'ﬁszgng <|E9-| >/4mAga“v nkBT<|6n9-| >/n“V (1b)
Here,
e (2 2,2,4
wg (wp + 3vek )%, and
Qg T | Y

are, respectively, the Langmuir and ion-acoustic frequencies,

and <|E£|2>IV and <|E;}2>/V are the (ensemble average) spectral

- e - s i DA S ol mal
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functions of electric field fluctuations for the two kinds
of waves (V is the "box volume,'" assumed to tend to infinity).
The right sides of Egs. (1) represent the spectral energy
densities for the two kinds of waves. The spectrum of density
fluctuations <|6nq|2>/niv has the integral

<Jong |2

(én/n y2 [ d i 5 (2)
(21)° nZv

A (position-independent) ensemble avarage is understood on
the left. This result will be useful, since we shall often
useénlnoas a measure of the strength of the density fluctua-
tions. Planck's constant, h, in Egs, (1) will play no role in
any of our calculations.

The Feynman diagrams for the processes we study in this
paper are shown in Fig. 4. The corresponding equation for

the time rate of change of the occupation number nﬁ is

3
S B - STV F YO ~wp =9) [nL L +1)(n +1)-(ng +1)nL ni]
(2m) £ % 4 - =5 q

+ SCug-wy 490 [nt(nk +1)ngf(nk+l?n (n +1)

- —_s - —— -S -—

lk‘

-g (3

J)k‘

The quantity IMI2 +s a matrix element squared. Its value will

be written down later, in another form of the equation. The
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integral over g represents a sum over final states. Momentum
is conserved, because k. = k-q. The delta functions are
expressions of energy conservation for the two processes and
their inverses (h=1). In the first process an ion-acoustic
wave is emitted (absorbed in the inverse process), while in
the second process, an ion-acoustic wave is absorbed (emitted

in the inverse process). The factors involving nt, nt

- -S
is inserted for

and

- n; represent bose statistics. A factor nt

an absorption, (n§+1) for an emission, etc. Note the sign
change for the in;;rse processes, in which a plasma wave at

k is emitted, rather than absorbed. We have assumed an iso-
tropic iom-acoustic spectrum (otherwise the n;, factors in

the second square bracket are different from those in the first

square bracket).

We combine terms and rewrite Eqg. (3) as

L _ eff ng, L eff
atng = —2(YE +y5 n, + 5.7, (4)

where we have taken the semi-classical limit nﬁ >> 1, and

where

: 3
£f d 2 i
2yott = 124 |y| 3.6(3 ) + §(R) in
[(21')2 - + q

3
2722 = [—g-§§ IMI2 36(R_) - (R inﬁ

(217 -s

T
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3
eff _ d 2 i L
kO [(_2“_;15 |n| 36(3_) + 5(n+)§ g (5¢)
R z W, - + Q (5d)
e Socop g

These terms have the following physical interpretations. The

effective '"linear'" out-scatter rate is given by Yiff. The

eff

effective in-scatter rate is given by Sk nl

k
contains nonlinear (stimulated) out-scatter which we ignore

in this paper. The term —2yz£n§ is nonlinear because it is

. The quantity vy

second-order in ni,

energy density). The other terms are all linear, but propor-

tional to the ambient density fluctuation spectrum through n;.

the Langmuir wave occupation number («

We note that the nonlinear terms have been treated by
many authors.5 They give rise to a weak-turbulence cascade
to lower wavenumbers because of the minus sign in Eq. (5b). To
see why this is so, consider a one-dimensional problem. Then
k™ < k (the so-called Stokes process) and

kt > k (the so-called anti-Stokes process).

R_ = 0 implies ks

it

R+ = 0 implies ks

In order to get stabilization of an instability, we must have

Yﬁz > 0. Hence, nL(k-) > nL(k+) which explains why the
spectrum must increase towards smaller wavenumbers.
eff

In the linear term, the two delta functions have the

Yk
same sign, so there is no reason for the spectra only to cascade

down. (This may be viewed as a simple consequence of the rules
for Bose statistics.)

Even in the absence of any significant non-thermal density

fluctuations (1imit n; small), the nonlinear term, Ygl makes
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a contribution. It represents scatter off the thermal level
of jon-acoustic waves (the 1 in n; + 1). Nonlinear kinetic
equation treatments usually negleZ¥ the terms proportional

to ni. Our calcuation is complementary to these because it

q
is linear, but does include scatter off a non-thermal level
of density fluctuations (terms Yﬁff and siff only).

It is easy to establish a necessary condition for the

neglect of the nonlinear (stimulated out-scatter) term in Eq:

(4). Comparing ZYII:2 with sﬁff, we arrive at the requirement

ni << n;, or, using eqn (1),

-

<|Eg 1> /(vann kT << <|5nk|2>‘”p/(“igkv’ (6a)

For ion-acoustic waves, wp/Qk LY (M/m)é/(kAD). In the problems

that we consider, kAD % 0.1, and the normalized density fluctua-

- -5
tions are 0(10 4). The RHS of (6a) is therefore of order 10 .

For all of the stationary Langmuir spectra (Btni + 0) that we

have found numerically, the left hand side of (6a) is bounded

above by 108

, thus justifying our neglect.of this nonlinearity.
(For unbounded behavior, the Langmuir wave energy diverges
with increasing time so that (6a) is eventually violated.)

A nonlinearity not included in the rate equation (4) is
due to the self-consistent evolution of én in response to the
ponderomotive force of the envelope electric field. This
effect introduces a term in Eq. (4) that is also quadratic
in nﬁ and includes the modulational instability (or self-

tocusing) of Langmuir solitary waves. This nonlinearity may




18

be ignored provided the threshold for modulational instability

(collapse in 2 or more dimensions) is notvexceeded:5

<|Ep|3>,, 7 (4mnk Ty << 24(2k)2/K2 (6b)

Here Ak is the width of a typical Langmuir wave packet and
<...>Ak denotes an average over that packet. All of the Langmuir
spectra that we study consist of pronounced spikes in k-space

of various widths. 1In all cases observed, the RHS of (6b) is
bounded below by 10-4. For cases in which the spectrum reaches

a stationary state (3tnt + 0), the LHS of (6b) is bounded above é
by 10-6; SO our neglect‘of this "ponderomotive' nonlinearity
is also justified. (Again, for unbounded behavior (6b) is

eventually violated, but perhaps not during times of interest

in the solar wind problems addressed here. See Sec. IV C.)
Next, we write down the form of the kinetic equations to !
be solved in this paper. This amounts to working in terms of
the spectral functions on the right side of Eqs, (1) rather than
occupation numbers, and to explicitly writing down the matrix
element for the interaction. A derivation based on the first
Zakharov equation can be found in Ref. 1.
We shall also add in Yk and Sk terms arising from the
coupling to a passive backg;;und eIéctron distribution function.
The Yk terms will include the bump-on-tail instability and
the n;;-thermal Landau damping at higher k-values (lower phase
velocities), and the Sk terms will include Cerenkov emission.

Hence, even without the beam or density fluctuations, a steady-

state non-therma. detailed balance is possible.
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We now begin a convention which introduces dimensionless
variables and relates them to dimensional variables (henceforth

indicated with a """) as follows:

t -+ tw
Y

x> (Engeat

én -+ 6n/2no

The kinetic equation will be expressed in terms of the
Langmuir envelope field correlation function i(g,t), defined by

i"(g,t)=l <| (t)|2>,
v K

where the complex envelope field ék is related to the total

Langmuir electric field by

~L _ -iw_t

E = 3fe P + c.c.
The kinetic equation is given by

eff seff,/

[at + 2y(k) + 2y (5))?‘(5,1:) = §%H(k,t) + S(k) (72)

where the terms involving scatter off low-frequency density

fluctuations are:

[ .3
eff o d 2
(k) = X cu lsR) + 8(R ) (7b)
- 2 j2m q - [ + "]
geffiyy = T _d® cv? [sr)y + sR ')] F(k-q,t) (7¢)
— - '§ qu— + - —-g’ c
J(ZW)
u? = (k*(k-9)/k|k-g])? (7d)




Y

20

2

R, = |k-g|% - k

+ telal, cg = czmam? (7€)

C |2

<leng|®> (71)

1

a v 2
The correlation function Cq describes the given external 1
density fluctuations. Not; that Ri are now dimensionless
and the expanded Langmuir dispersion relation has been employed. ;
The stationary linear damping (or growth), Y(k), is related

to a given electron distribution function, fe(g) by,

2
. —m Y 3 Ko

and the corresponding Cerenkov emission is

= 2,-1 [ .3 N
S(k) = 3wp (32mn_k“) Jd gfe(g)a(mp-g-v) (8b)

(Here f_(v) has the units of 1ength'3x velocity_s.) We now
turn to further approximations relevant to the present calcula-

tion.

B. The model random medium

We consider an electron beam propagating through the
plasma in the positive z-~direction, and restrict our attention
to density fluctuations which are a function only of z (see

Fig. 5):
én(r,t) = 6n(z,t)

In one spatial dimension the density correlation function is

given by
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(2m)2
Cq =~ T~ 5(q,)8(ay) <én(-q,)én(q,)>. (9)

We define our random medium by taking density fluctuations

having a flat, truncated, ensemble—averaged.spectrum:

on? g
<6n(qz)6n(—qz)> _ 4Qm zZ m
T =
0 v lagl>Q (10)

The value of (DN)2 is determined by the constraint

3
d - . 2
{———§§ Cq = (6n/no)

(27 -

(This is Eq. (2) reexpressed in terms of dimensionless variables.
An ensemble average on the right is omitted.) We find that
2

2 _ csi/i o2
(DN)™ = (Gn/no) H

(DN)2 is just the ensemble-averaged mean square density fluctua-
tion, normalized to the ambient plasma number density.

Noticing that the angular factor uf in Egqs. (7) serves
to diminish Langmuir wave scattering at large angles to the
z-axis, we set it equal to one. The final step in deriving
the one-dimensional kinetic equation is to ignore the trans-

verse structure of the electron distribution function:




———————
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1.(0) 6(vx)6(vy)f(vz).

With this assumption, u® = 1, and using Eqs. (9 and 10), Eqs. (7)
vield the following linear, inhomogeneous equation for the

evolution of F(kz,t):

e + 2va0 + a0 + BUO]FCK 1) =
ACK)F(-k+cg,t) + BUOF(-k-c_,t) + 5(k)  (11a)

n(0N)218Q_|2k-c |17} iz |2k-c_| < Q
ACK) = 3 Q
0 if [2k-c | 2 Q !
or
{ if 2k = cg (11b)
nom28Q |2kte |17 af f2kee | ¢y
B(k) = |
0 if |2k+c| 2 Q,
or
{ if 2k = -cg (11c¢)

We have suppressed the subscript on kz and have normalized f
and § to 8nee, where ee is the electron temperature in energy

units. In terms of our previous notation

2y (k) = a) + B
s (k,t) = AGKIF(-k+eg,t) + BUOF(-k-c,t).

ff

A typical Ye is plotted in Fig. 6a.
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The one-dimensional electron velocity distribution, f(v),
consists of a Gaussian bump on the tail of a Maxwellian distri-

bution, plus an exponential non-thermal component,

ONT
fNT(V) = TA_%—T- exp(-—]vl/AvNT), (12)
chosen to simulate the conditions in the solar wind and other
plasmas which are nonthermal at high energies (see Section II).
In addition to the damping (or growth) rates that these
distributions generate via Eq. (8), we include the effects of

coulomb collisional damping on the Langmuir waves:

Y(k) = YL(k) + YB(k) + YNT(k) + Yo

where
m 3 2 -3 2
Yy (K) = (x) |§k| exp(-3/4k°) (Landau damping by thermal
component),
YB(k) = Q(vB/AvB)z exp(-zzlz) (beam growth and damping),
_ T 2 2
Q = (E) nB3ve/(2k vBAvB)
z = (vg/bvg) [1 5)iv (v lk])-1 -sign(k)]
- B ' e B
31 -2 2 ~ -1] i
Yp(K) = Byp F K 7 (v/Bvyp) exp[ /5ve (/EAVNleI)
(Landau damping by nonthermal
component),
and
Y = (127/27)" ! g an(12mg”l)  (collisional damping).
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In the collisional damping rate above, g is the plasma parameter

-1
- -3
g = [ DokD ] .

(For the solar wind and bow-shock plasmas that we consider,

g is 0 (10719 .y n

NT and ng are, respectively, the non-thermal
and beam number densities normalized to the ambient plasma

number density. Ve is the electron thermal velocity; v, is

B
the mean velocity of beam electrons; AvB is the half-width of
the beam; and AVNT is defined in Eq. (12).

The Cerenkov source term is given in one dimension by

_ 2 -1 .
S(k) = 3wp(32wnok ) Idv f(v)é(wp-k v).

It follows that

1

S(k) = (YL(k)+yc)-(4n)- + SB(k) + SNT(k),

where

sg(k) = avg/B k| ™! exp(-22/2) ,
and

-1
Syp(k) = nyo 3/3v [64/2n Avin [k]|) exp[-/Bv, (VZhvg kD71,

and we have added in a Bremsstrahlung emission term (proportional
to yc). By far, most of the emission is from beam electrons.
We plot yv(k) and S(k) for parameters typical of the solar wind
in Figs. 6b and c, respectively.
For convenience, we 1list here all of the independent,

dimensionless variables that characterize our problem.
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Density Fluctuations: DNZ, Qul
Electron Beam: ng» ve/vB, vB/AvB

Non-Thermal Component: Ny ve/AvNT
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IV. Solutions of the Kinetic Equation

A. General Remarks

The Langmuir wave energy density at k is

3. & o= 3o
a°k W(k) = a°K 8 _F(k,,t)8(k,)8(k.) . (13)

Therefore, the total wave energy density, normalized to noee is

3. o~ L3P
d’k Wk 3/2,, -2
W(t) = s —= = e2/3)3/2c2m) F(k,t)dk .
(21)" "o’e
|kisk .. <kp gL (14)

The integration is only over those modes actually retained

in our truncation of the Langmuir wave spectrum. We will

truncate the spectrum at k| = 0.25 (or ’E,max = 0.2kp).

max
Larger |k|-components are too heavily Landau-damped to affect
the results for parameters appropriate to the solar wind
problems. Furthermore, according to Egs. (11 b and c),
Langmuir wave components with 2|k| > Q, + cg evolve with no
scatter; for such modes, Eq. (1la) is solved by the detailed
balance result, F(k) = S(k) [2Y(k)]-1. If these 'unscattered'
modes are heavily Landau damped, they cannot contribute to

the total wave energy. We will impose, therefore, the con-

straint

Q, = 2|k|max - Cs
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between our truncations of the density fluctuation spectrum
and the Langmuir wave spectrum. (In fact, the Markoffian
limit of the kinetic equation is justified only for those
modes satisfying the resonance condition(s) Rt = 0 and hence
only for scattered modes.)1

In the absence of a beam and non-thermal background
(nB =0 = nNT)’ the result of detailed balance is again the

appropriate solution of Eq. (11a),

F(k,t) S(k)/2y(k) =

1
8n

and

-1
g(2/3)3/2(3213) ~ = 10713,

w(t)

regardless of the scattering. However, with an electron beam
present, Langmuir wave energy is injected over some interval

in k-space for which y(k) is negative. The energy in these

'pump' modes undergoes successive backscatterings (i.e. k -+ -kics),
at a rate proportional to DN2. Eventually some of the injected
energy will be scattered into one of the dissipative regions

of k-space where there is damping (y(k) > O, see Fig. 6b).

If the efficiency of the scattering is high enough, a

stationary state will be reached in which wave energy is

dissipated as fast as it is injected; i.e., the beam-plasma

instability will be saturated (see Figs. 10):

F(k,t) + F°(k)
w(t) -+ w°
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From Eqs. (11b and c) it is easy to see that scattering alone

conserves energy:

s (kyax

k] s |k|

JZYEff(k)F(k,t)dk

max

It follows from Eq. (1la) that all stationary states must

satisfy

JZY(k)FO(k)dk = JS(k)dk ,

thus generalizing the detailed-balance result given above.
If the efficiency of the scattering is too low, energy
will be injected faster than it can be channeled into the sinks,

and the total wave energy will diverge (see Fig. 1la):
W(t) » =

Under these conditions, nonlinear terms must be retained in
the original kinetic equations.

There is a boundary in parameter space which separates
the bounded behavior (stationary solutions) from the unbounded
behavior. Next, we characterize, in more detail, the station-
ary solutions that lie below this threshold and introduce a

simple method for approximating the threshold.




29

B. Stationary solutions and threshold

We search for stationary solutions by solving numerically

the algebraic system

M-FC = § (16)

that results from Eq. (1la) when at = 0. Here, z? is a vector

defined by
o = wO
. = F .
(F )J (kJ) ’
where
,k;jlslklmax » J=1,2,..., N,
= + i = - =

and kl,N _lk[max. (Typically, N = 241 and lkj kj+1| 0.1 c.)

To be physically acceptable ('"realizable"), a solution of Eq.

(16) must be positive for all kj’
o
F(k,)z20.
¢ J

If such a solution exists, then all initial distributions that

we examine are found to approach it with increasing time. When
the parameters are such that the solution to Eq. (16) yields

F°(kx.,) < O for some kj' then our solution to the corresponding

J
time-dependent equation, (11a), yields a total wave energy which

diverges with increasing time, regardless of initial 'spectrum.

Thus, the saturation threshold may be taken as that boundary
in parameter space separating solutions of Eq. (16) with
r°(kj) z 0 for all k, from those solutions with r°<kj) <0

for some kj.

B R R R L -

—_—




i) Case Dy = (4}

Consider first the case of no nonthermal component, (nN = 0).

T
In Fig. 7, we plot the threshold curve as a function of beam

growth rate ('\anB (vB/AvB)z) for a fixed level of density
fluctuations (DN = 2 x 10'4). Notice that the total wave
energy at threshold is a weakly increasing function of beam
density and beam widtﬂ. Farther below threshold, total wave
energies are significantly reduced from their threshold values.
Larger values of DN are required to saturate beams with

higher n Larger values of total wave energy at threshold

Bl
occur in this 1limit. Langmuir wave spectra with total energies I

on the order of 10_7 were observed during the Voyager 1 fly-by

7 3

of the Jovian bow shock.2 If wechoosevh/AvB = 2, velvB = .016
2 x 10" to l

ng = 8.55 x 10~

saturate the instability at threshold, with total wave energy

, then our theory predicts DN

w° - 2 x 10—7. The measured values of DN (see Section II and
Fig. 2) are on the order of 2 x 10_4, which ccrresponds to
Fig. 7. (The parameters ng and AvB were not measured in the
Voyager experiment.) For the chosen parameters, we find saturated
total wave energies at least an order of magnitude smaller
than those observed.

In Fig. 8 we plot Fo(k) Jjust below threshold at point *
'P;' in Fig. 7. Here the total wave energy, W°, is 2.8 x 10'8,
and we note a significant scatter all the way out to wave numbers

Iklmax = 0.17 k. The pronounced spikes in the spectrum |
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occur at wave numbers in resonance with the fastest growing

beam-unstable mode:

"k i3c .t * o0
) s’ o s’ o s’ ko 4cs

where ko maximizes | (k)| for growing modes. (Because we have
chosen ve/vB = 0,016 = Cgo these resonances approximately
overlap in pairs.) Scatter out to such high |k|-values is
consistent with observations by Voyager 1, although Wo is
roughly one tenth the observed energy.
ii) Case Dyp * 0

It is doubtful, however, that a simple bump-on-tail
accurately models the electron velocity distribution function
in the solar wind and off the bow shocks, as we have discussed
in Section II. We use Eq. (12) to model the velocity distribu-
tion of the non-thermal electrons. Choosing ve/vB = 0.016

and ve/Av = 0.3 results in non-thermally damped modes that

NT
are immediately adjacent to the beam-unstable modes in k-space,
consistent with the observations off the earth's bow shock

(cf. Figs. 3 and 6b).

It is natural to ask for the level of density fluctuations
necessary to saturate the instability for different levels of
the non-thermal component of the electron distribution function.
In Fig. 9 we plot the threshold curve in the (nNT’ DN)-plane
of parameter space for fixed beam parameters thought to be

4 conditions.

appropriate to the Jovian bow shock2 and to Type III
As one would expect, larger non-thermal components require

smaller levels of density fluctuation to saturate the instability.
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Notice that the total wave energy at threshold is a weakly

NT)'
In Fig. 10a we plot Fo(k) just below threshold at point

increasing (decreasing) function of DN (n

'P2' in Fig. 9. Here the total wave energy, Wo, is 3 x 10'9

for a choice of non-thermal number density taken from terrestrial

bow-shock observations. The scattering is only out to wave
numbers of |k| = 0.1 k,- Again: below threshold, the station-
ary states have total wave energies significantly smaller than
their threshold values.
iii) Conditions for saturation

Let us consider the physical origins of the stationary
solutions. Clearly, it is impossible to find physical
(Fo(kj) 2 0), stationary solutions of Eq. (11a) if 2y + 2yff
is negative for some of the pump modes. Therefore, a necessary

condition for saturation is

r2vck) + 2v$Tfky11 2 0 . (17)
beam

(Obviously, if this is true for the beam-unstable modes, then
it is true for all k-values.) This is not, however, a sufficient
condition for saturation. If it were, we could identify the

eff

threshold condition as Min [2y(k) + 2y (k)] = 0. Physically,

condition (17) is not sufficient for saturation because some
of the energy that is scattered out of the pump modes is
scattered back into those modes. The net rate at which the
pump modes are depleted must be positive for saturation.
Threshold then can be identified by setting the minimum net

rate for pump modes equal to zero. Of course, this minimum

—&
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net rate is obtained by solving Eq. (16) algebraically.
However, it is instructive to do so for the case of only a
few Langmuir wave components.

Suppose that the problem consisted only of the most
unstable beam mode at ko and the two modes coupled directly

to it at k -ko + c¢c_. Then Eq. (16) is easily solved,'

1,2 = s

and we find that

~eff o _
(2v, + 2Y) HF = S_ ,
where

-1

~eff _ eff eff

2Yo = 2yo - AOA1[2Y1 + 271 ]
-1

eff

- B°B2[2V2 + 2Y2 ] ]

and we have neglected the source terms at k1 9 (Fg = Fo(ko),
]

Ao = A(ko), etc.) Here we have defined a "renormalized"

effective scattering-out rate, ;eff. Since all A's and B's

are positive by definition (cf. Eqs. 1l1b and c¢), as are

Yq and Yos We see clearly the destabilizing effects of the

scatter back into the pump mode, i.e. §§ff < ygff,

For this 3-mode system the threshold condition is

2y + 278t = o . (18)

This reduces to the condition (17) in the 1limit of increasing
damping of the scattered modes, Yy.9 * = However, if these
’

modes are not heavily damped, as is likely to be the case,

PRV . RN . . . 7
. —_— -
- mpriat o R == . ¥ LI W S




we would have to include more than 3 modes in our truncation
in order to reach sufficient dissipation to saturate the instability.
As a rule, we keep adding modes to the truncation until we

reach a k* such that

2y (k%) > 2y T (k*) |

Then the ?gff that we obtain enables a good approximation

to the threshold condition via Eq. (18). We will present
a detailed analysis of this renormalization technique in a

subsequent publication.

C. Time-dependent behavior

Starting from a reasonable initial Langmuir wave spectrum,
the subsequent behavior will be either bounded or unbounded
(i.e. requiring nonlinearity for saturation) depending on the
parameters. We take as an initial spectrum, the solution of
Eq. (16) with the beam turned off (nB = 0, cf. Fig. 10b).

Such initial conditions are particularly appropriate to the
Jovian and terrestrial bow-shock problems in which the solar
wind is convected into an almost orthogonal electron beam

of finite extent parallel to the wind (see Fig. 5). Thus,

in the rest frame of the solar wind (where our theory applies),
we would see the beam suddenly turned on at t = 0. (Of course
we can only assume a sharp beam boundary since we are not
evolving the electron distribution in time.) Then we restore
the beam (nB > 0) and evolve Eq. (1la) with the full electron

distribution function.
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Such a scenario is also appropriate for describing
Langmuir waves associated with Type 111 solar bursts, in
which an electron beam streams through the ambient solar
wind and excites Langmuir waves. However, the times of interest
in Type III and bow-shock problems are quite different. 1In
the bow-shock problems, the beam terminates abruptly at the
shock front; so we are only interested in evolving the system
for the time it takes a point at rest in the solar wind to travel
from the beam front to the shock front. For the published
Voyager 1 observations off Jupiter,2 this is about 20 sec or
105 plasma periods. For the Type III observations,4 the
observation time is considerably longer (35 minutes in the
frame of the ISEE-3 spacecraft). For a typical beam (nB = 10—6,
VB/AV
(

= 3, ve/v = 0.016) and non-thermal component

B B

= 10‘5, ve/Av = 0.3) the evolution of the Langmuir

°NT NT
wave spectrum just below threshold is summarized in Figs.

10. (We assume DN = 1.25 x 10"3 corresponding to point Pz in
Fig. 9). The elapsed time is 12 x 106 plasma periods (36
minutes at the Jovian bow shock), after which the total energy
has reached one half of its final value (Fig. 10c).

Evidently, there is insufficient time available in the
Jupiter problem for this stationary state to be observed.
Therefore, in the context of that probl:i.n, the beam-plasma
instability would be completely suppressed. However, here

the level of density fluctuations is slightly larger than

observed.




For the same beam and non-thermal component, but weaker
density fluctuations (DN = 5 x 10-4), we move above threshold
to the case of unbounded behavior. 1In parameter space we are
at point PBAin Fig. 9. Here the evolution of the Langmuir
wave spectrum for the first 12 million plasma periods is
summarized in Figs. 11. The spectrum reaches energy levels
at which nonlinear process, neglected in our theory, become
important only at the end of the time interval (i.e. W(t) = 10 ).
Yet the scattering out is completed after a relatively short
time. By 'completed' we mean the following:

Let Wj(t) be the Langmuir wave energy contained between ?

kj and kj+1 where F(k,t) has a local minimum at kj' There is 1

a spike in the spectrum between kj and kj+1' We define the

efficiency of the scatter into [kj’ as

kj+1]

- -1
fj(t) z Wj(t) (W, ()]

where Wo(t) is the energy under the beam-resonant spike at ko.
This is just the fraction of energy in the beam spike that is
contained in the j-th spike. We observe that (for the chosen
initial conditions) each fJ changes rapidly during roughly
the first 2-106 plasma periods, after which the variation of
F_, halts abruptly, and £

J J
of the evolution. This is observed in all cases, for both

is virtually constant for the remainder

bounded and unbounded behavior. The same is true of the fraction

of tha total energy contained in the beam-resonant spike.

Thus, each spike receives a constant fraction of the total

B

e -
R RSl R T
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wave energy long before the system either saturates or diverges.
See Figs. 11lc through e.

For the Type III and bow shock problems, the distinction
between bounded and unbounded behaviors is irrelevant if the
level of density fluctuations is sufficient to suppress the
instability during the time that the plasma is exposed to
the beam. This is the case in Figs. 11.

The suppressive effect of the scattering on the instability
in the case of unbounded behavior can be observed by setting
DN = 0. Doing so for the parameters in Figs. 11, we find that
the total wave energy grows dramatically faster than in Fig.
1la due to the unabated exponential growth of the pump modes:

after 12 million plasma periods W(t) is 2.6 x 108. Clearly,

the instability is strongly suppressed when DN = 5 x 10'_4

(as in Fig. 11la). 1Indeed, for much of the evolution W(t) has
been held to acceptable levels for the application of our
theory.

Therefore, in cases where the plasma is exposed to the
beam for a finite time, observations of Langmuir spectra with
significant components at higher |k| and relatively small total
wave energies (10'8-10-6) may be explained by the present

theory even when that theory predicts time-asymptotic divergence

of the wave energy.
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v. Conclusions

We have studied the effects of a given, external spectrum
of ion acoustic turbulence on the evolution of Langmuir waves
in a beam-unstable plasma. Our theory is based on solving
a linear kinetic equation for the spectral energy density of
the Langmuir waves in one dimension. This equation includes
the effects of Landau damping and growth for a given, stationary,
non-thermal, electron distribution-function as well as the effects of
scattering off the density fluctuations,which we have taken
to have a flat spectrum. We find that the beam-plasma instability ;
is saturated provided that the level of density fluctuations is
sufficiently high. Then saturation results from the progressive

back-scattering of beam-resonant wave energy into dissipative

regions of k-space. In this case, a stationary spectrum is
approached asymptotically in time by all initial spectra examined.
If the level of density fluctuations is too low, the instability
is not saturated, and the total wave energy diverges with
increasing time.

In the case of bounded behavior and for parameters
appropriate to the Jovian and terrestrial bow-shock environments
as well as to Type III bursts, the saturated states are

9

characterized by total wave energies (W = 0(10 ~ =+ 10-7) well

below the threshold at which nonlinear processes (neglected
in our theory) becomé important (W ~ 0(10'5)). The stationary
distributions demonstrate significant scatter of Langmuir wave
energy out to wave numbers of from .1 to .2 kD in magnitude,

depending on the distribution of non-thermal electrons.
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In the case of unbounded behavior, the scattering may
suppress the growth of wave energy during beam-plasma inter-
actions that occur over a finite interval of available time.
Scattering to high-k components is completed much faster than
the total wave energy diverges. Therefore, in the context
of bow-shock and Type III problems, a broad spectrum of Langmuir
waves may be observed at energy levels that favor the linear
kinetic theory presented here, even when that theory predicts
eventual divergence of the wave energy. For example, off the
Jovian bow shock, the solar wind plasma is exposed to the
electron beam for only about 20 sec (105 plasma periods) in
the plasma frame. Yet, for parameters appropriate to this
environment, the theory predicts that it takes the wave energy |
roughly 30 min to reach nonlinear levels if the density fluctua-
tions are too weak to saturate the beam-plasma instability
(cf. Fig. 1la). For early times, the wave energy is virtually
constant and, if observed for only a short while, would give
the impression of a stationary (saturated) Langmuir wave
spectrum. For Type III bursts the beam-plasma interaction
is observed to last longer. Here again, theory predicts that

the time required for the wave energy to reach nonlinear levels

is approximately 30 minutes in the solar wind frame.

We have characterized the threshold in parameter space
that separates saturated from unsaturated behavior. Naturally,
more powerful beams require larger levels of low-frequency
turbulence to saturate the instability. However, the requisite

threshold levels of turbulence are considerably lowered in the
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presence of non-thermal electrons which provide dissipation
over wide intervals in k-space. Recent measurements of the
electron distribution off the earth's bow shock3 indicate

a strong non-thermal component in the electron velocity
distribution. Such a component is generally present in the
solar wind.4 Consequently, relatively small levels (Gn/no =0
(10°4)) of ion acoustic turbulence would suppress the beam-
plasma instability for beams typical of the Jovian and terres-

trial bow shocks.
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Figure Captions

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig.

7.

Langmuir waves excited by an electron beam of energy

A 10 keV, off the Jovian bow shock as observed by
Voyager 1. (Gurnett et al., 1981)

Ambient ion-acoustic wave turbulence measured by

Voyager 1 simultaneous with the beam-excited Langmuir
waves in Fig. 1. (Gurnett et al., 1981)

A non-thermal distribution of high-energy electrons

in the solar wind measured by ISEE-1 in the vicinity

of the earth's bow shock. Note the electron beam at

YME -21 km/s. (Anderson et al., 1981)

Feynman diagrams for the scattering processes studied

in this paper.

Geometry of the beam-plasma interaction near a planetary
bow shock.

Coefficient functions in the kinetic equation. i

eff 3

(a) v (k) vs k for Qm = ,437 and DN = 1.25 x 10",

(b) Total linear growth/damping rate, v(k) = YL(k)
-6
+YB(k) + YNT(k) + Y, VS k, for ng 10 °,

‘5, ve/bVyn = 0.3.

ve/vB= .016, vB/AvB = 3, Nep = 10
(¢c) Linear spontaneous emission, S(k), due to the
background particle distribution for parameters in
Fig. 6b.
Threshold as a function of beam-resonant growth rate,
with no non-thermal damping. ngn = 0, DN = 2 X 1074,

2
Qm = ,437, ve/vB = ,016. (Note: y growth nB(ve/AvB) ).
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Fig. 8

Fig. 9

Fig. 10

Fig. 11
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The stationary distribution Fo(k) Jjust below threshold

at point P, in Fig. 7. g = 2x107°,
w° = 1078,

vB/Av = 1.6, n

B

Threshold as a function of non-thermal electron and

_ -6
nB = 10

=O..016,ve/AvNT = 0.3, Qm =

density fluctuation levels. ’ vB/AvB = 3,

ve/vB .437.

Bounded behavior just below threshold at point P2 in

3 -5

Fig. 8. DN = 1.25 x 10 °, ner = 1077, (Parameters

are as in Fig. 6.)

o 9

(a) The stationary distribution F°(k). Ww° = 5.8 x 10°°.

(b) Initial distribution function FP(k,t = 0).

w(t=0) = 5.6 x 1013
(¢) The total wave energy, W(t). Elapsed time = 12 x 10°
- 1 .
wp e

(d) F(k,t) at t = 2.4 x 10°

(e) F(k,t) at t = 3.36 x 10°

1.2 x 107

(f) F(k,t) at t

Unbounded behavior above threshold at point P3 in

. -4 -5
Fig.. 9. DN = §5§ x 10 7, Dyp = 10 ~.
(a) The total wave energy, W(t). Elapsed time = 12 x 106
-1
“p .

(b) The distribution function F(k) at t = 3.36 x 10",
(¢c) The fraction of the total wave energy in the pump
modes as a function of time.

Efficiencies: Energy in [kl'kzl X [Energy in Pump

Modes]"1 as a function of time for

(d) k, = -.03 and k, = .009

1 2

(e) k1 = ,085 and k2 = ,123

IR Jir= "y
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Waves in the Presence of an Ultra Relativistic Electron

Beam"

David Newman
Preliminary report




*---'---.'--“!"'-.-'-llIIlIl!llllllulnlup-..-.-.'

PRELIMINARY RESULTS CONCERNING
COMPTON CONVERSION OF LANGMUIR WAVES INTO HIGH FREQUENCY
TRANSVERSE ELECTROMAGNETIC WAVES IN THE PRESENCE
OF AN ULTRA RELATIVISTIC ELECTRON BEAM

David Newman

If a relativistic electron beam is injected into a plasma
with a distribution of Langmuir waves, the Langmuir waves may
scatter off electrons in the beam and in the process will be
converted into transverse waves. Except for the conversion from
longitudinal to transverse waves, this process is analogous to
so-called inverse compton scattering. As a result of the kine-
matics of the scattering, the emitted transverse waves are strongly

beamed in the forward direction (i.e. the direction of the beam

E

electrons) and will have a frequency w Yzw where vy = 7

p
m_c
e e

is the relativistic parameter of the electrons (E is the energy

of a beam electron).
Figure 1 depicts a typical scattering in the lab frame.

The electron beam is taken to travel in the +x direction. The

(K W)

(Kw)

Fig. 1 Scattering geometry in lab frame. Langmuir wave (k',w')
scatters off electron in beam at angle 6' producing transverse

wave (k,w) at angle €. Electron experiences negligible
recoil,
- T W ——




e ———————

2

incident Langmuir wave has frequency w' and a wave vector k' and
is at angle 6' relative to the beam. The outgoing transverse
wave is similarly characterized by w, k, and 6. (Properties of
the incident wave will always be denoted by a ' superscript.)
The z-axis will be chosen so that the scattered wave lies in the
X~z plane (with kz > 0). There is then anoither parameter of

the scattering, namely the azimuthal angle about the beam axis
between incident and scattered wave vectors, ¢'. ¢' is defined

so that

It will be assumed that the frequency of the transverse wave
w >> wp so that the dispersion relation is approximately that for

photons in vacuum, i.e. w = ck (from this point on, ¢ will be

set to 1). Thus, the scattered wave is characterized only by
w and 6.

In order to determine the scattered flux as a function of
® for a particular incident Langmuir wave, it is simplest to
transform the scattering into a frame moving with the beam
electrons. In this frame, the Langmuir wave scatters off of a

stationary electron (see Figure 2). As argued by Gailitis and

Tsytovich,1 if the electron beam isultra relativistic (i.e.

y >> 1), then scattering of Langmuir waves off of the bare

electron is the only process which need be considered. (For a

non-relativistic electron, scattering off the Debye cloud of the

electron must be considered.)

' 1A. Gailitis & V.N. Tsytovich, Sov. Phys. JETP, 19, 1165 (1964).




(&, wy)

Fig. 2 Scattering geometry in electron frame. E.!, the electric
field vector of the incident Langmuir wave, is no longer
parallel to the wave vector k., but forms an angle, x.,
with the x(beam)-axis

The (*) subscripts in Figure 2 will be used to denote quan-
tities in the electron rest frame. As depicted, the electric

field in the electron rest frame of the Langmuir wave is no longer

longitudinal, but forms an angle x,. with the x axis (xg = 6.).
An expression for x, will be given below. 1In the Lorentz trans-
formation, the Langmuir wave also picks up a transverse B field.
However, the dipole approximation for the interaction of the elec-
tron with the fields of the incident wave will be used and the
effect of the B field will be small relative to that of the E
field.

The quantities in the two reference frames are related by

the following relations (Lorentz transformations)
we = Y(w' - BK' cosb’)
' = ' =
E Ex E'cos§’

E' = yE§ = yE'sind*

Va E
Va
tany, = - Yytand!
X

*




2 2

E! 2 . (cos®“8' + v 2
*x

sinze')lE'I
Wy = yw(l - Bcosb)
w = Yw,(1 + Bcosd,)

note: 62

1
= 1 -—g
Y
The situation depicted in Figure 2 is that of classical
Thompson scattering with the electron oscillating in the incident
electric field and emitting electric dipole radiation. The
classical formula holds provided there is negligible electron
recoil (i.e. hw] << mecz). By kinematics, w, " ywp, thus this
condition is satisfied provided Y«u-—zr——— which is essentially
P
always the case. ‘
The Thompson formula for the power radiated (per unit solid

angle) in the electron rest frame is:

2-
®y _ 2, 2, B
dn, - TSP %« Tam
ez
where ro = ;:5 (the classical electron radius) and 6* is the

angle between in incident electric field and the scattered wave

(Eye)w#\

vector k, (see Figure 3).

L

Fig. 3 Incident electric field vector E. lies on a cone of half
opening angle x, with azimuthal angle ¢4 6, is the angle
between E, and the wave vector of the emitted transverse
wave k, (note: k, lies in the x-z plane)




5
sinzﬁ* = (1 - coszx;cosze* - sinzx;sinze‘cos2¢; -

- 2cosy,cos6, sinysind _cosér)

The Langmuir wave spectrum will be assumed to be azimuthally

symmetric about the beam axis. Thus, sinza* can be replaced by

s:lnzé,.l averagsd over azimuthal angle ¢,

2m
sinzc* = f? [ d¢;sin26* = (1 - coszx;cosze* - % sinzx;sinze*)
° 2
Defining W _, = l%ﬁ}— as the energy density in the incident

Langmuir wave in the lab frame, the power radiated per unit solid

angle in the electron rest frame can be expressed as

5

2
|

El
2 .. 2 | *
r° sin“§ W

o E' IE.IZ

[o%
D
*

2 2 2 X .
= row§§1 - cos“x,cos B, - is1n2x;s1n26*)(cosze' + yzsinze')

Using tany, = ytanf'

2 2 2
coszx;(cosze' + stinze') = cos B’ ; Y ;in 8. - cosze'
1+ X sin“09"
cosze'
2 2 2
sinzx;(cosze' + stin2e,) = cos”8' + y"sin"8" - stinze,
2.,
1 + _Sos 6
stinze'
Therefore,
P, o 2., , .2 .2 2., 2 2 . 2., . 2
Eﬁ: = roﬁg.(cos 6' + y“sin“e' - cos“9'cos 8, - #v"sin“6'sin 8,)
2 2
rowg,[cos 0'(1 - cosze*) + yzsinze'(l - &sinzet))
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The radiated power in the lab frame %% can be expressed in terms
dpr,

of 35:

B 5|2 9R.(8,001,8) %
) a0
|E, 6,161 *

dp(6,¢)
dQ

since the Poynting flux is ¢|E|2.
For a photon in vacuum, the magnitude of the E field Lorentz

transforms like w. Therefore

EJ? _ w2 _ 1

w
]E*l2 wg Y2(1 - Bcose)2
dp,
Combining this with the previous expression for an- and using:
*
. 2
sinze = sin”8

v2(1 - Bcos8)?

yields for the power radiated in the lab frame

rgwk'
%% = yy — 3 2c0526'sin26 + yzsinze'{zyz(l - 60056)2 - sinze)
2y (1 - Bcosb)

Up to now, only the interaction of a single electron (character
ized by y) and one Langmuir wave (characterized by wp, k', 8°',
o', Wk;)has been considered.
_ﬁow, the effect of a beam of electrons {(with distribution
function f(e), but still uni-directionali, and a distribution of
Langmuir waves with Wk, + w(k',e')being the energy density per

unit volume of moment (k') space will be treated.

"y

e e s : - —
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If instead of a single Langmuir wave with energy density

Wk, there is a distribution of Langmuir waves with energy

density per unit volume momentum space W(k',e'), then what was

previously referred to as %—% now becomes sz , 1.e.
dodQ'k*'“dk’
2%
T W(k',8")
sz = 40 i 2cosze'sin29+yzsin26' FYz(l—Bcose)z—
dodQ 'k “dk" 2y (1-Bcosf)

- sinze]

In order to calculate e.g. induced emission probabilities, it is
necessary to know the power radiated per unit volume of phase
space (this will be proportional to de/dt where Nw is the phase

space density of photons.)

The power radiated per unit volume of phase space is

2n \
% g =z | ae|axrk? s doges l |
w w ° dek'“dk'd¢ 'dcosb !
dcosf' . . s . .
where 4o 1is determined from the " kinematic constraints

Y(w' - Bk'cosd') = w) = w, = Yw(1l - BcosH)

with 0, k', w' held constant.

Thus gg%%ﬁll = =(1 EEQCOSG)
k"e ”
ar2
25 dggw =24 2 k'dk'@(k',e') 200526'sin26
w w“y (1 -~ BcosH)

+ yzsinze'{2Y2(1 - Bcosd)? - sinze]] ‘

Here 6' is no longer an independent variable, but is a function

of w,6 and k',w"'.

i pemp

—— e




l At this point, two simplifying assumptions will be intro-
duced. Both of these assumptions will have to be relaxed when
treating the case of an arbitrary Langmuir wave spectrum, but

are employed here primarily in order to bring the situation
treated here into correspondence with the case treated by Kaplan

and Tsytovich.z’3

1. It will be assumed that the spectral density of Langmuir

waves in the lab frame is isotropic. Thus:

Wke,00) = ¥k = BB

4rk’

Here W(k') is the Langmuir energy density per interval dk’'.

2. It will be further assumed that the Langmuir waves have

1
a phase velocity %T << ¢ so that

we = Y(w' - Bk'cos8') - Bvyk'cosH!

Both of these assumptions would be invalid if the Langmuir spectrum
were excited by the electron beam for then the Langmuir waves would

be i) preferentially aligned with the beam (anisotropic), and ii)

in resonance with the beam, i.e. w' = k'-v where for relativistic
electrons v = ¢. This is in contrast with assumption 2. This
contradiction could only be avoided if there were some mechanism
to scatter the resonant waves into a region of higher wave numbers.

If the beam of relativistic electrons has an energy distribution

2S.A. Kaplan & V.N. Tsytovich, Sov. Phys. Uspekhi 12, 42 (1969)

3S.A. Kaplan & V.N. Tsytovich, Plasma Astrophysics, Pergamon Press,

New York (1973)
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f(e), [e = yme] then the density of photons per volume of phase

space will be generated at a rate (spontaneously)

il _|[en’ 1 e ]f(e)de
T | gpont w2 dds
3 2
21 r '
=0 | &y | det(e) .
w Yy (1 - Bcosb)

[Zcosze'sinze + yzsinze'[ZYz(l - Bcose)2 - sinze]]

Once the rate of the spontaneous process is known, induced emission
and reabsorption rates can be determined. In the interaction
being considered, conservation of energy requires the electron

after the scattering to have energy €g = € + w' - w (note: f = 1).
(KW
e (8) -IRe g (erw-w)

é%“‘w (K @)

Fig. 4 Scattering geometry in lab frame showing change in the
energy of recoil electron by the amount (w'-w)

Since the scattering of interest is that for which w >> w*,
62’-'(-:—(0.

The electron will also be deflected through some angle §,

2 2
2 ,2 ¥ w
but 6 n R g P_ <<< 1 (this is similar to the condition
max mzc4 10405-2

for the scattering to be Thompson). This deflection angle can

be safely ignored.
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The inverse reaction to the one pictured above is:

(k50D

e (e+w- co)_’
e\

(k,w)

Fig. 5 Time reversed scattering process of the one pictured in
Figure 4

Let the forward reaction have rate (spontaieous and induced)

R, = Jof(e)Nﬁ,(l + NE)dE

and the reverse reaction have rate

R_= Jof(e—m)NE(l + NE')dE
de
where 0 is defined so that [of(e)N, ,de = ——
k' dt
= spont

The total rate

dt-ls tor T+ T =T Jdeo N, [f(E) - f(e'“’)JNg'Ng - fe-adNy
Thus:
ng ng .
at tot S ar spont+ Jdco%;sg NE' - f(e-w)] Ng
dNE .
B Spont+ Y NE

It will be assumed that Nk' is sufficiently large so that

af
Jdeow e Nk'

>> Jdcof(e-w)

i.e. the semiclassical approximation.




Then Yt Jdeowa—ka, .

a€

Thus, the expression for Yt can be determined from the expression

dN,
for TEF by making the substitution
spont
af (g)
f(e) » w T

For a distribution of Langmuir waves

3 2
t _ 2T, J dk

= 9f (e) 1 2 2
Y = 2 k'
w

2cos " 8'sin"6
o€ y4(1 - Bcose)3

W(k') Jde

+ stin2e, [2Y2(1 - Bcose)2 - sinze))

[ o]
Doing integration by parts on the ¢ integral and assuming f(¢) o = 0

3.2 )
4“ r L )
Yt = 2° i& W(k') def (g) g% 2 1 3 cosze'sinze
w Yy {1 - Bcos?H)

+ yzsinze'[ZYz(l - Bcose)2 - sinze}J

2 2 ’ 2 2
cosze' - w° (1 - BcosH) sinze' =1 _ W (1 - Bcos®)

2 2

employing assumption 2, w' << k'c.

If y << 1, then the majority of scattered waves will come out in
the forward direction. (Essentially % of the radiation will come
out in a cone of opening angle eo = %.)

Because of this beaming effect, a small angle approximation

for 6 can be employed (cosf -+ (1 - %rh sinf6 + 8) also, B = 1 - —17
2y
2 2
(1 - Beos®) = |1 - (1 --2y(1 -2 = 5L + 62 -x&
2 2 2 2
2y Y Y

since 8 n % << 1 the last term can be ignored.
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1
(1 - BcosH) = —3 [1 + (ey)z] = —15(1 + az) (def of a)
2y 2y
Yt now becomes
3.2
-2n°r , 2 ( 2 2,2
vt = -© J iﬁ Wik') J def (e) g% 4y — Yz{l _w (a-+;x)
w (1 + a) { 4y k'
[(1 + o2 92] . 4[w2(1 + az)z] e2W
2 4 ,2
2Y 4'Y k' J
3.2 |
-2n°r . 2 2 2,2
= 5 (o] jdkk' W(k') fdef(e)_ae_e __4_Y__2_3[[1 _ W (14+2(l ) ](1 + cx4)
w {1 + a”) 4y k!
‘s [wz(l + a2)2}62]
4Y4k,2

The above expression for Yt can be compared with the expression
found by Kaplan & Tsytovich [Sov. Phys.-Uspekhi 12, 42 (1969)]

equation 8.24.

3 2
t l6mn 2 dk' o f Y
Y [= - plw,0)] = r JW(k') -— Jde —
(K&T) 2 © k 3¢ (1 4+ o2)d

2 2,2 2 2,2
Hl _wfl + af) ](1 +ad) 4 P)(l + v°) ] “ﬂ
Y302

This differs from the result found above by:
2

(1 + o)
in the last term.

1. an overall additional factor of

2. an additional factor of Y2

Starting with

3.2
-87°r
vt = = Jw(k') o= Jdef(e)
w

2
) o [ 4
o 92(1 + a2)3

3lo

_wlet o+ oa®Hiaosaf) | W%% (s asz]
ak'? o k' of
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which employs the fact that 3c - 3a

Explicitly performing the differentiation:

where again o = y#é.

100 [e2a + o _w?e? 4oty | w%e® 1 ]
1]

™3 | 14 a?)?  ax? A1+ o I P

1 24 4 2 0268 (a% - 202 - 1) 20265
=m6 |77 37 Bo - 27 +1) - —5 173 73] T k2

(1 + a”) k! a (1 + a7)
[ 2a2 + 1 ]]
(1 + o) %’

T 2 2 2 2.2 2 2,.2.4
Recalling that cos?g' = £ (1 = %fose) s (14*<2) w34 zclg 8
1 3 k' 4y k' 4a k'

] 55[ ]

1 29 __ U(3a4 202+ 1) - (@f - 242 - 1u? - 4262 4 1)ezuzﬂ

e | (1 + o?)

where u = cos6' 0 sus1l
x|l [(3a4 - 20?2 + 1) - @f - 20?7 - 1u? - 4262 4 1)ezu2]
m2 | 1+ o?)

The last term inside the brackets is much smaller than the first

2

two because of the extra factor of 6 (by assumption 8 << 1) and

is also of a lower power in o and will hence be further suppressed

when a > 1 + 8 > %.

Dropping this third term, the expression for Yt now becomes:

3.2

-161"r '
v —0 Jw‘k’ S JdEf‘E’ [—= [ a3~ u? - 20 Q-u®)
womg (1 +a”)

+ (1 + uz)]]
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If the electron distribution is concentrated at energy E4s then

f(e) = an(e - €,) where n, is the electron density in the beam.

In this case:

3.2
-321r"n
e Jw“") o | [“3‘3 - u?) - 202(1-u2)
wm (1 + a%)
e *
+ (1 + uz))]
€
where a, = —:1—

note: u is an implicit function of k' for given w,9,y and must
be kept under the k' integral.
There will be growth [Yt > 0] if the expression in brackets
becomes negative. This never occurs for any values of the
parameters a and u.

This is in stark contrast to the result claimed by Kaplan
and Tsytovich (plotted in Fig. 6; this corresponds to Fig. 3
from reference 2) although there is agreement within a factor
of 2 with the value of Yt at forward scattering (a = 0) [Eq.
8.25, ref. 2].

It should be further noted that Fig. 6 does not seem to
come directly from the integrand of (8.24). Differentiating

the energy dependent terms in (8.24) yields

-321r3r2
t o J dk* > 2.3
Y B amt———— W(k) — Jdef(e) ———————— [(1 - ) +
K&T w2m§ k' (1 + a2)5
+ u2(1 + 3a2 - 9a4 + ae))




Although the sign of the term in brackets does reverse near a = 1,
t| for Yt > 0 is at most V7% the value
2

the maximum value of |y

t

of [Ytl at « = 0 (when y < 0). This occurs when u“ =1 (i.e.

cosf' = 1; Langmuir wave in line with electron beam traveling in

t

opposite direction). Whenu = 0, |y > 0] <1l% IYt < 0f

max max’

Thus, there seems to be no way to attain a maximum growth rate
as large as the reabsorption rate at 6 = 0 which is implied by

Fig. 6.

'Fig. 6 Growth rate as function of angle from Kaplan & ngtovich
(Ref. 2 Fig. 3). Negative values imply growth (y "v-u(w,8))
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Conclusions and Tentative Results of Subsequent Investigation

It has been found that if the restriction wp << kLc is
imposed on the incident Langmuir wave spectrum, amplification
via induced emission is impossible for all values of the
scattering angles (8' and 6). This is in contrast to the
results cited by Kaplan and Tsytovich (Refs. 2 & 3), under
the assumption wp << kLc to the effect that growth will occur
for transverse waves emitted at an angle 6 3 1/y to the electron
beam.

The restriction mp/kLc << 1 is physically unsuitable for
beams which excite Langmuir waves with phase velocities near
wp/c. We have relaxed this restriction and found a new
expression for yt which has wp/kLc as an additional parameter.
Preliminary calculations indicate that growth (Yt > 0) is
possible for certain scattering geometries when wg/kLc > 1.
All of the configurations yielding growth appear to require
the incident Langmuir wave vectors to be parallel, or nearly
parallel, to the electron beam. (Such a scaftéring configura-

tion is kinematically forbidden when wp/k c <1.)

L
The maximum possible frequency for the emitted radiation
due to the scattering of a Langmuir wave off a parallel electron

beam is

2 , . .2
“max T Y Y Y W,

This maximum value is only attainable in the limit wp/kLc >> 1.

Thus, the above scattering geometry is incapable of producing
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emission at frequencies w 3 3yzwp, such as may have been

observed by Benford, in his relativistic beam experiments.

The complete determination of the induced emissién growth
coefficient Yt(w,e) requires an integration over the incident
Langmuir wave spectrum. A particular spectrum, e.g. one
resulting from beam induced Langmuir turbulence, must be
specified. Such a spectrum would, in general, not be isotropic
and would introduce an added element of complexity to the
required integration. This integration would, however, have
to be undertaken numerically even in the isotropic case for
all but the simplest of Langmuir wave spectra.

Although growth is predicted for emission due to the
scattering of Langmuir waves with wave vectors parallel to the
beam axis, the contribution due to Langmuir waves coming from
other directions (having a negative growth coefficient) will
have the effect of reducing, or even reversing, the sign of
the integrated growth rate. Thus, it is necessary to determine

the Langmuir spectrum and perform the required integration in

order to determine whether amplification due to induced emission
is sufficient to produce the observed emission rates.

One other effect must be taken into account. The true

electron beam is not unidirectional, but rather has an angular
spread of 15° (in the experiment of Benford et al.). The
beam spread will affect the growth rate calculations in twd
ways. First, the Langmuir wave spectrum generﬁted by the beam
will be modified, and second, the beam angular distribution
must be integrated over. Consideration of beam spread effects

could lead to further reduction or reversal of the growth rate.
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ABSTRACT

The possibility of Langmuir soliton formation and collapse
during ionospheric modification is investigated. Parameters charac-
terizing former facilitles, existing facilities, and planned facili-
ties are considered, using a combination of analytical and numerical
techniques. At a spatial location corresponding to the exact clas-

sical reflection point of the modifier wave, the Langmuir wave

evolution is found to be dominated by modulational instability
followed by soliton formation and threé-dimensional collapse. The
earth's magnetic field is found to affect the shape of the col-
lapsing solition. These results provide an alternative explanation

for some recent observations.
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INTRODUCTION

Modification of the ionosphere by intense radio waves
launched from the earth's surface continues to be an active area of

experimental and theoretical research; reviews can be found in the

November 1974 issue of Redio Science [9 (11), 1974], in the articles

by FEJER (1975, 1979), and in the book by GUREVICH (1978). The
important role of nonlinear wave effects during ionospheric heating
is by now well established, and these effects have at least qualita-
tively explained many of the observational phenomena.

The purpose of this report is to explore the possibility that
three~-dimensional Langmuir soliton collapse occurs during iono-
spheric heating. This possibility was first introduced by
PETVIASHVILI (1975, 1976), who emphasized the importance of the
geomagnetic field. Previous analytic theories of nonlinear wave
interaction during ionospheric modification, as summarized in FEJER
(1975, 1979), and in NICHOLSON (1977), have mainly concentrated on
three-wave parametric instabilities; see, for example, BEZZERIDES
and WEINSTOCK (1972), CHEN and FEJER (1975), DuBOIS and GOLDMAN
(1972), KRUER and VALEO (1973), and PERKINS et al. (1974). Most of
these theories have neglected the four-wave parametric instability

also known as the modulational instability or oscillating two-stream




instability, despite the fact that this instability was the one
discussed in the original paper of PERKINS and KAW (1971) intro-
ducing the significance of parametric instabilities to ionospheric
modification.

In this paper, we treat the evolution of Langmuir waves at
the exact reflection point of the modifier wave, the point where the
modifier frequency is exactly equal to the plasma freguency (z = O
in Fig. 1). At this spatial point, it is well known (CHEN, 197k)
that only the four-wave oscillating two-stream instability can
occur. Previous theories using three-wave parametric instabilities
are appropriate to spatial locations somewhat closer to the earth,
including the location where the maximum amplitude of the standing
heater wave occurs. The competition among three-wave interactions,
four-wave interactions, and soliton formation at these lower alti-
tudes will be treated by us in future work. Here, we numerically
solve a nonlinear wave equation for par=ueters appropriate to modern
modification facilities (e.g., the Platteville facility). We find
that the Platteville modifier wave is intense enough to excite an
oscillating two-stream instebility which evolves into a set of
three-dimensional collapsing solitons. Because of collisional
damping, these solitons do not collapse catastrophically to a
singularity, but rather undergo a period of virulent collapse

followed by exponential damping due to collisions.




In the next section, we review the wave equation which
describes nonlinear Langmuir waves in the absence of a magnetic
field, and solve it for parameters appropriate to the Platteville

l facility. In the succeeding section, the effects of the geomagnetic
field are added; this results in a significant change in the shape

] of the collapsirg solitons. 1In the final section, conclusions are

i presented and the possible application of the results to explain

certain observational facts is discussed.
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SOLITON COLLAPSE IGNORING THE GEOMAGNETIC FIELD

The equations describing the nonlinear evolution of Langmuir
waves were introduced by ZAKHAROV (1972) and are known as the

Zgkharov equations. From NICHOLSON et al. (1978), these are

(13, +4v, /249%)V - E(x,t) =v - (nE) , (1)

(@2 +v,3, - ¥*)n(x,t) = ©IE[* (2)

together with v x E = 0, where E(x,t) is the low-frequency envelope
of the total high-frequency electric field E O (x,t) =
Q(;,t)exp(-iwet) plus the complex conjugate; n(x,t) is the deviation
of the lon density from its average value n,; w, is the background
plasma frequency; Ve (vi) is the high (low) frequency phenomenologi-
cal energy damping rate (twice the amplitude damping rate); the
sound speed c_ = [(71Ti+7eTe)/mi]”°, where 7, (71) is the electron
(ion) specific heat ratio characteristic of low-frequency oscilla-
tions; T, (Ti) is the electron (ion) temperature; and x = (x,y) and
t represent space and time; all in dimensionless units. Their rela-

tion to dimensional variables, signified by a tilde, is given by




- sty

t = (_2_)'!]) (;: (we‘E) ’

n 13
e -5 G
3m
e @)

m

iR
& &)

_1
E=3

m
1° ('2%> (m_:> (Ce,i/we) ’ (3)

where the electron Debye length A, = (Te/me“’:)1ﬁ and the dimension-
less ratio T = (7eTe+7iTi)/Te' The physical effects contained in
(1) and (2) have been discussed by ZAKHAROV (1972), by NICHOLSON et
al. (1978), and by many others.

We consider parameters (NICHOLSON, 1977) characteristic of
ordinary-mode nighttime heating by the Platteville, Colorado,
facility. The heater frequency is taken to be w /2n = 4.9 MHz so
that the reflection point occurs at an electron density n, =3 x 10P
cm™® approximately 300 km above the earth's surface; T, =T, =
0.1 eV; electron collision frequency due to ions and neutrals (high-
frequency amplitude damping rate) ve/ame = 2 x 10°®; power density
incident at the base of the ionosphere 50 uW/nf ; ionospheric density

scale length 50 km. We are interested in the electric field of the




ordinary-mode heater wave at the exact reflection point where
we = % (z = 0 in Fig. 1). Here, the heater electric field is along

the geomagnetic field with an effectively infinite wavelength. The

formulae of GINZBURG (1964), taking into account the Airy enhance-
ment of the heater wave as shown in Fig. 1, predict an electric
field of 1.0 V/m for the stated power density. A natural measure of
the intensity of this field is the ratio W = ‘E‘a/hﬂ%Te of elec-
tric field energy density to background kinetic energy density; for
these parameters we have W = W, = b.4 x 107* at the initial time.

The electrons are isothermal with respect to the low-
frequency response, Ye = 1. The edisbatic compression is one
dimensional and 7, = 3 and thus M = 4. The low-frequency damping
coefficient is quite large due to ion Landau damping in an equal
temperature plasma. We adopt a simple model damping which after
Fourier transformation is v, (k) = 2lx|.

Following NICHOLSON et al. (1978), a stability analysis of

the heater field yields a threshold for a purely growing

instability

‘Eb" = \’e/z ’ (L)

or in dimensional units for the present parameters, E, = 0.6 V/m,
well below our value of E, = 1.0 V/m.
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In order to determine the nonlinear evolution of the
oscillating two-stream instability, we solve the Zakharov equations
(1) and (2) numerically in two spatial dimensions. The numerical
technique is described in NICHOLSON et al. (1978) and in NICHOLSON
and GOLDMAN (1978). The initial electric field consists of the
"pump" electric field with wave number zero pointing in the
x-direction, representing the heater field, and small random elec-
tric fields at all other wave numbers in the two-dimensional wave
number grid. The initial density perturbation is zero. All elec-
tric field components are subject to the linear damping ve/2, except
for the pump electric field which has zero linear damping.

At time we% = 4.4 x 10° or t = 0.014 8, the unstable modes
have exponentiated sufficiently from their initiasl noise levels that
the absolute value of the total electric field, Fig. 2, shows
regions of substantially enhanced field and substantially depressed
field.

The regions of intense field begin to collapse, so that at
uki =7.9%x10° or t = 0.026 8 (Fig. 3) they have become even more
intense. At this time, the low-frequency density variation n
(Fig. 4) has minima in the same spatial locations as the maxima of
the electric field amplitude in Fig. 3. This is as expected for the
oscillating two-stream instebility and the subsequent soliton

collapse.
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At the final time of this run, wt = 8.9 x 1 or
t = 0.029 s, the collisionally damped solitons are quite prominent
(Fig. 5). The relative electric field energy density w/q, ve. time
throughout the run is displayed in Fig. 6. After time w ¥ =
7 x 1P, the unstable modes take a substantial fraction of energy
from the original k = O pump mode; this energy is subsegquently lost
due to collisional damping. The net damping is always slower than
the collisional damping rate (dashed line in Fig. 6) because a sub-
stantial fraction of the total wave energy continues to reside in
the undamped k = O mode at each time. The collisional damping in

this case acts fast enough to prevent the collapse of the solitons

to such small spatial regions that the accuracy of the computer code
is lost.

The numerical work described here is in two spatial dimen-
sions, while the actual solition collapse during ijonospheric heating
occurs in three spatial dimensions. Thus the spatial dimensions of
the solitons, and the maximum energy density in the center of the
solitons, may differ by factors of two or more in the actual physi-
cal situation from those obtained here. However, the time scales
involved are probably very close in the two-dimensional and three-
dimensional cases.

Before discussing the implications of these results for iono-
spheric heating, we proceed in the next section to add the effect of

the geomagnetic field. This results in significant quantitative




differences; the overall qualitative scenario, however, remains
)

unchanged.




SOLTTON COLLAPSE INCLUDING THE GEOMAGNETIC FIELD

The earth's magnetic field is such that the electron gyro-
frequency 0, is roughly ne/we = 1/3.5 for the parameters of
interest. For linear Langmuir waves with a wave number component ky

perpendicular to the magnetic field, the dispersion relation is

Qa
P = u,z(u}kex’-; + F: sin®a) (5)

where 68 = tan~!(k y/kx)' Thus we include the effect of the geomag-
netic field in our numerical calculation by making the following
replacement of the dimensionless Fourier representation of the

operator -v° in (1):

© o '
R e (6)

With modification (€) to our computer program, we repeat the

calculation of the previous section. Since only wave numbers with

small values of ky are predicted to grow, and since we are limited




by computer resources to a grid of 64 x 64 points, we resolve the
behavior in configuration space by choosing Ly/Lx = 50.

Figure 7, analogous to Fig. 3 in the unmagnetized case, shows
the electric field in configuration space at we%' =7.9 x 10® or
T = 0.026 8. The maximum energy densities here are actually twice
as large as in the unmsgnetized case. We interpret this as follows.
In the magnetized case, the spatial configuration is much more one-
dimensional than in the unmagnetized case. It is well known that
dispersion is more effective in inhibiting one-dimensional collapse
than in inhibiting two-dimensional collapse. Thus, in the magne-
tized case, the unstable oscillating two-stream modes can remain in
phase with the pump for a longer time. This allows them to absorb
more of the pump energy than in the unmagnetized case; at a slightly
later time, when the waves do decouple from the pump and begin to
collapse, they have a somevhat greater intensity than in the
unmagnetized case. This effect is helped by the fact that the
magnetized solitons involve the collapsing energy from a spatial
volume roughly 50 times larger than in the unmagnetized case; thus,
it is not surprising that the intensity at the very center of a
collapsing soliton is larger in the magnetized case.

Figure 8 shows the relative electric field energy density vs.
time for the entire magnetized run. The energy dissipation at late
times is even closer to the collisional damping rate than in the

unmagnetized case (Fig. 6), consistent with our previous
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interpretation of a greater efficiency in the conversion of pump

energy to unstable mode energy in the magnetized case.
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CONCLUSIONS AND IMPLICATIONS

We have demonstrated numerically that the ordinary mode
Platteville modifier is intense enough to cause an oscillating two-
stream instability at its exact reflection point. This instability
leads to regions of spatially localized intense electric field which
become collisionally damped collapsing solitons. The time scale for
collapse is a few milliseconds. The spatial scale of the collapsing
solitons is about one meter along the geomagnetic field, and,
because of the geomagnetic field, about one-hundred meters or less
perpendicular to the geomagnetic field.

Our results lend an intriguing interpretation to an important
observational fact. It has been observed that when the modifier at
Arecibo is turned on, the intensity of the plasma-line echo is
initially quite intense (MULDREW and SHOWEN, 1977); this phenomenon
is called "plasma-line overshoot." Accordiné to linear theory, this
result is difficult to understand, since it requires Langmuir waves
created by the modifier to travel up or down in an essentially
vertical direction. However, the unstable oscillating two-stream
instability of the present paper, and the parametric decay insta-
bility of the earlier theories of ionospheric modification reviewed

in the introduction, both produce Langmuir waves travelling




——

predominantly along the geomagnetic field, not in the vert#cal
direction. However, this difficulty does not occur if one has
three-dimensional collapsing solitons. These nonlinear entities
contain all wave number components, not merely the ones allowed by
the linear Langmuir wave dispersion relation. Thus, at least
qualitatively, the three-dimensional collapsing solitons of the
present paper could lead to a substantial plasma-line intensity. An
estimate of the plasma-line intensity due to soliton collapse will

appear in future work. A more extensive version of the present work

can be found in WEATHERALL et al. (1982).
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FIGURE CAPTIONS

Fig. 1. Standing wave pattern of the heater electric field and
direction of the geomagnetic field over Platteville,

Colorado.

Fig. 2. Contours of absolute value of electric field in configura-
tion space at “’e; = 4.4 x 10°F or T = 0.014 s. The spatial
region shown is that used by the computer program, with Lx
corresponding to fx/ke = TkoO or ix = 32 m, and 'f.y = 64 m.
Contour 2 corresponds to the initial electric field energy
density W, contour 1 is 3% below the initial value, and

contour 3 is ¥ above the initial value.

Fig. 3. Contours of absolute value of electric field in configura-
tion space at wei =7.9x10® or T = 0.026 8. Contour 1
corresponds to W = 2.4 x 107%, contour 2 to W = 9.7 x 107¢,
and contour 3 to W = 2.2 x 10™%. Other parameters are the

same as in Fig. 2.
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Fig. 5.

Fig. 6.

Fig. 7.
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Low-frequency density variation in configuration space at
time “’e?' =7.9 x1® or t = 0.026 8. Contour 1 corresponds
to a zero density variation, contour 2 corresponds to ;/q, =
-0.002 or n = =600 cm™, and contour 3 (in four places,
unmarked on figure) corresponds to n/n, = -0.004 or

N = =1200 cm™®. Other parameters as in Fig. 2.

Contours of absolute value of electric field in configura-
tion space at w;b =8.9x1® or t = 0.029 s. Contour 1
corresponds to W = 1.4 x 10°*, contour 2 to W = 5.4 x 1074,
and contour 3 (in three places, unmarked) to W = 1.2 x 103,

Other parameters as in Fig. 2.

Log,, of the relative electric field energy density
W/W, vs. time for the entire unmagnetized run. The dashed
line shows the rate of energy decay which would occur if all
modes were collisionally damped. The actual decay is slower
than this because at each time a significant fraction of the

wave energy is in the undamped kx = O mode.

Contours of absolute value of electric field in configura-
tion space at wez = 7.9 x1® or t = 0.026 s, for the magne-
tized case. Contour 1 corresponds to W = 5.4 x 107*, con-
tour 2 to W = 2.2 x 10, and contour 3 to W = k.9 x 10™®.
Note that this figure has been compressed by a factor of 25
in the vertical direction.
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Fig. 8. Log,, of the relative electric field energy density
W/W, vs. time for the entire magnetized run. The dashed line
shows the rate of energy decay which would occur if all modes
were collisionally damped. The actual decay is slower than
this because at each time a significant fraction of the wave

energy is in the undamped k = O mode.
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BEAM-PLASMA INTERACTIONS IN A POSITIVE ION-NEGATIVE PLASMA

Tom Intrator, Noah Hershkowitz

Department of Nuclear Engineering
University of Wisconsin

Madison, Wisconsin 53706
Raul Stern

Department of Physics, Astro Geophysics
University of Colorado

Boulder, Colorado 80309

An electron free plasma consisting of negative ions (SFG’) and positive
ions (Ar*) and negligible neutral-ion collision frequencies has been created
in the laboratory. This plasma has a mass ratio of approximately 3.5 similar
to many computer Particle-In-Cell simulated systems. A fluid description of
this Positive and Negative Ion Confinement (PANIC) ptasma is given and
compared to experimental measurements of a beam-plasma instability for both
beam species and a wide range of beam energies. The fluid dispersion relation

and most growing mode are predicted to be insensitive to many parameters of

the PANIC beam-plasma system, and found to be consistent with the data.
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I. Introduction
Many problems in plasma physics are not amenable to analytic methods
of solution, and therefore direct computer calculations of plasma
properties are attempted. For practical reasons, computer Particle-In-
Cell simulations frequently specify the mass ratio of their particle
species to be near unity instead of several thousand [e.g. 1836 for the
(H*, e7) plasmal. In this paper we describe a laboratory plasma that
corresponds to such simulation mass ratios. It consists of positive ions
(Ar*, mass m, ~ 40 amu), negative ions (SFg, mass m_ ~ 140 amu), and
virtually no electrons. This Positive and Negative lon Confinement
(PANIC) plasma has a mass ratio of m_/m, ~ 3.5, and is contrasted with the

electron-ion plasma in Table 1.

Here we describe an experimental measurement of beam-plasma
interactions in the PANIC plasma. A Double Plasma (DP)1 device was
designed to allow ion beams of either species to be injected from one half
of the machine into a "target" plasma in the other half. Single chamber
versions of such plasmas have been described by Wong et a1.2 and
Hershkowitz and Intrator3, A serious problem in such devices is that
reactive fluorine radicals from the (Ar', SFg™) plasma corrode the entire
vacuum system. Thus experimental data is at the expense of system
longevity (gauges, pumps, chambers, etc.). The results from this
experiment are interpreted with the aid of an unmagnetized fluid model

which allows a simple analysis of this beam-plasma system and includes the




3

influence of the unusual mass ratio. For the PANIC beam-plasma-

instability, a dispersion relation and most growing frequency are

predicted and experimentally confirmed.

Interest in beam-plasma interactions in unmagnetized plasma; is not
new, and indeed dates back to the earliest investigations of unmagnetized
electron-ion-beam systems. Electron beams? and ion beams®*6 can interact
with the plasma, depending on whether the beam velocity is in the vicinity
of a sound speed (cg) or an electron thermal velocity (vo). These
interactions are respectively, the beam driven ion-acoustic wave and the
beam-plasma instabi]ity.7 Although there have been many experimental
investigations of these interactions in electron-ion systems, there have
been few of negative ion-positive ion p]aSmas.8 The negative ion-positive
ion plasma has rarely been the subject of experiments8 or theory.9 Wong
et 1.2 used a grid to drive "fast ion acoustic" instability in a negative
ion-positive ion plasma. A study of the beam-plasma instability in a

PANIC plasma is the subject of this paper.

An outline of the fluid model is given in Section II. This
approximation yields a simple description of the various normal modes of
the PANIC plasma, which can then be compared with the analogous modes in
the more familiar fon-electron plasma. Details of the experimental
apparatus and techniques are given in Section IIl. Experimental data for
a PANIC beam excited instability are shown in Section 1V, discussions and

conclusions are given in Sections V and VI.
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I11. The Fluid Model and the PANIC Plasma

A. Fluid Approximation

The three fluid (two background plus beam) approximation leads to an

expression for the background density perturbation

n q
i = ke (1)
s ms(w - rsk Vo )

which can be inserted into Poisson's equation to give a dielectric

response function

" 2 " 2
+ -
ekow) =1 - 5—Fyy o B,
w - r+k vy w =Tk v_
(2)
Nz 02
pb pe

(- kvg)? - Ko 2 F B 2

The density is denoted by ng, the wavenumber by k, the self
consistent electric field by Ey, species charge by qg, mass by mg, and

wave frequency by , Thermal velocities are v, v_, Ves» Vptp fOr +, -

electron and beam species, and v, is beam velocity. The subscript 1

- -




indicates a first order perturbed quantity. The plasma frequencies

“ps S (41re2ns/ms)l/2 are subscripted +, e, b, e for positive ions,

_negative jons, beam ions or electrons, respectively. The value

of re depends on the type of perturbation (e.g. isothermal or

adiabatic). Solutions of e(k,w) = 0 give the dispersion relations for
electrostatic waves and can be found analytically for the small wavenumber
limit, where we choose rs =1,

B. Sound Wave

At e(k,w) = 0, the dispersion relation has a “low" frequency root

2 2
W _a-M k.2 a _(a+M{a+1) (a+M k 4 3
w?p: 1+ M (FD+) *lw a+mZ 20 M)3] % )

where a = v_z/v+2, the mass ratio M = m_/m_, and the k in (3) is
normalized to the Debye wavenumber k. = (4“e2n+/7+)1/2.

The dispersion relation becomes

<

k
u/up+~ 3 G-EB:T (4)

+

where 8 = [(1 + M/a)/(1 + M)Jll2 + e1k2/k0+2). This sound wave always
travels at a phase velocity a little larger than the thermal velocity of

the slower ion. The thermal velocity is v_ = ullzv* so that for




temperatures satisfying 1 < T_/T* < 3 the corresponding range for
a is 0.3 < a < 1.0. Now 6 (1.0 < 8(a) < 1.2) can be interpreted as the

ratio of the sound wave phase velocity (v:ound) to the heavier ion thermal

sound
v¢ /

acoustic waves travel at slightly greater than the sound speed

velocity (v_) (i.e. 6 = v_). In the electron-ion plasma, ion

¢ = /Te/mi » which is the analogue of 6v_ in the PANIC plasma. In the
limit of equal thermal velocities, numerical calculations give

1im

« 1 6(a,k) = 1, to all orders in k.

C. Density Perturbations and Wave Propagation

In both types of plasmas (electron-ion and PANIC), the positive and
negative species oscillate in phase with respect to each other, with
alternating regions of bunching and rarefaction. The heavier particles
drag along the lighter ones, and thermal motions of the latter enables
them to shield fields from the bunched heavy ions. Thermal motion of the
heavier species as well as the mutual repulsion of the (now incompletely
shielded) bunched charges tends to spread out these regions of
compression. The heavier ions overshoot their 1ighter neighbors because
of inertia, regenerate compressions and rarefactions, and thence renew the
wave. For the two-ion PANIC plasma, masses and thermal velocities and

mutual reaction times become nearly the same for the two species.
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D. The Plasma Oscillation

The plasma oscillation root of the two ion dispersion relation (2

background species, no beam) is given by the “high" frequency solution

2 2

© 1 +aM k
—— ~ (1 + M) [1+ — +...) (5)
wp+ (1 +M) kD+E

Choosing M = 0.29 for the Art - SFg™ plasma gives:

2
w~wll +0.3 '2‘ (1 +0.3a) + ...] (6)
P K D+

Where w_ = {w 2 +w 1.14 w_,. As expected, these “Langmuir"

Y pt P- pt
solutions exhibit a low frequency cut off near the plasma frequency mp.

2
2 .

For the case of no collisions, the two charge species oscillate 180° out
of phase with respect to each other,

E. Beam Modes for Electron-lon Plasmas

Adding an ion beam with density much smaller than the background
gives rise to new features in the electron-ion plasma response. For
example, the "bump on tail" distribution of Fig. la is a typical velocity
distribution function for an ion-electron plasma with a small ion beam.
In the limit that the background ion thermal velocity (vion) and beam

"bump" velocity (vp,) are very far apart (vion << vb). they do not

interact, and fon acoustic waves are observed at v = + Cos symmetric

¢




about the background ion distribution. The background electrons provide
the restoring force for the wave displacements, and have a very wide
velocity distribution (vb << ve) that is essentially invariant for a
change of rest frame. With this in mind, a Galilean transformat%on from
the ion background to beam rest frame can be made. Now the same type of
“ion-acoustic" wave will be seen at phase velocities symmetric about the i
beam velocity (v¢ ~ vyt [nb/nojllzcs). The nomenclature for the "fast" Fig. :z’
("slow") beam mode at Vo = Vp (1) (nb/no)l/zcS is taken from this
feature. For small beam velocities Vp ~ ¢ (e.g. Fig. 1b) two modes
between the ion “bumps" coalesce and form a growing-damping conjugate pair
of modes. For the case of the PANIC plasma, there is no frame invariant
background ion distribution, so that this reasoning does not apply to the
two-ion beam driven sound wave.

Another beam driven mode is known as the beam-plasma instability.
The beam velocity must be larger than the largest thermal velocity in the
system and less than the Langmuir wave phase velocity for the "fast" and
“slow" beam modes to couple and form this instability.

F. The Effect of Beams on the PANIC Plasma

When a beam fluid is added to the PANIC plasma and electron

impurities included, the dielectric response function is, from (2):

Mn M n
_n. b"b
e(kw) =1 - — . ) 2 z°

*pth*

(7

:-NI m::

wy - rkg AEV- rkEu (wy - k*vb*)2 -




where the dimensionless quantities of frequency (w,), wavenumber (k.),

beam velocity (vb*). beam thermal velocity (vpip+), mass (M) and

density (n) are normalized to plasma frequency (m/wp+), Debye wavenumber
(k/kpy), positive ion mass (M_ = m, /m_, Mb z m+/mb)’ and positive ion

density (n_ = n_/n,, n, = nb/n+, n. = ne/n+). respectively. The

e
subscripts +, -, b, e denote Art, SFg~» beam and electron species. Since
we will only consider ion waves of phase velocity much less than the
electron thermal velocity, w << kve is neglected in the electron term.
Charge neutrality requires that n_ =1 + Ny Typical PANIC velocity

distributions are shown in Fig. 2a for Vp > v, and in Fig. 2b

] Fig. 2a,2b

where v, > v,

The roots of Eq. (7) were calculated numerically for complex
w vs. real k and real w vs. complex k, with very similar results. The
parameters that could affect these results include beam velocity, beam
density, beam temperature, background temperature and electron impurity.
Dispersion relations and most-growing frequencies were found to be
insensitive to the following parameter ranges: 0.01 < kx < 1, 1 < vpa <
10, 0 < vpepse < 2, 0.1 <y < 0.2, and 0 < ne < 0.002. The case of

complex w vs. real k corresponds to spatially periodic, temporally growing
10

perturbations*” and is consistent with the experimentally observed

unstable real frequency. Numerical solutions for this case are shown in
Fig. 3
Fig. 3, a graph of w vs. k, showing fast and slow beam modes coupled to

form a beam-plasma mode, and Fig. 4, a graph of w vs. k showing the slow

Fig. 4

beam mode coupling to a sound wave for small beam velocity. Fig. 5 is a

graph of phase velocity (VO) versus beam velocity (vy) showing the various
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background plasma modes (Langmuir and sound waves) and beam modes (fast

and slow beam modes) as a function of beam velocity. The coupled modes
indicate the identical real parts of growing-damping conjugate pairs of
roots. Fig. 6 is similar except that it corresponds to the casé‘of real w
vs. complex k. The dielectric function is symmetric as (vb,v¢)

+ (-vb.-v¢) so that there is point symmetry about the origin on a linear
graph of v0 versus vy such as Fig. 7. Note that any vertical line crosses
the six zeroes of e(k,w) from equation (2).

The phase velocity versus beam velocity representation of the PANIC
beam-plasma system (Figs. 5-7) reveals two modes that are independent of
the beam velocity. These are the sound wave with phase velocity
v¢ ~ wp/k. However, these roots are not continuous. For example, one can
follow the sound wave root on Fig. 7 in the direction of the vy axis, as
it curves upwards and becomes the fast beam wave root, while the slow beam
wave root levels off and acquires thg phase velocity of the sound wave.

It is clear that no two roots cross, although wave properties do switch
from one root to another.

The modes that do depend on the beams are the “fast" ("slow") beam
modes, so named because their phase velocities are slightly faster
(slower) than the beam for very large beam velocities (i.e. vy > mp/k).
For smaller values of vy, the fast and slow beam modes coalesce into a
growing-damping conjugate pair with equal real phase velocities
v0 ~ 0.9 Vpe This is the beam-plasma instability that has been observed
in the laboratory PANIC DP device, for beam velocities in the

range 2 < Vps < 10. Details are given in the following section.

Fig.

Fig.

Fig.
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G. Dispersion Relation for Beam-Plasma Instability

For the beam-plasma instability in the PANIC beam system, the

dispersion relation is found numerically to be

W= Ekvb (8)

in one dimension, where 0.8 < £ < 1.0 is an empirical parameter of order
unity. When one extends the problem to three dimensions, the beam
velocity 3b defines a preferred direction with which we can establish a
coordinate system. The dispersion relation of Eq. (8) only depends on the
projection of K on 3b’ so another parameter, the angle between
k and Vb, must also be measured experimentally (i.e. w = EK-Vb).

Many parameters in this system can be varied, with little or no
change in E. Typical results are shown in Fig. 8, which is a graph
of v¢/vb versus wavenumber k/kD+, for several values of beam density. A
search over the possible values for beam velocity [1 < Vi < 10], beam
density [0.1 < n, < 0.3] and temperatures [0 < Tb/T+ < 4 for beam;
1< T_/T+ < 3 for background] was conducted. A1l parameters were allowed
to vary, yet remarkably 0.8 < V¢/Vb < 1.0. Thus the qualitative nature of

the beam waves does not appear to be sensitive to any of these parameters. Fig. 8

4 A ) P ]
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H. Growth Rates

There are two growth rates of interest: y, the absolute growth rate
which competes with damping processes that occur in real time and the
relative growth rate y/w which competes against damping phenomen; on
plasma period time scales (mp'l). The relative growth rate was used in
this analysis.

The frequency at which the relative growth rate is maximum is

predicted to be

0.5 < wf(v/w)_, }/ 0.6 (9a)

w . <
max*’ p+

1

where the ion plasma frequency mp+(s—l) = 33n, /z(cm'3). The 1inear

growth must compete with ion-neutral collision frequencyll Von = 2.2 x 107

1/z(ev) and Coulomb collision frequency11 v, ~9.7x107n

Po (Torr) T, .-

(cm‘3) Te'3/2 (eV). The data will show that Vg <V

v S wpy for this

experiment. The wavenumbers that correspond to this most growing region

are

0.1 < k[(v/w), J/kp, < 0.3 (9b)

where the Debye wavenumber is k0+(cm'l) = 1.4 x 10'3[n+(Cm'3)/T+(eV)]1/2.
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A computer search over w, k, Vps Ng» Nps T_/T+, Tb/T+ yielded only the
small variations shown in Eqs. (9) for w and k at (y/w)max.

I. Electrons

Analytically a small electron impurity is insignificant to the PANIC-

beam dispersion relation (7) except in the 1imit of small wavenumbers. If

we set the e(k,w) of Eq. (7) to zero, with phase velocity (v¢* =-€L£
+
then
m/m (1% n) n
kz +ng = 21 P > b” , b 5 (10)
Vor ~ 1 Vor - @ (v¢* - vb*) - T/7,

For the typical laboratory PANIC plasma data, the electron fraction is

3 5o that Eq. (10) differs from the case for

small 107 < n, < 107
ne = 0 only for e 2 kf, or k/kD+ < 0.03. For the following experiments,
the wavenumbers that correspond to the most growing modes are

k/kD+ ~ 0.2-0.3, well away from the electron dominated regime. The effect
of electrons on the fluid model two ion plasma oscillation is explicitly

displayed in Figs. 3 and 4.

I11. The Experiments and Apparatus

The PANIC plasma (Art, SF6') is generated by attaching cold
electrons2:3:12 to sF¢ gas in an Ar*-cold electron plasma via the resonant
reaction e + SF6 + SFG'. The cross section for electron attachment to

SFg has a maximum for cold electrons with energy near 0.1 ev13, The PANIC
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plasma experiment operates at neutral pressure low enough so that
collisions with neutral particles will not dominate the collective
behavior of the p1asma.12 The neutral pressure was Po <6 x 10'5 Torr and
typical PANIC ion temperature was LI 0.2 eV. From this the ioﬁ-neutra]

. $500 571, The plasma

11

collision frequency can be estimated atll y
3

+

density of n ~ 108 cm”

1

v,_ ~ 1000 s™". The plasma is “collisionless” in the sense

gives a Coulomb collision frequency

that v < v, << Wy and both are much less than the frequencies of

interest.
A laboratory steady state beam-plasma interaction was maintained in a

Double Plasma (DP)1’3'12 consisting of a 40 litre multidipole line cusp

14

confinement device,”" containing two separate PANIC plasmas at different

and‘contro11ab1e plasma potentials. A beam of ions was injected from one

half of the PANIC DP to the other. Beams with densities equal to 10% of

the background target density could be created. Fig. 9a shows the PANIC

DP with cold electron sources, individually biased target anode, and the

beam control grid between targets. The grid can be biased to potentials

as shown for example in Fig. 9b to transmit single beam species.

Electrostatic probes were used to determine plasma density and Fig. 92,9
temperature, heam energy and density, and also the wavefront arrival time
for the beam driven disturbances. The probes were 0.6 c¢cm diameter
tantalum discs that could be moved in three dimensions, with two choices

of orientation (facing towards and away from the beam). By simultaneously

triggering data acquisition on a reference probe and movable search

probes, a graph of phase versus spatial location of unstable waves was
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constructed in three dimensions. This yielded information about

frequency, wavelength and damping. The data were found to be in good

agreement with the fluid theory prediction.

Iv. Data

A dominant frequency is observed for the PANIC beam-plasma
instability, and is probably the non-linearly saturated most unstable
frequency (wl). The value of wy is consistent with the fluid model
prediction of a most growing mode at wy = m[(y/m)max] ~ 0.6 Wps ~ 0.5 L
The data give a best fit to w ~ (0.5 + O.I)wp given in Fig. 10, a graph of
noise frequency (fj) versus plasma frequency (fp).

The wavelength measurements are consistent with the dispersion
relation (including electrons), wp = gloVb. The value of the parameter &
has the range 0.8 < £ < 1.0 from the fluid approximation for the beam-
plasma mode. Fig. 11 is a graph of f1 versus vb/AII, where v, is the beam
velocity and AI| js the wavelength corresponding to the projection of
% on ?b. A straight line fit to the data cannot distinguish between
£ =0.9and £ =1,0.

It is interesting to note that waves are driven obliquely to the beam

direction on occasion., Data in Fig. 11 show that the cosine factor is not

always equal to one.

Fig. 10

Fig. 1
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These data indicate that beam driven noise of the fluid beam-plasma
instability type is indeed observed. The fluid relative growth rate has a
gentle maximum as a function of wavenumber at the frequency
wy £ w[(y/w)max]. Evidently this is enough of a maximum to gener;te a
reasonably monochromatic instability for a given beam velocity and plasma
density. The saturation level of the turbulent fluctuations could be made
smaller than én/n ~ 10'3. The beam driven waves propagated several
wavelengths before damping out. Note that the group velocity is identical
to the phase velocity for this wave (i.e. it is non-dispersive).

The electron impurity population can be inferred from a Langmuir
trace of the PANIC plasma, such as Fig., 12, This shows a current vs.
voltage characteristic of an electrostatic probe in the plasma, where the
saturation current I*SFG' (I*Ar+) of the negative (positive) species is
measured down (up) from the inflection point on the Langmuir trace. The
electron free PANIC plasma characteristic should have saturation currents

V2 0.6. The electrons add to the measured

negative saturation current to give an estimate of ne/n_ =4 x 10'4.

1*SFG./I*Ar+ ) (mAr+/mSF6-)

Upper 1imits on the temperature of the ion species can be determined from
a typical Langmuir trace like Fig. 12. The slopes of Art and SFg-portions
of the curve are not the same. Typically the temperature of the heavier
species (TSFG') was seen to be warmer than the Argon temperature (Tp.+)

(TSF - = 0,2 eV, TAr+ = 0.1 eV). These approximate temperatures correspond
6
2

~ 0.45 - 0065.

to thermal velocity ratio a = v_2/v+

Fig.

12
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In Fig. 13 a Langmuir trace shows the "source" plasma potential and
“target" characteristics, including the target plasma potential and beam

"bump" contribution.

V. Discussion

The fluid model of the PANIC-beam system predicts that a beam-plasma
instability exists for beam velocity 2 < vb/v+ < 10. For the PANIC
plasma, the data verify that waves of this nature can indeed be driven by
beams. The dispersion relation of the beam mode is predicted by fluid
calculations and observed to be wy = EE.;b’ where 0.8 < £ < 1.0, and the

unstable frequency is wp ~ 0.5 w_ . In a previous experiment Wong et a].z

P
drove waves in a negative ion-positive ion plasma with a toneburst grid,

using approximately 1 volt (e¢p ~ 4 Te)' In that experiment the waves were

at 0.4 Wo+ but were identified as "fast ion acoustic" waves.

In the PANIC experiment, the neutral pressure was near
Po ~6 x 10'5 Torr, with result that neutral collisions did not dominate
the collective behavior of the plasma. For plasma frequencies typica11y
woy ~ 104108 s, v fu) < 1072, The electron impurity is shown to be
less than 0,1% of background.

This PANIC-DP experiment demonstrated the existence of a beam driven
mode in an unambiguous fashion. A reasonable range of parameters was
explored in beam velocity (vb/v+ ~ 1.4 - 10) and wavelength
(AI ~ 0.3-10 cm) for both beam species. Plasma frequencies range from
50kHz to 800 kHz (Figs. 8, 9). This corresponds to PANIC plasma densities

from n, = 5 x 106 -3 x 108 cm'3.
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‘ VI. Conclusion

A Positive And Negative Ion Confinement (PANIC) plasma has been
considered from the fluid model point of view, and also created in the
Yaboratory as an Art - SF6' plasma with virtually no free electrons. With
this plasma, a beam-plasma instability was driven and observed
experimentally. The PANIC plasma has a mass ratio of m_/m+ ~ 3.5, which
corresponds to the typical simulated plasma systems of computer Particle-
In-Cell techniques.

The fluid approximation has been used to show that this PANIC plasma
exhibits two-ion plasma oscillations, sound waves and unstable beam
modes. One such beam instability is reported here. The sound wave speed
¢g corresponds to v_, the thermal velocity of the slower and heavier PANIC

ion (SF6'). A mass ratio of order unity has the consequence that the

sound waves and plasma oscillations occur at frequencies less than an
order of magnitude apart. After an ion beam was added to the dispersion
relation, two beam driven modes were predicted by the filuid solutions.
These were named "fast" and "slow" beam modes, due to phase velocity
respectively faster or slower than the beam velocity (v,). For slow beam
velocities Vp ~ Voo the slow beam mode can couple to a sound wave. For

large enough beam velocities (2 < vb/v+ < 10) the fast and slow beam modes

coalesce into a complex conjugate pair, with one member growing and the
‘ other damping. This mode has been experimentally observed in steady

state. All these fluid modes have been classified on a graph of wave

e ——
—— e — .m
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phase velocity versus beam velocity. The PANIC- beam system was shown to
exhibit behavior analogous to that of the better known electron-ion-beam
systems.

0f the two PANIC beam unstable modes predicted by this flui& model,
one has been observed in the laboratory, using a PANIC-DP device. This
beam-plasma instability has a dispersion relation given from numerical
solutions to the fluid equations w = £K'Vb, where the coefficient
0.8 < £ < 1.0 is insensitive to the many parameters including wavenumber,
beam velocity, beam and background temperature, beam density, and electron
impurity fraction. The frequency at which maximum relative growth rate
occurs was predicted to be m(Y/w)max ~ 0.5 wpe and confirmed by
experiment. The values for most unstable w and k are also insensitive to
the many salient parameters.

Electrostétic probes were used to measure the unstable frequencies,
wavelengths, and spatial propagation of waves. The data agree well with
the fluid predictions. This experiment was carried out at low neutral
pressures and density fluctuation levels, so that waves did not need to be
driven by a grid2 and wave damping from neutral collisions or turbulence
was not a problem. A wide selection of beam velocities and densities, of
either PANIC species (Ar+ or SFS') was available inside the Double Plasma
(DP) device.
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FIGURE CAPTIONS

Fig. 1. A plot of typical velocity distribution function for an

electron-ion-ion beam plasm, with vy >> Cg- (a) Beam velocity

s
vp is the center velocity of the beam and g is the ion-acoustic
sound speed. (b) Vp ~ G the slow beam mode and ion-acoustic
root couple.

Fig. 2. Maxwellian velocity distribution function of PANIC plasma with
beam. (a) For Vp > V. (b) For Vp ~ Yy the beam-sound wave
is the analogue of beam driven "ion- acoustic" modes.

Fig. 3. w versus k showing coupled beam plasma mode for vb/v+ = 6. Fast
and slow beam modes are coupled here. Two growth rates are also
plotted. The relative growth rate (y/w) is germane to this
problem, although absolute growth rate (y) is given as well,

Fig. 4. o versus k showing the slow beam mode coupling to a sound wave,
and y/w for vb/v+ = 1.3,

Fig. 5. Phase velocity versus beam velocity for a typical fluid model
solution to the PANIC plasma with beam excitation. The beam
driven sound wave is shown for Vp ~ Ve and for beam velocities
much greater than thermal velocities, the beam-plasma mode is

shown with growth rate y/w. The general features are not very

dependent on any other parameter of the plasma-beam system.

Aead oy IR AR T B 0
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Fig. 6. Phase velocity versus beam velocity for the PANIC fluid model,
showing the results for real w-complex k to be very similar to
the case of complex w-real k. Note that w > wp in order that
the “Langmuir" wave can exist. )

Fig. 7. A linear graph of phase velocity versus beam velocity, showing
all six roots of the PANIC- beam system.

Fig. 8. Graph of phase velocity/beam velocity vs. wavenumber for the
PANIC plasma. The dispersion relation w/&-xb =1 is
insensitive to the beam density for the wavenumber of interest
(0.1 < k, < 0.3).

Fig. 9. (a) Schematic of the PANIC double plasma device (DP).

(b) Potential versus distance in the DP, showing the grid
modulation of beam flux crossing the source to target.

Fig. 10. A graph of the experimentally observed most growing frequency
(f1) versus plasma frequency (fp). The best straight line fit
gives 0.5 ¢ fllfp £ 0.6, in agreement with the fluid model, for
the frequency of the fastest growing beam-plasma mode.

Fig. 11. A graph of experimental data showing the dispersion relation for
the beam plasma instability. f; is plotted against vblxl in the
parallel (to the beam) direction. The best straight line fit is
consistent with w ~ 0.9(+ 0.l)kvb.

Fig. 12. Typical Langmuir trace from the PANIC plasma, showing saturation

currents, with the inflection point of the "knee" for each

‘ contribution.
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Fig. 13. Llangmuir traces of source (bottom) and target plasmas (top)
showing the target beam “bump” to a SFS’ beam injected from the
source. When the target probe is biased more negatively than
‘pS’ the beam contribution is "turned off." Beam eneréy is
Eb = e(¢pT - ¢ps) ~ 3.8 eV, For slow trace sw