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ABSTRACT

This interim report covers research performed from

October 1, 1981 through September 30, 1982, on electron-beam

excited plasma turbulence and electromagnetic emission, on

propagation of intense electromagnetic radiation in the

earth's ionosphere, and on laboratory experiments on particle

beams and plasma waves.
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I. Introduction

This interim report describes work performed under AFOSR

grant #80-0022 during the period October 1, 1981 to September

30, 1982. The subject of research has been the theory of

"Plasma Wave Turbulence and Particle Heating Caused by Electron

Beams, Radiation, and Pinches." The period covered is the third

stage of a comprehensive research program concerned with the non-

linear behavior of plasma subjected to intensely energetic sources.

One of the significant developments in plasma physics over

the past decade has been the theoretical and experimental progress

made in our understanding of nonlinear plasma wave evolution in

response to external sources: A wide variety of radiation sources
1,2 3,4 5,6

such as lasers, microwaves, and radar, and of electron

beam sources, such as solar electron streams7'8 and laboratory

beams9 can excite plasma wave instabilities in target plasmas.
10

The waves saturate into a turbulent spectrum, and may heat the

plasma, accelerate plasma particles, and/or emit their own radi-

ation. Such processes have been linked to inertial11 and magnet-

ic12 controlled thermonuclear fusion schemes, radar communications

in the earth's ionosphere, and electromagnetic emissions from

beam-plasma systems in the solar wind7 '8 and in the laboratory.15

The phenomena also bear heavily on certain fundamental questions

of plasma turbulence, such as wave collapse in phase space,

electric-field envelope-soliton evolution,13'14 and the nature

of the so-called "strong turbulence."
'13

I71



2

II. Summary of Accomplishments

In the following summary, we include the accomplishments

of our program from October, 1981 to September 1982. The

foundation for the present program of research was laid during

earlier sponsorship, under AFOSR #F49620-76-C-0005, from August,

1976 through September, 1979, and under AFOSR 80-0022 during

the period from October, 1979 through September, 1981.

Our research has been divided into three main areas:

1. Radiation and turbulence created by electron beams incident

upon plasmas.

2. Turbulence created by radiation incident upon plasmas.

3. Laboratory studies of beam-plasma systems and plasma turbu-

lence.

We shall discuss recent accomplishments in each of these areas

separately. Details can be found in the Appendices.

A. Turbulence and Radiation Due to Beams

i) Plasma Wave Turbulence Excited by Beams

Our research has centered upon fundamental properties of

the Langmuir turbulence excited by a warm electron beam passing

through a pre-existing plasma, and the electromagnetic emission

from such turbulence. It is essential to note that the spectrum

and intensity of the radiation cannot be predicted without a

thorough knowledge of the spectrum and intensity of the under-

lying plasma wave turbulence.

wp-*
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In past years, we have demonstrated that the dominant

nonlinear physical effect governing the plasma wave turbulence

is the ponderomotive force of the plasma waves on the density.

In our studies of the resulting wave-wave interactions, we

considered the background plasma traversed by the electron

beam to be in thermal equilibrium.

More recently, we have studied effects associated with a

background plasma possessing ambient non-thermal low-frequency

density fluctuations and a non-thermal electron distribution.

Some of these effects are described in Appendices A, B and C.

We now briefly summarize the resulting picture of beam-excited

Langmuir turbulence:

In the absence of significant background density fluctua-

tions, the waves grow until they are large enough to undergo

an induced scatter down to a low wave-number "condensate" of

spectral energy. The condensate is eventually unstable

to modulational instability, which causes energy flow to

higher wave numbers, where the waves are damped by an enhanced

(nonthermal) level of background plasma electrons with phase

velocities lower than the beam velocity. Due to Landau damping

off this nonthermal feature of the background electron distribu-

tion, the Langmuir spectrum cuts off abruptly at wavenumbers

which are only a few times the wavenumber of the beam-resonant

waves. Hence, the nonthermal feature prevents the self-focusing,

or "collapse" of electron plasma waves down to very small scale

sizes. The resulting steady state turbulence is described in

I
I i
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Appendix B. Based on the numerical analysis, we have also

made a movie of the evolution of this turbulence in two

dimensions, which dramatically shows wave packet evolution

and the spatial structure of the turbulence.

It is worth noting that precisely such a nonthermal

feature has been found experimentally in real plasmas, such as

the background solar wind plasma in which electron beams excite

Langmuir waves and electromagnetic emission during Type III

solar radio bursts. For this case, we find steady state

turbulence with the correct intensity (on the order of the

largest spacecraft-measured turbulent intensities), and

predict a scale size for electron plasma wave turbulence on

the order of 5 or 10 km, also in agreement with measurement.

The virtues of studying beam-excited electromagnetic emission

during Type III bursts is that the best measurements of beam

properties, emission, and Langmuir turbulence exist for such

a beam-plasma system.

In two-dimensional numerical work, we have studied the

effect of enhanced background density fluctuations (e.g. low-

frequency turbulence) on the nonlinear evolution of the beam-

unstable Langmuir waves. By solving the Zakharov equations with

initial low-frequency turbulence present, it has been found

that background density fluctuations on the order of one ten-

thousandth of the background density can stabilize the wave

growth. The physical basis for this stabilization is the

fast scattering of waves out of resonance with the beam as a

.
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result of interaction with the density fluctuations. The

requisite level of density fluctuations increases with the

growth rate (proportional to the beam density).

A new statistical theory [Appendix A], which we have

developed with Dr. D.F. DuBois for electron plasma wave

evolution in the presence of a near-gaussian distribution of

background density fluctuations, tends to confirm our numerical

results. The kinetic equation which we have developed for

plasma waves contains the physical effects of absorption, emission,

scattering and diffusion of the wave spectrum. Our point of

departure is the coupling between dynamically active high-

frequency waves and passive (given) low frequency turbulence.

The development is very general, encompassing both resonant

and nonresonant processes, with careful attention to the condi-

tions for validity of the statistical treatment.

We have solved the kinetic equations for a number of special

cases. In the case of density fluctuations of scale size much

longer than the wavelength of the beam-modes, a process of

small-angle scattering or diffusion occurs, spreading the

Langmuir waves into an isotropic distribution of angles.

Since waves propagating oblique to a (warm) beam are damped

by it rather than amplified, an isotropic distribution is

stable. We have calculated the Langmuir wave spectrum under

these conditions [Appendix A].

In very recent work [Appendix C], we have solved the

kinetic equations for the case of a spectrum of density

fluctuations containing scale sizes equal to and shorter than

77 M.7
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the wavelength of the beam-modes. Here, there occurs a

process of multiple back-scatters off the ambient density

fluctuations. Energy is carried to higher wavenumbers, where

it is dissipated by thermal or non-thermal Landau damping by

the background plasma electrons (we consider both thermal and

nonthermal background electron distributions). Even for very

small levels of background density fluctuations, the amplifica-

tion of plasma waves by the beam may be saturated linearly by

this scattering process. For still smaller levels, nonlinearity

is responsible for saturation, but even in this case, the early

scattering by the background fluctuations will alter the non-

linear evloution (work in progress).

It is possible that such scattering plays an important

role in relativistic beam-plasma systems, where Buneman and

ion-acoustic turbulence may be excited by return currents.

This low-frequency turbulence can then suppress the beam-

excited Langmuir turbulence and affect the level of electro-

magnetic emission (work in progress).

We have also explored the basis for a statistical theory

of the dynamical (Zakharov) equations of the beam-driven

plasma turbulence, by studying intrinsically chaotic behavior

of the solutions to the dynamical equations as a function

of the beam growth rate. These studies were performed

under assumed conditions of adiabatic ions, and with a trunca-

tion to a few Fourier modes. With three coupled modes, strange

attractors and limit cycles were observed in phase space.

With up to seven modes included, limit cycles and chaos and
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intermittency were also observed, as well as the development

of fast (non-adiabatic) time-scale behavior. It is likely

that a statistical treatment of the electron plasma-wave turbu-

lence is only possible in regimes that show chaos.

ii
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ii) Radiation from Beam-Plasma Systems

In Appendix D, we describe preliminary results of a cal-

culation of emission of intense high-frequency radiation from

a relativistic beam incident upon a plasma. This work is

highly relevant to the recent experiments of Benford 15 in

which megawatts of radiation at tens-of-gigahertz frequencies

were found to emanate from laboratory beam-plasma systems.

The mechanism considered here is Compton up-conversion of

relativistic-beam-excited Langmuir waves into high-frequency

transverse radiation, which has been proposed tentatively by

Benford as a possible explanation for his experimental results.

The detailed calculation has been undertaken by an advanced

graduate student, David Newman. Further work will form part

of his PhD thesis.

The preliminary result is that this mechanism may not be

as efficient as previously thought. One problem is that although

(weak) amplification is predicted for radiation emitted by

Langmuir waves parallel to the beam axis, the radiation

associated with oblique Langmuir waves experiences damping.

Hence, for a beam widely dispersed in angle (as in the Benford

experiments), there will be a competion at each angle between

amplification and dissipation. This competion will hinder or

suppress the emission and may render this particular mechanism

less viable as a theoretical explanation for the experiments.

In the case of low density sub-relativistic beams, for

which we have developed a deep understanding of the underlying

Langmuir turbulence (see Section IIA.(ii) and Appendices A - C

T1V
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in this proposal), we have carried out calculations of the

emission near the plasma frequency and the second harmonic.

A manuscript is currently in preparation, but we include here

a brief summary of our findings. We have taken our best

numerically-determined beam-excited Langmuir spectra and used

them as input for calculations of emission of radiation, both

in the presence and absence of weak levels of background

density fluctuations.

In a quiescent plasma, second-harmonic emission is enabled

kinematically by the broad shape of the long-wavelength

(condensate) part of the Langmuir spectrum. The intensity of

this part of the spectrum is sufficient to enable second

harmonic generation by plasma coalescence to be a reasonably

efficient emission mechanism. Fundamental emission seems

most likely to occur by parametric instability of the condensate

into radiation and ion-acoustic waves. The thresholds and

mean free paths for this process are favorable.

In the presence of a low level of density fluctuations,

fundamental emission can occur by conversion of the Langmuir

waves off the local density gradients associated with the

fluctuations. We have developed a kinetic equation which

describes this process. It also includes anomalous absorption

of the emitted radiation by the inverse (so-called Dawson-

Oberman) process. Conditions have been determined when

this reabsorption is sufficiently strong that the plasma is

"optically thick" to this conversion mechanism, and emission

is reduced.

......... . .. . . .. - . .... t.tS " v!



10

Finally, we remark on the progress of our research concern-

ing emission mechanisms which are independent of Langmuir waves

in beam-plasma systems. Our statistical theory [Appendix A]

contains a preliminary treatment of the so-called plasma

laser effect, in which long wavelength waves (Langmuir or

electromagnetic) are destabilized by nonresonant interaction

with beam-excited Langmuir waves, in the presenece of low-

frequency turbulence. The preliminary result is that this effect

is weak, unless the low frequency spectrum happens to be

narrowly centered upon the beam-resonant part of the Langmuir

spectrum.

B. Intense Radiation Incident on Plasmas

Prior work on the modification of the ionosphere by high

power HF radar has now appeared as a publication ("Solitons

and Ionospheric Heating"--see Publications since October, 1981).

Related work has just been submitted for publication [Appendix

E]. This research was described in the last interim report.

I.
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C. Laboratory Program on Beam-Plasma Interaction - R. Stern

i) Background

As a bridge between experiments and theory, a new labora-

configuration has been explored and developed, in which beam-

plasma interactions can be measured under conditions which are

especially suitable for computational modeling. This work,

carried out in collaboration with Prof. N. Hershkowitz (U. of

Wisconsin) during his sabbatical stay at the University of

Colorado as a visiting professor, is being reported as a Ph.D.

thesis at the University of Colorado by T. Intrator (now a

post-doc at Wisconsin), and was submitted for publication (see

Appendix F).

The laboratory program on beam-plasma interactions is

intended to measure the production of electromagnetic emission

due to the passage of electron beams through plasmas. The

purpose of the experiments is to set up, under controlled

conditions, a variety of electron beam/plasma configurations

which will enable the dominant parameters of the interaction

to be measured. These measurements can then be compared

with the theoretical predictions, and also generate new

information for further consideration.

The appropriate apparatus in which such a study can be

carried out is the DP device. Although limited to relatively

low beam energies, it has several unique advantages. First,

it is a quasi-steady-state instrument, in which beams are

___ ___ _77
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generated at precisely synchronized intervals with a high

repetition rate (KHz). This allows the time-evolution of

the beam/plasma interaction to be followed exactly. This

contrasts with single-shot experiments, in which the shot-

to-shot variation can completely mask the time dependence.

Secondly, the beam and the plasma properties are independently

variable. Finally, it is the only configuration in which

complete and self-consistent measurements of the important

properties, including low-frequency density fluctuations and

particle distribution functions, can be carried out.

The basic device was acquired from Bell Laboratories in

October 1981, and is now fully instrumented. Figure 1 illus-

trates the device; shown are two chambers, respectively an

electron-beam source and a plasma generator section, axially

connected to each other. Figure 2 is a photograph of the

chambers integrated with the instrumentation module, consisting

of 1) vacuum pumps and controls, 2) gas handling circuit,

3) power supplies and 4) probes. Figure 3 shows the overall

experimental configuration, including electronics and input/

output devices. Every one of the experimental segments is

fully operational; calibration runs have been completed, and

a program of systematic measurements is now in progress.

__ _ _ _ ___1.



AKA

, A.L

r f-7 Ps



eq

low A



cvn

rz4

=1'#



16

ii) Beam Properties

Tests on plasma generation and electron beam injection

were initiated in January, 1982. We have successfully operated

the experiment in its basic mode, single-sided injection of an

electron beam into a plasma. Figure 4 shows typical Langmuir

probe traces in the "target" plasma. These are records of the

current drawn to a small, one-sided metal disc in the plasma,

as a function of the voltage difference between the disc and

the plasma container. Trace A corresponds to the background

plasma, in the absence of a beam, with an electron density of

108 cm-3 and an electron temperature of 1.4 eV. Note that as

the voltage sweeps downwards from the right, the large electron

current is "turned off," with the current decreasing in an

exponential curve below the plasma potential (about 1.5V),

leaving only the smaller ion current below about -15V.

During the beam injection, the probe trace changes to B.

The effect of the beam can be seen in the lower graph, which

plots the difference (B-A) between the above traces. The

beam introduces an additional current due to streaming electrons,

which is seen to be fairly constant between -3 and -18V. This

current represents a beam density of 20% of the background

density. Below -18V, the additional current "turns off" (just

as the background plasma electrons did below 1.5V), corresponding

to an electron beam energy of about 20 eV. Note that the probe

traces represent integrals of the electron velocity distribution

functions, so that their energy voltage derivatives can provide

the functions directly.

..... . . .. n nn i. .
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It should be noted that the data in Figure 4 illustrates

a high density and high energy beam in which the salient

properties are clearly visible. Most of our work utilizes a

lower density beam which can be classified as a warm beam, or

bump-on-tail. We can, at this point, generate a reproducible

beam of 40 eV or more, with a density of up to 20% of the back-

ground plasma. Extension of this to greater energies, if

necessary, should present no technical difficulties.

iii) Wave Excitation

Tests on wave generation and diagnostics were initiated

in June. We have begun to study both externally driven and

nonlinearly generated (beam-excited) ion-acoustic waves in

the plasma. Figure 5 shows a plot of the measured dispersion

relation for these waves when driven externally. The solid

line represents the predicted dispersion relation based on the

electron temperature as measured by a Langmuir probe, corres-

ponding in this case to a wave phase velocity of 2x10 5 cm/sec.

(The dotted lines show the approximate accuracy of this predic-

tion, ± 20%). The plotted points correspond to measurements

of the wavelengths at varying frequencies, obtained by measuring

phase changes while physically displacing the probe, illustrated

in Figure 6.

Wave excitation by the injected electron beams has been

attained, and is illustrated below. We recall that the

velocity of a 20 eV electron beam is nearly 3xlO cm/sec,

more than 3 orders of magnitude higher than the ion acoustic

wave phase velocity. The electron beam therefore couples

__
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directly to an electron-plasma wave of very high frequency,

GHz in our case. This, in turn, gives rise to secondary

excitations, including ion-acoustic waves at the lower end

of the spectrum. Figure 7 shows a spectral analysis of the

low frequency response of the plasma during electron beam

injection. The response at 300 KHz is ion acoustic turbulence

which may be associated with parametric instability of

fundamental emission driven by the nonlinear Langmuir wave

spectrum (see Section II.A(ii) of this report). The response

at 580 KHz may be the ion acoustic turbulence from the non-

linear scatter of beam-excited Langmuir waves into lower

wavenumbers (see Section II.A(i) of this report).

iv) Work in Progress

Current work involves continued construction of wave

diagnostics, especially at higher frequencies. Wave genera-

tion and observation for high frequency modes, both electro-

static and electromagnetic, will complete instrumentation for

full observation of the beam/plasma interaction.
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Beam-plasma Instability In the presence of low-frequency turbulence
Martin V. Goldman
Department of Astro-Geophysic& University of Colorado Boulder, Colorado 80309
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Theoretical Diision. Los Alamos National Laboratories, Los Alamos. New Mexico 87545

(Received 18 August 1981; accepted 26 March 1982)

General equations are derived for a linear beam-plasma instability in the presence of low-
frequency turbulence. Within a "quasilinear' statistical approximation, these equations contain
Langmuir wave scattering, diffusion, resonant and nonresonant anomalous absorption, and a
"plasma laser" effect. It is proposed that naturally occurring density irregularities in the solar
wind may stabilize the beam-unstable Langmuir waves which occur during type III solar
emissions.

L INTRODUCTION unified treatment of the effects of a given "external" distri-
The saturation of beam-induced instabilities of electron bution of density fluctuations on the evolution of beam-un-

plasma waves can occur through a wide variety of different stable Langmuir waves. Since we do not make the WKBmchanisms. Cold beams can produce relatively coherent approximation (kL),q), both anomalous resitivity andwaves which saturate by electron trapping.l 2 Warm beams, Fokker-Planck diffusion effects are contained in appropri-or cold beams which have broadened, 2 are traditionally ex- ate limits of what turns out to be a relatively simple, general
pected to saturate by quasilinear plateau formation.' Yet, integral equation for the Larmuir spectralenergy density.
under certain circumstances, nonlinear wave-wave interac- In addition, this equation contains "beat" emission due to
tions are faster, and can dominate. Such ponderomotive the Langmuir wave scattering off the density fluctuation.
force effects include induced scatter off screened ions," mo- Such scattering to higher wavenumbers has been suggested

as playing an important role in the observed evolution of
dulational instability,7"6 and collapse."' The first process can
be treated statistically by weak turbulence wave-wave inter- beam-driven Langmiur waves in the presence of external
action techniques, 4 and the latter two processes are currentl ion-acoustic turbulence in the vicinity of Jupiter's bowacton echiqus,'andthelater wo rocsse ar curenly shock. 17 Our equation provides a quantitative basis for
being studied by "strong" turbulence methods such as the shocki'g Ohr eqution pris a quanttt e ai nodirect interaction approximation.'0o studying this evolution. It is also highly relevant to the phen-

hres nteraon saurationpoc s aomenon of type III solar radio waves," since background
These nonlinear saturation processes are usually stu- low-frequency turbulence is always present in the solardied in a spatially homogeneous plasma. Conditions often wind," and is often at such high levels that an electron

arise, however, when random background density inhomo- stream passing through them will be influenced in Lang-
geneities are important, and may even predominate over muir-wave and radio-wave emission. Still another potential
nonlinear mechanisms in the saturation of beam instabilities, application is to laboratory relativistic beam-plasma systems

Refraction and scattering in the random index of re- in which a return current can excite ion-acoustic fluctu-
fraction variations may cause the regions of nonlinearity to ations, or in which the beam significantly disturbs the den-
be isolated and sporadic. "" 2  sity homogeneity. Here also, Langmuir and electromagnetic

Nishikawa and Ryutov' J have studied the relaxation of emission may be affected.
a relativistic electron beam in a plasma with random density In the second paper" we will show that our equations
inhomogeneities. Their statistical treatment is based on the are relevant to the effect known as plasma laser emission.'
angular Fokker-Planck diffusion of Langmuir rays into an This effect is closely related to anomalous resistivity. When
almost isotropic distribution of spectral energy density. A the beam disturbance and the density spectrum are centered
key point in their analysis is that the angle-averaged quasi- about wavenumbers for which the damping rate is negative
linear growth rate is always negative. Hence, angular diffu- (i.e., at phase speeds in the up-slope portion of a bump-on-
sion provides access to dissipative regions of phase space tail electron velocity distribution function), then the anoma-
which can stabilize the instability. Ious resistivity changes sign. The existence and nature of this

However, Fokker-Planck diffusion explicitly assumes effect depends strongly on the spectral shape of the low-
that the density inhomogeneities have a characteristic scale frequency turbulence, and may also be sensitive to higher-
size q; 'which is much larger than the Langmuir wave scale order renormalization.
size, k C" '. When this inequality is relaxed, the density inho- There is an interesting analogy between the present the-
mogeneities may cause anomalous resistivity to occur. This ory in the WKB limit, and statistical theories or Vlasov tur-can be due to resonant large angle scattering, or to nonreson- bulence. The Langmuir ray plays the role of the electronI ant beating to large wavenumbers. The first process is relat- trajectory. The ray moves in the effective external "field"
ed to the Dawson-Oberman resistivity.' The second has which is the varying refractive index associated with the ex-
been invoked as a mechanism which stabilizes Langmuir ternal density fluctuations. The simplest closure for the
collapse."s Langmuir kinetic equation is analogous to the quasilinear

The purpose of this paper and its sequel" is to present a closure for the electron distribution function in a given ran-
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dom external field. The conditions for a simple Markoffian II. GENERAL STATISTICAL THEORY
quasilinear description require a broad spectrum of ion den- Let us assume that the given spectrum of density fluctu-
sity fluctuations which provides a small correlation time, ations is spatially homogeneous (in the statistical sense).
again analogous to the Vlasov case. When q. Ck., this gives Then the Langmuir spectral function will also be spatially
the quasilinear diffusion of Langmuir rays. However, homogeneous, and is given in terms of the Langmuir field
when 2k~q., large angle scattering and anomalous resistiv- E rrt) by
ity effects are obtained.

For both the Vlasov equation and the Langmuir equa. W(k;t ) W f Aireexp ( - ikr)(E(r,t -EO,t)) (1)
tion the effects of higher-order renormalization in the ran. 4i, J(2T)3

dom external fields are analogous. Even a closure approxi- We wish to work entirely in terms of the slowly time-varying
mation which contains such renormalization relies on the complex envelope field, 9V which is related to the Langmuir
assumption that the statistics of the external fields (or den- field E by
sity fluctuations) are near Gaussian."' : Effects such as par- E = [ exp ( o, t) + V * exp ( + at)]. (2)
ticle (or ray) trapping are ignored. This assumption is much
easier to justify when the density fluctuations are indeed ex- If we insert (2) into (I), and neglect oscillations at 2w,, then

ternal. In the more general formulation, self-consistency W(k;t) = (i/16ir)[F(k,t) + F( - kt)], (3)
must be addressed,'0 and this means that the statistics of the where the Langmuir envelope correlation function is
fluctuations can no longer be taken as ad hoc. In the case of

"Vlasov turbulence, this means that Poisson's equation for F(k;t )m dr exp(- k-r)(g (r,t)-'(0,t))
the field fluctuations must be taken into account. This finds J(21r)x

its analog in Langmuir turbulence in the second Zakharov - lim , (I '(k,t)j 2)/V. (4)
equation for ion-acoustic fluctuations driven by the Lang- Our object is to write a suitable equation for the envelope, ff,
muir pondermotive force. When a self-consistent treatment from which a kinetic equation may be derived for the distri-
of the density fluctuations is required, we should be more bution function, F. Then, W may be found, using (3). We
suspicious of closure approximations, in general. However, shall make the following essential assumptions:
there are no guarantees that the statistics of external fluctu- (A). The external density fluctuations bn are known sta-
ations will be near Gaussian in any given application. tistically, and have properties which enable a closure of the

In many respects, our theory is quite general, since we equation for F. The averaging, ( ), is assumed to be over an
do not specify the nature of the coupling between the waves ensemble of realizations of the random density 6n.
and the beam or background particles, but merely represent (B). Coupling to the beam and background particles
such coupling by a fixed wave damping rate, which may be shall be through a fixed linear external "damping" rate, )'k,
positive or negative. Many of the present considerations will which may be negative or positive in appropriate regions of k
apply, with only trivial modifications, to other kinds of space. Since yk is given and fixed, we are ignoring the reac-
waves in a dissipative medium with random irregularities. tion of the waves back on the particles, and there will be no
Since we do not make the WKB approximation, our treat- quasilinear plateau formation or particle trapping. Al-
ment is more general in this respect than the work of Besier- though our treatment is perfectly general, we shall often
ies and Tappert," who performed careful, systematic studies have in mind the situation where r, is given in terms of the
of geometrical-optic ray propagation in random media, electron distribution function, by the usual (quasilinear)

The plan of this paper is as follows: In Sec. II we shall expression,
set up the basis for a statistical theory, and set forth the f
essential and convenient approximations to be employed. In = r 4 fd'v ltk'jb(w, - k-v). (5)
Sec. III we shall make the simplest quasilinear closure and
show its consequences in the case of a short density-fluctu- (C). We shall assume that there are no mean fields, that

ation correlation time: a simple integral equation for the is,
Langmuir spectral function. Section IV is devoted to esti- (6n) M ) = 0. (6)
mates of the consequences of the basic equation for the Lang- (D). As already mentioned, we assume spatially homo-
muir waves driven by a stream of solar electrons during type geneous turbulence.
III bunts. It is found that these waves can be stabilized by For convenience in the present treatment, we also make
density fluctuations with q. k, and q. = 2kL. The Appen- a number of additional assumptions, which can be relaxed in
dix contains a solution of the kinetic equations for an iso- a more general treatment.
tropic distribution of Langmuir waves in the presence of (E). the envelope field f is taken as electrostatic, so that
long-wavelength density fluctuations. ' = - Vo.

In a second paper' we will discuss in more detail a (F). Nonlinearities in ' (or F) will be neglected; that is,
number of technical points such as the criteria for the valid- Sn will be considered as entirely external. In general, there is
ity of the Markoff quasilinear description, the nonresonant a self-consistent contribution, 6n, which is nonlinearly driv-
cases including the pl-laser effect, the complications of en by the Langmuir field. Put more simply, we neglect the
long density correlation times (or narrow spectra), higher ponderomotive force. Some of the consequencies of ponder-
renormalization schemes, and the generalization of this ap. omotive force are simple, and can be inserted trivially as
proach to include transverse radiation. corrections to the linear kinetic equations if necessary. For
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example, the weak turbulence effect of induced scattering off
ions can easily be added." Modulation instability and col- = J L' ieL~ - qk) - 6f(k€k + qllk). (15)
lapse, however, are not easily incorporated."0  The equation for 6f is obtained by subtracting the average of(G). We shall assume that y, is not sensitive to the vari- Eq. I101 from Eq. (10) itself
ation 6n. This can be justified explicitly for the case of ion- G - '(k,,k 2)6f(k,,k2 )
acoustic turbulence in the solar wind (6n/n = 10-"). This
restriction can be lifted, in general, as shown by Besieris and - .6n,, _. [k,k,.F(k2) -F(ki)1 2 12 ]
Tappert.2

Our starting equation for the Langmuir field envelope - ' -6n,, ,i,6f(k, - q,k2) - ff(kk 2 + q)kk'I2
9' incorporates all of these assumptions, and furthermore,
makes strong contact with previous work on the Zakharov 7m 1 k kf,.6f(k, - q,k 2) - ft(k,,k 2 + q).kk]\l
equation. In fact, our basic dynamical equation is precisely V 4
the first Zakharov equation, in which the density fluctuation (16)
6n is treated as external: Equations (15) and (16) are our basic statistical equations.

V,.[i(a, + '1) + V1 + 5n(r,,t)] 5'(rj,) - 0. (7) Together, they generate a hierarchy very similar to the Kli-
montovich equation hierarchy in Vlasov turbulence. The op-Here, k,1 W has the Fourier transform Y' V (k), where Y, is the erator G - ' is analogous to the Vlasov operator, F is analo-

(growth or) damping given by (5), with Sn neglected (or by gous to the particle distribution function, and 45n to the field.
any other expression independent of bn and of f). The units The term on the right side of Eq. (15) is analogous to the
are the same as in previous work, although V' can be consi- usual correlation function associated with fluctuations in the
dered to have dimensional units since the equation is linear acceleration term. When the two terms in the braces, are
and homogeneous in I'. The transformation to convert (7) ignored, we have 61 proportional to bnF, which, when insert-
into dimensional units is ed into (15), gives the usual quasilinear closure. In the next

t--.a~, r-2kDr/NF3, 6n--8n/2n, (8) section, we discuss the consequences of this simple closure
where w. and kD are the plasma frequency and Debyc scheme.
wavenumber, respectively. The conditions for the validity of this closure are similar

The field I? is assumed to be longitudinal. We have to the usual Vlasov quasilinear case. Some complications
taken the divergence to remove explicit coupling to the enve- arise because of the dispersive nature of Langmuir waves and
lope of the transverse plasma waves. Alternately, we can will be discussed in a second paper." For completeness we
take the longitudinal part of bn if to accomplish this. In merely list these criteria here with only a brief discussion:
Fourier space, Eq. (7) is then equivalent to, (i) The density fluctuations are a quasi-Gaussian ran-dom process.' 1. 2

[i(a, + )- k I I (k,) + I 76n(q)k,*f(k, - )0. Iii) (6n)/In' 2  €i, < (17)
r• (9) where the appropriate correlation time of the density fluctu-

() ations is
Next, multiply by 1'(k2)*, and subtract the complex conju-
gate equation, with k, and k2 interchanged. The result may r, = [infh2(k ± qo) ± o c,/qJq] -' (18)

be written as where 4q is the half-width of the density fluctuation spec-
trum which is centered about q = q0. [Note that the inf in Eq.

G - '(k,,k 2)f(k,,k2 ) =- I 76n(q[k(',if(k, - qk 2) (18) indicates that one takes the combination of signs which
V . gives the smallest value of the expression within the absolute

- f(k,k 2 + q).k 2k 2) (10) value signs.]

where f is the dyadic (iii q)2  1. (19)
The last criterion which does not arise in Vlasov quasilinear

f(k ,,k2) if(k I)F(k2)*, (11) theory appears because of the dispersive nature of Langmuir
and G -' is the operator waves [i.e., the q2 term in Eq. (25)]. It turns out to be neces-

sary so that the density correlation function decays to a neg-
-'(ko,k 2 ) = i(d, + y, + Yk, + (k2 -kl). (12) ligible value for r>r, .

We now take the ensemble average of (10), noting that, Conditions (i) and (ii) are sufficient for the neglect of
terms in the weak turbulence perturbation expansion be-

(I/V)f(k,k 2J"F(kFi,.1, + (I/V)Ft(k,,k 2 ), (13) yond the quasilinear terms. Condition (i) allows the neglect
by the assumed translational invariance of the statistically of the effect of irreducible correlation functions of order
averaged plasma, here, (6f) .- 0. The quantity F(k) defined greater than two provided condition (ii) is satisfied. The strict
by Eq. (4) is simply definition of a quasi-Gaussian process is given in Refs. 21

F(k)-Tr F(k), (14) and 22.

which, from the average of (10), obeys Ill. QUASILINEAR CLOSURE

i(8, + 2rh)F(k) We neglect the two terms in braces in Eq. (16). TheUsolution may then be written as
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004 2)= + is the scattered wave, and q belongs to the density fluctu-1 - 7,kan . ation. The angular factor j* _ is largest in the forward or

Xil 2 (ilk 2)[F(T,k 2) - Ffk,)J], (20) backscattered direction. The quantity r represents the sum
of the damping rates of the three waves; one or more of thesewhere we have used the results that may be negative. The quantity R represents the total fre-

F(k2M(#'(k2X'(k,*) = -It 21F(k,). quency mismatch between the three waves. Resonant pro-

The Green's function G is obtained from (12): cesses correspond to R ± close to zero.
We note that Eq. (23a) is intrinsically non-Markoffian,t- 7kk 2 ) however, since it is an integral equation of the convolution

f-iexp [y, - y, + i(k - k)(t -T), t>7 type, it may be solved by Laplace transform. This method,
=10, t14 and its implications will be treated later.' 6

(causal condition). (21) A. Time asymptotic Markofflan resonant limit
Combining (20) with (15) gives us a kinetic equation in the If conditions (if and (ii for the quasilinear approxima-
quasilinear approximation: tion are satisfied, then Eq. (23a) can be further simplified by a
148, + 2y)Fk,t ) Markoffian approximation if F, (t) is sufficiently slowly vary

1 'C t ,ing on a scale determined by r,:
dT -'dC t- .,+ 7)/2)

V %(iv) -iln IF,,(I I I I -l (24)
41(k -q))'[ G (t -T;k - q,k) ) t

+ G (t - 7k~k - q)J I F(k.7- F(k - q.7 (22) In this case F, (7) and F, - ,7) in Eq. (23a) can be replaced by
F,(t) and F, -,(t). The details of this argument will be pre-

and where the density correlation function is sented in the second paper.
C(q;V -(t + ?)/2)(l/V)(6n . ,(t)6n ,(T)). This equation can be further simplified in the time

Here, the dependence on t - Tis associated with the spectral asymptotic limit t> , for the case where the resonance con-
frequency (i.e., the ion-acoustic timescale, if these are ion- ditions
acoustic waves), and the dependence on (t + 7)/2 represents R, q-2kq±w O (25)
an evolution time scale for the entire correlation function. can be satisfied over some range of the q spectrum.

We shall assume that Cis independent oft + 7rand that The result is independent of the sign and magnitude of
its dependence on r:t - "is known and may be expressed in r provided the following condition is met
the following simple general form: (M) F4 1L (26)

C(q,r) = C, exp ( - vr) cos war. The derivation of this condition will be discussed in more
-where C. is an oscillation frequency, vq is a relaxation rate, detail in the second paper." Condition (v) states that the
and C, is the spectral function for density correlations 6nq. decay or growth of the kernel K q' (t is inconsequential on
All of the quantities in (22) are assumed to be set by external the scale of the decay due to phase mixing with correlation
conditions and given independently. For example, if we are time r'.
dealing with ion-acoustic waves, w. = c,q and v. represents If conditions (i) through (v) are satisfied, Eq. (23a) re-
the damping rate of such waves (in appropriate units). An- duces to a simple Markoffian equation for the evolution of
other possibility is purely relaxing density fluctuations, for F(k, t)
which w, = 0. The shape and magnitude of the spectralfunction C. is also taken to be given or measured. We shall (8, + 2 yk)F(k,) -2?F(k,t)+S(t). (27a)
employ various models of C6 . 7 r f 2

In terms ofthe above equationfor C, and (21) for G, the 2. [6(R )+ (R 2]. 127b)
basic kinetic equation may be written as q= f (6(R + ).S(R_ Fek-q.

(a + 2r F. (t = _2f fd 4. x (, ,7) J(21r)' Cj ] ( 2 c

X [F(k]') - F(k - qT)], (23•) The significance oftheb-function condition (25), R = 0,
wheC in this limit, is that it guarantees energy conservation

K, (") = _ C, exp -r(Oos iR .. + 0os _ )/2, (23b) between the Langmuir wave at wave vector k, the low-fre.
quency turbulence at frequency, wa W q ± ,a and wave vec-

m[ (k*)] 2 , (23c) tor q, and the (scattered) Langmuir wave at k - q. In phys-
j my&, + lr , + v., (23d) ical units this condition is

R, mlk-q 1-k 2 .w. (23e) a,[l + jk 2/k2]=w± +w,[l+ ,(k-qf'/k ). (28)

The first term on the right side of (23a) is the "scattering- When the low-frequency turbulence is ion acoustic, we have
out" term, and the second is the "scattering-in" term. In the Wa, = ± cs q. where cs = (,/M)'" 2 is the ion sound speed.
basic three-wave interaction, k is the "incident" wave, k - q When the density fluctuations are on a large spatial scale
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compared with the Langmuir wavelength, we have the diffu- modes.' For the case of shorter scale density fluctuations
sion limit. the elastic scattering limit may also be taken, and both

anomalous absorption and isotropization take place.
1. Musion /kWi (q,, c k,) lPi. I(&)]

This limit corresponds precisely to quasilinear diffusion 2. General elastic scatteng(/w/ <ir, kq) and
in Vlasov turbulence, and could have been obtained by using anomalous absorption from intermediate scale density
geometric optics approximations (based on the slow vari- fluctuations (Q .2k)
ation of 6n) in the original equation (7). We expand the 6 We see from Eq. (27), that, when w, is neglected in R ±,
functions by assuming q.k: the steady-state kinetic equation becomes

6(R ) 6w:(w 2k-q). (29) -2 rz +S (- 3C(q) - 6f[(k-q)2 -k 2 ]2 8k, -2r)
We also expand F(k - q) in Eq. (23) for S , to second order X [F(k) - F(k - q)]. (33)
in q. The result may be put in the standard form It is evident that (33) vanishes for an isotropic Langmuir

-2)AfF (k) + S l= .-= a DF(k), (30) distribution
2 j F(k) = F(fkl).

where the diffusion coefficient, D is [(D" + D'- )]/2, and Even though we are not in the diffusion limit q. CkL, the
D+(k).= 1f (dL C) ,8( scattering-off density fluctuation is now in angle only, and

-2kq}• (31) may drive the Langmuir waves towards isotropy [Fig. 1(b)].

The kinetic equation (27) now becomes a diffusion equation, The condition for the neglect of w , I is Eq. (32) in the limit
and is completely analogous to the quasilinear diffusion in of small q, or the limit of large q,
Vlasov turbulence. In the limit lw ± I =csq kq, or, in dimen- (m/M) 12 

Cq/qD (34)
sional units when It is instructive to examine y alone, in the general elas-

(m/M)I 2 <k/kD, (32) tic limit. We may write

the frequency wt in (25) is negligible, and the underlying rf C (qu 6 (q2 - 2kq). (35)
scattering is elastic. The corresponding diffusion was studied T :J( 2 _2)3 -

by Niskikawa and Ryutov," in their work on beam-plasma For an isotropic density fluctuation spectrum, C(q) = C( q1),
interaction. In this limit, the diffusion occurs in angle only the angular integrations may be performed, leading to
[see Fig. 1(a)]. The density fluctuations then drive the Lang-
muir spectrum toward isotropy. This may stabilize the beam ).1 f dq C(qjf(q/2k), (36)

( C0) where the functionf(x) is defined by
f(x)-- x(l - 2x')', x -i ,

M0, x> 1.

(b) f(x) rises toa local maximum ofabout0.2atx = 1/V 10, falls
to a minimum of zero at x = l/V2, and rises monotonically
to a value of I at x = 1, before cutting off discontinuously to

k zero at larger x. Next, we suppose that C(q) is peaked at

Cc)q, 42k, and has a width 4q<k /2. Then,• (c)
k -' L y fr= - f(q .12 k)< 16n(r)j12> q, (37a)

2
or, in dimensional units,

(d) (16h 2) k,itT~q (d)?f= -1-f 2: , (37b)

18 n2  q

1T  This represents anomalous absorption, and is very similar to
_q the formula derived by Dawson and Oberman" for the

(e) anomalous resistivity of electromagnetic waves near the
t-1 k plasma frequency. An important difference for the Lang-

FIG. I. Momentum matching configurations for vahnous resonant three- muir wave case is the functionf(q. 2k), which is negligibly
wave interactions involving low-frequency turbulence at wave vector q. In small unless q. = 2k. The condition q. - 2k corresponds to
each cae, k is the momentum of the incident wave, and k - q of the scat- backscatter, in which the wave vectors k and k - q are equal
tered wave: (a) Diffusion limit, qAk Ib) General elastic scatterini. and opposite [see Fig. i(c)]. This configuration is favored
ik - q! - k, (c) Elastic backscatter. (d) Conversion ofa transverse wave at
kroff "lon" wavelength turbulence, q, intoaLangmuir wave atkr - q.(el because of the angular factor, p'_. This condition is very
Inelastic backscatter; 1k - q is shorter than k by an amount -(Mi }". restrictive on the relation between kL and q,. For example, if
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q > 2k,, the factorf vanishes identically. The electromag- resonant case, again assuming conditions (iHv), the first
netic case is much less restrictive. In this case, there appears nonzero term is obtained by keeping the terms proportional
on the left of Eq. (28), the electromagnetic wave dispersion to r in ip ( -/r)I-'r + .... F,(t-r) =F (t)
relations, w 1(I + c2k '/2], rather than the Langmuir wave - id/8t ) F, ).... etc. in the r integration of Eq. (23). The
dispersion relation, mI1 + 3k 2/2k 1]. As a consequence, full result will be reported in the second paper. Here, we will
the conditionR = 0 becomes, in the elastic limit discuss only one special case in detail.

q' = ( /3V)k (38) Let us assume r= y -, = -y., corresponding, for exam-
ple, to Landau damping at high q. We further assume

Hence, kr<q., and the scattered (or, more precisely, the R =q')F, e,. Then, the nonresonant contributions to Eqs.
"converted" wave) wave vector is - q [see Fig. I(d)]. For (27a) and (27b) can be written as
this case, one has

.' (q. kf L &) (=2 - C(q(kq)'-v-')F(q). (42)

S(16n2) k ,D (39) j2r)' 42
9 2 2.Il emsi ntr S wilb smlbea s Fiss al tth

- a result which has been derived by Dawson., This formula, The emission term Sr" will be small because Fis small at the
which is valid for transverse waves with k<q., is much less (high) wavenumber q, where C peaks (recall F peaks at kL

restrictive than (34). In the literature, 4' 23 Eq. (39), rather 4q. .) The anomalous absorption term j given by Eq. (41),
than Eq. (37) appears to have been applied to Langmuir in this limit, was written down without derivation by Galeev
thaven heq. appas theret al., in connection with Langmuir mean fields damped by
waves. In these applications, the role of the emission ters, ion-acoustic waves. In their case, the ion-acoustic waves

, has also been ignored. arise due to sound wave emission from density cavities driv-
and cascadle [Fig 1(c) en by ponderomotive force. We note that ? is independent

3. Ineasbc scaft g a[ . )of IkI as long as Ik I 4q., so this constitutes a uniform damp-
For wavenumbers close to (mIM)12, the frequency w ing of long wavelength Langmuir turbulence by short wave-

can no longer be neglected, and changes in wavenumber are length ion-acoustic waves. According to Galeev et al., " this
associated with the scattering process. Then the (energy con- damping can stop the collapse" of Langmuir solitons in
serving) delta functions in Eq. (27) tells us that fully developed Langmuir turbulence.

q = 2k.4 ± cs (40a) Here we consider a different application, in which a

Hence, for backscatter qJlk and q > k , this gives bump-on-tail electron distribution drives resonant Lang-
muir waves unstable in a certain equation ofk space. Hence,

q = 2k c, (40b) in the kinetic equation, (27), we may consider wave vectors k
or for which y, is negative. If, then, C (q) peaks at q. ).k, and q.

k-q= -k 40c) lies in the region of strong Landau damping, yq, then r, as
given by expression (41), will tend to stabilize the beam

The scattered wavenumber can therefore be increased or de- modes. In order to estimate the size of f, let us assume that
creased by cs = 0.82 (mIM)'11, relative to the incident C (q) is isotropic, and has a width Aq about q.. We may then
wavenumber. This effect is most pronounced when k is not aproximate (41) as
significantly higher than cs. We note from Eq. (40b) that, in
order for q to be positive, k cannot be less than cs/2. It yCsI', f dil q i_'2 Y. fl (r)2 1) (43
appears from Eqs. (27a) and (27b) that steady state may result - C(qX27-) z3.. ( (43)
from a cascade of scatterings which may occur toward both
higher and lower wavenumbers (subject to k> /2). A cas. where q. mq, + Aq is the point of maximum Landau damp-
cade to higher wavenumbers has been suggested for beam- ing, y. The largest y,. can be is of order w, for q, of order
driven Langmuir waves in the presence of ion-acoustic tur- kD, so, in dimensional units, the maximum value of ' is
bulence near Jupiter." . .• "

1. Nonrmonant anomalous absorption (r>o) for 7ort 7

scale densty fluctuations (kL cq,) Very weak beam-mode growth rates, y,, may be stabilized

All of the time-asymptotic phenomena discuased so far by the effective damping, e. If ?f is not large enough to
were resonant, and could have been obtained from semi-clas- provide stabilization, we must consider nonlinear contribu-
sical "Golden-rule" arguments involving Feynman dia- tions to the effective damping and emission terms.
grams for creation and annihilation of IAngmuir waves In the second paper' we will consider the plasma laser
(plasmons) and ion-acoustic waves (pbonons)., effect; this is a situation where the density fluctuation spec-

However, another clas of phenomena is present for Uum is peaked about a value q, which lies in the range of
which the resonant conditions R * - 0 cannot be satisfied. wave vectors Ak which correspond to unstable beam modes
The first example occurs for q. >2k and q.c s . nthe non- msr w, Iv,. Then it appears possible to destabilize very long
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wavelength Langmuir waves by a plasma laser effect," in 6n e).,E
which ,, is negative. We consider expression (411 once n 21rk, T,

more (assuming 'Ik. -< , y <q:). Now, Y, will be negative,
since q lies in the range ofmomenta corresponding to unsta- = 1.85x0-( i, E IO0K
ble beam modes (i.e., waves whose phase velocity lies in the 1 0m 100 V/m T
up-slope portion of the electron distribution function). For (45)
the broad spectrum (r-.0 ) case considered in this paper the where e is the electron charge, Te is the electron temperazure
plasma laser effect can be wiped out on integration over q, (I - 2x lx0 "K at 4 a.u.), and E is the electric field.
which averages over stable and unstable regions of y.; it Let us now consider the consequences of a type III burst
appears that the stable regions will dominate over the unsta- electron stream passing through 'lhese density fluctuations at
ble regions, and the system will be stable in this case. The 0.5 a.u. Assuming an ambient plasma electron density of 15
plasma laser effect can work in principle for a narrow band cm -. , and therefore an electron plasma frequency off, = 35
width spectrum. In Sec. IV, we discuss some applications of kHz, an electron stream of velocity one-third the speed or
the stabilization of beam modes already discussed (cases A light will give rise to Langmuir waves of wavelength, A,
and B). = v/f = 3 km. Hence, we are in the regime A,)PA, or q.

)-kL, which is the limit of nonresonant anomalous absorp-
tion, discussed in Sec. IIIB. The Debye length istD = 7 m at

IV. APPLICATION TO BEAMS ASSOCIATED WITH TYPE this density and T= l0= "K, so qAD = J, and we are in the
III SOLAR RADIO EMISSION regime of heay Landau damping, where Eq. (44) gives the

A type IIl solar radio burst occurs when a stream of applicable anomalous absorption of long wavelength modes.
electrons, emanating from the sun, propagates into the solar With 6bn/n =2 x 10-", we find y'/o, = 10- 1. This is too
wind. The sequence of events leading to the observed burst is low to stabilize typical growing beam modes, for which the
thought to be this: The stream excites Langmuir waves by a growth rate is ya/w = 10-'-10 - '. On the other hand, if
bump-on-tail instability;2 the Langmuir waves saturate by (6n/n I has been underestimated by an order of magnitude or
nonlinear mechanisms such as quasilinear plateau forma- more (due to the logarithmic averaging of intensities) stabili-
1:on- and/or ponderomotive force effects;' and the turbu- zation by anomalous absorption may occur. We note that the
lent Langmuir waves emit electromagnetic radiation by two- damping rate, v,, of ion-acoustic waves in always larger than
plasmon coalescence and/or conversion off (ambient) (m/M) (qA, )= 10-'. This is sufficient to guarantee the con-
ion-acoustic waves .N The effect of independently generated dition r > 0 required for stabilization (in the linear approxi-
low-frequency turbulence on this sequence of events has not mation) even without phase mixing effects.
been studied systematically. Such turbulence may saturate
the Langmuir waves linearly or in conjunction with the non- B. Large scale density fluctuations
linear mechanisms. It may also affect the emission and prop- An altogether different possibility arises when we con-
agation of the electromagnetic waves. sider the possible effect of very large scale density fluctu-

ations. Measurements 2'" of interplanetary scintillations
have established" the existence of density fluctuations with

A. Short density fluctuations q-' between 50 and 200 kin. and bn/n of order 10-'.

Gurnett et al.'" have shown that nonthermal levels of Hence, q, (kt, and the efec: on the Langmuir waves isFokker-Planck diffusion. In the elastic limit, the k spaceion-acoustic waves are very common in the ambient solar diffusion occurs n angle only. We treat this case, for simpli-
wind. The Helios 1, 2 spacecraft antennae have picked up city, assuming (r/M i "gekl/k . As shown by Nshikawa

sporadically intense electric fields in the frequency range and Ryutov,'3 the diffusion coefficient [given b our Eq (31),
from I to 10 kHz at 0.47 a.u. These fields have been inter- with wq = 0] for a cylindrically symmetric Langmuir spec-
preted as ion-acoustic waves, Doppler-shifted by the solar 9
wind speed, v, = 500 km sec-' ± 100 sec-'. Since v, is
much greater than the ion sound speed, the wavelength of 3 I q-- q
this turbulence is)., = 100 m. Typical electric field peaks are 6D, 6)- 60rk qT dq d
between 10 and 100/pV m-'. The spacecraft instrumenta- ,.Me W,,e
tion measures the average of the logarithm of the intensity of
the waves, but is limited by a characteristic resolving time of x C1q,8') sin O'cos' 8'
50 msec. For stationary broadband structures convecting sin 0 (sin' 0 sin'O' - cos, 1 cos 26 '
past the antenna at the solar wind speed, this implies that 146)
scale sizes smaller than or equal to 25 km register only in For a spherically symmetric density fluctuation spectrum.
terms ofa logarithmic average. Hence, the measured electric C(q,') = C (q), peaking at q., this reduces to
fields associated with the 100 m ion-acoustic turbulence may W q ( 2 \l (r)?)
be grossly underestimated. D A=- -I z(7

Ifwe assume that the electrons respond adiabatically to 1 k "A n '
the low-frequency fields, then the associated density fluctu- and the Fokker-Planck equation resulting from (271 and 130)
ation level is becomes (in physical units)
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48, + 2y,)F(k, cos 0 - - ,DA sin OdF(k, cos 8) F. =/2(p - g.'). (57)
in A realizable stationary state requires q1 < P. For sufficiently

- S(k, con 8). (48) large jn/n 2, D becomes large, and S214. In that case, (57)

Here, we have added an electron spontaneous emission term, represents a detailed balance between the angle-averaged

S, on the right side. For the case of a bump-on-tail in a back- spontaneous emission, S, and the angle-averaged damping.
ground plasma, this consists of two pieces: Cerenkov emis- Even though y, is negative at forward angles for k near w, /

sion from the beam, and combined Cerenkov and brems- v,, the angle-averaged, j, will always" be positive, for any
strahlung emission from the background plasma. quasilinear distribution of electrons, and stabilization can be

For the type III bursts under consideration kAD  achieved.

- 1.5 X 10-2, q/k= S x 10-3, so the characteristic diffu- In the Appendix we have numerically evaluated the

siontimeisDT- I sec.Onee-foldingtimeforabeammode Langmuir energy density, Wo(k), using (57), and (3), and

is on the order of 10 sec, so the diffusion should be rapid. shown that the condition for g, <F, is 16n/nI >3 X 10',
We first look for a steady-state solution to the linear which is well satisfied for the irregularities observed ..,.. ; in

diffusion equation (48), in which the spectrum is close to scintillation measurements. Typically, " bn/n is measured at

isotropic: 10-1.
Under conditions associated with a type III burst,

F(k,.) = Fo(k) + Ft(ku), (49a) (A 16), we obtain the isotropic spectra shown in Fig. 2. Only

jFIj<F,, ucos O. (49b) the case 4v/ 0o- 1/3 is of interest to us here. The spectral
energy rises to Wo(k)= 3x10' k&T in the interval

Insert this into Eq. (48) and average over the polar angle 8 .5< kv/w,< 13.5. Note, these are larger wavenumbers

2pF + 2yF, =S. (50) than the wavenumber kvo/w, = ( - Av/vo)-' = 1. 5 of the
fastest growing beam mode. For this case, the integrated, or

A bar indicates a polar angle average spatial energy density, is
- I

(- - . 151) k ) 3 0 , (58
2 f I d_ f T

The anisotropic part of the damping-growth rate rA, is 41nk,T nk 8 T

which is only two orders of magnitude larger than the equi-
rim-?,- r. (52) librium value. Hence, when this linear diffusive saturation

The kinetic equation for the anisotropic part of the distribu- mechanism operates, it is extremely effective at limiting the
tion function, F,(M) is obtained by subtracting (50) from (48): energy density in Langmuir waves. Langmuir energy densi-

2rFo - -La D sin 8.F,
sin a sn0F

S , - 2F, - 2(rF, - r--F,). (53)

The general procedure is to solve Eq. (53) for Fl, and insert

into (50) to enable the evaluation of y,F,. The last terms in 106 I \'

parentheses on the right side of Eq. (53) can be neglected, 10

since IF, I4<, by assumption. In our particular problem, the
angle-averaged growth rate, jfl is much smaller than the
anisotropic part of the growth rate, Iy,1, at most angles, so 5
the term PF, is also negligible. Finally, we assert that t
IS, I -I rFoI =S Iry,fl,which can also be shown to be true at 'i

almost all polar angles, 8. Hence, the right side of (53) is
negligible, and may be set equal to zero. A first integral of 0 104
(53) then gives

a.F '0 L ,'rl. (54)Dsn0103

Furthermore, the quantity yF., required in (50) is easily
shown, with the help of (53) and (54), to be

yF e,(55) 02 . .. . .. . . . •

where 0 2 4 6 8 10 12 14

am. 11 _1_,/2f'd' , (56) FIG. 2. Solution to Eq. (A231 for the isotropic spectral energy density in
D L ) Langmuir waves under conditions appropriate to type Ill solar radio emis.uion. The solid line spectrum corresponds to the set of parameters in (A 16.

The solution to the kinetic equation (50) for the (dominant) The dashed line spectrum corresponds to the same set of parameters. except
-. gle-averaged Langmuir distribution is, therefore, with Av/voo [
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ties this low are not uncommon" during type III bursts. It is electron streams during type III solar radio emissions can be
unlikely, however, that such leels can give rise to electro- stabilized by ambient solar wind density fluctuations at lev-
magnetic emission, even though the isotropic distribution of els of 6n/n = 10- , observed at wavenumbers q. <wp/L or
Langmuir waves at largewavenumbers does permit the kine- q, - 2 wpl/vb. It is likely that the Langmuir wave intensities
matics of second harmonic emission to be satisfied. are saturated by the density fluctuations at rather low levels.

In steady state we find that conditions (iiHv) are well This has important implications for the theory of type
satisfied in this case. III electromagnetic emission. The emissions below I MHz

have traditionally been interpreted as second harmonic
C. Density fluctuations with q = 6(2kL) emissions, arising from Langmuir wave coalescence. Recent

The cases we have just considered were based on mea- spacecraft measurements have cast considerable doubt both

sured density fluctuations at q,, <kL, and q, ).kL . In both as to the identity of the emissions as second harmonic,2" and
cases, levels of 16n/n on the order of 10- - were required to as to whether the Langmuir waves are sufficiently intense to
saturate the beam-unstable modes. Such levels appear to produce either fundmental or harmonic emission."1 Both
have been observed by scintillation techniques, for the case Lin el al.23 and Goldman 2' " have suggested that density
q,,<kL. fluctuations in the ambient solar wind may be affecting the

In the limit q, ,kL, spacecraft measurements yield 16l/ propagation of fundamental emission, thus causing it to be
n: values which appear to be marginally too small. Here, the misinterpreted as second harmonic emission.
nonresonant effective damping, (44), applied. If we compare If the emissions below 1 Mhz are indeed at the funda-

this with the resonant effective damping, 137), we note that mental, it may be possible to produce them independently of

the resonant damping is larger by the factor k ' /4k '. This is Langmuir waves. Melrose' has suggested that the electro-

true, however, only provided we interpret 16n/nl- in (37) to magnetic version of the plasma laser effect could lead to the

be 16n/nI, defined by production of fundamental emission by the beam in the pres-
., 2 4fn b.24 ence of the density fluctuations. Our result that the Lang-

bn 4 1 dq q2 C q). (59) muir waves are kept at low intensities by measured density
j2 7 o 9O%2 41  fluctuations makes this idea worth pursuing.

This is necessary, in order for the function f(q/2k ) to be set The nonresonant extention of this theory as described
equal to one. Since k t>/4k 2 is typically 2 X 10', the require- in the second paper also describes the electromagnetic plas-
ment on 16n/n1. for saturation is ma laser effect. The major difficulty with this effect is that

5n/n1. >4 x 10-5. (60) only the density fluctuations with wave vector q in a narrow
range (with q Z wp/v, ) contribute to the growth of long-

Such low-frequency density fluctuations are required at wavelength electromagnetic waves; density fluctuations
A, 1 km. Convecting past a spacecraft antenna by the solar with nearby and remote wave vectors will stabilize the
wind, these fluctuations would appear at about 400 Hz. Un- waves. Evidently, there is a need for further detailed work in
fortunately, Gurnett et al.' find instrumental difficulties in this area.
resolving these frequencies in the solar wind. It is worth commenting upon the relationship of our

The anomalous damping given by Eq. (37), is also a present results to earlier work on nonlinear saturation" '|

likely candidate for stabilizing Langmuir waves. Our deriva- of bump-on-tail instabilities, such as those associated with
tion of that formula was based upon an isotropic density type III bursts. Studies of spatial collapse, or self-focusing of
fluctuation spectrum. For a spectrum peaked along the Langmnuir waves by density fluctuations driven self-consis-
beam axis, the damping should be even larger. tently by ponderomotive force, show that & /n is of order

Finally, we note that this process is really scattering, (E 2 )41rnks T. At the threshold for collapse, this implies 6n/
rather than damping, and the emission term ought to be tak- n of order 10-' which is far below the levels of "external"
en into account. Moreover, the scattering is not elastic, for density fluctuations in the solar wind, whose effects we have
kL /kD is only slightly above (rn/M)'/2. The scattering rate studied here. It would appear, therefore, that the solar wind
does appear to be fast enough to prevent a buildup of reso- is not sufficiently homogeneous for some of these nonlinear
nant beam modes, as in the case of long-wavelength density saturation mechanisms to operate globally, and that scatter-
fluctuations. We are currently studying both processes, nu- ing off external density fluctuations (with 6n/n between
merically. l0 -" and 10-3) is the dominant mechanism for saturating

the beam-unstable Langmuir waves. A word of caution is in
V. CONCLUSION order, however.

We have derived general statistical equations governing The theory of Langmuir wave self-focusing and col-
the evolution of beam-unstable Langmuir waves in the pres- lapse is dynamical in nature, whereas the present theory is
ence of low-frequency (external) turbulence. These equations statistical. The validity of the statistical external density
include the physical effects of scattering, diffusion, resonant fluctuations have statistics which are close to Gaussian.
and nonresonance broadening. For a broad spectrum of den- It is not known whether this is the case for the density
sity fluctuations a simple Markoffian quasilinear description fluctuations in the solar wind; Gaussianity is probably un-
is obtained, likely, because long time average values of6n/n are orders of

One important application has been developed in detail. magnitude below peak (50 msec average) values.' 9 Numeri-
It has been found that the Langmuir waves driven by solar cal studies of dynamical Langmuir ray trajectories in the
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presence of large scale density fluctuations, with 6n/ the form
n = 10- ', clearly reveal spatial pockets in which Langmuir
wave levels are nonlinear. " It may be that such regions have ff(v ) nb ( (v -
been detected by spacecraft and play a role in type Ill emis- (21r) Av' ep - 2A J (A4)

sions. However, recent 6 two-dimensional numerical studies The quasilinear growth rate formula, Eq. (5), then yields
of the dynamical Zakharov equations in the presence of ex-
ternal density fluctuations show a pervasive linear satura- 7'= 12 (v0/A)z exp ( 1/2), (A5)
tion of beam-unstable modes for relatively low values of 6n/ where

The general area is clearly worth pursuing further, not

only for its implications for the type Ill problem, but also for z'i(v/Av)(w,/kv, - p), (A7)
its relevance to other beam-plasma systems, such as the and p = cos 8, where 8 is the polar angle between k and v,.
beams and Langmuir waves produced by Jupiter's bow The maximum beam growth rate, 'ji.. corresponds to
shock,' 7 and relativistic laboratory electron beams capable z = - I and p = I, and is given by a negative damping,
of producing intense electromagnetic emission. 3  4 - -. e 112Vo/4d . (A8)
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APPENDIX: ISOTROPIZATION DUE TO ANGULAR ary isotropic state, as
DIFFUSION OF LANGMUIR WAVES OFF LARGE SCALE (2/b XAV/v)<D (A13)
DENSITY IRREGULARITIES

In this appendix, we evaluate the linear isotropic de- or, using Eq. (48),

tailed balance result for the Langmuir spectral function (v)" 2 v'(k)'" 2b -'/2<j6n (AI4)

(Al) \O , n

for conditions relevant to the interplanetary electron stream This gives us a lower bound on f6n/n I for the validity of the
associated with type III solar radio bursts. In addition, we isotropic detailed balance result, (AI).
estimate a lower bound on 8n/n, in order for the quantity g,1 2 It is easy to verify that this lower bound also guarantees
defined by Eq. (56) to satisfy IF, I<F,. From Eqs. (50), (53), and (55) it follows that

, <(A2) FF =-I (/'-=)e,/D) . (AIS)
as required for the steady state found in Eq. (57). Finally we Since (A 13) guarantees that e/-y< and ,/D is generally
show that (A2) guarantees the condition for the anisotropic also small (in our case F4 1 rj,, D), it follows that the ani-
part of the distribution function, F, to be small, namely, botropic part, F,, is small compared with Fo.

IF, I <F0. (A3) How large must j6n/nI be in order to satisfy the condi-
tion (A 14)? We consider typical conditions for an electron

Let us assume a gentle bump distribution function of beam associated with a type III burst
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n 0n = 10
-

7 - 10- , damping for/u >3. In the enhanced region we see mode ener-
V,/Vo = 0 - ', (A 16) gy from four to six orders to a magnitude greater than the

Av/vo = 1/3, equilibrum value of 0, per mode.

k /q. = 00.
Thus, we must haveTt 
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Abstract

Coupled two-dimensional wave equations are solved on a

computer to model Langmuir wave turbulence excited by a weak

electron beam. The model includes wave growth due to beam-plasma

interaction, and dissipation by Landau damping. The inertial

range is limited to a relatively small number of modes such as

could occur when the ratio of masses between the negative and

positive ions is larger than in a hydrogen plasma, or when there

is damping in long wavelength Langmuir waves. A steady state is

found consisting of quasi-stable, collapsed wave packets. The

effects of different beam parameters, and the assumed narrow in-

ertial range are considered. The results may be relevant to

plasma turbulence observed in connection with type III solar

bursts.
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I. Introduction

There are many examples of plasmas in astrophysics and in

the laboratory in which Langmuir turbulence1-3 is produced

either by charged particle streams or intense electromagnetic

radiation. This turbulence is thought to have an important

role in limiting the growth of instabilities and providing a

mechanism for the dissipation of energy through particle heating,

as well as enabling the emission of electronagnetic radiation at

the plasma frequency and its harmonics. For these reasons, an

understanding of the nonlinear behavior of Langmuir waves has

been sought in connection with type III solar radio bursts,
4 6

which are produced by a beam of electrons ejected into the cor-

ona during a flare; plasma wave emission from Jupiter7 due to

electrons streaming from Jupiter's bow shock; ionospheric modi-

fication 8 caused by intense radio pulses sent into the ionosphere;

and the radiation and heating in laboratory beam and laser
9,10

plasmas.

In the case when an electron beam passes through the plasma,

the development of Langmuir wave turbulence is believed to be the

result of nonlinear wave-wave interaction: namely, as the waves

which are unstable because of the presence of the electron stream

grow in amplitude, they begin to couple nonlinearly to other waves.

Another possibility involves the interaction of the waves back on

the beam particles. This is studied by quasi-linear theory.

Generally, the difficulties with the theory for particle-wave satur-

ation of the beam instability is that it predicts energy levels of
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Langmuir waves in excess of the thresholds for nonlinear wave
11

processes. Furthermore, the beam appears to lose a substan-

tial fraction of its energy to Langmuir waves within some 100

beam instability growth times.1 2 This is inconsistent with

the observed propagation of particle streams; for example,

type III streams persist out to the earth, well beyond the

20,000 km they propagate during 100 beam instability growth
13

times. Quasi-linear calculations which allow for the finite

duration of the stream show that reabsorption of the waves by

beam particles can permit the beam to propagate further. None-

theless, since the reabsorption is slow and involves nonlinear

wave energies, wave-wave interaction will occur and will probably

be the dominant process. Here, we will consider only

turbulence due to wave-wave processes.

The theoretical ideas on the nonlinear plasma wave evolution

are the following. First, there is the exponential growth of

waves which are unstable because of the electron beam or radia-

tion. When these waves reach a critical amplitude, various

wave instabilities can occur. In the case of the beam plasmas,

these instabilities can remove energy from resonance with the

beam so as to limit the loss of beam energy to Langmuir waves.

A further consequence of the instabilities is the formation of
14

a broad distribution of Langmuir waves. The nonlinear stage

of this wave-wave interaction was discovered by Zakharov15 to

cause the localization of plasma waves by trapping in regions

1.
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of low plasma density. This process leads to the collapse
1 5'16

of wave packets to very small dimension, at which dissipation

(for example by Landau damping or Langmuir wave breaking) can

occur.

The general features3 of the energy spectrum of a turbulent

system of Langmuir waves are indicated schematically in Figure

la. We identify three ranges of wavenumbers. First, there is

a small wavenumber region (labelled the "condensate") which is

formed by a cascade of energy from the injection wavenumber, k,.

into wavenumbers below k0 . Second, there is a dissipa-

tion region of wavenumbers greater than k ", .2kD for which Landau

damping is significant (kD is the Debye wavenumber).

In analogy with fluid turbulence, the intermediate region of wave-

number space is called the inertial range, and is involved in the

transfer of wave energy from the injection to the dissipative re-

gions. Computer solutions17 "19 of the nonlinear wave equations

(as written in Sec. II) suggest that the wave-wave process out-

lined above, including collapse, can produce such an energy spectrum.

(we should add, however, that in systems which are very strongly

pumped 19-2 1 or which have significant ion-acoustic noise
22 ,23

collapse may not be essential to the turbulent equilibrium. In

addition, for systems with other sources of dissipation besides

Landau damping by thermal electrons, an equilibrium state may be

possible without catastrophic collapse.)



In this paper, we will present results of two-dimensional

computer solutions which demonstrate that a steady state can

be maintained by the collapse of wave packets. Previous two-

dimensional models5'16'18'24 of beam-plasma systems have not

included damping, so they do not describe a steady state. In

our model, the injection of energy is through the beam-plasma

instability caused by a weak electron beam; the dissipation is

due to Landau damping from thermal electrons. We will limit

the size of the inertial range in order to accomodate the finite

number of modes in the numerical grid. As discussed in Sec.

III, this can be accomplished by adopting a mass ratio of m/M =

1/25. With this mass ratio, the inertial range is compressed,

as indicated in Fig..l(b). The presence of nonthermal electrons with

phase velocities less than the beam velocity can also reduce the iner-

tial range by damping small wavenumber modes; this is depicted in

Fig. 1(c). These two ways of shortening the inertial range are

mathematically equivalent. We will present our numerical results

in Secs. 1V and V in the context of the m/M = 1/25

model. Applications to physical systems (such as the type

III plasma) can be sought through a transformation of variables;

these will be presented later in Sec. VI.

The steady state we find consists of quasi-stable collapsed

wave packets. We will study in Sec. V how the wave energy in

the turbulent state scales with the beam parameters of intensity

-- II II I | d|'| "



6

and temperature. Using scaling arguments, we will further

comment (in Sec. VI) on the characteristic length scales

in the turbulent system; namely, whether most of the wave

energy will be found in the long wavelength condensate or in

the small compact wave packets.

II. The Nonlinear Wave Equations

The mathematical description of nonlinear Langmuir waves

which we shall use is due to Zakharov, 15 who derived two coupled

equations describing the slow time scale behavior of the envelope

of the electric field and the plasma density fluctuations;

.- iv E
V-(i3 + + 2 Wp A 2 -E w P2_n n (la)

22 2 -e

a2 nc K+ V !- n _ eV 2n = 1 V2-2 (lb)at 2  i t M 16TrM ICb

E is the envelope field; the total electric field is given by

=1-(t, ) + (t,r)eiWpt (2)

n is the variation of the ion density from its average, no0

Wp is the background electron plasma frequency, Wp = (4n 0e2/m)h,

m and M are the electron and ion masses, respectively; the elec-

tron Debye length is xe = k= 0)T . T is the electron

temperature, assumed here to be much greater than the ion

temperature; and K is the is Boltzmann's constant.

p
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These equations contain all of the physics of electrostatic

Langmuir waves and quasi-neutral ion sound waves; in addition,

they include the refraction of Langmuir waves by the density

variation, and the effects on plasma density due to the pondero-

motive force of the inhomogeneous electric field. These equations

can be derived from a simple fluid model by separating all quan-

tities into high and low frequency components (the plasma electro-

static oscillations are high frequency, and the ion-acoustic fluc-

tuations are low frequency), and by assuming that the displacement

of electrons in the high frequency motion is much less than the

scale length of the slow variations. The electric field energy

density must necessarily be small compared to the thermal energy

density; II2 /8n << no KTe.

The damping terms ve and vi are operators in real space which
e

represent Landau damping. The term ye can be negative for waves

which are driven by an external source, such as a beam of particles.

Equation(l) describes a wide variety of nonlinear wave-wave

phenomena. For a turbulent system of waves, an analytic descrip-

tion is very difficult, and a statistical treatment2 5 of turbulence

arising from the ponderomotive force is not completely developed.

In this paper, we will use a computer to model the Lanqmuir wave

turbulence.

ji
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III. A Computer Model of Langmuir Turbulence

Many of the computer solutions1 9, 20 , 2 6 for Langmuir turbulence

based on equation ( are done in one dimension. However, it is

well known that one dimensionalcalculations do not produce all

the physical phenomena contained in the wave equations. The

most significant difference is that the nonlinear evolution of

wave packets can result in a spatial collapse only in more than

one dimension. The authors19 ,20 of the one dimensional work over-

come this difficulty by resorting to a powerful electromagnetic

pump which adds energy to the system so fast that the one dimen-

sionalsoliton structures are forced to smaller and smaller sizes.

Nonetheless, in weakly pumped systems that are of interest in
S24

astrophysical plasmas, it has been shown by direct comparison

of one and two dimensional solutions that the collapse time in

two dimensions is much faster than the evolution of the soliton

structures in one-dimension.

Although it is desirable to study Langmuir turbulence in

more than one dimension, finding solutions to the Zakharov

equations in just two dimensions is a fo-midible task for a

computer in terms of the time and memory required. The best

twofiensional solutions utilize a system with 642 grid points,

but these do not begin to incorporate all of the important

length scales. This difficulty is similar to the problem in fluid

turbulence in which the dynamic scale lengths are determined by
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the largest eddies, while the dissipation occurs in the smallest

eddies. In the plasma, energy is injected by a beam or electro-

magnetic pump into waves with relatively long wavelength. For

example, Langmuir waves resonant with an electron stream travel-

ling at velocity vb will have a wavelength

A , (v ) ,e (3 )

27r y e e

where ve is the thermal velocity of the background plasma

electrons. The initial evolution of these waves is likely

to involve a cascade or scattering into other wavemodes.
24

When the pump is relatively weak (i.e., W < ( iA e-2 , m/M;

where W is the pump energy in dimensionless units, W = (E12/87noKTe),

this scattering will produce a "condensate"3'27 of Langmuir waves

which exhibits wave packets propagating more slowly than the ion

sound speed; this condensate can be characterized by wavelengths

A2 2 3v-7m Xe  (4)

Eventually, the wave energy may become large enough to drive

modulational instabilities and produce self-focusing. The

result would then be a "collapse" of wave packets to smaller

sizes, which according to theory, proceeds at an accelerating

rate until they reach such small scales that they become rapidly

-.



10

Landau damped by thermal electrons:

e 5 X 
(5)TT e

Therefore a realistic solution must include all of the length

scales Xl' X2' and which span a couple of orders of magni-

tude.

Fortunately, some important physics can be learned by

using a grid which includes only those scale lengths Xi and

X This is often the case when the grid spacing is chosen

to accommdate the wavelength of the pump at the expense of the

shortest length scales which constitute the dissipation region.

This approach5'18 ,24 has been successful in describing the ini-

tial development of weakly pumped systems, including the non-

linear saturation of the beam instability and the formation of

collapsing wave packets. Of course, the grid is too coarse to

follow the evolution of the collapsing wave structures. There-

fore an understanding of the .asymptotic steady state is lacking

from these solutions.

The way in which we overcome this problem of disparate length

scales is to use a mass ratio, M/m = 25. As can be seen from

Eq. (4) , this will effectively reduce the condensate length

scale to such an extent that it can be included in a 64x64 point

grid with a grid spacing determined by the small dissipation
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length scale, which is of the order of a Debye length. We are

then able to solve a model problem for Lanqmuir turbulence in

two-dimensions which contains all of the relevant physics of

the beam-plasma instability, nonlinear wave-wave interaction,

and wave dissipation through Landau damping. Although the

choice of the mass ratio is a matter of convenience, this solu-

tion may have a physical realization in the laboratory28 with

heavy negative and positive ion plasmas.

The numerical calculation is performed on complementary

grids i n real space and wavenumber space. The fieldsn and 4

(where E = Vp) are defined at each point on a grid in x,y space

having Mn points with a separation Ax and Ay = Ax. These

fields can be represented in terms of their Fourier components

on grids in kx, ky space with hk = 2mi/Nx. For a

field A- at the grid point (m,j) such that x = (m-l)Ax, y =x
(j-l)Ay, the transform is civen by

1 N N
A = 2 X X Aj exp[-i(2T/N) (m-l) (k x-1)]

N m=l j=l (6)
exp[-i(21TIN) (j-l) (k -)

All quantities in real space are periodic with period NAx

and NAy. A certain segment in I space is not allowed to

contain any energy; this step is taken to avoid the problem

of aliasing. In this paper, we will use N = 64.

1T
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The numerical technique is known as the split-step Fourier

method 2 9 and was invented by Tappert to solve the Korteweg

deVries and nonlinear Schrodinger equations. It combines

30.features of the "splitting" method, which was used by G.I.

Marchuk on the diffusion equation, and the Fourier method
31

used by Orsag on the Navier-Stokes equation. The technique

has been applied specifically to the Zakharov equations by

17,32
Pereira, Sudan, and Denavit, and by the present authors in

5,8,16,18,24
other papers.

The basic concept is the following. The Zakharov equations

are cast into the form of a vector equation

where A is a very large vector consisting of the components

E , Ey (the k = 0 components of the electric field, i (the
0 0

electric potential), n (the ion density), and n (the time

derivative of the ion density. L is a linear operator, ac-

tually a constant in k-space, and N is a nonlinear operator,

which is in real space. Therefore, we solve for A/at in

two parts at each time step: one part in k-space involving

only the operator L, and a second part involving only the

nonlinear term, N. The advantage in doing this is that it

allows the spatial derivatives to be evaluated very accu-

rately in k-space, while at the same time forming nonlinear

products, such as nE and jEI 2 in coordinate space.



13

Using the analytically known stationary soliton as an

example, the method proves to be stable and accurate. Also,

in initial value solutions with no growth or damping of

waves, conservation laws for IE12 and n are checked and found

to hold true. The code has been used successfully to study

parametric instability and I-angmuir wave collapse, giving

16,18results which have been supported with analytic theories.

The problem is set up as follows. In wavenumber space,

the 642 Fourier components of the electric field can be

plotted as a function of their wavenumbers kx and k . The

beam-induced emission of Langmuir waves amplifies those wave-

vectors centered around the wavevector Vo having a bandwidth

6k(see Fig. 2). The interaction of these modes with the

beam is given by the growth rate y. The dissipation processes

affect those Langmuir wavevectors which have relatively large
1

wavenumbers (k I . kD ) where the Landau dampinq, ve , becomes

important. In our simple model, changes in the particle distribution

functions 1933,34due to the waves are rot included. The ions are assumed

to be cold (Te >> Ti) so that the weak damping of ion-acoustic

waves, vi, is due to Landau damping by electrons. As an initial

condition, all the Langmuir modes are given a small amount

of randomly phased electric field amplitude; there are no exter-

nally applied density fluctuations. With this prescription,

equations ()are solved in time by the split-step Fourier

method.

The numerical values for these parameters are given as

k 0.11 k =250 O~lD m

y - 0.002 w P k 0.018 kD (7)

6k - 0.072 kD Ax - 5.4 Xe

_____... . .._____ . . . ,. k. . ' . ....
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and the damping rates by the formulae

Ve = 0.22/r(i-) 3exp( -- 2)p (8)
e kXe )w

V~~~~£ A e)h 9

i 8 MM .

Although these Landau damping rates are derived using a

Maxwellian electron distribution and straiqht line particle

trajectories, we will continue to use them even when the

fields are large. The choice of growth rate y has no special

meaning, but it will turn out to be a good selection for the

statistical steady state on this grid size - other solutions

with different y will be discussed later.

The central beam-driven wavenumber, = 27r/k = 60 X ,

is such that it lies between the subsonic condensate, A2 >

90 Xe, and the dissipation region, A3 < 30 Xe . The bandwidth

6k corresponds to beams with significant dispersion in velocity.

It should also be noted that although 642 wavenumbers are present,

in practice only 422 modes are used because of the aliasing

technique. Because these modes include both forward and back-

ward wavevectors, the largest wavenumber is given by kmax = 0.42 kD.

IV. Numerical Results

The numerical calculation follows the evolution of Langmuir

waves from their initial noisy conditions to a quasi-steady state

driven by the beam-plasma interaction.
35

i
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Those wavs which are unstable because of the beam initially

experience a period of exponential growth. During this time,

wave packets appear in the coordinate space grid with increasing

amplitude and size 2Tr/6k associated with the bandwidth, 6k, of

the pump waves. These wave packets travel at the Langmuir group

velocity in the direction of the beam.

The first indication of nonlinear wave interaction is seen

in wavenumber space as a spreading of wave energy into modes

adjacent to the pump modes (see Fig. 3). As described by a
36

perturbation theory, this process is due to a four wave inter-

action involving three pump modes and a fourth wave whose fre-

quency mismatch with the pump waves is not too large, i.e. no

greater than the frequency bandwidth in the pump. As the wave

spectrum broadens, this effect causes the wave packets to con-

tract in real space. However, at the time of Fig. 3, this

interaction is slower than the beam instability growth time.

There is evidence for other types of nonlinear interaction

at later times. As seen in Fig. 4, as the wave energy spreads

into a large number of modes, it tends to "condense" into smaller

wavenumbers. This may be associated with an induced scattering
24

process, because each time a Langmuir wave scatters or decays,

it will lose energy and momentum to ion modes.

As the wave energy is passed into the smaller wavenumbers,

the beam instability is saturated and the pump waves stop growing.

In real space, wave packets affected by these long wavelength

4T

7 . M
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instabilities distort and may break up into parts, but they

do not disperse. Instead of propagating at the group velo-

city of the pump waves, these wave packets are nearly sta-

tionary. Because of this feature, they can be identified

with the low wavenumber condensate, rather than the beam modes.

As more energy fills the condensate, these long wavelengths

also become unstable. In coordinate space, the wave packets

steepen by refracting into density wells created by their own

ponderomotive force. The collapsing wave packets are stablized

when they reach scale sizes where Landau damping can occur.

Surprisingly, the resulting wave structures are relatively

stable, and exist over many periods of beam growth time, y-.

In fact, they tend to disappear only when they are disrupted

by the density well of a nearby wave packet.

The collection of collapsed wave packets trapped in density cavi-

ties. represents the final state of the system. The electric

field amplitude appears as in Fig. 5. A comparison of Fig.

5 with Fig. 6, which is a simultaneous plot of density contours,

shows the correspondence between regions of large electric field

amplitude and low density. Over the course of time, these wave

packets vary in shape, but remain roughly the same size. As

mentioned before, they will occasionally interact with each

other, and either coalesce or break up. Sometimes new wave

structures are born. On the average, there is a constant number

of collapsedwave structures in the system.



17

The steady state continues over several beam growth periods

Y 1for which the calculation is continued. During this time,
beam

the electrostatic energy in the beam modes, Wp = IEji2 /8rnoKT,
P k

remains fairly constant, as seen in Fig. 7a. The acoustic wave

energy, WS = I n?/n ° also saturates at a low value, as shown in
kko

Fig. 7b.

The steady state was also investigated on a grid of 32x32

points using a smaller time step. On the average, 2 to 3 col-

lapsed wave packets occurred in the grid, which was 1/4 as large

in area as the one reported here. The saturated values of W

W, and Ws are consistent with those in Fig. 7a and Fig. 7b,

although fluctuations around the mean values are larger. We

followed this steady state for 100 beam growth periods, and

found no evidence of any change.

The steady state implies that the rate at which energy is

generated in the pump modes is matched by the transfer and

damping of energy in the dissipation regions. The evidence that

the transfer of energy does not occur directly, but involves many

intermediate modes and perhaps a number of distinct processes,

is found in the wave spectra of the electric field and density.

Figs. 8 and 9 show the Fourier components of the electric field

and density averaged over two growth periods y-1 spanning the

steady state. The electric field amplitude tends to decrease

monotonically from small to large k despite the fact that the

pump modes have intermediate wavenumbers. This suggests that

a considerable fraction of the energy removed from the beam waves

1
-l- - - -- - - - ,--. . . . - -
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finds its way into the low wavenumber condensate. The interesting

feature of the density spectrum is that it is peaked in a ring

centered at k = 0 with radius k = 0.05 kD '

In real space the length scale 2w/k n will be the average dis-

tance of separation between wave packets (the highest real space

plasma density occurs in the region between wave packets which is

filled with the plasma expelled by the ponderomotive force. These

density fluctuations, which are generated by the collapsing wave

19
packet, could have a role in scattering the Langmuir waves.

The final transfer of energy from the condensate into the

damped region seems to be accomplished by modulational processes;

as energy accumulates in the low wavenumber modes, it spills out

into higher and higher wavenumbers until it becomes damped. This

nonlinear interaction is of the same nature as the one described

in the context of Fig. 3 as the mechanism for broadening the

pump bandwidth, except now the condensate modes replace the pump

modes as the source of wave energy. The manifestation of this

process in real space is the collapsed wave packets.

Given the two-dimensional spectrum of the electric field

in Fig. 8, we can construct the one-dimensional energy spec-

trum for this problem. This is done by first calculating

partial sums, I., of energy contained in modes between wave-
Tk Ikk i  Th

numbers k k + The interval Ak. isnubes i  2 < k i  ----2

11
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chosen so that the volume in k-space is constant, i.e., the

interval contains N points, and volume NAk2 , where Ak is the

spacing of the grid. The one-dimensional energy spectrum,

W(ki ) is then given by

W(ki ) = 2Trk i  (10)
3. NAk 2

This function is plotted, using sums over N = 20 points, in

Fig. 10 (after multiplying by kD to make it dimensionless).

The area under this curve gives the total energy, W. Because

the inertial range is very small, we do not compare the scaling

with the conventional Kolmogoroff power law. However, it is

extremely interesting that the two-dimensional energy distri-

bution E(ki ) = -- 2- seems to decrease exponentially with increasing1 Ndk2 '

wavenumber. For this spectrum we find

C(k) - (1.2/k2) exp(-k/.059 kD) . (11)

Finally, we wish to identify the characteristic length

scales of this turbulent system. For example, the contour

plot of electric field amplitude in Fig. 5 could be misleading

if the small, collapsed wave structures contained only a small

fraction of energy, despite their large amplitude. Therefore,

we analyze the distribution of energy (as distinguished from the

energy density) in Fig. 11 . Fig.11 is constructed by de-

finding two contour levels of electric field amplitude, E1 and E

'2
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(where E > E2). The region of real space with electric field

amplitude IEI > E1 contains 1/3 of the total electrostatic energy;

it is most lightly shaded in the figure. The region with amplitude

IEI < E2 also contain 1/3 of the total electrostatic energy, and

is most darkly shaded. Fia. 11 shows that a large - frac-

tion of wave energy in this system is contained in the small wave

packets. We will discuss this feature of turbulence again in

Sec. VI.

V. Further Numerical Results with Different Beam Parameters

The complexity of the nonlinear interaction makes it

difficult to establish by analytic argument the above inter-

pretation of the numerical results. However, we can test

some of these ideas by changing parameters in the model and

noting the effects on the final turbulent state. We are free

to change certain parameters which affect the characteristics

of the beam; these are the beam-plasma growth rate and the

bandwidth of the beam modes.

The same numerical experiment as described in the previous

section was done for seven different beam-plasma growth rates

ranging from y/wp = 0.00025 through y/wp =0.005. The maximum

growth rate of the kinetic beam instability due to a Maxwellian

bump-on-tail electron distribution having density nb << n0 , centralCTe  KcTb 2

velocity vb >> ----, and temperature ---- = 2 such that (AVb/Vb) 3 >>

nb/no is given by

nb (Vb-"Vb)2 e-. (12)

AV p
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Because the growth rate is proportional to the number density in

the beam, by changing y we are effectively studying different

strength beams. As in the earlier example, a steady state is

established in all these cases consisting of collapsed, quasi-

stable wave packets. The values of peak electric field amplitude,

the depth of the density depletion, and the average number N of

the wave packets in the grid area are given as a function of the

growth rate in table L Although it would be desirable to study

a wider range of growth rates, we are again faced with certain

numerical limitations. At the lower range of growth rates,

there are only a small number of collapsed wave packets in the

system. In order to simulate smaller growth rates, it would

be necessary to increase the grid area to accomodate the small

density of wave packets, which means increasing the number of

modes. At the larger range of growth rates, the electric

field amplitudes are very intense and the density fluctuations

are no longer small (n " n0 ), so that the model Eqs. (1)

are no longer valid. Therefore, we must be satisfied with this

range of growth rates.

The total electrostatic energy in the final steady state is

plotted as a function of growth rate, y, in Fig 12. The energy

density increases approximately linearly with y.

The other feature of the beam instability which can be changed

is the bandwidth, which is related to the temperature of the beam.

For the Gaussian bump-on-tail electron distribution the bandwidth

6 is approximately (AVb/Vb)ko. 37 The bandwidth can be changed by

adding (or subtracting) pump modes. The examples up to this point

were done with 25 pump modes. Now we do other cases involving 49

pump modes and 16 pump modes, keeping the same central wavevector,

'' ' .. . .... .. I-- - ...... .. - . ' " 6,.'
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ko' as before. In general, the energy in the system is greater

with a given growth rate for the larger bandwidths. These results

are plotted in Fig. 13 as a function of growth rate.

Let us attempt to understand these results as a balance

between the rate at which energy is added to the pump modes

by the beam-plasma instability, and the rate at which energy

is lost from the pump modes by scattering processes. The addi-

tion of energy, Ain' proceeds at a rate proportional to the

beam-plasma instability growth rate, y, and the energy in

the pump modes,

dA.in2in = 2y ) 12/87 (13)

where the index a denotes all the pump modes. Furthermore,

if we assume that the scattering of pump waves is described

by a three wave decay instability, then the rate at which

energy is lost from the pump waves into the decay waves is

given as

dA Eo2t 
= 2 W 2 /8 (14)

8 8

where the index 6 denotes all the decay modes, and wi(is is

the instability growth rate at the wavevector 18" An energy

balance is found by equating C13) and (14):

Y I 1 12 = wi(k)IyE)I 2  (15)
aB

To some extent, the spectrum E(k) can be regarded as uniform

over a broad region of k space: IE(k) n u EO. Therefore, the

sum on the left side of Eq. (15) can be approximated as

~I

II I f()12 -- E2Na (16)

a 0 a

; _ I | I O E M - - -
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where N. = 1 is the number of pump modes. For the right

side of equation (15), we adopt for wi(k8) the maximum growth38
rate for the decay instability, wi , W p/16, and write

W (FO) I() 12 (17)B16 o a

where NB = 1 is the number of decay modes. The number of pump

modes Nu is equal to the bandwidth of the pump, 6k 2 , times the

density of modes. The scatter of Langmuir waves will be into

wavevectors with IFBI < IF 01, since this interaction necessarily

involves a loss of wave momentum to the ions. Thus, we estimate

the number of decay modes, N,, to be this volume of k space,

rk2 , times the density of modes. The ratio of the number of pump

modes to decay modes is given by

Nu  6k2N a k2  
(18)

By substituting (16) and (17) into Eq. (15), and using

Eq. (18), we find the relation

W , 6 Y(k2 (19)p t k 0

W is plotted as a function of Y(k) 2 in Fig. 14 for all of
p k 0~-the steady state solutions found by the computer. The straight

line shows that the scaling law is appropriate to this set of

numerical experiments.

- , , . . . -.-- --- -- -- ...... ..._______ . -, : .9 .,
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From Eq. 119 ), together with Eq. (12), which gives

the dependence of y on nb and Tb, we may conclude that the rate,

yW p, at which a beam loses energy in a fully evolved turbulent

plasma is proportional to the square of the beam number density

and inversely proportional to the beam temperature.

Next we discuss to what extent these results can be generalized

to real mass ratio plasmas.

VI. Comments on Turbulence in Physical Systems

Most astrophysical systems affected by streaming electrons

(such as the solar corona during type III bursts) are hydrogen

plasmas with electron to ion mass ratio of 1/1836. In this section

we will examine how the above results, based on light to heavy mass

ratio of 1/25, can be scaled to real beam-plasma systems.

In practice, Eqs. (la) and (lb) are solved in dimensionless form,

and the realization of a physical system is made by the appropriate

transformations5 of the time, length, electric field, and density.

These transformations contain explicit dependence on the mass

ratio. By using m/M = 1/25, we produce an injection region such

that both it and the region which is Landau damped (k >0.2 kD) can

be contained in the same limited grid [see Fig. 1(b)]. If, instead,

we make the transformation using the mass ratio m/M 1/1836, then

we have a more typical injection region, but now there is damping

in relatively small wavenumbers (k >0.02 kD) as in Figure 1(c). These

are both valid ways of interpreting the numerical results. In order

to make the connection between the case when m/M - 1/1836 and our

model solutions, we make the following transformation:

(WtW- 1836 )Wt4) 1836x
St5 t ( e e e

_77
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2 5  25

020

w) -= (20) (1 =( )

( 1 1836

While both cases have the advantage.of supplying the damping

necessary to produce an assymptotic steady state, they each

deprive the system of an extended inertial range. Let us

consider the effect the assumed narrow inertial range might

have on the physics of the turbulence.

Our model demonstrates the saturation of the beam

instability by scattering of Langmuir waves, the creation

of a condensate, and the formation of collapsing wave packets.

This development of wave turbulence is observed in other

computer solutions 24 which do not have the damping, so

effectively have larger (though still incomplete) inertial

range. Therefore, we are encouraged to believe that this

behavior is physically relevant, independent of the size of

the inertial range.

On the other hand, the characteristics of the final

turbulent state are probably sensitive to the distribution

of energy throughout k space. For example, it is likely

that the lack of a large inertial range in our model will

tend to exaggerate the fraction of energy which is contained

in the smallest scales. Evidence from self-similar solutions 39

suggests that while collapsing wave packets may have

spectacular amplitude, they will contain a relatively

small fraction of the wave energy by the time they reach their

, I
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smallest size. This could mean that the dominant length scale

in the system is the relatively long wavelength "background"

condensate length scale rather than the short scale of the

collapsed wave packet.

We can make the following physical argument regarding

the fraction of the total energy contained in the collapsed

wave packets. The energy in the smallest length scales can

be determined by balancing the dissipation in the short

wavelengths with the energy produced in the pump waves:

VcW =yW (21)
c c p

As before, W is the energy in the pump waves and y is the

beam-plasma instability growth rate. Wc is the energy in

the small length scales, estimated as

1 E(k) 1 2 (22)Wc = 8nnKTe.

where the index C denotes those modes associated with

the smallest wavelengths. We identify Wc with

the energy in the core of the collapsed wave packets. The

effective damping rate, Vc, can be estimated by the Landau

damping rate at the wavenumber k. = 2n/Xc, where Ac is the

characteristic dimension of the collapsed wave packets. We

will assume that Xc is not sensitive to the rate of energy

TV.-.
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injection, y. Forming the ratio of Wc to the total energy

W we obtain

W c  Wp__(3
W W V

For the turbulent state described in Sec. III we found

= .15; the size of the wave packets is about 5Ax, which gives
W

X = 25 Xe; and the growth rate is y = .002 wp. The damping

Vc is given by Eq. (8) evaluated for the wavenumber k =

2ir/X . For these parameters, Eq. (23) implies that about

15% of the total energy is found in the small length scales.

This is consistent with Fig. 11 which shows that about 1/3

of the energy is contained in the cores of the collapsed wave

packets.

Using real electron and ion masses, the ratio y/vc will

be smaller because y will transform according to Eq. (20)

but unless the dissipation region is to be different from the

usual Landau damping, the length Ac (and therefore the damping

rate, vc) should not be transformed. From this we conclude that
W

with a realistic inertial range, the ratio - would be smaller

by a factor of 25/1836. Therefore, very little energy may ac-

tually be in the smallest length scales.

With the mass ratio m/M - 1/1836, the example in section III

corresponds to a beam instability with growth rate y - 3 x 10-5 p

and principle wavenumber kO =0. 013 kD, in which there is a large

amount of damping for wavenumbers k >0.02 kD. Despite the fact that

y is very large (10-6p is more realistic), this has some

semblance of reality for the type III case because the!I
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nonthermal component observed4 0 in the electron distribution

function in the ambient solar wind will introduce damping in

wavenumbers such as the above. With these parameters, the

electrostatic energy in Langmuir waves saturatcs at W = 2.0 x 10
- 4

and the wave packets will have dimensions of the order of 300

With a Debye length at 1/2 A.U. of about 5 m, the wave packet

scale sizes will be of the order of 1 or 2 km. Unfortunately,

this is still less than the resolution of interplanetary space-

craft measuring type III bursts 4'1 1 (the smallest observable

size is of the order of 10 km).

Finally, it should be pointed out that although the two

dimensional calculations are an improvement over one dimension,

the real behavior of collapsing wave packets in three dimensions

might be significantly different from our model. One might

expect from analytic arguments16 that wave packets would collapse

much faster in three dimensions, and might even contain a smaller

fraction of the total wave energy than in the two-dimensional

case.

i i I .
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VII. Conclusions

We have shown that in a simple two-dimensional modelof beam-

induced Langmuir turbulence consisting of a long wavelength

regime in which instability adds energy to the system, and a

short wavelength regime which provides damping, an equilibrium

turbulent state is possible in which the collapse of wave packets

enables the transfer of energy between the two regimes. This

steady state consists of Quasi-stable collapsed wave packets

trapped in density cavities, which persist over a period much longer

than the collapse time. The final turbulent energy level is found

to be a function of the intensity of the beam and the beam

temperature.

From the wave spectra we found that the greatest concentra-

tion of wave energy tends to occur in the wavenumber region of

the condensate. This brings up the question of how important

the smallest wave structures are to the gross properties of the

turbulent system. Unfortunately, the answer is not provided by

the present work because of the inadequate resolution in the grid.

However, it seems possible from physical arguments that the ratio

of energy in the collapsed wave packets to the total energy in

weakly pumped systems will be small.

................
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TABLE I

Turbulence parameters with different beam growth rates

Y/Wp E /(87n oTe) nmax /n O  N
Pmax 0 a

0.25 x 10 - 3  0.3 0.16 1
-3

0.50 x 10 0.4 0.2 3

-30.93 x 10- 0.4 0.32 4

1.3 x 10- 3  0.4 0.32 5

2.0 x 10- 3  0.5 0.50 9

2.5 x 10- 3  0.6 0.64 13

5.3 x 10 - 3  1.0 1.6 15

V.
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FIGURE CAPTIONS

Fig. 1: Energy spectra of Langmuir waves:

a) hypothetical spectrum for a turbulent plasma;

b) turbulent spectrum with a small mass ratio;

c) turbulent spectrum allowing for Landau damping

due to a suprathermal tail on the electron distribution.

Fig. 2: Numerical grid of Langmuir wavevectors in the beam-

plasma model. There is a region in wavenumber space

of 25 modes growing at a constant rate due to the

beam. Larger wavenumber modes are Landau damping.

Fig. 3: Early nonlinear development of Langmuir waves in wave-

number space. Numbers represent relative electric

field amplitude (those less than 3 are not plotted).

The box outlines the 25 pump modes, each one having

relative amplitude of 240. The total pump wave energy

is Wp = 0.001.

Fig. 4: Later nonlinear development of Langmuir waves shows

the tendency of wave energy to be scattered into

small wavenumber modes. The units of electric field

amplitude are ten times larger than Fig. 3. (Numbers

less than 50 are not plotted). Total pump wave energy

is W = 0.010.

p

I

.. .. . # ... .. .. .. . .
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Fig. 5: Contours of electric field amplitude in real space

grid at the time of the steady state. The highest

contour (in the center of the collapsed wave packets)

has amplitude E = 0.5(87n oKT e). The lowest contour

has amplitude E = 0.08(87n° KT e)

Fig. 6: Contours of ion density at the same time as Fig. 5.

The contours with the largest magnitude are found

in the center of the density cavities: 6n = -0.5 no

Fig. 7: Development of the turbulent state

a) The electrostatic energy in the pump modes (W p) and

the total electrostatic energy in Langmuir waves (W)

as a function of time. (Time is in units of wi).
p

b) Mean squared density, (n/n )2 as a function of time.

Fig. 8: Root mean squared Langmuir wave spectrum. The amplitude

per mode goes from Ek/(8 rno KTe) < 1.2 x 3 (the
Te > 1.1 x 10 -2 h

lightest shading) to Ek/(SrnoKTe) > (the

darkest shading).

Fig. 9: Root mean squared density spectrum. nk/n goes from

.0005 (the lightest shading) to .005 (the darkest

shading).

Fig. 10: One-dimensional energy spectrum, kDW(k), as a function

of wavenumber, k/kD.

Fig. 11: Distribution of electrostatic energy in the turbulent

system. Each of the shaded regions contains 1/3 of

the total energy. The lightest shade has the larger

values of electric field amplitude.
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Fig. 12: Total electrostatic energy in Langmuir waves in the

final turbulent state for various beam instability

growth rates.

Fig. 13: Total electrostatic energy in Langmuir waves for three

different pump bandwidths and various beam growth rates.

The middle curve is the same as Fig. 11.

Fig. 14: Final electrostatic energy in Langmuir waves plotted

2as a function of y6k for eleven different numerical

examples of steady state turbulence.
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Abstract

We study the effects of a given non-thermal low-frequency

density-fluctuation spectrum on the amplification of Langmuir

waves by a "bump-on-tail" beam of electrons. The density-

fluctuation spectrum is assumed to contain a uniform distribu-

tion of wavelengths ranging from much shorter than the beam

mode wavelength to of the same order. This permits multiple

large-angle (back) scatters to occur. One dimensional numerical

solutions of the kinetic equations are found which yield

criteria for linear saturation of the beam instability by a

cascade of backscatters to high wavenumber. We also determine

the relevant time scales and spectral shapes in both the

stable and unstable regions. Linear damping and Cerenkov

emission by a possible non-thermal tail of electrons is taken

into account.

An application is made to the beam-modes observed simul-

taneously with density fluctuations off the Jovian bow-shock.

It is shown that the observed level of density fluctuations

is sufficient to saturate the unstable Langmuir waves, although

non-thermal Landau damping may prevent a cascade to very high

wavenumbers.

'I
I
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I. Introduction

Wave instabilities in plasmas rarely occur under the

idealized background conditions assumed in textbook treatments.

In space plasmas, non-thermal conditions are often observed

in both the ambient particle and wave spectra. Solar wind

electron streams and the Langmuir waves they excite propagate

through this non-thermal environment. Even slight non-thermal

background features can greatly alter the linear evolution of

the waves, and hence, possible subsequent nonlinear evolution.

In laboratory relativistic beam-plasma systems, return

currents may excite low-frequency turbulence such as Buneman

or ion-acoustic waves. The plasma waves excited by the rela-

tivistic beam may then see these modes as part of the background

plasma and be affected or even saturated by the interaction.

In a recent theoretical treatment, Goldman and DuBoisI

studied the general problem of beam-plasma instability in the

jpresence of low-frequency turbulence. Kinetic equations were

derived for the evolution of Langmuir waves in the presence

of a given stationary spectrum of low-frequency turbulence

jand a given stationary electron distribution function.

The kinetic equation was solved only for the case of a

Jlow-frequency spectrum containing wavelengths much longer than
the wavelength of the beam-unstable modes. The Langmuir

spectrum then became essentially isotropic due to multiple

small-angle-scatter (angular diffusion) off the long-wavelength

density-fluctuations. Since Langmuir waves oblique to a

.

!w ---
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bump-on-tail electron-distribution-function are damped rather

than destabilized, a saturated steady state was created.

In the present work, we are concerned with the resonant

effects of an ambient low-frequency spectrum of shorter wave-

lengths. A uniform distribution of wavelengths is assumed,

ranging in size from the beam-mode wavelength (n\2 7rb/wp )

down to shorter wavelengths. The given spectrum is assumed

to consist of ion-acoustic turbulence, and we take it to be

one-dimensional and isotropic.

We find that Langmuir waves undergo a series of backscatters

off the given spectrum. This cascade to higher wavenumbers

continues until sufficieit linear dissipation occurs, or until

wavenumbers higher than a cut-off determined by the density

spectrum cut-off are encountered. In the absence of a significant

non-thermal electron tail at velocities below the "bump,"

the cascade continues up to wavenumbers which are on the order

jof a Debye wavenumber or half the maximum wavenumber of the

density spectrum, whichever is smaller. However, a non-thermal

tail on the ambient electron distribution can terminate the

cascade at even lower wavenumbers, due to non-thermal Landau

1damping (with non-thermal Cerenkov emission also taken into
j account).

We explore numerically the conditions under which satura-

j tion of Langmuir-wave growth may occur. However, it is important

to note that even when the instability is not saturated byII'
!
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"linear" scattering off the given density fluctuations, such

scattering may affect subsequent nonlinear evolution, since

a broadened spectrum is created %t the linear stage.

There are a number of subtle and even unexpected results

which are elucidated in the present paper. Although it is

well-known that nonlinear scatter off density fluctuations

produces a cascade towards small k. (we shall show why this

is so in Section III, by resorting to simple "Golden Rule"

arguments), the linear scatter will produce a cascade

towards higher k.

A second surprising result has to do with the failure of

a conventional estimate as to when the unstable beam-modes are

saturated. The usual heuristic argument is to compare the

rate of out-scatter to the growth rate. However, just because

the out-scatter rate may be larger is no guarantee of saturation.

This is because there are also scattering-in terms. In the

absence of linear dissipation, there will always be as much

in-scatter as there is out-scatter, so that scattering alone

can never result in saturation. The estimation of when satura-

tion can occur is therefore a subtle business involving the

interplay of scatter and linear dissipation. In this paper we

provide numerical criteria for saturation and find the proper

time-scales for "net" out-scatter, taking in-scatter and

dissipation into account.

One application of these results and one of the motivations

for the present study has to do wit' Langrui' waves driven

NW
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by electron beams in the solar wind. There are two principal

examples:

1. Beams originating at the sun during flare activity,

and propagating out into interplanetary space where they excite

Langmuir waves, which subsequently give rise to "Type III" or

other radio-wave emission.

2. Beams preated by quasi-perpendicular shocks such as

planetary bow-shocks. Such beams go out along tangential

magnetic field lines, and have been measured in elegant detail

near the earth's bow shock. Near the Jovian bow-shock, the

excited Langmuir waves have been studied by the Voyager 1

spacecraft, and observed to coexist with ambient low-frequency

turbulence and apparently to cascade to higher wavenumbers.

We shall apply some of our numerical results to these

problems, since the magnitude and shape of the density fluctua-

tion spectrum, the shape of the electron distribution and beam,

and the intensity of the Langmuir wave spectra are known in

great detail in these examples. Our object will be to define

thresholds for linear saturation and time-scales for cascade

and to compare with experiment. We conclude that Langmuir

waves are often observed at sufficiently low levels

(lI 2 /4nee << 10- 5 ) that density fluctuations as small as
4

Sn/n % 10- could have been responsible for their saturation.

For more intense Langmuir waves, the saturation is probably

nonlinear, but density fluctuations may still play a role in

the early shaping of the spectrum.

I
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The plan of this paper is as follows: In Section II,

we summarize the results of space-craft measurements on electron-

distribution functions, beam-excited Langmuir waves and

associated low-frequency turbulence. The reader more interested

in the general results of our calculations than in the phenomen-

ology of the solar wind, may wish to skip Section II.

In Section III we write down the basic equations to be

solved, and give a heuristic Golden Rule derivation which

enables us to understand why the cascade goes to high k, and

what are the conditions for neglect of nonlinear terms in the

scatter. We also introduce our model of the density fluctuation

spectrum and the electron velocity distribution.

In Section IV we study the solutions of the kinetic

equations and describe the threshold that separates saturated

from unbounded behavior in terms of the density fluctuations

and the electron distribuition. Concluding remarks appear in

j Section V.

I

- I

I
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II. Review of Measurements of Beam-Excited Langmuir Waves and

Simultaneous Low-Frequency Turbulence in the Solar Wind

A. Beam-waves near planetary bow-shocks

We begin with a concise summary of the Voyager 1 measure-

ments in the vicinity of the Jovian bow shock. 2 Fig. 1 shows

Langmuir waves excited by a beam of energy ,,10 keV. The waves

are measured as the spacecraft moves towards the bow shock.

The Langmuir waves are first observed when the spacecraft

crosses the beam boundary, defined by a magnetic field line

tangent to the bow shock. The beam electrons are carried out

from the bow shock along this field line, so the beam

propagates roughly orthogonal to the spacecraft and solar wind

velocities. However, Langmuir wave packets receiving energy

from the beam are convected by the solar wind towards the bow

shock. Growth begins as the waves are swept into the beam

region. The waves saturate and subsequently disappear when

the bow shock is crossed. Since waves are continually swept

in and out of the beam region we assume a steady-state spatially

amplified and saturated spectrum of waves in the laboratory

frame.

The spacecraft moves through this spatial region where

measurements yield the time history shown in Fig. 1. Neglecting

the wave-packet group velocity in comparison with the solar

wind speed vsw, a time interval At in the solar wind frame is

related to a laboratory-frame spatial interval, Axlf, by

Axif , VswAt. Assuming the Voyager spacecraft moves with a
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laboratory frame velocity, vV, essentially parallel to the

solar wind, a time-interval, Atv, measured from the Voyager is

related to At by

Axlf v_At A
V - V vv

In Fig. 1, we see that the total time of observation of
.ob s

Langmuir waves is Atv e 8 minutes and that the initial rapid

growth interval is At r % 2 minutes. Since vV % 17 km/sec,
V

and vsw % 400 km/sec, we find

At r % 6 secs
V

At obs 20 secs
V

These times will be useful for purposes of comparison with the

results of Section IV.

At the time marked A in Fig. 1, the observed Langmuir

frequency spectrum (not shown) is very narrow (less than 1%),

while at times marked B and C it has progressively broadened

to around 10% of the plasma frequency. If this broadening

is attributed to a cascade to higher wavenumbers, then this

corresponds to a maximum Langmuir wavenumber of k D % 0.18,

where XD is the Debye length (about 18 meters).

A typical electric field strength from Fig. 1 is E = 100 VV/m.

The mean background density and temperatures are n = 0.45 cm - 3

and T - 3 x 10 4 K, so the usual dimensionless measure of the

Langmuir wave energy density is quite low (i.e., linear,

rather than nonlinear)

1E
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nkBT 5 5 x 10- 7

In Fig. 2, we see low-frequency waves, interpreted as

ambient ion-acoustic wave turbulence, measured onboard the

Voyager simultaneously with the beam-excited Langmuir waves.

The low-frequency spectrum extends to around 500 Hz. Since

vsw >> cs, (cs = the ion-acoustic speed), the low-frequency

dispersion relation is essentially w = _'.sw" At 500 Hz,

an ion-acoustic wave propagating parallel to the solar wind

would have qXD = 0.14. (The lower frequency part of the spec-

trum would give smaller values of q D.) Ion-acoustic waves

propagating parallel to the electron beam with wave number qb

would be at an angle near 900 to the solar wind so

qbXD >> 0.14

Once again, the lower frequency part of the spectrum would

give smaller values of q D"

The integrated broadband electric field strength of the

ion-acoustic fluctuation is found to be Ei.a. % 10 VV/m.

This corresponds to a density fluctuation relative to the

background density of

6n eEia 7xl0 5

B

Hence, with qD = 0.14, we find

6n 5 x 10- 4.

] n

1
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2
Gurnett et a. argue for a smaller value of qAD, based on a

peak in the ion-acoustic spectrum at 100 Hz rather than 500

Hz, whereas we may argue for a larger value associated with

q b- Since the two effects oppose each other, it is not

unreasonable to consider -n-= 5 x 10- 4 as a typical strength
n

for the nonthermal low-frequency density fluctuations.

Finally, we remark that Gurnett et al. were the first to

make the explicit suggestion that the observed broadening of

the Langmuir spectrum may be due to multiple backscatter from

the ambient non-thermal density fluctuations. One of the purposes

of the present paper is to explore quantitatively the feasibility

of this mechanism.

B. Nonthermal electron distributions

One may view the scattering of Langmuir waves off density

I fluctuations as a mechanism for shifting Langmuir energy density

around in k-space. Of crucial importance are those shifts which

I take energy from a region where a (stationary) background beam

can drive the waves unstable to a region where the background

electrons can Landau damp the waves. Hence, the non-thermal

Idistribution of electrons in the vicinity of the beam should
be taken into account, so that the magnitude of the (non-thermal)

ILandau damping can be found and incorporated in the kinetic
equations. Generally, in the solar wind, the electron distribu-

tion beyond a few hundred eV is highly non-thermal, and the

associated Landau damping is much stronger for a Maxwellian

I

'I1



11

plasma at the (several-eV) temperature associated with the

bulk of the electrons. (As we shall see, Cerenkov emission

from the tail also needs to be taken into account.) Figure

3 shows a typical non-thermal distribution of high energy elec-

trons in the solar wind. It is taken from ISEE-1 measurements

in the vicinity of the earth's bow-shock.3 Note the bump-on-

tail at v % -vb = 21 x 103 km/sec, corresponding to a beam of

energy "u1 eV. Note also, the highly isotropic non-thermal

tail at lower velocities. It is this region which is explored

by Langmuir waves scattered to progressively higher k, since

such waves have lower phase velocities. Numerical models of

Landau damping based on Fig. 3 are incorporated into some of

our solutions to the kinetic equations in Section IV. We

also remark that such velocity distributions are common in

interplanetary space remote from bow shocks. For example,

Lin et al. 4 have consistently found such non-thermal tails

in the solar wind both before and after the passage of streams

of solar electrons associated with Type III solar radio wave

emission. The temperature of the tail is typically from 10

to 1000 times that of the background plasma temperature.I
C. Type III emissions

Langmuir waves have often been found in the solar wind in

association with Type III solar radio-wave emission, and are

thought to be associated with such emissions. The largest

*energy density ever found was on the order of

4'



12

Wk ET x 105
max  4nkBT 4 0-

whereas values two or more orders of magnitude smaller are

much more common. Typical electron beams have energies like

25 keV, which correspond to kXD % 10-2 for beam-resonant

Langmuir waves. Hafizi et al. 5 and others have explored the

nonlinear saturation of such waves.

Here, we remark that ion-acoustic waves are often indepen-

dently excited in the solar wind, probably driven by heat

flux instabilities.6  Lower frequency density fluctuations are

also observed. At the lowest observable frequencies (100 Hz)

the (Doppler-shift determined) wavenumbers of the ambient

density fluctuations are at roughly the same wavenumber as the

Langmuir waves. Typical intensities are 6n/n % 10-  Hence,

it is of interest to consider the possibility that the beam-

driven Langmuir waves are saturated by large-angle scatter

off ambient density fluctuations, particularly in the presence

of the non-thermal electron-distribution-function tails commonly

found in the solar wind. In Section IV we shall consider some

examples of when this may be possible.

T

S 1
!I

-
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III. Kinetic Equations

A. General considerations

The kinetic equations which govern the evolution of Langmuir

waves in the presence of a given stationary spectrum of ion-

acoustic waves are well-known. A rigorous derivation has been

given recently. 1  Since we are concerned here only with

resonant three-wave interactions, we first present a short

heuristic quantum-mechanical "derivation" based on "Golden

Rule" arguments. This has the advantage of including nonlinear

as well as linear scatter, so one condition for a completely

"linear" derivation can easily be defined and the differences

between the linear and certain nonlinear terms clearly under-

stood.

L i
We shall employ occupation numbers n and n to describe

the "intensity" of the Langmuir waves and background ion-

acoustic waves. They are defined as follows

w knk = <IEkL 2 >/4nV (la)

toS n i =<IEi1 2 >/4w X2q2 V . nk T<6n 12> /n 2 V (lb)q q DB nqi

Here,

= (W2 + 3v k2 ) , and

are, respectively, the Langmuir and ion-acoustic frequencies,

and <lELi2>/V and <IE1 2>/V are the (ensemble average.) spectral

I

..... .... - -.-- '"--. . . . ..... . . ...- --p C Z
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functions of electric field fluctuations for the two kinds

of waves (V is the "box volume," assumed to tend to infinity).

The right sides of Eqs.(1) represent the spectral energy

densities for the two kinds of waves. The spectrum of density

fluctuations <16n 1 2 >/n2V has the integralq 0

2 d3 <16n 12>
(6n/n )2 = d3 <n2 (2)

0 J21T) n 0V

A (position-independent) ensemble avarage is understood on

the left. This result will be useful, since we shall often

use 6n/n as a measure of the strength of the density fluctua-0

tions. Planck's constant, t, in Eqs.(1) will play no role in

any of our calculations.

The Feynman diagrams for the processes we study in this

paper are shown in Fig. 4. The corresponding equation for

the time rate of change of the occupation number nL is
k

nL
t k

S- (2 I) . 6(w -W -n ) [nk(n +1)(ni+1) (n n + )n kL n

(2T 2- S_ -k -s Rk 1

+ 6(wW+) [n,(nL +)ni-(n+l)n L(ni+l)6k' _s+ ) q !is R k s Is

E _q- (3)

The quantity IMI2 is a matrix element squared. Its value will

be written down later, in another form of the equation. The

J

- ,, ~ - --~- . . .
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integral over a represents a sum over final states. Momentum

is conserved, because ks : k-_. The delta functions are

expressions of energy conservation for the two processes and

their inverses (61). In the first process an ion-acoustic

wave is emitted (absorbed in the inverse process), while in

the second process, an ion-acoustic wave is absorbed (emitted

in the inverse process). The factors involving nL n and

n represent bose statistics. A factor nk is inserted fora
an absorption, (nk+l) for an emission, etc. Note the sign

change for the inverse processes, in which a plasma wave at

k is emitted, rather than absorbed. We have assumed an iso-

tropic ion-acoustic spectrum (otherwise the n , factors in

the second square bracket are different from those in the first

square bracket).

We combine terms and rewrite Eq.(3) as

atnL = _2 (Y eff+n ) L +  ff (4)

where we have taken the semi-classical limit n >> 1, and

where

2 e (2) IMI 2 ,6(R) + 6(R+) n' (5a)

2ynk L d MI 2 6(R_) - (R+) n (5b)

i2+

. . . . ... . .
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6M12  6(R_) + 6(R+) n., (5c)

Rt=W kWk ±S1*q (5d)

These terms have the following physical interpretations. The
elf

effective "linear" out-scatter rate is given by yk * The

eff nk
effective in-scatter rate is given by sk . The quantity Yk

contains nonlinear (stimulated) out-scatter which we ignore

in this paper. The term -2 yk nk is nonlinear because it is

second-order in nL the Langmuir wave occupation number (c

energy density). The other terms are all linear, but propor-

i
tional to the ambient density fluctuation spectrum through nq.

We note that the nonlinear terms have been treated by
5

many authors. They give rise to a weak-turbulence cascade

to lower wavenumbers because of the minus sign in Eq. (5b). To

see why this is so, consider a one-dimensional problem. Then

R = 0 implies k. = k < k (the so-called Stokes process) and

R+ = 0 implies ks = k
+ > k (the so-called anti-Stokes process).

In order to get stabilization of an instability, we must have

nt > 0. Hence, nL(k- ) > n L(k ) which explains why the

spectrum must increase towards smaller wavenumbers.

In the linear term, yef the two delta functions have the

same sign, so there is no reason for the spectra only to cascade

down. (This may be viewed as a simple consequence of the rules

for Bose statistics.)

Even in the absence of any significant non-thermal density

fluctuations (limit ni small), the nonlinear term, yt makes

q k
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a contribution. It represents scatter off the thermal level

of ion-acoustic waves (the 1 in n i + 1). Nonlinear kinetic
q

equation treatments usually neglect the terms proportional

i
to n q Our calcuation is complementary to these because it

is linear, but does include scatter off a non-thermal level

of density fluctuations (terms yeff and seff only).

a k

It is easy to establish a necessary condition for the

neglect of the nonlinear (stimulated out-scatter) term in Eq.

(4). Comparing 2yn with seff, we arrive at the requirement

n << nk, or, using eqn (1),

L2> 2> 2

<JEk >/(V47TnokBT) << <I6nk2 > /(n 2 kV) (6a)

For ion-acoustic waves, wp /Pk % (M/m) /(kXD). In the problems

that we consider, kAD R 0.1, and the normalized density fluctua-

tions are 0(10-). The RHS of (6a) is therefore of order 10

For all of the stationary Langmuir spectra (inL - 0) that we

have found numerically, the left hand side of (6a) is bounded

above by 10- 6 , thus justifying our neglect of this nonlinearity.

(For unbounded behavior, the Langmuir wave energy diverges

with increasing time so that (6a) is eventually violated.)

A nonlinearity not included in the rate equation (4) is

due to the self-consistent evolution of 6n in response to the

ponderomotive force of the envelope electric field. This

effect introduces a term in Eq. (4) that is also quadratic

in n L and includes the modulational instability (or self-

focusing) of Langmuir solitary waves. This nonlinearity may
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be ignored provided the threshold for modulational instability

(collapse in 2 or more dimensions) is not exceeded:
5

L2 1>A'(nk )< 24(Ak) Nk (6b)

Here Ak is the width of a typical Langmuir wave packet and

<''.,Ak denotes an average over that packet. All of the Langmuir

spectra that we study consist of pronounced spikes in k-space

of various widths. In all cases observed, the RHS of (6b) is

bounded below by 10- 4 . For cases in which the spectrum reaches

La stationary state (nk - 0), the LHS of (6b) is bounded above

by 10-6 ; so our neglect of this "ponderomotive" nonlinearity

is also justified. (Again, for unbounded behavior (6b) is

eventually violated, but perhaps not during times of interest

in the solar wind problems addressed here. See Sec. IV C.)

Next, we write down the form of the kinetic equations to

be solved in this paper. This amounts to working in terms of

the spectral functions on the right side of Eqs.(1) rather than

occupation numbers, and to explicitly writing down the matrix

element for the interaction. A derivation based on the first

Zakharov equation can be found in Ref. 1.

We shall also add in Yk and Sk terms arising from the

coupling to a passive background electron distribution function.

The Yk terms will include the bump-on-tail instability and

I the non-thermal Landau damping at higher k-values (lower phase

velocities), and the Sk terms will include Cerenkov emission.

Hence, even without the beam or density fluctuations, a steady-

i state non-therma: detailed balance is possible.

__
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We now begin a convention which introduces dimensionless

variables and relates them to dimensional variables (henceforth

indicated with a "") as follows:

t - tw
p

r - (i/ D)(2/3)1

6n -6 f6i/2n °

The kinetic equation will be expressed in terms of the

Langmuir envelope field correlation function F(k,t), defined by

P(k,t) = - _

V

where the complex envelope field 9k is related to the total

Langmuir electric field by
EL = itke-p + c.c.

The kinetic equation is given by

Iat + 2y(k) + 2yeff (k) F(k,t) = eff(k,t) + S(k) (7a)

where the terms involving scatter off low-frequency density

fluctuations are:

yeff(k) = dj Cq1_ 2[(R+) + (R) (7b)

self(k) = I d(3-a Cq 2 [6(R+) + (R)] F(k-a,t) (7c)

11 2 (k-(k-q)/k Ik-ql )2 (7d)
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R± + lk-q 2 - k2 ± c Ial, cs  (2m/3M) (7e)

Cq <16nq12 > (7f)

The correlation function Cq describes the given external

density fluctuations. Note that R+ are now dimensionless

and the expanded Langmuir dispersion relation has been employed.

The stationary linear damping (or growth), y(k), is related

to a given electron distribution function, fe(v) by,

2

y(k) = -I d4 3' ( f ( - '), (8a)

and the corresponding Cerenkov emission is

S(k) = 3w (32rn k2) - fd(fe(V)6(- (8b)-- p 0 -- --

-3 -3
(Here fe(v) has the units of length-x velocity - .) We now

turn to further approximations relevant to the present calcula-

tion.

B. The model random medium

We consider an electron beam propagating through the

plasma in the positive z-direction, and restrict our attention

to density fluctuations which are a function only of z (see

Fig. 5):

6n(Wr,t) = 6n(z,t)

In one spatial dimension the density correlation function is

given by

____ '.
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Cq f L 6(qx )6(q y) <Sn(-qz )6n(q z)>. (9)

We define our random medium by taking density fluctuations

having a flat, truncated, ensemble-averaged spectrum:

iT(DN) 
2

<6n(qz)6n(-qz)> 4Qm 'q qzl S Q m

4Q z
L

0 k iz I > Qm (10)

The value of (DN)2 is determined by the constraint

Cq = (6/fi o )

(This is Eq. (2) reexpressed in terms of dimensionless variables.

An ensemble average on the right is omitted.) We find that

(DN)2 = (fio)2;

(DN)2 is just the ensemble-averaged mean square density fluctua-

tion, normalized to the ambient plasma number density.

Noticing that the angular factor p.2 in Eqs. (7) serves

to diminish Langmuir wave scattering at large angles to the

z-axis, we set it equal to one. The final step in deriving

the one-dimensional kinetic equation is to ignore the trans-

verse structure of the electron distribution function:

I
I
I
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fe(v) -= 6(Vx) (Vy f(V Z).

With this assumption, v12 = 1, and using Eqs. (9 and 10), Eqs. (7)

yield the following linear, inhomogeneous equation for the

evolution of F(kZ t):

Pt + 2y(k) + A(k) + B(k)]F(k,t) =

A(k)F(-k+cs,t) + B(k)F(-k-cs,t) + S(k) (Ia)

7T(DN) 2[8Q.k-Cs1-  if j2k-cs < Qm

A(k)
o if 12k-cs a

or

if 2k = cs (lb)

{(DN)2[8Qml2k+csl]-1 if 12k+csj

B(k)
0 if 12k+csl a Qm

or

if 2k = -c s  (11c)

We have suppressed the subscript on kz and have normalized F

and S to 8 eel where 8e is the electron temperature in energy

units. In terms of our previous notation

2y eff(k) = A(k) + B(k)

Seff(k,t) - A(k)F(-k+cs,t) + B(k)F(-k-c st).

A typical yeff is plotted in Fig. 6a.

Iw

r iihi
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The one-dimensional electron velocity distribution, f(v),

consists of a Gaussian bump on the tail of a Maxwellian distri-

bution, plus an exponential non-thermal component,

n N
fNT(V) - exp(vI/Av (12)

chosen to simulate the conditions in the solar wind and other

plasmas which are nonthermal at high energies (see Section II).

In addition to the damping (or growth) rates that these

distributions generate via Eq. (8), we include the effects of

coulomb collisional damping on the Langmuir waves:

y(k) = YL(k) + yB(k) + yNT(k) + c

where

Y L(k) = (Z) 2[kI exp(-3/4k2) (Landau damping by thermal

component),

YB(k) = Q(vB/AVB)z exp(-z 2 /2) (beam growth and damping),

(Z) n3v 1(2k VBVB)

z (VB/V B) [l.5)ve (vBlkl) 1 -sigr~k)]

YNT(k) nNT 8 k (ve/AvNT) 2 exp- Ve (/ AVTjkj ) -l ]

(Landau damping by nonthermal

component),

and

Yc = (12w/Y7) 1 g n(12mg-1) (collisional damping).

~ !
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In the collisional damping rate above, g is the plasma parameter

-1

g [nk 3 ]-

(For the solar wind and bow-shock plasmas that we consider,

g is 0 (10-10).) nNT and nB are, respectively, the non-thermal

and beam number densities normalized to the ambient plasma

number density. ve is the electron thermal velocity; vB is

the mean velocity of beam electrons; AvB is the half-width of

the beam; and AvNT is defined in Eq. (12).

The Cerenkov source term is given in one dimension by

S(k) = 3wp(32rno0k2 )- Idv f(v)6(w p-k.;i).

It follows thatI
S(k) = (YL(k)+Yc)-(47)l + SB(k) + SNT(k),

where

SB(k) = fVB / kl-I exp(-z 2/2)

and

SNT(k) = nNT 3/3-ve[64/2f AvNTIk1 3 ] exp[-v (V2AVNT kj) 1

and we have added in a Bremsstrahlung emission term (proportional

to yc). By far, most of the emission is from beam electrons.

1 We plot y(k) and S(k) for parameters typical of the solar wind

in Figs. 6b and c, respectively.

For convenience, we list here all of the independent,

dimensionless variables that characterize our problem.I
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Density Fluctuations: DN 2 Qm

Electron Beam: n13 Ve/V B , VB/AVB

Non-Thermal Component: nNT' Ve/AVNT

C
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IV. Solutions of the Kinetic Equation

A. General Remarks

The Langmuir wave energy density at k is

d3k W(k) E d3 OeF(kz,t)5(kx)6(k ) . (13)

Therefore, the total wave energy density, normalized to n oe isoe

IkImax
d3 k!W(t) 6 = g(2/3)3 / 2 (2r) - 2  F(k,t)dk

(2T )no e

i1l kmax< D -Iklmax (14)

The integration is only over those modes actually retained

in our truncation of the Langmuir wave spectrum. We will

truncate the spectrum at 1k) max a 0.25 (or ji max z 0.2kD).

Larger Jkl-components are too heavily Landau-damped to affect

the results for parameters appropriate to the solar wind

problems. Furthermore, according to Eqs. (11 b and c),

Langmuir wave components with 21kj > Qm + c. evolve with no

scatter; for such modes, Eq. (11a) is solved by the detailed

balance result, F(k) - S(k) [2y(k)] -1 . If these 'unscattered'

modes are heavily Landau damped, they cannot contribute to

the total wave energy. We will impose, therefore, the con-

straint

Qm i21k! max -c. (15)

71
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between our truncations of the density fluctuation spectrum

and the Langmuir wave spectrum. (In fact, the Markoffian

limit of the kinetic equation is justified only for those

modes satisfying the resonance condition(s) R+ = 0 and hence

only for scattered modes.)
1

In the absence of a beam andnon-thermal background

(nB = 0 = nNT), the result of detailed balance is again the

appropriate solution of Eq. (11a),

~1
F(k,t) = S(k)/2y(k) -

and

W(t) = g(2/3)3 /2 (32 10

regardless of the scattering. However, with an electron beam

present, Langmuir wave energy is injected over some interval

in k-space for which y(k) is negative. The energy in these

'pump' modes undergoes successive backscatterings (i.e. k - -k±cs) ,

at a rate proportional to DN2 . Eventually some of the injected

energy will be scattered into one of the dissipative regions

of k-space where there is damping (y(k) > 0, see Fig. 6b).

If the efficiency of the scattering is high enough, a

stationary state will be reached in which wave energy is

dissipated as fast as it is injected; i.e., the beam-plasma

instability will be saturated (see Figs. 10):

F(k,t) F0 (k)

W(t) W°
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I
From Eqs. (lb and c) it is easy to see that scattering alone

j conserves energy:

f 2 Yeff (k)F(k,t)dk = . seff(k)dk

Ikl - Ikl max

It follows from Eq. (11a) that all stationary states must

satisfy

f2Y(k)F°(k)dk = JS(k)dk

thus generalizing the detailed-balance result given above.

If the efficiency of the scattering is too low, energy

will be injected faster than it can be channeled into the sinks,

and the total wave energy will diverge (see Fig. 11a):

W(t) - - •

Under these conditions, nonlinear terms must be retained in

the original kinetic equations.

There is a boundary in parameter space which separates

the bounded behavior (stationary solutions) from the unbounded

behavior. Next, we characterizein more detail, the station-

ary solutions that lie below this threshold and introduce a

simple method for approximating the threshold.

h ....
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B. Stationary solutions and threshold

We search for stationary solutions by solving numerically

the algebraic system

M*F ° = S (16)

that results from Eq. (Ila) when at 0. Here, FO is a vector

defined by

0 0
(F )j F (k.)

where

]kj f Jkjma x , j = 1,2,..., N p

and klN = ±jkma. (Typically, N = 241 and Ikj-kj+1j = 0.1 cs.)

To be physically acceptable ("realizable"), a solution of Eq.

(16) must be positive for all k.,

F0 (kj) a 0

If such a solution exists, then all initial distributions that

we examine are found to approach it with increasing time. When

the parameters are such that the solution to Eq. (16) yields

i 0 (kj) < 0 for some kj, then our solution to the corresponding

time-dependent equation, (lla),yields a total wave energy which

I diverges with increasing time, regardless of initial spectrum.

Thus, the saturation threshold may be taken as that boundary

in parameter space separating solutions of Eq. (16) with

S °(k 0 for all k from those solutions with F°(k) < 0

for some kJ.!j

I|
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i) Case nNT = 0

Consider first the case of no nonthermal component, (nNT = 0).

In Fig. 7, we plot the threshold curve as a function of beam

growth rate (nB (v /AVB)2 ) for a fixed level of density

fluctuations (DN = 2 x 10-4 ). Notice that the total wave

energy at threshold is a weakly increasing function of beam

density and beam width. Farther below threshold, total wave

energies are significantly reduced from their threshold values.

Larger values of DN are required to saturate beams with

higher nB. Larger values of total wave energy at threshold

occur in this limit. Langmuir wave spectra with total energies

on the order of 10 - 7 were observed during the Voyager 1 fly-by

of the Jovian bow shock.2 If we choose vB/AVB = 2, v /v = '016

nB = 8.55 x 10 - 7 , then our theory predicts DN = 2 x 10- 3 to

saturate the instability at threshold, with total wave energy

W= 2 x 10- 7 . The measured values of DN (see Section II and

Fig. 2) are on the order of 2 x 10- 4 , which corresponds to

Fig. 7. (The parameters nB and AvB were not measured in the

Voyager experiment.) For the chosen parameters, we find saturated

total wave energies at least an order of magnitude smaller

than those observed.

In Fig. 8 we plot F (k) just below threshold at point

'P ' in Fig. 7. Here the total wave energy, W0
, is 2.8 x 10 8 ,

and we note a significant scatter all the way out to wave numbers

jk! max 0.17 kD. The pronounced spikes in the spectrum

* 7

'"7 7
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occur at wave numbers in resonance with the fastest growing

beam-unstable mode:

-k- cs,k ± 2cs , -k0 ± 3cs , k0 ± 4cs ...

where k maximizes I(k)I for growing modes. (Because we have

chosen Ve/vB = 0.016 a cs, these resonances approximately

overlap in pairs.) Scatter out to such high Ikl-values is

consistent with observations by Voyager 1, although W0 is

roughly one tenth the observed energy.

ii) Case nNT t 0

It is doubtful, however, that a simple bump-on-tail

accurately models the electron velocity distribution function

in the solar wind and off the bow shocks, as we have discussed

in Section II. We use Eq. (12) to model the velocity distribu-

tion of the non-thermal electrons. Choosing v e/vB = 0.016

and ve/AVNT m 0.3 results in non-thermally damped modes that

are immediately adjacent to the beam-unstable modes in k-space,

consistent with the observations off the earth's bow shock

(cf. Figs. 3 and 6b).

It is natural to ask for the level of density fluctuations

necessary to saturate the instability for different levels of

the non-thermal component of the electron distribution function.

In Fig. 9 we plot the threshold curve in the (nNT, DN)-plane

of parameter space for fixed beam parameters thought to be

appropriate to the Jovian bow shock 2 and to Type III 4 conditions.

As one would expect, larger non-thermal components require

smaller levels of density fluctuation to saturate the instability.

I
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Notice that the total wave energy at threshold is a weakly

increasing (decreasing) function of DN (nNT).

In Fig. 10a we plot F0 (k) just below threshold at point

SP2' in Fig. 9. Here the total wave energy, W0 , is 3 x

for a choice of non-thermal number density taken from terrestrial

bow-shock observations. The scattering is only out to wave

numbers of Ikl a 0.1 kD . Again: below threshold, the station-

ary states have total wave energies significantly smaller than

their threshold values.

iii) Conditions for saturation

Let us consider the physical origins of the stationary

solutions. Clearly, it is impossible to find physical

(F0(k ) Z 0), stationary solutions of Eq. (11a) if 2y + 2yeff

is negative for some of the pump modes. Therefore, a necessary

condition for saturation is

[2y(k) + 2y eff(k)] 0 . (17)

Ibeam

(Obviously, if this is true for the beam-unstable modes, then

it is true for all k-values.) This is not, however, a sufficient

condition for saturation. If it were, we could identify the

threshold condition as Min [2y(k) + 2 yeff(k)] = 0. Physically,

condition (17) is not sufficient for saturation because some

of the energy that is scattered out of the pump modes is

scattered back into those modes. The net rate at which the

pump modes are depleted must be positive for saturation.

Threshold then can be identified by setting the minimum net

rate for pump modes equal to zero. Of course, this minimum

.11
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net rate is obtained by solving Eq. (16) algebraically.

However, it is instructive to do so for the case of only a

few Langmuir wave components.

Suppose that the problem consisted only of the most

unstable beam mode at k and the two modes coupled directly0

to it at k1,2 E -k ± cs. Then Eq. (16) is easily solved,1,2 0

and we find that

^^eff 0
(2y0 + 2Yo )F 0 o

where

eff eff 2ff]-Iyo 2yo 0 A oAI1[2y 1 + 2

- BB 2 [2- 2  + 2yff 
,

and we have neglected the source terms at k I  (F F°(k
A = 

,2 " 0

A0 A(k ), etc.) Here we have defined a "renormalized"
i -eff.
effective scattering-out rate, y Since all A's and B's

are positive by definition (cf. Eqs. llb and c), as are

J and y we see clearly the destabilizing effects of the

-eff eff
scatter back into the pump mode, i.e. 7o < Y 0

For this 3-mode system the threshold condition is

2y0 + 2 o  = 0 . (18)

This reduces to the condition (17) in the limit of increasing

damping of the scattered modes, y1 ,2  However, if these

modes are not heavily damped, as is likely to be the case,I
I
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we would have to include more than 3 modes in our truncation

in order to reach sufficient dissipation to saturate the instability.

As a rule, we keep adding modes to the truncation until we

reach a k* such that

2y(k*) > 2y eff(k*)

Then the j eff that we obtain enables a good approximation
0

to the threshold condition via Eq. (18). We will present

a detailed analysis of this renormalization technique in a

subsequent publication.

C. Time-dependent behavior

Starting from a reasonable initial Langmuir wave spectrum,

the subsequent behavior will be either bounded or unbounded

(i.e. requiring nonlinearity for saturation) depending on the

parameters. We take as an initial spectrum, the solution of

Eq. (16) with the beam turned off (nB = 0, cf. Fig. lOb).

Such initial conditions are particularly appropriate to the

Jovian and terrestrial bow-shock problems in which the solar

wind is convected into an almost orthogonal electron beam

of finite extent parallel to the wind (see Fig. 5). Thus,

in the rest frame of the solar wind (where our theory applies),

we would see the beam suddenly turned on at t = 0. (Of course

we can only assume a sharp beam boundary since we are not

evolving the electron distribution in time.) Then we restore

the beam (nB > 0) and evolve Eq. (11a) with the full electron

distribution function.

. 4!
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Such a scenario is also appropriate for describing

Langmuir waves associated with Type III solar bursts, in

which an electron beam streams through the ambient solar

wind and excites Langmuir waves. However, the times of interest

in Type III and bow-shock problems are quite different. In

the bow-shock problems, the beam terminates abruptly at the

shock front; so we are only interested in evolving the system

for the time it takes a point at rest in the solar wind to travel

from the beam front to the shock front. For the published

2
Voyager 1 observations off Jupiter, this is about 20 sec or

105 plasma periods. For the Type III observations,4 the

observation time is considerably longer (35 minutes in the

frame of the ISEE-3 spacecraft). For a typical beam (nB = 10
- 6

VB/AV B = 3, ve/vB = 0.016) and non-thermal component

(nNT = 10- 5 , Ve /VNT = 0.3) the evolution of the Langmuir

wave spectrum just below threshold is summarized in Figs.

10. (We assume DN = 1.25 x 10- 3 corresponding to point P2 in

Fig. 9). The elapsed time is 12 x 106 plasma periods (36

minutes at the Jovian bow shock), after which the total energy

has reached one half of its final value (Fig. 10c).

Evidently, there is insufficient time available in the

Jupiter problem for this stationary state to be observed.

Therefore, in the context of that probl.:.n, the beam-plasma

instability would be completely suppressed. However, here

the level of density fluctuations is slightly larger than

observed.
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For the same beam and non-thermal component, but weaker

density fluctuations (DN = 5 x 10-4 ), we move above threshold

to the case of unbounded behavior. In parameter space we are

at point P3 in Fig. 9. Here the evolution of the Langmuir

wave spectrum for the first 12 million plasma periods is

summarized in Figs. 11. The spectrum reaches energy levels

at which nonlinear process, neglected in our theory, become

important only at the end of the time interval (i.e. W(t) = 10-5).

Yet the scattering out is completed after a relatively short

time. By 'completed' we mean the following:

Let W.(t) be the Langmuir wave energy contained between3

k. and kj+ 1 where F(k,t) has a local minimum at kj. There is

a spike in the spectrum between k. and k j+ 1  We define the

efficiency of the scatter into [k, k j+I as

fj(t) E W(t) [Wo(t) ]-1

where W (t) is the energy under the beam-resonant spike at ko0

This is just the fraction of energy in the beam spike that is

contained in the j-th spike. We observe that (for the chosen

initial conditions) each f changes rapidly during roughly

the first 2.106 plasma periods, after which the variation of

F halts abruptly, and f is virtually constant for the remainder

of the evolution. This is observed in all cases, for both

bounded and unbounded behavior. The same is true of the fraction

of the total energy contained in the beam-resonant spike.

Thus, each spike receives a constant fraction of the total

* .*



37

wave energy long before the system either saturates or diverges.

See Figs. 11c through e.

For the Type III and bow shock problems, the distinction

between bounded and unbounded behaviors is irrelevant if the

level of density fluctuations is sufficient to suppress the

instability during the time that the plasma is exposed to

the beam. This is the case in Figs. 11.

The suppressive effect of the scattering on the instability

in the case of unbounded behavior can be observed by setting

DN = 0. Doing so for the parameters in Figs. 11, we find that

the total wave energy grows dramatically faster than in Fig.

11a due to the unabated exponential growth of the pump modes:

after 12 million plasma periods W(t) is 2.6 x 108. Clearly,

the instability is strongly suppressed when DN = 5 x 
10 - 4

(as in Fig. 11a). Indeed, for much of the evolution W(t) has

been held to acceptable levels for the application of our

theory.

Therefore, in cases where the plasma is exposed to the

beam for a finite time, observations of Langmuir spectra with

significant components at higher 1k! and relatively small total

-8 -6
wave energies (10 -10 - ) may be explained by the present

theory even when that theory predicts time-asymptotic divergence

of the wave energy.

....................................... 1
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V. Conclusions

We have studied the effects of a given, external spectrum

of ion acoustic turbulence on the evolution of Langmuir waves

in a beam-unstable plasma. Our theory is based on solving

a linear kinetic equation for the spectral energy density of

the Langmuir waves in one dimension. This equation includes

the effects of Landau damping and growth for a given, stationary,

non-thermal, electron distribution-function as well as the effects of

scattering off the density fluctuations,which we have taken

to have a flat spectrum. We find that the beam-plasma instability

is saturated provided that the level of density fluctuations is

sufficiently high. Then saturation results from the progressive

back-scattering of beam-resonant wave energy into dissipative

regions of k-space. In this case, a stationary spectrum is

approached asymptotically in time by all initial spectra examined.

If the level of density fluctuations is too low, the instability

is not saturated, and the total wave energy diverges with

increasing time.

In the case of bounded behavior and for parameters

appropriate to the Jovian and terrestrial bow-shock environments

as well as to Type III bursts, the saturated states are

characterized by total wave energies (W = 0(10 - 9 - 10 - 7 ) well

below the threshold at which nonlinear processes (neglected

in our theory) become important (W ,. 0(10- 5)). The stationary

distributions demonstrate significant scatter of Langmuir wave

energy out to wave numbers of from .1 to .2 k D in magnitude,

Si depending on the distribution of non-thermal electrons.

!_ _ _ _ __ _ _ _ _
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In the case of unbounded behavior, the scattering may

suppress the growth of wave energy during beam-plasma inter-

actions that occur over a finite Interval of available time.

Scattering to high-k components is completed much faster than

the total wave energy diverges. Therefore, in the context

of bow-shock and Type III problems, a broad spectrum of Langmuir

waves may be observed at energy levels that favor the linear

kinetic theory presented here, even when that theory predicts

eventual divergence of the wave energy. For example, off the

Jovian bow shock, the solar wind plasma is exposed to the

electron beam for only about 20 sec (105 plasma periods) in

the plasma frame. Yet, for parameters appropriate to this

environment, the theory predicts that it takes the wave energy

roughly 30 min to reach nonlinear levels if the density fluctua-

tions are too weak to saturate the beam-plasma instability

(cf. Fig. 11a). For early times, the wave energy is virtually

constant and, if observed for only a short while, would give

the impression of a stationary (saturated) Langmuir wave

*spectrum. For Type III bursts the beam-plasma interaction

*is observed to last longer. Here again, theory predicts that

the time required for the wave energy to reach nonlinear levels

is approximately 30 minutes in the solar wind frame.

We have characterized the threshold in parameter space

that separates saturated from unsaturated behavior. Naturally,

more powerful beams require larger levels of low-frequency

turbulence to saturate the instability. However, the requisite

Sthreshold levels of turbulence are considerably lowered in theII
I , f-,7 w
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presence of non-thermal electrons which provide dissipation

over wide intervals in k-space. Recent measurements of the

electron distribution off the earth's bow shock3 indicate

a strong non-thermal component in the electron velocity

distribution. Such a component is generally present in the

solar wind.4 Consequently, relatively small levels (6n/n o = 0

(10 -4)) of ion acoustic turbulence would suppress the beam-

plasma instability for beams typical of the Jovian and terres-

trial bow shocks.

i,
IJ
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Figure Captions

Fig. 1. Langmuir waves excited by an electron beam of energy

% 10 keV, off the Jovian bow shock as observed by

Voyager 1. (Gurnett et al., 1981)

Fig. 2. Ambient ion-acoustic wave turbulence measured by

Voyager 1 simultaneous with the beam-excited Langmuir

waves in Fig. 1. (Gurnett et al., 1981)

Fig. 3. A non-thermal distribution of high-energy electrons

in the solar wind measured by ISEE-1 in the vicinity

of the earth's bow shock. Note the electron beam at

v,= -21 km/s. (Anderson et al., 1981)

Fig. 4. Feynman diagrams for the scattering processes studied

in this paper.

Fig. 5. Geometry of the beam-plasma interaction near a planetary

bow shock.

Fig. 6. Coefficient functions in the kinetic equation.

(a) y el(k) vs k for Q = .437 and DN = 1.25 x 10
- 3

m

(b) Total linear growth/damping rate, y(k) = yL(k)

+YB(k) + YNT(k) + yc vs k, for nB = 10-6 ,

ye /vB= .016, vB/AVB = 3, n NT = 10- 5 , Ve/AvNT = 0.3.

(c) Linear spontaneous emission, S(k), due to the

background particle distribution for parameters in

Fig. 6b.

Fig. 7. Threshold as a function of beam-resonant growth rate,

with no non-thermal damping. nNT = 0, DN -2 x 10-4

2Qm= 47 Ve /VB = .016. (Note: y' growth nB(ye /AVB) ).

SI

I II l I . . . . .... . . . . | .... .. . ~.. .
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Fig. 8 The stationary distribution F0 (k) just below threshold

at point P in Fig. 7. v B/AV B = 1.6, nB = 2 x 10 -8,

W 0 = 10 - 8 .

Fig. 9 Threshold as a function of non-thermal electron and

density fluctuation levels. nB = 10 - 6 , VB/AVB = 3,

V e/V B = 0..016, Ve/AVNT = 0.3, Qm = .437.

Fig. 10 Bounded behavior just below threshold at point P 2 in

Fig. 9. DN = 1.25 x 10 - 3 , nNT = 10 - 5 . (Parameters

are as in Fig. 6.)

(a) The stationary distribution F(k). Wo = 5.8 x 10 -

(b) Initial distribution function F°(kt = 0).

WV(t=O) = 5.6 x 10
- 13

(c) The total wave energy, W(t). Elapsed time = 12 x 106

-1

(d) F(k,t) at t - 2.4 x 105

(e) F(k,t) at t - 3.36 x 106

(f) F(k,t) at t = 1.2 x 107

Fig. 11 Unbounded behavior above threshold at point P3 in

Fig. 9. DN - 5 x 10 4 , nNT = 10

(a) The total wave energy, W(t). Elapsed time = 12 x 106

-1

p 
• 6

(b) The distribution function F(k) at t - 3.36 x 10

(c) The fraction of the total wave energy in the pump

modes as a function of time.

Efficiencies: Energy in [kl,k 2] x [Energy in Pump-1

Modes]- as a function of time for

(d) k W-.03 and k - .009

(e) k1 - .085 and k2 - .123

II
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D. "Preliminary Results Concerning Compton Conversion of
Langmuir Waves into High Frequency Electromagnetic
Waves in the Presence of an Ultra Relativistic Electron
Beam"

David Newman
Preliminary report
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PRELIMINARY RESULTS CONCERNING

COMPTON CONVERSION OF LANGMUIR WAVES INTO HIGH FREQUENCY

TRANSVERSE ELECTROMAGNETIC WAVES IN THE PRESENCE

OF AN ULTRA RELATIVISTIC ELECTRON BEAM

David Newman

If a relativistic electron beam is injected into a plasma

with a distribution of Langmuir waves, the Langmuir waves may

scatter off electrons in the beam and in the process wIll be

converted into transverse waves. Except for the conversion from

longitudinal to transverse waves, this process is analogous to

so-called inverse compton scattering. As a result of the kine-

matics of the scattering, the emitted transverse waves are strongly

beamed in the forward direction (i.e. the direction of the beam

electrons) and will have a frequency w k y2w where y E
e m ce

is the relativistic parameter of the electrons (E is the energy

of a beam electron).

Figure 1 depicts a typical scattering in the lab frame.

The electron beam is taken to travel in the +x direction. The

Fig. 1 Scattering geometry in lab frame. Langmuir wave (k',wl')
scatters off electron in beam at angle el producing transverse
wave (k,w) at angle e. Electron experiences negligible
recoil.

!

I
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incident Langmuir wave has frequency w' and a wave vector ' and

is at angle 61 relative to the beam. The outgoing transverse

wave is similarly characterized by w, k, and 6. (Properties of

the incident wave will always be denoted by a I superscript.)

The z-axis will be chosen so that the scattered wave lies in the

x-z plane (with kz > 0). There is then another parameter of

the scattering, namely the azimuthal angle about the beam axis

between incident and scattered wave vectors, €'. €' is defined

so that

I =Cos 40'; sin ~

I It will be assumed that the frequency of the transverse wave

W >> p so that the dispersion relation is approximately that for

photons in vacuum, i.e. w = ck (from this point on, c will be

j set to 1). Thus, the scattered wave is characterized only by

w and 0.

In order to determine the scattered flux as a function of

0 for a particular incident Langmuir wave, it is simplest to

transform the scattering into a frame moving with the beam

electrons. In this frame, the Langmuir wave scatters off of a

stationary electron (see Figure 2). As argued by Gailitis and

Tsytovich,1 if the electron beam is Ultra relativistic (i.e.

y >> 1), then scattering of Langmuir waves off of the bare

electron is the only process which need be considered. (For a

I non-relativistic electron, scattering off the Debye cloud of the

electron must be considered.)

1A. Gailitis & V.N. Tsytovich, Soy. Phys. JETP, 19, 1165 (1964).I
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Fig. 2 Scattering geometry in electron frame. E;, the electric
field vector of the incident Langmuir wave, is no longer
parallel to the wave vector k;, but forms an angle, X;,
with the x(beam)-axis

The (*) subscripts in Figure 2 will be used to denote quan-

tities in the electron rest frame. As depicted, the electric

field in the electron rest frame of the Langmuir wave is no longer

longitudinal, but forms an angle X; with the x axis (x; * e;).

IAn expression for X; will be given below. In the Lorentz trans-

i formation, the Langmuir wave also picks up a transverse B field.

However, the dipole approximation for the interaction of the elec-

I tron with the fields of the incident wave will be used and the

effect of the B field will be small relative to that of the E

I field.

The quantities in the two reference frames are related by

the following relations (Lorentz transformations)

S= y(W' - sk' cose')

Ex*= E' -E'cosO'

tanX - ytanO'

Ex! I
= YE'- yEsine
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2. 2 2e)121 EII- (cos2B, + y2sin2e,)IEI

W, = yW(1 - acose)

W = YW,(1 + ecose,)

note: 62 = 1

Y

The situation depicted in Figure 2 is that of classical

Thompson scattering with the electron oscillating in the incident

electric field and emitting electric dipole radiation. The

classical formula holds provided there is negligible electron

recoil (i.e. hw; << meC 2 ). By kinematics, w L " p, thus this

<1020 s-1
condition is satisfied provided < which is essentiallyUp
always the case.

The Thompson formula for the power radiated (per unit solid

angle) in the electron rest frame is:

d-D 2~ 2 ______

dF*, r0sin26* 41T

2J where r0 = - (the classical electron radius) and 6, is the
mc

angle between in incident electric field and the scattered wave

vector k, (see Figure 3).

Fig. 3 Incident electric field vector E, lies on a cone of half
opening angle X; with azimuthal angle 0;. 6* is the angle
between E' and the wave vector oT the emitted transverse
wave k* -note: k* lies in the x-z plane)

x
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sin 2 6 - (1 - Cos 2 xcos2e, - sin 2 ×'sin 2 ecos2 , -

- 2cosxcos6 sinX'sine cos )

The Langmuir wave spectrum will be assumed to be azimuthally

symmetric about the beam axis. Thus, sin 2 6 can be replaced by

sin 2 6, averaged over azimuthal angle 4;
2ir

s2 1 d 2 2 2 1 2 2

sin26, = dsin6 (1 - cos Xcos a- sin Xsin

Defining =k, =  2 as the energy density in the incident

Langmuir wave in the lab frame, the power radiated per unit solid

angle in the electron rest frame can be expressed as

dP, r2 sin 26 Wk IE' ,2
dQ 0 k- JI 12

=r*Wk,(1 - cos2xcos2ei - sin 2xIsin2e, )(cos 2e, + Y2 sin 2e')

Using tanX, f ytane'

cos 2x ,cos2e' + Y2 sin 2 e ,) = cos 2e' + = cos 2e,
1+ y si n~

cos2e ,

sin 2 X(cos2 6, + y2 sin 2 e,) = cos 2 e' -y2ssn2e,

+ cos2e,
y 2sin 26,

Therefore,

rWk,(CO2e + y2 sin 2ee - cos2 e'cos2 e, - 2 2 'sin 2 )

Sr2kWIcos2e,(1 - cos2e ) + Y2 sin2 e'(1 * isin2e0))

0k
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dP

The radiated power in the lab frame - can be expressed in terms

dP*of -

dP(eO,) = )12 dP,(e,[e),6 )
dQ E (e* I e] )1 2 d.Q

since the Poynting flux is =IEI 2 .

For a photon in vacuum, the magnitude of the E field Lorentz

transforms like w. Therefore

_ 2 2 1

IE *2 2( Bcose) 2

dP,

Combining this with the previous expression for dP* and using:

sin 2  sin2esi~*= 2 )2

Y (1 - Scose)

yields for the power radiated in the lab frame

2
ro2 W

dP - o k' [2cos 2elsin 2e6+-2sn20[y(lSo 2-sn2d- 2y4 (1 - 8cose) 4  s+ 2sin2e,[2Y2(1 -cose) 2 - sin2e)

j Up to now, only the interaction of a single electron (character

ized by y) and one Langmuir wave (characterized by w p, k, e',

, ' )has been considered.

Now, the effect of a beam of electrons (with distribution

function f(s), but still uni-directional), and a distribution of

Langmuir waves with Wk, -(k',1) being the energy density per

unit volume of moment (k') space will be treated.

I

C. .,.. . . .. 4'.. . . .*I
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If instead of a single Langmuir wave with energy density

Wk' there is a distribution of Langmuir waves with energy

density per unit volume momentum space *(k',8'), then what was

previously referred to as d now becomes dP i.e.CO- d~dQk,2dk,

r2ik,e')Fd=k0 [2cos2e'sin 2e+y2sin 2e' fY2(1-Bcose)2_d~dQ'k'2dkl 24(I-acose)!

sin 2 6j]

In order to calculate e.g. induced emission probabilities, it is

necessary to know the power radiated per unit volume of phase

space (this will be proportional to dN /dt where N is the phase

space density of photons.)

The power radiated per unit volume of phase space is

1 dP 1 2 T dk,k,2 dP dcose'

W Wj dk'2dk'do'dcose' dw

where dcose' is determined from the kinematic constraintsg dw

Y(W' - Wkcose') = w = , = yw l - 6cosO)

with 0, k', w' held constant.

dcose0 = -(1 - Ocose)Thus dW k',e8k

1 dP 0r klk*kI' 2o 1i

~d2 S dw 24- cs) 3 LW W Y (1 - Jcse

+ y 2i20 [ 2y 2 (1 - 'cos k 2  sin2e)]

Here 0' is no longer an independent variable, but is a function

of w,6 and k',w'.

.*.. .. I -...*. .
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At this point, two simplifying assumptions will be intro-

duced. Both of these assumptions will have to be relaxed when

Itreating the case of an arbitrary Langmuir wave spectrum, but
are employed here primarily in order to bring the situation

treated here into correspondence with the case treated by Kaplan

and Tsytovich.
2 '3

1. It will be assumed that the spectral density of Langmuir

waves in the lab frame is isotropic. Thus:

( W(k')

41Tk ,

Here W(k') is the Langmuir energy density per interval dk'.

2. It will be further assumed that the Langmuir waves have

a phase velocity -r << c so that

w; = y(wl' - Bk'cose') - yk'cose'

1Both of these assumptions would be invalid if the Langmuir spectrum
were excited by the electron beam for then the Langmuir waves would

be i) preferentially aligned with the beam (anisotropic), and ii)

in resonance with the beam, i.e. w' t k'.v where for relativistic

electrons v = c. This is in contrast with assumption 2. This

I contradiction could only be avoided if there were some mechanism

to scatter the resonant waves into a region of higher wave numbers.

If the beam of relativistic electrons has an energy distributionI
2S.A. Kaplan & V.N. Tsytovich, Soy. Phys. Uspekhi 12, 42 (1969)

I 3 S.A. Kaplan & V.N. Tsytovich, Plasma Astrophysics, Pergamon Press,

New York (1973)

!

.... . ..I-I . ... , , , v
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f(E), [E = Yime] then the density of photons per volume of phase

space will be generated at a rate (spontaneously)

= (27O 1 dPdd
dt spont WL 2 ddw

0 3 -W(k') df() 1

W 3 k Y (1 - acose)

12cos28'sin2e + y2sin2e,[2y2(1 - Bcose) 2 - sin2ej]

Once the rate of the spontaneous process is known, induced emission

and reabsorption rates can be determined. In the interaction

being considered, conservation of energy requires the electron

after the scattering to have energy c2 = c + w' - w (note: i = 1).

Fig. 4 Scattering geometry in lab frame showing change in the
energy of recoil electron by the amount (w'-w)

Since the scattering of interest is that for which w >> w'

C2 z E _ W.

The electron will also be deflected through some angle 6,
2~~2 2

but 6 ' - P <<< 1 (this is similar to the conditionmax  2c 1040;-2

for the scattering to be Thompson). This deflection angle can

be safely ignored.

7I11
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The inverse reaction to the one pictured above is:

Fig. 5 Time reversed scattering process of the one pictured in
Figure 4

Let the forward reaction have rate (spontaneous and induced)

R4 = !of(O)Nk,(I + Nk)dE

and the reverse reaction have rate

R = Jaf(c-w)Nkl + Nk,)dc

dNk

where a is defined so that Jaf(E)Nk,dc =
k dtspont

The total rate

-N tot = R + - R_ d f(E)N, + f() f(-) NN f(c-w)Nk

Thus:

dNk I d a

dt dt + f k - f(E-w) k
--tot - -spont-. -

dNk
=-1 + Y tNk
dt spont k

It will be assumed that Nk, is sufficiently large so that

fJ'dcw -L N, >> Jdcaf(c-w)

i.e. the semiclassical approximation.



Theny t y dcaw -Nk,.

Thus, the expression for yt can be determined from the expression

for by making the substitution
fspont

f(C) - W af(c)a E

For a distribution of Langmuir waves

2rr r dk' Jdc f(E) 2 2e'sin2
4 2 k' f (1 - Bcose) 3  2COs 'n

+ y 2sin2e, [ 2 y2(1 - Bcose)2 _ sin 2) ]0

Doing integration by parts on the c integral and assuming f(c) 1= 0

4 Tr r d'_____ __ 2 8'i 2

= k' ) d[4 - Bcose) 3 cos28'sine

+ Y2ne{Y( k' coe) - 4si1n6o]]

s 22 -I coy22 Gc

Cos2 6n= ( cose) e ( - cose)
k 2  k '2

employing assumption 2,w' << kc.

If y << 1, then the majority of scattered waves will come out in

the forward direction. (Essentially of the radiation will come

out in a cone of opening angle e0 =1.)
Y

Because of this beaming effect, a small angle approximation

for e can be employed (cose ( -(1 sine - e) also, I 1 2y2

(1- 8cose) 1 -( 1 = ( + 2 ) -k2

2y 2 2Y ~ 2 2

since e << 1 the last term can be ignored.
Y
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1(l - cose) + (ey) 2)- + a 2  (def of a)

y now becomes,[

t -21T 3r 2[ 4y 2  [( -2(1+ a2)2J 0 dk.W(kI) Jdcf(E) ~ 1 a t4~'__,__, o0 _ [,, ,] 4__y, 2  ,2(e+ o 22o

W2 fJk' Jdf e) I + a23 4y 4 k' 2)

+ aL 2 [ (1 +y ak' 2

' 2 12

2 dkk Wlk) dcf(E) - ,2

+ 4 [ + a 2222

4y k'I
The above expression for y can be compared with the expression

I found by Kaplan & Tsytovich [Sov. Phys.-Uspekhi 12, 42 (1969)]

equation 8.24.I
t t ) - L__) 3= 2 O d d E i +2 )

(K&T) W ff + a

[ - w(1 + a2 ) )(1 + a4 ) + [w2 (1 + Y 2) 2c24y 4k'2  Y 4 k 2

I
This differs from the result found above by:

a . an overall additional factor of 22

2. an additional factor of y in the last term.

Starting with

1Y = Jdef(r) ( !(1 + a2 )+ a(1
t 2 JW k ' m a 2 + + a 2)

W 2 4 (1 + a 2 )2 ( + a4) + 2 e6 (1 + a2) 2

4k ,2 a 4  k 2  a4

NP 1 fl
........ - " 'I 2 *Ta'
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which employs the fact that where again a ye.
dE m da

Explicitly performing the differentiation:

1 [a 2 (I + a4 ) w264  (1 + a4) + 2 06

me aa 2 I + a2) 3  4k' 2  4(1 + a2) k' 4(1 + a 2)

I 2a (3 a4 - 2a2 + 1) _we6 fa-2a2- 1 2w 20

me G + a 2 4 k'2 3 + )1 k12

I 22+I
1 + a 2 2a3)]

21 2 G c )2 W2 (+a2 )2 W2 (1+a22 64
Recalling that cos2e' = 2(1 - 6cose) _ 2(1 + k ) 2 ( + k) 2e1 ak' 47k,2 4k 2

1 
4aIkI

i me aa [

2a= [ +214 (3a 4 2 a 2 + 1) - (a4 - 2a 2  1)u 2 - 4 (2a 2 + 1)e2u 2

where u =cose' 0 -< u -S I

c= 2 [1 + a 2 (4 [3a4 - 2a 2 + 1)- (a4 - 2a 2 
- l)u 2 - 4(2a 2 + 1)e2u2]]

e

The last term inside the brackets is much smaller than the first

two because of the extra factor of e2 (by assumption e << 1) and

is also of a lower power in a and will hence be further suppressed
• J 1

when a > 1 e > -.

Dropping this third term, the expression for y now becomes:

-r r c
y t - 0o2 rT jW(k) d- Jdcf() a7T7°o , a4 (3 U2 - 2(1-u 2

i f k a 2e

+ (1+ u2]

I
I

- ..... .......... . ......... %* .... .~ . >...,...... , .. .. . .
_ ,, , I_-... .. . . . . ........_ - .. : ' "
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If the electron distribution is concentrated at energy E., then

f(c) = nb6 ( - c.) where nb is the electron density in the beam.

In this case:

t-32713 r~n 2 nk , a.

t 32. rWk ) . E,, 1 2 (4 ( - u2 ) - 2a,(1-u2 )

w me (1 + a ,

e+ (1 + u 2)

where a*

note: u is an implicit function of k' for given w,e,y and must

be kept under thek' integral.

There will be growth [yt > 0] if the expression in brackets

becomes negative. This never occurs for any values of the

parameters a and u.

This is in stark contrast to the result claimed by Kaplan

I and Tsytovich (plotted in Fig. 6; this corresponds to Fig. 3

from reference 2) although there is agreement within a factor

I of 2 with the value of yt at forward scattering (a = 0) [Eq.

8.25, ref. 2].

It should be further noted that Fig. 6 does not seem to

j come directly from the integrand of (8.24). Differentiating

the energy dependent terms in (8.24) yields

t  T -327 r 2d f 2 a(1
3 2 JW(k) -- d - a) 3 +

+ u2(1 +3 -9aL 4 + a6))]

I
.~~~~... . . . . . . .. .
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Although the sign of the term in brackets does reverse near a = 1,

the maximum value of It for yt > 0 is at most 7% the value

of IYtI at a = 0 (when yt < 0). This occurs when u2 = 1 (i.e.

cos8' = 1; Langmuir wave in line with electron beam traveling in

opposite direction). Whenu = 0, yt >01max <1% <

Thus, there seems to be no way to attain a maximum growth rate

as large as the reabsorption rate at e = 0 which is implied by

Fig. 6.

Fig. 6 Growth rate as function of angle from Kaplan & Tsytovich
(Ref. 2 Fig. 3). Negative values imply growth (y .-i(we))

i
I

i
I
i
I

I
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Conclusions and Tentative Results of Subsequent Investigation

It has been found that if the restriction w << k Lc is

imposed on the incident Langmuir wave spectrum, amplification

via induced emission is impossible for all values of the

scattering angles (6' and 6). This is in contrast to the

results cited by Kaplan and Tsytovich (Refs. 2 & 3), under

the assumption wp << kL c to the effect that growth will occur

for transverse waves emitted at an angle e ;t 1/y to the electron

beam.

The restriction w p/kLc << 1 is physically unsuitable for

beams which excite Langmuir waves with phase velocities near

Wp/c. We have relaxed this restriction and found a new

expression for yt which has w p/kL c as an additional parameter.

Preliminary calculations indicate that growth (yt > 0) is

possible for certain scattering geometries when w /k C > 1.
p L

All of the configurations yielding growth appear to require

the incident Langmuir wave vectors to be parallel, or nearly

parallel, to the electron beam. (Such a scattering configura-

tion is kinematically forbidden when w p/kL c < 1.)
The maximum possible frequency for the emitted radiation

due to the scattering of a Langmuir wave off a parallel electron

beam is

2, 2
max Y p

This maximum value is only attainable in the limit p /kLc >> 1.

Thus, the above scattering geometry is incapable of producing

'W
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j emission at frequencies w t 3y 2p, such as may have been

observed by Benford, in his relativistic beam experiments.

The complete determination of the induced emission growth

coefficient yt(w,e) requires an integration over the incident

Langmuir wave spectrum. A particular spectrum, e.g. one

resulting from beam induced Langmuir turbulence, must be

specified. Such a spectrum would, in general, not be isotropic

and would introduce an added element of complexity to the

required integration. This integration would, however, have

to be undertaken numerically even in the isotropic case for

all but the simplest of Langmuir wave spectra.

Although growth is predicted for emission due to the

scattering of Langmuir waves with wave vectors parallel to the

beam axis, the contribution due to Langmuir waves coming from

other directions (having a negative growth coefficient) will

have the effect of reducing, or even reversing, the sign of

the integrated growth rate. Thus, it is necessary to determine

I the Langmuir spectrum and perform the required integration in

order to determine whether amplification due to induced emission

is sufficient to produce the observed emission rates.

j One other effect must be taken into account. The true

electron beam is not unidirectional, but rather has an angular

I spread of ^-156 (in the experiment of Benford et al.). The

beam spread will affect the growth rate calculations in two

ways. First, the Langmuir wave spectrum generated by the beam

will be modified, and second, the beam angular distribution

must be integrated over. Consideration of beam spread effects

could lead to further reduction or reversal of the growth rate.

I
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jABSTRACT

The possibility of Langmuir soliton formation and collapse

during ionospheric modification is investigated. Parameters charac-

terizing former facilities, existing facilities, and planned facili-

1 ties are considered, using a combination of analytical and numerical

techniques. At a spatial location corresponding to the exact clas-

sical reflection point of the modifier wave, the Langmuir wave

evolution is found to be dominated by modulational instability

followed by soliton formation and three-dimensional collapse. The

I earth's magnetic field is found to affect the shape of the col-

lapsing solition. These results provide an alternative explanation

for some recent observations.

'3,
I
I
I
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INTRODUCTION

Modification of the ionosphere by intense radio waves

launched from the earth's surface continues to be an active area of

experimental and theoretical research; reviews can be found in the

November 1974 issue of Radio Science [2 (11), 1974), in the articles

by FEJER (1975, 1979), and in the book by GUREVICH (1978). The

important role of nonlinear wave effects during ionospheric heating

is by now well established, and these effects have at least qualita-

tively explained many of the observational phenomena.

The purpose of this report is to explore the possibility that

three-dimensional Langmuir soliton collapse occurs during iono-

spheric heating. This possibility was first introduced by

PETVIASHVILI (1975, 1976), who emphasized the importance of the

geomagnetic field. Previous analytic theories of nonlinear wave

interaction during ionospheric modification, as summarized in FEJER

(1975, 1979), and in NICHOLSON (1977), have mainly concentrated on

three-wave parametric instabilities; see, for example, BEZZERIDES

and WEINSTOCK (1972), CHEN and FEJER (1975), DuBOIS and GOLDMAN

(1972), KRUER and VALEO (1973), and PERKINS et al. (1974). Most of

these theories have neglected the four-wave parametric instability

also known as the modulational instability or oscillating two-stream
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instability, despite the fact that this instability was the one

I discussed in the original paper of PERKINS and KAW (1971) intro-

ducing the significance of parametric instabilities to ionospheric

modification.

In this paper, we treat the evolution of Langmuir waves at

the exact reflection point of the modifier wave, the point where the

I modifier frequency is exactly equal to the plasma frequency (z = 0

in Fig. 1). At this spatial point, it is well known (CHEN, 1974)

I that only the four-wave oscillating two-stream instability can

occur. Previous theories using three-wave parametric instabilities

are appropriate to spatial locations somewhat closer to the earth,

including the location where the maximum amplitude of the standing

heater wave occurs. The competition among three-wave interactions,

1 four-wave interactions, and soliton formation at these lower alti-

tudes will be treated by us in future work. Here, we numerically

solve a nonlinear wave equation for par-aeters appropriate to modern

I modification facilities (e.g., the Platteville facility). We find

that the Platteville modifier wave is intense enough to excite an

j oscillating two-stream instability which evolves into a set of

three-dimensional collapsing solitons. Because of collisional

damping, these solitons do not collapse catastrophically to a

j singularity, but rather undergo a period of virulent collapse

followed by exponential damping due to collisions.

4
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In the next section, we review the wave equation which

describes nonlinear Langmuir waves in the absence of a magnetic

field, and solve it for parameters appropriate to the Platteville

facility. In the succeeding section, the effects of the gf.omagnetic

field are added; this results in a significant change in the shape

of the collapsirg solitons. In the final section, conclusions are

* presented and the possible application of the results to explain

certain observational facts is discussed.

* I
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SOLITON COLLAPSE IGNORING THE GEOMAGNETIC FIELD

The equations describing the nonlinear evolution of Langmuir

waves were introduced by ZAKHAROV (1972) and are known as the

Zakharov equations. From NICHOLSON et al. (1978), these are

(iAt + i e/2 + )V . E _(_a,t) = V • (n E ) ,(1)

(62+ V Bt- V)n(x,t) = V2I , (2)

together with V x E = 0, where E(x,t) is the low-frequency envelope

of the total high-frequency electric field ETOT (x,t) =

E(xt)exp(-iwe t) plus the complex conjugate; n(x,t) is the deviation

of the ion density from its average value rtm; we is the background

plasma frequency; ve (vi) is the high (low) frequency phenomenologi-

cal energy damping rate (twice the amplitude damping rate); the
sound speed c. [(yT + eT e)/mi] , where 7. (.iT) is the electron

(ion) specific heat ratio characteristic of low-frequency oscilla-

tions; Te (Ti ) is the electron (ion) temperature; and x = (x,y) and

t represent space and time; all in dimensionless units. Their rela-

tion to dimensional variables, signified by a tilde, is given by

!

I
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3 e

1 (4mik( n.

e

T= m

e' e

where the electron Debye length Xe = (Te/me4±)" 2 and the dimension-

less ratio r = (VeTe + iTi)/Te . The physical effects contained in

(i) and (2) have been discussed by Z.AKHAROV (1972), by NICHOLSON et

al. (1978), and by many others.

We consider parameters (NICHOLSOIN, 1977) characteristic of

ordinary-mode nighttime heating by the Plattevil-le, Colorado,

facility. The heater frequency is taken to be = 4.9 M z so

. ~hat the reflection point occurs at an electron density no = 3 xl s

cm3s approximately 300 km above the earth's surface; Te =Ti =

0.1 eV; electron collision frequency due to ions and neutrals (high-

; ~frequency amplitude damping rate) ve/2w e = 2 x O';power density

~incident at the base of the ionosphere 50 1 W/n ; ionoapheric density

scale length 50 kmn. We are interested in the electric field of the

*1M

m .n1 - K

eI

•~~~~ ~ ~~~ ~ ~~~ .fa...... ... r .... . , .t"-,.

" - -II I III I I I32,2
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ordinary-mode heater wave at the exact reflection point where

We = % (z = 0 in Fig. 1). Here, the heater electric field is along

the geomagnetic field with an effectively infinite wavelength. The

formulae of GINZBURG (1964), taking into account the Airy enhance-

ment of the heater wave as shown in Fig. 1, predict an electric

field of 1.0 V/m for the stated power density. A natural measure of

the intensity of this field is the ratio W = 1-IE/41 nTe of elec-

tric field energy density to background kinetic energy density; for

these parameters we have W = W = 4.4 x i0"4 at the initial time.

The electrons are isothermal with respect to the low-

frequency response, 7e = 1. The adiabatic compression is one

dimensional and 71 = 3 and thus I = 4. The low-frequency damping

coefficient is quite large due to ion Landau damping in an equal

jtemperature plasma. We adopt a simple model damping which after

Fourier transformation is vi(_) = 21k1.

I Following NICHOLSON et al. (1978), a stability analysis of

the heater field yields a threshold for a purely growing

instability

I
I* 2 W e /2 , (4)

3 or in dimensional units for the present parameters, b = 0.6 V/m,

well below our value of F = 1.0 V/r.

I* I

ii I I I
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In order to determine the nonlinear evolution of the

oscillating two-stream instability, we solve the Zakharov equations

(1) and (2) numerically in two spatial dimensions. The numerical

technique is described in NICHOLSON et al. (1978) and in NICHOLSON

and GOLDMAN (1978). The initial electric field consists of the

"pump" electric field with wave number zero pointing in the

x-direction, representing the heater field, and small random elec-

tric fields at all other wave numbers in the two-dimensional wave

number grid. The initial density perturbation is zero. All elec-

tric field components are subject to the linear damping v e/2, except

for the pump electric field which has zero linear damping.

At time w = 4.4 x l0 or t = 0.014 a, the unstable modes
wet

have exponentiated sufficiently from their initial noise levels that

the absolute value of the total electric field, Fig. 2, shows

regions of substantially enhanced field and substantially depressed
~field.

The regions of intense field begin to collapse, so that at

wt = 7.9 x lCP or t 0.026 a (Fig. 3) they have become even more

intense. At this time, the low-frequency density variation n

(Fig. 4) has minima in the same spatial locations as the maxima of

the electric field amplitude in Fig. 3. This is as expected for the

oscillating two-stream instability and the subsequent soliton

collapse.

'1
- ~ - -
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At the final time of this run, wt = 8.9 x 1cP or

t = 0.029 s, the collisionally damped solitons are quite prominent

(Fig. 5). The relative electric field energy density W/Wo vs. time

throughout the run is displayed in Fig. 6. After time weI =

7 x 1C, the unstable modes take a substantial fraction of energy

from the original k = 0 pump mode; this energy is subsequently lost

due to collisional damping. The net damping is always slower than

the collisional damping rate (dashed line in Fig. 6) because a sub-

stantial fraction of the total wave energy continues to reside in

the undamped k = 0 mode at each time. The collisional damping in

this case acts fast enough to prevent the collapse of the solitons

to such small spatial regions that the accuracy of the computer code

is lost.

The numerical work described here is in two spatial dimen-

sions, while the actual solition collapse during ionospheric heating

f occurs in three spatial dimensions. Thus the spatial dimensions of

the solitons, and the maximum energy density in the center of the

solitons, may differ by factors of two or more in the actual physi-

cal situation from those obtained here. However, the time scales

involved are probably very close in the two-dimensional and three-

Idimensional cases.
Before discussing the implications of these results for iono-

I spheric heating, we proceed in the next section to add the effect of

the geomagnetic field. This results in significant quantitative

! 1
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differences; the overall qualitative scenario, however, remains

unchanged.

~I
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SOLITON COLLAPSE INCLUDING TE GEOMAGNETIC FIELD

The earth's magnetic field is such that the electron gyro-

frequency pe is roughly fle/we = 1/3.5 for the parameters of

interest. For linear Langmuir waves with a wave number component ky

perpendicular to the magnetic field, the dispersion relation is

n,2
W= u?(e r2X + -1 Sin2e , (5)

where e = tan' (k/kx). Thus we include the effect of the geomag-

netic field in our numerical calculation by making the following

replacement of the dimensionless Fourier representation of the

operator -V 2 in (1):I
mi

.4k
2 + Anjr msine . (6)

~I

With modification (6) to our computer program, we repeat the

1 calculation of the previous section. Since only wave numbers with

small values of ky are predicted to grow, and since we are limited

I
I

j I
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by computer resources to a grid of 64 X 64 points, we resolve the

behavior in configuration space by choosing L/L. - 50.

Figure 7, analogous to Fig. 3 in the unmagnetized case, shows

the electric field in configuration space at we! = 7.9 x 1C or

= 0.026 a. The maximum energy densities here are actually twice

as large as in the unmagnetized case. We interpret this as follows.

In the magnetized case, the spatial configuration is much more one-

dimensional than in the unmagnetized case. It is well known that

dispersion is more effective in inhibiting one-dimensional collapse

than in inhibiting two-dimensional collapse. Thus, in the magne-

tized case, the unstable oscillating two-stream modes can remain in

phase with the pump for a longer time. This allows them to absorb

more of the pump energy than in the unmagnetized case; at a slightly

later time, when the waves do decouple from the pump and begin to

collapse, they have a somewhat greater intensity than in the

unmagnetized case. This effect is helped by the fact that the

magnetized solitons involve the collapsing energy from a spatial

Svolume roughly 50 times larger than in the unmagnetized case; thus,

it is not surprising that the intensity at the very center of a

*1 collapsing soliton is larger in the magnetized case.

Figure 8 shows the relative electric field energy density vs.

time for the entire magnetized run. The energy dissipation at late

times is even closer to the collisional damping rate than in the

unmagnetized case (Fig. 6), consistent with our previous

SI
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interpretation of a greater efficiency in the conversion of pump

energy to unstable mode energy in the magnetized case.

I
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CONCLUSIONS AND IMPLICATIONS

We have demonstrated numerically that the ordinary mode

Platteville modifier is intense enough to cause an oscillating two-

I stream instability at its exact reflection point. This instability

J leads to regions of spatially localized intense electric field which

become collisionally damped collapsing solitons. The time scale for

j collapse is a few milliseconds. The spatial scale of the collapsing

solitons is about one meter along the geomagnetic field, and,

I because of the geomagnetic field, about one-hundred meters or less

perpendicular to the geomagnetic field.

Our results lend an intriguing interpretation to an important

observational fact. It has been observed that when the modifier at

Arecibo is turned on, the intensity of the plasma-line echo is

I initially quite intense (MULDREW and SHOWEN, 1977); this phenomenon

is called "plasma-line overshoot." According to linear theory, this

result is difficult to understand, since it requires Langmuir waves

j created by the modifier to travel up or down in an essentially

vertical direction. However, the unstable oscillating two-stream

I instability of the present paper, and the parametric decay insta-

bility of the earlier theories of ionospheric modification reviewed

in the introduction, both produce Langmair waves travelling

I

SI
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predominantly along the geomagnetic field, not in the vertical

direction. However, this difficulty does not occur if one has

three-dimensional collapsing solitons. These nonlinear entities

contain all wave number components, not merely the ones allowed by

the linecr LangmLir wave dispersion relation. Thus, at least

qualitatively, the three-dimensional collapsing solitons of the

present paper could lead to a substantial plasma-line intensity. An

estimate of the plasma-line intensity due to soliton collapse will

appear in future work. A more extensive version of the present work

I can be found in WEATHERALL et al. (1982).

I

I
I
I
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I I
IFIGURE CAPTIONS

j Fig. 1. Standing wave pattern of the heater electric field and

direction of the geomagnetic field over Platteville,

I Colorado.

Fig. 2. Contours of absolute value of electric field in configura-

tion space at wet = 4.4 x iC or t = 0.014 s. The spatial

region shown is that used by the computer program, with Lx

corresponding to L 7loo or =32 m, and 64 m.
,cx e =70or1 Ly

Contour 2 corresponds to the initial electric field energy

i density W, contour 1 is 3% below the initial value, and

contour 3 is 3% above the initial value.I
Fig. 3. Contours of absolute value of electric field in configura-

tion space at wt 7.9 x l o = = 0.026 a. Contour 1

corresponds to W = 2.4 x 10-6, contour 2 to W - 9.7 x 10-4 ,

and contour 3 to W = 2.2 x 1 0 -s
. Other parameters are the

same as in Fig. 2.

i
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I
Fig. 4. Low-frequency density variation in configuration space at

time we t - 7.9 x 1Por t = 0.026 a. Contour 1 corresponds

to a zero density variation, contour 2 corresponds to /n,=

-0.002 or n = -600 cm-3 , and contour 3 (in four places,

unmarked on figure) corresponds to -/% = -0.004 or

n = -1200 cm 3 . Other parameters as in Fig. 2.

Fig. 5. Contours of absolute value of electric field in configura-

tion space at we 8.9 x ilP or t = 0.029 s. Contour 1

corresponds to W = 1.4 x 1O-4 , contour 2 to W = 5.4 x 10-,

and contour 3 (in three places, unmarked) to W = 1.2 X 10-3 .

Other parameters as in Fig. 2.

Fig. 6. Log1o of the relative electric field energy density

W/W vs. time for the entire unmagetized run. The dashed

line shows the rate of energy decay which would occur if all

modes were collisionally damped. The actual decay is slower

J than this because at each time a significant iraction of the

F wave energy is in the undamped k = 0 mode.

Fig. 7. Contours of absolute value of electric field in configura-
tion space at = 7.9 x iCP or I= 0.026 s, for the magne-

tized case. Contour 1 corresponds to W = 5.4 x 10", con-

tour 2 to W - 2.2 x I0" , and contour 3 to W = 4.9 x l0 "s .

Note that this figure has been compressed by a factor of 25

in the vertical direction.

17
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Fig. 8. Logo of the relative electric field energy density

W/W. vs. time for the entire magnetized run. The dashed line

shows the rate of energy decay which would occur if all modes

were collisionally damped. The actual decay is slower than

this because at each time a significant fraction of the wave

energy is in the undamped k = 0 mode.
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BEAM-PLASMA INTERACTIONS IN A POSITIVE ION-NEGATIVE PLASMA

Tom Intrator, Noah Hershkowitz

Department of Nuclear Engineering

University of Wisconsin

Madison, Wisconsin 53706

Raul Stern

Department of Physics, Astro Geophysics

University of Colorado

Boulder, Colorado 80309I
Abstract

An electron free plasma consisting of negative ions (SF6 ") and positive

j ions (Ar+ ) and negligible neutral-ion collision frequencies has been created

in the laboratory. This plasma has a mass ratio of approximately 3.5 similar

3 to many computer Particle-In-Cell simulated systems. A fluid description of

this Positive and Negative Ion Confinement (PANIC) plasma is given and

compared to experimental measurements of a beam-plasma instability for both

beam species and a wide range of beam energies. The fluid dispersion relation

and most growing mode are predicted to be insensitive to many parameters of

1 the PANIC beam-plasma system, and found to be consistent with the data.
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I. Introduction

Many problems in plasma physics are not amenable to analytic methods

of solution, and therefore direct computer calculations of plasma

properties are attempted. For practical reasons, computer Particle-In-

Cell simulations frequently specify the mass ratio of their particle

species to be near unity instead of several thousand [e.g. 1836 for the

(H+ , e-) plasma]. In this paper we describe a laboratory plasma that

corresponds to such simulation mass ratios. It consists of positive ions

(Ar+, mass m+ - 40 amu), negative ions (SF6, mass m_ - 140 amu), and

virtually no electrons. This Positive and Negative Ion Confinement

I (PANIC) plasma has a mass ratio of m_/m + - 3.5, and is contrasted with the

electron-ion plasma in Table 1. Table 1

Here we describe an experimental measurement of beam-plasma

j interactions in the PANIC plasma. A Double Plasma (DP)l device was

designed to allow ion beams of either species to be injected from one half

I of the machine into a "target" plasma in the other half. Single chamber

i versions of such plasmas have been described by Wong et al. 2 and

Hershkowitz and Intrator 3. A serious problem in such devices is that

* l 1 reactive fluorine radicals from the (Ar+ , SF6" plasma corrode the entire

vacuum system. Thus experimental data is at the expense of system

longevity (gauges, pumps, chambers, etc.). The results from this

experiment are interpreted with the aid of an unmagnetized fluid model

which allows a simple analysis of this beam-plasma system and includes the

I
I

1 -. ~ .,.~ i



3I

influence of the unusual mass ratio. For the PANIC beam-plasma-

instability, a dispersion relation and most growing frequency are

Ipredicted and experimentally confirmed.
Interest in beam-plasma interactions in unmagnetized plasmas is not

new, and indeed dates back to the earliest investigations of unmagnetized

electron-ion-beam systems. Electron beams4 and ion beams5 ,6 can interact

with the plasma, depending on whether the beam velocity is in the vicinity

I of a sound speed (cs) or an electron thermal velocity (ve). These

I interactions are respectively, the beam driven ion-acoustic wave and the

beam-plasma instability.7 Although there have been many experimental

I investigations of these interactions in electron-ion systems, there have

been few of negative ion-positive ion plasmas.8 The negative ion-positive

l ion plasma has rarely been the subject of experiments 8 or theory. 9 Wong

et al. 2 used a grid to drive "fast ion acoustic" instability in a negative

ion-positive ion plasma. A study of the beam-plasma instability in a

m PANIC plasma is the subject of this paper.

An outline of the fluid model is given in Section II. This

approximation yields a simple description of the various normal modes of

the PANIC plasma, which can then be compared with the analogous modes in

the more familiar Ion-electron plasma. Details of the experimental

I apparatus and techniques are given in Section III. Experimental data for

a PANIC beam excited instability are shown in Section IV, discussions and

conclusions are given in Sections V and VI.

J 7
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II. The Fluid Model and the PANIC Plasma

A. Fluid Approximation

The three fluid (two background plus beam) approximation leads to an

expression for the background density perturbation

n - = ikE1 m 2 - (s1k2)2

which can be inserted into Poisson's equation to give a dielectric

I response function

I
2 2p+ Wp_

c(k,w) = 1 - 2 2 2 2 2 2

W r+k V+ W _ rkV_

1 (2)

2 2Wpb Wpe

(w kb)2 v 2 -kVe

I The density is denoted by ns, the wavenumber by k, the self

consistent electric field by El, species charge by qs, mass by ms , and

wave frequency by .. Thermal velocities are v , v., ve, Vbth 'for +, -,

I electron and beam species, and vb is beam velocity. The subscript 1

I

I IN ..s.--., a.-...

InN I I*'|t|
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indicates a first order perturbed quantity. The plasma frequencies

ps (4re ns/m s I) are subscripted +, e, b, e for positive ions,

negative ions, beam ions or electrons, respectively. The value

of rs depends on the type of perturbation (e.g. isothermal or

adiabatic). Solutions of c(k,w) = 0 give the dispersion relations for

electrostatic waves and can be found analytically for the small wavenumber

limit, where we choose rs = 1.

1 B. Sound Wave

At c(k,w) = 0, the dispersion relation has a "low" frequency root

2 a - M k 2 (a+M)( +) + ( M) 2 (3

1p D (1 +M)2  2(1 +M) D

where a v- 2/v+2 , the mass ratio M - m+/m_, and the k in (3) is

m normalized to the Debye wavenumber kD+ (4we 2n+/T+) I / 2

The dispersion relation becomesI

I I/b) k V 4I °,-++ v+
D_

m where 9 = [(1 + M/a)/(l + M))I/2 + 8tk2/ko+2). This sound wave always

m travels at a phase velocity a little larger than the thermal velocity of

the slower ion. The thermal velocity is v_ = a1 2v+ so that for

- II*I I I4IYI
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temperatures satisfying 1 T_/T < 3 the corresponding range for

a is 0.3 < a < 1.0. Now 6 (1.0 < e(a) < 1.2) can be interpreted as therai fth on wv hsevlct (vun )
rati of he sund ave haseveloit ound to the heavier ion thermal

sound

velocity (v_) (i.e. 0 = vs /v_). In the electron-ion plasma, ion

acoustic waves travel at slightly greater than the sound speed
cs =T e/m , which is the analogue of ev in the PANIC plasma. In the

limit of equal thermal velocities, numerical calculations give

lim e(a,k) = 1, to all orders in k.
a+

C. Density Perturbations and Wave Propagation

In both types of plasmas (electron-ion and PANIC), the positive and

negative species oscillate in phase with respect to each other, with

alternating regions of bunching and rarefaction. The heavier particles

drag along the lighter ones, and thermal motions of the latter enables

them to shield fields from the bunched heavy ions. Thermal motion of the

heavier species as well as the mutual repulsion of the (now incompletely

shielded) bunched charges tends to spread out these regions of

compression. The heavier ions overshoot their lighter neighbors because

of inertia, regenerate compressions and rarefactions, and thence renew the

wave. For the two-ion PANIC plasma, masses and thermal velocities and

mutual reaction times become nearly the same for the two species.

o/
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D. The Plasma Oscillation

The plasma oscillation root of the two ion dispersion relation (2

I background species, no beam) is given by the "high" frequency solution

I
2 +2

p+ (1 + M)k D+

l Choosing M = 0.29 for the Ar+ - SF6- plasma gives:

* I
2

p[I + 0.3 -- (1 + 0.3a) + (6)
k2D+

I
Where 2]1[w + = 1.14 w As expected, these "Langmuir"

solutions exhibit a low frequency cut off near the plasma frequency Wp.

j For the case of no collisions, the two charge species oscillate 1800 out

of phase with respect to each other.

1 E. Beam Modes for Electron-Ion Plasmas

Adding an ion beam with density much smaller than the background

gives rise to new features in the electron-ion plasma response. For

Iexample, the "bump on tail" distribution of Fig. la is a typical velocity

distribution function for an ion-electron plasma with a small ion beam.

In the limit that the background ion thermal velocity (vion) and beam

"bump" velocity (vb) are very far apart (vion < Vb), they do not

interact, and ion acoustic waves are observed at v, * + cs , symmetric

* ,**..(
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I about the background ion distribution. The background electrons provide

the restoring force for the wave displacements, and have a very wide

velocity distribution (vb << ye) that is essentially invariant for a

change of rest frame. With this in mind, a Galilean transformation from

the ion background to beam rest frame can be made. Now the same type of

"ion-acoustic" wave will be seen at phase velocities symmetric about the

1/2 Fig. la,
beam velocity (v s v b + b/no] c ). The nomenclature for the "fast" lb
("slow") beam mode at v = vb (1) (nb/no)I/2cs is taken from this

1 feature. For small beam velocities vb - cs (e.g. Fig. 1b) two modes

between the ion "bumps" coalesce and form a growing-damping conjugate pair

of modes. For the case of the PANIC plasma, there is no frame invariant

background ion distribution, so that this reasoning does not apply to the

two-ion beam driven sound wave.

JAnother beam driven mode is known as the beam-plasma instability.
The beam velocity must be larger than the largest thermal velocity in the

I system and less than the Langmuir wave phase velocity for the "fast" and

"slow" beam modes to couple and form this instability.

F. The Effect of Beams on the PANIC Plasma

jWhen a beam fluid is added to the PANIC plasma and electron

impurities included, the dielectric response function is, from (2):

I M n_ M bnb  n

" " 2 z + k (7)
..... .. - . ... .... ",k*vb*) . 'bth* k
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j where the dimensionless quantities of frequency (w,), wavenumber (k,),

beam velocity (Vb*), beam thermal velocity (vbth*), mass (M) and

density (n) are normalized to plasma frequency (w/wp+), Debye wavenumber

(k/kDO, positive ion mass (M_ m+/m., Mb  m +/mb) , and positive ion

density (n_- n-/n+, in, = nb/n+, ne = ne/n+), respectively. The

subscripts +, -, b, e denote Ar+, SF6-, beam and electron species. Since

we will only consider ion waves of phase velocity much less than the

electron thermal velocity, w << kve is neglected in the electron term.

Charge neutrality requires that n_ = 1 + n b Typical PANIC velocity

distributions are shown in Fig. 2a for vb >> v+ and in Fig. 2b

where v.b > v+. Fig. 2a,2b

The roots of Eq. (7) were calculated numerically for complex

w vs. real k and real w vs. complex k, with very similar results. The

parameters that could affect these results include beam velocity, beam

density, beam temperature, background temperature and electron impurity.

j Dispersion relations and most-growing frequencies were found to be

insensitive to the following parameter ranges: 0.01 < k* < 1, 1 < Vb* <

10, 0 < vbth* < 2, 0.1 < nb < 0.2, and 0 < ne < 0.002. The case of

complex w vs. real k corresponds to spatially periodic, temporally growing

perturbations10 and is consistent with the experimentally observed

unstable real frequency. Numerical solutions for this case are shown in
Fig. 3

Fig. 3, a graph of w vs. k, showing fast and slow beam modes coupled to

form a beam-plasma mode, and Fig. 4, a graph of w vs. k showing the slow
Fig. 4

beam mode coupling to a sound wave for small beam velocity. Fig. 5 is a

graph of phase velocity (v*) versus beam velocity (vb) showing the various

+K
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I background plasma modes (Langmuir and sound waves) and beam modes (fast

and slow beam modes) as a function of beam velocity. The coupled modes

indicate the identical real parts of growing-damping conjugate pairs of

j roots. Fig. 6 is similar except that it corresponds to the case of real w

vs. complex k. The dielectric function is symmetric as (vb,) Fig. 6

I (-Vb'-V) so that there is point symmetry about the origin on a linear

graph of v¢ versus vb such as Fig. 7. Note that any vertical line crosses

the six zeroes of c(k,w) from equation (2). Fig. 7

IThe phase velocity versus beam velocity representation of the PANIC

beam-plasma system (Figs. 5-7) reveals two modes that are independent of

I the beam velocity. These are the sound wave with phase velocity

v ~ wp/k. However, these roots are not continuous. For example, one can

follow the sound wave root on Fig. 7 in the direction of the vb axis, as

it curves upwards and becomes the fast beam wave root, while the slow beam

wave root levels off and acquires the phase velocity of the sound wave.

It is clear that no two roots cross, although wave properties do switch

from one root to another.

The modes that do depend on the beams are the "fast" ("slow") beam

SI modes, so named because their phase velocities are slightly faster

(slower) than the beam for very large beam velocities (i.e. vb > 1p/k).

* For smaller values of vb, the fast and slow beam modes coalesce into a

growing-damping conjugate pair with equal real phase velocities

v ~I 0.9 vb. This is the beam-plasma instability that has been observed

I in the laboratory PANIC DP device, for beam velocities in the

range 2 < vb, < 10. Details are given in the following section.

*1*I
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G. Dispersion Relation for Beam-Plasma Instability

For the beam-plasma instability in the PANIC beam system, the

dispersion relation is found numerically to be

w = &kvb (8)

I
in one dimension, where 0.8 < t < 1.0 is an empirical parameter of order

unity. When one extends the problem to three dimensions, the beam

I velocity vb defines a preferred direction with which we can establish a

coordinate system. The dispersion relation of Eq. (8) only depends on the

projection of on Vb, so another parameter, the angle between

I and *b' must also be measured experimentally (i.e. =

Many parameters in this system can be varied, with little or no

l change in &. Typical results are shown in Fig. 8, which is a graph

of v,/vb versus wavenumber k/kD+, for several values of beam density. A

search over the possible values for beam velocity [1 < vb, < 10], beam

density [0.1 < nb < 0.3] and temperatures [0 < Tb/T+ < 4 for beam;

1 < T./T+ < 3 for background] was conducted. All parameters were allowed

to vary, yet remarkably 0.8 < v/vb < 1.0. Thus the qualitative nature of

the beam waves does not appear to be sensitive to any of these parameters. Fig. 8

I
I
I
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m H. Growth Rates

There are two growth rates of interest: y, the absolute growth rate

I which competes with damping processes that occur in real time and the

relative growth rate y/w which competes against damping phenomena on

plasma period time scales (w P ). The relative growth rate was used in

I this analysis.

The frequency at which the relative growth rate is maximum is

I predicted to be

l
I 0.5 < w[(Y/W)max]/Wp+ < 0.6 (9a)

I
mp(-1) 3n1/2(c-3)

where the ion plasma frequency w - The linear

growth must compete with ion-neutral collision frequency 1 V+n ~ 2.2 x 10

I Po (Torr) T+1/2(eV) and Coulomb collision frequency11 v+_ - 9.7 x I0- n

(cm"3) Te-3/2 (eV). The data will show that v+n < v+- " wp+ for this

I experiment. The wavenumbers that correspond to this most growing region

are

I
0.1 < k[(Y/W)max]/kD+ < 0.3 (9b)

3 where the Debye wavenumber is kD+(cm = 1.4 x 10"3 [n+(cm 3 )/T+(eV))1 /2.

I
.1
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A computer search over w, k, vb, ne , nb, T_/T+, Tb/T+ yielded only the
small variations shown in Eqs. (9) for w and k at (/w)max*

I. Electrons

Analytically a small electron impurity is insignificant to the PANIC-

beam dispersion relation (7) except in the limit of small wavenumbers. If

we set the c(k,w) of Eq. (7) to zero, with phase velocity (vy. = v2/k)

then

m+/m_(1 Trb) +n b  (10)2 ne  2 2 _ (10)v.- v . 01 (v -v) -T/T

For the typical laboratory PANIC plasma data, the electron fraction is

small 10-4 < n < 10-3 so that Eq. (10) differs from the case for

ne = 0 only for ne - k*, or k/kD+ < 0.03. For the following experiments,

the wavenumbers that correspond to the most growing modes are

k/kD+ - 0.2-0.3, well away from the electron dominated regime. The effect

of electrons on the fluid model two ion plasma oscillation is explicitly

displayed in Figs. 3 and 4.

I1. The Experiments and Apparatus

The PANIC plasma (Ar+ , SF6 ") is generated by attaching cold

electrons 2 ,3 ,12 to SF6 gas in an Ar+-cold electron plasma via the resonant

i reaction e- + SF6 + SF6". The cross section for electron attachment to

SF6 has a maximum for cold electrons with energy near 0.1 eV13. The PANIC

7
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l plasma experiment operates at neutral pressure low enough so that

collisions with neutral particles will not dominate the collective

behavior of the plasma. 12 The neutral pressure was Po <S 6 x 10-5 Torr and

typical PANIC ion temperature was T+ < 0.2 eV. From this the ion-neutral

collision frequency can be estimated at1' v < 500 s - 1 . The plasma

density of n - 108 cm 3 gives a Coulomb collision frequency
11

v- ~ 1000 s - 1 . The plasma is "collisionless" in the sense

that v +n < v.- << wp+ and both are much less than the frequencies of

1 interest.

A laboratory steady state beam-plasma interaction was maintained in a

I Double Plasma (DP)1 '3 12 consisting of a 40 litre multidipole line cusp

confinement device, 14 containing two separate PANIC plasmas at different

and controllable plasma potentials. A beam of ions was injected from one

1 half of the PANIC DP to the other. Beams with densities equal to 10% of

the background target density could be created. Fig. 9a shows the PANIC

DP with cold electron sources, individually biased target anode, and the

beam control grid between targets. The grid can be biased to potentials

as shown for example in Fig. 9b to transmit single beam species.

l Electrostatic probes were used to determine plasma density and

temperature, beam energy and density, and also the wavefront arrival time

for the beam driven disturbances. The probes were 0.6 cm diameter

tantalum discs that could be moved in three dimensions, with two choices

of orientation (facing towards and away from the beam). By simultaneously

i triggering data acquisition on a reference probe and movable search

probes, a graph of phase versus spatial location of unstable waves was

Ii,
. . ... .. . .... , ,. - ...- , T .
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constructed in three dimensions. This yielded information about

frequency, wavelength and damping. The data were found to be in good

I agreement with the fluid theory prediction.

1
IV. Data

A dominant frequency is observed for the PANIC beam-plasma

instability, and is probably the non-linearly saturated most unstable

Ifrequency (w,). The value of w, is consistent with the fluid model

prediction of a most growing mode at I = [(Y/W)max I - 0.6 p+ - 0.5 p.

The data give a best fit to w - (0.5 + O.1)wp given in Fig. 10, a graph of

I noise frequency (fl) versus plasma frequency (fp). Fig. 10

The wavelength measurements are consistent with the dispersion

1 relation (including electrons), wI = ' b* The value of the parameter

has the range 0.8 < & < 1.0 from the fluid approximation for the beam-

plasma mode. Fig. 11 is a graph of f, versus vbwlI, 'here vb is the beam

I velocity and AI1 is the wavelength corresponding to the projection of

on 'b* A straight line fit to the data cannot distinguish between

I = 0.9 and E = 1.0. Fig. 11

It is interesting to note that waves are driven obliquely to the beam

direction on occasion. Data in Fig. 11 show that the cosine factor is not

J always equal to one.

I

I

1J
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IThese data indicate that beam driven noise of the fluid beam-plasma
Instability type is indeed observed. The fluid relative growth rate has a

gentle maximum as a function of wavenumber at the frequency

WI [(Y/W)max 1. Evidently this is enough of a maximum to generate a

reasonably monochromatic instability for a given beam velocity and plasma

I density. The saturation level of the turbulent fluctuations could be made

smaller than 6n/n - 10-3. The beam driven waves propagated several

I wavelengths before damping out. Note that the group velocity is identical

to the phase velocity for this wave (i.e. it is non-dispersive).

The electron impurity population can be inferred from a Langmuir

Itrace of the PANIC pldsma, such as Fig. 12. This shows a current vs.

voltage characteristic of an electrostatic probe in the plasma, where the

saturation current I*SF 6- (1*Ar+) of the negative (positive) species is

measured down (up) from the inflection point on the Langmuir trace. The Fig. 12

electron free PANIC plasma characteristic should have saturation currents
I*SF 6/I*Ar+ = (mAr+/mSF 6-)/2 _ 0.6. The electrons add to the measured

66 4 .negative saturation current to give an estimate of ne/n -4 x 10

I Upper limits on the temperature of the ion species can be determined from

a typical Langmuir trace like Fig. 12. The slopes of Ar4 and SF6-portions

of the curve are not the same. Typically the temperature of the heavier

l species (TsF -) was seen to be warmer than the Argon temperature (TAr+)

(TSF 6- -0.2 eV, TAr -0.1 eV). These approximate temperatures correspond

l to thermal velocity ratio a = v 2/v 2 ~ 0.45 - 0.65.

I
lI
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IIn Fig. 13 a Langmuir trace shows the "source" plasma potential and

"target" characteristics, including the target plasma potential and beam

"bump" contribution. Fig. 13

I
V. Discussion

I The fluid model of the PANIC-beam system predicts that a beam-plasma

instability exists for beam velocity 2 < vb/v + < 10. For the PANIC

plasma, the data verify that waves of this nature can indeed be driven by

beams. The dispersion relation of the beam mode is predicted by fluid

calculations and observed to be w= kvb' where 0.8 < 9 < 1.0, and the

I unstable frequency is w I 0.5 wp. In a previous experiment Wong et al. 2

drove waves in a negative ion-positive ion plasma with a toneburst grid,

using approximately 1 volt (eO ~ 4 T e). In that experiment the waves were

at 0.4 w but were identified as "fast ion acoustic" waves.

In the PANIC experiment, the neutral pressure was near

Po - 6 x 10-5  Torr, with result that neutral collisions did not dominate

the collective behavior of the plasma. For plasma frequencies typically

W p+ ~ I04-I06 s- 1, V+n/Wp+ < I 0- 2. The electron impurity is shown to be

I less than 0.1% of background.

This PANIC-DP experiment demonstrated the existence of a beam driven

l mode in an unambiguous fashion. A reasonable range of parameters was

explored in beam velocity (vb/v+ - 1.4 - 10) and wavelength

( 0.3-10 cm) for both beam species. Plasma frequencies range from

j 50kHz to 800 kHz (Figs. 8, 9). This corresponds to PANIC plasma densities

from no =5 x 10
6  3 x 108 cm"3 .I0

'- - . . . .... . I I I
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VI. Conclusion

A Positive And Negative Ion Confinement (PANIC) plasma has been

considered from the fluid model point of view, and also created in the

laboratory as an Ar+ - SF6- plasma with virtually no free electrons. With

this plasma, a beam-plasma instability was driven and observed

experimentally. The PANIC plasma has a mass ratio of m_/m+ - 3.5, which

corresponds to the typical simulated plasma systems of computer Particle-

In-Cell techniques.

The fluid approximation has been used to show that this PANIC plasma

exhibits two-ion plasma oscillations, sound waves and unstable beam

modes. One such beam instability is reported here. The sound wave speed

cs corresponds to v_, the thermal velocity of the slower and heavier PANIC

ion (SF6 "). A mass ratio of order unity has the consequence that the

j sound waves and plasma oscillations occur at frequencies less than an

order of magnitude apart. After an ion beam was added to the dispersion

relation, two beam driven modes were predicted by the fluid solutions.

These were named "fast" and "slow" beam modes, due to phase velocity

respectively faster or slower than the beam velocity (vb). For slow beam

velocities vb - v_, the slow beam mode can couple to a sound wave. For

large enough beam velocities (2 < vb/v+ < 10) the fast and slow beam modes

coalesce into a complex conjugate pair, with one member growing and the

other damping. This mode has been experimentally observed in steady

state. All these fluid modes have been classified on a graph of wave

A
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phase velocity versus beam velocity. The PANIC- beam system was shown to

exhibit behavior analogous to that of the better known electron-ion-beam

systems.

Of the two PANIC beam unstable modes predicted by this fluid model,

one has been observed in the laboratory, using a PANIC-DP device. This

beam-plasma instability has a dispersion relation given from numerical

solutions to the fluid equations w = t'Vb' where the coefficient

0.8 < t < 1.0 is insensitive to the many parameters including wavenumber,

beam velocity, beam and background temperature, beam density, and electron

impurity fraction. The frequency at which maximum relative growth rate

occurs was predicted to be w(y/w)max - 0.5 wp , and confirmed by

experiment. The values for most unstable w and k are also insensitive to

I the many salient parameters.

1 Electrostatic probes were used to measure the unstable frequencies,

wavelengths, and spatial propagation of waves. The data agree well with

I the fluid predictions. This experiment was carried out at low neutral

pressures and density fluctuation levels, so that waves did not need to be

1driven by a grid 2 and wave damping from neutral collisions or turbulence

I was not a problem. A wide selection of beam velocities and densities, of

either PANIC species (Ar+ or SF6 ") was available inside the Double Plasma

I(DP) device.
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I FIGURE CAPTIONS

I Fig. 1. A plot of typical velocity distribution function for an

I electron-ion-ion beam plasm, with vb >> cs. (a) Beam velocity

vb is the center velocity of the beam and cs is the ion-acoustic

sound speed. (b) Yb - cs; the slow beam mode and ion-acoustic

l root couple.

Fig. 2. Maxwellian velocity distribution function of PANIC plasma with

beam. (a) For vb >> v+. (b) For vb ~ v+, the beam-sound wave

is the analogue of beam driven "ion- acoustic" modes.

l Fig. 3. w versus k showing coupled beam plasma mode for vb/v+ = 6. Fast

and slow beam modes are coupled here. Two growth rates are also

plotted. The relative growth rate (y/w) is germane to this

1 problem, although absolute growth rate (y) is given as well.

Fig. 4. w versus k showing the slow beam mode coupling to a sound wave,

I and y/w for Vb/v + = 1.3.

Fig. 5. Phase velocity versus beam velocity for a typical fluid model

solution to the PANIC plasma with beam excitation. The beam

l driven sound wave is shown for vb ~ v+, and for beam velocities

much greater than thermal velocities, the beam-plasma mode is

I shown with growth rate y/w. The general features are not very

dependent on any other parameter of the plasma-beam system.

I
jl
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Fig. 6. Phase velocity versus beam velocity for the PANIC fluid model,

showing the results for real w-complex k to be very similar to

the case of complex w-real k. Note that w > wp in order that

the "Langmuir" wave can exist.

Fig. 7. A linear graph of phase velocity versus beam velocity, showing

all six roots of the PANIC- beam system.

Fig. 8. Graph of phase velocity/beam velocity vs. wavenumber for the

PANIC plasma. The dispersion relation w/k-vb - 1 is

insensitive to the beam density for the wavenwiber of interest

(0.1 < k. < 0.3).

Fig. 9. (a) Schematic of the PANIC double plasma device (DP).

(b) Potential versus distance in the DP, showing the grid

modulation of beam flux crossing the source to target.

Fig. 10. A graph of the experimentally observed most growing frequency

(fl) versus plasma frequency (fp). The best straight line fit

gives 0.5 < fI/fp < 0.6, in agreement with the fluid model, for

the frequency of the fastest growing beam-plasma mode.

Fig. 11. A graph of experimental data showing the dispersion relation for

the beam plasma instability. f, is plotted against vb/A I in the

parallel (to the beam) direction. The best straight line fit is

J consistent with w - 0.9(+ O.l)kvbV

Fig. 12. Typical Langmuir trace from the PANIC plasma, showing saturation

currents, with the inflection point of the "knee" for each

contribution.

I
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Fig. 13. Langmuir traces of source (bottom) and target plasmas (top)

showing the target beam "bump" to a SF6" beam injected from the

source. When the target probe is biased more negatively than

ipS' the beam contribution is "turned off." Beam energy is

Eb = e(.pT - Ops ) - 3.8 eV. For slow trace sweeps like this,

noise is averaged out giving the "thick" lines.

I
I
I

I
I
1
1
I
I
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I TABLE 1

I CHARACTERISTICS OF LABORATORY PLASMASI
Parameters Electron-Ion PANICI

Mass Ratio 1836:H+/e" 3.5:SF6"/Ar+

74000: Ar+/e -

I
Plasma Frequency 107 - 1010 Hz fP+ ~ fp. < MHz

2Vfp = /4rezn/m fpe > > fpi fp+ ~ 33[n+ ( c m- 3 ) ] 1/ 2

I Temperatures kTe = 0.1 - 4.0 eV T+ - T- - 0.1 - 0.3 eV

Te > Ti

I Density n =10 6 - 1012 cm-3  n = 105 - 109 cm"3

I Debye length AD 10- 3 - 10- 1 cm AD ~ 10-2 - 1 cm

AD - 740/

3 Waves Langmuir Plasma Oscillation

Ion Acoustic Sound Waves

I
I

I
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I INTENSE ION TRANSPORT IN ELECTROSTATIC ION-CYCLOTRON WAVES

R. A. STERN, University of Colorado, Boulder, CO 80309 &

N. RYNN, University of California, Irvine, CA 92717

IABSTRACT
A series of experiments documenting in detail the cross-

i magnetic field ion motion caused by intense electrostatic ion

cyclotron waves is described. Using novel laser diagnostics,

we observe large-scale ion heating and diffusion as well as the

j formation of pathological phase-space distributions.

INTRODUCTION

Electrostatic Ion Cyclotron Waves (EICW), the lowest-

frequency eigenmodes of a magnetized plasma, are amongst the

easiest to destabilize and consequently occur in a large

Ivariety of configurations, including tokomaks, mirrors, the

magnetosphere and isotope separation schemes 1). They have an

appreciable oscillating electric-field component directed

across the static magnetic field B. We describe intense ion

heating and diffusion across B, driven by the oscillating

1 electric field.

EXPERIMEKTAL CONFIGURATION

Experiments were carried out in Q-machine plasmas 2 ) using

Bali, KII and CsII; and in ArlI diffusion plasmas of the ECRH

type. Typically, a 50% ionized plasma column 5 cm. in diameter

is used, with nione-lO e to 1010 cm- 3  The magnetic field

is uniform to a few % and ranges from 1.5 to 8 M. Ion temper-

atures are of order 0.2 eV; electron temperatures range from

0.2 eV in Q machines to 5 eV in the diffusion plasmas. The

*1
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EICW were excited by electron currents with the Drummond-
Rosenbluth growth rate: y " (Vd/Vth)(Te/Ti), where

Vd and Vth are the electron drift and thermal speeds,

respectively. Oscillating potential excursions in the wave

ranged up to 2 V peak to peak.

I DIAGNOSTICS

The ion distribution velocity function F(v,r,t), was

obtained through the use of laser-induced fluorescence

techniques 3). These methods resolve v to within 0.1 and 0.01

of the ion thermal speed; and define a diagnosed volume of

I order 1 mm 3 , which is scanned across the plasma. Time resolu-

tion to within a small fraction of the wave period w 1 was

ci
achieved. A new method--Optical Tagging (OT)--was devised to

1 follow the diffusion of ions ). In OT, ions are optically

pumped by tunable lasers from one long-lived quantum state to

I another, and re-interrogated by another laser beam at a dif-

ferent point in space-time.

SUMMARY OF RESULTS

j We describe experiments where the destabilizing electron

current was generated by inserting a small-diameter electrode

I (e.g. 0.6 cm.) into the plasma. This localizes the current to

an unstable filament aligned with B and of same diameter as the

electrode, because of the small particle gyro-radii.

GROSS DENSITY CHANGES: As the destabilizing current increases,

a dramatic loss of both electron and ion density occurs within

the filament. In the limit, the residual density is only 20%

of the initial value.

4.
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A corresponding increase in the density of the sur-

rounding plasma is observed. Using OT, we follow the transport

SI of ions which originate in the filament and diffuse all the way

to the column edge, i.e. over cross-magnetic field distances

one to two orders of magnitude larger than the background ion

i gyro-radii.

DYNAMICS OF EXPELLED IONS: Spatially and temporally resolved

measurements s ) of the distribution function of ejected ions

reveal two components: a nearly Gaussian, heated and static

I (in time) population, amounting to about 1/3 of the diffused

species, with temperatures up to 5 times the background value;

and a dynamic component, 100 density modulated in synchronism

with the EICW frequency, with central energies of order 1-2 eV

and narrow velocity spread. This beam component is assymetric

in velocity space; and also localized in radius to a region

surrounding the unstable filament and distant from it by about

1 one beam gyro-radius. The beam is found to rotate azimuthally

j in the direction of the diamagnetic ion current. Using OT to

follow particle orbits expelled from the filament, we verify

that this beam represents the net circulation of ions expelled

radially from the filament with the peak energy of the poten-

tial oscillations, and undergoing magnetron rotation due to the

v x B force.

MULTI-FILAMENT INTERACTION: The interaction between two

unstable filaments was observed. When one strongly-driven

"pump" filament is brought radially close to a marginally

..t .,.-
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destabilized "target" filament, we find that the EICW intensity

in the latter is decreased, and in the limit supressed

entirely. This process is ascribed to the net export of hot

ions out of the "pump" filament and into the "target", thereby

increasing Ti and decreasing the net growth rate. This sug-

gests that a system of many filaments will be unstable, since

the more intense filaments will "export" more hot ions than

they receive, quench surrounding filaments, and grow stronger

still. This may be responsible for the broader width of EICW

spectra in large-diameter unstable plasmas.

I CONCLUSIONS: We have demonstrated a new type of wave-particle

interaction with complex dynamics, occurring over scales many

orders of magnitude more intense than conventional processes.

I
1) TFR Group, Phys. Rev. Lett. 41, 113 (1978); F. H. Coensgen,

I et al., ibid 35, 1051 (1975); F. S. Mozer, et al., ibid 38, 292

(1977); J. M. Dawson, et al., ibid 37, 1547 (1976), and E. S.

Weibel, ibid 44, 377 (1980).

2) N. Rynn, Rev. Sci. Instru. 35, 40 (1964).

3) R. A. Stern and J. A. Johnson, III, Phys. Rev. 34, 1548 (1975);

R. A. Stern, D. L. Correll, H. Bohmer and N. Rynn, ibid 37, 833

(1976).

4) to be published.

I 5) R. A. Stern, D. N. Hill and N. Rynn, Phys. Rev. Lett. 47, 792

(1981).
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I
IDIRECT ION TRANSPORT MEASUREMENT

BY OPTICAL TAGGING

IR. A. Stern*, D. N. Hill and N. Rynn

Department of PhysicsIUniversity of California
Irvine, California 92717I

UCI Technical Report #82-61 August 1982

IAbstract
Optical pumping of long-lived quantum states is used to

identify groups of ions in phase space and follow their transport.

The principles and variants of a novel diagnostic method, as well

as new physical aspects and applications, including space-depen-

dent line-narrowing, are demonstrated.

i'I



We present a new non-perturbing diagnostic technique which

directly measures particle transport with high space-time resolu-

tion, and some results obtained through its use. Optical tagging,

the application of optical pumping to particles with appreciable

kinetic motion, requires a multilevel quantum system comprising

at least one long lived state. Tagging adds to the argument of

the velocity distribution function f(r,v,t) the definition of

the quantum state B; i.e., f(r,v,t,;B) has a "memory". It is

therefore an extension and advance beyond laser fluorescence spec-

1
troscopy , since the complete phase-space history of particle

motion is disclosed. In this communication we summarize the basic

and technical aspects of optical tagging, and demonstrate

interdisciplinary results: the measurement of the distribution

function without scanning or dispersive optics, a velocity selec-

tion process applicable in spectroscopy as well as remote magnetic-

field measurements, and the measurement of "anomalous" cross-

magnetic field transport in a plasma.

The technique is demonstrated using two laser beams and a

3-level system with 2 long-lived levels 0 and B, as in Figure 1.

A "pump" (P) laser is tuned to the transition 0-A. It decreases

the density po of 0-state ions, and ultimately increases the

density PB of the B-state. A "search" (S) laser, located at the

diagnosed point is tuned to any transition which has either 0 or B

as a lower level. The S-beam induces fluorescence with intensity

I proportional to po or PB' as chosen. It contains a "tagged"

component IT whose magnitude depends on P. This second component,

reflecting ion transport from the location of P to S can be

.. ..4 I i - II I I I II l



extracted from I by modulating the P beam intensity or frequency

and using synchronous detection methods.

The experiments were carried out in a single-ended Q-machineI 2at the University of California, Irvine , Fig. 1. A highly

ionized Ba II plasma column is produced by contact ionization of

Barium atoms on a 5 cm. dia. rhenium-coated hot plate. A magnetic

field B < 7 kG perpendicular to the plate confines the charged

particles to a column about 5 cm. dia. The background pressure

is 106 Torr. Plasma densities are kept below 10 cm-, and ion

and electron temperatures are about 0.2 eV., so that collisions

are negligible. The 0, A and B states are respectively the

621,2 ground level, 62 P1,/2 excited and 5 2D3 2 metastable levels.

The P-beam, a single mode scanning dye laser with output < 60 =W

was tuned to the 0-A transition at 49341. A large f-number lens

and photomultiplier pick up the fluorescence, I, induced by the

S-beam at the intersection of its optical axis and the beam,

defining a diagnosed volume of about 1 mm . The lens and S-beam

are mechanically coupled and can be scanned across the plasma.

Two distinct modes of operation for Optical Tagging are

demonstrated here. (1) "Dark" signals are obtained if the S-beam

is tuned to a transition whose lower level is the 0 state. Here

the fluorescence induced by the S-beam is reduced because the

P-beam has depopulated the O-state initial density p.; i.e., IT

is negative. (2) "Bright" signals are obtained if the S-beam

is tuned to a transition whose lower level is the B-state. Now

P has increased P.; i.e., IT is positive.

4 In Figure 2 (a) - (b), the P-beam is chopped at I kHZ, while

*Ti
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S is on continuously. In Fig. 2(a), the S-beam is tuned to the

same wavelength as P. During the on-periods of the P-beam, the

I top trace shows I decreasing ("Dark" pulse) by 75%. The lower

Itrace shows I with the S-beam turned off. Residual light at

4934 A during the P on-period represents elastic scattering from

J the chamber walls, and verifies that P was on when the S-induced

fluorescence is reduced. In Fig. 2(b) the S-beam is tuned to

58541 , inducing transitions from the metastable level. With P

on, I increases ("bright" pulse) by about 350%. With P off, I

falls to its background value, which represents fluorescence from

I the background metastable density, roughly 10%.

Transport is measured most simply by pulsing the P-beam with

a risetime shorter than the particle transit time T between the

P and S-beam positions. This method is illustrated in Figures

2(c) and (d). Here we measure ion drift parallel to the magnetic

field, by axially displacing S 2.5 cm away from P, which is

Jpositioned 80 cm from the hot plate. The scheme used is "bright"

pulse. Trace (c) monitors P, which has a risetime of about 0.1

I jsec <<T. Trace (d) displays the intensity I of the S-beam in-

duced fluorescence, with the "bright" pulse appearing 20 psec after

the P switch-on. It rises much more gradually (TR m 5 psec.),

and decays more slowly than the P-beam. The rise-and-fall pro-

files of I represent the distribution of axial velocities due to

the finite temperature of the ions, even though P is transverse

and cannot select axial speeds. Independent verification is pro-

vided by monitoring the fluorescence directly induced by a

narrow-band P beam parallel to B, as a function of wavelength.

.... 1 I.. 
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This confirms that f(vJlB) has an axial drift of about 10 5 cm/sec

(. 10 ps/cm), and a width of the same extent corresponding to

trace (d).

Optical line narrowing or ion velocity filtering can be ob-

tainedby making use of the vector properties of optical tagging.

In a magnetic field, velocity and position are coupled so that

I velocity selection by lasers defines phase-space trajectories.

We demonstrate this process using parallel P and S beams (which defint

the y-axis) normal to the magnetic field (z axis). When tuned

to the same frequency W, both beams resonante only with ions whose

local velocity y-component Vy has the value vy o - (W-W )c/w,

where w is the resonance for stationary particles. Consider ions

I initially resonant with P, moving towards S with a speed v . Over

the axial separation Lz between beams,their vy changes from v

to v y(Z) - v yo cos + Vxo sine, where 0 - Dc Az/vz, and Dc is the

i cyclotron frequency. "Tagged" ions are that sub-class which re-

sonates again with S; i.e., for which vy (Lz) - vyo . This condition! •o
requires Vxo *- yo (1-cos4)/sint. If the a-priori prababili-

ties of vyo, vX0 are Maxwellian with a temperature

T, for instance, it follows that the tagged particle velocity

distribution at S will be proportional to: exp - (vyo0 + VX2 )/T

O exp - 2v yo /T(l + cos). The temperature now has a coefficient

Uz 1; i.e., space-dependent line-narrowing has taken place. Note

that two velocity components, vyo and vo, have been selected by

two lasers; this would require 3 lasers in the most recent version

of velocity-selective optical pumping schemes.3

- -- --------- --- - -.--
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JThis process is illustrated in Figure 3. The beams are

displaced along the magnetic field axis and their wavelength

scanned in synchronism. Trace (a) shows the tagged fluorescence

I T . The narrow resonance corresponds to a Ba II "temperature" Tt 01

about 600K. For comparison, trace (b) shows the fluorescence of

the background ions, corresponding to the full ion temperature,

about 2,000*K. The resonances emerging on the side of the central

peak in the narrowed trace (a), shown magnified and soothed in

the dashed sections, represent the hyperfine structure of Ba II

in a magnetic field, visible even though the S laser is normal

to the magnetic field. Finally, trace (c) plots the spatial

variation in tagged linewidth, specifically the effective tempera-

ture T* - T(l+cos t)/2, which accurately fits our model. This

velocity selection enables the Zeeman effect to be measured with

much increased precision. It provides a new method for remotely

measuring the local magnetic field in plasmas, or the hyperfine

structure of ions, without the monochromaticity required in beam-
4

injection schemes.

Using optical tagging, transport processes which change both

jthe velocity and position of particles can be diagnosed for the fir

time. An elementary scheme employs an S-beam scanned in space only

large enough in bandwidth to resonate with all particle velocities.

Here we know the initial velocity and position of the ions, and

measure their final positions, irrespective of final velocities.

The process we study is the cross-magnetic field scattering

of ions caused by electrostatic waves (anomalous diffusion). Thes

are excited by inserting a 2 cm. dia. electrode across the plasma,

I&
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with a positive bias relative to the hot-plate. The resulting

j instability has a strong radial electrostatic field component,

causing strong ion heating. The corresponding transport is

measured by tagging ions at the center of the current filament,

and scanning the S-beam across the plasma. Figure 4 shows the

tagged intensity IT (density profile of diffused particles) as a

function of radius, for increasing excitation voltages.

The traces document particle transport extending to the column

edge. Due to radial weighting, the number of ions diffused to

the edge of the plasma is much larger, proportionally, than

appears from the raw data.

In the inset of Figure 4 is plotted the mean radius RT

determined from the radially weighted density profiles. Also

shown is the increase in the mean Larmor radius RL, calculated

from the Doppler profile obtained via laser-induced fluorescence.

The correspondence of the two radii would indicate that the

over-all nature of the process is thermal: the "swelling' of

the Larmor orbits is caused by ion heating by the waves. Al-

though exact comparison with theory is beyond our scope, we note

that this data provides the most detailed information yet avail-

able on ion transport.

In summary, the basic principles of optical tagging as well

as new results and techniques have beencdscribed. This method

is particularily suitable for collisionless (hot) plasmas, where

transport occurs due to wave processes which do not alter the

quantum state of tagged ions.

This work was supported by the National Science Foundation

4under Grant No. 80-09809.
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Figure CaptionsI
Figure 1. Top: Physical Principle. O,A,B, quantum states.

IContinuous lines: laser-pumped transitions. Wavy

I lines: spontaneous transitions. Bottom: Experimen-

tal Configuration.

Figure 2. Signal Modes. Vertical: tag signal intensity, linear

scale, arbitrary units. Horizontal: time, linear

scales indicated. (a) "Dark" signal, (b) "Bright"

j signal, direct PMT output. (c) Input signal monitor,

(d) Tag signal, averaged.

Figure 3. Line Narrowing. Vertical: tagged signal intensity,

I linear scale, arbitrary units. Horizontal: wavelength,

total scan shown 7..7 GHz. (a) tagged signal at cyclo-

I tron orbit midpoint. (b) untagged signal. Dashed:

selected parts of (b), amplified and integrated.

Insert: apparent temperature T* vs. axial laser

separation 0.

Figure 4. "Anomalous" Diffusion. P-beam at center, r- 0. Vertical

I •tagged signal, linear scale, arbitrary units. Horizon-

4 tal: radial position of S-beam. Excitation in volts

as a parameter. Ins.et: Change in Thermal (ion

3 Larmor), R,, and Transport , RT , oradii versus excitation

i voltage.

I
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