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1. DrflWJCFON L

.W- jiopo uch diverse phenomena as

turbulence, extreme properties of stochastic systems, the statistics of nonlinear

wave-wave interactions and the detection of clustered events. One of the

theories developed to explain the transition from laminar to turbulent dow is

through the use of intermittent turbulent bursts interacting with the laminar

flow to generate more bursts and thus form a cascade to a fully developed tur-

bulent state. Thus, the statistical distribution of such bursts is important in

determining the rate of transition from laminar to turbulent fluid flow and can

thereby strongly influence the drag properties of fluid flowing past a body. A

second process in which intermittency is important is the anomolous transport

of charge in amorphous materials. The current flow in these materials exhibits

a clustering of events in time not unlike that observed in fluid turbulence. In

both of these systems the physical observables, e.g. the correlation function.

exhibit scaling behavior with exponents characteristic of the process. A final

example is the stress relaxation of polymers, in which case the scaling behavior
effects such material properties as brittleness, dielectric 19, etc. -Under-this-

-- .'., , we !~ve devo41... a new random walk model Iwhih greatly increases

our understanding of such processes.

Many scaling relations for complex systems In the physical sciences involve

non-integer exponents. We list several examples of these below, which although

well known have provided us with the orientation necessary to investigate more

unfamiliar physical situations. We interpret the non-integer exponents in the

scaling relations as indications of singularities arising from probability distribu-

tions with long tails governing the physical observables. The existence of such

p distributions to describe turbulence, electron transport In amorphous materials

and other areas has been proposed by a number of investigators. But
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heretofore no systematic investigation of the physical implications of these dis-

tributions has been presented. The initial work in Ihis area hWs been done under

this contract in the sequence of fifteen papers described belaw.

If the first moment of the appropriate physicaj observabe with respect to

one of these long tailed distributions diverges, then no scale exists in which to

gauge measurements and structure occurs on all scales. Theconcepts of self-

similar fractals, non-differentiability , and also norinteger ejponents all accom-

pany the divergence of such low order moments. 1he analysis we have done

centers around the construction of simple mechanical model exhibiting these

properties. In particular we examine random walkexamples where the above

characteristics appear simply and naturally. These random processes have an

inherent self-similar (fractal) scaling in space, time. frequency or other

appropriate variable. They can be used to model complex systems of interest

which exhibit features spanning many decades of stale. As zmthematicians we

categorize possible behaviors and as physicists we search forthe basic interac-

tions which lead to such behavior.

III,
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2, SJWINS IN/UEIEiTAL PHYSCS

When one begins the study of physics. one invariably discovers simple laws

such as momentum (mv = constant) conservation and energy conservation

-nv 2 = contatn). One also encounters many well-defined concepts, such2

as the mobility A. (0 = A J). say for a conductance electron in a metal. Sim-

ple relations are ubiquitous, e.g., the mean square displacement of a random

walker after N steps is proportional to N; the vibrational density of states p(w)

of a D dimensional crystal at low frequencies scales as C-i, etc. Everywhere

exponents seem to be integers and quantities are well-defined.

When one deals with actual systems which are sufficiently complex, it is

often the case that the best description is in terms of probability distributions.

A Poisson distribution is characterized by its first moment, and a Gaussian dis-

tribution by its first two moments. When distribution have long enough tails.

the first few moments will not characterize the distribution. Distributions with

infinite moments will lead to physics described by non-integer exponents, and to

surprises which run counter to our intuition. We list some examples which we

have investigated where non-integer exponents abound.

A. ghVloeiy hnpat 1'2

An important materials science problem Is the effect of high velocity micro

meteorites (mass m, velocity v) on spacecraft. As a result of a collision many

interesting phenomena occur, deformation of the meteor, (projectile) crater

formation on the surface of the spacecraft (target), shock wave generation,

melting, and crack propagation. One would suspect that the crater formed by

the collision would be proportional to the kinetic energy of the meteor (--vwg)
S]

leading to the radius of the crater R scaling as RO - u 8. Momentum conserva-

tion Is not considered because target material is thrown backwards during the

S
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crater formation thus enhancing the forward momentum. The surprise is that

the crater depth scales as a power of the velocity, i.e.

R".," , a = 0.58 (1)
but a io 2/3. This implies a new conservation law given by

M1.74 = constant (2)

We have been able to explain this scaling behavior by using a random walk model

for the movement of dislocations in the target material.

EL Carp 'fweuprt in Azmorhomu M am -

In the xerographic process a flash of light creates a layer of electron-hole

pairs in an amorphous film. The charges separate under the influence of an

external electronic field E. If the film is of depth L. and there exists a mean

transit time T for charges to cross the film, then one expects that L/T M /A E.

Instead one finds (for a-As2 Se 3 ) that

T-1 -(E l/L) . 2 = (E l L)/ -4 (3)

for a wide variety of E and L values. The current 1(t) generated by the

charge movement is found to have two regimes. In the early phase

1(t ) ~ t- 1+.45 (4a)
and in the late phase (caused by absorption at the far surface)

1(t) ~ t - 1- .AG (4b)
A continuous time random walk model is the only complete description of this

phenomenon. 1
8

Q. P*WyMV6

1. The world of polymers is full of fractional exponents. The mean square dis-

placement <R 2 (N)> of a self-avoiding random walk (SAW) after N steps

can be used to model the end-to-end distance of a polymer, in a good soi-

vent. In three dimensions (3D)

I.i
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< R(N) > - N? (5)

with y - 1.2. Mandelbrot 7 has suggested that 7y = 2/is where jA is the

88
"fractal" dimension of the SAW and is approximately8 In 8/1n3 - 1.6.

Shiesinger has used some recent results of Seshadri and West 2 1 to explain

this phenomenon using the newly developed concept of fractal random

walks developed under this contract 8 12,15 18

2. The vibrational density of states p(c.) of certain proteins is found at low fre-

quencies to be9

p() ,- f*,.D, (8)

This is consistent with the protein having a 3D SAW shape and p(cw) - &,

and in contrast to the Debye law p(o) i- = in 3D.

3. The repetition time TR for polymer melts is defined as the cross-over time

from rubber-like to liquid-like behavior. It is found to scale with polymer

mass M as

TR m3 .s (7)

A simple dlffuson model8 for the motion of constrained polymer chains

would yield rR -M'.

4. The dielectric response of polymers (as well as many other materials) is

governed by non-integer exponents. The frequency dependent dielectric

constant e (cw) is given by

C(. )-. = - "t (8)

Williams and Watt 1 0 find that a good form for the response function is

p(t) = A' 3f, O<as1 (9)

The relaUon between this response function and long tal distributions has

been discussed in some detail by Montroll and Shlesinger.18



5. Amorphous solids are not in thermodynamic equilibrium at temperatures

below their glass transition temperature. These non-equilibrium states are

metastable and slowly relax towards equilibrium and in so doing affect

many properties of the material, e.g. the material becomes stiffer and more

brittle, its damping decreases and so do the creep- and stress-relaxation

rates, the dielectric constant, the dielectric loss etc. The lifetime of such

metastable states when the transition is induced by correlated fluctuations

has been studied by West and Lindenberg. 1 9 ' 2 0 The probability density in

this case is shown to satisfy a Fokker-Planck equation having a diffusion

coefficient which is both time dependent and dependent on the state of the

system.

(.i
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a FROM NON-N=m aoNENT TO 7-MuARfYS

Integer exponents can usually be traced back to the analytic behavior of an

appropriate function which can be expanded in a Taylor series. Non-integer

exponents imply the presence of singularities and the breakdown of a Taylor

series due to the divergence of a coefficient. Our main theme is that singiari-

ties and thus non-integer ezponwnts arLse in covWL/ez systems because they exhi-

bit randomness on vmny scales. As an example, consider the probability

*' (t) dt for an event (electron hopping, dislocation movement, crack propaga-

tion. etc.) to occur in the time interval (t. t+dt). Its Laplace transform is defined

by

(s) -* f -  (t)dt (10)
0

If all t1;4 moments <t"> of #' (t) exist, then

4.

#'(s) = 1 + 2 I-S <- (ii)

and times will be measured in units of <t>. If however, <t> is infinite, i.e.,

<t> = =t (t)dt -L - (s=o) = 0
o O

then t/<t> is not an appropriate dimensionless time. and -°(s) cannot be

represented in a Taylor series about s = 0. This will occur if at long times

# (t)"t"a.0<a<1.Apropersmall s expansion3 "5' 1 1 of #*(s) will include

an sa term. Effectively t is replaced by t in all dimensional analysis. This is

the underlying cause for the non-integer exponents in (3) and (4). Such #' (t)

* arise from a distribution of deep traps in the material which can capture

charges in amorphous materials. 3 "5 dislocations in elastic materials 2 '2 3 and/or

excitations In polymers. 26 2 7 There Is no average time in these problems when

* <t> = -, so that the duration between events occurs on all time scales. A self-

similar set of burst of events has this property.
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Systems with inherent scaling are most naturally described by scaling

equations, and not by differential equations. In fact, the appropriate functions

may be nowhere differentiable. Scaling brings us into the province of the renor-

malization group (RNG). 1 1 Let us consider how the free energy F of a system

scales near a critical point.

Let K describe interactions within a small system, and K'(K) interactions

between these small systems. When a non-trivial fixed point of the RNG transfor-

mation KI(K) = K exists, one may switch to a scaling variable. u, to find

F(u) = LDF(M&) + G(u) (12)

where in D dimensions. u describes the small system of unit size, A u the

larger system of size A , is a relevant eigenvalue of the RNG transformation.

and G is an analytic function. Let us iterate (12) n times and then

let n-., to obtain

Fr(U) = Im -fDF(Xftu) + \ 'DGXul.(13)

It is usually assumed that the fist term on the rhs vanishes as n -.. and thus

all singularities in F(u) must shift to the term involving the summation over G. A

solution to the singular part of (13) is

F(u) A A(u) I u in"I (14a)

where A(u) is oscillatory in In u with period In . i.e.

A(u) = A(Au) = (14b)

In our work we introduced fractal random walks11-15 processes which produce

non-integer exponents naturally in the form of fractal dimensions, and integral

transforms of probability distributions exhibit precisely the scaling of (12) -

(14).

We treat separately the most famous scale-nvariant problem the "1/f

notse" problem. 8 '1 7 .1 8 For many diver e syatems the power spectrum S(f)

la b
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(the Fourier transform of a second order correlation function C (t)) has a low

frequency component scaling as the inverse of the frequency, i.e.

S(f) = Ref eW ' C(t)dt 1/f as f -*O
0

In this regime the integrated power spectrum is independent of scale, i.e.

I..-I,.fff fL='' ~/ 0
f~ lo tL If.

For a completely random system C('r) = a -4/ where -r is a relaxation time. In

a complex system a distribution of relaxation times p(T) can exist. Then

S(f) = f awi -" p(i)dr

If p(r) - r-1 then a regime of 1/f noise will result. We show that such a p(,r)

arises when the probability of fluctuation depends on the product of several ran-

dom variables.' 8 In this case p(i-) will be a log-normal distribution in contrast

to the normal distribution which arises for the distribution of a sum of random

variables. Our p(T) involves a geometric mean while the normal distribution

involves a arithmetic mean.

The log normal distribution also describes (at longer times) the lifetime of

many materials. We are at present investigating deviations to this law at early

times.

The random walk models developed to understand the phenomenon of clus-

tering in either space and/or time have relied on long range transition proba-

bilities for stepping between sites on a lattice. In the continuum limit the proba-

bility density has been shown to satisfy an integral-differential equation rather

than a Fokker-Panck equation. 12,14,15 The solutioi to this equation is a Ldvy

distribution having the characteristic function q(k) = e -u1kl" i.e. the Fourier

transform of the probability density. The Ldvy distribution describes intermit-

tent or clustered processes having mean first passage times and maxima
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moments which scale withthe characteristic exponent gt.21,22 The Ldvy

parameter As has been identified with the fractal dimensionality for the pro-

cess2 1 and can be expressed in terms of the random walk parameters. 12,16 This

2,23identification has been used in both the high-velocity impact problem and

the end-to-end distance of a polymer chain8 .

The dynamic equatios describing the evolution of such systems are neces-

sarily nonlinear and stoclastic, as for example the description of the generation

and evolution of dislocations in elastic materials.2 4 The analysis of such non-

linear stochastic equationh is notoriously difficult so we have also developed

under this contract a linearization method which is instantaneously optimal at

all stages of evolution of tke process. Detailed comparison of the results of this

technique with Monte Carlo calculations on certain model systems are presented

by West, et. al. and the comparison is quite favorable.

Energy transport in nolecular aggregates. e.g. polymeric materials, has

long been a useful diagnostic for the determination of their structural and

dynamical properties. Ona of the serious limitations of the previous theories has

been the lack of understaiding of the temperature dependence of the measured

transport properties of the aggregates. The limitation arises precisely because

these have been infinite temperature theories. West and Lindenberg2 6 ,2 7 have

developed a novel approach for the incorporation of finite temperature effects

into a phenomenologically based model. By including the appropriate dissipa-

tive effects in the equations for exciton dynamics in molecular aggregates, the

now theory is correct at finite (arbitrarily low) temperatures and indications are

that it will be able to explain a number of "anomolous" temperature dependen-

cies of spectral and transport properties.

C
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