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The AFGL Spectral Model
of the Moist Global Atmosphere:

Documentation of the Baseline Version

I. INTROI)UTION

t-. recent years there has been a widespread shift from finite difference meth-

ods to spectral methods in the area of numerical simulation of the global atmos-
phere. This change has occurred at both research centers (for example, Hoskins

and Simmons 1 ) and operational centers (for example, Bourke et al, 2 Sela 3). It is

due primarily to the advent of the so-called transform method (Eliasen et al,4

Orszag5), which has permitted spectral methods to become competitive with finite
difference methods in terms of computer time and memory requirements. In view

(Received for publication 13 December 1982)
1. Hoskins, B.J., and Simmons, A.J. (1975) A multi-layer spectral model and

the semi-implicit method, Quart. J. Roy. Meteorol. Soc. 101:637-655.

2. Bourke, W., McAvaney, B., Puri, K. , and Thurling, R. (1977) Spectral
methods for atmospheric modeling, Methods in Computational Physics,
Vol. 17. B. Adler, Ed., Academic Press, New York, pp. 267-324.

3. Sela, J. (1980) Spectral modeling at the National Meteorological (enter,
Mon. Wea. Rev. 108:1279-1292,

4. Eliasen, E., Machenauer, B., and Rasmussen. E. (1970) On a Numerical
Method for Integration of the Hydrodynamical Equations With a Spectral
Representation of the Horizontal Fields. Inst. of Theor. Meteorology,
Univ. of Copenhagen, Report No. 2.

5. Orszag, S.A. (1970) Transform method for calculation of vector coupled sums:
Application to the spectral form of the vorticity equation, J. Atmos. Sci.
27:890-895.
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of the current state-of-the-art and with an eye towards the future it was decided

that the AFGL global model should be similar to other multilayer spectral models -

that is, horizon' al vairiations represented by expansions in truncated series of

spherical harmonics and vertical variations represented by values at discrete

layers. The coarse resolution model (rhomboidal truncation at wavenumber 15

with six layers) described in this report establishes the baseline version for

future comparisons. It closely follows the formulation of the current operational

model at the National Meteorological Center (NMC). 3

2. MODEL EQUATIONS

2.1 Continuous Equations

We begin with the equations of motion for an ideal gas in hydrostatic balance

surrounding a rotating spherical planet. The coordinate system is the familiar

(X, Co a) system in which X, 0 are longitude and latitude, respectively, and

P
P,

is the terrain following coordinate suggested by Phillips, where p is the pressure

and p, is the surface value of p. The horizontal momentum equations are replaced

by the equations for absolute vorticity and divergence

q7f+ =f+ . Vxy

D=Vy

where f is the coriolis parameter, v is the horizontal wind vector, and is the

vertical unit vector. These two equations are written in the form suggested by

Bourke
7

all =..._I 2A + c aB] + (I)
at acos 2 + x- h

6. Phillips, N.A. (1957) A coordinate system having some special advantages
for numerical forecasting, J. Meteorol. 14:184-185.

7. Bourke, W. (1974) A multi-level spectral model. I. Formulation and hemi-
spheric integrations, Mon. Wea. Rev. 102:687-701.
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8D 1 [8B A TqJv-at a o 27 6X - -Cos V2a-+ D RToq] + ' 2

where a is the radius of the earth, R is the gas constant for dry air, 4b is the geo-

potential height, T is a fixed basic state temperature, which is a function of a

only, and Fh is the parameterized subgrid scale horizontal diffusion. Also, we

have

dV! RT' a- -- r-
A = rjU +b a + RTa cos + p, + (3)

11p, au

BU RT' a _ _ 
()

ao a WX p. a(

9 (5)
2 cos 2

q =In p. , (6)

where the pseudo-velocity components are U = u cos and V = v cos 4, & is the

total derivative of a (that is, the vertical velocity), T' is the deviation of tem-

perature from the value To , and To, T are the components of the surface stress

that are described in Section 3. 1. The pseudo-velocity components are obtained

from the following diagnostic relationships among vorticity, divergence, steam-

(tion, velocity potential, and horizontal velocity components

U cos a, + 1 a (7)a 5a-+ a-

V I _P + cos so (8)a aaX a

72 U (9)

D V- 2\ , (10)

where U Is the streamfunction and x is the velocity potential.

11



The continuity equation is

(3qi

where C v - 7q. Vertical integration of Eq. (1) with the boundary conditions

= 0 at o = 0and o = I gives a prognostic for the surface pressure

t = - - (12)

and a diagnostic for &

6 u(C+D)-C ° -D 0  
, (13)

where
0 1

()o = f( )do and )f( )do (14)

0 0

The hydrostatic and thermodynamic equations are written in the forms that

are suited to the Arakawa vertical differencing scheme. 8, 1 The hydrostatic

equation is

-C To -  
(15)

3 0 K p

where Cp is the specific heat of dry air at constant pressure, K = R/C p, and the

temperature is given by T = T0 (a) + T'. The thermodynamic equation is

aT 1 FUT' + Co + T' D
at : o 2 a-- o 0 a- -- '

K aT -
K RT H (1+

- a T 3 - C - ]+.C h FT (6

p p

8. Arakawa, A., and Mintz, Y. (1974) The UCLA Atmospheric Circulation
Model, Dept. of Meteorology, University of California.
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where H is the heating rate due to the diabatic effects of convection, condensation,

evaporation, and turbulent heat transfer, and hFT is the parameterized subgrid

scale horizontal diffusion. All of these are included in the parameterized physical

processes that are described in Section 3.

[he forecast model is completed with a prognostic equation for specific

humidity, Q,

_ 1 U aVQ +aQ S+ F (17)

at 2 LA- cosa + QD+ hQ
cos QI Q

where S is the rate of change of Q due to moist convection, condensation, and

evaporation, and hFQ is the parameterized subgrid scale horizontal diffusion.

Once again these physical processes are described in Section 3.

2.2 Numerical Methods

Because of the complexity of the model equations, realistic solutions can be

obtained only through numerical simulation. In this section we turn our attention

to the system of finite mathematics that is used to solve the equations. For con-

venience, we consider the numerical methods in three parts: horizontal, vertical,

and time.

2.2. I HORIZONTAL,

In the horizontal domain, we assume that spatial variations can be represented

by expanding each of the dependent variables in a truncated series of surface

spherical harmonics, for example,

M N
r? (A a,0 m ,,t)ym (X, sin), (18)

tn -M n = im I

whete Y' O, sin 0)= Pro(sin O) e"" is the spherical harmonic of order m and

degrtuC n, P 1l (sin 0) is the normalized associated Legendre function of the first

kind, and M and N are the truncation wavenumbers. The time- and a-dependent

spectral coefficients, nm etc. , are complex and reality of the various fields

re-quires r? _ 1 1)m ('0) where ( ) is the complex conjugate. The type of

truncation (for example, rhomboidal or triangular) depends upon the choice of N.

For the baseline model, we will use a rhomboidal truncation, N = I m + M, with

1:3

t
. . .. . " .. . ' _... ." * >,.' ,4



To obtain the equations in spectral form, expansions of the form Eq. (18) are

substituted into the continuous equations, and then the equations are operated on

by the transform operator

if

2 )n "(()P(sin )cos dQ e - i ni dt(

for all (11, n).

In the classical spectral method, it is necessary to evaluate the interaction

coefficients (for example, Silberman 9 ) in order to determine the spectral co-

efficients of the nonlinear terms in the prognostic equations. These are integrals

over latitude of products of various combinations of three associated Legendre

functions. Their evaluation on a computer is quite time and memory consuming.

To avoid these computations, we use the transform method that was developed by

Eliasen et al 4 and independently by Orszag. In practice, the method consists

of three distinct steps:

(a) transform the dependent variables from spectral space to physical grid

space;

(b) perform the required nonlinear multiplications in grid space; and

(c) transform the nonlinear products from grid space to spectral space.

Transform steps (a) and (c) consist of a pair of transforms, a Legendre transform

(spherical harmonic space to Fourier space and back), and a Fourier transform

(Fourier space to grid space and back). For the inverse transform step (a) the

Legendre transform is accomplished by actually summing the Legendre series,

while the Fourier transform is computed with an inverse fast Fourier transform

(FFT) algorithm. For the forward transform step (c), the Fourier transform is

computed by the FFT while the integral of the Legendre transform is evaluated by

a Gaussian quadrature. The Gaussian quadrature is exact for our integrands (that

is, polynomials) given a sufficient number of points (Gaussian latitudes). 4 For

rhomboidal truncation, the transform grid required to provide alias-free evaluation

of quadratic nonlinear interactions consists of at least 3M + 1 equally-spaced long-

itudes and at least (5M + 1)/2 Gaussian latitudes. For our truncation of M = 15 we

use 48 longitudes (7. 50 spacing) and 40 Gaussian latitudes (-4.40 spacing).

9. Silberman, J.S. (1954) Planetary waves in the atmosphere, J. Meteorol.
11:27 -34.
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Finally, in presenting the spectral equations, we will use the following
relationships

aym
n imym (20)

dP m
- cos = nEn1 Pn 1l(n + m P  (21)

dT- nl n ~ n l n- n

-n(n + I)Y m

n 2 n (22)

where

[ [2 m2 ]1/22.n n 2r

Following Bourke's 2 notation, the spectral prognostic equations are (excluding

parameterized physics)

am
-5t = -LmA, B ) (23)

n m

aDm
n =Lm(B , A) + n(n+ 1) E + ,m +RT qn  (24)

flf n m a n n 0n

aTm
n = _L m ((UT)m , (VT , )m ) +I m  

(25)
at n n

'Qn L m ((UQ)m (VQ) m ) + im (26)

. . . .5 (27)at n n

15



where

iT

L(x = 12 imxmPn + YmHn cos 0 dO (28)
a cos 0

3T

K 8To "K  
R

I-T'D -o + - (C- - ) (29)C
p

JQD- 3Q8" (30)
J=QD ao

A subscript m indicates a Fourier coefficient and the other nonlinear terms are

defined above in Section 2. 1. We note that the diabatic heating, H, and the

moisture source/sink term, S, are not included in Eqs. (29) and (30). respectively,

since these parameterized processes are treated as adjustment terms that are

added at the end of each time-step.
The only diagnostic equation that is treated spectrally is the hydrostatic equa-

tion. Since it is a linear equation we can immediately write

n = _C Tm -
K (31)

a0K p n

The equations for U and V could also be written in spectral form. However,

U and V are only required in evaluating the nonlinear terms, and therefore we

determine their Fourier coefficients directly from the harmonic coefficients of

vorticity and divergence with the aid of the spectral equivalents of Eqs. (9) and

(10):

NUm - [ mm I mmm](2
Urn -a n(n + 1) [n Hn + imDnp(

n= Iml

N
V~ -a L [ m PmDmH m (3

Vm = -a n(n+ 1) nim n -n n (

16



We point out that because of the form of H" Eqs. (32) and (33) imply that a direct
SInn

spherical harmonic representation in terms of U and V would require that onen n
additional mode be retained for each m. Thus, the Legendre series for U and

m
V (in terms of UrI, V1 ) would be truncated at N + 1 instead of N.rn? fl n

Finally, we note that & is not considered spectrally since it is needed only in

grid space for computing the vertical advection terms in the nonlinear interactions.

2.2.2 VEHTIcAL, STRUCTURE

In the vertical, the model is divided into a number of discrete layers. The

interfaces between layers are referred to as levels and thus the number of levels

is one more than the number of layers. All of the dependent variables (prognostic

and diagnostic) except b are considered as layer variables. The values of & are

carried at the levels. Typical layering and variable locations are illustrated in

Figure I (note: a tilde (0) indicates a quantity that is evaluated at the levels).

The current version of the model includes six layers and seven levels with a and a

locations and layer thickness, A, according to the values in Table 1. This struc-

ture was established by defining four equally-spaced a layers and then dividing the

lowest and uppermost layers into two layers each. This is done to provide addi-

tional resolution of the planetary boundary layer and the tropopause region. Since

the structure is set by specifying the number of layers and their spacing, the

LAYER LEVEL
al =0 1' 0

a AI ... D,T,,U,V
r72 6'2

k-I Ik-I° 'k - I bk k - 1 i'7 D T O ,' U V k - 1 -

0*k
O'k A ?,D,TO,U,Vk

(Tk+ I &
k+1 Ak+1 7,D,TO,U,Vk+f _k.: 2"k+2 &rk+2

K~ ~0K =K 7r/'DTO'U'VK
OrK+ 0 I I -IIII K+120

Figure 1. Vertical Layering and Var-
iable Location
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Table 1. Current Vertical Structure

Level o a Layer A

1 0

0.0622 1 0. 15

2 15

0. 1985 2 0. 10

3 0.25

0.3699 3 0.25

4 0.50

5 0.75 0.6220 4 0.25

0.8242 5 0. 15

6 0.90

0. 9497 6 0. 10

7 1.00O

values of aat the levels are immediately prescribed. Determining the values of

a in the layers (that is, the point at which the dependent variables should be loca-
ted) is not so straightforward. Many researchers have chosen to simply pick the

midpoint of each layer (for example, Bourke 7). However, since we have chosen to
3

construct our baseline model according to the NMC formulation, we follow Sela

and determine a in the layers from

= k+l " k ~1 do l 'h
ok  a+1-O o1 (34)-k + K)(O + 1 - 'k)  1 + K do

In order to evaluate vertical advection terms, they are first rewritten in flux

form, for example,

au a5u u__
-- - " a& (35)

18



The finite difference analog of the flux form for layer k is

abu ab b k+I Uk+l 6k Uk -k+l ""6k
o- k & (36)

Since U is a layer variable, we must interpolate the layer values to determine U
(that is, the level values). Following Arakawa 8 we use the relationship

Ukl= (UkJ + Uk (37)
k1 2 k+l k

and upon substituting into Eq. (36) we have

abU - a 1 F-- 1,(8
a au 2T k a l(Uk+l - Uk) +k(Uk - U lk1) ] (38)

which is a quadratic conserving differencing scheme. Similar expressions can be
written for vertical advection terms involving V and Q.

For the vertical advection term in the thermodynamic equation, Eq. (29), and
for the hydrostatic equation, Eq. (31), we apply Eq. (37) to the entire quantity
Ta "  so that i is determined from

=k+ I +1 + Tk
2+C K aK)(9k+1  --- k+ 1 I k

Thus, the vertical advection term in the thermodynamic equation (in flux form) is

given by

K  U K T 1 K
K a ak+I  k T 0 k

aa 4k a K K k+1l k +a aK k- Irj
k~ -" k+l " , T + k \k 0 k+l k-J

Tk+ I 1

(40)

The finite difference analogs of the vertical integrals of Eq. (14) are

k
a k+l = f ()d, -1:( (41)

0 j=l

19
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and

1 K

C) = f ()do,- ( )j j (42)

0 j=i

We conclude this subsection by considering the solution of the hydrostatic

equation. With the aid of Eq. (39), the finite difference form of the hydrostatic

equation is

4Dk -k+l = k+l T 1l + OkTk (43)

where

a k1- -
ak+1

and K
Ok 2 Ok

The geopotential of the lowest layer is determined from the integral constraint

1

f[RT - (4 - do = 0 (44)

0

where 4D. is the surface geopotential (that is, terrain height). In finite difference
form Eq. (44) is

K
[JR [lTk (tk " *)]k a 0 (45)

k--1

Upon combining Eqs. (43) and (45) we have an expression for the height of the

lowest layer, tK

20



-3T =-j 1T3 T - j j+ 1 
+ 3 T j ) 

k(46

k-1 jk

I'hus, the gaeopotential for all layers can be determined from the hydrostatic equa-

tion hy solving Lq. (4) for the lowest layer followed by Eq. (43) for all other

2 2.:; VIMt: iNT I( ATION

Fhe tune integration is a ccomplished by the so-called semi-implicit method,

which is a mixture of implicit and explicit techniques. In this method, linear
terms associated with gravity waves in the time-dependent equations are treated

lmplti citly while other terms are treated explicitly. Such an approach avoids the

problem of having to deal with a nonlinear algebraic system associated with
implicit mt.thods for nonlinear differential equations; and yet it gives us a time

integration scheme in which relatively large time increments can be used

(lobert l ) Had we used an explicit scheme, computational stability considera-

tions would have dictated the usc of a much smaller time increment (for example,

11) min for a leap frog scheme as compared to 60 in for the semi-implicit scheme).

There are various ways to implement the semi-implicit method. The one

.idopted here is duc to Btourke. 7 The key point is to eliminate T and q among the

discrete forms of Eqs. (24), (25), and (27), leaving l) as the sole unknown. The

mathematical details of the derivation of the algebraic divergence equation are

given in Appendix Ii. Here we only outline the procedure:

(a) Express D in Fq. (24) in terms of T, using the hydrostatic equations,

Fqs. (3) and (4;) and

(b) Approximate time derivatives in 'qs. (23) through (27) by

3F + 
- F'-

at 2Vt

Here F is any of the prognostic variables, and F + and F- are values of the vari-

ables at the next and previous time-steps, respectively.

(c) Replace F in the linear terms on the right-hand side of Eqs. (24), (25),

and (27) by

10. Robert, A. (1979) The semi-implicit method, Numerical Methods Used in
Atmospheric Models Vol. 2. GARP Publication Series, No. 17. Geneva,
WMO, pp. 419-439).

21
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V ,F " + (1 -,')"

w h e r e 1 / 2 ,o e 1 ,
(d) Eliminate T + , q in the discrete divergence equation by using the discrete

forms of Eqs. (25) and (27). thus leaving an algebraic system in D+ . Once D

values are found, Eqs. (25) and (27) can immediately be solved for T and q

Since there are no linear terms on the right-hand side of the vorticity and moisture

equations, these two equations are integrated explicitly.

In the current version of our model, the following time-stepping sequence has

been implemented:

(a) Advance n and Q using an explicit leap frog scheme,

(b) Advance D to the new time step t + 6t by solving the linear algebraic
system Eq. (1311) from Appendix B,

(c) Advance T and q using Eqs. (139) and (1310) from Appendix B,

(d) Apply the moisture physics and adjust the predicted values of T and Q,

and

(e) Time-smooth all of the prognostic variables at current time t to prevent

decoupling between the even and odd time-step values. Thus, the latest predicted
+

value of a variable, F , is used to compute a time-smoothed value for the next

time-stepping cycle:

F F + 3(F - 2F + F +

where F becomes the time-smoothed F value for the next time-cycle, and 0 is

a given constant. For the very first time-step, a forward scheme is used.

For the results reported below we use the values 5t = 60 min, a = 1 (back-

ward implicit), and 3 = 0. 02.

3. PARAIETERIZED PHYSICAL PROCESSES

To establish our baseline model, we have adapted the various parameterized

physical processes that appear in the current NMC spectral model. 3 These fall

into three broad categories: boundary layer processes; moisture physics, includ-

ing convective adjustment as well as the so-called large-scale saturation process;

and subgrid scale diffusion.

3.1 Boundary Layer Physics

Boundary layer processes are included in the model to simulate the interaction

between the surface of the earth and the atmosphere. In particular, three
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mechanisms are considered in terms of fluxes into the atmosphere: surface fric-

tion (that is, momentum flux), sensible heat flux from the surface, and evapora-

tion from the surface (that is, moisture flux).

The surface friction is formulated following Bourke with some minor modifi-

cations. It is simulated by including the stress terms

-and g (47): Nn p

in Eqs. (3) and (4), respectively. For purposes of the vertical finite difference

scheme, r and ro are defined at the levels and are set to zero except at the

surface where they are given by the bulk aerodynamic formula

PC~ d 2

where P is the density, Cd is the drag coefficient, E is the kinetic energy, and V,

is the horizontal vector whose components are the pseudo-velocities U, V at the

surface of the earth. Strictly speaking, p and E should also be evaluated at the

surface. However, in view of the crude nature of the stress formulation and for

simplicity, p and E are assigned the values from the lowest model layer. V is

given by V at the lowest layer rotated by an amount a towards low pressure. In

addition, a latitudinal weighting factor of sin 0 is included with sin a to reduce the

influence of turning near the equator and to provide the proper sense of rotation in

the Southern Hemisphere. Thus, the surface stress terms are given by

X) = PK Cd 2E (UK cos U - VK sin a sin 0)

= P K Cd '7i (VK cos a + UK sin o sin 0) (49)

where a subscript K indicates the value at the lowest model layer. The value of
a = 20 is fixed for all locations. Values of Cd vary geographically from a min-

imum of 0. 00 13 over the open oceans to a maximum of 0. 009 over the Himalayas.

Sensible heat transfer from the surface is included as part of the diabatic
I1

heating term, -I- , in the thermodynamic Eq. (16). The parameterization allows
P

only an upward heat flux into the lowest model layer and only over the oceans. The

exact form of the heating term is

H g F00

p
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where F, is defined at the levels and is set to zero except at the surface where it

is given by the bulk aerodynamic formula

(F0 ) PK CT V K (0e - K) , (,I)

where 0 is the potential temperature, a subscript K indicates the value at the loA -

est model layer, and CT is the thermal drag coefficient given by

CT = Cd+27X 10 5 v (52)

This formulation of CT allows the heat transfer process to be highly wind-speed

selective (that is, it becomes more efficient as the wind speed increases). For

these computations we use p, as the reference pressure for defining potential

temperature and thus Eq. (51) becomes

-K

(F) = KCT E (T, - TKK  ), (53)

where T* is the sea surface temperature.

Evaporation from the surface is included in the moisture source/sink term, S,

in Eq. (17). Evaporation is allowed only over the oceans and only if the lowest

model layer is not saturated relative to the ocean surface and/or there is no pre-

cipitation in the lowest layer. The mathematical formulation of the evaporation

physics closely resembles the sensible heat transfer. The form of the evaporation

term is

S g aFQ (54)

where FQ is defined at the levels and is set to zero except at the surface where it

is given by

(FQ) PKCQ 2  Q(T.) - Q (55)

where Q s(T,) is the saturation specific humidity at the sea surface temperature,

and the moisture drag coefficient is given by

C =5C C +7 10 5 v/2E K  (56)
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Finally, to provide additional computational stability, the surface drag, the heat

flux, and the moisture flux are lagged in time.

3.2 Moisture Physics

In this section we describe the parameterization of the processes that are

associated with the phase changes of water. These are adapted directly from the

NMC spectral model 3 with only minor modifications to account for the difference

between the sigma structures of the two models. The values of pressure-dependent

parameters that appear in the algorithms are defined by simple interpolations of

those employed by NMC. The procedure consists of a sequence of three adjust-

ments of temperature and specific humidity. Each step represents a particular

aspect of physics involving the vertical stratification of the variables. The ad-

justments are applied after the provisional values of the dynamic variables at a

new time step are obtained through time integration.

The current practice makes no distinction between liquid and solid phases and

all values of the relevant physical parameters such as specific heat and latent

heat refer only to either gaseous or liquid state.

3.2. 1 CONVECTIVE ADJUSTMENT

The first adjustment is based on Kuo's I I simulation of organiz.ed cumulus

convection. This moist convective adjustment scheme consists of two parts. The

first part of the scheme, which has been described in great detail by Phillips,12

accounts for the changes that occur in temperature and specific humidity when

convection redistributes heat and moisture in a moist unstable column. In imple-

menting the scheme, tile only change we make in Phillips' description is the criti-

cal value of the moisture convergence above which the adjustment is invoked. \k e

use a value of I x 10 At eb s 1 where At is the time step in seconds. This

is the appropriate value for our choice of vertical structure.

Fhe second part of the convective adjustment scheme takes into account the

effects of evaporation of falling water. Tlhis will cause changes in temperature,

specific humidity, and the amount of rainfall. Phillips only gives a brief descrip-

tion of this part and thus, for the sake of completeness, we provide the balance.

First, we define the moisture deficit for each unsaturated layer in the unstable

column

I.I. Kuo, it. [.. (1965) On formation and intensification of tropical cyclones
through latent heat release by cumulus convection, J. Atmos. Sci.
22:4)-i3.

12. Phillips, N.A. (1979) The Nested Grid Model, NOAA Technical Report
NWS-22, 79 pp.
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Qdefk N sat, k - , k ' (5)

where Q sat, k is the effekctive saturation specific humidity (chosen to be eight-tenths

of the theoreticai value), Q,( k is the latest provisional value of specific humidity,

and .1o k is the thickness of the layer.

The amount of total condensate, F, starts in the highest saturated layer of the

unstable column with thc value given by

k 7 4 MIMI(lNk -k s)
V

in which [)TEUO denotes the temperature adjustment to that layer brought about

by the Kuo convection. As the condensate falls it will either undergo evaporation

in unsaturated layers oi accumulate additional condensate in saturated layers.

In an unsaturated layer, evaporation must continue until all of the condensate

evaporates or until the layer becomes saturated. In the former case Qdef k

and tht, adjusted values of specific humidity, temperature, and condensate are

Q 1,k Q ok k-i k

C F"k-1
T ~T - -

1. k =  i TO r v -yk

F k (59)

In the later case tQdef, k " F k' and only a part of condensatL evaporates, thus

bringing the layer to the level of effective saturation, with the results

Ql,k -- sat, k

(j

T1,k r( Tk "T) C def, k
v

and

F def, k
k= k-i 6o(6)
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In a saturated layer, Q and T remain unchanged and F accumulates the addi-

tiona l -ondensate so that

1: F' I)KU)K  k  (6I)
k k-l k k

V

I- 1ally, the amount of rainfall. G, is given by

p
G = F g (62)

where p, is the surface pressure.

3.2.2 LAfiGE-SCALE SATURATION

The second adjustment, which is also described in Phillips' report, is re-

ferred to as the large-scale saturation process. It is purported to adjust tem-

perature and specific humidity according to the wet-bulb relation. There is, how-

ever, built-in empiricism in the formulas currently used to calculate the amounts

of assumed and allowable evaporations. A brief account of these aspects is given

here.

For each layer we define

4 C Qapp, k app s, k

Qeff. k =eff (s, k (63)

where Qapp and Qeff will be referred to as the apparent saturation specific humid-

ity and the effective saturation specific humidity, respectively. Capp and Ceff are.

empirical constants that are determined as follows. Capp takes the value of 0. 95

in the topmost of the moisture-carrying layers and 0. 80 elsewhere. On the other

hand, C eff assumes the value of unity in the bottom layer and the value 0.85 in the

fourth lowest layer and above. In the second and third lowest layers, however, it

is assumed that Ceff increases with temperature quadratically to the extent that

its value lies in the range between 0. 85 and 0. 95. The relationship between Ceff

and temperature is given by

C = 0.85 + x(l + x)/200 if Ceff < 0.95 , (64)
eff f
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where

T - 261. 16
X - 8

Next, in each of the moisture-carrying layers, a deficit, Sk' is defined by

P,
Sk =--g(Q0,k - Qeff, k) 6ak (65)

where Q is the latest provisional value of specific humidity. It is assumed that0, k
if Sk < 0 evaporation will occur and no additional precipitation is contributed by

the layer. The amount of evaporation is given by

E = C - (Q0, k - Qapp, k) ,Jk (66)

in which C is an efficiency factor (0 < C < 1) that decreases downward. The
amount of precipitation reaching the adjacent layer below is then reduced by the
amount E. If Sk > 0, on the other hand, there is no evaporation but an additional
amount of precipitation represented by Sk is contributed by the layer

Finally, the adjustments on temperature and specific humidity are given

respectively by

Q1, k QO, k -p ,.-S. k

L
T =T + VS(67)

l, k o, k p, C k

3.2.3 ADIABATIC ADJUSTMENT

The third adjustment insures that the thermal stratification is statically

stable. When instability results from the last provisional values of temperature,

it is assumed that complete mixing takes place in both heat and moisture so that
the adjusted potential temperature and specific humidity assume uniform values
that are the mass-weighted averages of the respective quantities within the un-

stable layer.

In addition to these adjustments that are based on physical reasoning, there
are two other adjustments made on specific humidity that owe their existence to
the computational aspects of the model. When the initial grid-point values of
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specific humidity are transformed into spectral amplitudes, the latter are uni-

formly reduced to nine-tenths of the original values. The other adjustment is

introduced when the spectral coefficients are transformed into grid-point values

at each time step. Here, whenever a grid-point value turns out to be negative it

is simply set to zero.

3.3 Suhgrid Scale Diffusion

The parameterized subgrid scale diffusion in the model serves two purposes,

both related to dissipative effects. From the point of view of physics, this proc-

ess is included to simulate the assumed dissipative effect of the unresolved scales

of motion. For computational purposes, it is included to prevent the spurious

accumulation of energy in the smallest resolved scales of a numerical model with

a finite spatial resolution.

In the current model, the diffusion is parameterized by adding a term of the

form -rV 4 ( ) to the prognostic equations for rl, D, T, and Q. The v 4 operator is

more scale selective and more effective in controlling the higher wave numbers

than the traditional V2 formulation. In practice, two different diffusion coefficients

are used: t, = 4 X 1017 m 4 sec - I for diffusion applied to all modes of the diver-

gence, and vi. 1 X 1016 m 4 sec - for diffusion applied only to the upper half of

the rhomboid (n > M) for Ti, T, and Q. For computational stability, the diffusion

is lagged in time. There is no vertical diffusion included in the present formula-

tion.

4. DATA PROCFESSIN(G

Before the model forecast can begin, the initial data must be prepared in a

form appropriate for input into the model. Similarly, at the end of a forecast, the

forecasted data must be put into a form appropriate for certain standard graphical

and numerical displays.

In general, preparation of the initial data consists of three steps: (a) objective

analysis in which the observed meteorological data are analyzed and represented

at the mandatory pressure levels on a regular latitude-longitude grid; (b) pre-

processing in which the analyzed data are transformed from the analysis grid at

the mandatory pressure levels to the model grid in the model o layers and then

transformed into spectral coefficients in the a layers; and (c) initialization in

which the preprocessed data are put through a filtering procedure in which certain

undesirable gravity modes (that is, meteorological noise) and their tendencies are

removed. F"or the current baseline model we use the FGGE level III-A data that

have already been analyzed; and thus we skip step (a). The preprocessing and the
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I
normal-mode initialization have been adapted from the NMC spectral model. 3 The

only changes made in these algorithms are those necessary to reflect the differ-

ences in resolution and a structure between the two models.

The postprocessing of the forecast data is essentially the inverse of the pre-

processing, that is, the forecasted spectral coefficients in the model a layers are

transformed to physical values at the mandatory pressure levels on a regular

latitude-longitude grid. This procedure is also adapted from NMC.

4.1 Preprocessing/Post processing

Since the preprocessing and postprocessing are essentially the inverse of one

another, there are certain features that are common to both. The most prominent

among them are the following:

(a) Between two levels Z and Z at which data are available, temperature,
a b

wind, and specific humidity are assumed to be piece-wise linear functions of

Z = In p, that is,

F(Z) = F(Z) +A(Z-Z) Z < Z b  (8)

where

F(Zb) - F(Za)
Zb - a

(b) Geopotentiat and temperature are related to each other by the hydrostatic

equation

-- T ( ,o)

It then follows from (a) that 4 is a piece-wise quadratic function of In p and may

be expressed as

D(Z) = (Z) +A(Z - -) + _P_ (Z _ 2) 2 , Z < Zb

where the constants A and B are determined from the observed values (D(Z

(D (Zb), T(Za), and T(Z.) by the following relations:
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A b -- P- W a

1) Li

-'(Z b ) - T(Z
13 -~ b a

ba

4. 1. 1 PIEPROCESSING

The first step of the preprocessing consists of transforming the analyzed data

from the analysis grid to the model's computational grid. The FGGE level III-A

data are available or. a regular latitude-longitude grid with a spacing of 2. 50 (that

is, 144 longitudes by 73 latitudes). The model grid consists of 48 equally-spaced

longitudes (7. 5 spacing) and 40 Gaussian latitudes (-.4 4.0 spacing). Thus for the

longitudinal transformation we simply use every third data point. For the merid-

ional transformation we use a two-point linear interpolation in M = sin 0.

The second, and more involved, step of the preprocessing consists of inter-

polating the data from the 12 mandatory pressure levels to the model's a layers.

The analyzed data include geopotential, temperature, wind, and relative humidity

at all pressure levels as well as geopotential at the surface of the earth. The re-

quired preprocessed data must consist of temperature, wind, and specific humid-

ity for all (T layers as well as pressure at the surface of the earth.

We begin by defining the model's u-structure (see discussion in Section 2. 2.2).

Note that since o is an independent variable, G can be defined solely as a function

of 0 k and o k+ the prescribed v values at the bounding surfaces of layer k. On

the other hand, p,,, the pressure for layer k, is a dependent variable, and is given

by

pk(k, 0,t) =p ( , 0, t) ,k (72)

In order to determine pk(Ak0, t) we must first have p, (A, , t). For the remainder

of this section, we shall omit any reference to (X,o,t) in the interest of brevity.

We determine p.. by applying Eq. (7n) at the earth's surface, that is, let

In p. and write Eq. (7) as

.1 J(qz - 2)2 + A(Z, - ;) + , ) - . , (73)
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where A, B, and Zare given by Eq. (71) and

4(Z) = (ca + 4b)/2 - B(Z, - Z) 2 /8 (74)

Here the subscripts a and b indicate values at the two mandatory pressures that

are nearest to the earth's surface. We can now easily solve Eq. (73), which is a

quadratic equation for Z*. Of the two solutions, however, only one is physically

consistent. Once Z_ is known, p*, Pk = P* Ok and k = P*k may then bec

With uk defined and p, estimated, we may now proceed to compute layer values for

the model variables.

As mentioned earlier, layer values for the model variables are computed by

interpolating from the analyzed values at the mandatory pressures. To do this,

geopotential values at model levels, k' are first computed by applying Eq. (70)

at Zk ln pk:

k =(2) + A(2k - Z) + B( )2  k = 1,K , (75)k k 2 k

where (D(Z) = (0 + (b)/2 - B(Z Z2/8, and B, A, and Z are given by Eq. (71).
a b k

Here the subscripts a and b indicate values at the two adjacent mandatory pres-

sures surrounding Pk" Next, layer temperatures Tk are computed via the cen-

tered-difference form of Eq. (69)

T k k 2, K +1 (76)k-I-z
k k-1

where (D K+l &.* . With Tk known, layer geopotential, 'k' are obtained by solving

the finite-difference hydrostatic Eqs. (46) and (43).

Layer values for the two components of the pseudo-velocity, Uk = uk cos

V = v cos , and specific humidity Qk are computed by linear interpolation in Z.
k kk

The appropriate relationship is Eq. (68) where F represents any one of the vari-

ables U, V, or Q.

Since analyzed moisture content is given in terms of relative humidity, RH,

we must convert RH to Q before the vertical interpolation. For completeness,

the conversion formulas are included here:

Q =0. 622 e (77)p - 0. 378e
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where

e = e YRH cbB

e s = b exp (-a/T) cb

ELy 2.51 X 104 o K

R 1.61X2.87

b = es(273. 16) exp (a/273. 16) 0.611 exp (a/273. 16) cb

The preprocessing is completed by transforming the variables from model

grid values to a set of truncated spherical harmonic coefficients according to the

forward transform procedure described in Section 2.2. 1. The only additional

point to note here is that the spherical harmonic coefficients of vorticity andm Dn
divergence, n n and D' are computed spectrally from the Fourier coefficientsn n
of the pseudo-velocity components. This is done as follows: the definitions of

vorticity and divergence are

-+f cosI + 2 Q sine
a cos

1 2 [8- + cos 0 (78)

a cos 6o I k

and since these equations are linear, their Fourier transforms are simply

rn= 1 2 [irV - Cos 0 3U + 212 sin inm 0
nm a cos 4 d 0 m 0

D imU + cos 0 JM (79)
a cos ' 0

The spherical harmonic coefficients can be obtained by applying the operator

7r/2

pm os 6 d6( )m n
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to Eq. (79). Noting the similarity in structure between Eq. (79) and the horizon-

tal advection terms in the equations of motion (see Section 2) we find that nm and
Dn can be obtained by use of the operator L m defined in Eq. (28), that is,n n

/ I (m,n) (0, 1)
m = Lin V

no n n 0 (m,n) (0,I)

D nm L (UVm) . (80)n n in m

4.1.2 POSTPROCESSING

The problem of postprocessing is essentially the inverse of that of preprocess-

ing. Here the spherical harmonic coefficients of geopotential and pressure at the

earth's surface, and layer values of temperature, wind, and specific humidity are

known. The problem is to find their values as well as those of the geopotential at

mandatory levels on a latitude-longitude grid. Briefly, the procedure is as

follow s.

First, the grid point values of the variables on the Y layers are computed

from the spectral coefficients by using the inverse transform procedure described

in Section 2.2. 1. This can be done for any latitude-longitude grid. In this case,

we use the analysis grid, that is, a regular spacing of 2. in both latitude and

longitude.

Next we must interpolate from the o layers back to the mandatory pressure

surfaces. To find the geopotential at the mandatory pressures, we follow a three-

step procedure:

(a) bk are computed from Tk using the discrete hydrostatic equation

(Dk-l 0 k R Tk-I(Zk_ - Zk) k = K + 1, 2 (81)

where

Z k = nuk I In (p* 6

PK, = PK+l

pK+I =*

(b) As a consequence of the hydrostatic approximation and the assumption

that the geopotential is piece-wise quadratic in Z. Tk is now given by
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Tk Tk Zk ) k = 2, K . (82)T k (T k-1 + T k)/2 + Zk  k Zk_ 1 K 82

Here T1 0 TK+I must be computed by extrapolation,

(c) With 'ak and T k known, geopotential values at mandatory pressures

tmand are computed by

mand (Z)+A(Zand- 2 + B(Zmand - Z (83)

where O(Z) = (4a + 4b)/2 - B(Zmand - Z)2 /8 and B, A, . are given as in Eq. (71)

except that pa, Pb are now pressures at two adjacent model interfaces between

which Pmand lies. In the case where Pmand < P,, we simply adopt NMC's Shuell

method to obtain 4mand values at mandatory pressures below the earth's surface.

For values of wind, temperature, and specific humidity at mandatory sur-

faces, linear interpolation/extrapolation in Z is used:

F F + Fa  b (ZFb 4

Fmand =Fb + b(mand (84)a

Here pmand lies between layer pressures pa and pb' and F represents T, U, V,

or Q. For specific humidity we compute Qmand only for cases where

Pmand > 300 mb. Finally, Qmand are to be converted to RHmand using Eq. (77).

4.2 Initialization Procedure

The normal-mode initialization of Machenhauer 1 3 is applied to the initial data

following the procedure developed by Ballish. 14 The theoretical background and

specific details of the procedure are described by Sela. 15

We shall confine ourselves to presenting data that show the differences in the

basis functions between our model and the NMC model. These variations are due

to the differences in sigma structure and horizontal truncation.

13. Machenhauer, B. (1977) On the dynamics of gravity oscillations in a shallow
water model with applications to normal mode initialization, Beit. Phys.
Atmos. 50:253-271.

14. Ballish, A. B. (1980) Initialization TheorX and Application to the NM( Spectral
Model, PhD Thesis, Dept. of Meteorology, Univ. of Maryland.

15. Sela, J.G. (1982) The NMC Spectral Model, NOAA Technical Report NWS-30,
36 pp.
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First of all, as Ballish remarked, there is no a priori reason that the eigen-

values associated with the vertical structure of any model be real. However, their

values must be real in order that the normal-mode representation be meaningful.

Our experience with a number of samples shows that both the eigenvalues and the

eigenvectors are robust in the sense that they remain real and stable with regard

to changes in either the sigma structure or the basic temperature profile of the

model. Tables 2 and 3 present the sets of eigenvalues for the six-layer and 12-

layer models, respeotively, with three different basic temperature profiles.

Figures 2 through 5 show the eigenvectors corresponding to the four largest eigen-

values of some of the cases included in Tables 2 and 3. Variations of the eigen-

values with structure and profile, and similarities in the profiles of the eigenvec-

tors among the various structures and profiles clearly illustrate these points.

With the rhomboidal truncation M = 15, the matrix of the eigensystem for

either symmetric or antisymmetric flow is of order 24 (=3 X 8). The correspond-

ing eigenvectors consist of eight components each of divergence, vorticity, and

the composite function, W = D + RT 0 q. For a given zonal wavenumber, both the

symmetric and antisymmetric flows will generally have 24 distinct eigenvalues

and eigenvectors. The only exception is found with m = 0, where the symmetric

flow includes 14 gravity modes and two stationary modes, while the antisymmetric

flow contains 16 gravity modes. All Rossby modes are degenerate in this case.

For m # 0, of the 24 modes, 16 are gravity modes that are equally divided be-

tween eastward- and westward-propagating waves while the remaining eight are

the Rossby modes. Faster gravity waves have smaller length scale in the merid-

ional direction, while faster Rossby waves are associated with larger length scale.

Table 4 summarizes some of the characteristics of the horizontal normal modes

associated with the M = 15, six-layer AFGL model with a 3000 K-isothermal basic

temperature profile.

For the experiments reported in Section 5. 2, the initialization was applied

only to the two largest vertical modes and only to those horizontal modes whose

periods are less than 48 hr. The best results were obtained with two iterations.
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Table 2. Eigenvalues of Vertical Modes of Six-layer Models (m 2 sec 2

GL Six-layer Equi-thickness Six-layer

2700 3000 2700 300 °

Standard Isothermal Isothermal Standard Isothermal Isothermal

1 93768 104865 116516 93512 104395 115994

2 19945 28085 31206 14589 21193 23547

3 1356 3463 3848 1362 3616 4017

4 289 743 826 273 830 923

5 99 280 311 72 219 144

6 15 43 48 12 36 40

Table 3. Eigenvalues of Vertical Modes of 12-layer Models (m 2 sec -2)

NMC 12-layer Equi-thickness 12-layer
2700 300 °0 270 °0 300 °

Standard Isothermal Isothermal Standard Isothermal Isothermal

1 94463 106102 117891 94140 105484 117204

2 27094 33855 37616 22349 28800 32000

3 5209 9372 10413 3051 6810 7567

4 1559 3194 3549 1000 2174 2415

5 696 1470 1634 361 912 1013

6 324 715 794 160 426 474

7 152 388 431 76 218 242

8 86 209 233 39 112 125

9 44 105 116 19 57 64

10 22 59 66 9 27 30

11 7 21 24 3 10 11

12 2 5 6 1 2 2
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Table 4. Some Characteristics of the Horizontal Normal Modes With 16-wave
Rhomboidal, AFGL Six-layer Model, and the 3000-K Isothermal Basic Temper-
ature Profile

Period in flours of

Vertical Zonal Fastest Slowest Fastest
Mode Wave Gravity Gravity Rossby

Number Number Mode Mode Mode

0 2.09 18.0
1 1.97 29.5 27.8
5 1.58 6. 07 72.9

15 1.07 2.11 19.2

0 4.00 26.8

2 1 3.76 38.4 31.8
5 3.04 11.8 7.-5.o

15 2.05 4.09 193

0 9.36 46.0
1 9.00 78.7 43.0
5 7.81 33.3 86.3

15 5. 67 11.7 198

0 11.7 67.9

1 11. 1 125 101
5 11.2 G9.5 104

15 10.1 25.4 205

0 12. 1 88.2 X
1 11.2 1633 137
5 12.2 109 12 )

15 12.5 41.3 2 16

0 12.3 177

6 1 11.2 2422895 12.7 24617

15 14.4 104 -

5. RESULTS

In this section we present the results of several time integrations to establish

the performance of the low resolution baseline model. In all cases we used a

rhomboidal truncation of M = 15 with six unequally-spaced a layers (see Figure 1

and Table 1). Unless otherwise noted, we used the semi-implicit tune scheme

with a time step at At = 60 min. Two types of initial data were used for testing

purposes: (a) idealized analytic Rossby-Haurwitz waves and (b) global FGGE level

III-A data for the weeks of 15 January 1978 and 16 July 1978.
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5. I F'ort 'a~l ,iti \itahtic Initial Coinditioll

For thc prcliminary test of the model's coding and performance, we used the

analytic initial conditions suggested by Phillips for a barotropic model and mod-
7

ifikd for use in a multilayer model as shown by Bourke. The model was initialized

with the same flow pattern in all layers. It consisted of a mean zonal flow plus a

zonal wavenumber 4 eddy with the stream function given by

01 ) 4 4 4jX 4 4 _~40L

I P 1  i n(s 0)+ L4 5 P (sin 6) e + - 4 P4 (sin ¢ -, (85)

where the spectral amplitudes are

1) 2 2
1 -a L:

4 _ 2 2 q

L- a811 1

V

\ith = and '2 is the angular velocity of the earth. Additional specificationsIU

of the initial conditions ircluded an isothermal atmosphere with T = 266. 5°K in

aB layers, a inean surface pressure of 1',) cb, and no topography so that D, = 0

evcrywhcrc. The initialization was completed with a non-divergent balance con-

ditiun obtained from Eq. (24) by initially setting

n 0
lit n

and then solving for qm In this case, the model was treated as inviscid, adiabatic,

and dry (that is, all of the physical parameterizations were turned off).

We note that the analytic barotropic non-divergent solution consists of a zonal

wavenumber 4 pattern that preserves its shape and amplitude and rotates from

west to east with a phase speed of 9. Go per day. For the multilayer model, the

flow should resemble the barotropic solution for the first few time-steps and then

slowly deviate as divergence and vertical shear develop.

In Table 5, we show the amplitude and phase speed of the €, mode resulting

from two different 72-hr forecasts, one using an explicit time scheme with a time-

step of 10 min and the other using the semi-implicit scheme described before.

16. Phillips, N.A. (1.959) Numerical ihitegrations of the primitive equations on the
hemisphere, Mon. Wea. Rev. 87:333-345.
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Table 3. Amplitude (U 7 in2 sec - ) and Phase Speed (Degrees per Day) of
the 5 Mode

Explicit Time Scheme (At = 10 min)

24 hr 48 hr 72 hr

A P A P A P

). o622 3.995 9.47 3.949 9.48 3.838 9.49

0. 1985 3. 9 9,. 37 3. 879 9. 30 3. 826 9. 15

0..3699 3. 986 9. 13 3. 951 8.97 3. 951 8. £7

. 22,) 4. 016 8. 94 4.011 8.90 4.044 8.92

8242 4.(130 8.85 4.046 8.91 4.041 8.95

0.9497 4. G39 8.84 4. 029 8.95 3. 983 8.93

Average 4.009 9.09 3.981 9.05 3.961 9.05

Analytic 4.023 9.6 4.023 9.6 4.023 9.6

Semi-implicit Time Scheme (At = 60 min)

24 hr 48 hr 72 hr

a A P A P A P

0.0622 4.001 9.46 3.957 9.41 3.825 9.37

0. 1985 4. 003 9.37 3.901 9.20 3.854 9.00

0.3699 3.992 9. 10 3. 975 8.86 3.996 8.78

0.622o 4.030 8.93 4.040 8.83 4. 113 8.75

0.8242 4. 051 8.85 4.091 8.85 4.079 8.82

0.9497 4.063 8.85 4.093 8.88 4.038 8.80

Average 4.020 9.08 4.010 8.97 4.002 8.89

In both cases, we find that the model behaves as expected, that is, the flow re-

sembles the barotropic solution with deviations that increase with time. As noted

by Bodirke, 7 we also find that the upper layers tend to preserve the phase speed of

the barotropic flow while the lower layers tend to preserve the amplitude of the

wave. In general, the vertically-averaged amplitude and phase speed both decrease

slightly as the forecasts proceed. The small differences between the explicity and

semi-implicit results can easily be explained in terms of the known characteris-

tics of each of these time schemes (for example, Kurihara 7).

17. Kurihara, Y. (1965) On the use of implicit and iterative methods for the time
integration of the wave equation, Mon. Wea. Rev. 93:33-46.
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Finally, the analytic initialization cxperiments provide an opportunity to

check the conservation properties of the model. For the 72-hr semi-implicit

integration, the changes in total energy (sum of kinetic, internal, and gravitational

potential), mass, and angular momentum were -0. 0034, -,i. 0035, and -0. 162 per-

cent, respectively. For the explicit integration the change in energy was -0. 0026

percent. All of these values are considered acceptable and allow us to proceed to

the more realistic simulations that include all of the physical parameterizaticns

and use actual data for initial conditions.

5.2 l'orerasts With Global lata

As was mentioned previously, the data used for the global test forecasts con-

sisted of FGGE level 111-A data sets for the weeks beginning 15 January 1978 and

16 July 1978. In view of the limited number of days of data available, the decision

was made to run four test forecasts - one for the first 48-hr period of each week

and one for the last 48-hr period of each week. This was done in order to test the

model on as many synoptically independent cases as possible. While the separa-

tion of four days may not be quite enough for synoptic independence, it was the best

that could be done under the circumstances. Thus the four test forecasts included

two winter cases with OOZ 15 January 1978 and 12Z 19 January 1978 and two

summer cases with OoZ 16 July 1978 and 12Z 20 July 1978 as the initial times.

We note that in the sLx-layer, M = 15 rhomboidal configuration with At =60 min

the model required 83K words of memory and used 18 min of (PU time for each

24 hr of simulation on the CDC 6600.

In the course of evaluating the model's performance, we found it helpful and

interesting to assess the relative influences of each of the three components of the

model (preprocessing, prognostication, and postprocessing) as shown in Figure 6.

It is obvious that the preprocessing and postprocessing are purely static while the

prognostication includes both static and dynamic changes. If the errors accrued

in the static transformation during the processing stages were statistically inde-

pendent of those produced during the prognostication the total error variance of

the model would be the sum of the two partial error variances. In practice, how-

ever, because of the presence of common elements in both physical assumptions

and mathematical procedures among different components we do not expect a

strict statistical independence between the processing parts and the prognostic

part. Nonetheless, it was thought that such a partition might shed a light into the

composition and nature of the model performance. Toward this end, the perform-

ance was measured by the RMSD between the model-produced values and the

corresponding analyzed or "truth" values at the grid points. Thus,
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Figure 6. Schematic Diagram of Model
Evaluation

'j 1 1/2

RMSI) = (Mij - T

j= 1 i=1

where Mij and Tij are the model-produced and "truth' values at grid point (i, i) in

which i = 1, 2 ... , I and j = 1, 2 ... , J are the longitudinal and latitudinal

indices, respectively, and W. is the Gaussian weight at latitude I.

For the total performance of the model, the values of M. were taktn fhfon

the model forecast and T.. were the values interpolated from the iGI., II1-A data
set to the Gaussian grid, hereafter referred to as the analyzed values, lFor the

performance of the processing parts, M.. were synthesize.d Irom the analvzed

values at the time of verification by putting the latter through the preprocessing

and postprocessing parts while bypassing the prognostication of the modiel. I inally,

the performance of the prognostication is represented by the HINSI) betw~een the

model-forecast values and the synthesized values. A table of g!obal performan'es

for vector wind, temperature, and height at three different pressure ltevels sum -

marizes the model evaluation in each of the four test runs (Table (i through Table 9).
In these tables the letters A, S, F' refer to the analyzed, synthesized, and fore-

casted fields, respectively.
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Table 6. Performance (RMS Differences)

15 January 1978, OOZ

Level V(m see
- ) T (OK) Z (M)

(mb) Pair 24 hr 48 hr 24 hr 48 hr 24 hr 48 hr

(F,A) 5.4 6.8 2.6 3.6 31.6 42.2

850 (S,A) 2.5 2.5 1.7 1.7 9.9 10.4

(FS) 4.8 6.4 2.4 3.4 31.0 41.7

(F,A) 6.7 9.0 1.9 2.7 41.5 57.3

500 (S,A) 3.6 3.7 1.7 1.6 12.1 12.7

(F,S) 5.5 7.9 1.4 2.3 40.4 56.9

(F,A) 11.3 14.6 4.4 4.8 58.8 88.7

250 (S,A) 5.5 5.5 2.8 2.6 14.2 13.6

(F, S) 8.6 12.2 2.3 3.0 56.5 86.8

Table 7. Performance (RMS Differences)

19 January 1978, 12Z

V (m sec 1) T (OK) Z (m)
Level
(mb) Pair 24 hr 48 hr 24 hr 48 hr 24 hr 48 hr

(FA) 5.3 6.7 2.5 3.4 28.8 37.0

850 (S,A) 2.5 2.8 1.6 1.9 9.1 10.3

(FS) 4.6 6.0 2.2 3.3 28.4 36.8

(F,A) 7.1 8.7 2.0 2.6 38.4 50.7

500 (S,A) 3.7 3.7 1.7 1.5 10.4 12.0

(F,S) 5.8 7.6 1.5 2.3 38.0 50.2

(FA) 11.7 13.9 4.3 4.8 57.1 81.8

250 (SA) 5.9 5.5 2.8 2.8 14.0 13.5

(FS) 8.8 11.6 2.2 2.8 54.8 79.8
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Table 8. Performance (RMS Differences)

16 July 1978, OOZ

Level V (m sec - 1 ) T (OK) Z (m)

(mb) Pair 24 hr 48 hr 24 hr 48 hr 24 hr 48 hr

(F,A) 4.7 6.8 2.3 3.2 25.7 41.7

850 (S,A) 2.3 2.5 1.6 1.5 9.6 8.6

(F,S) 4.1 6.2 2.0 2.9 25.3 41.2

(F,A) 6.0 8.6 2.1 2.5 34.7 55.4

500 (S,A) 3.1 3.4 1.6 1.6 11.1 11.0

(FS) 5.1 7.8 1.4 2.1 34.0 55.0

(F,A) 10.8 14.2 4.4 4.7 55.4 83.8

250 (SA) 5.7 6.3 3.0 3.0 15.0 15.5

(F,S) 7.9 11.3 2.2 2.6 53.0 81.9

Table 9. Performance (EMS Differences)

20 July 1978, 12Z

V (m sec) T (OK) Z(m)Level

(mb) Pair 24 hr 48 hr 24 hr 48 hr 24 hr 48 hr

(F,A) 5.0 6.3 2.7 3.1 24.6 37.7

850 (S,A) 2.3 2.1 1.5 1.5 9.4 8.8

(F,S) 4.5 5.9 2.5 3. 1 24.1 37.1

(F,A) 6.2 8.1 2.1 2.5 37.7 52.2

500 (S,A) 3.3 3.4 1.6 1.6 10.7 9.8

(F,S) 5.2 7.1 1.6 2.4 37.2 52.1

(F,A) 11.0 12.8 4.4 4.8 59.4 86.1

250 (S,A) 6.2 6.2 3.0 3.0 15.3 15.2

(F,S) 7.9 10.4 2.2 2.5 57.4 84.5
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Three features common to all runs seem to stand out well. First, the total

MASD are approximately equal to the sum of that due to the processings and that

due to the prognostication. Second, the performance of the processing is quali-

tatively invariant with respect to time and case, indicating that the measure at the

global level is insensitive to the synoptic details. The last feature that follows as

a combined result of the previous two characteristics is that the degradation with

time of the total model performance is due mostly to the prognostication. The

values of performance are comparable in magnitudes with the statistics of other

current operational and research models.

For a qualitative assessment of the model's performance, in Figure 7 we

show the analyzed 1000- and 500-mb heights for 00Z 15 January-17 January and

the corresponding 24- and 48-hr forecasts (16 January and 17 January, respec-

tively) for the Northern Hemisphere. In general, the results are as might be

expected based on model performance reported by other researchers using com-

parable models. 1.2,3 At 24 hr (Figures 7b and 7c) the model is able to correctly
forecast the location and movement of the major surface systems and the 500 mb

troughs and ridges. At 48 hr (Figures 7d and 7e) the global patterns are predicted

reasonably well but phase errors start to become noticeable. Also, a major

problem of a low resolution model is its inability to accurately treat smaller scale

features such as cutoff lows and sharply defined fronts.

The formulation of the baseline version of the AFGL moist global model has

been described in detail. It is patterned after the NMC spectral model. 3, 15 The

numerical methods in the model include spectral representation in the horizontal,

the Arakawa vertical differencing scheme, and the semi-implicit time scheme.

The data processing, normal-mode initialization, and the parameterized physical

processes have all been adapted from the NMC model. Test forecasts for a limited

number of cases indicate that the model performs as well as other comparable

large-scale models.

6. I Future Research

It should be emphasized that the model documented in this report is a baseline

version and is therefore only a starting point for additional research. One of the

major goals of our future effort is to provide the model with a useful cloud

NMC global spectral model and GWC AWSPE, private communication.
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forecasting capability. Some of the preliminary steps and procedures necessary

for this have already been described by Mitchell. 18

Success in this area will require major changes and improvements in all

aspects of the baseline model:

(a) In the area of dynamics anu numerical methods, we are currently working

on expanding the resolution of the model (at least 12 layers with M = 30) as well as

vectorizing the code for efficient processing on the CRAY-i. We are also consider-

ing alternative and potentially more accurate numerical solutions of the hydro-

static equation.

(b) Data processing, including analysis and initialization, is one area that is

currently receiving substantial attention throughout the meteorological community.

For our model, an effort is under way to develop a scheme that combines optimal

interpolation analysis and nonlinear normal mode initialization. Other research

in the processing procedures will focus on improving the pressure-to-sigma and

sigma-to-pressure interpolation schemes to make them more accurate and con-

sistent with the vertical structure of the forecast model.

(c) The parameterized physics in the model will also be completely changed.

Efforts are currently in progress to develop improved schemes for boundary-

layer and moisture physics. In addition, a radiation package will be added to the

model.

(d) Finally, an effort is being made to develop preliminary software that will

produce derived cloud forecasts based on the model-forecasted moisture field.

18. Mitchell, K. E. (1982) Cloud Forecast Fields Comparison Test, AFGWC
Technical Note 82/003, 66 pp.
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Appendix A

Nurneical Values of Physical Constants
:

g 9.8 m s -

a 0.371 X 10 in

S2 7.292116 X 10' 5 s - I

R for dry air 287.05 J kg - 1 K 1

C for dry air 1005 J kg - 1 K 1

e ratio of molecular
weight of water to
that of air 0. 622

R for water vapor 461.5 J kg
I K "I

L of condensation 2. 51 X 10 6 J kg - 1

L 0i sublimation 2. 835 X 10 J kg -

specific heat of liquid -1 -1

water 4187 J kg K

specific heat of ice 1922 J kg - 1 K 1

C for water vapor 1876. 5 J kg-1 KI

P
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Appendix B

Derivation of the Semi-Implicit Time Integration Scheme

We shall be concerned only with the coupled system that consists of the diver-

gence, thermodynamic, and surface pressure tendency equations. We first sub-

stitute for T = T 0 + T' and separate the linear divergence terms from the non-

linear terms in the thermodynamic equation. Next, we transpose all the linear

terms in Eqs. (24), (25), and (27) to the left-hand side and write them, for each

(m, n), as

Sal) n(n + 1) ((P + RqTo= (B 1)

aDat a2 (

aT

- + CD (B2)

cq z (B3)a t "

Here the components of each of the column vectors D, . T, X, and y are the K

layer values of the parameters involved; the symbols ., y, and z represent all

of the nonlinear terms on the right-hand side; and the reference to (m, n) has been

dropped for brevity. The column vector 10, the row vector X, and the K X K

matrix C are independent of the time and (m, n). They are given by
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X 0 =  (T o ,, T 0 T. . T T

z: = (r1 , ri.... rK)

vkr.. j=l, k-I1

Mk = kj, j=k k=l, K

Akrj, j=k+l, K

where

rk =k+l -k

Il= KTo0k - ckHk + Lk+lGk)/rk

M = ' k + Gk/r

Vk =k + Hk/rk

G k T T0, k" Tl T0, k+ 1/

k I

Hk= 0, k-l ( "-_) - To, k /2

Next, we write Eqs. (43) and (46) in matrix form

: A T+4,.e , (B4)

where A is a K X K matrix whose elements are functions of a k and rk; and e is a

unit vector. Eliminating ' between (B) and (B4), we have

n(n+ 1) (AT+RqT + n(n+ 1)
t (A R = - e (B5)

a a
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We now let

T'aT(1 - a)T

Q D +( -

q aq (1 Q a)q - (BO6

for the undifferentiated linear terms in Eqs. (B32), (B3), and (B35) and we approx-

imate the time derivatives by centered-differencing,

BF F -F
a5t 2tz (B7)

Equations (BO), (B2), and (133) may then be written as

+ Dn-11 ( + 1 ~) q 2 + 26t n + 3t1) e)
2t - 2 (AT++ + (1+38) !

aa

+~ + 1

1:+ - 26taCD+ - 265t(1 - a)CD- + 26t (B9)

q =q 2 A~5td a + (I - a rDJ + 2 6tz .(BlO)

Let I be the identity matrix of order K. Elimination of T+and q +in Eq. (B8)

leads to the linear system

1 + (26ta) 2 n(n + 1) (AC+RO D +[ a

I a(26t.)2 n(n + 1) (AC + RT D_)oV 2 -(1Z

2 6t. + n(n + 1) +- 6a)+Rq-+2tv)
a 2  , + A ' (Tt a ) + _2t a 0  . (B 11)
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+I

which can be solved for Once values are computed, and q are easily I

obtained by solving (B9) and (BlO).
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List of Symbols

a radius of the earth

f Coriolis parameter

g gravity

i r- 1

j, k, I indices

k vertical unit vector

m order of spherical harmonic (superscript)

n degree of spherical harmonic (subscript)

p pressure

p* surface pressure

q In p

t time

u. v eastward and northward components of velocity

A, B nonlinear advection terms

C specific heat at constant pressure

D horizontal divergence

E kinetic energy

63

i1



I diabatic heating

If meridional derivative of the associated Legendre function
n

I nonlinear term in the thermodynamic equation

J nonlinear term in the moisture equation

K number of vertical layers

L latent heat of condensation of water vapor
V

M truncation value of m

N truncation value of n

pm associated Legendre function of order m and degree nn

Q specific humidity

RI gas constant for dry air

T temperature

T basic state temperature

U, V pseudo-velocity = u cos 4, v cos

W. Gaussian weightJ
ym spherical harmonic of order m and degree n

n

relative vorticity

absolute vorticity

0 potential temperature

K R/Cp

A longitude

lA sin 0

V diffusion coefficient

a vertical coordinate
da

& vertical velocity =d.

Eratio of molecular weight of water vapor to that of air

latitude

velocity potential

streamfunction
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geopotential

surface geopotential

S2 angular velocity of the earth's rotation

)in spherical harmonic coefficient of order m and degree n
n

(- 0  vertical integral

k layer value

k level (interface) value

( ) vector
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