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Symbol List

a = particle rest position

a = radius oé cylinder

a(v) = Censor's expansion coefficient

A = radiated acoustic pressure amplitude of cylinder
: vibrating at angular frequency w'

A' = radiated acoustic pressure amplitude of

cylinder vibrating at angular frequency w"

Ap = rigid-body scattering coefficients

A(V) = Censor first-order expansion coefficient

b = cylinder-cylinder separation distance

:

B, = expansion coefficient for p,(3q/3t) -
% R(Vv) = Censor second-order expansion coefficient i
: c = wave speed %

Co = infinitesimal wave speed %

cp = gpecific heat at constant pressure

fE(x,t) = arbitrary Eulerian function

% fL(a,t) = arbitrary Lagrangian function
8ya(r,r') = cylindrical Greean's function
Hy( 1) = Hankel function of the first kind
Jn = Bessel function of the first kind
k = thermal conductivity
ke = we/cg
k- = (0'-u")/cq
Nao = Bessel function of the second kind .
pressure in fluid

o]
]

P = gecond-order pressure in fluid

vi v
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Uy

Yine

Ugcatt
uy

uz

acoustic pressure amplitude radiuated by
cylinder frequency w.

Eulerian acoustic pressure

incident plane-wave acoustic pressure
Lagrangian acoustic pressure

pressure in fluid associated with frequency n
acoustic pressure amplitude of plane wave

radiated plane-wave acoustic pressure

total first-order acoustic pressure for cylindrical
wave scattering from a vibrating cylinder

first-order pressure in fluid

second-order particle pressure due to sum and
difference frequencies

simple source strength

magnitude of cylindrical radius vector

the greater{lesser) of r and b

mass source term

entropy

Stress-Tensor

components of Stress-Tensor
particle velocity

component of particle velocity
Censor incident pressure
incident particle velocity wave
Censor scattered pressure

scattered particle velocity wave

first-order particle velocity

second-order particle velocity

position of point in space




nm

S(E-¥)

nonlinearity fluid parameter

Kronecker delta

Dirac delta function

Censor small expansion parameter
expansion parameter of order Mach number
Censor operator = v~2(3/3x)

displacement

frequency

first-order particle displacement

second-order particle displacement due
to sum and difference frequencies

variable fluid mass density

ambient fluid mass density

first-order mass density

sccond-order mass density

velocity potential

first-order velocity potential

angular frequency = 2nv

angular frequency of cylinder vibration
sum- and difference-angular frequencies
angular frequency of deformation of surface

D'Alembertian operator = v - [(1/c°2)(az/at2)]
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t. LINTRODUCTILON

This thesis addresses the problem of the nonlinear scattering of acoustic
waves with harmonic time dependence by a vibrating obstacle. The obstacle is
immersed in an infinite homogeneous fluid medium, and its surface deforms
uniformly with tarmonic time dependence. The case in which the surrounding

fluid medium is water is of primary interest.

The problem of the scattering of a plane wave incident on acoustically
rigid spherical and cylindrical obstacles surrounded by an infinite homoge-
neous fluid medium was first solved by Rayleigh [1] using linear, lossless
theory. To obtain numerical values for the rather coamplicated mathematical
solutions, he considered only the limiting case where the radius of the scat-~
terer is much smaller than a wavelength. These results were extended by Morse
(2], who obtained a solution in a form more readily evaluated. He provided
tables of calculated values, including values when the obstacle is not small
compared to a wavelength. Faran {[3] obtained a solution in the case where the
scattering obstacles are not acoustically rigid. 1In addition to studying the
problem theoretically, Faran performed an experimental investigation of the
cylindrical case. Agreement between theory and experiment was excellent and
resulted i the establishment of a proper criterion under which a scattering
object could be considered acoustically rigid; namely, that the frequency of
the incident plane wave be well below that of the lowest mechanical resonance
of the scatterer. The non-rigid spherical case was studied experimentally by

Hampton and McKinney [4].

All of the studies mentioned above assumed that the linear wave equation
was sufficient to describe the situation of interest. However, the exact
equations describing acoustic wave propagation in a fluid (as well as for
solids and plasmas) are actually nonlinear. The linear wave equation is only
an approximation tha® is valid for small amplitude behavior. Deviations in
behavior from that predicted by the linear wave equation can become signifi-
cant when the Mach number (ratio of particle velocity to phase velocity or,
equivalently, the ratio of the change in mass density to the density of the
undisturbed fluid) is not much less than unity {5]. In this case, the non-
linear wave equation ls required to accurately represent the behavior. The

study of acoustical behavior requiring use of the nonlinear wave equation is

called nonlinear or finite-amplitude acoustics.




Most solutions of the nonlinear wave equation for fluids have been re-

stricted o plane waves in homogeneous i{nfinite media. 1In 1860, Earnshaw {6]
obtained an implicit solution to the lossless, one-dimensional, nonlinear wave
equation subject to a boundary condition at the origin. That solution is
valid at propagation distances small relative to the plane-wave discontinuity
distance (that propagation distance at which the solution to the lossless
nonlinear wave cquation for a wave sinusoldal at its origin bhecomes multiple-
valued. This occurs because points of ‘high particle velocity in the wave also
have higher propagation velocities and hence tend to overtake the points of
low particle velocity, causing the waveform to approach a sawtooth shape. It
is proportional to the Mach number and is a convenient measure of the non-
linearity of the problem.*) Earnshaw's solution illustrated that points of
high particle velocity/pressure in the time waveform (i.e., the variation with
time of the particle velocity/pressure at a fixed position) move more rapidly
than points of low particle velocity/pressure. This causes the time waveform
of a finite amplitude wave to change its shape (i.e., distort) as the wava
propagates. Investigators of this problem usually assume an acoustic wave
that 1s sinusoidal (i.e., harmonic) at its point of origin and utilize a
harmonic time analysis of the waveform to describe the subsequent propagation
of the wave. The distortion of the waveform from its Initial state manifests
[tself in the generation of harmonic component waves. 1In effect, a wave of
angular frequency w generates waves of angular frequencies 2w, 3w, etc. as it
propagates. These harmonic components usually gain energy at the expense of

the fundamental component of angular frequency w.

*In a real situation, the solution never actually becomes multiple valued. 1t
is preventrad from doing so due to energy loss due to the viscous terms that
are no longer negligible when the discontinuity distance is approached.
(Nonetheless, the onset of shock-wave formulation occurs near the disconti-
nuity distance.) In higher-dimensioned problems there is no corresponding
discontinuity distance since geometric spreading ls sufficlent to prevent this
catastrophic growth of the nonlinearly gencrated wave. Nonetheless, it repre-
sents a conservative estimate of the distance to which the lossless theory may
be applied. 1t is given by Beyer (Reference 5, p. 104) as:

(1/2) = [1+(B/2A) | [(wug)/co2]s
where A = po(3B/30)g oup = PoCo s B = Po2(320/%0%)g oy k=

discontinuity distance. For water at 20°C, B/A is approximately 5.0.

R |




In 1935, Fubini-Ghiron [7] obtained an explicit form for Earnshaw's

implicit solution for the case of an initially harmonic wave. He expressed

his solution as a Fourier harmonic series with Bessel function coefficients.

In 1950, Kech and Beyer [8] obtained a solution to the problem of the
propagation of an initially harmonic plane wave including linear absorptive
losses. To obtain this solution, they assumed that each of the acoustic
variables can be written in a perturbation scries in which the order of
magnitude of each term is smaller than that of the preceding term by a factor
equal to the Mach number. They then calculated in succession the first six
terms of the perturbation series solution for the particle displacement. This
glves an approximation to the exact solution that is useful for distances of

propagation somewhat less than the plane-~wave discontinuity distance.

In 1958, Hayes [9] succeeded in putting the equations of motion (includ-
ing thermoviscous losses) into the form of a Burgers' equation [10}. Hayes
does not make clear in this derivation to what order in Mach number this equa-
tion is valid. 1In 1963, however, Blackstock {l1] again put the equations of
motion, {ncluding thermoviscous losses, into the form of a Burgers' equation.
This treatment makes it quite clear that the equation is valid to second order
in Mach number. 1In- Reference 11, Blackstock introduces the term "substitution
vorollary” for the standard procedure used to identify the ordering of terms.
In essence, this corollary states that in obtaining a second-order approxima-
tion, the individual acoustic variables involved in forming any term comprised
of a product of acoustic variables may freely be replaced by their first-order
equivalents. A more precise substitution would generate terms higher than
second order. This formulation has great utility in that exact solutions of
Burgers' equation exist. Blackstock [11,12) succeeded in obtailning such a

solution for an initially harmonic plane wave.

In 1964, Blackstock [13] showed that when the spatial coordinate is large
relative to a wavelength, Burgers' equation can also be used to solve the
problem of propagation of spherical and cylindrical waves in a lossless medium
(1f the frequency 1is not large, losses may still be ignored large propagation
distances). 1In 1981, Trivett and Van Buren [l4] developed a numerical method
of solving the Burgers' equation for plane, cylindrical, and spherical waves

including losses.




Significant nonlinear generation of acoustic waves can also occur when
two waves of different frequency are present simultaneously in a fluid me-
dium. 1Tn 1948, Eckart [15]) derived a second-order nonltnear wave cquation
(re~derived by Westervelt [l6] in 1957) useful in obtaining solutions to this
type of problem. In 1963, Westervelt {17] considered the problem of two col-
linea. plane waves (called primaries) with different initi2:]l harmonic time de-
pendences at the origin. He started with Lighthiil's {18] equations of motion
and retained terms up to the quadratic in Mach number. In addition to the
harmonics of the primaries predicted when a plane wave propagates and distorts
in 8 fluid medium, waves at frequencies equal to the sum and difference of the
primary-wave frequencies were also predicted. These sum- and difference-
frequency waves tend to grow with increasing distance from the origin. In
this paper, Westervelt essentially transformed Eckart's second~order nonlinear
wave equation fnto a form known as the simple-source formulation. This

transformation, however, was restricted to the case of plane wave primaries.

Westervelt's theory was confirmed experimentally by Bellin and Beyer
{19], who produced a 1-MHz difference-frequency wave by driving a 2.54-cm~diam
circular pistoa source at the primary frequencies 13 and 14 MHz. Agreement

between theory and experiment was good.

In 1962, Dean {20] presented a solution for the sum-frequency wave pro-
duced by two outgoing, concentric cylindrical waves. He again started from
the basic conservation equations and derived a coupled set of differential
equations (accurate to second order in Mach number) in terms of a new set of
variables (defined in terms of operations on the first- and second-order
acoustic quantities). Dean stated that the solution he presented to these
equations for this particular case was exact. Lauvstad [21]) later stated that
Dean's solution to this problem was Incorrect except in the farfield. He
stated that direct substitution of Dean's solution into the equations demon-
strated their incorrectness except, as previously mentioned, in the asymptotic
limit approaéhing the farfield. This, however, is not so. Dean later per-
formed measurements that were in falr agreement with the qualitative aspects
of his theory [22]. (No attempt was made to demonstrate quantitative
agreement with the theory.) These measurements were performed under farfield

conditions. Lauvstad offered his own general expression for the sum~frequency

component; however, he used the Green's function corresponding to the

*_
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unphysical case of a soft boundary. A correct expression for the difference-

frequency pressure for this case will be obtained in this report.

In 1972, Censor [23] solved the linear wave equation for the problem of
the scattering of an acoustic plane wave (of angular frequency w) by an ob-
stacle whose surface deforms harmonically (at angular frequency ). In his
calculation, Censor included nonlinearities only in the boundary conditions he
imposed. He predicted that in addition to the usual rigid-body scattered
fleld, waves at angular frequency w, = w % @ would be created at the
boundary. These waves would then propagate outward from the boundary with a

behavior described by the linear wave equation.

Shortly after the appearance of Censor's article, Rogers [24] pointed out
that waves at angular frequencies wy arising from medium nonlinearities would
also be predicted by the nonlinear wave equation. Rogers also stated that the
effects predicted by Censor depend on the Mach number in the same way as the
effects arising from nonlinear theory. Hence, the propagation problem cannot
be linearized in any physically meaningful way without also eliminating the
boundary effect predicted by Censor. In other words, a solution to the
problem of the generation of sum- and difference-frequency waves must

necessarily involve solving the nonlinear wave equation.

In the present study, the simple-source formulation of the second-order,
nonlinear wave equation for a lossless medium is derived for arbitrary primary
wave fields of harmonic time dependence. This equation was previously derived
by Westervelt [25]; however, his treatment, as previously mentioned, was re-
stricted to plane-wave primaries. The assumption that no linear losses, such
as those due to viscosity or heat conduction, exist in the fluid medium places
restrictions on the subsequent solution. These restrictions tend to increase
with increasing viscosity and frequency. However, the restrictions are not
expected to be significant for the case of a water medium and the frequencies
to which the solution will be normally applied (less than about 200 kHz). In
obtaining this equation, all terms up to the quadratic in Mach number are re-
tained in the acoustic variables. A perturbation approach is not used until
the final step in the derivation; hence, the equation upon which the simple-
source formulatfon i{s based remains valid even when the second~order effects
cause a significant energy drain on the primaries (which invalidates a

perturbattion-series approach).




In obtaining solutions to this equation, a Born-approximation type of

perturbation analysis 1s used. Here, first-order acoustic wave fields are
calculated as solutions to the linear wave equation and then used to determine
the inhomogeneous term of the second-order equation. The perturbation analy-
sis is in terms of the Mach number. (Perturbation expansions Iin terms of Mach
number to solve acoustic problems have been used extensively before
{15,16,26,27}.)

The problem of the generation of sum— and differeuce~frequency waves via
the nonlinear scattering of acoustic waves by vibrating obstacles is then

addressed for three geometries:

1. Plane wave normally incident on a uniformly vibrating infinite plane.

2. Cylindrical wave incideat on an infinitely long cylinder vibrating
uniformly in the radial direction. (The symmetry axes of the incident
wave and the scattering cylinder are assumed parallel but not

coincident.)

3. Plane wave normally incident on an infianitely long cylinder vibrating

uniformly in the radial direction.

The first case above is readily solved after expressing the second-order
nonlinear wave equation in one-dimensional form, due to the resulting simplic-
ity of the calculations. Solution of the last two cases is much more diffi-
cult. The approach taken is to formulate the solutions in terms of a Green's
function. Care must be taken to choose the proper Green's function for evalu-
ating the appropriate Born Integral; t.e., the one corresponding to the
boundary surfaces involved (thils requirement has becn discussed previously in
a paper presented by the author [28]). The resulting cxpressions for the
acoustic pressure of the sum- and difference-frequency components involve some
rather complicated integrals. A new integration procedure was developed that
allows the evaluation of these integrals in closed form for the case of two
high-frequency primaries. This procedure is described fn the Appendix. Nu-
merical results are obtained by Gaussian quadrature integration for the more

general case.




The results obtained by the Censor—method approach are also calculated

and presented for the two cases for which his theory are applicable--those
involving incident plane waves. It is demonstrated that Censor's prediction

is of the same order as pseudosound*.

For the case of a plane wave incident on a vibrating cylinder, the re-
sults are presented graphically for both the Censor theory and the nonlinear

theory.

An experimental investigation was undertaken to confirm the theoretical
prediction for the difference-frequency pressure produced in the case in which
a plane wave is incident on a vibrating cylindrical surface. Although the
experiment was unsuccessful in confirming the theoretical predictions, it was
nonetheless successful in identifying several of the difficulties that arise
in nearfield, nonlinear difference-frequency experiments and solving all but

one of those identified. The most significant of these difficulties (not

encountered in previously published work) are:

*Inadvertent direct radiation of the sources at the difference fre-

quency: This will tend to be a greater source of error when the measur-
ing hydcophone is near the sources (since difference-frequency pressures
produced by medium nonlinearities tend to grow with distance while 4
directly radiated different-frequency pressure tends to decay with

distance).

*Electrical filtering problems due to experimental constraints: The

difference frequency was only about one half the lowest primary

*Pseudosound is an effect arising from the uncertainty in the motion of the
measuring hydrophone; i.e., the uncertainty in the motion of the hydrophone is
of the same order as the difference between Langrangian and Eulerian cootd-
inates. Although pseudosound is of second-order in Mach number (as are the
source terms of the second-order nonlinear wave equation), it nonetheless re-
mains a minor component of the second-order field. This is because contribu-
tions to the pressure predicted by the acoustic second-order nonlinear wave
equation are cumulative with respect to propagation distance and hence tend to
overwhelm pseudosound (which is a function only of the magnitude of the acous-
tic variables at the observation point) within propagation distances that are
a fraction of a wavelength. Example calculations of pseudosound relevant to
the current research are provided in Sections I1. E. 3 and IV. F.




frequency. In addition, the pulse lengths had to be less than about 10
cycles at the difference frequency to avoid interfering reflections from
neighboring surfaces. Hence the usual passive methods employed for
electrical filtering in previous farfield, nonlinear measurements were

inappropriate.

*Difterence-frequency voltage generated nonlinearly in the hydrophone:

This effect, due to nonlinear mixing of the primaries in the hydrophone,
provided larger difference-frequency voltages than those produced by the
difference-frequency pressure generated by nonlinearities of the fluid
medium. The cffect was observed for a wide range of available

hydrophones.

Solutions found to the first two of the above difficulties will be
discussed in the section concerning experimental results. Although the third
difficulty has not been resolved, several valuable observations were made and
are presented in the section on the determination of hydrophone nonlinearity
(Section IV. F).

In light of the inslights gained by these hydrophone nonlinearity measure-
ments, the program at the Underwater Sound Reference Detachment (USRD) of the
Naval Research Laboratory has been significantly expanded. The technique to
measure hydrophone nonlinearity developed during this research represents a
substantial improvement over the technique originally intended to be used by
USRD to analyze the linearity of their standard hydrophones. 1In the current
development program, it is intended to use the nonlinearity measurement tech-

nique of this research to develop a hydrophone nonlinearity standard.

Chapter 11 will present the nonlinear theory as well as Censor's
theory. The numerical results of each theory will be given in graphical form
in Chapter 111, along with a discussion of the numerical techniques used.
Chapter 1V will discuss the experiment, including the cholce of experiment and
resolution of experimental difficulties, and will present a new technique for
determining hydrophone nonlinearity. Lastly, Chapter V will give the
conclusifons. The new technique of integration developed during the course of

this research is presented in the Appendix.




IL. THEORY

A. Introduction

This chapter presents some concepts useful in finite-amplitude acoustics, ;
gives the derivation of the simple-source formulation of the second-order

acoustic wave equation in a manner that {s of quite general applicability to

problems involving interacting acoustic pressure fields, and presents the
theoretical development of the problem of the nonlinear scattering of acoustic

waves from vibrating obstacles for certain specific geometrles.

Section I1. B discusses the two reference frames used in acoustics—-

namely, the Lagrangian (or material) coordinates and the Eulerian (or spatial)
coordinates. Section II. C discusses the orders of acoustic variables and

expressions.

In 1963, Westervelt [17) obtained a simple-source formulation of the

second-order nonlinear wave equation. This formulation is an analogy to the
simple-source wave equation of linear acoustics, which is essentially the
inhomogeneous wave equation for a volumetric distribution of monopole point

sources of sound [29].

The analogy drawn by Westervelt is that each elementary volume element in

a fluid in which two waves of different frequency are simultaneously present
may be viewed as an elementary source of nonlinearly generated waves. The
mathematical form of Westervelt's second-order nonlinear wave equation is
similar to that of the simple-source equation of linear acoustics if the

proper identification of variables is made.

Westervelt's derivation of this equation is based on the assumption that
the interacting waves are planar. Hence, it is unclear that his equation {is

applicable to any other wave geometry.

The inhomogeneous term is quadratic in nature. Hence, if one attempts to
obtain the solution for arbitrary wave fields by decomposing the individual
waves contributing to the sonrce term into sums of plane waves, the solution
must be represented as a sum over pairs of waves. It is often more convenient
to use a closed-form representation of the source term (but this requires a ;
demonstration that the equation 1s valld for non-planar primaries). 1In the

current work, the simple-source formulation of the second-order nonlinear wave 1
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equation 1s re-derived for primary waves of arbitrary geometry. This

derivation is given in Section II. D.

Sections 11. E, F, and G present the solutions to the second-order

nonlinear wave equation for three specific geometries:

*Plane-wave scattering from a vibrating planar surface.

*Cylindrical-wave scattering from a vibrating cylindrical surface.

*Plane-wave scattering from a vibrating cylindrical surface.

In solving the case of plane-wave scattering from an infinite uniformly
vibrating planar surface, the one-dimensional form of the nonlinear wave equa-
tion is used. This equation is expressed in terms of Lagrangian coordinates
since the first-order boundary conditions can most naturally be satisfied in
this reference frame. The equation is solved by a substitution of perturba-
tion—-series expansions in Mach number for the acoustic variables such that the
solution is accurate to second order (in the sense normally associated with
perturbatior approximations). As noted by Beyer [30], such an expansion was
first considered historically by Aicry in 1845 in studying tidal motion. A
careful analysis of the results of Censor's theory is presented for the planar
case. (Although Censor presented no solution for this case, his method can be
applied in a straightforward manner to obtain one.) It is shown that Censor's
theory predicts sum— and difference-frequency pressures that are of the same

order as pseudosound.

In obtaining a solution to the second-order nonlin-ar wave equation for
the two cases considered involving cyllindrical geometry, again the method of
expanding the acoustic variables in a perturbation series in Mach number is

used.

The actual second-order sum- and difference-frequency pressures are
calculated by solving a related Green's function equation. It has been noted
{28] that care must be exercised in the cholce of Green's function. This is

discussed 1in detail in the paragraphs following Eq. (47) of Section IL. D.

Finally, both Censor's theoretical results and the results of the non-

linear theory are presented graphically to facillitate comparison of the two

10




theories. (Although Censor gave analytical expressions for the scattered sum-

and difference-frequency pressures, no numerical values were presented.)

In obtaining the numerical results for the nonlinear theory, the inte-

grals were performed on a high-speed computer (TI-ASC~11) using the methed of

Gauss Quadrature [32]. (Closed~form solutions to these integrals were obtain-

ed in the high-~frequency limit based on the new integration technique pre-

sented in the Appendix.) The sums obtained from the theory were also carried

out on this computer until three significant figures were obtained.

B. Coordinate Systems of Finite-Amplitude Acoustics 1

Two different kinds of coordinate systems are used to specify acoustic
wave fields in fluids--namely, Lagrangian (or material) coordinates that move
with the fluid and Eulerian (or spatial) coordinates that are fixed in

space. The relationship between these two systems is illustrated in Fig. 1.

When displacement is expressed in terms of Eulerian coordinates, the
displacement is that of the fluid element that happens to be located at x at
the time of observation. On the other hand, when the displacement {is
expressed in terms of Lagrangian coordinates a, it refers to a fluid element
that had the initial rest position a.

g - £ —
X -
REFERENCE
POSITION
x = a+¢§

o = LAGRANGIAN COORDINATE
= REST POSITION OF AN INDIVIDUAL PARTICLE

x = EULERIAN COORDINATE
= POSITION OF A FIXED POINT IN SPACE

¢ = DISPLACEMENT OF THE PARTICLE FROM ITS
REST POSITION

Fig. 1 -~ Geometry of Lagrangian and Eulerian Coordinates




C. The Order of Acoustic Variables and Expressions

Careful consideration must be given to the meaning of "orders” of acous-
tic variables and expressions. In nonlinear acoustics, the appropriate param-
eter to determine this order {s the Mach number. (This will be justified pre-
sently.) Important dimensfonless quantities arise when the relevant equa-
tion/s are put into dimensfonless form. The resulting equation was given for
the acoustical case by Blackstock [13]. A relationship (analogous to the
Reynolds number) was obtained by Blackstock in this report, which may be used
to determine whether the loss terms are significant for a nonlinear propaga-
tion problem for initially plane waves. This criterion involves a quantity T,

where
r = Becoxc/(llz)vlv + (y-1)/P ]

(B is a measure of medium nonlinearity and is approximately 3.5 for water at
20°C, V is the viscosity number, Y is the ratio of specific heats, v is the
kinematic viscosity, P, is the Prandtl number, € is the Mach aumber, and x. i3
a characteristic length). wslackstock noted that for initially sinusoidal
waves, X, may be taken to be x, = co/m = %, and showed that (at low fre-
quencies) T = Be/ax, where a = the attenuation coefficient. Blackstock noted
that the quantity Be/al has been referred to as the Reynolds number in the
Russian literature. (He further noted that this quantity is certainly not a
measure of inertial to viscous effects, which i{s the traditional interpreta-
tion of the Reynolds number. Instead, Blackstock interprets this quantity as
a measure of the importance of nonlinearity to dissipation). The determina-
tion of whether a given frequency is "low"” can be ascertained using yet an-
other dimensionless quantity known as the "frequency parameter” [33],

X = (an)/pocoz, where V = viscosity number = 2 + n'/n, n = shear coefficient
of viscosity, n' = volume coefficient of viscosity. Using a typical frequency
of lnterest of 100 kHz along with the approximate expression n' = 3n for water
[34]), we get a value X = 1.4x10'6. clearly indicating that this frequency may
properly be considered “low” (and hence Blackstock's low-frequency expression

for I' 18 appropriate).

An lmpoctant criterion established by Blackstock in Reference 13 is that

the regults of the propagation of a plane wave that would be obtained via the

12




inclusion of loss Iin the equations will closely approach the results obtalned

excluding loss when I>10. Using typical values of interest in the current
research ( B = 3.5, € ~ SXIO-A, a = 10-4 1, and A = 10—2m), we obtain
I = 1100. Although Blackstock's expressions are actually valid only for

initially plane waves, it is fairly clear, due to this rather substantial

value, that losses are relatively unimportant here.

The negligibility of viscous effects for the frequencies and propagation
distances of interest in this report can also be demonstrated by computation
of the Reynold's number in the two physical regions of concern: 1) the region
close to the scatterer's surface (where a viscous boundary layer forms), and

2) the propagation reglon wherein (at some point) the primary flelds will

start to form shock waves.

Consider first the required thickness of a viscous boundary layer. We
define this thickness as corresponding to a Reynold's number of unity. The

Reynold's number (R) can be computed using R = ULp/u or R mLZp/u, where

U = characteristic velocity, L = characteristic length, p = coefficient of
viscosity, and w = characteristic angular frequency. Using a frequency of

100 kHz, a Reynold's number of unity corresponds to a characteristic (boundary
layer) thicktuness of about 10"% cm. This result makes clear the fact that at
positions near the scatterer's surface viscous effects may reasonably be ne-

glected (since this distance is <<A/2m for the frequencies of interest here).

At larger distances from the scatterer's surface, this analysis breaks
down, and a more suitable interpretation of the Reynold's number is needed.
As an initially sinusoidally shaped acoustic wave propagates, the noalinear
distortion it suffers causes its waveform to approach the shape of a sawtooth
wave. If viscous effects are completely neglected, the waveform becomes a
triangular wave at a propagation distance equal to the discontinuity distance
(see the discussion of this matter in Chapter I). Using this effect as a
guide, it is clear that a convenient choice for the characteristic length L
used to compute the Reynold's number is the spatial distance separating the
point of maximum particle velocity and adjaceant point of zero particle
velocity. This "adjacent” point of zero particle velocity is the one occuring
ahead of the point of maximum particle velocity (in the sense of the direction
of propagation). This characteristic length, as defined here, is {nitially

equal to one quarter of a primary wavelength and approaches zero as the
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propagation distance approaches the discontinuity distance. Such a definition

makes clear the fact that viscosity can properly be neglected in the propaga-

tion region only at propagation distances small relative to the discontinuity

distance (since the Reynold's number will approach zero at that point).
Hence, we conclude that within a reglon farther than a fraction of a
millimeter from the scatterer's surface and yet not closely approaching the

discontinuaity distance, viscous effects may safely be neglected and the Mach

number taken as the appropriate dimensionless parameter to identify the order
of acoustic variables and expressions.

Due to the extremely complex nature of the equations of nonlinear

acoustics, some type of approximation method is usually required to obtain a

solution. There are two primary approximations that are traditionally used:

*The exact equations can be put into an approximate form more readily
solvable. It is the local Mach number dependence of the acoustic

variables (discussed above) that forms the basis for this approximation.

*Alternatively, the acoustic variables can be expanded directly iun a
fcrmal perturbation series in Mach number, which may then be substituted
into the exact equations. In such a series, “ordering” is determined by
where the boundary conditions are imposed (i.e., the "Mach number” is not
the local Mach number but rather the Mach number at the point at which
the boundary conditions are imposed). This process results in an
infinite set of differential equations (one equation associated with each
term, 1.e. order of the expansion). Each of these equations can then be
individually solved, starting with the first~order equation and ending at

whatever order yields the required degree of accuracy.

Let us first consider the approximation involved in obtaining the second-
order nonlinear wave ecquation from the exact fundamental equations. Although
this equation is an approximate one, when (t is applied to problems involving
sound propagation in water, no measurable difference between the pressure pre-
dicted by {t and that predicted by the exact equations results. This 1s be~
cause in such problems the contributions to the sound field by terms of third
and higher orders are negligible. Justification for the negligibility of
third~order terms is given in Appendix A of Reference 35, which considers the

L4
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consequences of retaining higher-order terms in the fundamental equations and
third-order terms in the equation of state. In Reference 36, the equation of

state was expressed as

p-p p-p_ 2 p-p 3

o B ] C o
p=p + A ( ) 4+ - (_..__.) 4+ - (-———) .
o P 2 po 6 po

As reported in Reference 35, Van Buren wrote a computer program that
computed the distortion occurring during the propagation of an initially
sinusoidal wave of amplitude 0.7x10° Pa and frequency 2 MHz. (The program
included the effects of all orders in the fundamental equations and in the
equation of state to third order. Absorption effects were also included.)
The wave was allowed to propagate 104 cm (one discontinuity distance). The
results of this program were compared to results obtained when only terms up
to second order were retained in both the fundamental equations and in the
equation of state. The results of comparing these two solutions were: With
C/A = 105, the second harmonic deviated by about -0.2%, the third harmonic by
-1.3%, fourth harmonic by +0.06%, etc. 1In liquids, C/A is approximately [36]
3/2 (B/A)2, which glves C/A = 40 for water. 1t becomes clear from these
numerical results that the effects of the higher-order terms (at least in

water) are completely negligible.

Although additional effects may arise in non-planar geometries, the
plane-wave should represent the worst case (since higher-dimensioned geome-

tries result in spreading of the waves and a reduction in field amplitude).

One last argument can be advanced regarding the negligibility of third-
order terms: 1f one starts with the exact wave equation in Lagrangian
coordinates for plane waves and performs straightforward Taylor-Series
expansions, one can demonstrate that the third-order source terms are a Mach
number smaller than the second-order source terms. Hence, even {f third-order
source terms result in cumulative effects (as do the second-order terms), the
contributions to the answer from the third-order terms will be a Mach number
lower than contributions from second-order terms (the Mach number in water is
rarely greater than 10‘4). This holds as long as dispersion is negligible,
which it is in fresh water for frequencies up to 1014 ua. Again, the plane-
wave case may be regarded as a worst-case situation, since geometrical

spreading will dilute the effects in higher-order geometries.
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We begin this discussion by referring to the exact wave equation in

Lagrangian coordinates [see Reference 37, Eq. (35)]
v - .2 =2
£ = cT[1+ ] Eaa .

An expanslon for the wavespeed ¢, accurate to third order, has becn gilven

by Van Buren [38]. 1t is

2 2
B B 1 u
—t =+ ) —].
4A2 20 2 c 2

0

_ B u c _
c = c0[1 + (7K'+ 1) E;-+ (IX

In this equation A, B, and C have their usual meanings--namely,

2
aP 2 2,0°P
A=0 (5)g 5o = PoS, » B=p "(—g nop »
o p’S,p 8 oo o 30 2’8,p 8
3 33P

and  C =p, (;;3)8,9.90'

Substituting this expansion for the wavespeed into the exact wave equation in

Lagrangian coordinates, cxpanding the term (1+£a)—2. and retaining only terms
of third order or less yields:
o 2 2 B u
£ - = — —_ -
7% 6aa s [2(2A + D <, 2£algaa
2 2 2
2 B u c B B 1 u
teolgt D) —=*+2Gg-—~5"m%n*D 2
c 4A c
o o
B u 2
4 (§K'+ 1) E; Ea + 3(53) lgaa'

The quantities (u/co), £4, and £, may all be regarded as being of the
order of the Mach number. Hence, the above form of the wave equation can be
Interpreted as follows: The first set of square brackets (with its coef-
ficients) may be regarded as a source of second-order waves. The second set
ol square brackets may be regiarded as a third-order source expressior. As
previously mentioned, since the third-order source terms are all a Mach number
smaller than the second-order source terms, their contributions will always be
a Mach number smaller than the coatributions from the second-order terms.
Hence, even 1f these third-order contributions are cumulative (as are the

second~order contributions), they will always remain small relative to the
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sccond-order contributtons. Hence, tor all practical purpuses, a solutlon to
the second-order nonlinear wave equation may be regarded as sufficient for
specifying a solution to a nonlinear underwater sound propagation problem*.

It is frequently the case, however, that exact solutions to even this more
simplified equation are too difficult to obtain. In such cases, a solution is
usually obtained by using a perturbation-series expansion in Mach number of
the acoustic pressure. This expansion is generally substituted directly into
the second-order nonlinear wave equation (rather than returning to the still
more complicated fundamental equations). Such a substitution can be used to
obtaln what {s known as the simple-source formulation of the second-order

nonlinear wave equation.

When one uses a perturbation expansion, however, one must proceed with
extreme caution. Although the starting equations may be regarded as suf-
ficiently accurate (whether starting from the fundamental equations or the
second-order nonlinear wave equation), the solution obtained by a perturbation
series may become inaccurate if the series is truncated too early. In fact,
most such perturbation analyses are carried only to second order (since higher
orders become exceedingly complicated). 1In this case, inaccuracies arise due
to the faflure of the fundamental assumption made in such treatments, namely
that the second-order field remains small relative to the first-order field.
Since the Mach number is rarely greater than 1074 in water, it might appear
this assumption would never become questionable (in fact, it may appear pecu-
liar that second-order effects ever become measurable). The reason they do so
ts that such effects tend to act cumulatively with propagation distance.
Hence, the second-order pressure (for example) at a given observation point is
not simply a consequence of the value of the Mach number at that point.

Rather, it 1s a consequence of the entire integrated history of the fields

between the sources and the observation point.

In essence, this means that the important second-order contributions to

the pressure are not themselves second order (ez), but rather of the order

2

of €° times an enhancement factor. What this factor is can be determined for

plane, cylindrical, and spherical geometries due to the fortuitous

*Hydrophones can rarely be calibrated more accurately than to within 1 dB of
relative ecror. This corresponds to more than 127 experimental error.
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circamstance that the Bessel function expansion used by Fubini~Ghiron in the

planar case [7] can also be used (when therwmoviscous losses are negligible) to
solve the higher dimensional cases [see Reference 13, eq. (13)]. After
Fubini-Chiron, we can use the first terms of this series to estimate the
growth behavior of the nonlinear flelds. 1In order to do so conveniently, we

introduce notattion similar to Blackstock's in Reference 13:

Ik

4] (plane)
f = 2/5; (Yo - /3; (cylindrical)

% log (o/oo) (spherical)

where agaia &€ = Mach number, X = discontinuity distance, and x = propagation
distance. (This choice of Blackstock's dimensionless quantity ¢ is made in
order to render his Bessel-function expansion equivalent to that of Fubini-

Ghiron.) We can estlmate the appropriate "ecnhancement factor” via the ratio
of the sccond-order to the first-order contributions to the field from this
Bessel-function series. This ratio is equal to [Jy(2f)]/[2 J (f)], which (for
small arguments of the Bessel function) is approximately equal to H@ f.

Hence, the enhancement factors for each of the three geometries becomes:

%o Jx J"o
e - Vx (cylindrical)

1 o X
7R log (;: (spherical)

whaere X, represents the lscation of the sciatterer's surface in the nonlinear

scattering problem of interest here.

Confirmation of the growth of the second-order fields relative to the
ptimary fields is provided by the many successful measurements of nonlinearly
generated field effects described in Chapter 1. Therefore, it is seen that in
an underwater nonlinear propagation problem, the primary fields tend to decay
(due to geometrical spreading, energy loss to secondary field generation, and

energy loss due to absorption when high frequencies and/or large propagation
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distances are lavolved) while the secondary fields tend to grow. Eventually,

the secondary fields can become comparable to or even exceed the primary
fields. When this occurs, solutions based on second-order perturbation

methods are no longer valid.

In the following section, the second-order nonlinear wave equation is
derfved from the fundamental equations. The acoustic pressure {3 then ex-
panded (n a perturbation series to second order. This perturbation expaansion
{s used to obtain the simple-source formulation of the second-order non-linear
wave equation. This equation together with the first-order equation of linear
acoustics constitutes essentially a type of Born-approximation. It 1s used to
solve the problem of the nonlinear scattering of acoustic waves for vibrating
obstacles for three different geometries in Chapter 11, Sections E, F, and G.
Since these solutions are obtained via a perturbation method, their validity

is restricted to small propagation distances from the scatterer's surface.

D. Second-Order Nonlinear Wave Equation

Any investigation of the behavior of finite—amplitude acoustic waves in a
fluld begins with the basic equations of motion. These can readily be derived
by applylnz mass and momentum conservation laws to the fluid under considera-

tion. The resulting equations are expressed below in Eulerian coordinates:

1. The Equation of Continuity (Mass Conservation)

g%.+ v« (pu) = s. (1)

In this equation, S is a mass source term representing the rate at
which mass 1s Introduced into the region of interest. It can be used to
represent monopole sources of sound as well [39]. In the current work,
however, sources of sound will be handled instead via specification of
appropriate boundary conditions (i.e., by specifying the normal velocity
of the surface of the source), and the solutions will be restricted to
reglons outside the surface of the sources. Hence, the term S will be

taken to be zero.
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2. The Fquation of Momentum Conservation

%(p&)+6-(p66>=-6-;

(2)

where p is the mass density, U is the particle velocity, and p is the stress

tensor whose components are:

9

g
Plj = Ptslj +u (- P

Wi
o
]

Q"
o’

)
B N
axi

s

where p Is the coefficient of viscosity and P is the pressure.

Lighthill {18] combined Eqs. (1) and (2) to produce the following

equation of motion for the mass density

2

9°T
2_2 - ij
-c ‘0% = ) o7
[§] l,j 3xiaxj
2 2 _ 1 3?
where O° = D'Alembertian Operator = ¢ -~ =3 g
c ot
o
1
with ¢, = infinitesimal wave speed = (3[’/3;))/2 ,
o S,p=p

and the Lighthill stress tensor T is defined by

where Pij is as defined above.

(1)

(4)

()

In the present work, frequencies on the order of 100 kHz and propagation

distances on the order of 100 cm in fresh water will be constdered.

The ef-

fects of viscous attenuation (for a plane wave) may be summarized by the cqua-

tion P = Poe'“x. At a frequency of 100 kHz in fresh water, the coastant a has

a value of ~10~% o1,

work are completely negligible and P;: may be replaced by PS. ..
Lj ij

It is clear, then, that viscous losses for the present

(In fact, the

equations for sound propagation in fresh water need not include the effects of

viscosrity until frequencies approaching 1 MHz or distances on the order of ki-

lometers are considered. Hence, the cquations herein derived have a broad ap-

plicability; however, viscous effects will be important in the boundary layer.
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Substituting Tij into Eq. (3) ylelds:

2
2 " (pu,u.)
I e (6)
ot i,j 173
which may be used to show that*
2
2 3" (pu.u,)
2 9 2
0P = 5 (Go - e fap) - [ —pde 7
at 1,3 1975

The usual wave equation of linear acoustics, EJZP = 0, follows {f we only
retain terms that are linear in the field variables. On the other hand, we
need to retain terms up to the quadratic in the field variables in order to
obtain a nonlinear wave equation that is accurate to second order. As stated
earlier, third and higher order terms in the wave equation do not measurably
contribute to nonlinear acoustic behavior in liquids (such as water) where
these results will be applied. Thus the term p“i“j can be replaced by its
second-order approximation PoUilis thereby neglecting the third-order term (p

J
- po:“i“j' The last term in Eq. (7) can now be written:

az(puiu ) > § 6 N ﬁ" 2 ): auj aui
L) ., {(ueV)(Veu) + (Veu)™ + Frrai el B (8)
i3 Bxiaxj o i 3X1 3Xj
Now, it can easily be shown that
du, du N .
) 5;1 3;1 =V o [uPHa) - ) (¥eu). (9)
i, 1 3
Also, by vector identity:
@i = 3 ¥ - & x (). (10)

*In obtaining Eq. (7) a factor of p has been replaced by Ap and P by AP. This
may be freely done due to the presence of the differential operators acting on
these quantities. This freedom will frequently be used in several of the
equations obtained throughout the remainder of the current section.
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1t can be shown that in linear acoustics the particle velocity tield is

Lrrotational; i.e., GXJ = (0 [the valldity of this assumption 1Is discussed in
Hunt [37)]) in reference to his Eq. (56)]. Although the particle velocity is
irrotational only to first order, Blackstock [40} has pointed out that any
factor in a second-order term may be replaced by its first-order equivalent
since a more precise substitution will result In terms of third (or higher)
order. (Blackstock calls this fact the subst{tution corrollary.) Since the
last term in Eq. (10) is clearly of second order, we may freely use the

i{rrotationality condition in this term.

Combining the equation that results from Eq. (10) by using this
substitution with Eqs. (8) and (9), we obtain:

32(Duiu.)

il e DT+ 7 .

1,3

In the first term on the right-hand side of Eq. (ll1), we may freely
replace $ed by equations accurate to first order, since the overall term will
remaln accurate to the second order due to the presence of d dotted into the
remalnder of the term. Of use here {s the first-order continuity equation as

obtained from Eq. (1):

Q>

P
t

$al-

. (12)

[->

L
pO

(The "1" over the equal sign denotes first-order. This notation shall be
adopted for the remainder of this thesis. Similarly, a "2" over the equal

sign will denote second order.)

Therefore the flrst term on the right-hand side of Eq. (11) becomes

sy (¥ed) 2. i%ﬁ —% (Vo). (13)

To complete the analysis we need an equation of state for the fluid
medium. Since any thermodynamic quantity in systems in which pressure,

volume, and temperature are thermodynamic parameters can be represented as a
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function of any two state variables, we can obtain an equation of state by

expanding the pressure in a Taylor series in the state variables p (density)

and S (entropy). This yields

2

apP 1 P 2
P =P + (53 (p~p ) +5 (—) (p~p )
° P s,p-p° ° 2 302 S,p=p° °
)
ot (59) (8-S.) + «vv . (14)

] ’papo

It is usual to simplify Eq. (14) under the assumption of adiabatlc
compressibility. According to Morse & Ingard [41], adiabatic compressibility
is achieved under the condition that the highest frequency component in the
acoustic field is significantly less than (cozpocp)/k, where k is the thermal

conductivity and c_ is the specific heat at constant pressure. For water,

p
this expression gives a frequency of about 1013 Hz, a value well above
anything of interest in the current work. We will, therefore, neglect
contributions to the pressure in Eq. (14) due to changes in entropy, giving
(to erecond order)
2 ap 1 a% 2
PEP o+ (5 (p~p ) +5 (—3) (p=p_)". (15)
o (o] > 2 2 o
S,p=po 3" S,p=p o

1f we solve Eq. (15) for P - Po to first order, we obtain

1 ,9P 1 2
P-~P = ap (53) (p-po) =c Ap (16)
S,p=p
o
or, in terms of the “del” operator,
b e %, Qan

where Eq. (4) has been used for c,.

The equation of momentum conservation to flrst order is
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%o 3t °

Combining Eqs. (13), (17), and (18) yields the following relation,

accurate to second order.

» 2+
(Jaﬁ)(ﬁoa) g \12 . a__‘zl- .

c at
o

Combining the elementary relation

2 2+ +» 2
1 3 2 » d u du
7 —7 W) =d e 2+ D
2 atz at k3
with Eq. (19) gives
2, .2 + 2
RUACED 2 _1 3 (u)” 1 (22) .
2 2 2 ‘dt
2co at <,

Also, by definition of the D'Alembertian operator,

242
1 3%u 2+2 2»2
-—i._._i_ v“ Du.
<, t

Combining Eqs. (21) and (22) gives

> 2
S R
C

We now consider the (3-5)2 term in Eq. (11). By using first-order
approximation for the equation of continuity [Eq. (12)], we obtain
dhp 2

(6‘3)2 2 —li (=P -

o

Combining Eq. (24) with the elementary relationship

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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L %n)? _
2 2

Ap ——= + (

at atz ot

azAp dAp 2

and with the D'Alembertian operator acting on (AD)Z,

2 2
A
DZ(AP)2 = v2(p)? - —~—12 2.0
c ot
o
glves
2 2
c 2 2 c 2
v A
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Substituting Eqs. (23) and (27) into Eq. (l1) yields

2 2 2
MG AS LI SR Yo SIL IR
ax, 9x PotVu-0 [g+— o
1,3 175 2p
. 2
1 a2, S 2., 2 Ap 3%Ap
- =5 G+ 5 Ve - = =)
SR 20 Py at
Using the elementary fact that
L v s0)? = sov%mp + (Ba0)?,
we obtain for the last two terms in Eq. (28)
2
c 2
v v
oy vt - B LY
Zpo LN at
c 2 c 2 2
= 2 ap V2o + 25 (Wp)? - 52 200
°, Py o 9t
2 2
c c “bp 2
-0 (fap)? ¢ 2 (vPnp - L 200
2 2 2 2
[ p c at
o o o

1.

(25)

(26)

(27)

(28)

(29)

(30)
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substitution corollary allows simplificatian of Eq. (30) to give, accurate to

second order,

Ap 3%8p 2 coz 2
-3 gt oy ey’

p at o]

Q (o]

Now, Eqs. (17) and (18) may be combined to give the first-order

approximation

(31)

(32)

Finally, Eqs. (31) and (32) may be combined to show that the last three termus

in Eq. (28) vanish.

82(Apu u,)

103 axiaxj

Hence, Eq. (28) becomes

2.1 »2 1

1372, 9232 . L L
poVu D[Zpou+2c

2
o

From Eq. (16) we have the first-order approximation

Ap L COZ(AD).

80)%/p ) -

Using this in Eq. (15) yields, accurate to second order,

2 2

Ap = ¢ “Ap + 1

o 2

or

Ap ~ ¢ -ZAP % ~
o

-4 ,3°p
% (3

N

2

ap” S,p=p
O

2
- a°p
c "6 —3)

o]
9p S,0=p

ey,

(AP)Z.

Lf Eqs. (33) and (36) are substituted f{nto Eq. (7), the following

equation is obtained:

(33)

(34)

(35)

(36)
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An equation equivalent to Eq. (37) was first derived by Eckart [15] in
1948, and later by Westervelt [16] in 1957. 1In 1963, Westervelt {17] trans-
formed this equation into what is commonly referred to as the simple-source
formulation. However, in so doing, he used an expression valid only for plane
waves. In what follows, Eq. (37) will be transformed into the simple-source

formulation without recourse to plane wave properties.

In order to carry Eq. (37) further, we require some additional first-
order relationships. Since it is irrotational to first order, a scalar

function ¢ known as the velocity potential can be assumed such that, accurate

to first order,
oL 9. (38)
The scalar potential ¢ 138 a solution to the linear homogeneous wave equation

0% - o.

Now, by rearranging the definition of the D'Alembertian operator acting

2

on u“ and by use of Eq. (38) we obtain, accurate to second order:

2
222 22 4 72 2 g2,

v te, (39)
The last term can be rewritten using the identity
|¥o|2 = ‘ V2l - 4726, (40)

From the definition of the D'Alembertian we have

Xy POy




2
262 = 02 + ¢ "2 2 42, (41)
o 2
at
Also,
2 2
-2 3
Vo =0%rc 22Eo 2 0Y (42)
at at

since Dz¢ = 0.
Substituting Eqs. (40, 41, & 42) into Eq. (39), the following second-

order expression for v2y2 is obtained:

2
222 .22 -2 9 (1 22 -2 ,9¢.2
V:a© 2 O%° + <, —atz [2[:] " + <, (-—-—at) 1. (43)

If Eq. (43) is substituted into Eq. (37), the following equation results:

22 1 ~6,9 P 37 (A -2 9 ~2,90¢. 2
B'r = - 7 %o S f) _.(__P; ~ Yoo '_2[(:0 (3%) I
3p” S,p=p at 3
P LU U FOVSC I W B A B (44)
2% % P 2 %ot 2 P6% 3t2 ‘

We next wish to re-express the second term of Eq. (44) in terms of the
acoustlc pressure. We begin to do so by combining Eqs. (18) and (38) to

obtain the first-order approximation
]
Wl (0, 3. (45)

Equation (38), which defines the velocity potential, allows a certain
frecedom in the cholce of the function ¢, since it is only this function's
gradient that is therein deflined. (This {8 analogous to the freedom of cholce
of gauge in electrodynamics.) We choose to impose this additional freedom in
such a way as to allow Eq. (45) to possess the "solution”, accurate to first

order
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-p =oap i, 3¢
P-P =08P=p == . (46)

It will be noted that Eq. (46) in no way contradicts Eq. (45) or
Fq. (38); so choosing ¢ such that the usual additive constant obtained in
solving an equation such as Eq. (45) to be equal to P, is a consistent, and
hence permissible, choice. A second way of viewing this situation is to
consider the combination of Eqs. (38) and (46) to constitute a (consistent)
definition of ¢. [Although Eq. (46) is only one of an infinity of possible
choices of "gauge".] Using Eq. (46) in Eq. (44) gives

b .2 2.2
-4 -1 a%p -2. 3%
o?ap 2 -, 400 [+ -52)- (— o 2] "“(_‘g')"
3" S,p=p at
[o]
21 -1 2,,.2 1_ 2 1 -2 ¢ 2
+ 0 [7 P So (4p)" - 7 PU T3P Ty ($) 1. (47)
It

Now introduce the perturbation expansion* P - Py = €P; + 82P2 where

CJZP1 = 0 + obtaln secondary waves as solution to Eq. (47).

Equation (47) may be simplified by moving the terms under the
D'Alembertian operator on the right-hand side of this equation to the left-
hand side. On the left-hand side of this equation we then have Py + addi-
tional terms under the D'Alembertian operator. This new equation can now be
solved for this new combination, subtracting the additional terms from the
solution to obtain Py- In practice, the terms under the D'Alembertian
operator on the right-hand side of this equation are very small and can
actually be neglected. 1In any case, these terms will clearly be non-growing
contributions to the solution and will quickly be overwhelmed by the growing

coutributions.

*It is important to note that up to this point in the derivation no pertur-
bation analysis has been used. Hence, Eq. (47) remains valid even under
conditions that invalidate perturbation analyses.




One further remark is wocthwhile in discussing the D'Alembertian terms of
Eq. (47). 1f, in fact, these terms are not negligible in comparison to the
predicted value for P, obtained in solving these cquations, the result thus
predicted will most likely be in error. This is due to the fact that when the
D'Alembertian terms are lumped onto the left-hand side, an appropriate
integral term must be included [28) to reflect the fact that they satisfy
different boundary conditions than P,. Hence, in solving Eq. (47) via this
"lumping” technique, the values given by the D'Alembertian terms on the right-
hand sides must always be compared with the predicted value for P, in order to
Insure consistency of the solutfon*. This fact has not heen previously

ment foned in the titerature.

At this point, we assume the D'Alembertian terms on the right-hand side
of Eq. (47) are negligible.

If we make the definitions:

P 2
_ o 9
B/A = — (=)

<, p~ S =P

[ = nonlinearity parameter = 1 + i%
r ] 2
q = simple source streagth = 5% 3¢ (P1 )
p0 o
we can cast Eq. (47) into the form
2, ' 2 . 23
0P, £-0 (D) - (48)

*The calculatlons relevant to the problems considered in this thesis are
performed in Chapter IV. B, where estimates of the errors iatroduced in the
relevant surface and volume {ntegrals are discussed.




The prime has been added to the symbol for the second-order pressure to denote

that certain second-order quantities have actually been neglected*.

E. Plane-Wave Scattering from a Vibrating Planar Surface

In this section, the problem of the generation of sum— and difference-
frequency waves will be addressed for the case &f a plane wave normally

incident on a surface deforming uniformly and hakmohically.

L. Censor-Method Solution

Although he treated several different geometries, Censor never considered
the simplest possible case. This case I8 a plane wave of angular frequency w
normally incident on an infinite plane vibrating uniformly with angular
frequency Q (see Fig. 2). We obtain the solution to this problem following

the procedure preseanted by Censor [23].

We represent the incident plane-wave acoustic pressure as:

Ul = Pie‘iw((X/Co)‘ft] , (49)

where x is the Eulerian position coordinate**. The scattered wave is assumed

to be of the form:

o0
ug = J ava(vyetVlCx/e)-t] (50)

-0

Uj+Ug is the total wave field. Using the method of Censor, we require

the vanishing of the normal particle displacement at the planar surface x = 0

*In solving Eq. (48) in this report, we will not, of course, obtain a solution
accurate to second order. P,' simply reflects corrections to the primary
field resulting from the "enhancement” factors discussed in Chapter 1I,
Section C, arising from second-order quantities.

**Censor does not specify that x is the Eulerian position coordinate, but this
choice appears consistent with the way he treats this quantity in his paper.
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Fig. 2 - Geometry of plane-wave scattering from a vibrating plane

for the rigid-body scattering problem. Since we consider only linear wave

fields in the Censor method, the acoustic pressure satisfies the equation

]

For assumed plane waves, we obtain
-2 9
X = po(v K) P. (52)
Hence, the operator O used by Censor becomes
-2

0=y

3% , (53)

and Censor's Eq. (4) for the boundary condition becomes
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(- W p miwl(x/e )*t]
co i
(54)
e L ojei(x/e -
+ [ dva(v) EX e vi(x co) t]} = 0.
- [o)

We now let x = £sinft on the surface and perform the following expansions

ei‘(i\)C/Co)Sith B+ i %:f_ Ssinilt + «on (55)
(o]
a(v) = A(v) + €B(v) + ... . (56)

We substitute Eqs. (55) and (56) into Eq. (54), retaining terms to zeroth
order in €:
w -1 -iwt ® v_l -ivt
-_—— —_— . = - 7
. Pe + [ dvA(v) ¢ 0 (57)

o] —® ]

1
Multiplying Eq. (57) by el t, integrating over t, and letting v'+v

yields
A(v) = PiG(v—w). (58)

Taking next the terms of first order in € when Eq. (55) is substituted
into Eq. (54), we obtain

21P + -1

; singt + [ dvB(V) =~ e tve Lo, (59)
[ -0 [¢]
(o]

Solving Eq. (59) for B(v) gives

B(V) = P, EX [(§(v-R-w) - 8(v+a-w)]. (60)
(o]

3)




Substituting Eqs. (60) and (58) into Eq. (56) and using the result in
Eq. (50) gives

Us = P1{°°S“’(c‘§ -t) te (Q::) cos ((Qw*m)(;i£ - )]

+ EL%:QL cos [(-9+w)(gi - )]}, (61)
o [o]

We determine the constant € by requiring that the acoustic pressure for

the plane wave radiated from the vibrating plane have the form

P = Prei[(ﬂlco)x-ﬂt]. (62)

Substitution of Eq. (62) and x = e€sinfit into Eq. (51) gives

P
€ = —--L_
c Q°
Poo
Fence, the Censor solution for the scattered acoustic pressure components

at angular frequencies w, becomes

Lr g etlogllx/ey) = e} (63)

where mt = Wil (w>Q is assumed) or, taking the real part,

PLPr
P = cos{w*[(xls ) - tll}. (64)

t 2 &t
poco Q

2. Solution Using One-Dimensional, Second-Order, Nonlinear Wave Equation

In solving the problem of the scattering of a plane wave from a vibrating
plane surface, it is8 convenient to use the one-dimensional, second-order,
nonlinear wave equation expressed in Lagrangian coordinates. This equation is

shown by Fubini-Ghiron [7] to be
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$oee [T DGO (63)
x 9x

[In this section x refers to a Lagranglan coordinate.}

We now represent § in a perturbation series § = €f  + zzﬁ + ...

N 2 where

€ Is of the order of the Mach aumber.

We then substitute Iato Eq. (65) and equate e¢qual orders of €. This

provides the first-order equation

2
. 9k
g -cz__(_l_).._—_o

(1) "% 53 ' (66)
(the equation of linear acoustics), and the second-order equation
2 2 2
(2) o % 2 9x X

To suive the problem of nonlinear scattering of a plane wave by a vibrat-
ing plane using the perturbation approach outlined in Section II. C, we must
first solve the first-order (linear) Eq. (66). The physical boundary condi-
tion to be met is that there is no relative displacement between the planar
surface and the fluid particles in contact with the surface*. This condition
can be naturally met in Lagrangian coordinates by equating the displacement of

a particle at the surface to the displacement of the surface itself.

The first—-order solution is clearly the sum of the incident, scattered,

and radiated waves:

E1y = &y (sinu(t + c—") - sinw(t - c—"—)] + £ siaQ(t - E—"-). (68)

o o 0

(D

*Since we are solving second-order equations here, there should actually be a
second boundary condition. 1In this case this condition takes the form of
requiring that, apart from the quantity Cysinuwft + (x/co)], there are no
incoming waves.
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The first two terms In this expression represent the particle
displacement for the rigid-body scattering solution, in which the reflected
amplitude is the negative of the incident amplitude to insure the vanishing of
the displacement at the rigid-body surface. The third term represents the

radiated wave.

The first-order solution El is now substituted into the right-hand side

of the second-order Eq. (67) and the resulting linear inhomogeneous equation

solved for Ez. If we retain only those terms that contribute to w,, we
obtain:
2
£ + wil
RN S ¢ S LARAS 0 s
()t o sz 2c
me X
[—w;sin(w*t + —E~) + thinwt(t - E—)]
o
(69)

where again m* = wtQ (and w>Q is assumed).

Equation (69) may be solved by the usual methods for ordinary
inhomogeneous equations with constant coefficients. The result is:

~(147)E £ wQ
5 = —E-——Z-L-E—— {5 cos(u,t ~w,
(2)t 2c 2 ¢ + t c
o o a
w$ X X a0
+ =55 [~sin(u t+w. —) + sin(w, t-w E—O]}
0, wy o ]

where a homogeneous solution has been added that causes £2* = 0 at x = 0.

We obtain the corresponding acoustic pressure by performing the

integration

since this relationship is exact to all orders in Lagrangian coordinates.

Also, using the fact that the acoustic pressure and displacement amplitudes
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(for plane waves) are related to first order by £ = P/(pomco), we obtain the

following expression for the sum- and difference-frequency pressure waves

(1+P)P1Pr w X

P(Z)t = 3 { < sin(mtt-mt 25) - cos(wtt-mt 25)
4poc° o o o
—thz X w; X
7= [cos(wtt+m; E—Q + a—-cos(wtc—wt E—)]}. (71)
m* —w; o + o

It should be noted that Eq. (71) could have been stated in dimensionless
form. Specifically, the ratio PZt/{[(1+F)P1Pr]/(poc02)} depends only on

T = m*t, ¢ = mtx/co, the frequency ratio, and the boundary condition.

Comparing Eq. (71) to Censor's solution [Eq. (64)], the most striking
distinction between them is the presence of the "x" coefficient in the first
term inside the bracket of Eq. (71). Censor's result, being a boundary-effect
solution, does not grow with distance from the scattering surface. Coatribu-
tions frum medium nonlinearities, being a cumulative volume effect, do grow
with distance from the scattering surface. Hence, the nonlinear effect pre-
dicted by Eq. (71) will overwhelm that predicted by Censor within a small

distance from the scatterer.

At this point we put these remarks on a more quantitative basis as well
as calculate a region of validity for Eq. (71). First we consider relative
contribution of the term arising from satisfying the boundary condition to the
term representing the growing contribution from the virtual volume sources
(i.e., the term with the "x" coefficient). The term that arises from
satisfying the boundary condition is the last term in Eq. (71). Hence, a
quantitative estimate of the relative contributions can be obtained via the
ratio of the coefficients: (2m:c°)/[(wt2— w$2)x]. Using primary frequencies
of 160 and 100 kHz (which are of experimental Interest later in this thesis),
this ratio gives approximately (1.9AXI0'3m)/x in the difference-frequency
case. Hence, the boundary effect becomes less than 8% of the volume effect at

just one difference~-frequency wavelength distance from the scattering surface

(this wavelength 18 approximately 2.5 cm).
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Also of interest in this problem is the distance to which the solution
represented by Eq. (71) remains valid. This can be estimated by comparing the
energy density of the secondary waves to the energy density of the
primaries. The "secondary waves” include not only the sum— and difference-

frequency waves but the second harmonic waves as well.

We can estimate the second-harmonic pressure using the formula obtained
by Fubini-Ghiron {7]: P2w = [(Pozw)/(bpoco3)][Z+(B/A)x], where the parameter
Y of Fubini~Ghiron's original expression has been replaced by 1 + (B/A) (see
Reference 5, p. 99). We can estimate the sum- and difference-frequency
pressures using the coefficlent of "x" in Eq. (71). Using 100-kHz primary of
2w = (744 Pa/m)x.
Similarly, if the second primary is taken to be of 160-kHz frequency and also

103-Pa amplitude, Fubini-~Ghiron's formula reduces to P

lOs-Pa amplitude, the sum~ and difference-frequency pressures are

P+ = (5.46x103 Pa/m)x and P_ = (1.26><103 Pa/m)x. We can estimate the energy
densities of each of the relevant waves using the elementary plane-wave cnergy
4ensity formula POZ/(Zpocoz). We estimate the energy density of the primaries
by inserting 107 Pa for Po and multiplying by 3 (to account for the incident,
reflected, and radiated waves), giving approximately 6.7 J/m3 for the
primaries. We estimate the energy density of the secondary waves by applying
this equation separately to each of the four secondary waves in turn and
adding. This gives approximately [7x10_3(J/m5)]x2. Hence, the energy density
of the secondary waves becomes 1% of the energy density of the primaries at an
approximate distance of x = 3.1 m. Therefore, it is reasonable to expect the

solution to be reliable out to a distance of 3 m.

Finally, to establish the fact that viscous terms do not become important
prior to this distance, we calculate the discontinuity distance (see Reference
5, p. 104]: 1/% = [(1+(B/2A)][(wuo/c02)]. For a frequency of 160 kHz and
amplitude of 10° Pa, this formula gives approximately 9.6 m. Hence, if the
solution is restricted to distances less than 3 m, viscous terms can

reasonably be expected to play a minor role.

One final comparison of interest Is the volume effect term of Eq. (71)
relative to the boundary-eftect predicted by Censor as represented by

€q. (64). We represent this as
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For a typical planar surface frequency of 100 kHz, the two effects become
equal at a distance x on the order of 0.1 cm. Due to the presence of the "x"
factor in the nonlinear volume term, these volume effects contfinue to grow

from this point, while Censor's surface effect remains constant.

One should not be disturbed by the presence of the Q term in the denom-
Inator of this ratio. In the case of low f, the relevant factor to scale the
distance is the wavelength associated with 9, which is co/n. Hence, {if we let
X = fco/Q, we can determine the fraction (f) of a wavelength at which the non-
linear volume effect overtakes Censor's surface effect. This occurs for x =
0.89 (CO/Q). Therefore, even in the limiting case in which the frequency of
vibration of the planar surface approaches zero (maximizing Censor's effect
relative to the nonlinear volume effect), the difference-frequency pressure
generated by the fluid medium exceeds that produced by Censor's surface effect

within a propagation distance less than the longest wavelength involved in the
problem.

3. Some Comments Regarding the Censor Approach to the Problem of the Plane

Censor states In Section (4) of his paper Lhat the fundamental boundary
condition for the problem {s the vanishing of the normal displacement. It is
interesting to note that such a treatment is equivalent to simply recasting
the incident wave into Lagrangian coordinates (a system that follows fluid
motion), treating the problem as a simple rigid-body scattering, and then
transforming the result back into Eulerian or fixed coordinates. We proceed

to demonstrate the validity of this interpretation of Censor's approach.

We begin by transforming Censor's incident plane wave (apparently written
in Eulerian form) into Lagranglan coordinates. An arbitrary Eulerian
function, £B(x,t), may be transformed into its assoclated Lagrangian function,

fL(a,t), by an expansion of the form
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tha, 0 = efx, 0 = %, 0)

x=a+f(a,t) X=a

a5 (x,t)

+ ax

x=a€(a't) + ... ’

(72)

where a = Lagranglan position coordinate

x = Eulerian position coordinate

£ = displacement (common to both systems).

Letting fE(x,t) = PE(x,t) = Poe‘iw[(X/c)+t], which is the form of
Censor's incident plane wave, and performing the expansion around a = 0 (the
boundary surface of the plane), where £(¢,t) = €sinQt, one obtains (neglecting
terms of order €2 or greater)

-ilwt _ we —i(m-Q)t_e—i(w+Q)t

P [e

L
P (o,t) = Poe zco o ]-

(73)

To compare Eq. (73) to Censor's result (Eqs. 63), we must re-express
Eq. (73) in Eulerian coordinates. This may be done by constructing the
function PL(a,t), where the Lagrangian coordinate "a" is inserted into the
right-hand side of Eq. (73) in the appropriate places to form outgoing plane
waves. One can then expand the resulting function PL(a,t) in a series of the

form

EE(x,t) = fL(a,t) = fL(a,t)Ia=x

a=x-£(x,t)

L
]
- _E_ggiil RICRIN

(74)

We construct PL(a,t) from the form of Eq. (73) as




P

Pha,ey = p otol(a/e)t] f;zg (LoD ale )t]

o

- Lo (/e )-t]y (75)

and now expand Pl(a,t) in a series of the form of Eq. (74) (neglecting terms
of order €2 or greater) obtaining:

PE(x,t) = Poeim[(x/co)-t]

weP

_ 2co {ei(w-ﬂ)[(x/co)-tl - ei(w"'ﬂ)[(x/co)"t]}
o
iwp weP
- { . o eiw[(x/co)-t] 2c2 [1(:-9) ei(w—ﬂ)[(x/co)—t)]
o

o

- L) LrDIle )ty ey, (76)
(]

We now let £ = esinflt and again neglect terms of order €2 or higher.

The
result is
PE(x,t) . Poiw[(x/co)—t)
wEP
° 1(u-2)[(x/c)-t) 1(ur)[(x/c )+t]}
-3 le -e o
o
EOP L[ (wx/c_)~(w-0) L (wx/c_)-(uta)t
- 52 fetl(wx/eg)=(omel _ Hiluxie, Iy, an
o
We now recognize that the above expansion is valid only at x = 0 (since

this i{s the only place where £ = esinflt).

using the fact that € = Pr/pocon, we obtain

Evaluating Eq. (77) for x = 0 and

e n
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Comparing the sum—- and difference-frequency components of Eq. (78) with
Censor's result {Eq. (63)], we note that for Q<<w, they are identlical (P, of
Eq. (78) 1is equivalent to Py of Eq. (63)].

Hence, it is seen that Censor's result is clearly of the same order as '
the difference between Eulerian and Lagrangian coordinates. Such effects ‘
normally are not even experimentally measurable, since no presently available |
measurement hydrophone is either completely rigid (and hence measures in
Eulerian coordinates) or moves completely freely with the fluid (and hence
measures in Lagrangian coordinates). Any presently available hydrophone will
have an uncertainty in its measuring capability, in an experiment design—-ed to
measure difference~frequency waves, of the order of the difference between the
pressure predicted in a Lagranglan frame and the pressure predic-ted in an

Eulerian frame. This difference is known as "pseudosound”™ and is treated more

fully in the section describing the experimental results. Hence, the effect

predicted Ly Censor cannot be measured with present-day technology.

- ——

F. Cylindrical-Wave Scattering from a Vibrating Cylindrical Surface

The present section considers the problem of the generation of sum— and
difference-frequency waves when a cylindrical wave (of angular frequency w")
is normally incident on a cylinder whose surface deforms radially in a uniform
and harmonic fashion. It is assumed that the waves at frequency w, = w" t w'

+
are outwardly propagating waves in the limit r+=,

1. Solution Using Second-Order Nonlinear Wave Equation.

We now consider the problem of a vibrating cylindrical surface. The

geometry of the problem is indicated in Fig. 3.




In solving the second-order, nonlinear wave Eq. (48), we assume the

scattered pressure P, and the simple-source term po(aqlat) may be represented

as*:
P(Z) = Re z Pn(r,e)e~imnt (79)
n
and
o, g% =~ ~Re | Bn(:,e)e'i“’nt, (80)

INFINITE CYLINDER
VIBRATING RADIALLY
AT ANGULAR FREQUENCY w’

INFINITE CYLINDER
VIBRATING RADIALLY
AT ANGULAR FREQUENCY w’

Fig. 3 - Geometry of cylindrical wave scattering
from a vibrating cylinder
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*Specific estimates of errors introduced into the solution of Eq. (48) by the
neglect of the D'Alembertian terms of Eq. (47) are provided in Chapter IV. B.
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where the subscript n is used to distinguish between sum- and difference-
frequency components: n = 1 refers to the sum frequency and n = 2 refers to
the difference frequency. Also present in this expansion are terms corres-
ponding to the harmonics of the primaries; but since only the sum and
difference frequencies are of interest here, no special notation will be

provided for these terms. At the conclusion of this analysis, the numerical

~“notation®
Hence, for example, Pl(r,6)+P+(r) and Pz(r,6)+p_(?). These replacements will

subscripts will be replaced by the more descriptive "+" and '

also help avoild confusion between Py(r,8) (the difference-frequency pressure)

and PZ(?) (the perturbation solution accurate to second order).
By substituting Eqs. (79) and (80) into Eq. (48), we obtain the following
equation for the time-independent amplitudes

P +k%p =38 (81)
n n n n

with k, = mn/co.

We define an associated Green's function gn(?,?') such that

v2

> >, 2 * oy, - &t
gn(r,r ) + kn gn(r,r ) §(r-r?) (82)
subject to the boundary condition r §gn(r,;') = 0 on the c¢ylindrical surface,
where ; is a unit normal vector, directed outward from that surface. Here
6(?-?') is thﬁ.Dirac delta function. We also have the condition that as ;*w,
By ~ (eiknr/r /2) x function of (;‘, 0).

A representation of P, may be obtained by multiplying Eq. (82) by P, and
Eq. (81) by g,(r,r'), subtracting the resulting equations, and integrating

over primed variables. The result is:
P (c) = - [at'8_ (') (F,5') + [[ ad §'Pn(¥',e')gn(?',F) (83)

{n which the vanishing of the normal gradient of the Green's function has been
imposed. Formally, the volume integral of Eq. (83) is taken over all space,
excluding the volume interior to the cylinder vibrating at angular frequency
w'. The surface integral in this equation represents integrals over the

surfaces of both cylinders as well as over the surface at infinity. We will
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consider the surface integral over the ®w" cylinder later.

In carrying Eq. (83) to a final solution, the surface integral term will
actually be dropped, and the volume integral will be analyzed only between r'
=a and r' = r (justification for this will be presented shortly as well as in
Chapter IV). In summary, what this means is that: 1) the surface integral at
r' = a is neglected, 2) the surface integral over the w" cylinder is
neglected, and 3) the volume integral from r' = r to r' = @ is neglected.
Estimates of the errors arising from some of the neglected terms will be made

presently (the rest being postponed uantil Chapter IV, Section B).

We now consider the surface integral in Eq. (83) in somewhat greater
detail. 1In the current problem we are considering rigid-body scattering,
although the surface is permitted to deform harmonically at frequency w'. The
requirement of rigid-body scattéring manifests itself in the handling of this
surface integral. From the first-order equation of momentum conservation {Eq.
(18)], it is clear that for harmonic time dependence, the gradient of the
pressure fieldlis proportional to the velocity of the fluid (and hence the
velocity of the surface). Therefore, in the surface integral of Eq. (83) the
“V'p, " term may be viewed as the component of the surface velocity at the sum
and differeunce frequencies*. We interpret the “"rigid~body oscillation” of the
surface as constraining the surface to vibrate only at the frequency at which
it is being driven (i.e., w'). Hence this term and the surface integral of

Eq. (83) vanish.

We next consider what influences viscosity might have on this surface
integral (and hence on the sum- and difference-frequency pressures). We have
already demonstrated in Section II. C that effects of viscosity on the propa-
gation of acoustic waves are insignificant in this type of problem. Hence, it

i3 reasonable to separately consider a "boundary region” and a "propagation

*This statement is based on the fact that the equation VP = —oo(8u73t) is
correct to all orders (in the lossless case) in Lagrangian coordinates. 1In
Eq. (83), of course, the expression V'Pn is evaluated in Eulerian
coordinates. However, the difference between evaluating a function in these
two reference frames 1s of the order of pseudosound. The validity of this
statement, as well as an estimate of the effect of an error of the order of
pseudosound on the surface integral of Eq. (83) is provided in Chapter 1IV. B.
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reglon” (see, for example, the discussion on pages 281-286 of Reference 29).
For a frequency of 100 kHz in water, this boundary layer is of approximately
5.6-microns thickness (using equation 6.4.31 of Reference 29). We assume that
outside this boundary layer, the lossless equations apply and, hence, the
Green's function solutfon represented in Eq. (83) is appropriate. We note
that only the normal velocity component is preseant in the surface integral.
Hence, any tangential velocity component arising from viscous boundary-layer

effects will not influence the radiation field in a significant way.

It is assumed, then, that only the volume integral from r' =a to r' =r
contributes significantly to the salution. At this point, we neglect the

surface integral of Eq. (83) and simply represent Pn as
~

P = - [ dv'B (Fe (F.E") (84)

™~
(volume integration only 6:}3 en r

The rigid-body Green's function appropria to cylindrical geometry is

required in Eq. (84). 1t is well known [42] aind_is given by

“'=1§2~6 o0 1D 0 ke
ga(r,r') 3m=0( mo)cosm(¢—¢') [H " "(k r)J (k r') \\
J '(k a) ™~
- a_“m_‘_‘l'l_‘—_ “ (1)(k r)H (1)(k l.')] \\
Hm(l)'(kna) m n m n \

ror' (85)

where Smo is the Kronecker delta. Also, gn(:’;') = gn(;',;).

The Green's function gn(;,;') is not needed for the region r<{r' since
contributions from this region (which is further from the source than the
point of interest) tend to phase cancel against one another and, hence,
contribute very little to the overall pressure at the observation point r.
Contributions from the region r>r', however, tend to add constructively and
glve by far the majority of the pressure at the observation point. Hence, in
both the current geometry and the one in the next section (lanvolving a plane

wave incident on a vibrating cyliander), the contributions to the Green's




function integral between the observation point r and infinity will be assumed
negligible.

To complete the solution to the current problem, we must now calculate

the functions B (r ). Ia order to do so, we refer once again to Fig. 2.

elementary trigonometry we have r' = (r? + b2 - 2rbcosf) b

From

We now use the
summation theorem (see, for example, Gradshteyn and Ryzhik [43]) to obtain

(1), w'r’, _ (1) ,w"b "
H, (=) = §, )(T?QJO(QEE)
o o o

+ 2 Z H (1)(m b)J (———)cosme (86)
m=1 Q o

for r<b, and

(1) w'r', _ w'b,,., (1),w"r
Ho (—c—“) = JO(T)HO (—c—-)
o] o o
v2] 3.2y (D (L) cogns (87)
m=1 O o
for r>b.

The incident wave is assumed to be of the form of a uniformly diverging
cylindrical wave originating at the surface of the cylinder vibrating at an

angular frequency w"” (the interiors of the cylinders are, of course, excluded

from the region of interest). Hence, allowing A' to be a pressure amplitude,

the incident cylindrical wave may be written in the form A'Ho(l)(m"r'/co).
\\\\\ Equation (86) 18 used to re—express Ho(l). Also note that Plnc is singular at
t ‘e\o\rlgin of rthe w" cylinder.

The cacresponding particle velocity may be obtained by use of the first-
order equation momentum conservation [Eq. (18)], expressed in the form
U = [~1/p, w](3P/3r] (for the radial component).
particle velocity wave,

We thus have for the incident
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(1) w"b w'r

Uinc p c o ( c )Jl( c )
oo o o
+ E‘c‘" ) cos(mO)[J_, ;‘)
o o m=1l o
- wiryy (1) @'b,
J_ ¢ co)mm ( co)- (88)

We assume the first-order scattered acoustic pressure wave to be of the form:

= Z A cosmOH
m m

P (1) 0", ~iw"t
scatt
m=0

(‘E-)e . (89)

o

Hence, the scattered particle velocity wave is

1Ao (1) w'r i o
Uscatt = p c Ho ( c )+ 2p ¢ z A cosmd
oo o 0o o m=1
(1), w'r, (1) 9:5. -lw"t (90)
My 7T = By T e T

We assume the scattering cylinder to be rigid in solving the first-order
problem; hence, the boundary condition becomes Uinc = —UScatt at r = a. This

condition yields the scattering amplitudes Aj

H (1)(m"b)
A, = A" =iy 3,23
o (1), w' "a. "1 <,

Hl _( co)

w"a w"a
B ) = Jp1 )

(1), w"b o
A = -ZA‘H ( ) 2 - m> 1, (91)
m (1) w _ (1), w"a

o (H e ( o) Hm—l (—E;)]
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(89) with Eq. (91) substituted for Ay

The incident acoustic pressure for r>b is given by:

- (1) w'r
Pin [A’ J ( )H ( p —)

O o

+ 2 2 J ( )H (1)( )cosm@]xe 1w"t.
m=1 o

Hence, the general solution to the rigid-body scattering problem to first

order is
- (1),0"b w"r
Prot = (ar By T3, (=)
o o
(1) w"r (1), w"r
+AH (=) + Z [AH (=)
o m=1 o}
+2A'H (1)(m b)J (—~—0]cosm6}e w”t
€o o
r<b
and,
(1) w'r
Piot = {a J ( )H (—)
o o

+ BH_ (1)(“ 5y + 2 [8_H (1)(9:5)

o m=1 co

+2A') ( )H (1)(w r)]cos O}e —lw"t
€ %

r>b.

This can be rewritten as
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The first-order scattered acoustic pressure for r<b is thus given by Eq.

(92)

(93)

(94)




r w'r

b, - (D2 (55

tot (o]

+AH (1)(“ LA Z [Amﬂm(l)(egi)
o m=1 o

t @wr o
+28H_ (1)( )J ( lw7e

<)]cosm0}e_ s (95)
i

where r>(<) is the greater (lesser) of r and b and A, are given by Eqs. (91).

The primary field P; to be used in the simple-source term of the second-
order nonlinear differential Eq. (48) is obtained by adding the cylindrically
radiated field at frequency w' to Eq. (95), obtaining:

(1) w'r, ~iw't (1) w"r
P(1) o ( e + % [AmHm 67;.)
o m=0 o
w"r “
+ (2-5_ )A'H (1)( )J (D Jcosmae 1L, (96)

O

where A = pressure amplitude of the cylinder oscillating at angular frequency

w' and Gmo is the Kronecker delta.

We obtain the real part of P; using the fact that
Re[P(l)l = [P(1)+P(1)*l/2' Hence,
1) w'r -{w't
( )( 25y e

Re[P(l)] =3

© A 2-68 w'r w"r
1 ” 1 > <
+ 1 DED » A VDt
n=0 o o
x cosmee-iunt + c.c. (97)
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I1f we define [P(l)zlt as the portions of P(l)z that contribute to the

sum— and difference~frequency pressures, we obtain

2 - 2 % (1) w' r)[H (1) wcr)A

m
m=0 o

g (D wire
+(2-8_ JA'H S (—=2 % )J (—--)1

O

-1(w'+w" )t

x cosmBe + c.c.

and

(1)(w r (2)(9££)A *

(o]

2 T A
[Peyy - =m§0 38, (M

w"r w"r
) @)%
*(2-8 AR, (1T;oJm(ﬁr;)l

-i(w'-w")t

x cosmOe + c.c.

The simple source term of Eq. (48) may now be obtained using

3q Y

D, =~ o [Py
o dt’% o e 4 3t2 (1) '+
(Ve ]

(p

This results in:
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(99)

R Y A
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2 = :
aq T(w'+w") (1) w'r ﬂ
(g 3ede ==~ L A
2p c n=0 o
oo
[Hm(l)(ﬂgi)Am + (2 - 6wmo)
o]
w'r w"'r T
x A‘Hm(l)(jg4i)lm(—ggs)]cosm@eni(m Wt L e (100)
and
2
3q P(w'-w")
(po 3?9- 4 2

(1) w'r (1) ,w"r

(A, " Ty A + (276,)
o o
vy (2) w“rz w'r<, -{(w'~a")t
x A Hm (7;— )Jm(—E;-)]cosmOe + c.ce. (101)
By Eq. (80),
q, _ -1 -{w t
(0, 5¢)4 = 3 [B,e T+ +c.c).

It should be noted that w_ = ,m' - m"‘ and, therefore, B_ are minus the
- L PR
coeffictent of e 1{¥ ™t liich 1s explicitly shown in Eq. (101)

when w'>w”. It is the complex conjugate of this when w">w'. For w'dw",




r
P(f) = -] dt'B_(£)g ( £',0)
a

I‘(w'-w")2 oy 2n
i —-—7F 2 A(2-6, ) I d0'cosmb 'cosl(0-0")
4 Lo
l*poco L ,m=0 o

x

j dete’ (M (D@ (2)(m r’ yn, M £) I (k_t A _*
0 0

- (lr)‘:’—~ H EZn P, Do, Do ena
'(k a) o o
+ atn D=6y P&y 2y D g e
0 [o] o

- (2-6 )A'H (1)(2_5_1)“ (2)(w"b)J (w"r') JZ'(k-a)
mo o ¢, 'm c, m ¢ Hl(l)'(k_a)

« (D ac_em, Dk _rn) (102)

where k= (w'-w")/cgy.

The angular integrals can be performed using the fact that

§ 7mcoskO 20
f£m
2n

[ d0'cosm@'cost(0-0') =

0 2% L=m=0.

This ylields (for r<b):
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togryl ®
:112&9_52_1_ §  Acos(28) %

2poc0 L=0

P (F) =
%{ f de'r' (H, ()wlr’ )a (2)(” L M, (1) o) (k_e)a >
0 0

J ’(k_a) ()
2 “o(l)(wcr M z(Z)(w r' )H (1)(k r)H (1)(k r )A *

Hz(l)'(k_a) o o

(L w'c’ (2) @b - w'e’ (1) :
e o A SR TGS LA RO N

+ (2—620)A

[ w"r! J '(k_a)
(2-8, )aH “’(“’: 2 yn ‘”(—-—)Jz( Ly —

o Hl(l)'(k_a)

x

(L Q9 '
Hy' (k_oH " (k_r')]} (103)

where r<b and w'd>w”.

For t>b, the integrals in Eq. (103) run from a to b, plus an additional
set of integrals to those in Eq. (103) is required in which the roles of r'
and b are exchanged for the underlined terms and the limits rvun from b to r.
However, one additional difficulty arises when r>b. This is the fact that the
source Hankel function has a singularity within the volume of integration.
This ditficulty can be circumvented by excluding this singular region via the
mathematical artlifice of enclosing the w" cyllinder with a surface of radius «
and analyzing the contribution to the solution from the associated surface
integral. It i{s relatively straightforward to demonstrate that this surface

contribution {s proportional to €fne and, hence, gives a vanishing

ikt d ind

contribution in the limit as € + 0.

The sum- and difference-frequency pressures can once again be specified

in dimensionless form in terms of the parameters T = w*t, ; = w*r/co,

o, w*a/co, m*b/co, as well as the frequency ratio.




At this point we note that estimating a region of validity for Eq. (103)
is similar to the case of plane-wave scattering by a vibrating cylinder.
Hence, we postpone this calculation until the solution to this latter problem

is obtained [see discussion following Eq. (115)].

2. Connection With Previous Research

In 1966, Lauvstad [21] solved the problem of two eccentric cylindrical
waves simultaneously present in a fluid medium. The present work differs from
Lauvstad's in two important ways. First, Lauvstad solved only the radiation
problem; i.e., no scattering of the primaries from the cylindrical surfaces
was considered. Secondly, Lauvstad used the Green's function that vanishes at
the cylindrical surfaces for the second-order solution. This corresponds to
the rather physically unrealizable situation in which the radiating cylindri-
cal surface is acoustically soft. Since the current work used the Green's
function whose normal derivative vanishes at the cylindrical surface (cor-
responding to the more realistic rigid-body case), no limits can be taken to

establish correspondence between the results of Lauvstad and the current work.

It is nonetheless of interest to obtaln an expression for the difference~
frequency pressure for the radiation problem considered by Lauvstad on the
basis of the current theory with rigid boundaries replacing Lauvstad's soft
boundaries. All that is required is to drop the terms in Eq. (103) containing
the scattering coefficients Al* (this is equivalent to inhibiting the

scattering process in the first-order fields).

This results in:

—inl(w'-w")"™ ) AA' Z (2- 62 )cos(lO)H (1)(k _OH (2)(E£2)

&poco £=0 o

P (r) =

o farten g O EE 0,0
0 0

for r<b and w'duw".




Although no general correspondence can be made between the results
presented above and those of Lauvstad (due to the different choices of Green's
functions), it 1is possible to establish a connection in the asymptotic
lHmit e, This is due to the physically reasonable result that the effects
of the surface contributions in this problem have become negligible at
distances far from the surfaces. It is relatively easy to demonstrate in this
limit that Lauvstad's Eq. (29) and Eq. (103) above reduce to the same
expression in this limit. It is necessary again to discard from Eq. (103) the
terms corresponding to surface scattering. It is also necessary to discard
the terms which reflect the different boundary conditions satisfied by the
Green's functions (namely, the terms with coefficients involving
derivatives). It is also necessary in Lauvstad's expression to discard the
integrals with infinite limits, which has already bgen done in producing

Eq. (103). Finally, the following correspondence between constants in the two
treatments must be made:

Lauvstad's Notation Notation Used Here
A+ 2 2T
A A'/(pow")
A, A/(Dow’)

When these relations and simplifications are used, Eq. (103) will reduce
to

w2 @
p_(f) = LDy (2 - 5, yeos2orn, P k_e)
ZDoco L=0

vy D e et
. lnz(z)(%) [aete “o(l)(“"a‘:‘”z(wc: 2 lkr)

Wby (Fo e (D't (2) wTr ! \
MRSl LA Crae L Era AU )
o b o o

for r+® and r>b.




Lauvstad's Eq. (29) reduces to y@ times this result. However, an
apparent algebraic slip occurred when Lauvstad obtained his Eq. (29) from his
Eq.s (26, 27, and 28). [His Eq. (29) should have a divisor of 8, not 16 as

listed in Lauvstad's article.]

G. Plane-Wave Scattering from a Vibrating Cylindrical Surface

In the present section, the problem of the generation of sum- aand
difference-frequency waves arising from the scattering of a plane wave (of
angular frequency wp) normally incident on a cylinder that deforms radially

and uniformly {(at angular frequency w.) will be considered.

1. Ceasor-Method Solution S

The problem of the scattering of a plane wave of angular frequency w,
normally incident on a cylinder vibrating radially with angular frequency w,
(see Fig. 4) was a problem considered by Censor. Substitution of his Egs.
(24) iato his Eqs. (10) and (6) results in his solution for the sum- and

difference~pressure waves

W r
(L), =
Hy ()

(L
p = - Eﬂm“_(_k—ci)_l_ w [ ° o
+ 2 t w a
poco mc Ho(l)'(q)ﬂo(l)(_gg_)
d 2 H [w (x/c )]
+2 ] 1"osmo(1 - T m+ o —1, (104)
m=1 p (1), (L),
H (Q)Hm (—EEO

Is the plane-wave pressure amplitude and where P_ is the

where q = pa/co, P c

p
cylindrical-wave pressure amplitude defined by P = PH (k.r), ¢ = kpa, k. =
wave number assoclated with the cytindrical wave, a = radlus of cylinder, and
w, = mptmc.

In this expression, Censor's small parameter € has becn replaced
by(PCIHI(l)(kca)l]/(Doﬂaco), obtained by requiring the pressure and

displacement at the surface of the cylinder to be consistent with Eq. (51).
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INCIDENT PLANE WAVE OF
ANGULAR FREQUENCY wp

. o

Al 8

INFINITE CYLINDER

VIBRATING RADIALLY
AT ANGULAR FREQUENCY w¢

Fig. 4 - Geometry of plane wave scattering from
a vibrating cylinder

2. Solution Using Second-Order Nonlinear Wave Equation

We must now solve the second-order nonlinear wave Eq. (48) using as P,

the sum of: 1) solution of the linear wave equation
2
0 P(l) 0 (105)

for the problem of linear rigid-body scattering from a cylinder plus 2) the
iinear solution for radiation from a cylindrical source. Thus P(l) may be

represented as

P1y ™ Pine ¥ Pscace ¥ Prad (106)

with obvious meaning for the subscript notation. The expressions for the

well-known linear-wave equation solutions may be found in any standard




acoustic text, such as Morse and Ingard [44]). They are

P1nc

and

where P

tanYo

tanYm

mpr o a wpr -iw t
P LI (- + 2 ) 1 cosmdJ (-=)le b, (107)
o m=1 o
R W r
- (L, py ~iwt
Pocart = ) A cos(mO)H *"(F=)e p, (108)
m=0 0

wr
1 -1
P, = AHO( )(—cc—-)e wet,

rad (109)
0

pressure amplitude of incident plane wave
pressure amplitude of radiated cylindrical wave
angular frequency of incident plane wave

angular frequency of cylindrical radiated wave.

th

m-"—-order Bessel function of the first kind

th

m" '—order Hankel function of the first kind

(5 _ m+l ~iym
(2 Gmo)Poi e

sinYm

(-4, (wpa/co) IACH (wpa/co)]

[Jm_l(wpa/co)-Jm+l(wla/co)]

[Nm+l(mpq/co)-N _l(mpa/co)]

mth-order Neumann function
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a = cylinder radius

¢, = linear socund speed.

The boundary condition appropriate for obtaining the linear rigid-body
scattered sc.ution is that the fluid particle velocity vanish at the surface

of the cylinder.

Once again, i{n order to solve Eq. (48), we resort to the representations
of P(Z) and po(Bqlat) provided by Eqs. (79) and (80). Also, as before, the
surface integral of Eq. (83) does not contribute to the solution for the same
reason given following that equation. Hence, the solution may still be rep-
resented by Eq. (84). Since the geometry of the current problem is cylindri-
cal, Eq. (85) still provides the appropriate Green's function [contributions
to the sum~ and difference-frequency acoustic pressures from regions beyond
the point of interest are again neglected, for the same reasons given follow-
ing Eq. (85)].

As before, in order to have a representation of the solution, a represen-
tation of B, (r') must now be obtained. This is done by substituting the
assumed forms [Eqs. (79) and (80)] into the second-order wave Eq. (48). Once
again, we must carefully handle the complex quantities involved. We again use
the theorem that Re(z) = (2z+z*)/2 to help obtain a representation for the

first—order solution P(l)(r). This provides

wr W r
2. (2), ¢ fot 1 p
Pl(r) Aﬂo (~E;)e c + 3 [PoJo(_E;)

o (2) wr
+ 1 A *cos(mO)H_ (-g—)

m=0 fo}
. - W iw t ;
+2 ) P 1 "cos(m8)d_(-Eye™pt + cuc. (110) .
o=l o m CO

We note that P(l)(r) is of the form




+ 2,67 1% + Zz*eiwpt , (111)

where 2 2 (1)( ) and
o

1
w r i
z,= 2 P 13 (-2 + Z A_cosmdH “)( P 2 |
o m=0 o ;
; n mpr }
+ 1 cosmBJ (——)]-
m=1 %

We must now determine which terms in [P(l)(r)]2 contribute to the sum-
and difference-frequency pressures in the inhomogeneous simple source term

3q/3t of Eq. (48). These terms are [using Eq. (111)]: §

2 _ -1(w +w )t x7 wal(w +0 )t
P(1)+ ZZIZZe p ¢’ + ZZ1 Z2 e p ¢ (112) g
j
and {
%
2 _ xa—i(w -w )t * i(w -w )t
P(l)— 22122 e P ¢ ‘ + 221 Zze p ¢, (113)
2 2
where P(1)+ and [’(1)_~ refer to contributions to the sum and differcace

frequencies, respectively. These expressions yield for the simple source term

2
(w 4w ) AT i
0, 2y oo BTy (D e
o at 4 o
2p ¢ o )
oo
+ Y A ,CO8 (mO)H (1)( (1)( p —)
m=0 o o

(wp+mc)t

+ 2 2 P1 M cosmoH (1)( )J ot p —-)e
m=]1 i

] + c.C.




(v -w ) AT
(0, 38y - -~ pp g (D, 6

ZOOCO € o
+ ) A *cos(mOH_ (% )H @ " p L
m=0 € €o
+2 ] P 1 cos(no)H_ (1) %e )J ¢ p Poyemlwpmw . (114)
m=1 o o

By the same argument as given for the case of cylindrical waves incident
on a vibrating cylinder, the Bn(t' ) are simply minus the coefficient of the
negative time exponential in Eqs. (112) and (113). Two different solutions
are obtained for the difference-frequency depending on whether wp>wc or wc>wp,
since each of these cases will give a different coefficient from the second of
Eqs. (112) and (113). Since the procedures are similar in each of the three
possible cases, we choose a particular one to represent the solution, namely
the difference-frequency pressure when wp)mc (this is chosen since it

represents the case for which experiments were performed).

We may proceed to obtain the difference-frequency pressure P_(r) by
substituting the expression obtained for B (r') by the above-described method
and the Green's function 8,(r,r') of Eq. (85) into Eq. (84). The integrals on
©' may again be performed using the theorem preceding Eq. (103).

This results in the following expression for the difference-frequency

pressure:
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niPo(mp wc) AT

4
20000

J '(k,a) r

_ ¢ d I

Ho(l)'(kda) a

A,
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\\\;;Ez\aggin, the sum—- and difference-frequency pressures can be stated in

ms. In this case the relevant parameters are

T = = : .
wtt, 4 wtr/co wta/co, and the frequency ratio

At thls point we undertaRe. a calculation of the region of validity of
Eq. (115). First we consider t;;\ghal3esl value of r for which Eq. (115%) may

~.
The?é\g:e several sources of error at

These™are:
.
(47), 2) contributions from the

reasonably be expected to be valid.

rad{i close to the cylindrical surface. 1) contributions due to

the neglected D'Alembertian terms of Eq.
neglected Green's function fntegral between r and =, and\33\¢ontributions due

to the neglected Green's function surface integral. All of these are

estimated in Section IV. B. From the computations in that section, it is
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clear that an upper bound on this error is 10% at r = 3 cm (these errors

decrease approximately as l/r at distances beyond this radius). Hence r =

3 ¢cm can be taken as a reasonable lower limit of validity.

Next we consider the largest value of r for which Eq. (115) is valid. As
was done in the case of plane-wave scattering from a vibrating plane, we
effect this estimate by comparing the energy densities of the secondary waves
to that of the primary waves. A conservative estimate can be made by
including only the cylindrically radiated wave and the rigid-body scattered
waves In the estimate of the primary field's energy density. We choose to
represent each of these waves regpectively by the simple formulas P, = At//r

and P, = As//;; For the experiment described in Chapter III, the empirical

Again, a conservative estimate of the primary energy density can be computed
by using the plane-wave formula and adding the results. This results in an

|
coefficients have the approximate values Aj = 5x103 Pa and A, = 1.36x10% Pa. r
|
|
approximate primary energy density of (4.66X10’2J m)/r. {

There are two distinct angular regions for the secondary waves: angles
near 0° and angles far from 0°. At angles near 0°, the difference-frequency
pressure grows approximately linearly. From the results of Chapter [II, the
formula P_ = 300 Pa/m r is seen to be approximately followed. Scaling for the |
sum-frequency case gives: P, = 1300 Pa/m r. Once again, we use the very
congservative estimate that the pressures assoclated with the second harmonics
follow the plane-wave Fubini-Ghiron formula (of course, the waves will actual-
ly grow much more slowly in this case). Using as a typical value the second-

harmonic pressure formula obtained in the section on plane wave and scattering

from a vibrating plane, we have P, = 372 Pa r (we will use this for the har-
monics of each of the primaries). At a distance of 1 m from the cylindrical
surface, the energy densities of the secondaries are less than 1% of the
primaries. Hence, a reasonable region of validity of Eq. (115) may be taken
to be r =15 cm to r = 100 cm. (The discontinuity distance calculated in the
gection on plane-wave scattering from a vibrating plane can still be taken as
a reasonable estimate. Since it was approximately 10 m, viscous terms may

reasonably be sald to play no significant role in the above estimate.)

In Eq. (115) the linear rigid~body scattering coefficients appear
explicitly. In the Censor solution, given by Eq. (104), these do not appear

because Censor chose to incorporate the expressions for the coefflclents into
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his solution. 1t is desirable to re-express his solution in a form in which
these coefficients appear explicitly as they do in Eq. (115). This

facilitates the calculation of the difference-frequency pressure in the case

in which the surface is not rigid and the scattering coefficients Ay must be ;

empirically determined. 1In terms of A , Censor's solution becomes:

P
. _Lc
21 2

lHl(l)(kca)' Z cosmO
poﬂ a m=0

Polale)dy(k a) (17(2-8,) + Amﬂm(l)(kpa)

x [ 3 u M),

Hm(l)'(kda) (116)

Three methods were developed to analyze the integrals in Eq. (115): 1)
Numerical integration by the use of Gauss quadrature. 2) A new integration
technique that enables the calculation of the integrals in terms of sums.

3) “xpression of the integrals in closed form in terms of known, although

rarely encountered associated Bessel functioans for the case k.a>>l.

Method 1 proved to be the most direct and efficient. Numerical results [

will be given in Section III1. Methods 2 and 3 are discussed in the Appendix.

3. Connection with Previous Research

In 1962, Dean [20]) solved the problem of two concentric cylindrical waves

interacting nonlinearly. He obtained the following solution for the sum-

frequency pressure in the farfield (for the case where a+0):

2,-1 Ly 2 1k,r
P+ - nPan(Zpoco ) (P)(kakb) k+a e + , (117)
where ka,kb = wavenumbers of primaries, k; = sum—frequency wavenumber, P, ,P, =
constants that measure the acoustic pressure amplitudes of the cylindrical
primaries, and Dean's 1-T has been replaced by ' to be consistent with the
notation used in this work. The constants P, and Py, are related to the

primary pressures through the relations
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(L) (L
P (r) = P_[H, (k r)/H " (k a)]

(1) (L)
P (r) = B [H," (ke o)/, O (kpa)e

The solution to the above problem can also be obtained using Eq. (115).
In order to do so, the terms corresponding to the incident plane wave must be
suppressed [these are all terms in Eq. (115) that are not multiplied by the
scattering coefficients Ag]. Furthermore, the scattering coefficients Ay must
be replaced with 610, the Kronecker delta. Lastly, the following
identifications must be made between counstants used in Dean's work and

constants used in the present work:

Q9]
Po = Pa/H1 (kaa)

A= Pb/Hl(l)(kba).

If the Hankel functions in Eq. (115) are all replaced by the first term
of their asymptotic expansions, an elementary integral {s obtained and Eq.

(117) follows apart from an unimportant phase factor of eim/2,

IIT. NUMERICAL RESULTS

This chapter presents in graphical form the results of numerical
calculations based on the analytical solutions of the nonlinear wave equation
obtained in Chapter I1. Censor gave only analytical expressions for his
theory. In order to compare Censor's results with those of the nonlinear
theory, his analytical expressions were evaluated numerically. The results of

these evaluations are also presented graphically in this chapter.

The configuration selected for experimental investigation was the one in
which a plane wave is normally incident on a vibrating cylindrical surface.
Censor's solution [23] to this problem is given by Eqs. (5), (10), and (27) {n
his paper and by Eq. (104) of this report.




In order to illustrate Censor's solution (as well as the solution to the
nonlinear theory), numerical values that were experimentally realizable were
used to make example calculations. In these calculations, the plane-wave
frequency was chosen to be 162 kHz, and the cylindrical-wave frequency was
chosen to be 102 kHz (giving a difference-frequency of 60 kHz). The amplitude
of the incident pressure wave was selected to be 1.0x103 Pa, and the

cylindrical-wave amplitude coefficient (A) was selected to be 3.5x105 Pa.

The angular distribution of difference-frequency pressure at 15 cm {rom
the symmetry axis of the cylinder obtained by numerically analyzing Censor's
expressions is shown in Fig. 5. (The reasons for studying the difference-
frequency case, as well as the reasons for selecting the particular experi-
mental parameters indicated in Fig. 5 will be discussed in Chapter IV.) The
maximum pressure at this radius occurs at 0° and is 0.9 Pa for the parameters
given. (In Fig. 5, as well as all other polar plots, the dB scale is measured
relative to the maximum pressure level at the radius of interest. The maximum
pressure represented in a particular polar diagram is given in the information
box assoclated with it and is referred to as "Py,y".) As discussed in Chapter

I1, this pressure value is of the same order of magnitude as pseudosound.

In the figure captions for the difference-frequency pressure, the value
of the quantity Al = (POPCP)/(pOcOZ) is listed, since this factor may be used
to obtain a nondimensional pressure. Here, P, (the actual maximum cylindrical
pressure amplitude) is used instead of the quantity A of Eq. (l15), since the
pressure represented by A is present at no point in the fluid. Similarly, the
quantity A2 = w_a/co is also listed in the caption.

Also of {nterest in this problem is the variation of differeunce-frequency
pressure with respect to distance from the cylinder symmetry axis at fixed
angles. Figures 6, 7, and B present the results of Censor's theory at 0, 90,
and 180°, respectively. These graphs can be interpreted in the following way:
Censor's theory predicts the generation of difference-frequency waves (as well

as sum—-frequency waves) due to the presence of boundary conditions associated

with the time-varying nature of the cylindrical surface. Hence, both the sum-
and difference~frequency waves predicted by his theory are created solely at
the surface of the scatterer. As the observation point is moved to increas-
ingly greater distances from the boundary, these sum- and difference-frequency

pressure waves must spread cylindrically (in a manner similar to the
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spreading of the first-order cylindrical field). Hence, it is expected that
pressures assoclated with Censor's theory will (in the asymptotic limit)
decrease in-versely as the square root of the radial distance from the
symmetry axis. This does indeed prove to be the case for the pressures
represented in Figs. 6 through 8.

The solution to the nonlinear wave equation for this problem is given by
Eq. (115). Unlike Censor's theory, this equation involves complicated iante-
grals over triple products of Bessel functions. A new technique of integra-
tion is presented in the Appendix for treating these integrals for the case in
which the arguments of the Bessel functions corresponding to the radiated cyl-
indrical wave as well as the arguments of the Bessel functions corresponding
to either the incident plane wave or the difference-frequency wave are suf-
ficiently large to be replaced by their asymptotic forms. Unfortunately,
these conditions were not met for the case that was modeled experimentally;
hence, these integrals had to be evaluated numerically. The numerical proce-
dure chosen to analyze the integrals was the method of Gaussian Quadrature
{32]. A 32-point quadrature was used. (Suitable abscissas and weighting
factors are given in Ref. 45). To obtain good accuracy using the 32-point
Gaussian Quadrature, the radial interval to be integrated (1 to 46 cm) had to
be subdivided into ten equal sub-intervals. The full 32-point Gaussian Quad-
rature sum was used to obtain the integrals over each of these partial inter-
vals. The integrals up to the final observation point were obtained by adding
together the integrals over all subintervals below the observation point.

It is necessary at this point to justify that the subdivision scheme
described above will indeed suffice to calculate the Integrals of int;rest.
First, it is essential to state the precision of the Gaussian Quadrature

procedure. [f m quadrature polnts are used, the integral of a polynomial of
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degree 2m - 1 is represented exactly by this method [46]}. Hence, it is

reasonable to expect that if the integrand of interest contains not more than
2m~1 zeroes over the interval of integration, Gaussian Quadrature will provide
a reliable numerical result.

In order to obtain a reasonable estimate of the number of zeroes
occurring in the integrands of interest (over the partial intervals described
above), it should be noted that the general behavior of the zeroes of the
Bessel functions of the first two kinds can be surmised by a careful
examination of tables listing their values [47]. It is clear from these
tables that the spacing between these zeroes decreases for increasing
arguments. Hence, since the greatest density of zeroes occurs for the
greatest arguments, use of the asymptotic expansions of the functions will
result in an upper bound on the number of zeroes that occur in any of the
subintervals of interest. 1In the case of Jz(kr), the location of the zeroes
may be approximated by calculating the zeroes of the cosine term that occurs
in the lowest order of this asymptotic expansion. These zeroes will occur at

values of r that satisfy the relationship

kr ~ 3 & -7 = (20+1) 7,
where n,f = integers.

Conversely, the above relationship may be used to obtain an upper bound
on the number of zeroes occurring In a given r interval (for a given wave-
number k) by determining the greatest integer n that satisfies this relation-
ship. The number of zeroes is then approximately equal to n+l (since the
first zero occurs at n = 0). It can also easily be seen from the expression

above that the greatest number of zeroes occurs for £ = 0.
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Since the range of integration is taken from r = 1 cm to r = 46 cm, the
total range of integration is 45 cm in length. Since the total interval is
subdivided into 10 subintervals, the limitslof integration over which the
greatest values of the arguments of Jo(kr) occur (and hence interval over
which the greatest density of zeroes occurs) is from r = 41.5 cm to r =
46 cm. The above approximate expression may now be used to determine the
number of zeroes of Jo(kr) corresponding to each of the wavenumbers of
interest (associated with the frequencies 162, 102, and 60 kHz) over this

interval. Rounding all fractional values obtained in this way to the next

greatest integer (to consider the worst case), the results of Table I are

obtained.

Table I. Maximum Number of Zeroes of J (kr) on the
Interval r = 41.5 cm to r = 46 cm

Frequency Maximum No. of Zeroes
162 kHz 11
102 kHz 8
60 kHz 7

The maximum number of zeroes of the integrand involving the product of
the three Jo(kr) functions herein considered is given by the sum of the number
of zeroes for each of the individual functions. This gives 26 zeroes in the

current example.

Since m = 32 Gaussian Quadrature points are used, 2m-1 = 63 zeroes would
gtill result in an accurate value for this integral via this numerical
method. Since the current example represents the worst case (in the sense

that no other integrand of interest will have more than 26 zeroes over any of




the subintervals being considered), it may reasonably be expected that the
Gaussian Quadrate numerical integration scheme chosen is adequate to perform

all the required integrals.

The results of this numerical computation were checked in the high-
frequency limit where the new technique of integration was appropriate.
kxcellent agreement was obtained between the Gaussian quadrature results and

corresponding results using the series given for these integrals by Eq. (A2l).

In addition to verifying the results of the numerical integration by
comparison with numerical results obtained using Eq. (A21), another verifica-
tion method was also available. A few of the ten subintervals were further
subdivided and then evaluated using the 32-point quadrature over each of the
smaller subintervals. The numerical results obtained by this further sub-
division were always in good agreement with the results obtained with the
original subdivision scheme, thus showing that the original subdivision was
sufficient for evaluating the integrals. ([It should be noted that this last
method is applicable even for frequencies that are not large enough to allow
the application of Eq. (A21) to the integrals of interest. This at least

provides a check of consistency.}

The angular distribution of difference-frequency pressure obtained by
analyzing Eq. (115) numerically (at 5, 10, and 15 cm from the scatterer's
center) is presented in Figs. 9 through 11, respectively. (Figures 12 through
14 present radial plots of difference-frequency pressure at 0, 90, and 180°.
These will be discussed shortly.) These graphs may be interpreted qualita-
tively in the following way: Ffor angles near 0°, strong contributions to the
difference-frequency pressure are obtained both from the “"mixing ' of the
incident plane wave with the cylindrically radiated wave and from the "mixing"
of the rigid-body scattered wave with the cylindrically radiated wave. Since
the cylindrlcally radiated wave does not vary with angle, the vartation of
difference-frequency pressure with angle should be related primarily to the
angular dependence of the sum of the incident plane-wave pressure and the
rigid-body scattered pressure. Of course, since the nonlinearly generated
field 13 expressed in terms of an integral from the cylindrical surface to the
observation point, this field is not understandable simply in terms of the
primary fields that happen to be located at the observation point. More
illuminating in this respect is the evolution of the primary field as one
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moves from the cylinder surface to the observation point. Figures 15 through

21 present the total pressure field of the linear rigid-body scattering !
problem (incident plane wave plus rigid-body scattered field) at 2-cm
intervals. It {s interesting to note that peaks evolve in this fleld at O and
15° that correspond closely to peaks in the nonlinear scattered field. At
angles not equal (or close) to 0°, the incident plane-wave no longer .
coantributes strongly to the nonlinear fleld (due to its unfavorable geometric
relationship to the cylindrically radiated field).

Hence, for these angles, the angular dependence of the rigid-body scat-
tered field alone is more appropriate in interpreting the angular dependence !

of the nonlinear field. The evolution of the rigid-body linearly scattered

field at 2—cm increments is presented in Figs. 22 through 28. The most evi-
dent aspect of the nonlinear scattered field (between approximately 60 and
300°) is a pressure level nearly coanstant with angle. This corresponds well
with the linear rigid-body scattering patterns with the exception of minima

located at approximately 75, 135, 225, and 285° in these patterns. That these

minima {n the linear rigid-body scattered field do not contribute signifi-
cantly to the nonlinear field may be qualitatively understood from the fact
that these minima are not very wide in terms of angle. (The minima at 75 and
285° start with ~20 degrees of width and decrease to ~10 degrees of width.

The minima at 135 and 225° remain at ~5 degrees of width up to the last radius

of interest.) Also, in the case of the minima at 75 and 285°, the incident
plane wave will still coantribute something to the nonlinear field.

Even though correspondence between the primary flields and the nonlincar o

field i3 not exact, this 1s not a serious matter since the primary fields can
be used only as a very rough guide to the behavior of the nonlinear filelds.

It must be remembered that the nonlinear fleld {s calculated via volume
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integrals over the primary fields (not just integrals along the radius);
hence, detailed variations in angle in the primary fields can easily disappear

in the nonlinear fleld.

The angles between 15 and 60° and between 300 and 345° do not correspond
closely to elther of the two sets of patterns given in Figs. 1% through 21 or
Figs. 22 through 28 (although some correspondence can still be seen between
certain features). These angles may be regarded as a “"transition region”
through which the effects assoclated with mixing between the incident plane

wave and cylindrically radiated wave diminish.

Behavior of the difference-frequency pressure at fixed angles and varying
distance is illustrated in Figs. 12 through l4. Figure 12 gives the differ-
ence-frequency pressure at 0°; Figs. 13 and 14 give the difference-frequency
pressures at 90 and 180°, respectively. It will be noted in Fig. 12 that the
difference-frequency pressure in this direction increases approximately lin-
early with distance. This result is similar to the behavior of the parametric
array [14) (in which a single piston source is driven at two different primary
frequencies). It ts understandable that the difference-frequency pressure at
0° in the current problem should behave approximately as a parametric array
since the incident plane wave acts exactly as one of the primary waves does in
the parametric array, and the radiated cylindrical wave approximgtes the

behavior of the second primary (although it diminishes in amplitude).

At angles other than 0°, however, the geometrical relationship betwecen
the incident plane wave and cylindrically radiated wave is no longer favorable
for the nonlinear generation of acoustic waves. Hence, at these angles, it is
the mixing of the rigid-body scattered wave with the cylindrically radiated
wave that is responsible for the production of the majority of the nonlinear
fleld. Since the rigid-body scattered wave also spreads cylindrically, the
interaction between these two waves is similar to the interaction of two
concentric cylindrically radlated waves. This last problem was considered by
Dean [20], who showed that in this case, unlike the parametric array, the
nonlinearly generated waves approach a constant value as the observation point
approaches the farfield. A similar behavior is apparent in the present

problem from Figs. 13 and 14.

It is interesting at this point to attempt to establish an actual numer-

fcal connection between the asymptotic expression given for this case by Dean
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(reproduced in Section IIl. G. 3 of this report) and the experimental para-
meters resulting in Figs. 13 and 14. We must, of course, rewrite the expres-
sion so it represents the difference-frequency case, and substitute the nota-

tion used for the pressure amplitudes used in this thesis. This results in

(1) (1) I 2
nPoAHI (kpa)H1 (kca)(P)(kpkc) kda
- 20 ¢ 2

oo

We are now faced with the problem of choosing appropriate values for the
pressure amplitudes P, and A, which are consistent with the present
experimental parameters and which realistically represent the theoretical
situation of concentric cylindrical waves. Clearly, one of these ought to be
chosen as 3.5x10° Pa, the actual pressure-amplitude coefficient of the
cylindrical source used in the experiment. The choice of the other pressure

amplitude, however, is more subtle.

The scattered pressure plotted in Figs. 13 and 14 has been computed using
Eq. (108). 1t is this equation that Is used as a guide in selecting the
second renuired pressure amplitude in the asymptotic calculation. We are
representing our cylindrically radiated wave by an expression of the form
AHO(I)(kr). In analogy with this expression, we select the zeroth-order
scattering coefficient as the required second pressure amplitude. The
scattered pressure plotted in Figs. 13 and 14 actually results from a large
number of terms in the series represented by Eq. (108). However, the geomet-
rical collimation of the cylindrically radiated wave is clearly strongest with
respect to the zeroth—-order scattering term. Hence, we expect the majority of
the difference-frequency pressure will be generated via the "mixing™ of the
cylindrically radiated wave with the zeroth-order partial wave of the scatter-
ed pressure field. We compute this coefficlent using the expressions
following Eq. (109) with 1.0x10° Pa as the incident plane-wave amplitude
(corresponding to the actual experimental parameter). This results in a value
of approximately 3x10% Pa for the zeroth-order coefficient. Using this as one
of the required pressure amplitudes (with 3.5x10° Pa for the other pressure
amplitude) in the asymptotic expression for the difference-frequency pressure,
ylelds a value of approximately 41 Pa. In Figs. 13 and l4 the difference-

frequency pressure has obtained a value of approximately 30 Pa at r = 45 cm
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and is continuing to gradually increase. This is certainly a reasonable
agreement and, hence, gives further verification that the computer routines

are providing accurate calculations of the difference-frequency pressures.

IV. EXPERIMENT

A. 1Introduction

An experimental investigation was undertaken to confirm the theoretical
predictions for the case in which a plane wave is normally incident on a
cylindrical surface that deforms harmoanically and uniformly in the radial
direction. A discussion of the choice for the experiment including the
principles upon which the experimental parameters were selected is given below
in Section 1IV. B. Although the investigation was unsuccessful in confirming
the theoretical predictions, it was nonetheless successful in identifying the
several difficulties that arise in nearfield nonlinear experiments and
resolving all but one of those identified. A discussion of these difficulties

and the solutions that were achievable are given in Section IV. C.

Tn addition to these positive aspects, the experimental investigation
also produced significant results in several other areas, primarily with
regard to the selection and calibration of the sound sources and receivers
used in the experiment. A description of these results is given in Sections

1v. D, E, and F.

First, the selection and design of the sound sources is discussed in
Section IV. D. Second, the selection and the first-order (linear) calibration
of the sound sensors (hydrophones) is presented in Section I1V. E. Lastly,
Section IV. F describes the nonlinear calibration of these same (and a few
additional) hydrophones both by a previously developed techanique [48,49] and

by a new method developed in this work.

B. Choice of the Experiment

Prior to describing the actual experiments performed, it is worth-while
describing the principles upon which the experimental parameters were
selected. 1Initial decisions were required as to which experimental geometry

would be addressed, whether the sum-frequency component or the difference-
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frequency component would be investigated and what particular primary

frequencies would be suitable for measurement.

In this report, three geometries are considered theoretically. These

are:

1. Plane wave normally incident on a uniformly vibrating infinite plane.

2. Plane wave normally incident on an infinitely long cylinder vibrating

uniformly in the radial direction.

3. Cylindrical wave normally incident on an infinitely long cylinder
vibrating uniformly in the radial direction.

Although Case 1 would be the most straightforward to implement experi-
mentally, it is very similar to the standard case of two infinite plane waves
propagating together in a fluid medium, which has been extensively studied
previously [27,31,50-53] and, hence, is not of the greatest interest. In
choosing between the final two cases, Case 2 appears to be the better one
based on calrulations that show a significantly greater amplitude of the dif-
fi:rence-frequency component being generated than in Case 3. 1t will be appre-
ciated that similar cases involving spherical geometry (which were not treated
theoretically here) would give an even lower amplitude difference-frequency
pressure since in these cases the energy is spreading into three dimensions

whereas in the cylindrical case it spreads only into two dimensions.

In choosing between sum— and difference~frequency components, the
difference-frequency component was selected for experimental measurement. The
primary reason for thls was that it avoids the difficulty of separating the
sum-frequency component from harmonics of the primaries in the hydrophone

received signal.

Having chosen the geometry of Case 2, appropriate frequencies must be
gselected. The cylinder is the source that provides the experimental limits in
this regard. Since the cylinder must act as a high-amplitude sound source
with vibration in the radial direction that is uniform along its axis, it
should be operated near {its lowest radial mode resonance, {.e., breathing

mode. In addition to being nonuniform, higher modes of vibration
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significantly limit this amplitude [54]. An additional requirement to obtain
uniformity of vibration along the cylinder's axis is that a segmented, rather
than a single piece, cylinder be used to avold excitation of longitudinal
(length) modes of vibration. Fabrication of such a cylinder is quite
complicated. Fortunately, one was already available that had been used as a
Navy standard. 1t has a breathing mode resonance frequency of 102 kHz. A
cylinder with a resonance frequency much greater than this would be difficult

to make and use since it would have an unacceptably small radius.

Assuming the cylinder to be operated at about 100 kHz, a suitable plane-
wave frequency (and hence difference frequency) must be selected. There are

two possibilities:

1. The plane-wave frequency is less than the cylindrical-wave frequency.

2. The plane-wave frequency is greater than the cylindrical-wave

frequency. ;

Case 1 {s preferable since the cylinder is more likely to behave as a
rigid body scatterer of the plane wave in this case [3]. Unfortunately,

certaln practical considerations eliminate this case as a possibility. Fiest,

in order to maximize the ability to discriminate between the primary waves and
the difference-frequency waves in the hydrophone received signal, the
difference frequency must be less than either of the primary frequencies.
(This allows all filters that the hydrophone's electrical output passes
through to be operated in a low-pass mode thereby providing maximum
discrimination.) Hence, the lowest possible plane~wave frequency is 50 kHz.
This {requency is unacceptable, however, since it results in a ditference fre-

quency that 1s also 50 kHz. To avold this, the plane-wave frequency must be

chosen closer to the cylinder frequency. Unfortunately, the difference-fre-
quency pressure generated nonlinearly in the water varies directly with the
difference frequency. Hence, the closer the two frequencies become, the
smaller the difference-frequency pressure becomes. The optimum frequency,
which minimizes the "closeness” of the difference frequency to either primary
frequency as well as giving a substantial value for the difference frequency
is approximately 75 kHz. Unfortunately, the 25-kHz difference frequency
associated with 100~ and 75-kHz primaries is still quite small. Hence, a
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plane-wave frequency less than the cylinder frequency appears to be a poor
choice.

Selecting a plane-wave frequency greater than the cylinder frequency
precludes the cylinder from behaving as a rigid body in scattering the plane
wave [3]. However, it is possible to account for this by modeling the
scattered field empirically. This is done by measuring the scattered pressure
(both amplitude and phase) rather than assuming rigid-body scattering, and
then calculating how the coefficients in the Hankel-function expansion of the
rigid-body field must be modified in order to obtain the measured pressures.
(No modification of the Green's function used in calculating the difference-
frequency component is required since the cylinder can still properly be
assumed rigid if the difference frequency is chosen to be below the cylinder

resonance.) It remains now to select an appropriate plane-wave frequency

above the cylinder frequency. Using the same reasoning as above, this results

in a plane-wave frequency of about 150 kHz (in the experiment actually

performed, the plane frequency used was 162 kHz).

At this point it should be recalled that in the discussion in Chapter 11
pertaining to Eq. (47), it was remarked that if the D'Alembertian terms on the
right-hand side of this equation become significant relative to Py, that the
solution obtained by their neglect is questionable. It is essential,

therefore, to estimate the value of these terms in the current measurement.

In order to facilitate this estimate, the actual fields in the current
problem will be replaced by planar fields of the same frequencies as those of
interest (this then calculates the worst case possible). Hence, the first-

order fields will be represented as:

k x- - -
P1 - Poe1( px wpt) + Pse1(kpx wpt) + Aei(kcx mct).

In this equation Py, A, ke, Wey kp, wy have the same meaning as in Chapter
Il. The symbol P, stands for the maximum amplitude of the scattered pressure

field. Equation (46) can be used to relate the velocity potential to the
pressure. This relationship may be taken to be:

P = -1wpo¢
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where sinusoidal time dependence has been assumed. A complex quantity 2,
which is related to the first-order velocity potential ¢, therefore, may be

defined as:

P

7 = A ei(kcx—wct) +.”__9 ei(kpx—mpt)
1 w p w p
oo P o
P
s itk x~w t)
+a—p——e p 9 .

p o
The quantity ¢; is then the real part of Zy, or
= *
¢, = (2,42, %)/2.
Also of interest in analyzing the D'Alembertian terms of Eq. (47) are the

gradient and the time derivative of ¢;. Complex quantities Z, and Z; may be

defined, then, as

ik A ik P

1(k x-w t) p O i(k x-w t)
7 = V2, = S . P2
72 Z1 @ P e c c + % p e P )
c o p o
k P
+q1 PS8 ei(kpx—mpt)
w_p
p o
B N TR TS R SR IR (S S S
3 ot 1) N P
o o
P
{ S i(k x-w t)
- i e % p "
o

{Note that in the definition of Z) the vector nature of the gradient has been

suppressed since it will have no effect. This is due to the fact that planc
waves are belng consldered, and it {s actually 222 that is of interest in

analyzing the D'Alembertian terms of Eq. (47).] The quantities [V¢(l)]2 and ¥
30(1)/3t may now be calculated from 2, and 23 as

96




2 _ xy 2
(22+z2 )°l4

2
(Vo,,,1° = (Rez))

2

3
(L, . (Rez,)? = (z3+z3*)2/a.

(3¢

The quantities of interest in calculating the D'Alembertian terms need
only be calculated insofar as the difference frequency is affected. These i
contributions to the difference frequency can be denoted by the subscript (-],
and can be related to 2,, Z5, and Z3 in the following way:

a2¢(1)2
—5—I_ —5 (Z2,2,%)_
acz t 11

[

o 1212 + 7 (252,

3¢, . 2
w2 1
[(_—at ) ]__ i (2323*)_'

Using the given equations for Zy, Z3, and Z4 these expressions may be analyzed
retaining only contributions to the difference frequency. Furthermore, since
calculation of the worst case is of interest, the exponentials will be dropped

and only the amplitudes will be retained. This procedure gives:

2 2
301y ,
2 -

2
at s mpwc

2
, ) A(P0+Ps)(wp-wc)

2

2
1903y 121 = acrgere)rn, %,

¢ 1) 2 A(PO+PS)
[~ )_ = 3

)




Now, these expressions may be combined with the fact that

1 - 2
FPu -5pc —5 (¢)]
o 2 at2

2 %y 2

_ 2.1 _ 1 2
= 0 [7 poco ( at ) 2 pow¢(1)|

to analyze the D'Alembertian terms of Eq. (47). This results in

2
1 2 1 -2 3 2
PoCo "3 °o'$¢(1)| T2%% 2 %1y !

(L 2L “’)

N

2 2
= —A(POPS)(mC~mp) /(2poco wcwp).

In order to use this expression to estimate the D'Alembertian terms, the
experimental values of w, and w, may be used directly. However, it would not
be reasonable to directly substitute the value for A, since this pressure
occurs nowhere in the fluid surrounding the scatterer. It is more reasonable
to use the value of the amplitude of the pressure of the cylindrically
radiated wave analyzed at the cylinder's surface. This is approximately
1.35x10° Pa. For the expression (PO+PS) it is reasonable to use the maximum
value of the total pressure fleld assoclated with the first-order rigid-body
scattering problem. The value of this quantity is approximately 1.7x10° Pa.
Using these values, the above expression for the terms under the D'Alembertian
opetator gives a magnitude of 1.1 Pa*. This is less than 5% of the values

predicted for the difference-frequency pressure in all directions at distances

- > - e o e s e -

*It is interesting to compare thigs value with that obtained for pseudosound in
Section IV. F. (0.1 Pa). We note that the D'Alembertian terms are of the same
general magnitude as pseudosound.
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greater than approximately 10 cm from the cylinder's center (compare with
Figs. 12-14). Hence, these terms are sufficiently small so as to not severely
affect the theoretical treatment at all distances greater than a few

centimeters from the surface of the cylinder.

0f course, at shorter distances, this value becomes a more significant
fraction of the second-order pressure. Hence, the solutions represented by
Eq. (15) are not likely to be accurate at distances where the predicted

pressure amplitude is small (say of the order of pseudosound).

One more consideration is of interest in demonstrating the fact that the
influence of the D'Alembertian terms on the solution is quite small. If, in
solving Eq. (47), the D'Alembertian terms are not grouped with tﬁe second-
order pressure, they must be included as a part of the virtual source term in
the Green's function sblution represented by Eq. (84). 1In this case, the
virtual source term will include quantities of the form c32zz, which vanishes
identically for Z = plane wave. Hence, any nonvanishing contributions must
arise from the nonplanar geometry of the actual primaries, aad such effects

may reasonably be expected to be small.

Another consideration of some concern is the effect that the
D'Alembertian terms might have on the neglected surface integral of Eq.
(83). This is very difficult to estimate accurately, owing to the complicated
form of the Green's function and the first-order fields involved. An
extremely simple estimate that may glve some indication of the order of
magnitude of the error may be obtained by inserting for the D'Alembertian
terms in this surface integral the constant value of 1.1 Pa obtained above,
multiplied by the difference-frequency wavenumber, k; (since it is the
gradient of the source terms which appears in this surface integral). We
replace the Green's functfon by its asymptotic form, but simply analyze its
value on the cylindrical surface [see Eq. (7.3.17) of Reference 29]. Lastly,
the surface integral itself reduces to simply 2m times the cylindrical

radius. Hence, the D'Alembertian terms result in
(2ma) (k) (1.1 Pa)( 21'-/‘271?1?;51 ~ 2.2 Pa

of influence on the surface integral. This too may be regarded as

sufficlently small to neglect, provided the second-order pressure solutfion {s
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not expected to be accurate at distances extremely close to the cylindrical
surface (where, once again, "close” refers to distances at which the second-

otder pressure approaches the value of pseudosound).

At this point we can also put the discussion of the neglect of the
Green's function integral between r and ® discussed in Chapter 1L on a
somewhat firmer mathematical ground for this particular case by the following
semi-quantitative argument: The integral of concern represents an integration
over a product of the virtual source term and the Green's function. We may
symbolically represent the major coatributions to this integral by the

following two associated integrals

2

kd r 2% @ . . >

I, = ( y | do' [ dr'r'P (r')P (r')G(c,r')
1 2 P c

P c 0 r

o o0

kdzr 2n ® > > > >
1., = ( y [ 40" [ dc'c'P (£')P (r')G(r,c'),
2 2 s c

poco 0 r

where the cucfficient arises from the formulation of the simple source, Pp

represents the incident plane wave, P, represents the radiated cylindrical

Cc

+ >
wave, P_ represents the rigid~-body scattered waves, and G(r,r') represents the

Green's function. We consider Il first.

A L
eikpr cos0 and Pc(;') (neglecting an

- \ ]
e ikcr (we have used the asymptotic

>
We represent Pp(r') as PO

unimportant phase factor) as A V27nkcr'

form of the Hankel function since kcr ui 4.18 cm—lr, for which the asymptotic

form i{s reasonably accurate). For the Green's function we use
e, 1 (D)
G(r,r') 7 Ho (kdw),

where wz = (x—x')2 + (y-y')z. This is the ianfinite-space Green's function.
We will discuss the errors in using this instead of the proper Green's
function following the present estimates. This error will prove to be

insubstantial.
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It is clear that G(;,;') has a singularity at r = r'. Hence, we will

r+€ ©
break the integral I, into two parts: I1 = f + f , where £ is 3
r r+€ i

ki infinitesimal.

We now note that in I}, both an integral ©' and r' are required. We
consider the angular integral first. It should be noted that only the
functions Pp and G have a 0' dependence. Hence, we consider the associated ;
integral

L .
eikpr cos@ Ho(l)(kdw)'

1 IZN
1,, =+ do'
e 4 0

There is a singularity in this integral at O' = 0 (since w vanishes at

this value of ©'). Hence, we choose to resolve Ig, as follows:

2n-6 )
IO' = £ + £ , where § is an infinitesimal angle. In the integral between i

1 12 [ 4
ik_.r'cos@ by e1kpr

-6 and 8, it is reasonable to replace the factor e “p , since

O' has infinitesimal values over the entire range of integration. We also

note that H (1)(kdw) may be resolved into functions of r and r' alone (see

0
Ref. 43, p. 979, Eq. 8.531.2). Hence, this integral becomes

8 .8
_é = 7MY _£ a0' (a_(koomy P e et a
+2 ) Jm(kdr)ﬂm(l)(kdr')cos(mO')].
m=1

The integrals are elementary and give

$ '
| = %—elkpr [Jo(kdr)no(l)(kdr')(ZG)

+6 1 3 om D enystack 8)1 !
m=1 -

Both terms in the brackets vanish in the limit § + 0. Therefore,

$
1lim f = 0. This demonstrates the singularity at O' = 0 in Igr is
&»0 -6
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2n-6
inconsequential. We consider next the integral f . Since the singularity
§

has been removed, no error should result (for purpose of the current estimate)
if the function Ho(l)(kdw) is treated casually. We note that w may be

1
rewritten as w = (r2 + r'2 - 2rr'cos@')ﬁl This quantity varies from O to 2r'
as O' varies from O to 2n. We choose to replace w by r' (which is, In a

certain sense, an average value). Thus, I5: becomes simply

2n-§

_ i (1) . . ik r'coso'
Ig = H, (kdr){S do'e " p .

We note that this integral can be performed in the limit 6*0. This
result is (see Ref. 43, p. 482, Eq. 3.915.2)

2
f d0'e
0

ik r'cosd' . - .
P LCRCHA 3 ( ko]

We choose to replace the Bessel functions by thelr asymptotic limits. This

gives

-1 Ho“)(kdr') 2u]k x ' [cos(k,r* - %) + feos(k r’ + -

Tov = 3 d 4

This can now be used to give the following expression for the r' integral in

the region between r' = r and r' = r+¢

r+e k 2l"AP

r+
IR
r

r (o
pOO

€
dr'r'Ho(l)(kcr)Ho(l)(kdr')

x EE;T [cos(kdr' - ;-) + 1cos(kdr' + ;)].

Each cosine term can be resolved into exponentials. If we also replace

the Hankel functions with asymptotic forms discussed above, the integral

r=¢ r=c eikr'

f will become a sum of integrals of the general form J dr' S—— ,

r . r /r!
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where k represents various combinations of the relevant wavenumbers. We can

relate each of these integrals to a Fresnel integral (see Ref. 32, p. 300),

1 X
¢ === [ =
/2n 0 J/t

r €

=€ 0 r=
since f = f + f - Using the asymptotic expression for Cy(x) (Ref. 32,
r r 0

X
pp 300 and 302) we can easily show that f cofF dt I £§ + %. Hence, the
0 Yt
r=€ 1 1
integrals f are proportional to the quantity e T T which clearly
r

vanishes in the limit €+0.

In order to conclude the analysis of I, we next consider the r' integral

-
f . It is clear that the same analysis used on the O' integral during the
t+e rt+e

discussion of the integral f is still appropriate. In this case, however,

r
the result of integration on r' will not vanish, and hence we must treat the

sum cos(kdr' - %) + lcos(kdr' + %) somewhat more carefully. We note that the

absolute maximum value that the magnitude of this sum can have is Y2 . 1In
a

order to estimate the r' integral f we replace this sum by this numerical
rt+e
quantity (this will furnish a conservative estimate of the upper bound for

this integral). Again replacing the Hankel functions by their asymptotic

expressions results in:

® k 2FAP k r

o i
rf =901 Aric /alak, Y3k, V2 [ der &P
T4 c 4 d - =

r+e P c. r=c /r

The integral on r' can now be analyzed by again using the asymptotic form

of a Fresnel Integral. If we now let £+0, the final result for I, is
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Hence , ‘[1' falls off e¢vea more qulckly than would be expected on the basis of
cylindrical spreading. This is consistent with the argument of the
negligibility of the Green's function integral between r and * presented in

Chapter 1I, which was based on phase cancellation arguments. Using the

present experimental values, we get 111‘ =~ 3.37/r, where the answer will be In
Pa if r 1s in cm. Hence, at a propagation distance of just 10 cm, the
contribution of I, is 0.337 Pa. This is very small when compared with the
numerical values presented in Chapter [II, which were approximately 38 Pa at O

= 0° and 25 Pa at © = 90° at this radius.

We next consider I5- The easlest way to handle Pr(;') in this integrand
is to determine empirical coefficients a and B for the series representation
of the field up to the dipole term. This representation is

ik r
pp(;') = (& ¥ BcosO)e p

'k r
p

Using the numerical values presented in Chapter TIL for the linearly scattered
field at r = 15 cm, these constants become: a = 3.AXI05 Pa, 8 = 1.56XI05 Pa
(where values at O = 0° and @ = 90° have been used to analyze the
constants). The singularity at 0' = 0 in I, can be shown to be
inconsequential via the same technique as used for I;- Hence, we can proceed
to analyze the angular integral without regard for this singularity. As
before, we resolve Ho(l)(kdw) into a sum over Bessel functions of the

individual radii. Thus, the angular integral tnvolved in I, becomes:

27
R | v (@ + BcosD') ik r' (1) '
/ do z(f) do i P (I (kyr)H "k yrt)
p

+2 ) Jm(kdr)um“)(kdr')cosmo'].
m=1l
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The angular integrals are again simple and result in

ik r!
(. (ni)e p (L) [ (L) v
4 | de -7;—1:::—-[0J°(kdr)ﬂo (kyr') + BJ (kOO0 * (k") ],
P

Lf we replace the Bessel functions in this expression by their asymptotic

forms (as well as the remaining Hankel functions in 12), and choose to neglect
phase factors (which can only reduce the value of the integral of interest),

we obtain the further estimate for I,

(a+8)e ®d2k ria o ik ¢
d )
1, - o [ art &2,
KK pcVr r V'
pc oo

We again compute the r' integral with the aid of the asymptotic form of a
Fresnel iantegral, giving

(a+8)2k .TA
l I £ -.____.....(.l_—-,__ -j-l .
2 o c 3,27, 72
coo p

Again we note the falloff 1s greater than that based on cylindrical
spreading, due once again to phase cancellations. Using the present

experimental values, we obtain |12| w l..68/1'3/2

, where again the answer

is in Pa if r is in cm. This gives just 5.3x10"2 Pa at a propagation distance
of just 10 cm. Hence, we once again note the negligibility of these integrals
relative to the numerical values presented in Chapter III, thus reinforcing

their neglect during the computation.

We consider lastly the consequences of using the infinite space Green's

function instead of the correct rigid-body Green's function for the purposes
of this estimate. We note that the effect (in the case of a rigid plane) of
the boundary term {s essentfally a doubling of the pressure associated with
the free-space Green's function. (This can be understood from the fact that a

simple image source behind the plane {s all that is required to satisfy the

105

e hea A -



- N AL il o . L

boundary condition.) This case may reasonably be regarded as an upper limit
to the potential scattered pressure level in any other scattering geometry.
Since both contributions discussed above are well under 1 Pa at r = 10 cm, it
is resonable to assume that even including the surface terms In the Green's
function would no more than double the result. Since this still gives less
than 1 Pa, no great harm is done via use of the free-space Green's function in

making the above cstimates.

Even with the choices made following the careful procedure detailed
above, several difficulties arise in a nearfield nonlinear scattering
experiment that have not been encountered in previously published

experiments. These difficulties will be described next.

C. Difficulties in the Present Experiment not Encountered in Previous

Research

In investigating the nonlinear scattering of acoustic waves by vibrating
obstacles, several fundamental experimental difficulties arise. Previous
experiments involving two high-amplitude primaries interacting (i.e., mixing)
nonlinearily in a fluid medium could be designed to avoid these
difficulties. The present experiment could not be designed to avoid them.

The most important of these difficulties are:

l. Inadvertent direct radiation of the sources at the difference frequency.

Since the sources are finite in extent, measurements must be made in the
extreme nearfield* of the sources in order to approximate an infinite plane
wave and infinitely long cylinder. Hence, direct radiation of the sources at
the difference frequency will tend to be a greater source of error when the

measuring hydrophone is near the sources.

*In acoustics the term farfield (nearfield) is a relative term that describes
observation points at distances large (small) compared with the dimensions of
the source and the wavelengths Involved. 1In the case of a piston source, the
farfleld (nearfield) is defined to be distances greater (lesser) than the
distance to the last maximum in the on-axis diffraction pattern. This last
maximum is located approximately at a distance equal to the square of the
piston radius divided by the wavelength. The farfield (near{ield) is

frequently referred to as the region in which Fraunhofer (Fresnel) diffraction
effects occur.
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2. Electrical filtering problems due to experimental constraints.

The difference frequency was only about one half the lowest primary
frequency. 1In addition, the pulse lengths had to be less than about 10 cycles
at the difference frequency to avoid interfering reflections from neighboring
surfaces. Hence, the usual passive methods employed for electrical filtering

in previous farfield, nonlinear measurements were inappropriate.

3. Difference-frequency voltage generated nonlinearly in the hydrophone's

sensitive element.

This effect, due to nonlinear mixing of the primaries in the hydrophone,
provided larger difference-frequency voltages than those produced by the
difference-frequency pressure generated by nonlinearities of the fluid

medium. The effect was observed for a wide range of available hydrophones.

Previous experimental investigations [27,31,50-53] have not had to

contend with the limitations enumerated above because:

(a) Circular piston sources were used in these investigations enabling
virtually any choice of frequency. Then the difference frequency was
chosen very much lower than the average primary frequency (high downshift

ratio).

(b) Previously measurements were carried out in the acoustic farfield of

the sources (or at least not in the extreme nearfield).

Recently, measurements were made in the nearfield of circular and
rectangular piston* sources [55,56]). 1In one case [55), the average frequency
of the primaries was so high (1.435 MHz) that the primaries were absorption
limited. This means that the primaries were strongly attenuated (mostly by
viscous absorption) by the water through which they propagated prior to
reaching the hydrophone (the acoustic absorption coefficient varies

approximately as the square of the frequency (57]). 1In the second case [56],

*In acoustics the term "piston” refers to a planar surface, all points of
which are moving at the same velocity. The cross—section of a piston is
generally ciccular or rectangular.
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although the hydrophone was not in the farfield, it was not in the extreme

neacfield either. (In the current sense, the "extreme nearfield” is defined
in the case of a piston source as being within the Rayleigh length of the

piston face. The Rayleigh length is the square of the radius of the piston
face divided by the wavelength.) The closest measurement made in this case
was at a hydrophone position 2.72 times the Rayleigh length from the piston
face. Hence, neither of these studies had to face the difficulties inherent

in a nonlinear scattering experiment.

Fortunately, the first difficulty listed above (direct radiation at the
difference frequency) was fairly straightforward to eliminate. By adding an
appropriate pulse-shaping network to the electromagnetic driving pulses (prior
to amplification), 957 of the directly radiated difference-frequency component
was eliminated. Prior to the addition of this network, the directly radiated
difference-frequency component was comparable in magnitude to that generated
nonlinearly by the fluid medium. Thus, after the addition of the network, the
direct radiation became a small component of the total difference-frequency

pressure field.

The second difficulty noted above (the problem of electrical filteriug)
was also resoived by the selection of extremely linear state-of-the-art active
electrical filters. There are two reasons why previous nonlinear measurements
were not faced with this problem. First, earlier measurements were made at
least moderately far from the sources and did not iavolve the possibility of
unwanted single or multiple reflections. Hence, long pulse lengths could be
used without iaterfering reflections being received and a passive filter could
be used. Since passive filters are generally far more linear thaa active
filters, nonlinear generation in these filters did not present a problem. In
addition, highly effective low-pass filters can be designed passively-—-cven
more effective than active filters due to lower Internal noilse--when one can
tolerate the attendant long turn-on transients. Secondly, since very large
downshift ratios were used (typically 50 thru 100), the filters did not have
to be able to separate a very small amplitude difference-frequency component

from the electrically large amplitude primaries that were very close in

frequency to {t.

In order to assure that no appreciable difference-frequency component was

being generated nonlinearly in the active filters chosen in this work, a
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mixing amplifier was used to electrically add two electrical signals of the

same frequencies as those of the two primaries used in the experiment. The

voltage amplitudes of these electrical signals were chosen to be comparable to

the voltage amplitudes arising from the hydrophone's linear response to the

primary pressures.

No difference-frequency component could be measured under these condi-

tions except for that assoclated with the noise floor of the recelver de-

vices. This noise floor corresponds to 27 Pa, which is half the theorectically
predicted difference frequency in the forward direction at just 6 cm from the
ceater of the cylinder. The nonlinear signal continues to grow approximately
linearly in this direction frc.: _his point. Although it is clear that this

noise level 1is large enough to prevent precise definitive measurements of the t
difference-frequency component close to the cylinder, it is small enough to
demonstrate that filter nonlinearity was not the source of the difference S

frequency measured (which was typically about 10 times the theoretical value). !

Unfortunately, the third difficulty (nonlinearity of the hydrophone)
could not be eliminated. At the time the experiment described here was *
startec, no one even suspected that hydrophones were nonlinear to a measurable
degree. Well after the start of the present experiment, however, a study of
hydrophone nonlinearity was performed jolntly by scientists at the Naval
Undersea Systems Center and the Underwater Sound Reference Detachment of the
Naval Research Labortory. The results of this study became available in
preliminary form [48,49). Initially it was hoped that the results (measured
in the nearfield at a high downshift ratio for a piston source driven at two
frequencies) could be extrapolated to the case of a nonlinear nearfield
scattering measurement. This did not prove to be the case. 1In fact, when the
hydrophones' nonlinear responses were measured by a more appropriate technique
(different than that used in Refs. 48 and 49), they proved to be too nonlinear
to make a correct measurement of the theoretically predicted difference
frequency generated in a nonlinear scattering experiment. Hence, the
nonlinearity of the hydrophones proved to be the limiting factor for this
cexperiment prohibiting valld measurements from being carried out. A
description of nonlinearity measurements performed on the hydrophones

considered for use in this experiment 1s provided in Section IV. F. The new
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method developed in this work for measuring hydrophone nonlinearity and

results obtailned using the method will also be presented in that section.

D. Selection and Design of Sound Sources

The initial factor in choosing the sound sources or transducer elements
was the availability of a suitable cylindrical transducer. Having such a
device produced commercially would have been time consuming as well as
costly. Fortunately, standard Navy cylindrical transducers (Type TR-127/WQM)

were readily available that proved to be adequate for the experiment.

The TR-127/WQM transducer is constructed of eight cylindrical rings (0.D.
=2 cm; 1.D. = 0.938 cm; length = 1.905 cm) made of Type 1l Ceramic [PZT-4, MIL
STANDARD 1376 (ships)] mounted coaxially to create a line 15.24-cm long. As
used by the Navy, the active elemeuts are contained in an oil-filled, butyl-
rubber boot or covering. This boot was removed for the present experiment in
order to avoid any interfering effects that may have been caused by these
materials. Unfortunately, the exposed ceramic became deteriorated by the
chlorine used to prevent algae growth in the test pool. To avoid this, a
second ~ylinder was coated with Krylon, a commercially available clear plastic

spray coating. No further deterioration was noted.

This transducer was determined tc have a breathing mode resonance
frequency at 102 kHz. When driven at a signai level of 200-V amplitude, the
cylinder produces an acoustic pressure in the water that corresponds to a
value of 3.5 atmospheres for the constant A in the asymptotic expression for

the cylinder field:
g (D A s
P, = AH_ (kcr) = /X7t.

This corresponds to a pressure at the outer surface of the cylinder

(r =a =1cm) of 1.35 atm.

Once the frequency of the cylinder was chosen, this constrained the

design of the piston plane-wave source for essentially three resons:

110

s s e




1. 1In order to most effectively filter the primary-wave components from

the hydrophone electrical response, it was necessary that the difference

frequency v_ = vp - vc be significantly less than both the plane-wave

frequency (Vp) and the cylindrical-wave frequency (vc). (This enables
the use of low-pass filtering.)

2. The piston source had to be capable of producing an approximately
planar wave over a reasonable propagation distance. The greatest

distance from a uniformly vibrating piston source where the wave may be

considered to be approximately planar is at the position of the last
naximum value of the on-axis piston pressure. This position occurs at X
= a2/ where a = piston radius [58]. Since X varies inversely as A, a
small wavelength and hence a high frequency is desirable for this
purpose.

3. As can be seen from an analysis of the expression for the difference-
frequency pressure [Eq. (115)], the amplitude of the difference-frequency
wave varies approximately as the difference frequency. Hence, as the
difference frequency becomes smaller, the amplitude of the difference-

frequency pressure wave becomes more difficult to measure.

A value of Vp ~ 1.5 v tends to satisfy simultaneously all three of the l
abuve requirements. This results, for the chosen cylinder frequency, in a g

value of vp of approximately 150 kHz.

It turned out that two cylindrical disks of PZT-4 were commercially
avallable with a thlckness of 1.27 cm and a radius a of 6.35 cm. If one of
the disks s mounted so it is air backed, the sound pressure produced on the
side opposite from the air-backed side s nearly doubled (since acoustic
radiation into water is far more efficlent than into air). When the disk is
operated at its fundamental thickness-mode resonance, the wavelength in the
ceramic Ay 18 equal to twice the thickness t of the ceramic. To calculate the
corresponding resonance frequency of such a disk, it is necessary to know the
longitudinal sound speed V3D in the material in the thickness direction; i.e.,
the Z axis. This is given for plezoelectric materials by [59]
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where C3q is the elastic stiffness at constant electric displacement,
measured along the z axis, and p is the mass density of the ceramic. To
evaluate this expression as well as several others given below, the following
values of certaia constants [59) for PZT-4 will be needed:

€3§ /€0 = 635; relative dielectric constant, clamped;

¢33 = 15.9 x 1010/n2;

p =7.5 x 103 kg/m3;

e3q = 15.1 C/mz; piezoelectric stress constant. i4

Using these values in the above equation for V3D gives V3D =

4.6x103 m/sec. This results in a resonance frequency of ahout 181 kHz for the

disk (which is close to the desired value). Since clamping the ceramic in
place was expected to lower this frequency, the available ceramic was decmed

adequate. (The measured resonance {requency turned out to be 162 kHz.)

e e e

At a frequency of 162 kHz, the maximum distance from the piston face 5
within which the waves could reasonably be c¢xpected to be planar is equal to
al/A ~ 37 cm. This distance was considered large enough to allow an
experimental test of the theory. However, it still remained to be seen

whether the piston could provide an acoustic wave with sufficient pressure

amplitude (at least 103 N/mz) at a reasonable operating power and voltage.

The peak acoustic pressure P produced in the nearflield of an air-backed
piston at lts fundamental thickness-mode resonance 1is given approximately by

(60]

2633\,

P = )

where V i{s the amplitude of the sinusoidal voltage applied across the two
faces of the piston. For a peak pressure of 3x10° N/mz, this expression gives

a required applied voltage amplitude of 126 V.
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To calculate the acoustic power radiated by the piston, the following

equivalent circuit [53] (at resonance) is useful:

o—

Lo 1..n
T

C__

where the acoustic radiation impedance 2g = pgcS (¢ = sound speed in water,
S = piston face area), the transformation factor a = e33S/t, and Cy =
eoe3§8/t; the usual equation for the capacitance of a disk. Using these

expressions gives R, = 20.8 ohm. The input electrical impedance of the above

equivalent circuit is Z = (20.5 + 2.43j) ohm; i.e., the impedance is primarily

real (resistive).

The average acoustic power radiated W by the disk at an applied voltage
amplitvde of 126 V is given by [60]:
2 2

2 v
w==2c;v/zR ﬁe—-sszw.

The corresponding average electrical power into the piston is
(384 - 5.70x1073j)w.

A power amplifier capable of producing the above power (in a pulsed mode)
and voltage was available. Therefore, the available ceramic disks were deemed

appropriate to the experiment.

Unfortunately, these disks suffered the same damage as the cylinder when
placed in chlorinated water. 1In additlion, they suffered minor pitting due to
the high electric field existing at the points of contact of the electrical
conductors. One of them was repaired by filling the damaged areas with a
canducting epoxy and by also epoxyling on two thin stainless-steel circular
plates of the same radius as the ceramic disks, one each to the front and rear
surfaces (to prevent anomalously high electric fields at the points of
electrical contact). Although this procedure worked well in remedying the

above problems, the characteristic impedance of the disk-ceramic combination




was significantly different than the ceramic alone. Fortunately, the
avallable high~power amplifier was capable of driving the disk to a high
enough voltage (360~V amplitude) to produce an acoustic pressure amplitude of
3.16x10° N/m?.

'« Calibration of Selected Hydrophones to Determine First-Order (Linear)

Sensitivity

From a rather broad range of available hydrophones, threec were ultimately
selected for first-order calibration based on their inobtrusiveness to the
sound field, as well as the expectation that their nonlinearity would be small
(this latter aspect will be discussed in detail in the next section). These
three hydrophones were all fabricated at the USRD. They shall be here
referred to as: 1) small spherical hydrophone, 2) F42D hydrophone, 3) lead

metaniobate hydrophone. A brief description of each follows.

1. Small Spherical Hydrophone.

This hydrophone was made of a 0.38-cm-0.D., 0.159-cm~1.D., PZT-4
spherical shell in a small rubber boot. Although the linear sensitivity was
expected to be relatively small for this hydrophone, due to its relatively
smill size, it was belicved this would be compensated for by a very low
hydrophone nonlinearity. Also, the small size of the hydrophone assured that

it would be especially inobtrusive to the measured sound field.

2. F42D Hydrophone.

The F42D is a standard hydrophone available for use by customers of the
USRD. 1Its active element is PZT-4 ceramic, configured in a spherical shell
design with an 0.D. of 1.28 c¢m and an I.D. of 1.08 cm. The spherical shell is
encapsulated in polyurethane. Although somewhat larger than the small
spherical hydrophone, it is not unacceptably so. 1Its larger size gives a
corresponding increase in first-order sensitivity, easing analysis of the

received signals.

3. Lead Metanlobate Hydrophone.

This hydrophone's active element, as {ts namec {mplies, (s made of lead

114

Lh —

A e B e

e




metaniobate fashioned into a cylindrical shape and encapsulated in a
transparent rubber boot. Being of single-plece design, it was believed the
nonlinearity of this hydrophone would be exceptionally low (since glue joints
and other bonds can be contributing factors to this nonlinearity).
Additionally, being of approximately the same diameter as the F42D hydrophone,
it also was expected to have a higher first-order sensitivity than the small

spherical hydrophone, as well as being sufficiently inobtrusive acoustically.

The first-order (linear) sensitivity of a hydrophone in V/uPa is defined
as the ratio of the voltage developed across the open-circuited hydrophone
terminals when a plane wave is incident on the hydrophone to the acoustic
pressure of the plane wave. The sensitivity is a complex quantity; it
contains both an amplitude and a phase angle. The phase angle is not required
for the present work. The sensitivity is also a function of frequency. It
must be separately determined for each frequency component that is to be
measured. It can also depend on the direction of the incoming plane wave,
especially at higher frequencles. For low frequencies, however, it is often
uniform over all 47 steadians. The method chosen for first-order calibration
was one recently developed at the USRD [61]. Although phase calibration was
not required for this experiment, this procedure also gave the magnitude of
the first-order sensitivity, was simple to implement, and the rigging and

necessary equipment were readily available.

Since the frequencies of interest were already established by the
gelection of the cylinder and piston at 102, 162, and 60 kHz (difference
frequency), these hydrophones had to be calibrated only at these

frequencies. Table II gives the results of this calibration.
F. Determination of Hydrophone Nonlinearity

1. General Considerations.

In two recent reports [48,49] it 1is noted that the response of ceramic
hydrophone elements is not strictly linear but may be more accurately

represented by the parabolic relationship

e » mp + np? (118)
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whoere ¢ = voltage produced by the hydrophone in pressure field P

P = pressure wave incident on the hydrophone

m = first-order (linear) response of the hydrophone
(in V/uPa)

n = second—grder (nonlinear) response of the hydrophone [in
V/(uPa)“]

They define the first-order sensitivity (M) in dB re 1 V/uPa as
M = 20 log(m) (119)
and the second-order sensitivity in dB re 1 V/(uPa)2 as

k = 20 log(n). (120)

Table I1. Hydrophone Linear Sensitivities

YDROPHONE FREQUENCY SENSITIVITY SENSITIVITY

(kHz) (V/uPa) (dB re 1 V/uPa)
162  1.45x10"12 -236.8
SMALL SPHERE 102 1.55x10°12 -236.2
60  1.33x10712 -237.5
162  4.35x10711 -207.2
F42D 102 2.48x10°11 -212.1
60  2.91x10” 11 -210.7
LEAD 162  1.54x10711 -216.2
METANIOBATE 102 2.20x10"11 -213.2
60  5.80x10"12 -224.7

The unit dB refers to a decibel, which In this case is 20 times the
logarithm to the base 10 of the sensitivity divided by the reference
sensitivity of 1 V/uPa.




In the treatment given in the Moffett-Blue and Moffett-Henriquez reports

for incident waves containing two primary components, the primary pressure
waves are assumed to be of equal amplitude. Since this was clearly not to be
the case in the present experiment, the theory is generalized here for the

case of unequal primary pressure fields.

Let the total pressure wave at the hydrophone due to primary waves of

angular frequencies Wy ,wy and amplitudes P, ,P, be represented as
P = Plcos(wlt) + chos(wzt). (121)

The contribution to the quadratic term in Eq. (118) due to difference-
frequency components may be calculated by squaring Eq. (121) and suitably i
identifying terms. By use of the trigonometric identity cos® + cos¢ = 2[cos
(8-¢)/2}[cos (0+4)/2], P2 may be readily put into the form

P2 = (P12/2 Y[l + cos(Zwlt)] + (P22/2)[1 + cos(szt)]

+ Ple[cos(w1+w2)t + cos(wl—wz)t]. (122)

According to Eq. (118) the contribution to the voltage produced by the
hydrophone due to its self nonlinearity is nPZ. The contribution to this
voltage at the difference frequency may be readily seen in Eq. (122) to be
NP Py since this is the coefficient of the difference-frequency term. This
Indicates that the pressure amplitudes for each of the two primary waves must
be measured in addition to the voltage produced at the difference frequency
due to the hydrophone nonlinearity. Only then can the nonlinear response n of

the hydrophone be determined.

In the experimental portion of the Moffett-Blue and Moffett-Henriquez
research, the two primary frequencies were chosen close together to produce a
large downshift ratio (the downshift ratio is the quotient of the average
value of the primary frequencies to the difference frequency). This avoids
several sources of error in the nonlinear measurement (to be described in

detail later on). Unfor-tunately, for the frequencies of interest in the
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current nonlinear scattering measurement, the downshift ratio is only about
2.2, com—-pared with more usual values of 50 to 100. In order to circumvent
difficulties associated with this unusually small downshift ratio, an

approximate approach to the measurement of n and K was adopted.

The following quantities are useful in describing the approach taken:

The hydrophone second-order sensitivity at
162 kHz and the second-order response at a
2-kHz difference frequency in the presence
of primaries at 161 and 163 kHz.

Kip2:M62"

Ki02:M"02: The hydrophone second-order sensitivity at
102 kHz and the second-order response at a
2-kHz difference frequency In the presence
of primaries at 101 and 103 kHz.

Ken1N60 the hydrophone secoad-order sensitivity at 60 kHz and the
second-order response at a 60-kHz difference frequency in the
presence of primaries at 102 and 162 kHz.

It was initially assumed that Kgg would be approximately the average of Kygo

and Kle; f.e.,

K + K
_ 102 162
K60 = =, (123)
or equivalently that
"o = ""102"162 (124)

Equations (123) and (124) are reasonable since the nonlinear effect is
quadratic. Measurement of nypo and npgo would not prove as difficult as
directly measuriag ngy, because cach of these has a reasonably large downshitt
ratio (51 and 81, respectively). Kig and Kygo are directly calculable from
M2 and Nyes by the relationship K = 20 logln', and Eqs. (123) and (124) can
be used to obtain Kgp-

There are essentially three sources of error in the nonlinear calibration

of a hydrophone, all of which are minimized by the selection of a large

downshift ratio. Each of these will now be considered in detall.
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a. Generation of difference frequency by nonlinear interaction of the

primaries in the water - The entire basis for the present scattering

experiment is the fact that when sound waves of two different frequencies
are simultaneously present in water, a difference-frequency component is
generated. The problem in a nonlinear hydrophone calibration is to
minimize this so that only the difference-frequency components generated
by a hydrophone's self nonlinearity are present in the hydrophone
electrical output. This can be done in two ways. First, it is known
that the difference-frequency component generated in the water tends to
grow with distance from the source. Therefore, to minimize the effect,
the hydrophone should be placed as close as practicable to the source.
The problem of calculating the difference-frequency pressure generated in
the extreme nearfield of a piston source is not trivial. However, the
source levels can be estimated from data presented by Moffett and Mellen
[62]. Use of this data indicated that the levels generated for the
selected downshift ratios would be on the same level as pseudosound (see
Section F. 1. c below), if the hydrophone is placed 5-10 cm from the

source. Hence, this source of error can be made negligibly small.

b. Direct radiation at the difference frequency by the piston source -

Since any amplifier will be nonlinear to some extent, it can be expected
that when time-varying signals are applied to the amplifier input at two
different frequencies that a voltage will appear at the output at the
difference frequency. This will in turn be applied across the piston
source and will be directly radiated into the water. This must be
calculated beforehand, therefore, to determine if it can have a serious

effect on the received voltage at the difference frequency.

In order to do so, we first note that the equation for the normal
surface velocity of an air-backed piston face {n contact with a fluid

medium (chosen to be water) is given by [63]

u = 2aV (125)

z_ - jc3gs/(mt)

where V = voltage applied across the piston
S = gsurface area of the piston face = na2

w = angular frequency of the applied voltage
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t = piston thickness

Z, = acoustic radiation impedance
and where a and 039 have the same meaning as in Section D of this '
chapter. The expression for the acoustic radiation impedance of a4 piston .

face is given by {64]:

Ze = Spoc(Oo - 1x0)

ha? ka0

1 ka + =

8ka/(3m) ka * 0
2/(wka) ka *» =

vhere p, Is the water density.

It is clear from Eq. (126) that the impedance becomes very small

relative to Sp,C as ka»0.
Since In Eq. (125) this impedance is combined with another term
(—jc385/mt), which is much larger, the impedance term is negligible. Equating
it to zero Iin Eq. (125) we obtain

u = 2awth/(c325). (127)

Equation (127) can be combined with the expression for the pressure

radiated a distance r by a periodic simple source [65]
P = :i»:-l;.CA S(ueik(r-ct) (lzs)

where the volume velocity S of the source is equal to uS in the present

case. This produces the radiated pressure per unit applied voltage
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where a has been replaced by the expression given for it in Section IV.
D. Using a frequency of 2 kHz (as would be present in measuring N102 ©F
Ne2)» and a distance of 1 cm, Eq. (129) yields a value of 3.02 Pa/V.

The measured amplifier output voltage at the difference frequency was at
most 6 V. This gives a maximum radiated pressure of about 18.1 Pa. To
determine what effect this would have on the measurement, the first-order
sensitivities (Table II) must be used to calculate the voltages produced

at the difference frequency by this pressure. They are

Small Sphere: 2.40 x 1072 V
F42D: 5.30 x 104 vy
Lead Metaniobate: 1.05 x 10'4 v.

These voltages are comparable to the measured voltages at the difference
f-equency. Although this indicates that a directly radiated difference-
frequency component is to a certain extent significant, it nonetheless
does not invalidate the nonlinearity calibrations but rather sets a bound
below which the nonlinearity of the hydrophones in question cannot be
accurately determined. This is sufficient for the purpose of this

experiment.

c. Pseudosound - In any acoustical measurement, a hydrophone's motion is
uncertain by an amount of the same order as the difference between
Lagrangian and Eulerian coordinates (since the hydrophone cannot be
completely free to move with the fluid nor can it be completely rigidly
held in a fixed position). Hence, there is an uncertainty in the mcaning
of the value of the measured acoustic pressure that corresponds to the
difference between the Lagrangian and Eulerian frames of reference. This
{s presently a fundamental experimental limitation (n that it cannot be
fully eliminated using present-day technology (although it can be reduced
by using a massive receiver well below its lowest mechanical

resonance). The difference in acoustic pressure between a lLagrangian and
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Fulerlan frame of reference is known as pscudosound.  An eslimate can he

made of the level of pseudosound by expanding any Lagrangian quantity

qL(a,t) in terms of the appropriate Eulerian quantity qE(x,t) as [66]

]

qL(a ,t) qE(x't)lx=a+£(a t)

qE(x,t)lx=a =g [l f ) e (130)

For definitions of a, x, £ see Section IIl. B. Using Eq. (130) to expand

the pressure gives

. E
PL(a,t) = Ph(x.t) + 3%;—(x,t) £(x,t). (131)

x=a x=0
To obtain an upper bound for pseudosound, the pressure present may be

represented as plane waves as follows

PPex,t) = P B0, 0) + ,E(x,0)

(132)

ik x—mlt)

1 +p etlkyxwyt)

Re[PlOe 20 1,

where Pyq,Ppq are real constants. Equation (132) may be combined wit

Eq. (51) to obtain the following expression for E(x,t) in terms of

pressure

LE(x,t) = F,‘(X,t) + F,Z(X,t)

‘kl . tk v
= Re ["‘";-Z- Pl (x.t) +“‘(;“2‘ pz (xvt)]' (133)
fo"1 P02

Equation (132) may also be used to express [aPE(x,t)]/ax as

arE (x,t)
5x

- Re[iklPE(x,t) + lkzPZE(x,t)l. (134)




Hence, pseudosound (the difference between the Lagréngian and Eulerian

expression for the pressure) may be written

L Re(ik,P (x £) + ik,P (x )]

1 1 (x t) k. P (x,t)
x Re[1(——og——n + ~=2p— )], (135)

powl pow2

At this point, it is helpful to make a few definitions:

z; = ik Py
Z, = 1kyP)
ay = 1/(pgw;%)
a; = 1/(90“22)~

Equation (135) may now be expressed as

[
-]
n
7)

.\Z +Z )Re(a Z + a ZZ)

+ a 7 * + a,Z, + a,2

(Z) + 2)* + 29 + 2,%)(ay7, 1 2%y t ay%,%)- (136)

1 2

& -

Contributions to the difference frequency can arise only from the cross-

terms; therefore, pseudosound at the difference frequency is given by

L

- E = 1 *
(e P )giep = F (821 %% + a,2,%2y + a,2,2,% + a,2,%Z)) (137)
or
k,k
L E 172 1
(B" = P4iee " 25~ C —7% =7 ) PioPyor (138)
o wl wz

Using the experimental values Involved In the nonlinear calibration in
Eq. (141) ylelds less than 0.1 Pa In both measurements. Hence,

pseudosound is a rather negligible source of error in this measurement.
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2. Measurement Setup and Results.

Figure 29 is a schematic representation of the measurement configuration

used in the nonlinear calibration. Table III gives the results. The

quantities Ngp and Kgq are the values obtained using Eqs. (123) and (124).

The results shown in Table [I1 can be misleading. Apparently the <small
spherical hydrophone is less nonlinear than the F42D hydrophone (due to its
smaller value of “60)' However , ngqg cannot be considered independently of the
first-order sensitivity m. An important quantity in determining the
desirability of a hydrophone for use in a nonlinear experiment is the appirent
pressure present at the hydrophone at the difference frequency that
corresponds to the electrical signal produced by the nonlinearity of the
hydrophone. Let the ratio of this quantity to the product of the primary
pressures be called the "nonlinearity” and be given the symbol D. The
apparent pressure (in Pa) may be calculated from the product of the primaries

in terms of the first- and second-order sensitivities as

2

. (139)

Therefore, the quantity D (measured in units of apparent Pa per squared Pa ot

primary) may be calculated from
6 /
D = 10 n/m. (140

[The factors of 108 ia Eqs. (139) and (140) above are required to render
consistent the units chosen.] Using the data in Tables II and (Il in Eq.
(140) gives for the small spherical hydrophone and the F42D hydrophone the

following results:

Dsmall = 4.74 = 1078 ___Pa(app)
Sphere PaZ(primary) (141)

Dpyep = 5-43 x 1079 ___Palapp)
Paz(ptimary). (142)
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Although ng, for the F42D hydrophone is about 2.5 times greater than that for
the small spherical hydrophone, it is not the more nonlinear of the two.
Results in Eqs. (141) and (142) show that the small spherical hydrophone is

more than 8.7 times more nonlinear than the F42D hydrophone.

Although the value of D for the F42D hydrophone is apparently
sufficiently low to perform the nonlinear scattering measurements, preliminary
results gave anomalously large values for the difference frequency. This
indicated that the values of D obtained by the above method are not applicable

to this experiment for two possible reasons:

a. The value of D obtained by the Moffett-Blue and Moffet-Henriquez
approaches at high downshift ratio may not apply to low downshift ratio
{indicating the hydrophone nonlinearity is extremely sensitive to

downshift ratio).

b. The hydrophone nonlinearity is a function of the angle at which the
primaries intersect at the hydrophone (in the Moffett-Blue and Moffett-
Henriquez approaches, this is always exactly 0°; but in a nearfield
scattering experiment, a wide continuum of angles is simultaneously

present).

In order to determine whether either or both of the above possibilities were
present during the experiment, a new approach to determine hydrophone non-
linearity (which more closely approximated the experiment of interest) was
attempted. The geometry of this measurement is shown in Fig. 30, and a sche-

matic representation of the measurement configuration is presented in Fig. 31.

In this measurement, the hydrophone of interest is placed at a distance X
from the center of the active surfaces of the piston and the cylinder.
Acoustic pulses are sent from each source that are of sufficient lengths to
overlap at the position of the hydrophone at the moment of measurement (i.e.,
of length just greater than X). This ensures that no difference f{requency
will be generated by the fluid medium, since the waves will not have had time
to overlap In the fluid. (Hence, all measured difference frequency will be
generated in the hydrophone itself.) The plston and cylinder were driven at

the same frequencies as were to be used in the nonlinear scattering
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experiment , 162 and 102 kHz, respectively. The product of the pressure levels
of the primaries was also similar to that in the nonlinar scattering
experiment, specifically 1010 Paz. The values of D obtained using this method

on the same hydrophones tested using the Moffett-Blue and Moffett-Henriquez

approaches are presented in Table 1V.

Table IV. Values of D Obtained from Second Hydrophone
Nonlinearity Calibration Method

D Pa(apparent)
Hydroph
ydrophone (Pa2) (primary)
Small Sphere 2.47 x 1077
F42D 6.51 x 10°8
Lead Metaniobate 5.34 x 108

(Values accurate to within 77 as determined by reproducibility
of experimental data)

It can be seen from Table IV that the results were considerably greater
in all cases than the values obtained by the Moffett-Blue and Moffett~-
Henriquez methods. 1In an attempt to find a suitable hydrophone, several

others were tested. The results are given in Table V.
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Table V. Values of D for Some Additional Hydrophones

- o >ty = = 8 > i = i S " =t - - S o A > - - - v - " = —

o Pa(apparent)
H h
ydrophone (Pal) (primary)
F42C50 4.81 x 1079 ‘
F42D36 5.92 x 1070
F42D14 7.40 x 1078

(Values accurate to within 7% as determined by reproducibility
of experimental data)

Since the product of the pressure values of the primaries in the
nonlinear scattering experiment everywhere gave values of order 1010 Pa2 and
since typlcal pressures expected theoretically at the difference-frequency
component were of the order of 100 Pa, it was clear that no hydrophone

availablc was sufficiently linear to perform the experiment.

G. Suggestions for Future Measurements

As we have seen, it 1s the hydrophone self-nonlinearity that precludes a
successful measurement of the difference-frequency pressure generated in the
water when a plane-wave scatters from a vibrating cylinder. Until such time
as a sufficiently linear hydrophone is available, it would appear that
confirmation of the theory is not possible. However, if a method can be found
for increasing the difference-frequency pressure generated in the water while
maintalning the product amplitude of the primary waves approximately constant,
it may be possible to make the difference-frequency voltage generated by the
hydrophone self-nonlinearity a small part of the total difference-frequency
signal. 1t will be recalled that during the discussion regarding the choice
of the experiment, it was remarked that having the difference frequency lower
than elther primary frequency was highly desirable because it greatly
simplified the necessary electrical filtering (as well as avoiding harmonics

of the primaries). Unfortunately, due to the severe constraints on the
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possible frequency of the cylindrical source (recall that 100 kHz was judged
to be about the maximum possible), the difference-frequency choice was also
severely constrained. The 60~-kHz difference frequency chosen was about the
greatest possible that also allowed electrical filtering to distinguish {t
from the primaries, and yet it resulted in a pressure-amplitude too small to
measure once the hydrophone nonlinearity was discovered. However, it may be
possible to choose a difference frequency above the cylinder frequency and yet
sufficiently removed from the higher cylinder harmonics, such that their
disturbing influence on the measurement becomes acceptably small. For
example, if we retain a 100-kHz cylinder frequency but allow a 1-MHz plane
frequency, the difference frequency of 900 kHz represents the ninth harmonic
of the cylinder. For a cylinder pressure-amplitude of 109 Pa, the ninty
harmonic is approximately 6 Pa (in the plane-wave case). However, since the
difference frequency in this case scales approximately as the squaté root of
the primary frequencies and directly as the difference frequency (see the
expression for the farfield limit given in Chapter II), the difference-
frequency pressure should be approximately 37.5 times greater than in the case
experimentally studied here. This gives (for directions away from the
forward-scattering direction) a difference-frequency pressure of about

900 Pa. Of course, even this suggested measurement 1is not without great
difficulties. The worst of these are: 1) The 900-kHz difference frequency is
only about 1 dB below the 1-MHz planar primary frequency, resulting in even
greater electrical filtering difficulties. 2) Once again the plane-wave
frequency is above the resonance frequency of the cylinder. Hence, the
cylinder will not act as a rigid body, and the primary field will again have
to be determined empirically. This is far more difficult to do in this case,
however, since the wavelength of the scattered primary field (~ 0.15 cm) is
becoming small compared with any currently available hydrophone. Hence,
accurate phase measurements needed to determine the scattering coefficlents

would be very difficult to perform.

Another possibility is to operate the cylinder at a higher frequency
(using a higher harmonic or a different vibrational mode). Although the
radiated pressure amplitude of the cylindrical wave will be substantially
lower, {f a significant facrease in difference-frequency pressure is possible
due to frequency scaling, then a more favorable overall experimental condition

might result. For example, {f the cylinder can be operated at a frequency of
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1 MHz, and the plane-wave frequency is chosen to be 1.5 MHz, the 25-Pa
difference-frequency pressure computed for the present research would scale to
over 2000 Pa. Hence, even if the pressure amplitude of the radiated
cylindrical wave is two orders of magnitude less than that at its 102-kHz
resonance, the difference-frequency pressure will remain comparable to that
predicted with the parameters chosen for the experimental measurcment
attempted here. This would result in approximately two orders of magnitude of
improvement In the ratio of the nonlinear fluid signal to the hydrophone's
self-nonlinearity signal. On the other hand, 20 Pa is still not a very large
signal and may remain below the noise floor of the receiving equipment
(although measurement at angles near O = 0° might nonetheless be possible
since the difference-frequency pressure at these favorable angles may be of
sufficient amplitude to measure). Of course, if no cylinder resonance
frequency can be found that generates a cylindrical primary pressure amplitude
greater than an amplitude three orders of magnitude less than that produced by
the 102-kHz frequency used, it is doubtful even at O = 0° that a sufficient
propagation distance exists to simultaneously yield difference-frequency
pressure amplitude large enough to measure and also satisfy the constraints of

the theory in regard Lo the region of validity.

Thus, we see that there is no obvious or straightforward way to improve
the experimental measurement. However, it may nonetheless be possible to in
some manner take advantage of the direct scaling of the difference-frequency
pressure with the difference frequency to avoid the significant interference
of the difference-frequency signal associated with hydrophone self

nonlinearity.

V. CONCLUSIONS

The objectives of this research were threefold: 1) To re-derive the
simple-source formulation of the second-order nonlinear wave equation for
arbitrary primary fields. 2) To Investigate theoretically the solutions of
this equation for three cases Involving the scattering of acoustic waves by
vibrating obstacles. 3) To subject the cage of plane-wave scattering by a
vibrating cylindrical obstacle to an experimental analysis. The first two of

these objectives were successafully achieved, but accomplishment of the third
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objective was inhibited by hydrophone nonlinearities that were larger than

were previously thought to exist.

In deriving the simple-source formulation of the second-order nonlinear
wave equation, care was taken to avoid using perturbation analysis until the
final step. While the acuracy of a solution obtained via a perturbative
approach becomes questionable when second-order flelds become comparable to
first-order fields, this is not so for analyses based on the i{nhereant physical
dependence of the acoustic variables on Mach number. Since the derivation of
the simple-source formulation of the second-order nonlinear wave equation
presented here was based on the inherent dependence of the variables on the
Mach number (in all but the final step), the validity of all second-order
equations up to this point are not restricted when the second-order quantities
become comparable to the first-order quantities. Also, since third-order
acoustic quantities are never significant in water and since no restriction
was placed on the geometry of the fields, this equation may be viewed as being

valid in a very general sense.

The problem of nonlinear scattering of acoustic waves by vibrating
obstacles was solved via a perturbatfon solution of the simple source
formulation of the second-order nonlinear wave equation for: 1) plane-wave
scattering by a vibrating plane, 2) cylindrical~wave scattering by a vibrating
cylinder, and 3) plane-wave scattering by a vibrating cylinder. Since the
solutions were obtained via a perturbation method, they are restricted to
situations in which the second-order fields remain small relative to the
first-order fields. This means the solutions are restricted to the nearfield
of the scattering obstacles. It was further demonstrated that the solutions
to this problem obtained via the Censor approach for the sum- and difference-
frequency pressures are of the order of pseudosound. Since the solutions of
the second-order nonlinear wave equation for the sum- and difference-frequency
ptessures tend to grow with increasing distance from the scatterer's surface,
they overhelm the effect predicted by Censor within a fraction of a wavelength
of propagation distance (as was conjectured by Rogers {24]). Graphical
results were presented in the case of plane-wave scattering from a vibrating

cylinder for both Censor's theory and the nonlinear theory.

Although a successful comparison of theory and experiment was not

achieved, several significant observations were made. No previous
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experimenters had performed measurements of nonlinearly generated difference-
frequency acoustic signals in the extreme nearfield of the sources. Several
potential sources of error in such measurements were identified. They
included: 1) direct radiation of difference-frequency pressure by the
sources, 2) electrical filtering problems due to experimental constraints, and
3) difference-frequency voltage generated nonlinearly in the hydrophone.
Although solutions to the first two difficulties were found, the third
difficulty proved to be unresolvable. However, several significant measure-
ments of hydrophone nonlinearity were made via a new technique. This new
technique represents a significant advance over the technique of Moffett-Blue
and Moffett-Henriquez. As of the writing of this thesls, a positive effect of
the new nonlinearity measurement presented herein has been a significant

expansion of the effort to develop a linear hydrophone at the USRD.

It is hoped that this work has firmly established the rather general
validity of the simple-source formulation of the second-order nonlinear wave
equation. Similarly, 1t is hoped that the new technique of hydrophone
nonlinearity calibration developed during the course of this work will form

the basis for a standard method of second-order hydrophone calibration.
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APPENDLX

A NEW TECHNIQUE FOR EVALUATING A GENERAL CLASS OF
INDEFINITE INTEGRALS

1. The Technique.

We consider integrals of the form

T (1)
I = fdxf(x) MR "M(x) , (Al)
1=1 "i

where Ruii)(x) is the ith type of special function of order uy obeying the

following set of recurrence relatiouns:

(1) gy = (i) (1)
Ry (¥) = a (R 77(x) + b (R _1(x), (A2a)
(P = ¢ cor(Px) + a4, R (x). (A2b)

Integrals of the form (Al) are coansidered by several other authors [67-

74) when the functions Rg:)(x) are Bessel functions. In relations A2, a,, by,
Ch» and du are konown functions corresponding to Rsi). The symbol D represents
d/dx. The function f(x) and the product an(,i) are both assumed bounded and
continuous (or with at most a finite number of discontinuities) over an

interval [x,,xp], insuring that the integral I exists in the same interval.

Recurrence relations [Eq. (A2)]) may be combined to show that the

functions Rsi) satisfy the differential equation
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a d
2_(1) p-1%-1 ! (1)
DR, + [ 5.2, €, T e, T (Ddu)] DR

d
_ u-l (1)
b1 (a4, + cuau-l)] Ry 0- (a3)

Equation (A3) is a special case of the Sturm-Liouville differential equation

D{o(x)DY(x)] + [S(x) + vyr(x)} ¥(x) =0 , (Ad)

where r (x) = 0

{f [au-ldu-l ; ] }
p(x) =exp {Jdx]| ————~-¢c - ¢ - — Dd
b -
-1 u u-1 du o
cu du_1
= s - + — - ————— +
S(x) pBOx) cucu._1 Dcu du Ddu bu-l (du cuau_l)

w(x) = Rff’(x) .

If either Eq. (A2a) or (A2b) is a two-term recurrence relation (i.e., if
bu or d, is equal to zero for all p), then the above expressions are undefined
and Rgi) does not satisfy the Sturm-Liouville differential equation. 1In this
case Rﬁt) satisfies instead a first-order differential equation and is in the
form of an exponential. This may be readily seen by letting du = 0 in
Eq. (A2b), in which case

Rgi)(x) = exp[fdxcu] . (A5)

On the other hand, if bu = 0, we obtain from Eq. (A2a): Rﬁi) = au_1R5£i.

which when combined with Eq. (A2b) yields
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RED(x) = exp {Jaxie, + (4,72, D1} (A6)

An extensive search of the literature indicated that functions satisfying
the recurrence relations [Eq. (A2)]) have not previously been named. For the
purposes of this Appendix we shall refer to them as birecurrent functions.
Most of the special functions of physics fall into this category (including
all Bessel functlions, Legendre functions, Hermite polynomials, etc.). We
exclude the special cases given in Eqs. (AS5) and (A6) from this category,

preferring to call them exponential terms instead.

At this point it will be noted that the assumed form [Eq. (Al)] may be
applied to the integrals occurring in Eq. (115) with the following
identifications made

f(x)*r"'
(1) > (m) '
Rui Zl (knr ),

where Zl(m)(knr') is the &M order Bessel function of the mtM kind. For m

1, Zz may be taken to be JZ’ the Bessel function of the first kind. For m

2, Zl may be taken to be either Hl(l) or Hz(z), the Hankel functions of the
first and second kinds, respectively. The quantity k, is taken to be any of
the appropriate wavenumbers occurring in Eq. (115). Hence, the technique
herein described could potentially be applied directly to the integrals

occurring in this equation (as will be noted later, this turns out to be

somewhat tmpractical).

The integration technique presented in this Appendix involves a general-
izatlon of the method (described by Watson [68]) used by Sonine [67] to evalu-
ate certain indefinite integrals of Bessel functions. The integral to be
evaluated in Sonine's method 1s replaced by a differential equation. A par-
ticular solution of the differential equation is then sufficient to express
the result of integration. In the present work we generalize the method to

include all functions obeying the relations [Eq. (A2)]. 1In addition we

A
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describe an approach for obtaining and solving the appropriate differential

equations.

2. The Details.

We assume the integral [Eq. (Al)] may be expressed in the form,

L 1 1 (1)
1= ) Y .ol A (x) 1 R 4p (A7)
p;=0 p,=0 p_=0 PysPpsccesPy  4a1 H¥47Py
where the 2™ coefficients A (x) are functions to be determined.

pltpzv"‘!pm
For convenience, we will represent the multiple summation and the coefficients

in Eq. (A7) by the shorthand notations 2 and Ap, respectively. 1In order to
{p}
determine the functions Ap, we differentiate Eq. (A7), substitute for DI the

integrand from Eq. (Al), and obtain

m m m
1) _ v 1) (1)
f(x) T R = ) [A D N R + (DAP) n R ] . (A8)

1=1 M4 (p} LP 1a1 ¥Wy¥Py 1a1 Mi*Py

Due to the recurrence relations [Eq. (A2)], it is always possible to

express the first sum on the right—hand side of Eq. (A8) in the form

o b bl daw
A ...BHR’
(} P q=0 q,70 gq=0 I 1= uyghay

or
m
. 1)
Yy Y B A m R SO (A9)
(p} {q} P49 a1 HytPy
where the 22™ coefficients B = B {(x) are known

Pq P1sP2s ¢ sPud1:,925 19y
functions resulting from repeated applications of the relations [Eq. (A2)] and

m
the regrouping of terms in the form N R (1) .
1=1 Y1*Py
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Using Eq. (A9) we can rewrlte Eq. (A8) to obtain

m m
gx) n r Moy [DA + Y B_A ] noj (D (A10)
1=1 "4 (pil P (q} 4

We can now obtaln a coupled set of differential equations for the
functions AP by imposing the sufficient condition that the coefficients of
like special functions on each side of Eq. (Al0) be equal. Doing this, we
obtain the following coupled set of linear inhomogeneous differential

equations of first order

m
n 6 = DA ) B 1
£§e0 j=1 0,p P * {ﬁ} quq' (all)

where § is the Kronecker delta.

In solving the set [Eq. (All)] of 2™ equations in the 2™ unknown
functions Ap, one normally proceeds by differentiation and algebraic
manipulation to uncouple a particular function from the remainder. This
results in a differential equation of order 2mtl particular solution of
this uncoupled equation involves a particular choice of 27+l constants. Since
this is exactly the number of arbitrary constants that the original set
[Eq. (All)] involves, one must be careful not to introduce any further
arbitrary constants. 1In this case we obtain the remaining functions by
expressing them in terms of derivatives of the initial function that has been
calculated, rather than in terms of integrals of it. Regardless of the method
used in obtalning a particular solution of Eq. (All), one must avold
Introducing more than 20+l srbitrary constants. Otherwise, the solution so
obtained will neither satisfy Eq. (All) nor provide, via Eq. (A7), a proper
representation of the integral Eq. (Al).

When the integrand of Eq. (Al) contains more than one birecurrent
function, it may be desirable to move one (or possibly more) of the
birecurrent functions out of the product term and treat {t as part of f(x).
Each birecurrent function appearing in the product term doubles the numbec of
unknown coefficient functions Ap and, hence, doubles the number of coupled

differential equations to be solved. Thus, we halve the number of
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differential equations each time we move a birecurreat function out of the
product term and group it with f(x). However, each function so grouped will
appear in the inhomogeneous term of the final set of differential equations.
Conversely, none of the birecurrent functions grouped in the product term will

appear explicitly in the final set of differential equations.

Any particular solution of Eq. (All) will give a set of functions Ap that
can be used in Eq. (A7) to express the result of the integration. We can see
this {f we differentiate the expression that results by substitution of this
particular set into Eq. (A7). The resulting Eq. (A8) is obviously satisfied
since the Ap are a particular solution. The fact that only a particular,
rather than a general, solution is required is a powerful aspect of the

technique.

The coupled set [Eq. (All)) is a standard form of linear inhomogeneous
differential equations of first order that may be solved by well-known
methods. A particular solution of Eq. (All) is easier to obtain than one may
suspect since each equation contains exactly one term involving the derivative
of a particular function Ap and the derivative of each of the functions A

appears in only one equation.

p

The technique described above is equally applicable, with slight
modifications, when one or more of the birecurrent functions in the product
term of Eq. (Al) is replaced by an exponential term of the form Eq. (A5) or
(A6). Because the exponential terms satisfy two-term recurrence relations, we
do not have to include p = 1 terms for them in Eq. (A7). This reduces the

number of unknown coefficients A_ and the resulting coupled differential

p
equations by a factor of 2. Moving the exponential term from the product term

into f(x) does not change the number of differential equations to be solved.

3. An Examgle.

To illustrate the technique, we obtain the result to the following well-

known integral: I = fdxxsinux. In this case, f(x) = x and Ru(x) = ginux.

The simplest way to apply the technique to this problem is to consider
sinux as the imaginary part of the exponential R, (x) = exp(iux) and assume
that 1T = A(x)exp(iux). Only one term, and hence only one unknown coefficient

A(x), is required in 1 in this case because differentiation of the exponential




does not produce new functions (i.e., recurrence relation [Eq. (A2b)] reduces

to a 2-term equation relating DR, to Ru)-

We shall use Instead a somewhat more complicated approach that requires
two unknown coefficients in order to illustrate several important aspects of
the technique. This approach is based on the fact that the set of two
functions sinux and cosux is closed under differentiation so that it is

convenient to choose Ru = gsiaux and Ru+1 = cospx. We now proceed to obtain

the integral following a step-by-step procedure:
a. We assume I may be expressed in the form
I = Ao(x)sinux + Al(x)cosux . (Al12)

b. Differentiation produces DI = pAp(x)cosux + [DAG(X)])sinux
- WA (x)sinux + [DA;(x)]cosux.

c. Equating DI to the integrand xsinpx and separately equating coeffi-~

clents of sinux and cosux, we obtain the following differential equations

DAO - uA1 = x, (Al3a)

uAj + DA, = 0. (A13b)

d. We now uncouple Ay and Ay by substituting into Eq. (Al3a) the
expression for Ay obtained from Eq. (Al3b). This gives

p2a, + w2A, = -ux. (Al4)
1 1
e. A particular solution of Eq. (Al4d) is
Al(x) = ~x/u. (A15)

Substitution of Eq. (AlS) into Eq. (Al3b) yields

A(x) = 112, (A16)




f. Substitution of Eq. (Al15) and Eq. (Al6) into Eq. (Al2) gives the

result Sdxxsinux = (sinpx - uxcosux)/uz.

ln order to investigate the consequences of using a different particular
solution than the one chosen, we first obtain the general solution of Eq.
(Al4). It is

Al(x) = C_sinux + Czcosux - x/u, (Al1?7)

1
where C; and C, are arbitrary constants. Substitution of Eq. (Al7) into Eq.
(Al13b) yields

sinux + 1/u2. (A18)

Ao(x) = -C_cosux + C

1 2

Substitution of these general solutions for Ay and A; into Eq. (Al2) produces
the following expression for the desired integral:

[dxxstinux = (sinpx - uxcosux)/u2 +C, . (A19)

2

Equation (Al9) involves only a single arbitrary constant to which the
indefinite integral under consideration is entitled. Since the completely
general solution to Eq. (Al4) was used in obtaining Eq. (Al9), it is clear
that any particular solution to Eq. (Al4) would have sufficed, with only the
constant Cy in Eq. (Al9) being affected by a different choice.

4. A Second Example.

Although the first example provides a succinct illustration of the
present integration technique, an integration-by-parts approach would

certainly have been more straightforward.

Another example is presented that is less susceptible to standard

techniques and is more relevant to the noanlinear scattering problem at hand.

We note again that the integrals contained in Eq. (115) may all be put
into the form Eq. (Al). Unfortunately, if this were done directly, it would
result in a set of eight coupled first-order differential equations.
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Uncoupling of this equation has not, as yet, proved to be a tractable

problem. However, if the Zeroth—order Hankel fuanction (which occurs in all of
the integrals) and one of the other of the two remaining Bessel functions are }
replaced by their asymptotic forms (for large argument as compared to order),

the following general type of integral is obtained
I= fdrruzv(r)exp(ir), (A20)

where Z,(r) is an arbitrary Bessel function of one of the first three kinds of

real argument r, and the range of integration is restricted to r>0. For

generality, both the order Vv and the exponent u are chosen to be complex.

To begin the technique, we assume that I may be written as
1= Ao(r)zv(r) + Al(r)zv+1(r) . (A21)
Differentiating Eq. (A21), expressing the resulting Bessel function deriva-

tives in terms of Z,, and Z,;) by use of the appropriate recurrence relations,

equating the result to the integrand of Eq. (A20), and imposing the sufficient

condition that coefficients of like-order Bessel functions be equal, we obtain

the following coupled set of differential equations ¢

Ay, = DA + [(v + 1)/r]A, =0,

DA, + (V/r)Ay + A = rMexp(ir). (A22)
These equations may be uncoupled to yield

DZAI = (1/e)DA; + (1 + (1 - v2)/t2]A1 = rMexp(ir). (A23)

We now define a function p(r) such that

. Al(r) = rp(r). (A24) ’

Substitution into Eq. (A23) yields




rzDZp + rDp + [r2 ~ v2]p = ru+lexp(1r). (A25)

One particular solution to Eq. (A25) is an associated Begsel function as
defined by Luke [69], namely, p(r) = 1"+1Hu v(=ir), so that
?

u+lr

Ay(ry = 1*70eH, (-1r). (A26)

Use of the known properties of the associated Bessel functions results in
- ¢Hh - -y - -
() = 1770 [ = VY = v - DE )y (-ir)
+ (-in)¥exp(ir))/(2n + 1), (A27)

when the expression for Al given by Eq. (A26) is substituted into the first of
the Eqs. (A22). We thus have

Jare’z (ryexp(ir) = 1*Te{{(n - v)(u - v - DRy (1D
+ (-in)Yexp(10) /(20 + 1)}z (x)
+ i"+1rﬂu,v(—ir)zv+1(t). (A28)

This result is identical to that obtained by Luke [73] using a specialized
integration technique developed by McLachlan and Meyers [74] for certain inte-
grals involving Bessel and Struve functions. Luke [73] provides formulas by

which the associated Bessel functions appearing in Eq. (A28) may be evaluated.

The above example resulted in a differential equation that was
recognizable. However, the technique is still applicable even if no
previously known solution to the differential equation exists. We first try
to obtain a particular solution to our inhomogeneous differential equation by
using standard methods [75] such as the method of Lagrange or the method by
Cauchy. If none of these methods proves satisfactory, we can always obtain a

solution in the form of an infinite series. As an example of this, we again




return to Eq. (A23) and assume that A, may be expressed as

Ay = exp(ir) | er“*“, (A29)

where the coefficients B, are constants to be determined. To simplify
subsequent calculations, we chose the form of the expansion to be compatible
with the inhomogeneous term. If Eq. (A29) is substituted into Eq. (A23) and

coefficients of like powers of r are equated, the following recursion relation
is obtained for the B :

(m+u +VvV)(m+u- \’)Bnﬂ_1 + 1{2(m + p) - 1]13m = Gm,l' (A30)

We can obtain a particular solution to Eq. (A30) and, hence, to Eq. (A23)
by setting B, = 0 for m>1 and solving for the nonzero coefficients By, m =1,

0, -1, «..,. The resulting descending power series representation for Ay can
be expressed in terms of a hypergeometric function as

A = 1”*"1-{(-1)“”(1r)“exp(1r)3p1
(A31)
(1,~u+v,=utv,—u=-v; (1/2)-p; (1/2)ir]/(2u+l)}.

In view of Eq. (A26), it is not surprising that the quantity in brackets
is identical to the series representation of Hu’v(-ir) given by Luke [69].
The solution [Eq. (A31)] is not defined if u = ~1/2. 1t is also not defined
1f u is an odd multiple of 1/2 unless both u + v are positive integers or
zero. The solution is a terminating series if either w + vor u - v is a

positive integer. The infinite series obtained otherwise is an asymptotic
representation of A, that is valid for r+=.

We can obtain a second particular solution for Al by setting B, = 0 for
m<l and solving Eq. (A30) for B,, m = 2,3,...,. The hypergeometric
representation of the resulting ascending power series in r is
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A, = 1" {(-ir)u+12F

1 2

(1, u+ %; W= V+2, u+v+2; -2ir)/

[(w=-v+1)(u+v+ 1]} (A32)

The quantity appearing in braces in Eq. (A32) is the series representation of
the associated Bessel function hu’v(—ir) as defined by Luke [69]. This
function is a second particular solution to the differential equation
satisfied by Hu,v and hence can be used in place of H in the solution

[Eq. (28)] to the original integral.

The solution [Eq. (A32)] is a terminating series if p is a positive odd
multiple of -1/2 (other than -1/2) and if both u + v are not positive
integers. It is not defined if either w + v or u — v is a negative integer
and u is not a positive odd multiple of -1/2 (other than 1/2).

5. Additional Illustrative Examples.

The two previous examples illustrate the power and versatility of the
current integration techunique, but two objections may be raised: The first
example can be handled trivially, and the second example is one involving
products of Bessel functions and, hence, is amenable to the original approach
proposed by Sonine. The examples that follow will serve to illustrate the
applicability of the current technique to integrals that are not of the Bessel
function type. Although some of these may be solved by standard techniques,
they nonetheless illustrate the broad range of integrands that can
successfully be handled via this technique (and to the author's knowledge,

several of these integrals have not been previously tabulated).

a. Some intggrals involving Legendre functions. We now consider some

examples of integrals of the general form

I = [dxP (x)£(x), (A33)
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where P,(x) is the Legendre function of order v and f(x) has the same meaning
as in Eq. (Al). We assume the integral I may be represented in the usual way
as

A(x)Pv(x) + B(x)Pv+1(x). Following the procedure outlined in Section 2, we

obtatlbwo coupled equations for A and B which can be uncoupled to yield

A(X) = -xB + (1""2) B' ‘ A34
X) xB(x) o) (x), ( )
where

(1-x%)B"(x) - 2xB'(x) + V(VH1)B(x) = (VHL)E(x). (A35)

As a first example of an integral of the form Eq. (A33), we consider the
case where f(x) = 1. A particular solution to Eq. (A35) for this case is B(x)
= (1/v). Equation (A34) now determines A(x) to be A(x) = -(x/v). Substitution
of A and B into the representation for I now produces

1

v P . v®O (A36)

X
fdev(x) =-TP 4+ o+

We next consider a more challenging integrand [i.e., one which cannot be
handled by direct manipulation of the recurrence relations for P,(x)]. Let
f(x) be ln(ltx). In obtaining a particular solution to Eq. (A35) we use the
inhomogeneous term as a guide and assume B(x) = Klln(ltx) + Ky, where K, and
Kz are undetermined constants. Direct substitution into Eq. (A35) gives

Ky = 1/v and Ky = 1/[v2(v+1)]. Equation (A34) may next be used to show

that A(x) = {=(x/v)1ln(lix) £ 1/[v(v+l1)] - x/vz}. Subgtitution of A and B

into the representation for I results in

fdx ln(ltx)Pv(x) = [- %-ln(ltx ) £ U?;%TT - :%] Pv(x)
1 1
+ 1= 1n(ltx) + — 1| P .
[v vz(v+1)] vl
v #0,-1 (A37)
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b. Some integrals involying Hermite functions. We next consider

integrals of the general form
I = [dxH (x)£(x), (A38)

where H,(x) is the Hermite function of order v, and once again f(x) has the
same meaning as was used in connection with Eq. (Al). We assume the integral
of Eq. (A38) may be represented as A(x)H,(x) + B(x)ﬂv_l(x). (Note that H,, and
H,_, are used to represent the integral as opposed to H, and H,,;. This
difference 1s inconsequential. Any two orders separated by one integral value
will be adequate to implement the procedure.) Omitting the details, we
uncouple the resulting coupled set to obtain

X _ B'(x)
A(x) = = 5 B(x) - =5~ (A39)

where

2vE(x) = - B"(x) 2xB'(x) - 2(v+1)B(x). (A40)
As a first example of this general form, we let f(x) = e'xz. [This is

the usual weighting function used in the orthogonality integral for H,(x).]

If we assume a particular solution of Eq. (A40) of the form B(x) = Ke ™ (with

K an undetermined constant), direct sutstitution gives K = -1. Equation (A39)

gives A(x) = 0 so that

2

XH O (x). (A41)

2
-X
fdxe Hv(x) = —g vl

As a second example we let f(x) = x ¥, where for the moment u is an
arbitrary exponent. If we assume a particular solution of the form B(x) =
Ky x 2, where K; and K2 are constants, direct substitution into (A42) produces

-(K2+2) —Kz

2vx" = -K K, (K #1)x + 2K, (K, = (WD)]Ix . (A42)

e g o




There are two sets of values for the constants K;» Ky, and 4 for which

=2V
l-m,l(z-v+1,u-v+3;and

v
Kl = - ) ° K2 =~1 , u=-1. Using the first set of values, we obtain

Eq. (A42) 1s satisfied: K

the result

- =(v+2)
-(v+3) 2x v x
[axt (x)x = [(wn(wz) ) ] H,(x)

2v —(v+1)H

T DA X v-1(¥) (A43)

AY * -1, ""20

We obtain from the second set of values

1+2x2

fdxxH (x) = (Wz_)) B (x) - -(-\7+"—’2‘—)- H,_, (x) (A44)
v # =2,

For a final example involving Hermite functions, we let f(x) = xein,

where Y 18 a constant initially assumed to be arbitrary.

A particular solution to Eq. (A40) can be obtained with B(x) = Keiyx,
where K 1s an unknown constant. Direct substitution shows that a solution
exists for Y = v2(v¥1) and K = 1v/Y2(v#1) . Using the resulting solution for
B in Eq. (A39) to obtain A, we then have

IdxxeiVZ(V+1)x Hv(x) - ei¢2(v+15x [( -ix

1 iv
—_— = H (x) + ——————H (x)
/20ty 2) v /ey V! ]

v # -1, (A‘lS)




c. Some examples involving Laguerre functions. We now consider :

integrals of the general form

1= fdxf(x)Lv(x) , (A46)

where L,(x) is the Laguerre function of order v, and f(x) has the same meaning
as in Eq. (Al). As usual, we represent I in the form A(x)Lv(x) + B(X)Lv—l(x)

and obtain the following uncoupled equations
A(x) = (% - 1) B(x) + 3 B'(x), (A47)
where
vf(x) = xB"(x) + (x+1)B'(x) + (v+1)B(x). (A48)

~(ML)X . 14 obtain a

-(v+1)x.

As an example of this case we let f(x) = xe

particular solution of Eq. (A48), we assume B(x) = Ke Direct

substitution gives K = 1/(v+l). Using this value yields the integral

~(v1)x

-(vl)x . e
Ly(®) = =51y —

[dxxe [-(40)L (x) + L,_; (x)]

v #-l, (A49)

As a final example, we let f(x) = x(1+x)'(v+3). A particular solution to
Eq. (A48) can then be obtained assuming B(x) = K(1+x)-(v+1), where again K is
an unknown constant. Direct substitution into Eq. (A48) yields
K = v/[(v+1)(v+2)])so that

_ -(v+l) _
fomann™ 0 - SR (- ) w0+ (si) 1aco)

v ¢ -1,-2. (A50)
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the sake of brevity the derivations have been omitted.

-x2 (u+v+l)

5 H (X)H (x) + (
2[(u-v)-1)

_.2
[dxxe ™ Hv(x)ﬂu(x) =e V- u+

(u=-v)~ -1

where H is a Hermite function and u - v ¥ + 1.
fax(e 12 = § (B 02 + B (07 - BOR L ()

and

[ 25D farr o = 2L fae, 0

g |
RPN LT o B

v # -1,
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d. Some final results. The following is a tabulation of some additional

results obtained using the integration technique described in this paper. For

DR OR_ ()

+ oo (O () + [—2-‘1"7—] H,_ GO (0,

(A51)

(A52)

(A53)




