
AD-A129 282 NONLINEAR SCATTERING OF ACOUSTIC WAVES BY VIBRATING
OBSTACLES(U) NAVAL RESEARCH LAR WASHINOTON DC
d C PIQUETTE 01 JUN 83 NRL-MR-5077

UNCLASSIFED F/ 020/1 N

EII/IIIIII/I/u
Slllllflf/lflf/lfllff

Ehhhhhhhhhhhhl
EIIEEIIIIEEEEE
IIIhllIIIIIIhu
.IE.E..EIIIEEE



11WO 1.0.0

111L25 A
ILL-__

MICROCOPY RESOLUTION TEST CHART

NAIOAL IBtJ[IAU Of S1ANDARD~If A3



NRL Memorandum Report 5077

Nonlinear Scattering of Acoustic Waves by
Vibrating Obstacles

Jean C. Piquette

Underwater Sound Reference Detachment
Naval Research Laboratory

PO. Box 8337
Orlando, Florida 32856

1 June 1983

DTIC
$ JELECTE 

NAVAL RESEARCH LABORATORY S D
Washington, D.C.

Apwroved for Pk Mlean; dWibution ufimitd.

83 06 13 058



UNCLASSIFIED
SECU1ITY CLASSIFICATION OF THIS PAGE (hen De En ered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I. REPORT NUMBER -2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL MEMORANDUM REPORT 5077 [4 /?- "
4. Ti rLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Nonlinear Scattering of Acoustic Waves Interim report on a

by Vibrating Obstacles continuing problem.
S. PERFORMING ORG. REPORT NUMMER

7. AUTHOR(s) 6. CONTRACT OR GRANT NUMIISER( )

Jean C. Piquette*

S. PERFORMING ORGANIZATION NAME ANO ADDRESS tO. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMBERS
Naval Research Laboratory 61153N, RR011-08-42
Underwater Sound Reference Detachment (59)-0589-00
PO Box 8337, Orlando, Florida 32856

)I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research 1 June 1983
Direct Funding to Naval Res. Lab., Code 6500 13. NUMOER OF PAGES

167
I&. MONIYORING AGENCY NAME A AOORESS(If dile mt from Coutfollihi Office) 15. SEcURITY CLASS. (of tAi report)

UNCLASSIFIED
1S.. OECL ASSIF IC ATION/'DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (o thia R p t)

Approved for public release; distribution unlimited.

,7 OISTRIGUTION STATEMENT (of the .b.,,c, .nted fi Block 20, it dif teentfrom Re.t)

IS. SUPPLEMENTARY NOTES
*This report is based on the author's doctoral dissertation submitted to

the Stevens Institute of Technology in partial fulfillment of the degree

requirements.

It. KEY WORDS (Continue oun revers. aide if o.eesy ed identify by block nmb.)

Scattering
Nonlinear acoustics
Calibration methods
Parametric phenomena
Integrals

20. ABSTRACT (ContiIne an reverse sle if 009000MY and Ideitfy 67 6l4k rom' ")

The problem of the generation of sum- and difference-frequency waves produced
via the scattering of an acoustic wave by an obstacle whose surface vibrates
harmonically was studied both theoretically and experimentally. The theoreti-
cal approach involved solving the nonlinear wave equation, subject to appropri-
ate boundary conditions, by use of a perturbation expansion of the fields and
a Green's function method. This problem was previously studied theoretically
by 0. Censor (J. Sound & Vib. 2 , 101-110, 1972), who solved the linear (over)

DO , AW1 1473 EDItION Or I NOV 6"1 O OUICLASSIFI
SE/N 0102-LF.014-6601 UNLASSIFIEDI i SE~8CURITY CLAMPICATION OF 11413 PAGE Xona Nel beev



UNCLASSIFIED
SECUITY CLASSIFICATION OF THIS PAGI (W11m Data 8ntm

20. Abstract (cont'd.) C4

wave equation with nonlinear boundary conditions. In addition to ordinary
rigid-body scattering, Censor predicted nongrowing waves at frequencies equal
to the sum and to the difference of the frequencies of the primary waves. The
solution to the nonlinear wave equation also yields scattered waves at the sum
and difference frequencies. However, the nonlinearity of the medium causes
these waves to grow with increasing distance from the scatterer's surface and,
after a very small distance, dominate those predicted by Censor.-,

The simple-source formulation of the second-order nonlinear wave equation for
a lossless fluid medium has been derived for arbitrary primary wave fields.
(Westevelt's original derivation in J. Acoust. Soc. Am. 35, 535-537, 1963 of
this papcular-form of thiF-noWinfeaL e_, qkation-was restricted-z ane
waves.) '>This equation was used to solve the problem of nonlinear scattering of
acoustic waves by a vibrating obstacle for three geometries: 1) a plane-wave
scattering by a vibrating plane, 2).cylindrical-wave scattering by a vibrat-
ing cylinder, and 3) plane-wave scattering by a vibrating cylinder. A new
technique of integration useful for solving definite integrals arsi g from
physical problems is developed.

9Successful experimental validation of the theory was inhibited by previously
unexpected levels of nonlinearity in the hydrophones used. Such high levels
of hydrophone nonlinearity appeared in hydrophones that, by their geometry of
construction, were expected to be fairly linear._It appears that this is a
rather general problem with hydrophones. A new ique for measuring this
hydrophone nonlinearity is presented.
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t . NROUC'r[ON

This thesis addresses the problem of the nonlinear scattering of acoustic

waves with harmonic time dependence by a vibrating obstacle. The obstacle is

immersed in an infinite homogeneous fluid medium, and its surface deforms

uniformly with h.armonic time dependence. The case in which the surrounding

fluid medium is water is of primary interest.

The problem of the scattering of a plane wave incident on acoustically

rigid spherical and cylindrical obstacles surrounded by an infinite homoge-

neous fluid medium was first solved by Rayleigh [1] using linear, lossless

theory. To obtain numerical values for the rather complicated mathematical

solutions, he considered only the limiting case where the radius of the scat-

terer is much smaller than a wavelength. These results were extended by Morse

(21, who obtained a solution in a form more readily evaluated. He provided

tables of calculated values, including values when the obstacle is not small

compared to a wavelength. Faran [31 obtained a solution in the case where the

scattering obstacles are not acoustically rigid. In addition to studying the

problem theoretically, Faran performed an experimental investigation of the

cylindrical case. Agreement between theory and experiment was excellent and

resulted Z- the establishment of a proper criterion under which a scattering

ubject could be considered acoustically rigid; namely, that the frequency of

the incident plane wave be well below that of the lowest mechanical resonance

of the scatterer. The non-rigid spherical case was studied experimentally by

Hampton and McKinney [41.

All of the studies mentioned above assumed that the linear wave equation

was sufficient to describe the situation of interest. However, the exact

equations describing acoustic wave propagation in a fluid (as well as for

solids and plasmas) are actually nonlinear. The linear wave equation is only

an approximation that is valid for small amplitude behavior. Deviations in

behavior from that predicted by the linear wave equation can become signifi-

cant when the Mach number (ratio of particle velocity to phase velocity or,

equivalently, the ratio of the change in mass density to the density of the

undisturbed fluid) is not much less than unity [5]. In this case, the non-

linear wave equation is required to accurately represent the behavior. The

study of acoustical behavior requiring use of the nonlinear wave equation is

called nonlinear or finite-amplitude acoustics.

Sli imii tinn... " ........ ........ ...



Most solutions of the nonlinear wave equation for fluids have been re-

stricted o plane waves in homogeneous infinite media. In 1860, Earnshaw 161

obtained an implicit solution to the lossless, one-dimensional, nonlinear wave

equation subject to a boundary condition at the origin. That solution is

valid at propagation distances small relative to the plane-wave discontinuity

distance (that propagation distance at which the solution to the lossless

nonlinear wave equation for a wave.. sinusoidal it its origin becomes multiple-

valued. This occurs because points of high particle velocity In the wave also

have higher propagation velocities and hence tend to overtake the points of

low particle velocity, causing the waveform to approach a sawtooth shape. It

is proportional to the Mach number and is a convenient measure of the non-

linearity of the problem.*) Earnshaw's solution illustrated that points of

high particle velocity/pressure in the time waveform (i.e., the variation with

time of the particle velocity/pressure at a fixed position) move more rapidly

than points of low particle velocity/pressure. This causes the time waveform

of a finite amplitude wave to change its shape (i.e., distort) as the wave

propagates. Investigators of this problem usually assume an acoustic wave

that is sinusoidal (i.e., harmonic) at its point of origin and utilize a

harmottic time analysis of the waveform to describe the subsequent propagation

of the wave. The distortion of the waveform from its initial state manifests

itself in the generation of harmonic component waves. In effect, a wave of

angular frequency w generates waves of angular frequencies 2w, 3w, etc. as it

propagates. These harmonic components usually gain energy at the expense of

the fundamental component of angular frequency w.

*In a real situation, the solution never actually becomes multiple valued. It

is prevented from doing so due to energy loss due to the viscous terms that
are no longer negligible when the discontinuity distance is approached.
(Nonetheless, the onset of shock-wave formulation occurs near the disconti-
nulty distance.) In higher-dimensioned problems there is no corresponding
discontinuity distance since geometric spreading is sufficient to prevent this
catastrophic growth of the nonlinearly generated wave. Nontetheless, it repre-
sents a conservative estimate of the distance to which the lossless theory may
be applied. It is given by Beyer (Reference 5, p. 104) as:

(1/it) - [l+(B/2A)li(wuo)/co 2 1,

where A - po( P/30)sppo ,C 2 B = P0(ap/p)SPP,

discontinuity distance. For water at 200C, B/A is approximately 5.0.
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In 1935, Fubint-Ghiron [7] obtained an explicit form for Earnshaw's

implicit solution for the case of an initially harmonic wave. He expressed

his solution as a Fourier harmonic series with Bessel function coefficients.

In 1960, Kech and Beyer (81 obtained a solution to the problem of the

propagation of an initially harmonic plane wave including linear absorptive

losses. To obtain this solution, they assumed that each of the acoustic

variables can be written in a perturbation series in which the order of

magnitude of each term is smaller than that of the preceding term by a factor

equal to the Mach number. They then calculated in succession the first six

terms of the perturbation series solution for the particle displacement. This

gives an approximation to the exact solution that is useful for distances of

propagation somewhat less than the plane-wave discontinuity distance.

In 1958, Hayes [91 succeeded in putting the equations of motion (includ-

ing thermoviscous losses) into the form of a Burgers' equation [10]. Hayes

does not make clear in this derivation to what order in Mach number this equa-

tion is valid. In 1963, however, Blackstock [11] again put the equations of

motion, including thermoviscous losses, into the form of a Burgers' equation.

This treatment makes it quite clear that the equation is valid to second order

in Mach n.mber. In Reference 11, Blackstock introduces the term "substitution

corollary" for the standard procedure used to identify the ordering of terms.

In essence, this corollary states that in obtaining a second-order approxima-

tion, the individual acoustic variables involved in forming any term comprised

of a product of acoustic variables may freely be replaced by their first-order

equivalents. A more precise substitution would generate terms higher than

second order. This formulation has great utility in that exact solutions of

Burgers' equation exist. Blackstock [11,121 succeeded in obtaining such a

solution for an initially harmonic plane wave.

In 1964, Blackstock [13] showed that when the spatial coordinate is large

relative to a wavelength, Burgers' equation can also be used to solve the

problem of propagation of spherical and cylindrical waves in a lossless medium

(if the frequency is not large, losses may still be ignored large propagation

distances). In 1981, Trivett and Van Buren 1141 developed a numerical method

of solving the Burgers' equation for plane, cylindrical, and spherical waves

including losses.

3



Significant nonlinear generation of acoustic waves can also occur when

two waves of different frequency are present simultaneously in a fluid me-

dium. In 1948, Eckart [15] derived a second-order nonlinear wave equation

(re-derived by Westervelt [161 in 1957) useful in obtaining solutions to this

type of problem. In 1963, Westervelt [17J considered the problem of two col-

linea. plane waves (called primaries) with different initi-il harmonic time de-

pendences at the origin. He started with Lighthiul's 181 equations of motion

and retained terms up to the quadratic in Mach number. In addition to the

harmonics of the primaries predicted when a plane wave propagates and distorts

in a fluid medium, waves at frequencies equal to the sum and difference of the

primary-wave frequencies were also predicted. These sum- and difference-

frequency waves tend to grow with increasing distance from the origin. In

this paper, Westervelt essentially transformed Eckart's second-order nonlinear

wave equation into a form known as the simple-source formulation. This

transformation, however, was restricted to the case of plane wave primaries.

Westervelt's theory was confirmed experimentally by Bellin and Beyer

[191, who produced a l-MHz difference-frequency wave by driving a 2.54-cm-diam

circular piston source at the primary frequencies 13 and 14 MHz. Agreement

betweeti theory and experiment was good.

In 1962, Dean (201 presented a solution for the sum-frequency wave pro-

duced by two outgoing, concentric cylindrical waves. He again started from

the basic conservation equations and derived a coupled set of differential

equations (accurate to second order in Mach number) in terms of a new set of

variables (defined in terms of operations on the first- and second-order

acoustic quantities). Dean stated that the solution he presented to these

equations for this particular case was exact. Lauvstad [21] later stated that

Dean's solution to this problem was incorrect except in the farfleld. He

stated that direct substitution of Dean's solution into the equations demon-

strated their incorrectness except, as previously mentioned, in the asymptotic

limit approaching the farfteld. This, however, is not so. Dean later per-

formed measurements that were in fair agreement with the qualitative aspects

of his theory [22]. (No attempt was made to demonstrate quantitative

agreement with the theory.) These measurements were performed under farfield

conditions. Lauvetad offered his own general expression for the sum-frequency

component; however, he used the Green's function corresponding to the

4



unphysical case of a soft boundary. A correct expression for the difference-

frequency pressure for this case will be obtained in this report.

In 1972, Censor [23] solved the linear wave equation for the problem of

the scattering of an acoustic plane wave (of angular frequency W) by an ob-

stacle whose surface deforms harmonically (at angular frequency Q). In his

calculation, Censor included nonlinearities only in the boundary conditions he

imposed. He predicted that in addition to the usual rigid-body scattered

field, waves at angular frequency w* = w * Q would be created at the

boundary. These waves would then propagate outward from the boundary with a

behavior described by the linear wave equation.

Shortly after the appearance of Censor's article, Rogers [24] pointed out

that waves at angular frequencies w. arising from medium nonlinearities would

also be predicted by the nonlinear wave equation. Rogers also stated that the

effects predicted by Censor depend on the Mach number in the same way as the

effects arising from nonlinear theory. Hence, the propagation problem cannot

be linearized in any physically meaningful way without also eliminating the

boundary effect predicted by Censor. In other words, a solution to the

problem of the generation of sum- and difference-frequency waves must

necessarily involve solving the nonlinear wave equation.

In the present study, the simple-source formulation of the second-order,

nonlinear wave equation for a lossless medium is derived for arbitrary primary

wave fields of harmonic time dependence. This equation was previously derived

by Westervelt [251; however, his treatment, as previously mentioned, was re-

stricted to plane-wave primaries. The assumption that no linear losses, such

as those due to viscosity or heat conduction, exist in the fluid medium places

restrictions on the subsequent solution. These restrictions tend to increase

with increasing viscosity and frequency. However, the restrictions are not

expected to be significant for the case of a water medium and the frequencies

to which the solution will be normally applied (less than about 200 kHz). In

obtaining this equation, all terms up to the quadratic in Mach number are re-

tained in the acoustic variables. A perturbation approach is not used until

the final step in the derivation; hence, the equation upon which the simple-

source formulation is based remains valid even when the second-order effects

cause a significant energy drain on the primaries (which invalidates a

perturbation-series approach).

5



In obtaining solutions to this equation, a Born-approximation type of

perturbation analysis is used. Here, first-order acoustic wave fields are

calculated as solutions to the linear wave equation and then used to determine

the inhomogeneous term of the second-order equation. The perturbation analy-

sis is in terms of the Mach number. (Perturbation expansions in terms of Mach

number to solve acoustic problems have been used extensively before

(15,16,26,27).)

The problem of the generation of sum- and difference-frequency waves via

the nonlinear scattering of acoustic waves by vibrating obstacles is then

addressed for three geometries:

1. Plane wave normally incident on a uniformly vibrating infinite plane.

2. Cylindrical wave incident on an infinitely long cylinder vibrating

uniformly in the radial direction. (The symmetry axes of the incident

wave and the scattering cylinder are assumed parallel but not

coincident.)

3. Pl'ne wave normally incident on an infinitely long cylinder vibrating

uniformly in the radial direction.

The first case above is readily solved after expressing the second-order

nonlinear wave equation in one-dimensional form, due to the resulting simplic-

ity of the calculations. Solution of the last two cases is much more diffi-

cult. The approach taken is to formulate the solutions in terms of a Green's

function. Care must be taken to choose the proper Green's function for evalu-

ating the appropriate Born integral; i.e., the one corresponding to the

boundary surfaces involved (this requirement has been discussed previously iI

a paper presented by the author [281). The resulting expressions for the

acoustic pressure of the sum- and difference-frequency components involve some

rather complicated integrals. A new integration procedure was developed that

allows the evaluation of these integrals in closed form for the case of two

high-frequency primaries. This procedure is described in the Appendix. Nu-

merical results are obtained by Gaussian quadrature integration for the more

general case.

6



The results obtained by the Censor-method approach are also calculated

and presented for the two cases for which his theory are applicable--those

involving incident plane waves. It is demonstrated that Censor's prediction

Is of the same order as pseudosound*.

For the case of a plane wave incident on a vibrating cylinder, the re-

sults are presented graphically for both the Censor theory and the nonlinear

theory.

An experimental investigation was undertaken to confirm the theoretical.

prediction for the difference-frequency pressure produced in the case in which

a plane wave is incident on a vibrating cylindrical surface. Although the

experiment was unsuccessful in confirming the theoretical predictions, it was

nonetheless successful in identifying several of the difficulties that arise

in nearfield, nonlinear difference-frequency experiments and solving all but

one of those identified. The most significant of these difficulties (not

encountered in previously published work) are:

-Inadvertent direct radiation of the sources at the difference fre-

quency: This will tend to be a greater source of error when the measur-

ing hy;rophone is near the sources (since difference-frequency pressures

produced by medium nonlinearities tend to grow with distance while

directly radiated different-frequency pressure tends to decay with

distance).

-Electrical filtering problems due to experimental constraints: The

difference frequency was only about one half the lowest primary

*Pseudosound is an effect arising from the uncertainty in the motion of the

measuring hydrophone; i.e., the uncertainty in the motion of the hydrophone is
of the same order as the difference between Langrangian and Eulerian coord-
inates. Although pseudosound is of second-order in Mach number (as are the
source terms of the second-order nonlinear wave equation), it nonetheless re-
mains a minor component of the second-order field. This is because contribu-
tions to the pressure predicted by the acoustic second-order nonlinear wave
equation are cumulative with respect to propagation distance and hence tend to
overwhelm pseudosound (which is a function only of the magnitude of the acous-
tic variables at the observation point) within propagation distances that are
a fraction of a wavelength. Example calculations of pseudosound relevant to
the current research are provided in Sections 11. E. 3 and IV. F.
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frequency. In addition, the pulse lengths had to be less than about 10

cycles at the difference frequency to avoid interfering reflections from

neighboring surfaces. Hence the usual passive methods employed for

electrical filtering in previous farfield, nonlinear measurements were

inappropriate.

•Difference-frequency voltage generated nonlinearly in the hydrophone:

This effect, due to nonlinear mixing of the primaries in the hydrophone,

provided larger difference-frequency voltages than those produced by the

difference-frequency pressure generated by nonlinearities of the fluid

medium. The effect was observed for a wide range of available

hydrophones.

Solutions found to the first two of the above difficulties will be

discussed in the section concerning experimental results. Although the third

difficulty has not been resolved, several valuable observations were made and

are presented in the section on the determination of hydrophone nonlinearity

(Section IV. F).

In llght of the insights gained by these hydrophone nonlinearity measure-

ments, the program at the Underwater Sound Reference Detachment (USRD) of the

Naval Research Laboratory has been significantly expanded. The technique to

measure hydrophone nonlinearity developed during this research represents a

substantial improvement over the technique originally intended to be used by

USRD to analyze the linearity of their standard hydrophones. In the current

development program, it is intended to use the nonlinearity measurement tech-

nique of this research to develop a hydrophone nonlinearity standard.

Chapter It will present the nonlinear theory as well as Censor's

theory. The numerical results of each theory will be given in graphical form

in Chapter III, along with a discussion of the numerical techniques used.

Chapter IV will discuss the experiment, including the choice of experimentt and

resolution of experimental difficulties, and will present a new technique for

determining hydrophone nonlinearity. Lastly, Chapter V will give the

conclusions. The new technique of integration developed during the course of

this research is presented in the Appendix.

8



lI. THEORY

A. Introduction

This chapter presents some concepts useful in finite-amplitude acoustics,

gives the derivation of the simple-source formulation of the second-order

acoustic wave equation in a manner that is of quite general applicability to

problems involving interacting acoustic pressure fields, and presents the

theoretical development of the problem of the nonlinear scattering of acoustic

waves from vibrating obstacles for certain specific geometries.

Section II. B discusses the two reference frames used in acoustics--

namely, the Lagrangian (or material) coordinates and the Eulerian (or spatial)

coordinates. Section II. C discusses the orders of acoustic variables and

expressions.

In 1963, Westervelt [17] obtained a simple-source formulation of the

second-order nonlinear wave equation. This formulation is an analogy to the

simple-source wave equation of linear acoustics, which is essentially the

inhomogeneous wave equation for a volumetric distribution of monopole point

sources of sound [29].

The analogy drawn by Westervelt is that each elementary volume element in

a fluid in which two waves of different frequency are simultaneously present

may be viewed as an elementary source of nonlinearly generated waves. The

mathematical form of Westervelt's second-order nonlinear wave equation is

similar to that of the simple-source equation of linear acoustics if the

proper identification of variables is made.

Westervelt's derivation of this equation is based on the assumption that
the interacting waves are planar. Hence, it is unclear that his equation is

applicable to any other wave geometry.

The inhomogeneous term is quadratic in nature. Hence, if one attempts to

obtain the solution for arbitrary wave fields by decomposing the individual

waves contributing to the source term into sums of plane waves, the solution

must be represented as a sum over pairs of waves. It is often more convenient

to use a closed-form representation of the source term (but this requires a

demonstration that the equation Is valid for non-planar primaries). In the

current work, the simple-source formulation of the second-order nonlinear wave

9



equation is re-derived for primary waves of arbitrary geometry. This

derivation is given in Section II. D.

Sections I. E, F, and G present the solutions to the second-order

nonlinear wave equation for three specific geometries:

*Plane-wave scattering from a vibrating planar surface.

*Cylindrical-wave scattering from a vibrating cylindrical surface.

*Plane-wave scattering from a vibrating cylindrical surface.

In solving the case of plane-wave scattering from an infinite uniformly

vibrating planar surface, the one-dimensional form of the nonlinear wave equa-

tion is used. This equation is expressed in terms of Lagrangian coordinates

since the first-order boundary conditions can most naturally be satisfied in

this reference frame. The equation is solved by a substitution of perturba-

tion-series expansions in Mach number for the acoustic variables such that the

solution is accurate to second order (in the sense normally associated with

perturbation approximations). As noted by Beyer [301, such an expansion was

first considered historically by Airy in 1845 in studying tidal motion. A

careful analysis of the results of Censor's theory is presented for the planar

case. (Although Censor presented no solution for this case, his method can be

applied in a straightforward manner to obtain one.) It is shown that Censor's

theory predicts sum- and difference-frequency pressures that are of the same

order as pseudosound.

In obtaining a solution to the second-order nonlinear wave equation for

the two cases considered involving cylindrical geometry, again the method of

expanding the acoustic variables in a perturbation series in Mach number is

used.

The actual second-order sum- and difference-frequency pressures are

calculated by solving a related Green's function equation. It has been noted

[281 that care must be exercised in the choice of Green's function. This is

discussed in detail in the paragraphs following Eq. (47) of Section II. D.

Finally, both Censor's theoretical results and the results of the non-

linear theory are presented graphically to facilitate comparison of the two

10



theories. (Although Censor gave analytical expressions for the scattered sum-

and difference-frequency pressures, no numerical values were presented.)

In obtaining the numerical results for the nonlinear theory, the inte-

grals were performed on a high-speed computer (TI-ASC-l1) using the method of

Gauss Quadrature (321. (Closed-form solutions to these integrals were obtain-

ed in the high-frequency limit based on the new integration technique pre-

sented in the Appendix.) The sums obtained from the theory were also carried

out on this computer until three significant figures were obtained.

B. Coordinate Systems of Finite-Amplitude Acoustics

Two different kinds of coordinate systems are used to specify acoustic

wave fields in fluids--namely, Lagrangian (or material) coordinates that move

with the fluid and Eulerian (or spatial) coordinates that are fixed in

space. The relationship between these two systems is illustrated in Fig. I.

When displacement is expressed in terms of Eulerian coordinates, the

displacement is that of the fluid element that happens to be located at x at

the time of observation. On the other hand, when the displacement is

expressed in terms of Lagranglan coordinates a, it refers to a fluid element

that had the initial rest position a.

a

X

REFERENCE
POSITION

x = a +

a= LAGRANGIAN COORDINATE
- REST POSITION OF AN INDIVIDUAL PARTICLE

x EULERIAN COORDINATE
z POSITION OF A FIXED POINT IN SPACE

= DISPLACEMENT OF THE PARTICLE FROM ITS
REST POSITION

Fig. I - Geometry of Lagrangian and Eulerian Coordinates

[L



C. The Order of Acoustic Variables and Expressions

Careful consideration must be given to the meaning of "orders" of acous-

tic variables and expressions. In nonlinear acoustics, the appropriate param-

eter to determine this order is the Mach number. (This will be justified pre-

sently.) Important dimensionless quantities arise when the relevant equa-

tion/s are put into dimensionless form. The resulting equation was given for

the acoustical case by Blackstock [131. A relationship (analogous to the

Reynolds number) was obtained by Blackstock In this report, which may be usod

to determine whether the loss terms are significant for a nonlinear propaga-

tion problem for initially plane waves. This criterion involves a quantity r,

where

r - acc x /(l/2)v[V + (Y-l)/P
oc r

(0 is a measure of medium nonlinearity and is approximately 3.5 for water at

20'C, V is the viscosity number, y is the ratio of specific heats, v is the

kinematic viscosity, Pr is the Prandtl number, c is the Mach number, and x. i1.

a characteristic length). lackstock noted that for initially sinusoidal

waves, xc may be taken to be xc = co/w = h, and showed that (at low fre-

quencles) r = se/c-A, where a = the attenuation coefficient. Blackstock noted

that the quantity Bc/aX has been referred to as the Reynolds number in the

Russian literature. (He further noted that this quantity is certainly not a

measure of inertial to viscous effects, which is the traditional interpreta-

tion of the Reynolds number. Instead, Blackstock interprets this quantity as

a measure of the importance of nonlinearity to dissipation). The determina-

tion of whether a given frequency is "low" can he ascertained using yet an-

other dimensionless quantity known as the "frequency parameter" [33],

X = (WrV)/p 0c 2, where V = viscosity number = 2 + n'/n, n = shear coefficient

of viscosity, n' = volume coefficient of viscosity. Using a typical frequency

of interest of 100 kHz along with the approximate expression n' - 3n for water

[341, we get a value X - 1.4x10 -6 , clearly indicating that this frequency may

properly be considered "low" (and hence Blackstock's low-frequency expression

for r is appropriate).

An Important criterion established by Blackstock in Reference 13 is that

the results of the propagation of a plane wave that would he obtained via the

12



inclusion of loss in the equations will closely approach the results obtained

excluding loss when r>1o. Using typical values of interest in the current
535O-4 -O-4-

I ' O-2m
research ( - 3.5, w 5x , a 10-4m, and X " 102 i), we obtain

r - 1100. Although Blackstock's expressions are actually valid only for

initially plane waves, it is fairly clear, due to this rather substantial

value, that losses are relatively unimportant here.

The negligibility of viscous effects for the frequencies and propagation

distances of interest in this report can also be demonstrated by computation

of the Reynold's number in the two physical regions of concern: 1) the region

close to the scatterer's surface (where a viscous boundary layer forms), and

2) the propagation region wherein (at some point) the primary fields will

start to form shock waves.

Consider first the required thickness of a viscous boundary layer. We

define this thickness as corresponding to a Reynold's number of unity. The

Reynold's number (R) can be computed using R = ULp/p or R = wL 2p/, where

U = characteristic velocity, L - characteristic length, p = coefficient of

viscosity, and w = characteristic angular frequency. Using a frequency of

100 kHz, a Reynold's number of unity corresponds to a characteristic (boundary

layer) thiclkness of about 10- 4 cm. This result makes clear the fact that at

positions near the scatterer's surface viscous effects may reasonably be ne-

glected (since this distance is <<X/2w for the frequencies of interest here).

At larger distances from the scatterer's surface, this analysis breaks

down, and a more suitable interpretation of the Reynold's number is needed.

As an initially sinusoidally shaped acoustic wave propagates, the nonlinear

distortion it suffers causes its waveform to approach the shape of a sawtooth

wave. If viscous effects are completely neglected, the waveform becomes a

triangular wave at a propagation distance equal to the discontinuity distance

(see the discussion of this matter in Chapter I). Using this effect as a

guide, it is clear that a convenient choice for the characteristic length L

used to compute the Reynold's number is the spatial distance separating the

point of maximum particle velocity and adjacent point of zero particle

velocity. This "adjacent" point of zero particle velocity is the one occuring

ahead of the point of maximum particle velocity (in the sense of the direction

of propagation). This characteristic length, as defined here, is initially

equal to one quarter of a primary wavelength and approaches zero as the

13



propagation distance approaches the discontinuity distance. Such a definition

makes clear the fact that viscosity can properly be neglected in the propaga-

tion region only at propagation distances small relative to the discontinuity

distance (since the Reynold's number will approach zero at that point).

Hence, we conclude that within a region farther than a fraction of a

millimeter from the scatterer's surface and yet not closely approaching the

discontinuity distance, viscous effects may safely be neglected and the Mach

number taken as the appropriate dimensionless parameter to identify the order

of acoustic variables and expressions.

Due to the extremely complex nature of the equations of nonlinear

acoustics, some type of approximation method is usually required to obtain a

solution. There are two primary approximations that are traditionally used:

-The exact equations can be put into an approximate form more readily

solvable. It is the local Mach number dependence of the acoustic

variables (discussed above) that forms the basis for this approximation.

-Alternatively, the acoustic variables can be expanded directly in a

formal perturbation series in Mach number, which may then be substituted

into the exact equations. In such a series, "ordering" is determined by

where the boundary conditions are imposed (i.e., the "Mach number" is not

the local Mach number but rather the Mach number at the point at which

the boundary conditions are imposed). This process results in an

infinite set of differential equations (one equation associated with each

term, i.e. order of the expansion). Each of these equations can then be

individually solved, starting with the first.-order equation and ending at

whatever order yields the required degree of accuracy.

Let us first consider the approximation Involved in obtaining the second-

order nonlinear wave equation from the exact fundamental equations. Although

this equation is an approximate one, when it Is applied to problems involving

sound propagation In water, no measurable difference between the pressure pre-

dicted by it and that predicted by the exact equations results. This is be-

cause in such problems the contributions to the sound field by terms of third

and higher orders are negligible. Justification for the negligibility of

third-order terms is given in Appendix A of Reference 35, which considers the
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consequences of retaining higher-order terms in the fundamental equations and

third-order terms in the equation of state. In Reference 36, the equation of

state was expressed as

pp A-R B P-P 2 P-P 3
p Po +  A (-- -P- + i (-P- + ( P-

0 0 0

As reported in Reference 35, Van Buren wrote a computer program that

computed the distortion occurring during the propagation of an initially

sinusoidal wave of amplitude 0.7x,0 5 Pa and frequency 2 MHz. (The program

included the effects of all orders in the fundamental equations and in the

equation of state to third order. Absorption effects were also included.)

The wave was allowed to propagate 104 cm (one discontinuity distance). The

results of this program were compared to results obtained when only terms up

to second order were retained in both the fundamental equations and in the

equation of state. The results of comparing these two solutions were: With

C/A = 105, the second harmonic deviated by about -0.2%, the third harmonic by

-1.3%, fourth harmonic by +0.06%, etc. In liquids, C/A is approximately t36]

3/2 (B/A)2 , which gives C/A = 40 for water. It becomes clear from these

numerical results that the effects of the higher-order terms (at least in

water) are .ompletely negligible.

Although additional effects may arise in non-planar geometries, the

plane-wave should represent the worst case (since higher-dimensioned geome-

tries result in spreading of the waves and a reduction in field amplitude).

One last argument can be advanced regarding the negligibility of third-

order terms: If one starts with the exact wave equation in Lagrangian

coordinates for plane waves and performs straightforward Taylor-Series

expansions, one can demonstrate that the third-order source terms are a Mach

number smaller than the second-order source terms. Hence, even If third-order

source terms result in cumulative effects (as do the second-order terms), the

contributions to the answer from the third-order terms will be a Mach number

lower than contributions from second-order terms (the Mach number in water is

rarely greater than 10-4). This holds as long as dispersion is negligible,

which it is in fresh water for frequencies up to 1014 Hz. Again, the plane-

wave case may be regarded as a worst-case situation, since geometrical

spreading will dilute the effects in higher-order geometries.
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We begin this discussion by referring to the exact wave equation in

Lagrangian coordinates [see Reference 37, Eq. (35)]

C2 2
a ] - aa

An expansion for the wavespeed c, accurate to third order, has been given

by Van Buren [38]. It is

B + c B2  B 1 2

0 -4A c0

In this equation A, B, and C have their usual meanings--namely,

ap2 2 2p
APo0(-p)Sp= Poc, B = P S,p=P

P 00

and C =io S , p,
0ap3 'I0

Substituting this expansion for tile wavespeed into the exact wave equation in

Lagrangian coordinates, expanding the term (l+&a)-2, and retaining only terms

of third order or less yields:
i "" Co2 2[ gu

c.- Co [(- + 1) -o-2 a a

0

2 2 2

0 0B u 2

4 ( - + 1) -- a +  
]aaa"

0

The quantities (u/co), &as and &aa may all be regarded as being of the

order of the Mach number. Hence, the above form of the wave equation can be

Interpreted as follows: The first set of square brackets (with its coef-

ficients) may be regarded as a source of second-order waves. The second set

of square brackets ary be regarded as a third-order source expressior. As

previously mentioned, since the third-order source terms are all a Mach itumber

swAller than the second-order source terms, their contributions will always be

a Mach number smaller than the contributions from the second-order terms.

Hence, even if these third-order contributions are cumulative (as are the

second-order contributions), they will always remain small relative to the
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second-order contributions. [lence, tor all practical purposes, a solution to

the second-order nonlinear wave equation may be regarded as sufficient for

specifying a solution to a nonlinear underwater sound propagation problem*.

It is frequently the case, however, that exact solutions to even this more

simplified equation are too difficult to obtain. In such cases, a solution is

usually obtained by using a perturbation-series expansion in Mach number of

the acoustic pressure. This expansion is generally substituted directly into

the second-order nonlinear wave equation (rather than returning to the still

more complicated fundamental equations). Such a substitution can be used to

obtain what is known as the simple-source formulation of the second-order

nonlinear wave equation.

When one uses a perturbation expansion, however, one must proceed with

extreme caution. Although the starting equations may be regarded as suf-

ficiently accurate (whether starting from the fundamental equations or the

second-order nonlinear wave equation), the solution obtained by a perturbation

series may become inaccurate if the series is truncated too early. In fact,

most such perturbation analyses are carried only to second order (since higher

orders become exceedingly complicated). In this case, inaccuracies arise due

to the failure of the fundamental assumption made in such treatments, namely

that the second-order field remains small relative to the first-order field.

Since the Mach number is rarely greater than 10- 4 in water, it might appear

this assumption would never become questionable (in fact, it may appear pecu-

liar that second-order effects ever become measurable). The reason they do so

is that such effects tend to act cumulatively with propagation distance.

Hence, the second-order pressure (for example) at a given observation point is

not simply a consequence of the value of the Mach number at that point.

Rather, it is a consequence of the entire integrated history of the fields

between the sources and the observation point.

In essence, this means that the important second-order contributions to

the pressure are not themselves second order (c2 ), but rather of the order

of C2 times an enhancement factor. What this factor is can be determined for

plane, cylindrical, and spherical geometries due to the fortuitous

*Hydrophones can rarely be calibrated more accurately than to within I dB of
relative error. This corresponds to more than 12% experimental error.
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circumstance that the Bessel function expansion used by Fubini-Chiron in the

planar case 171 can also be used (when thermoviscous losses are negligible) to

solve the higher dimensional cases [see Reference 13, eq. (13)]. After

Fuhini-(hiron, we can use the first terms of this series to estimate the

growth behavior of the nonlinear fields. In order to do so conveniently, we

introduce notation similar to Blackstock's in Reference 13:

K

xa X

o (plane)

f 2/a (Va - /o (cylindrical)
0 0

a log (O/o ) (spherical)

where again e =Mach number, X = discontinuity distance, and x propagation

distance. (This choice of Blackstock's dimensionless quantity a is made in

order to render his Bessel-function expansion equivalent to that of Fubini-

Ghiron.) We can estimate the appropriate "onhancement factor" via the ratio

of the second-order to the first-order contributions to the field from this

Besse'-functton series. This ratio is equal to [J2 (2f)]/[2 J1 (f)], which (for

small arguments of the Bessel function) is approximately equal to 1/2 f.

Hence, the enhancement factors for each of the three geometries becomes:

I g (plane)

XIi ( ti ) (cylindrical)

x
Y - log (--) (spherical)

0

wherL x. represents thte lqcat ton of the scatterer's surface in the nonlinear

scattering problem of interest here.

Confirmation of the growth of the second-order fields relative to the

primary fields is provided by the many successful measurements of nonlinearly

generated field effects described in Chapter 1. Therefore, it is seen that in

an underwater nonlinear propagation problem, the primary fields tend to decay

(due to geometrical spreading, energy loss to secondary field generation, and

energy loss due to absorption when high frequencies and/or large propagation
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distances are involved) while the secondary fields tend to grow. Eventually,

the secondary fields can become comparable to or even exceed the primary

fields. When this occurs, solutions based on second-order perturbation

methods are no longer valid.

In the following section, the second-order nonlinear wave equation is

derived from the fundamental equations. The acoustic pressure is then ex-

panded In a perturbation series to second order. This pertirbation expansion

is used to obtain the simple-source formulation of the second-order non-linear

wave equation. This equation together with the first-order equation of linear

acoustics constitutes essentially a type of Born-approximation. It is used to

solve the problem of the nonlinear scattering of acoustic waves for vibrating

obstacles for three different geometries in Chapter II, Sections E, F, and G.

Since these solutions are obtained via a perturbation method, their validity

is restricted to small propagation distances from the scatterer's surface.

D. Second-Order Nonlinear Wave Equation

Any Investigation of the behavior of ftnite-amplitude acoustic waves in a

fluid begins with the basic equations of motion. These can readily be derived

by appiy[i.g mass and momentum conservation laws to the fluid under considera-

lon. The resulting equations are expressed below in Eulerian coordinates:

1. The Equation of Continuity (Mass Conservation)

a + v •p) = S. (1)T

In this equation, S is a mass source term representing the rate at

which mass is introduced into the region of interest. It can be used to

represent monopole sources of sound as well [391. In the current work,

however, sources of sound will he handled instead via specification of

appropriate boundary conditions (i.e., by specifying the normal velocity

of the surface of the source), and the solutions will be restricted to

regions outside the surface of the sources. Hence, the term S will be

taken to be zero.
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2. The fiquation of inomenttim Conservation

-(u) + (Puu) - " (2)

where p is the mass density, u is the particle velocity, and p is the stress

tensor whose components are:

aui  au 2 auk

P tj=P6 i.+ a uY-
i k k

where p Is the coefficient of viscosity and P is the pressure.

Lighthill (L81 combined Eqs. (I) and (2) to produce the following

equation of motion for the mass density

-c 20 2 = _ _ix2

1, ax ax

where 0 = D'Alembertian Operator = V2  1 a2
C at

0 4
with c Infinitesimal wave speed (WaP,3pV2SP (4)

and the Lighthill stress tensor T is defined by

TIj -- Puiuj + Pj - PC0 26ij (5)

where Pij is as defined above.

In the present work, frequencies on the order of 100 kHz and propagation

distaices on the order of 100 cm in fresh water will he considered. The ef-

fects of viscous attenuation (for a plane wave) may be summarized by the equa-

tion P - Po e - a '. At a frequency of 100 k!|z in fresh water, the constant a has

a value of -10 - 4 m -1 . It is clear, then, that viscous losses for the present

work are completely negligible and Pjj may be replaced by P6ij. (In fact, the

equations for sound propagation in fresh water need not include the effects of

visco-ity until frequencies approaching I MHz or distances on the order of ki-

lometers are considered. Hence, the equations herein derived have a broad ap-

plicability; however, viscous effects will be important in the boundary layer.
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Substituting Tj into Eq. (3) yields:

LI = a2 (Puiu) 2

2t2 xi,j + V
2P (6)

which may be used to show that*

2 a2  2 2(Puiu)
02P 2 (AP - co2AP) _ axax (7)

The usual wave equation of linear acoustics, 2p = 0, follows if we only

retain terms that are linear in the field variables. On the other hand, we

need to retain terms up to the quadratic in the field variables in order to

obtain a nonlinear wave equation that is accurate to second order. As stated

earlier, third and higher order terms in the wave equation do not measurably

contribute to nonlinear acoustic behavior in liquids (such as water) where

these results will be applied. Thus the term Puiuj can be replaced by its

second-order approximation P ouiuj, thereby neglecting the third-order term (p

- Po uiuj. The last term in Eq. (7) can now be written:

2( u ) ( ,2au au
a2(pu p {( . )( . ) + ( .52 + y ax ix } a

-ax ax P (8)uuaxa
ti,j i ,j j

Now, it can easily be shown that

au au
-l• - ..(1. 4. (9)

Also, by vector identity:

I ) = _I 0(u2)  + x (Ox. ,o

*In obtaining Eq. (7) a factor of P has been replaced by Ap and P by AP. This

may be freely done due to the presence of the differential operators acting on
these quantities. This freedom will frequently be used in several of the
equations obtained throughout the remainder of the current section.
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It c :n be shown that in I invr ;couHL IVs tle parL Ic Ie velocity i IVld is

Irrotational; i.e., xu = 0 [the valldLty of this assumption is discussed In

Hunt 137] in reference to his Eq. (56)]. Although the particle velocity is

irrotational only to first order, Blackstock [401 has pointed out that any

factor in a second-order term may be replaced by its first-order equivalent

since a more precise substitution will result in terms of third (or higher)

order. (Blackstock calls this fact the substitution corrollary.) Since the

last term in Eq. (10) is clearly of second order, we may freely use the

irrotationality condition In this term.

Combining the equation that results from Eq. (10) by using this

substitution with Eqs. (8) and (9), we obtain:

2(pu Iu j) 2 2_ax(Px) 0 [(U.40-.) + (.) 2 + V2(1 2 (11)

In the first term on the right-hand side of Eq. (11), we may freely

replace .u by equations accurate to first order, since the overall term will

remain accurate to the second order due to the presence of + dotted into the

remainder of the term. Of use here is the first-order continuity equation as

obtained from Eq. (1):

U at (12)
o

(The "I" over the equal sign denotes first-order. This notation shall be

adopted for the remainder of this thesis. Similarly, a "2" over the equal

sign will denote second order.)

Therefore the first term on the right-hand side of Eq. (11) becomes

2"0 " (U) (Op).
p at (13)

To complete the analysis we need an equation of state for the fluid

medium. Since any thermodynamic quantity in systems in which pressure,

volume, and temperature are thermodynamic parameters can be represented as a

22
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function of any two state variables, we can obtain an equation of state by

expanding the pressure in a Taylor series in the state variables p (density)

and S (entropy). This yields

P = Po0 +  ap (p-po) + 22 ap- (- 0

aP,+ ... + ( 3P (s-s°) + .. .(14)

It is usual to simplify Eq. (14) under the assumption of adiabatic

compressibility. According to Morse & Ingard [41], adiabatic compressibility

is achieved under the condition that the highest frequency component in the

acoustic field is significantly less than (co2p c )/k, where k is the thermalo 0p
conductivity and c p is the specific heat at constant pressure. For water,

this expression gives a frequency of about 101 Hz, a value well above

anything of interest in the current work. We will, therefore, neglect

contributions to the pressure in Eq. (14) due to changes in entropy, giving

(to second order)

2 3p , (1a2p)22
P a P + (aP) (p-p + (p-p) (15)

0sI-p -P 0  2 3 P2 S'pvP0

If we solve Eq. (15) for P - P0 to first order, we obtain

p o AP ( (P-P 2 p (16)

0 =0- ) (S- p o) c0

or, in terms of the "del" operator,

1P ic 21p, (1?)

where Eq. (4) has been used for co .

The equation of momentum conservation to first order is
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au
p0 1

Combining Eqs. (13), (17), and (18) yields the following relation,

accurate to second order.

(,; ) .,)2 •-a2i L2+
(UMO u) - -M -(19)

C at2

0

Combining the elementary relation

I a 2 + a. (20)
S--(U) u --

2t at

with Eq. (19) gives

( 2 2u 1 u 2

(u4)( .u) a 5 1F (21)
2c at2  c 0

2  -

Also, by definition of the D'Alembertian operator,

a2+ 2

2 = V2u (22)

c at
0

Combining Eqs. (21) and (22) gives

2 1 2+2 -1 2+2 1 a 2(U -2u) = U - u --- ( ) (23)c
0

We now consider the (04)2 term in Eq. (11). By using first-order

approximation for the equation of continuity [Eq. (12)1, we obtain

22
( -- T) * (24)

2 atPO

Combining Eq. (24) with the elementary relationship
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1 a2(AP) 2  a 0 . p 2a 2 p -- + --- ) (25)

and with the D'Alembertian operator acting on 00 2 ,

= 2(Ap)2 = 2 ( Ap) 2 _ 1a 2 (P) 2  (26)
2 at2

0

gives

2 2

0 + 2 2C V 2 (Ap) 2  C 2 2 Ap a2Ap
4) 2 2 - 2 - 2 2 (27)

p 2p0  at

Substituting Eqs. (23) and (27) into Eq. (II) yields

a2 (Putuj) u + 2 c 2 (Ap)
2

ax p V u 0 +
i,j 2p 0 2

0

+ 2 2I Du 2 . V2(Ap)2 Ap AP . (28)

co  2P PO at2  (

Using the elementary fact that

SV2 (Ap) =ApVAp + ( Ap)2 , (29)

we obtain for the last two terms in Eq. (28)

2 2 VP 3 2 Vp
2P02 PO2 at 2

0 0

c 0 2  
- Ap 3a2

c 2 co2 Ap )2A
Po Co t 2

2- h)2+0 r- V Ao - i a A (30)
P2 p 2+ a
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I e-ll I i |i t~l.t ,, i | i. m Iiqi,= t .'t, , * . l. I.i I I1"i,1 .uadI~r. , *43 i . ,,I Ihi.

substitution corollary allows simplification of Eq. (30) to give, accurate to

second order,

2 2co 0 2( p 2  Ap 3 2Ap 2 Co02(1 --- ( AP)
2 .(31)

2P O P2 P o 2

0 0 0

Now, Eqs. (17) and (18) may be combined to give the first-order

approximation

2 
(32)

c

Finally, Eqs. (31) and (32) may be combined to show that the last three terms

in Eq. (28) vanish. Hence, Eq. (28) becomes

a2
-a(/axt P = V U 02 PU2+ -C 2 (Ap) 2 /P ]. (33)

From Eq. (16) we have the first-order approximation

AP 1_ 2 (Ap) °  (34)

Using this in Eq. (15) yields, accurate to second order,

l 4 (2p)AP Z c2Ap + c a ni) (AP) , (35)

Sap2 S,p=P

or

_ 2 -6 a 2P)2
- c 2 AP - co 0) (AP)2. (36)

0 2 aP2 S 'PPo

If Eqs. (33) and (36) are substituted into Eq. (7), the following

equation is obtained:
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2 2 1 -6 (2P) 2 2
p 2 Co 2 2

ap SP=P at

2 1 +2 +1 2 2 - 2(37)o (-P 0u + CO (AP /P 0 P VU (7

An equation equivalent to Eq. (37) was first derived by Eckart [15] in

1948, and later by Westervelt [16] in 1957. In 1963, Westervelt [171 trans-

formed this equation into what is commonly referred to as the simple-source

formulation. However, in so doing, he used an expression valid only for plane

waves. In what follows, Eq. (37) will be transformed into the simple-source

formulation without recourse to plane wave properties.

In order to carry Eq. (37) further, we require some additional first-

order relationships. Since it is irrotational to first order, a scalar

function * known as the velocity potential can be assumed such that, accurate

to first order,

u ~* (38)

The scalar potential * is a solution to the linear homogeneous wave equation
0 2f =f 0.

Now, by rearranging the definition of the D'Alembertian operator acting

on u2 and by use of Eq. (38) we obtain, accurate to second order:

V2u 2 2 2 2 -2 32 p01{2 (9

2 U + co  at (39)

The last term can be rewritten using the identity

p1 - V2 #2 - +Y2 (40)

From the definition of the D'Alembertian we have
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22 022 + 2 2 . (41)
at

2

Also,

V2 -22_ + 2a20 = c -2 32 (42)

22

V2 [1 o at2  at2

since = 0.

Substituting Eqs. (40, 41, & 42) into Eq. (39), the following second-

order expression for V2u2 is obtained:

2 2 -2 a2  1 2.2 -2 aO 2(

u22 u2 +c Co at2  o -

If Eq. (43) is substituted into Eq. (37), the following equation results:

O 2 _ -t ~c;o(2~P) a2(p) 2  oo-2a 2 [ -2.a.2

ap S'P=Po at2  2[at2 o t

+ 02 1 -1I 2 2 1 2 1 -2 2 2[ 2 P c 2(Ap)2- PoU 2 -- (0 (44)o 2- Po~o at2

We next wish to re-express the second term of Eq. (44) in terms of the

acoustic pressure. We begin to do so by combining Eqs. (18) and (38) to

obtain the first-order approximation

Op 1. 0 (P It) (45)

Equation (38), which defines the velocity potential, allows a certain

freedom in the choice of the function *, since it is only this tunction's

gradient that is therein defined. (This is analogous to the freedom of choice

of gauge In electrodynamics.) We choose to impose this additional freedom in

such a way as to allow Eq. (45) to possess the "solution", acetrate to first

order
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P - P AP- . (46)

It will be noted that Eq. (46) in no way contradicts Eq. (45) or

Eq. (38); so choosing 0 such that the usual additive constant obtained in

solving an equation such as Eq. (45) to be equal to Po is a consistent, and

hence permissible, choice. A second way of viewing this situation is to

consider the combination of Eqs. (38) and (46) to constitute a (consistent)

definition of *. [Although Eq. (46) is only one of an infinity of possible

choices of "gauge".] Using Eq. (46) in Eq. (44) gives

2 -4 -1 Po (a 2 p -2 a2 (AP)2

02AP -C P [I +-- (p2 c 2
0

21 -1 2 2 1 2 1 -2 a2  2
+ 0 [ P C (Ap) - 2 Pu _ 2 PC -t

2 (,2)]. (47)

at

Now introduce the perturbation expansion* P - PO = ePI + E2P2 where
02 P = 0 + obtain secondary waves as solution to Eq. (47).

Equation (47) may be simplified by moving the terms under the

D'Alembertian operator on the right-hand side of this equation to the left-

hand side. On the left-hand side of this equation we then have P2 + addi-

tional terms under the D'Alembertian operator. This new equation can now be

solved for this new combination, subtracting the additional terms from the

solution to obtain P2. In practice, the terms under the D'Alembertian

operator on the right-hand side of this equation are very small and can

actually be neglected. In any case, these terms will clearly be non-growing

contributions to the solution and will quickly be overwhelmed by the growing

contributions.

*It is important to note that up to this point in the derivation no pertur-
bation analysis has been used. Hence, Eq. (47) remains valid even under
conditions that invalidate perturbation analyses.
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One /further remark is worthwhile in discussing the D'Alembertlan terms of

Eq. (47). If, in fact, these terms are not negligible in comparison to the

predicted value for P2 obtained in solving these equations, the result thus

predicted will most likely be in error. This is due to the fact that when the

D'Alembertian terms are lumped onto the left-hand side, an appropriate

Integral term must be included [28] to reflect the fact that they satisfy

different boundary conditions than P2 . Hence, in solving Eq. (47) via this

"lumping" technique, the values given by the D'Alembertian terms on the right-

hand sides must always be compared with the predicted value for P2 in order to

[nsure consistency of the solution*. This fact has not been previously

ment loned in the l terature.

At this point, we assume the D'Alembertian terms on the right-hand side

of Eq. (47) are negligible.

If we make the definitions:

Pi (-2p)p2
o/ 00

C 02ap 2 s 'P=Po

B
nonlinearity parameter = 1 + -

i2A

q simple source strength - 2 a 2

we can cast Eq. (47) Into the form

-pP 2 (' t) " (48)

*The calculations relevant to the problems considered in this thesis are

performed In Chapter IV. B, where estimates of the errors introduced in the
relevant surface and volume integrals are discussed.
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The prime has been added to the symbol for the second-order pressure to denote

that certain second-order quantities have actually been neglected*.

E. Plane-Wave Scattering from a Vibrating Planar Surface

In this section, the problem of the generation of sum- and difference-

frequency waves will be addressed for the case of a plane wave normally

incident on a surface deforming uniformly and harmonically.

1. Censor-Method Solution

Although he treated several different geometries, Censor never considered

the simplest possible case. This case is a plane wave of angular frequency w

normally incident on an infinite plane vibrating uniformly with angular

frequency 9 (see Fig. 2). We obtain the solution to this problem following

the procedure presented by Censor 123).

We represent the incident plane-wave acoustic pressure as:

U i = Pie-i((x/co)+t, (49)

i,= i e0(9

where x is the Eulerian position coordinate**. The scattered wave is assumed

to be of the form:

US = dva(v)e iv[(X/c )-t. (50)

Ui+U s is the total wave field. Using the method of Censor, we require

the vanishing of the normal particle displacement at the planar surface x = 0

*In solving Eq. (48) in this report, we will not, of course, obtain a solution

accurate to second order.. P ' simply reflects corrections to the primary
field resulting from the "enancement" factors discussed in Chapter II,
Section C, arising from second-order quantities.

**Censor does not specify that x is the Eulerian position coordinate, but this

choice appears consistent with the way he treats this quantity in his paper.
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INFINITE PLANE VIBRATING
UNIFORMLY AT ANGULAR
FREQUENCY a

RADIATED PLANE WAVE OF
ANGULAR FREQUENCY a

- SCATTERED WAVE OF ANGULAR
FREQUENCY w

-.4-- INCIDENT PLANE WAVE OF
ANGULAR FREQUENCY w

Fig. 2 - Geometry of plane-wave scattering from a vibrating plane

for the rigid-body scattering problem. Since we consider only linear wave

fields in the Censor method, the acoustic pressure satisfies the equation

p a2 xo -(51)

ax - 'o t0

For assumed plane waves, we obtain

X . P (V 2-x) p. (52)

Hence, the operator 0 used by Censor becomes

0-2 T (53)

and Censor's Eq. (4) for the boundary condition becomes
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_'-i

{- Pe-iP[(X/C 0)+t
c i
0

(54)
+ ~-I [(eo-11=O

+ f da(v) e iv[(x/c)-t 0
-C 0

We now let x = Lslnt on the surface and perform the following expansions

*(ive/c )siniit
e 0/o )Sin t - sinftl + ... (55)

0

a(v) = A(v) + CS(v) + .... (56)

We substitute Eqs. (55) and (56) into Eq. (54), retaining terms to zeroth

order in c:

-1 -l
--iwt V ivt

- -e + f- u = 0. (57)
c C
0 -0 0

iv't
Multiplying Eq. (57) by e i  , integrating over t, and letting V'*V

yields

A(v) = P i(v-w). (58)

Taking next the terms of first order in e when Eq. (55) is substituted

into Eq. (54), we obtain

21P 1 1 V- 1 -ivt

2 snSt + f dvB(v) c e = 0. (59)

C -0
0

Solving Eq. (59) for B(v) gives

V P (v-Q-W) - 6(VHI-W)l. (60)B(v) = P1 c- 6vL-)-~vf- .(0

0
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Substituting Eqs. (60) and (58) into Eq. (56) and using the result in

Eq. (50) gives

U t{cosw( - t) + C c cos (1+a)(_- - t)I
S 0 c0

+C(Q-W) Cox 1.(1+cos [(-a+ )(- - t)]). (61)
CCo 

0

We determine the constant c by requiring that the acoustic pressure for

the plane wave radiated from the vibrating plane have the form

P = P e( 0)x-ft (62)

r

Substitution of Eq. (62) and x = esint into Eq. (51) gives

P
rC

Pence, the Censor solution for the scattered acoustic pressure components

at angular frequencies w. becomes

PiPr e{*(x/co ) - t}(63)
P c 2 :
oo
0 0

where w w*S2 (w>S is assumed) or, taking the real part,

P i . ) - tj}. (64)P0 c 02 Q-

2. Solution Using One-Dimensional, Second-Order, Nonlinear Wave Equation

In solving the problem of the scattering of a plane wave from a vibrating

plane surface, it is convenient to use the one-dimensional, second-order,

nonlinear wave equation expressed in Lagrangian coordinates. This equation is

shown by Fublni-Ghiron [71 to be
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2 a2
_ 2 at a2  (65)

0 ax a-

[In this section x refers to a Lagrangian coordinate.)

We now represent 4 in a perturbation series F -, E2 1+ E ... where

P is of the order of the Mach number.

We then substiLute Into Eq. (65) and equate equal orders of (-. This

provides the first-order equation

"" 2 a2 (t )=(6

(1) Co ax2  , (66)

(the equation of linear acoustics), and the second-order equation

2 2(2 )  C02 it+r) a ()2
""2 Co___ _ __ _ _

(2) - -' 2o a a--1' 2 (67)
3X2  2 2 - a

To sulve the problem of nonlinear scattering of a plane wave by a vibrat-

ing plane using the perturbation approach outlined in Section ii. C, we must

first solve the first-order (linear) Eq. (66). The physical boundary condi-

tion to be met is that there is no relative displacement between the planar

surface and the fluid particles in contact with the surface*. This condition

can be naturally met in Lagrangian coordinates by equating the displacement of

a particle at the surface to the displacement of the surface itself.

The first-order solution is clearly the sum of the incident, scattered,

and radiated waves:

Y(l) T itsinw(t + c-.) - sinw(t - o x)1 + & singlt - Co) (68)
0 0 0

*Since we are solving second-order equations here, there should actually be a
second boundary condition. In this case this condition takes the form of
requiring that, apart from the quantity CisinwIt + (x/co)}, there are no
incoming waves.

35



The first two terms In this expression represent the particle

displacement for the rigid-body scattering solution, in which the reflected

amplitude is the negative of the incident amplitude to insure the vanishing of

the displacement at the rigid-body surface. The third term represents the

radiated wave.

The first-order solution l is now substituted into the right-hand side

of the second-order Eq. (67) and the resulting linear inhomogeneous equation

solved for E2. if we retain only those terms that contribute to w... we

obtain:

• 2 2(2)* 
i r

-------
(2± x 2oc

(A~x+ x
[-(w:sin(w t + c- ) + w sinw (t -

o 0

(69)

where again w = W±Q (and >If is assumed).

Equation (69) may be solved by the usual methods for ordinary

Inhomogeneou6 equations with constant coefficients. The result is:

-(l+F 'r { x x
r'(2)± ~ ~~ . "'( 2 o~ t -wu t  -

0 0 0

W (70)
+x x

W 2 2 [-sin(wt w, c-) + sin(w t-w -- )}
CA - _+ o0

where a homogeneous solution has been added that causes 2 = 0 at x 0.

We obtain the corresponding acoustic pressure by performing the

integration

2

(2)*= - f ao 2

since this relationship is exact to all orders in Lagrangtan coordinates.

Also, using the fact that the acoustic pressure and displacement amplitudes
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(for plane waves) are related to first order by P = P/oIPco), we obtain the

following expression for the sum- and difference-frequency pressure waves

(1+r) IPr  *x
P(2)* 4_c 2 C sin(w t-w -) - cos(wt-wt c--)

0 o

2
-2W

X _
2 cos(W*t+ ; c) + -I- cos(W t- - (71)

W WT0 *0

It should be noted that Eq. (71) could have been stated in dimensionless

2
form. Specifically, the ratio P2 /([(l+r)PiPr ]/(Poc )) depends only on

T = W t, W ± X/Co, the frequency ratio, and the boundary condition.

Comparing Eq. (71) to Censor's solution [Eq. (64)], the most striking

distinction between them is the presence of the "x" coefficient in the first

term inside the bracket of Eq. (71). Censor's result, being a boundary-effect

solution, does not grow with distance from the scattering surface. Contribu-

tions fru:' medium nonlinearities, being a cumulative volume effect, do grow

with distance from the scattering surface. Hence, the nonlinear effect pre-

dicted by Eq. (71) will overwhelm that predicted by Censor within a small

distance from the scatterer.

At this point we put these remarks on a more quantitative basis as well

as calculate a region of validity for Eq. (71). First we consider relative

contribution of the term arising from satisfying the boundary condition to the

term representing the growing contribution from the virtual volume sources

(i.e., the term with the "x" coefficient). The term that arises from

satisfying the boundary condition is the last term in Eq. (71). Hence, a

quantitative estimate of the relative contributions can be obtained via the

ratio of the coefficients: (2w co)/[(w,2_ w2 )xj. Using primary frequencies

of 160 and 100 kHz (which are of experimental interest later in this thesis),

this ratio gives approximately (i.94xlO- 3m)/x in the difference-frequency

case. Hence, the boundary effect becomes less than 8% of the volume effect at

just one difference-frequency wavelength distance from the scattering surface

(this wavelength is approximately 2.5 cm).
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Also of interest in this problem is the distance to which the solution

represented by Eq. (71) remains valid. This can be estimated by comparing the

energy density of the secondary waves to the energy density of the

primaries. The "secondary waves" include not only the sum- and difference-

frequency waves but the second harmonic waves as well.

We can estimate the second-harmonic pressure using the formula obtained

2 3by Fubini-Ghiron [7]: P2w = [(P 0u)/(4poc )1[2+(B/A)xi, where the parameter

y of Fuhini-Ghiron's original expression has been replaced by 1 + (B/A) (see

Reference 5, p. 99). We can estimate the sum- and difference-frequency

pressures using the coefficient of *x" in Eq. (71). Using l00-kHz primary of

105-Pa amplitude, Fubini-Chiron's formula reduces to P = (744 Pa/m)x.

Similarly, if the second primary is taken to be of 160-kHz frequency and also

105-Pa amplitude, the sum- and difference-frequency pressures are

p+ = (5.46xio 3 Pa/m)x and P = (1.26x10 3 Pa/m)x. We can estimate the energy

densities of each of the relevant waves using the elementary plane-wave energy

density formula Po2 /(2poco2 ). We estimate the energy density of the primaries

by inserting 105 Pa for P0 and multiplying by 3 (to account for the incident,

reflected, and radiated waves), giving approximately 6.7 J/m 3 for the

primaries. We estimate the energy density of the secondary waves by applying

this equation separately to each of the four secondary waves in turn and

adding. This gives approximately [7xlo (J/m5 )X. Hence, the energy density

of the secondary waves becomes 1% of the energy density of the primaries at an

approximate distance of x = 3.1 m. Therefore, it is reasonable to expect the

solution to be reliable out to a distance of 3 m.

Finally, to establish the fact that viscous terms do not become important

prior to this distance, we calculate the discontinuity distance (see Reference

5, p. 1041: I/X = [(i+(B/2A)jf[(wu0/c o2)]. For a frequency of 160 kHz and

amplitude of 105 Pa, this formula gives approximately 9.6 m. Hence, if the

solution Is restricted to distances less than 3 m, viscous terms can

reasonably be expected to play a minor role.

One final comparison of Interest Is the volume effect term of Eq. (71)

r.lative to the boundary-effect predicted by Censor as represented by

Eq. (64). We rel)resent this as
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Censor 4c

[P*Inonlinear volume~

For a typical planar surface frequency of 100 kHz, the two effects become

equal at a distance x on the order of 0.1 cm. Due to the presence of the "x"

factor in the nonlinear volume term, these volume effects continue to grow

from this point, while Censor's surface effect remains constant.

One should not be disturbed by the presence of the S term in the denom-

inator of this ratio. In the case of low S1, the relevant factor to scale the

distance is the wavelength associated with S2, which is co /Q. Hence, if we lot

x = fco/S1, we can determine the fraction (f) of a wavelength at which the non-

linear volume effect overtakes Censor's surface effect. This occurs for x =

0.89 (co/Q). Therefore, even in the limiting case in which the frequency of

vibration of the planar surface approaches zero (maximizing Censor's effect

relative to the nonlinear volume effect), the difference-frequency pressure

generated by the fluid medium exceeds that produced by Censor's surface effect

within a propagation distance less than the longest wavelength involved In the

problem.

3. Some Comments Reardn the Censor Approach to the Problem of the Plane

Censor states In Section (4) of his paper that the fundamental boundary

condition for the problem is the vanishing of the normal displacement. It is

interesting to note that such a treatment is equivalent to simply recasting

the incident wave into Lagrangian coordinates (a system that follows fluid

motion), treating the problem as a simple rigid-body scattering, and then

transforming the result back into Eulerian or fixed coordinates. We proceed

to demonstrate the validity of this interpretation of Censor's approach.

We begin by transforming Censor's incident plane wave (apparently written

in Eulerian form) into Lagrangian coordinates. An arbitrary Eulerian

function, fE(x,t), may be transformed into its associated iagrangian function,
fL(a,t), by an expansion of the form
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jL(ax) tf ( x- )tx=a+(a,t) f fE(X,t) 1

+ afE(x,t) 1  t) +(ax Ix-a(72)

where a = Lagrangian position coordinate

x - Eulerian position coordinate

= displacement (common to both systems).

Letting fE(x,t) = pE(x,t) = Poe-iw[(x/c)+t] which is the form of

Censor's incident plane wave, and performing the expansion around a = 0 (the

boundary surface of the plane), where (*,t) = esin~t, one obtains (neglecting

terms of order c2 or greater)

pL = -iwt - Pe-iQ(i-1)t -I(w+2)t
P (o,t) = P e  2 Pe -e ]. (73)

0

To compare Eq. (73) to Censor's result (Eqs. 63), we must re-express

Eq. (73) in Eulerian coordinates. This may be done by constructing the

function PL(a,t), where the Lagrangian coordinate "a" is inserted into the

right-hand side of Eq. (73) in the appropriate places to form outgoing plane

waves. One can then expand the resulting function pL(a,t) in a series of the

form

fE xt) - fL (at)= fL(a,t)la= x

af L(a 21 )
- l ~, a=xF (XK0(74)

We construct PL(a,t) from the form of Eq. (73) as
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L(t) = iw[(a/c°)-t] 2e {i(w-a)[(a/co)-t]

0
0

i (+ ) [(a/c o )- t ] ,,i
- e (75)

and now expand pL(a,t) in a series of the form of Eq. (74) (neglecting terms

of order e2 or greater) obtaining:

PE i(x,t) P e w[(X/C )-t ]

0

oE {i-)[Xo)-t] _ e(W+Q)[(X/Co)-t]}

iW_oo i( /Co)-W+ ( C/ p [I()-t) e((-7)[(X/Co)-t)
- e 0 2c e0

o o oF(~)
( + ) e ( + Q)[ X/C o)-t] (X,t). (76)

c

We now let e E sinit and again neglect terms of order 2 or higher. The

result is

P E(x,t) = P iw[(x/c 0 )-t)

0

, - (i[(WX/Co)_(W_)tI _ el[(Wxlco)_(W )tJ} "  77

We now recognize that the above expansion is valid only at x = 0 (since

this is the only place where C a csinat). Evaluating Eq. (77) for x - 0 and

using the fact that e - Pr/Pocoll, we obtain
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P Pu
poE (0,0 = e -it o r [e-i(-S1)t -i(W+S1)t]o~~)P - 2 -e e •* (78)

0 P c 2 S
0 0

Comparing the sum- and difference-frequency components of Eq. (78) with

Censor's result (Eq. (63)], we note that for Q<<u, they are identical (Po of

Eq. (78) is equivalent to Pi of Eq. (63)].

Hence, it is seen that Censor's result is clearly of the same order as

the difference between Eulerian and Lagrangian coordinates. Such effects

normally are not even experimentally measurable, since no presently available

measurement hydrophone is either completely rigid (and hence measures in

Eulerian coordinates) or moves completely freely with the fluid (and hence

measures in Lagrangian coordinates). Any presently available hydrophone will

have an uncertainty in its measuring capability, in an experiment design-ed to

measure difference-frequency waves, of the order of the difference between the

pressure predicted in a Lagrangian frame and the pressure predic-ted in an

Eulerian frame. This difference is known as "pseudosound" and is treated more

fully in the section describing the experimental results. Hence, the effect

predicted Lb' Censor cannot be measured with present-day technology.

F. Cylindrical-Wave Scattering from a Vibrating Cylindrical Surface

The present section considers the problem of the generation of sum- and

difference-frequency waves when a cylindrical wave (of angular frequency w")

is normally incident on a cylinder whose surface deforms radially in a uniform

and harmonic fashion. It is assumed that the waves at frequency w, = " ± W'

are outwardly propagating waves in the limit r+O .

1. Solution Using Second-Order Nonlinear Wave Equation.

We now consider the problem of a vibrating cylindrical surface. The

geometry of the problem is indicated in Fig. 3.
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In solving the second-order, nonlinear wave Eq. (48), we assume the

scattered pressure P5 and the simple-source term p (aq/at) may be represented
s 0

as*:

P(2) Re I Pn(r,e)e-i nt
n

and

P q 2 -Re I. Bn(r,e)e- iWn t  (80-Re0n'' (80)

n

r ri

INFINITE CYLINDER
VIBRATING RADIALLY

AT ANGULAR FREQUENCY WI'

INFINITE CYLINDER
VIBRATING RADIALLY

AT ANGULAR FREQUENCY W1

Fig. 3 - Geometry of cylindrical wave scattering
from a vibrating cylinder

*Specific estimates of errors introduced into the solution of Eq. (48) by the

neglect of the D'Alembertian terms of Eq. (47) are provided in Chapter IV. B.
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where the subscript n is used to distinguish between sum- and difference-

frequency components: n - I refers to the sum frequency and n = 2 refers to

the difference frequency. Also present in this expansion are terms corres-

ponding to the harmonics of the primaries; but since only the sum and

difference frequencies are of interest here, no special notation will be

provided for these terms. At the conclusion of this analysis, the numerical

subscripts will be replaced by the more descriptive "+" and "-"notation
Hence, for example, Pl(r,) P4 (r) and P2 (r,0)+P_( ). These replacements will

also help avoid confusion between P2 (r,O) (the difference-frequency pressure)

and P2(0) (the perturbation solution accurate to second order).

By substituting Eqs. (79) and (80) into Eq. (48), we obtain the following

equation for the time-independent amplitudes

V2 +k 2 P B=B (81)
n n n n

with kn =I/co.

We define an associated Green's function gn(,+') such that

g(r,r') + kn gn(r,r') -(r-r') (82)

subject to the boundary condition r gn(r,r') = 0 on the cylindrical surface,

where r is a unit normal vector, directed outward from that surface. Here
+

6(1-') is the Dirac delta function. We also have the condition that as r+o,

gn - (eiknr/rl/2) x function of (+', 0).

A representation of Pn may be obtained by multiplying Eq. (82) by Pn and

Eq. (81) by gn(r,r'), subtracting the resulting equations, and Integrating

over primed variables. The result is:

'n(r) = - d '(i)gn (rr') + ff d ' n'Pn(;',O')gn( ',r) (83)

in which the vanishing of the normal gradient of the Green's function has been

imposed. Formally, the volume integral of Eq. (83) is taken over all space,

excluding the volume interior to the cylinder vibrating at angular frequency

w'. The surface integral in this equation represents integrals over the

surfaces of both cylinders as well as over the surface at infinity. We will
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consider the surface integral over the w" cylinder later.

In carrying Eq. (83) to a final solution, the surface integral term will

actually be dropped, and the volume integral will be analyzed only between r'

= a and r' = r (justification for this will be presented shortly as well as in

Chapter IV). In summary, what this means is that: I) the surface integral at

r' = a is neglected, 2) the surface integral over the w" cylinder is

neglected, and 3) the volume integral from r' = r to r' = is neglected.

Estimates of the errors arising from some of the neglected terms will be made

presently (the rest being postponed until Chapter IV, Section B).

We now consider the surface integral in Eq. (83) in somewhat greater

detail. In the current problem we are considering rigid-body scattering,

although the surface is permitted to deform harmonically at frequency w'. The

requirement of rigid-body scattering manifests itself in the handling of this

surface integral. From the first-order equation of momentum conservation [Eq.

(18)], it is clear that for harmonic time dependence, the gradient of the

pressure field is proportional to the velocity of the fluid (and hence the

velocity of the surface). Therefore, in the surface integral of Eq. (83) the

-VP I... term may be viewed as the component of the surface velocity at the sum

and differeuce frequencies*. We interpret the "rigid-body oscillation" of the

surface as constraining the surface to vibrate only at the frequency at which

it is being driven (i.e., w'). Hence this term and the surface integral of

Eq. (83) vanish.

We next consider what influences viscosity might have on this surface

integral (and hence on the sum- and difference-frequency pressures). We have

already demonstrated in Section II. C that effects of viscosity on the propa-

gation of acoustic waves are insignificant in this type of problem. Hence, it

is reasonable to separately consider a "boundary region" and a "propagation

*This statement is based on the fact that the equation VP = -PO(a%/ft) is
correct to all orders (in the lossless case) in Lagrangian coordinates. In
Eq. (83), of course, the expression V'P is evaluated in Eulerian
coordinates. However, the difference between evaluating a function in these
two reference frames is of the order of pseudosound. The validity of this
statement, as well as an estimate of the effect of an error of the order of
pseudosound on the surface integral of Eq. (83) is provided in Chapter IV. B.
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region" (see, for example, the discussion on pages 281-286 of Reference 29).

For a frequency of 100 kHz in water, this boundary layer is of approximately

5.6-microns thickness (using equation 6.4.31 of Reference 29). We assume that

outside this boundary layer, the lossless equations apply and, hence, the

Green's function solution represented in Eq. (83) is appropriate. We note

that only the normal velocity component is present in the surface integral.

Hence, any tangential velocity component arising from viscous boundary-layer

effects will not influence the radiation field in a significant way.

It is assumed, then, that only the volume integral from r' = a to r' r

contributes significantly to the solution. At this point, we neglect the

surface tnegral of Eq. (83) and simply represent Pn as

- I dT'B (*')g (;,;') (84)
n(.) n n

(volume integration only be apr r a and r' 0ir).

The rigid-body Green's function appropria to cylindrical geometry is

required in Eq. (84). It is well known (421 at. is given by

n(r'r') = (2-6m°)cosm(f-*') [H ( )J (knr') !

J m'(k na) (kr)H Ml)(k r')
-( )Hm n"mHm  (k n a)

r>r' (85)

where 6mo is the Kronecker delta. Also, gn(r,r') gn(r',r).

The Green's function gn(rr') is not needed for the region r<r' since

contributions from this region (which is further from the source than the

point of interest) tend to phase cancel against one another and, hence,

contribute very little to the overall pressure at the observation point r.

Contributions from the region r>r', however, tend to add constructively and

give by far the majority of the pressure at the observation point. Hence, in

both the current geometry and the one in the next section (involving a plane

wave incident on a vibrating cylinder), the contributions to the Green's
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function integral between the observation point r and infinity will be assumed

negligible.

To complete the solution to the current problem, we must now calculate

the functions Bn(r'). In order to do so, we refer once again to Fig. 2. From

elementary trigonometry we have r' = (r2 + b2 - 2rbcosO)1/2. We now use the

summation theorem (see, for example, Gradshteyn and Ryzhik [43]) to obtain

H(1) w"' (1 "b w"r

H H (1)(Wb)j (Ar
0 c 0 0 C 00 C0

+2 H(1)(Wb)J w"r )CSO(86)
=Im c 0m c0

o o o

for r<b, and

Ho (1) (_ j _)r :j(-b)H (1)(r) 
0 c 0 c 0 c

0 0 0
o oo

w~b I) w* r(87)
+ 2 1 J (!--)H (-( )cosmO 87

m=l o C

for r>b.

The incident wave is assumed to be of the form of a uniformly diverging

cylindrical wave originating at the surface of the cylinder vibrating at an

angular frequency w" (the interiors of the cylinders are, of course, excluded

from the region of interest). Hence, allowing A' to be a pressure amplitude,

the incident cylindrical wave may be written in the form A'Ho(l)(w"r'/co).

Equation (86) is used to re-express 1to1
) . Also note that Pinc is singular at

th.origin of he w" cylinder.

The cL responding particle velocity may be obtained by use of the first-

order equation o momentum conservation [Eq. (18)], expressed in the form

U = [-i/poiej[3P/3rj (for the radial component). We thus have for the incident

particle velocity wave,
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PP

-A ()H (1)(w, "(88rinc n- c 0

+ w cs~oO
P - - C O IJ JM+ I (  -- )

0 0 m0 0

w" r (1)( ).
- Jm (Z--- ) ]Hm  (- .(88)

We assume the first-order scattered acoustic pressure wave to be of the form:

P AcosmOH l )e-" (89)scarf m m
mO o

Hence, the scattered particle velocity wave Is

IAo

U Hr + I A cosmO
sca0t co 0 oom=l

(1) +i 'r - ni()(rJiw.t (90)x[Hm~~) rg. - Hm (1)() M e-"t.90

0 0

We assume the scattering cylinder to be rigid in solving the first-order

problem; hence, the boundary condition becomes UInc 
= -Uscatt at r = a. This

condition yields the scattering amplitudes A.

0) C
A - -A' 0t) ()

0 H ((wa c 0
1 c

0

wa ___alain~i( ) - Jmi( -c-)

A -2A'H M' o [ 0 1 ()0 a) m 1 1. (91)
0 [H +l  - H 1 )]

0 0
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The firgt-order scattered acoustic pressure for r<b is thus given by Eq.

(89) with Eq. (91) substituted for Am.

The incident acoustic pressure for rOb Is given by:

in wb) (1)(wr
P A'j (C)

0 0

+ 2i iw! b )H(1) w"r )omxe-iw"t

Mnl 0 c0 (92)

Hence, the general solution to the rigid-body scattering problem to first

order Is

P to {AH0 (1) ( ) w cb) 0 r

0 0

+ AH ()w"r )+I [AH w*
0 0 c 0 M~ m mc0

+2A'H (1) w" b )Jw !- csr}e
0 0

r<b (93)

and,

= (Mi ( j~b)H (1) ( W
Lot oc 0 c0 0

4- H i)w"r)+ o H + I B
0rn0-I Mm 0

+2A'J (4)" b)H (1) W .r)]cosmole iw t

mnc m c
0 0

O~b. (94)

This can be rewritten as
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Ptot {A'H Jo (-)t oo
0 0

ccLm+ A H(1) w" r + AH()(wr)
oA (--) + [am(

0 m=1 0

W." r or
12'H --) d (- -- -) ]cosmO} e ,( 95 )

where r>(<) is the greater (lesser) of r and b and Am are given by Eqs. (91).

The primary field P1 to be used in the simple-source term of the second-

order nonlinear differential Eq. (48) is obtained by adding the cylindrically

radiated field at frequency w' to Eq. (95), obtaining:

0() 0 0e-0 mm c 0

()w" r > w ..r <-iw..t
+ (2-6 )A'H ()-])J ( I)cosme , (96)

mo m c
0 0

where A = pressure amplitude of the cylinder oscillating at angular frequency

w' and 6mo is the Kronecker delta.

We obtain the real part of P1 using the fact that

Re[P(l)I = IP(l)+P(I)*I/2. Hence,

A () re-iw't
e(1)i 20

A 2-6 w"r w"r<

+ 2 + A 2 ' c M mc
mi'O O O O

x cosme it + C.C. (97)
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If we define IP(1) 21* as the portions of P(1)2 that contribute to the

sum- and difference-frequency pressures, we obtain

(1 M=O c m I c m I

ma m c I

m0 0

X CosOeL- (W I'-)t + C.C. (99)

[P, 2~ H (1 2ij 2[ 2 r)
pc a2I(1) Jc M

0

This results in:



3 q r ( W I+ W ) 2  ( ) t ' r
o% it)+ 4 c ~ _--

2P c M=O 0
0 0

[Hm(l)(---)Am + (2 - 6w)

x r ) < -i"rl ' *")t

( - J I - cosme- + c.c. (100)
0 0

and

( 3 q) r(W'-w")
2 aD

2t c m=O
0 0

[ AHo (1)(__) [ Hm(1r ) ( )A, + (2-6 mo)
0 0

(2 ) r r (WW)t + c.c. (0)

c0m C mc0 0

By Eq. (80),

( q -I -iW t

oo -)k - [Bje i + c.c],

It should be noted that w_ , 1W1 - w"I and, therefore, B are minus the

coefficient of e- i(W -W' )t, which is explicitly shown in Eq. (101)

when to'>w". It is the complex conjugate of this when w">w'. For w'>to",
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r
P_(r)=- dT'B n(r')g n ri3r)

a

2 ab2
= -I'w'-") j A(2-6~, f dO'cosm6'cosI(G-0')

4 oc ,m-O 0

x fr dr'r'[H()I)H()I) H (1)(kr)J(krt)A*
a 0o

-ii:r~kL. H ~() -H ( 2) (w- rI)H M1 (k r)H (1 )(k r')A*
H N )0 C m c0 m

0 c''( a) m
0 0 0

()Aw' (1r wr (2) w**b W -'' JI (1) a
- (2-6 (-)0( - )Hm (-)J (-L-)

0 0 o-) H--J k-

x Hit (kr)i it 1 )(kr')] (102)

where k- - (w'-w" )/c 0

The angular integrals can be performed using the fact that

f dG'cosmO'cosI(GO')

This yields (for r<b):
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-iirr (w'-o" )2

P (r) i 4 Acos(L8)

r

a 0 0

J,,'(ka) (1) w'r' (2) w"r' 1) )

L ×{ -dr[H O (---)Ht (--)H (1)kr)g k kr')A A

H (0'(k a) o 0 0

(1) W'r' (2) w"b ,)"r' . (
(2-6o)A'Ho  ( ') H j ---)1Xt - (1 ) J

O 0 0 H tt(ka)

x HX(1)(kr)H L(1) (kr') (103)

where r<b and w'>w".

For r>b, the integrals in Eq. (103) run from a to b, plus an additional

set of integrals to those in Eq. (103) is required in which the roles of r'

and b are exchanged for the underlined terms and the limits run from b to r.

However, one additional difficulty arises when r>b. This is the fact that the

source Hankel function has a singularity within the volume of Integration.

This difficulty can be circumvented by excluding this singular region via the

mathematical artifice of enclosing the ta" cylinder with a surface of radius

and analyzing the contribution to the solution from the associated surface

integral. It is relatively straightforward to demonstrate that this surface

contribution is proportional to ekne and, hence, gives a vanishing

contribution in the limit as C + 0.

The sum- and difference-frequency pressures can once again be specified

in dimensionless form in terms of the parameters T W W*t, W * r/co,

0 , , b/co, as well as the frequency ratio.
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At this point we note that estimating a region of validity for Eq. (103)

is similar to the case of plane-wave scattering by a vibrating cylinder.

Hence, we postpone this calculation until the solution to this latter problem

is obtained (see discussion following Eq. (115)].

2. Connection With Previous Research

In 1966, Lauvstad [211 solved the problem of two eccentric cylindrical

waves simultaneously present in a fluid medium. The present work differs from

Lauvstad's in two important ways. First, Lauvstad solved only the radiation

problem; i.e., no scattering of the primaries from the cylindrical surfaces

was considered. Secondly, Lauvstad used the Green's function that vanishes at

the cylindrical surfaces for the second-order solution. This corresponds to

the rather physically unrealizable situation in which the radiating cylindri-

cal surface is acoustically soft. Since the current work used the Green's

function whose normal derivative vanishes at the cylindrical surface (cor-

responding to the more realistic rigid-body case), no limits can be taken to

establish correspondence between the results of Lauvstad and the current work.

It is nonetheless of interest to obtain an expression for the difference-

frequency pressure for the radiation problem considered by Lauvstad on the

basis of the current theory with rigid boundaries replacing Lauvstad's soft

boundaries. All that is required is to drop the terms in Eq. (103) containing

the scattering coefficients A,* (this is equivalent to inhibiting the

scattering process in the first-order fields).

This results in:

2_(')'-t(2)'-w"b

P r, iz~uw AA' )(2-6 )cos(.E0)H M(k r)H (w-b)
4 to ix c4PoC 0 £ =O 0

x f dr'r'[( -c "r )H° O f l J (k~

a o o

J'(ka)
H- 1 1k n H (t )(k_r)]

for r<b and w'>w".
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Although no general correspondence can be made between the results

presented above and those of Lauvstad (due to the different choices of Green's

functions), it is possible to establish a connection in the asymptotic

limit r+-. This is due to the physically reasonable result that the effects

of the surface contributions in this problem have become negligible at

distances far from the surfaces. It is relatively easy to demonstrate in this

limit that Lauvstad's Eq. (29) and Eq. (103) above reduce to the same

expression in this limit. It is necessary again to discard from Eq. (103) the

terms corresponding to surface scattering. It is also necessary to discard

the terms which reflect the different boundary conditions satisfied by the

Green's functions (namely, the terms with coefficients involving

derivatives). It is also necessary in Lauvstad's expression to discard the

integrals with infinite limits, which has already been done in producing

Eq. (103). Finally, the following correspondence between constants in the two

treatments must be made:

Lauvstad's Notation Notation Used Here

A + 2 2r

Al A'/(P° w")

A2  A/(Pow')

When these relations and simplifications are used, Eq. (103) will reduce

to

- 4!I-W " (2- 6t)cos(XO)H (1)(kr)

2pc £=0
0 0

X [H (2)(w-b) fdrr H (1) rJ(kr)
I fdrr'H0 -c Jkc i

o a o o

+ J (-L.-) f dr' (1 )( Jwr)H(2 )(wr ) (k_r')]
o b o o

for r- and r>b.
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Lauvstad's Eq. (29) reduces to 1/2 times this result. However, an

aprparent algebraic slip occurred when Lauvstad obtained his Eq. (29) from his

Eq.s (26, 27, and 28). [His Eq. (29) should have a divisor of 8, not 16 as

listed in Lauvstad's article.]

G. Plane-Wave Scattering from a Vibrating Cylindrical Surface

In the present section, the problem of the generation of sum- and

difference-frequency waves arising from the scattering of a plane wave (of

angular frequency wp) normally incident on a cylinder that deforms radially

and uniformly (at angular frequency wc) will be considered.

1. Censor-Method Solution

The problem of the scattering of a plane wave of angular frequency wp

normally incident on a cylinder vibrating radially with angular frequency w.

(see Fig. 4) was a problem considered by Censor. Substitution of his Eqs.

(24) into his Eqs. (10) and (6) results in his solution for the sum- and

difference-pressure waves

w r)
( (1)(

P - PpPc HI( 1 )(kca) l  0 c

0 o c
0

+ 2 O m18(1 -2 , w)a , (104)
ml P H (I)1 (q)H (1)

in m c
0

where q pa/co, Pp is the plane-wave pressure amplitude and where Pc is the

cylindrical-wave pressure amplitude defined by P - Pclo(kcr), p = kPa, k=

wave number associated with the cylindrical wave, a = radius of cylinder, and

W W ki).

In this expression, Censor's small parameter C has been replaced

by[clHl (1)(kca)Il/(p0 flac0 ), obtained by requiring the pressure and

displacement at the surface of the cylinder to be consistent with Eq. (51).
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INCIDENT PLANE WAVE OF
ANGULAR FREQUENCY CJp

INFINITE CYLINDER
VIBRATING RADIALLY

AT ANGULAR FREQUENCY dwk

Fig. 4 - Geometry of plane wave scattering from
a vibrating cylinder 4

2. Solution Using Second-Order Nonlinear Wave Equation

We must now solve the second-order nonlinear wave Eq. (48) using as P

the sum of: 1) solution of the linear wave equation

02p ( 0 (105)

for the problem of linear rigid-body scattering from a cylinder plus 2) the

linear solution for radiation from a cylindrical source. Thus P(I.) may be

represented as

P(1) Pinc +Pscatt +Prad (106)

with obvious meaning for the subscript notation. The expressions for the

well-known linear-wave equation solutions may be found in any standard
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acoustic text, such as Morse and Ingard [44]. They are

w r cc r 
P Po[Jo(-R-) + 2 mcosOJa( T) , (107)

0 2ll 0

a D( 1 ) w r i

Pscatt Am ) pt, (108)
MO 0

and

Prad = AH (1)(-S)ei c t  (109)
0

where Po = pressure amplitude of incident plane wave

A = pressure amplitude of radiated cylindrical wave

WP = angular frequency of incident plane wave

Wc = angular frequency of cylindrical radiated wave.

Ja = mth-order Bessel function of the first kind

H (1) = mth-order Hankel function of the first kind

Am = -(2 - 6ro )Po 0nre-iy sinY

tanyo = [-JI(Wpa/c O)]/(Nl(awp a/c )]

tanya = IJam-(Wpa/co )-Jm+t(wla/co)j

[N+l (wpq/c0 )-N_ (w pa/c )]

Na M ath-order Neumann function
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a - cylinder radius

co = linear sound speed.

The boundary condition appropriate for obtaining the linear rigid-body

scattered so.ution is that the fluid particle velocity vanish at the surface

of the cylinder.

Once again, in order to solve Eq. (48), we resort to the representations

of P(2) and po(3q/at) provided by Eqs. (79) and (80). Also, as before, the

surface integral of Eq. (83) does not contribute to the solution for the same

reason given following that equation. Hence, the solution may still be rep-

resented by Eq. (84). Since the geometry of the current problem is cylindri-

cal, Eq. (85) still provides the appropriate Green's function [contributions

to the sum- and difference-frequency acoustic pressures from regions beyond

the point of interest are again neglected, for the same reasons given follow-

ing Eq. (85)].

As before, in order to have a representation of the solution, a represen-

tation of Bn(r') must now be obtained. This is done by substituting the

assumed forms [Eqs. (79) and (80)] into the second-order wave Eq. (48). Once

again, we must carefully handle the complex quantities involved. We again use

the theorem that Re(z) = (z+z*)/2 to help obtain a representation for the

first-order solution P(l)(r). This provides

+r w [ o ( pr

P1(r) - A(2)(r)ei ct + i jP J
10 c i 2 0. 0

0 0

S wr+ A *csm)
m- 0  m o

+ 2 7 P -mcos(m6)J(-wP-)e p + c.c. (11O)mn1 oc

We note that P(l)(r) is of the form
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P(1 )(r) = Z e t + Z *ei ct + Z2 e p + Z2*ei~pt, (111)

where Z, - H (1)( and
1 2o c

0

w P r wo r

z j + A c05KUI(O
22 00 Com m0 0= 0

w r
+ imcosM0J ( p---).m=l o c

We must now determine which terms in [P( 1 )(r)1
2 contribute to the sum-

and difference-frequency pressures in the inhomogeneous simple source term

aq/3t of Eq. (48). These terms are [using Eq. (111)1:

P 2 = 2Z Z e-i(w p+ °c)t + 2Z *Z *ei(p +Wc )t (112)
Ml+ 1 2 1 2 pc

and

P( 2 = 2Z IZ 2*e i((pJ c)t + 2Z *Z ei(Wp-c (113)

2 1- 2 2 pc(13

where P M+ 2 and P M- 2 refer to contributions to the sum and difference

frequencies, respectively. These expressions yield for the simple source term

(wp+w)Ar ( A r w r
(p -S)+ (P H c_ p

0oat 2P 0c 0 0 0 C 0 0C0

SI A cos(mO)H (S-)H )(P)
M-0 m 0 c 0m c0

0 0

O w r w r
* 2 m (i )c(S--)J (---)e - + .+c.c.

M-1 0 o c m
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and

(w -w)2Arwr wr
P- P C P° ()

2Pc o o

+ A *cos(mO)H (I)(S--)H(2)( p )
m-0 m 0 c m C

+ 2 wP mcos(MO)Ho ( 1 ) wC r wr pr -i(W -W )t + . (114)

ml 0 0

By the same argument as given for the case of cylindrical waves incident

on a vibrating cylinder, the Bn(r' ) are simply minus the coefficient of the

negative time exponential in Eqs. (112) and (113). Two different solutions

are obtained for the difference-frequency depending on whether wp>Wc or wd>p,

since each of these cases will give a different coefficient from the second of

Eqs. (112) and (113). Since the procedures are similar in each of the three

possible caqes, we choose a particular one to represent the solution, namely

the difference-frequency pressure when w >(A (this is chosen since it
p c

represents the case for which experiments were performed).

We may proceed to obtain the difference-frequency pressure P_(r) by

substituting the expression obtained for Bn(r') by the above-described method

and the Green's function gn(r,r') of Eq. (85) into Eq. (84). The integrals on

0' may again be performed using the theorem preceding Eq. (103).

This results in the following expression for the difference-frequency

pressure:
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__ iP 0 ( p-w c ) 2 At ()r() 
o W

r , 2 o r' w r'

P(r) =H 4Ho(1(kH O)f dr'r'H C)Jo(P )Jo(kdr
2P c a 0 0

0 0

J,'(kda) r (2 r w r .
0 f dr'rH (2) -)Jo (-p )Ho(1)(kdr,)]

Ho 0 ( kda) a 0 ok r

C( A 2 wr') w r')cosU..dr j 0

dr'r'O (2)( ( (p )j (kdr ,)
t.O 0 0 d a o 0 0

J£'(kda) r '2 r' W r'd- f dr'r'H (2) ( __H 1)(p_ P ) (kdr I]
H ( 1 )'(k a) a 0 0

r w r' W r

* 2 ) i cos(G)Ht(l)(kdr)[ f dr'rH o(2 )( )j P )J(kd)
X=1 a 0 0

JL'(kda) r H (2) w r( )J r r ))(k(115)

H X (1 (kda) a 0 0

O"ce ain, the sum- and difference-frequency pressures can be stated in

nondimensional Ms. In this case the relevant parameters are

t -Wt, ? - W r/co, w a/c., and the frequency ratio.

At this point we underta e a calculatIon of the region of validity of

Eq. (115). First we consider the 'aliest value of r for which Eq. (115) may

reasonably be expected to be valid. Ther-feare several sources of error at

radii close to the cylindrical surface. These"are: 1) contributions due to

the neglected D'Alembertian terms of Eq. (47), 2) coietributions from the

neglected Green's function integral between r and -, and'Y) contributions due

to the neglected Green's function surface integral. All of these are

estimated in Section IV. B. From the computations in that section, it is
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clear that an upper bound on this error is 10% at r - 3 cm (these errors

decrease approximately as 1/r at distances beyond this radius). Hence r

3 cm can be taken as a reasonable lower limit of validity.

Next we consider the largest value of r for which Eq. (115) is valid. As

was done in the case of plane-wave scattering from a vibrating plane, we

effect this estimate by comparing the energy densities of the secondary waves

to that of the primary waves. A conservative estimate can be made by

including only the cylindrically radiated wave and the rigid-body scattered

waves In the estimate of the primary field's energy density. We choose to

represent each of these waves respectively by the simple formulas Pr = Ar/hr

and P. = As/r. For the experiment described in Chapter III, the empirical

coefficients have the approximate values As = 5x10 3 Pa and Ar - 1.36x0 4 Pa.

Again, a conservative estimate of the primary energy density can be computed

by using the plane-wave formula and adding the results. This results in an

approximate primary energy density of (4.66x10-2j m)/r.

There are two distinct angular regions for the secondary waves: angles

near 0* and angles far from 0*. At angles near 00, the difference-frequency

pressure grows approximately linearly. From the results of Chapter iII, the

formula P_ = 300 Pa/m r is seen to be approximately followed. Scaling for the

sum-frequency case gives: P+ = 1300 Pa/m r. Once again, we use the very

conservative estimate that the pressures associated with the second harmonics

follow the plane-wave Fubini-Ghiron formula (of course, the waves will actual-

ly grow much more slowly in this case). Using as a typical value the second-

harmonic pressure formula obtained in the section on plane wave and scattering

from a vibrating plane, we have P2w - 372 Pa r (we will use this for the har-

monics of each of the primaries). At a distance of 1 m from the cylindrical

surface, the energy densities of the secondaries are less than 1% of the

primaries. Hence, a reasonable region of validity of Eq. (115) may be taken

to be r - 15 cm to r = 100 cm. (The discontinuity distance calculated in the

section on plane-wave scattering from a vibrating plane can still be taken as

a reasonable estimate. Since it was approximately 10 m, viscous terms may

reasonably be said to play no significant role in the above estimate.)

In Eq. (115) the linear rigid-body scattering coefficients appear

explicitly. In the Censor solution, given by Eq. (104), these do not appear

because Censor chose to incorporate the expressions for the coefficients into
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his solution. It is desirable to re-express his solution in a form in which

these coefficients appear explicitly as they do in Eq. (115). This

facilitates the calculation of the difference-frequency pressure in the case

in which the surface is not rigid and the scattering coefficients Am must be

empirically determined. In terms of Am, Censor's solution becomes:

-(a ) (_) cosmO
m=O

Po(a/c)Jm(kpa)[im(2-6 ) + AmH (1 )(k a)0 [ (I) o mm ) H (kdr)"

Hm (1)(kda) m d (116)

Three methods were developed to analyze the integrals in Eq. (115): 1)

Numerical integration by the use of Gauss quadrature. 2) A new integration

technique that enables the calculation of the integrals in terms of sums.

3) "xpression of the integrals in closed form in terms of known, although

rarely encountered associated Bessel functions for the case kca)>M.

Method I proved to be the most direct and efficient. Numerical results

will be given in Section III. Methods 2 and 3 are discussed in the Appendix.

3. Connection with Previous Research

In 1962, Dean 120] solved the problem of two concentric cylindrical waves

interacting nonlinearly. He obtained the following solution for the sum-

frequency pressure in the farfield (for the case where a+0):

p+ WPPb(2Po 2)-l) /2 2eik+r (117)
P a P b 2 c (r)(k k b) k +ae+(17

where kakb - wavenumbers of primaries, k+ = sum-frequency wavenumber, Pa,Pb

constants that measure the acoustic pressure amplitudes of the cylindrical

primaries, and Dean's i-r has been replaced by r to be consistent with the

notation used in this work. The constants P. and Pb are related to the

primary pressures through the relations
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Pa(r) Pa[H0
(1 )(kar)/H lI )(kaa)]

Pb(r) = Pb[Ho(')(kbr)/Hl(')(kba).

The solution to the above problem can also be obtained using Eq. (115).

In order to do so, the terms corresponding to the incident plane wave must be

suppressed [these are all torms in Eq. (115) that are not multiplied by the

scattering coefficients Af]. Furthermore, the scattering coefficients At must

be replaced with 6 1o, the Kronecker delta. Lastly, the following

identifications must be made between constants used in Dean's work and

constants used in the present work:

PO P a/H1(1)(kaa)

A P b/H 1 (1)kba).

If the Iankel functions in Eq. (115) are all replaced by the first term

of their asymptotic expansions, an elementary integral is obtained and Eq.

(117) follows apart from an unimportant phase factor of ei-/ 2 .

Ill. NUMERICAL RESULTS

This chapter presents in graphical form the results of numerical

calculations based on the analytical solutions of the nonlinear wave equation

obtained in Chapter II. Censor gave only analytical expressions for his

theory. In order to compare Censor's results with those of the nonlinear

theory, his analytical expressions were evaluated numerically. The results of

these evaluations are also presented graphically in this chapter.

The configuration selected for experimental investigation was the one in

which a plane wave is normally incident on a vibrating cylindrical surface.

Censor's solution [231 to this problem is given by Eqs. (5), (10), and (27) in

his paper and by Eq. (104) of this report.
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In order to illustrate Censor's solution (as well as the solution to the

nonlinear theory), numerical values that were experimentally realizable were

used to make example calculations. In these calculations, the plane-wave

frequency was chosen to be 162 kHz, and the cylindrical-wave frequency was

chosen to be 102 kHz (giving a difference-frequency of 60 kHz). The amplitude

of the incident pressure wave was selected to be l.OxlO 5 Pa, and the

cylindrical-wave amplitude coefficient (A) was selected to be 3.5x,0 5 Pa.

The angular distribution of difference-frequency pressure at 15 cm from

the symmetry axis of the cylinder obtained by numerically analyzing Censor's

expressions is shown in Fig. 5. (The reasons for studying the difference-

frequency case, as well as the reasons for selecting the particular experi-

mental parameters indicated in Fig. 5 will be discussed in Chapter IV.) The

maximum pressure at this radius occurs at 0* and is 0.9 Pa for the parameters

given. (In Fig. 5, as well as all other polar plots, the dB scale is measured

relative to the maximum pressure level at the radius of interest. The maximum

pressure represented in a particular polar diagram is given in the information

box associated with it and is referred to as "PMAx".) As discussed in Chapter

11, this pressure value is of the same order of magnitude as pseudosound.

In the figure captions for the difference-frequency pressure, the value

of the quantity AI = (o~c r)/(POc 2) is listed, since this factor may he used

to obtain a nondimensional pressure. Here, Pc (the actual maximum cylindrical

pressure amplitude) is used instead of the quantity A of Eq. (115), since the

pressure represented by A is present at no point in the fluid. Similarly, the

quantity A2 . w-a/c is also listed in the caption.

Also of interest in this problem is the variation of difference-frequency

pressure with respect to distance from the cylinder symmetry axis at fixed

angles. Figures 6, 7, and 8 present the results of Censor's theory at 0, 90,

and 1800, respectively. These graphs can be interpreted in the following way:

Censor's theory predicts the generation of difference-frequency waves (as well

as sum-frequency waves) due to the presence of boundary conditions associated

with the time-varying nature of the cylindrical surface. Hence, both the sum-

and dLfference-frequency waves predicted by his theory are created solely at

the surface of the scatterer. As the observation point is moved to increas-

ingly greater distances from the boundary, these sum- and difference-frequency

pressure waves must spread cylindrically (in a manner similar to the
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spreading of the first-order cylindrical field). Hence, it is expected that

pressures associated with Censor's theory will (in the asymptotic limit)

decrease In-versely as the square root of the radial distance from the

symmetry axis. This does indeed prove to be the case for the pressures

represented in Figs. 6 through 8.

The solution to the nonlinear wave equation for this problem is given by

Eq. (115). Unlike Censor's theory, this equation involves complicated inte-

grals over triple products of Bessel functions. A new technique of Integra-

tion is presented in the Appendix for treating these integrals for the case in

which the arguments of the Bessel functions corresponding to the radiated cyl-

indrical wave as well as the arguments of the Bessel functions corresponding

to either the incident plane wave or the difference-frequency wave are suf-

ficiently large to be replaced by their asymptotic forms. Unfortunately,

these conditions were not met for the case that was modeled experimentally;

hence, these integrals had to be evaluated numerically. The numerical proce-

dure chosen to analyze the integrals was the method of Gaussian Quadrature

(32]. A 32-point quadrature was used. (Suitable abscissas and weighting

factors are given in Ref. 45). To obtain good accuracy using the 32-point

Gaussian Quadrature, the radial interval to be integrated (1 to 46 cm) had to

be subdivided into ten equal sub-intervals. The full 32-point Gaussian Quad-

rature sum was used to obtain the integrals over each of these partial inter-

vals. The integrals up to the final observation point were obtained by adding

together the integrals over all subintervals below the observation point.

It is necessary at this point to justify that the subdivision scheme?

described above will indeed suffice to calculate the integrals of interest.

First, it is essential to state the precision of the Gaussian Quadrature

procedure. if m quadrature points are used, the integral of a polynomial of
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degree 2m - 1 is represented exactly by this method [46]. Hence, it is

reasonable to expect that if the integrand of interest contains not more than

2m-1 zeroes over the interval of integration, Gaussian Quadrature will provide

a reliable numerical result.

In order to obtain a reasonable estimate of the number of zeroes

occurring in the integrands of interest (over the partial intervals described

above), it should be noted that the general behavior of the zeroes of the

Bessel functions of the first two kinds can be surmised by a careful

examination of tables listing their values [471. It is clear from these

tables that the spacing between these zeroes decreases for increasing

arguments. Hence, since the greatest density of zeroes occurs for the

greatest arguments, use of the asymptotic expansions of the functions will

result in an upper bound on the number of zeroes that occur in any of the

subintervals of interest. In the case of JX(kr), the location of the zeroes

may be approximated by calculating the zeroes of the cosine term that occurs

in the lowest order of this asymptotic expansion. These zeroes will occur it

values of r that satisfy the relationship

kr - = (2n+l) r-,

where n,X = integers.

Conversely, the above relatlonsh.p may be used to obtain an tipper bound

on the number of zeroes occurring In a given r interval (for a given wave-

number k) by determining the greatest integer i that satisfies this relation-

ship. The number of zeroes is then approximately equal to n+l (since the

first zero occurs at n = 0). It can also easily be seen from the expression

above that the greatest number of zeroes occurs for X - 0.
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Since the range of integration is taken from r = 1 cm to r = 46 cm, the

total range of integration is 45 cm in length. Since the total interval is

subdivided into 10 subintervals, the limits of integration over which the

greatest values of the arguments of Jo (kr) occur (and hence interval over

which the greatest density of zeroes occurs) is from r = 41.5 cm to r =

46 cm. The above approximate expression may now be used to determine the

number of zeroes of Jo(kr) corresponding to each of the wavenumbers of

interest (associated with the frequencies 162, 102, and 60 kHz) over this

interval. Rounding all fractional values obtained in this way to the next

greatest integer (to consider the worst case), the results of Table I are

obtained.

Table I. Maximum Number of Zeroes of Jo(kr) on the

Interval r = 41.5 cm to r = 46 cm

Frequency Maximum No. of Zeroes

162 kllz 11

102 kHz 8

60 kHz 7

The maximum number of zeroes of the integrand involving the product of

the three Jo(kr) functions herein considered is given by the sum of the number

of zeroes for each of the individual functions. This gives 26 zeroes in the

current example.

Since m - 32 Gaussian Quadrature points are used, 2m-1 = 63 zeroes would

still result in an accurate value for this integral via this numerical

method. Since the current example represents the worst case (in the sense

that no other integrand of interest will have more than 26 zeroes over any of
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the subintervals being considered), it may reasonably be expected that the

Gaussian Quadrate numerical integration scheme chosen is adequate to perform

all the required integrals.

The results of this numerical computation were checked in the high-

frequency limit where the new technique of integration was appropriate.

Excellent agreement was obtained between the Gaussian quadrature results and

corresponding results using the series given for these integrals by Eq. (A21).

In addition to verifying the results of the numerical integration by

comparison with numerical results obtained using Eq. (A21), another verifica-

tion method was also available. A few of the ten subintervals were further

subdivided and then evaluated using the 32-point quadrature over each of the

smaller subintervals. The numerical results obtained by this further sub-

division were always in good agreement with the results obtained with the

original subdivision scheme, thus showing that the original subdivision was

sufficient for evaluating the integrals. (It should be noted that this last

method is applicable even for frequencies that are not large enough to allow

the application of Eq. (A21) to the integrals of interest. This at least

provides a check of consistency.]

The angular distribution of difference-frequency pressure obtained by

analyzing Eq. (115) numerically (at 5, 10, and 15 cm from the scatterer's

center) is presented in Figs. 9 through 11, respectively. (Figures 12 through

14 present radial plots of difference-frequency pressure at 0, 90, and 180'.

These will be discussed shortly.) These graphs may be interpreted qualita-

tively in the following way: For angles near 00, strong contributions to the

difference-frequency pressure are obtained both from the "mixing' of the

incident plane wave with the cylindrically radiated wave and from the "mixing"

of the rigid-body scattered wave with the cylindrically radiated wave. Since

the cylindrically radiated wave does not vary with angle, the variation of

difference-frequency pressure with angle should be related primarily to the

angular dependence of the sum of the incident plane-wave pressure and the

rigid-body scattered pressure. Of course, since the nonlinearly generated

field is expressed in terms of an integral from the cylindrical surface to the

observation point, this field is not understandable simply in terms of the

primary fields that happen to be located at the observation point. More

illuminating in this respect is the evolution of the primary field as one
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moves from the cylinder surface to the observation point. Figures 15 through

21 present the total pressure field of the linear rigid-body scattering

problem (incident plane wave plus rigid-body scattered field) at 2-cm

intervals. It is interesting to note that peaks evolve in this field at 0 and

150 that correspond closely to peaks in the nonlinear scattered field. At

angles not equal (or close) to 00, the incident plane-wave no longer

contributes strongly to the nonlinear field (due to its unfavorable geometric

relationship to the cylindrically radiated field).

Hence, for these angles, the angular dependence of the rigid-body scat-

tered field alone is more appropriate in interpreting the angular dependence

of the nonlinear field. The evolution of the rigid-body linearly scattered

field at 2-cm increments is presented in Figs. 22 through 28. The most evi-

dent aspect of the nonlinear scattered field (between approximately 60 and

3000) is a pressure level nearly constant with angle. This corresponds well

with the linear rigid-body scattering patterns with the exception of minima

located at approximately 75, 135, 225, and 2850 in these patterns. That these

minima in the linear rigid-body scattered field do not contribute signifi-

cantly to the nonlinear field may be qualitatively understood from the fact

that these minima are not very wide in terms of angle. (The minima at 75 and

2858 start with ~20 degrees of width and decrease to -10 degrees of width.

The minima at 135 and 2250 remain at -5 degrees of width up to the last radius

of interest.) Also, in the case of the minima at 75 and 2850, the Incident

plane wave will still contribute something to the nonlinear field.

Even though correspondence between the primary fields and the nonlinear

field is not exact, this is not a serious matter since the primary fields can

be used only as a very rough guide to the behavior of the nonlinear fields.

It must be remembered that the nonlinear field is calculated via volume
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integrals over the primary fields (not just integrals along the radius);

hence, detailed variations in angle in the primary fields can easily disappear

In the nonlinear field.

The angles between 15 and 600 and between 300 and 3450 do not correspond

closely to either of the two sets of patterns given in Figs. I) through 21 or

Figs. 22 through 28 (although some correspondence can still be s;een between

certain features). These angles may be regarded as a "transition region"

through which the effects associated with mixing between the incident plane

wave and cylindrically radiated wave diminish.

Behavior of the difference-frequency pressure at fixed angles and varying

distance is illustrated in Figs. 12 through 14. Figure 12 gives the differ-

ence-frequency pressure at 0°; Figs. 13 and 14 give the difference-frequency

pressures at 90 and 180, respectively. It will be noted in Fig. 12 that the

difference-frequency pressure in this direction increases approximately lin-

early with distance. This result is similar to the behavior of the parametric

array [141 (in which a single piston source is driven at two different primary

frequencies). It is understandable that the difference-frequency pressure at

0' in the current problem should behave approximately as a parametric array

since the incident plane wave acts exactly as one of the primary waves does in

the parametric array, and the radiated cylindrical wave approxim4tes the

behavior of the second primary (although it diminishes in amplitude).

At angles other than 00, however, the geometrical relationship between

the incident plane wave and cylindrically radiated wave is no longer favorable

for the nonlinear generation of acoustic waves. Hence, at these angles, it is

the mixing of the rigid-body scattered wave with the cylindrically radiated

wave that is responsible for the production of the majority of the nonlinear

field. Since the rigid-body scattered wave also spreads cylindrically, the

interaction between these two waves is similar to the interaction of two

concentric cylindrically radiated waves. This last problem was considered by

Dean 1201, who showed that in this case, unlike the parametric array, the

nonlinearly generated waves approach a constant value as the observation point

approaches the farfield. A similar behavior is apparent in the present

problem from Figs. 13 and 14.

It is interesting at this point to attempt to establish an actual numer-

ical connection between the asymptotic expression given for this case by Dean
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(reproduced in Section III. G. 3 of this report) and tile experimental para-

meters resulting in Figs. 13 and 14. We must, of cA.urse, rewrite the expres-

sion so it represents the difference-frequency case, and substitute the nota-

tion used for the pressure amplitudes used in this thesis. This results in

N(k a)(r)(k k )/2k a2
P PoAH 1  1a)H 2 c p c d
p2 -

2Po0C
o0

We are now faced with the problem of choosing appropriate values for the

pressure amplitudes PO and A, which are consistent with the present

experimental parameters and which realistically represent the theoretical

situation of concentric cylindrical waves. Clearly, one of these ought to be

chosen as 3.5x,0 5 Pa, the actual pressure-amplitude coefficient of the

cylindrical source used in the experiment. The choice of the other pressure

amplitude, however, is more subtle.

The scattered pressure plotted in Figs. 13 and 14 has been computed using

Eq. (108). It is this equation that is used as a guide in selecting the

second reuired pressure amplitude in the asymptotic calculation. We are

representing our cylindrically radiated wave by an expression of the form

AH 1 )(kr). In analogy with this expression, we select the zeroth-order

scattering coefficient as the required second pressure amplitude. The

scattered pressure plotted in Figs. 13 and 14 actually results from a large

number of terms in the series represented by Eq. (108). However, the geomet-

rical collimation of the cylindrically radiated wave is clearly strongest with

respect to the zeroth-order scattering term. Hence, we expect the majority of

the difference-frequency pressure will be generated via the "mixing" of the

cylindrically radiated wave with the zeroth-order partial wave of the scatter-

ed pressure field. We compute this coefficient using the expressions

following Eq. (109) with l.Oxl0 5 Pa as the incident plane-wave amplitude

(corresponding to the actual experimental parameter). This results in a value

of approximately 3x10 4 Pa for the zeroth-order coefficient. Using this as one

of the required pressure amplitudes (with 3.5xlO 5 Pa for the other pressure

amplitude) in the asymptotic expression for the difference-frequency pressure,

yields a value of approximately 41 Pa. In Figs. 13 and 14 the difference-

frequency pressure has obtained a value of approximately 30 Pa at r - 45 cm
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and is continuing to gradually increase. This is certainly a reasonable

agreement and, hence, gives further verification that the computer routines

are providing accurate calculations of the difference-frequency pressures.

IV. EXPERIMENT

A. Introduction

An experimental investigation was undertaken to confirm the theoretical

predictions for the case in which a plane wave is normally incident on a

cylindrical surface that deforms harmonically and uniformly in the radial

direction. A discussion of the choice for the experiment including the

principles upon which the experimental parameters were selected is given below

in Section IV. B. Although the investigation was unsuccessful in confirming

the theoretical predictions, it was nonetheless successful in identifying the

several difficulties that arise in nearfield nonlinear experiments and

resolving all but one of those identified. A discussion of these difficulties

and the solutions that were achievable are given in Section IV. C.

In addition to these positive aspects, the experimental investigation

also produced significant results in several other areas, primarily with

regard to the selection and calibration of the sound sources and receivers

used in the experiment. A description of these results is given in Sections

IV. D, E, and F.

First, the selection and design of the sound sources is discussed in

Section IV. D. Second, the selection and the first-order (linear) calibration

of the sound sensors (hydrophones) is presented in Section IV. E. Lastly,

Section IV. F describes the nonlinear calibration of these same (and a few

additional) hydrophones both by a previously developed technique [48,49] and

by a new method developed in this work.

B. Choice of the Experiment

Prior to describing the actual experiments performed, it is worth-while

describing the principles upon which the experimental parameters were

selected. Initial decisions were required as to which experimental geometry

would be addressed, whether the sum-frequency component or the difference-
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frequency component would be investigated and what particular primary

frequencies would be suitable for measurement.

In this report, three geometries are considered theoretically. These

a re:

1. Plane wave normally incident on a uniformly vibrating infinite plane.

2. Plane wave normally incident on an infinitely long cylinder vibrating

uniformly in the radial direction.

3. Cylindrical wave normally incident on an infinitely long cylinder

vibrating uniformly in the radial direction.

Although Case I would be the most straightforward to implement experi-

mentally, it is very similar to the standard case of two infinite plane waves

propagating together in a fluid medium, which has been extensively studied

previously [27,31,50-53J and, hence, is not of the greatest interest. In

choosing between the final two cases, Case 2 appears to be the better one

based on cle!ulations that show a significantly greater amplitude of the dif-

f,!rence-frequency component being generated than in Case 3. It will he appre-

ciated that similar cases involving spherical geometry (which were not treated

theoretically here) would give an even lower amplitude difference-frequency

pressure since in these cases the energy is spreading into three dimensions

whereas in the cylindrical case it spreads only into two dimensions.

In choosing between sum- and difference-frequency components, the

difference-frequency component was selected for experimental measurement. The

primary reason for this was that it avoids the difficulty of separating the

sum-frequency component from harmonics of the primaries in the hydrophone

received signal.

Having chosen the geometry of Case 2, appropriate frequencies must be

selected. The cylinder is the source that provides the experimental limits in

this regard. Since the cylinder must act as a high-amplitude sound source

with vibration in the radial direction that is uniform along its axis, It

should be operated near its lowest radial mode resonance, i.e., breathing

mode. In addition to being nonuniform, higher modes of vibration
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significantly limit this amplitude 154]. An additional requirement to obtain

uniformity of vibration along the cylinder's axis is that a segmented, rather

than a single piece, cylinder be used to avoid excitation of longitudinal

(length) modes of vibration. Fabrication of such a cylinder is quite

complicated. Fortunately, one was already available that had been used as a

Navy standard. It has a breathing mode resonance frequency of 102 kHz. A

cylinder with a resonance frequency much greater than this would be difficult

to make and use since it would have an unacceptably small radius.

Assuming the cylinder to be operated at about 100 kHz, a suitable plane-

wave frequency (and hence difference frequency) must be selected. There are

two possibilities:

I. The plane-wave frequency is less than the cylindrical-wave frequency.

2. The plane-wave frequency is greater than the cylindrical-wave

frequency.

Case I is preferable since the cylinder is more likely to behave as a

rigid body bcatterer of the plane wave in this case (3]. Unfortunately,

certain practical considerations eliminate this case as a possibility. First,

in order to maximize the ability to discriminate between the primary waves and

the difference-frequency waves in the hydrophone received signal, the

difference frequency must be less than either of the primary frequencies.

(This allows all filters that the hydrophone's electrical output passes

through to be operated in a low-pass mode thereby providing maximum

discrimination.) Hence, the lowest possible plane-wave frequency is 50 kHz.

This (roqquency is unacceptable, however, since IL results in a differen-u Ire-

quency that is also 50 kHz. To avoid this, the plane-wave frequency must be

chosen closer to the cylinder frequency. Unfortunately, the difference-fre-

quency pressure generated nonlinearly in the water varies directly with the

difference frequency. Hence, the closer the two frequencies become, the

smaller the difference-frequency pressure becomes. The optimum frequency,

which minimizes the "closeness" of the difference frequency to either primary

frequency as well as giving a substantial value for the difference frequency

is approximately 75 kHz. Unfortunately, the 25-kHz difference frequency

associated with 100- and 75-kHz primaries is still quite small. Hence, a
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plane-wave frequency less than the cylinder frequency appears to be a poor

choice.

Selecting a plane-wave frequency greater than the cylinder frequency

precludes the cylinder from behaving as a rigid body in scattering the plane

wave [3]. However, it is possible to account for this by modeling the

scattered field empirically. This is done by measuring the scattered pressure

(both amplitude and phase) rather than assuming rigid-body scattering, and

then calculating how the coefficients in the Hankel-function expansion of the

rigid-body field must be modified in order to obtain the measured pressures.

(No modification of the Green's function used in calculating the difference-

frequency component is required since the cylinder can still properly be

assumed rigid if the difference frequency is chosen to be below the cylinder

resonance.) It remains now to select an appropriate plane-wave frequency

above the cylinder frequency. Using the same reasoning as above, this results

in a plane-wave frequency of about 150 kHz (in the experiment actually

performed, the plane frequency used was 162 kHz).

At this point it should be recalled that in the discussion in Chapter I1

pertaining to Eq. (47), it was remarked that If the D'Alembertian terms on the

right-hand side of this equation become significant relative to P2 , that the

solution obtained by their neglect is questionable. It is essential,

therefore, to estimate the value of these terms in the current measurement.

In order to facilitate this estimate, the actual fields in the current

problem will be replaced by planar fields of the same frequencies as those of

interest (this then calculates the worst case possible). Hence, the first-

order fields will be represented as:

P1  P ~i(kp x-w t) + e i(kp x- wt) +Aei(kcX-w t)

In this equation P0 , A, kc, Wc, kp, Wp have the same meaning as in Chapter

II. The symbol Ps stands for the maximum amplitude of the scattered pressure

field. Equation (46) can be used to relate the velocity potential to the

pressure. This relationship may be taken to be:

p - WpOf
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where sinusoidal time dependence has been assumed. A complex quantity Z1 ,

which is related to the first-order velocity potential 0, therefore, may be

defined as:

A e+(k X-w ct)
01-p () 

00 P 0
P ei(k x-w t)

+ -- e p pWpP

The quantity 01 is then the real part of Z1 , or

(1 = (Z 1+Z *)/2.

Also of interest in analyzing the D'Alembertian terms of Eq. (47) are the

gradient and the time derivative of 0I. Complex quantities Z2 and Z3 may be

defined, then, as

Ik A Ik P0
e VZ(kx-wt) + .__ e i(kp X-pt)

2 WI c P 0
LCo P 0

kPekp-p )

8ZI -iA i(k X-h t) ipo i(k X- t)
Z 3 -=-- e c c Pe p PZ3 = t - p p -

0s ei(kpX-pt) .

(Note that in the definition of Z2 the vector nature of the gradient has been

suppressed since it will have no effect. This is due to the fact that plane

waves are being considered, and It is actually Z2
2 that is of interest in

analyzing the D'Alembertian terms of Eq. (47).) The quantities IV0(1)1 and

30(l)/3t may now be calculated from Z2 and Z3 as
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(1)1 - (ReZ2)2 (2Z2*)2/4

(1) 2  (ReZ3 )2 (Z3+Z3*)2 /4

The quantities of interest in calculating the D'Alembertian terms need

only be calculated insofar as the difference frequency is affected. These

contributions to the difference frequency can be denoted by the subscript [-J,

and can be related to Z1 , Z2, and Z3 in the following way:

a2 .(L2  la 2

[ ]- " 2 (Z ZI-
at2 2 at 2  11

WO (1)21 + I (Z2Z2*)

2  

(Z 
*at 2 3 3

Using the given equations for Z1, Z2 , and Z3 these expressions may be analyzed

retaining only contributions to the difference frequency. Furthermore, since

calculation of the worst case is of interest, the exponentials will be dropped

and only the amplitudes will be retained. This procedure gives:

_2__1_2 A(Po+Ps)(W Wc)2

at2 2 2to pc

[V(1) 12)_ A(P 0+Ps9)/o 2 Co02

3*)2 A(Po+Ps2
( )) L . "1 o c"

at 2 APO2



Now, these expressions may be combined with the fact that

21 -1.22 1 2 1 -2 202 2 po-l2p 0 90U 2 PoCo- at 2)]

at2

-t 2 1ap.(1)1
= [ Poe o - , at " - $ 1

1 2a 2  2.

o0 t2 ((1) )

to analyze the D'Alembertian terms of Eq. (47). This results in

1 -2 1 12 1 -2 a 2
[2 PoCo2 at 0 ( 1 )P 2 2(o , at2

2 2= -A(P0P s)(c-w p) /(2p c 0 W ).

In order to use this expression to estimate the D'Alembertian terms, the

experimental values of wp and wc may be used directly. However, it would riot

be reasonable to directly substitute the value for A, since this pressure

occurs nowhere in the fluid surrounding the scatterer. It is more reasonable

to use the value of the amplitude of the pressure of the cylindrically

radiated wave analyzed at the cylinder's surface. This is approximately

1.35xi05 Pa. For the expression (PO+Ps) it is reasonable to use the maximum

value of the total pressure field associated with the First-order rigid-body

scattering problem. The value of this quantity is approximately l.7xlO 5 Pa.

Using these values, the above expression for the terms under the D'Alembertian

opetator gives a magnitude of 1.1 Pa*. This is less than 5% of the values

predicted for the difference-frequency pressure in all directions at distances

*It is interesting to compare this value with that obtained for pseudosound in

Section IV. F. (0.1 Pa). We note that the D'Alembertian terms are of the same
general magnitude as pseudosound.
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greater than approximately 10 cm from the cylinder's center (compare with

Figs. 12-14). Hence, these terms are sufficiently small so as to not severely

affect the theoretical treatment at all distances greater than a few

centimeters from the surface of the cylinder.

Of course, at shorter distances, this value becomes a more significant

fraction of the second-order pressure. Hence, the solutions represented by

Eq. (15) are not likely to be accurate at distances where the predicted

pressure amplitude is small (say of the order of pseudosound).

One more consideration is of interest in demonstrating the fact that the

influence of the D'Alembertian terms on the solution is quite small. If, in

solving Eq. (47), the D'Alembertian terms are not grouped with the second-

order pressure, they must be included as a part of the virtual source term in

the Green's function solution represented by Eq. (84). In this case, the

virtual source term will include quantities of the form 0 2 Z2 , which vanishes

identically for Z = plane wave. Hence, any nonvanishing contributions must

arise from the nonplanar geometry of the actual primaries, and such effects

may reasonably be expected to be small.

knother consideration of some concern is the effect that the

D'Alembertian terms might have on the neglected surface integral of Eq.

(83). This is very difficult to estimate accurately, owing to the complicated

form of the Green's function and the first-order fields involved. An

extremely simple estimate that may give some indication of the order of

magnitude of the error may be obtained by inserting for the D'Alembertian

terms in this surface integral the constant value of 1.1 Pa obtained above,

multiplied by the difference-frequency wavenumber, kd (since it is the

gradient of the source terms which appears in this surface integral). We

replace the Green's function by its asymptotic form, but simply analyze its

value on the cylindrical surface [see Eq. (7.3.17) of Reference 29]. Lastly,

the surface integral itself reduces to simply 2w times the cylindrical

radius. Hence, the D'Alembertian terms result in

(2na)(kd)(l.l Pa)t T 2/1-27W 2.2 Pa

of influence on the surface integral. This too may be regarded as

sufficiently small to neglect, provided the second-order pressure solution is
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not expected to be accurate at distances extremely close to the cylindrical

surface (where, once again, "close" refers to distances at which the second-

order pressure approaches the value of pseudosound).

At this point we can also put the discussion of the neglect of the

Green's function integral between r and - discussed in Chapter It on a

somewhat firmer mathematical ground for this particular case by the following

semi-quantitative argument: The integral of concern represents an integration

over a product of the virtual source term and the Green's function. We may

symbolically represent the major contributions to this integral by the

following two associated integrals

k-r 2w
- 2) f dO' f dr'r'P (r')Pc(r')G(r,r')

pc 0 r C

kd2 r 2w*
1 ( ) f dO' f dr'r'P (r')Pc(r )G(rr'),
12 PC 0 rs CSpc 0 r

0 0

where the cucfficient arises from the formulation of the simple source, PP

represents the incident plane wave, Pc represents the radiated cylindrical

wave, Ps represents the rigid-body scattered waves, and G(r,r') represents the

Green's function. We consider i first.

k r acosO n
We represent Pp(r') as P0e p and Pc(r') (neglecting an

unimportant phase factor) as A '71kr- e-ikc r' (we have used the asymptotic
C

form of the Hankel function since k C c i 4.18 cm- r, for which the asymptotic
form is reasonably accurate). For the Green's function we use

4 H0 (kdw),

where w2  (x-x')2 + (yy')2  This is the infinite-space Green's function.

We will discuss the errors in using this instead of the proper Green's

function following the present estimates. This error will prove to be

Insubstantial.
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It is clear that G(r,r') has a singularity at r = r'. Hence, we will

break the integral I1 into two parts: I1 = f + f , where e is

infinitesimal. r

We now note that in I, both an integral 0' and r' are required. We

consider the angular integral first. It should be noted that only the

functions Pp and G have a 0' dependence. Hence, we consider the associated

integral

1 01 f dO'eikprc°SOH o 1 )(k W).
0 0 d

There is a singularity in this integral at 0' = 0 (since w vanishes at

this value of 0'). Hence, we choose to resolve 10, as follows:
27r-6 6

= f + f , where 6 is an infinitesimal angle. In the integral between
6 -6

-6 and 6, it is reasonable to replace the factor eik r'cosG ' by r ' s
p by eikpr since

0' has infinitesimal values over the entire range of integration. We also

note that Ho()(kdw) may be resolved into functions of r and r' alone (see

Ref. 43, p. 979, Eq. 8.531.2). Hence, this integral becomes

6 6

f = - e ikpr' f dO'[Jo(kdr)Ho1(kdr ')

-6 4 -6 o d 0 d

+ 2 J(kdr)Hm(1 (kdr')cos(m')].
m~l

The integrals are elementary and give

ik r', (1)

iJo(kdr)Ho )(kdr,)(26)

-6

+ 4 1 j (kdr)H (1 )(kdr')sin(kd6)].
m d

Both terms in the brackets vanish in the limit 6 + 0. Therefore,
6

lim f 0 0. This demonstrates the singularity at 0' - 0 in I01 is
6+0 -6
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2w-6
inconsequential. We consider next the integral f Since the singularity

6
has been removed, no error should result (for purpose of the current estimate)

if the function H is treated casually. We note that w may be
rewritten as w = (r2 + r'  2rr'cosO'1/2 This quantity varies from 0 to 2r'

as 0' varies from 0 to 2w. We choose to replace w by r' (which is, in a

certain sense, an average value). Thus, I , becomes simply

I0, = M H (kdr') f d'e (I) ik r'cosO'
6

We note that this integral can be performed in the limit 6-'0. This

result is (see Ref. 43, p. 482, Eq. 3.915.2)

2w
f dO'eikpr'cosO '  1[ [J(k r') + J (-k r')].
0 o p

We choose to replace the Bessel functions by their asymptotic limits. This

gives

1 o(1)(kdr

I H (k r') /-XTkr [cos(kdr' - .) + icos(kdr' +

This can now be used to give the following expression for the r' integral in

the region between r' - r and r' - r+E

2
r4-c k drAP r+c (1) )(1'

2 2 f dr'r'H (kr)H (1(kdr)
r Poco r

X r2w [cos(k - ) + +cos(kdr' +

kd

Each cosine term can be resolved into exponentials. If we also replace

the Haakel functions with asymptotic forms discussed above, the integral
rca r=m ikr'
f will become a sum of integrals of the general form f dr' t- e
r r
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where k represents various combinations of the relevant wavenumbers. We can

relate each of these integrals to a Fresnel integral (see Ref. 32, p. 300),

Ixcs

Cl(X) - COSt dt,
/ 0 V/t

r=e 0 r=c

since f = J + f Using the asymptotic expression for CI(x) (Ref. 32,
r r 0

pp 300 and 302) we can easily show that fcos- dt M 2+ Hence, the
0 /2r=e

integrals f are proportional to the quantity 1 1 ,which clearly
r+e rr

vanishes in the limit c+0.

In order to conclude the analysis of Il, we next consider the r' integral

f . It is clear that the same analysis used on the e' integral during the
r+c r+c

discussion of the integral f is still appropriate. In this case, however,
r

the rosult of integration on r' will not vanish, and hence we must treat the

sum cos(kdr' - -) + icos(kdr' + T) somewhat more carefully. We note that the

absolute maximum value that the magnitude of this sum can have Is /2 . In

order to estimate the r' integral f we replace this sum by this numerical
r+e

quantity (this will furnish a conservative estimate of the upper bound for

this integral). Again replacing the Hankel functions by their asymptotic

expressions results in:

kd2rAP i _ ik r

rf =d 0 1 /-2-- w / k./2f dr , P

r+e p c r= cd-
0 0

The integral on r' can now be analyzed by again using the asymptotic form

of a Fresnel integral. If we now let c+0, the final result for 11 is
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k d(rAP0

Hence, ([1j falls off even more quickly than would be expected on the hasis of

cylindrical spreading. This is consistent with the argument of the

negligibility of the Green's function integral between r and - presented in

Chapter 11, which was based on phase cancellation arguments. Using the

present experimental values, we get Il - 3.37/r, where the answer will be In

Pa if r is in cm. Hence, at a propagation distance of just 10 cm, the

contribution of I1 is 0.337 Pa. This is very small when compared with the

numerical values presented in Chapter III, which were approximately 38 Pa at 0

0* and 25 Pa at 0 = 90° at this radius.

We next consider 12. The easiest way to handle P (r') in this integrand

is to determine empirical coefficients a and a for the series representation

of the field up to the dipole term. This representation is

( +, ) = (__ __ _/coso)e iLk Pr _

k r

p
p

Using the numerical values presented in Chapter III for the linearly scattered

field at r = 15 cm, these constants become: a = 3.4x105 Pa, 8 = 1.56x105 Pa

(where values at 0 = 0* and 0 = 90* have been used to analyze the

constants). The singularity at 0' = 0 in 12 can be shown to be

inconsequential via the same technique as used for I - Hence, we can proceed

to analyze the angular integral without regard for this singularity. As

before, we resolve H (1)(kdw) into a sum over Bessel functions of the

individual radii. Thus, the angular integral involved in 12 becomes:

f dOt  f 271 dO' (a + cosO') ek r' [J (k r)H o (kdr ')
0 '-- hr  d o d

p

+ 2 ) J(kdr)H In (k d r ')cosm O ' .
Mal
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The angular integrals are again simple and result in

dO' P (0i)eik r o (kdr)H (1)(kd r ' ) + BJl(kdr)H 1 (1)kdr

2 /k r'
p

If we replace the Bessel functions in this expression by their asymptotic

forms (as well as the remaining Hankei functions in 12), and choose to neglect

phase factors (which can only reduce the value of the integral of interest),

we obtain the further estimate for 12

(+8)e ikd r2k drA 00dr' ik r'
12 d re pv r-k c r- r

pc 00

We again compute the r' integral with the aid of the asymptotic form of a

Fresnel integral, giving

[(a+0)2k d A 1

Again we note the falloff is greater than that based on cylindrical

spreading, due once again to phase cancellations. Using the present

experimental values, we obtain 1121 - 1.68/r3 /2 , where again the answer

is in Pa if r is in cm. This gives just 5.3xi0- 2 Pa at a propagation distance

of just 10 cm. Hence, we once again note the negligibility of these integrals

relative to the numerical values presented in Chapter I11, thus reinforcing

their neglect during the computation.

We consider lastly the consequences of using the infinite space Green's

function instead of the correct rigid-body Green's function for the purposes

o)f this estimate. We note that the effect (in the case of a rigid plane) of

the boundary term is essentially a doubling of the pressure associated with

the free-space Green's function. (This can be understood from the fact that a

simple image source behind the plane is all that is required to satisfy the
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boundary condition.) This case may reasonably be regarded as an upper limit

to the potential scattered pressure level in any other scattering geometry.

Since both contributions discussed above are well under 1 Pa at r = 10 cm, it

is resonable to assume that even including the surface terms in the Green's

function would no more than double the result. Since this still gives less

than I Pa, no great harm is done via use of the free-space Green's function in

making the above estimates.

Even with the choices made following the careful procedure detailed

above, several difficulties arise in a nearfield nonlinear scattering

experiment that have not been encountered in previously published

experiments. These difficulties will be described next.

C. Difficulties in the Present Experiment not Encountered in Previous

Research

In investigating the nonlinear scattering of acoustic waves by vibrating

obstacles, several fundamental experimental difficulties arise. Previous

experiments involving two high-amplitude primaries interacting (i.e., mixing)

nonlinearily in a fluid medium could be designed to avoid these

difficulties. The present experiment could not be designed to avoid them.

The most important of these difficulties are:

1. Inadvertent direct radiation of the sources at the difference frequency.

Since the sources are finite in extent, measurements must be made in the

extreme nearfield* of the sources in order to approximate an infinite plane

wave and Infinitely long cylinder. Hence, direct radiation of the sources at

the difference frequency will tend to be a greater source of error when the

measuring hydrophone is near the sources.

*In acoustics the term farfield (nearfield) is a relative term that describes
observation points at distances large (small) compared with the dimensions of
the source and the wavelengths involved. In the case of a piston source, the
farfield (nearfield) is defined to be distances greater (lesser) than the
distance to the last maximum in the on-axis diffraction pattern. This last
maximum is located approximately at a distance equal to the square of the
piston radius divided by the wavelength. The farfield (nearfield) is
frequently referred to as the region in which Fraunhofer (Fresnel) diffractlion
effects occur.
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2. Electrical filtering problems due to experimental constraints.

The difference frequency was only about one half the lowest primary

frequency. In addition, the pulse lengths had to be less than about 10 cycles

at the difference frequency to avoid interfering reflections from neighboring

surfaces. Hence, the usual passive methods employed for electrical filtering

in previous farfield, nonlinear measurements were inappropriate.

3. Difference-frequency voltage generated nonlinearly in the hydrophone's

sensitive element.

This effect, due to nonlinear mixing of the primaries in the hydrophone,

provided larger difference-frequency voltages than those produced by the

difference-frequency pressure generated by nonlinearities of the fluid

medium. The effect was observed for a wide range of available hydrophones.

Previous experimental investigations [27,31,50-531 have not had to

contend with the limitations enumerated above because:

(a) Circular piston sources were used in these investigations enabling

virtually any choice of frequency. Then the difference frequency was

chosen very much lower than the average primary frequency (high downshift

ratio).

(b) Previously measurements were carried out in the acoustic farfield of

the sources (or at least not in the extreme nearfield).

Recently, measurements were made in the nearfield of circular and

rectangular piston* sources [55,56). In one case [55], the average frequency

of the primaries was so high (1.435 MHz) that the primaries were absorption

limited. This means that the primaries were strongly attenuated (mostly by

viscous absorption) by the water through which they propagated prior to

reaching the hydrophone (the acoustic absorption coefficient varies

approximately as the square of the frequency [57]). In the second case [561,

*In acoustics the term "piston" refers to a planar surface, all points of
which are moving at the same velocity. The cross-section of a piston Is
generally circular or rectangular.

107



although the hydrophone was not in the farfield, it was not in the extreme

nearfield either. (In the current sense, the "extreme nearfield" is defined

in the case of a piston source as being within the Rayleigh length of the

piston face. The Rayleigh length is the square of the radius of the piston

face divided by the wavelength.) The closest measurement made in this case

was at a hydrophone position 2.72 times the Rayleigh length from the piston

face. Hence, neither of these studies had to face the difficulties inherent

in a nonlinear scattering experiment.

Fortunately, the first difficulty listed above (direct radiation at the

difference frequency) was fairly straightforward to eliminate. By adding an

appropriate pulse-shaping network to the electromagnetic driving pulses (prior

to amplification), 95% of the directly radiated difference-frequency component

was eliminated. Prior to the addition of this network, the directly radiated

difference-frequency component was comparable in magnitude to that generated

nonlinearly by the fluid medium. Thus, after the addition of the network, the

direct radiation became a small component of the total difference-frequency

pressure field.

The second difficulty noted above (the problem of electrical filtering)

was also resolved by the selection of extremely linear state-of-the-art active

electrical filters. There are two reasons why previous nonlinear measurements

were not faced with this problem. First, earlier measurements were made aL

least moderately far from the sources and did not involve the possibility of

unwanted single or multiple reflections. Hence, long pulse lengths could be

used without interfering reflections being received and a passive filter could

be used. Since passive filters are generally far more linear than active

filters, nonlinear generation in these filters did not present a problem. In

addition, highly effective low-pass filters can be designed passively--even

more effective than active filters due to lower internal noise--when one can

tolerate the attendant long turn-on transients. Secondly, since very large

downshift ratios were used (typically 50 thru 100), the filters did not have

to be able to separate a very small amplitude difference-frequency component

from the electrically large amplitude primaries that were very close in

frequency to it.

In order to assure that no appreciable difference-frequency component was

being generated nonlinearly in the active filters chosen in this work, a
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mixing amplifier was used to electrically add two electrical signals of the

same frequencies as those of the two primaries used in the experiment. The

voltage amplitudes of these electrical signals were chosen to be comparable to

the voltage amplitudes arising from the hydrophone's linear response to the

primary pressures.

No difference-frequency component could be measured under these condi-

tions except for that associated with the noise floor of the receiver de-

vices. This noise floor corresponds to 27 Pa, which is half the theoretically

predicted difference frequency in the forward direction at just 6 cm from the

center of the cylinder. The nonlinear signal continues to grow approximately

linearly in this direction fre. -nis point. Although it is clear that this

noise level is large enough to prevent precise definitive measurements of the

difference-frequency component close to the cylinder, it is small enough to

demonstrate that filter nonlinearity was not the source of the difference

frequency measured (which was typically about 10 times the theoretical value).

Unfortunately, the third difficulty (nonlinearity of the hydrophone)

could not be eliminated. At the time the experiment described here was

started, no one even suspected that hydrophones were nonlinear to a measurable

degree. Well after the start of the present experiment, however, a study of

hydrophone nonlinearity was performed jointly by scientists at the Naval

Undersea Systems Center and the Underwater Sound Reference Detachment of the

Naval Research Labortory. The results of this study became available in

preliminary form [48,49]. Initially it was hoped that the results (measured

in the nearfield at a high downshift ratio for a piston source driven at two

frequencies) could be extrapolated to the case of a nonlinear nearfield

scattering measurement. This did not prove to be the case. In fact, when the

hydrophones' nonlinear responses were measured by a more appropriate technique

(different than that used in Refs. 48 and 49), they proved to be too nonlinear

to make a correct measurement of the theoretically predicted difference

frequency generated in a nonlinear scattering experiment. Hence, the

nonlinearity of the hydrophones proved to be the limiting factor for this

experiment prohibiting valid measurements from being carried out. A

description of nonlinearity measurements performed on the hydrophones

considered for use in this experiment is provided in Section IV. F. The new

109



imethod d-veloped in this work for measuring hydrophone nonlinearity and

results obtained using the method will also be presented in that section.

D. Selection and Design of Sound Sources

The initial factor in choosing the sound sources or transducer elements

was the availability of a suitable cylindrical transducer. Having such a

device produced commercially would have been time consuming as well as

costly. Fortunately, standard Navy cylindrical transducers (Type TR-127/WQM)

were readily available that proved to be adequate for the experiment.

The TR-127/WQM transducer is constructed of eight cylindrical rings (O.D.

= 2 cm; I.D. = 0.938 cm; length = 1.905 cm) made of Type I Ceramic [PZT-4, MIL

STANDARD 1376 (ships)] mounted coaxially to create a line 15.24-cm long. As

used by the Navy, the active elements are contained in an oil-filled, butyl-

rubber boot or covering. This boot was removed for the present experiment in

order to avoid any interfering effects that may have been caused by these

materials. Unfortunately, the exposed ceramic became deteriorated by the

chlorine used to prevent algae growth in the test pool. To avoid this, a

second rylinder was coated with Krylon, a commercially available clear plastic

spray coating. No further deterioration was noted.

This transducer was determined to have a breathing mode resonance

frequency at 102 kHz. When driven at a signal level of 200-V amplitude, the

cylinder produces an acoustic pressure in the water that corresponds to a

value of 3.5 atmospheres for the constant A in the asymptotic expression for

the cylinder field:

P = AU o 10(k cr)

This corresponds to a pressure at the outer surface of the cylinder

(r = a = 1 cm) of 1.35 atm.

Once the frequency of the cylinder was chosen, this constrained the

design of the piston plane-wave source for essentially three resons:
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1. In order to most effectively filter the primary-wave components from

the hydrophone electrical response, it was necessary that the difference

frequency v_ v - v be significantly less than both the plane-wave
p c

frequency (vp) and the cylindrical-wave frequency (vc). (This enables

the use of low-pass filtering.)

2. The piston source had to be capable of producing an approximately

planar wave over a reasonable propagation distance. The greatest

distance from a uniformly vibrating piston source where the wave may be

considered to be approximately planar is at the position of the last

maximum value of the on-axis piston pressure. This position occurs at X

= a2 /X where a = piston radius [58]. Since X varies inversely as X, a

small wavelength and hence a high frequency is desirable for this

purpose.

3. As can be seen from an analysis of the expression for the difference-

frequency pressure [Eq. (115)], the amplitude of the difference-frequency

wave varies approximately as the difference frequency. Hence, as the

difference frequency becomes smaller, the amplitude of the difference-

frequency pressure wave becomes more difficult to measure.

A value of Vp - 1.5 vc tends to satisfy simultaneously all three of the

above requirements. This results, for the chosen cylinder frequency, in a

value of VP of approximately 150 kHz.

It turned out that two cylindrical disks of PZT-4 were commercially

available with a thickness of 1.27 cm and a radius a of 6.35 cm. If one of

the disks is mounted so it is air backed, the sound pressure produced on tie

side opposite from the air-backed side is nearly doubled (since acou.stic

radiation into water is far more efficient than into air). When the disk is

operated at its fundamental thickness-mode resonance, the wavelength in the

ceramic Am is equal to twice the thickness t of the ceramic. To calculate the

corresponding resonance frequency of such a disk, it is necessary to know the

longitudinal sound speed V3D in the material in the thickness direction; i.e.,

the Z axis. This is given for piezoelectric materials by [59]
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where CA is the elastic stiffness at constant electric displacement,

measured along the z axis, and p is the mass density of the ceramic. To

evaluate this expression as well as several others given below, the following

values of certain constants [59) for PZT-4 will be needed:

C31 /6o = 635; relative dielectric constant, clamped;

C33 = 15.9 x lO0 /m 2 ;

p =7.5 x 103 kg/m3;

e33 = 15.1 C/m 2 ; piezoelectric stress constant.

Using these values in the above equation for V3 D gives V3 
D

4.6x,0 3 in/sec. This results in a resonance frequency of about 181 KHz For the

disk (which is close to the desired value). Since clamping the ceramic in

place was expected to lower this frequency, the available ceramic was deemed

adequate. (The measured resonance frequency turned out to be 162 kHz.)

At a frequency of 162 kHz, the maximum distance from the piston face

within which the waves could reasonably be expected to be planar is equal to

a2/X - 37 cm. This distance was considered large enough to allow an

experimental test of the theory. However, it still remained to be seen

whether the piston could provide an acoustic wave with sufficient pressure

amplitude (at least 105 N/m2 ) at a reasonable operating power and voltage.

The peak acoustic pressure P produced in the nearfield of an air-backed

piston at its fundamental thickness-mode resonance is given approximately by

(601

2e33 V

p= t

where V i the amplitude of the sinusoidal voltage applied across the two

faces of the piston. For a peak pressure of 3x,0 5 N/m2 , this expression gives

a required applied voltage amplitude of 126 V.
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To calculate the acoustic power radiated by the piston, the following

equivalent circuit [53] (at resonance) is useful:

C Re = Z R0 ORe 4a2

where the acoustic radiation impedance ZR P0 CS (c - sound speed in water,

S = piston face area), the transformation factor a e3 3 S/t, and CO =

0 S/t, the usual equation for the capacitance of a disk. Using these

expressions gives Re = 20.8 ohm. The input electrical impedance of the above

equivalent circuit is Z - (20.5 + 2.43j) ohm; i.e., the impedance is primarily

real (resistive).

The average acoustic power radiated W by the disk at an applied voltage

amplitude of 126 V is given by [60]:

22 2
W - 2a V /ZR R 382 W.

e

The corresponding average electrical power into the piston is

(384 - 5.70xlO-3j)W.

A power amplifier capable of producing the above power (in a pulsed mode)

and voltage was available. Therefore, the available ceramic disks were deemed

appropriate to the experiment.

Unfortunately, these disks suffered the same damage as the cylinder when

placed In chlorinated water. In addition, they suffered minor pitting due to

the high electric field existing at the points of contact of the electrical

conductors. One of them was repaired by filling the damaged areas with a

conducting epoxy and by also epoxying on two thin stainless-steel circular

plates of the same radius as the ceramic disks, one each to the front and rear

surfaces (to prevent anomalously high electric fields at the points of

electrical contact). Although this procedure worked well in remedying the

above problems, the characteristic impedance of the disk-ceramic combination
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was significantly different than the ceramic alone. Fortunately, the

available high-power amplifier was capable of driving the disk to a high

enough voltage (360-V amplitude) to produce an acoustic pressure amplitude of

3.16xlO5 N/m 2 .

F.. Calibration of Selected Hydrophones to Determine First-Order (Linear)

Sensitivity

From a rather broad range of available hydrophones, three were ultimately

selected for first-order calibration based on their inobtrusiveness to the

sound field, as well as the expectation that their nonlinearity would be small

(this latter aspect will be discussed in detail in the next section). These

three hydrophones were all fabricated at the USRD. They shall be here

referred to as: I) small spherical hydrophone, 2) F42D hydrophone, 3) lead

metaniobate hydrophone. A brief description of each follows.

I. Small Spherical Hydrophone.

This hydrophone was made of a 0.38-cm-O.D., O.159-cm-l.D., PZT-4

spherical shell in a small rubber boot. Although the linear sensitivity was

expected to be relatively small for this hydrophone, due to its relatively

smtll size, it was believed this would be compensated for by a very low

hydrophone nonlinearity. Also, the small size of tile hydrophone assured that

it would be especially inobtrusive to the measured sound field.

2. F42D Hydrophone.

The F42D is a standard hydrophone available for use by customers of the

USRD. Its active element is PZT-4 ceramic, configured in a spherical shell

design with an O.D. of 1.28 cm and an 1.D. of 1.08 cm. The spherical shell is

encapsulated in polyurethane. Although somewhat larger than the small

spherical hydrophone, it is not unacceptably so. Its larger size gives a

corresponding increase in first-order sensitivity, easing analysis of the

received signals.

3. Lead Metaniobate Hydrophone.

This hydrophone's active element, as its name implies, is made of lead
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metaniobate fashioned into a cylindrical shape and encapsulated in a

transparent rubber boot. Being of single-piece design, it was believed the

nonlinearity of this hydrophone would be exceptionally low (since glue joints

and other bonds can be contributing factors to this nonlinearity).

Additionally, being of approximately the same diameter as the F42D hydrophone,

it also was expected to have a higher first-order sensitivity than the small

spherical hydrophone, as well as being sufficiently inobtrusive acoustically.

The first-order (linear) sensitivity of a hydrophone in V/pPa is defined

as the ratio of the voltage developed across the open-circuited hydrophone

terminals when a plane wave is incident on the hydrophone to the acoustic

pressure of the plane wave. The sensitivity is a complex quantity; it

contains both an amplitude and a phase angle. The phase angle is not required

for the present work. The sensitivity is also a function of frequency. It

must be separately determined for each frequency component that is to be

measured. It can also depend on the direction of the incoming plane wave,

e-pecially at higher frequencies. For low frequencies, however, it is often

uniform over all 4n steadians. The method chosen for first-order calibration

was one recently developed at the USRD 161]. Although phase calibration was

not required for this experiment, this procedure also gave the magnitude of

the first-order sensitivity, was simple to implement, and the rigging and

necessary equipment were readily available.

Since the frequencies of interest were already established by the

selection of the cylinder and piston at 102, 162, and 60 kHz (difference

frequency), these hydrophones had to be calibrated only at these

frequencies. Table II gives the results of this calibration.

F. Determination of Hydrophone Nonlinearity

I. General Considerations.

In two recent reports [48,491 it is noted that the response of ceramic

hydrophone elements is not strictly linear but may be more accurately

represented by the parabolic relationship

e a mP + np2 (118)
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wwrf. vultage I)rodutced by the hydrophoont In pressure field P

P =pressure wave incident on the hydrophone

m =first-order (linear) response of the hydrophone
(in V/pPa)

n =second-?rder (nonlinear) response of the hydrophone [in
V/(pPa) J

They define the first-order sensitivity (M) in dB re 1 V/i4Pa as

M = 20 log(m) (119)

and the second-order sensitivity in dB re 1 V/(o~Pa)2 as

k =20 log(n). (120)

Table i1. H-ydrophone Linear Sensitivities

6YDROPHONE FREQUENCY SENSITIVITY SENSITIVITY
(kHz) (V/ipPa) (dB re 1 V/iiPa)

162 l.45x10-12 -236.8
SMALL SPHERE 102 1.55xlcF12  -236.2

60 1.33xlcF1 2  -237.5

162 4.35x10-11 -207.2
F42D 102 2.48x10 11 -212.1

60 2.91xl(f11  -210.7

LEAD 162 1.54x.0-11 -216.2
METANIOBATE 102 2.20x10-11  -213.2

60 5.80xl10'2 -224.7

The unit dB refers to a decibel, which in this case is 20 times the
logarithm to the base 10 of the sensitivity divided by the reference
sensitivity of 1 V/piPa.
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In the treatment given in the Moffett-Blue and Moffett-Henriquez reports

for incident waves containing two primary components, the primary pressure

waves are assumed to be of equal amplitude. Since this was clearly not to be

the case in the present experiment, the theory is generalized here for the

case of unequal primary pressure fields.

Let the total pressure wave at the hydrophone due to primary waves of

angular frequencies w1 ,W2 and amplitudes P1 ,P2 be represented as

P = Plcos(Wlt) + P2 cos(W 2 t). (121)

The contribution to the quadratic term in Eq. (118) due to difference-

frequency components may be calculated by squaring Eq. (121) and suitably

identifying terms. By use of the trigonometric identity cose + cos = 2[cos

(e-$)/2][cos (0+0)/21, p2 may be readily put into the form

p2 = (P1 2/2 )[1 + cos(2w1 t)] + (P2 2/2)[1 + cos(2w 2 t)]

+ IL1P2 [cos(wI+W 2)t + cos(WI-W 2 )t]. (122)

According to Eq. (118) the contribution to the voltage produced by the

hydrophone due to its self nonlinearity is qP2 . The contribution to this

voltage at the difference frequency may be readily seen in Eq. (122) to be

nPlP 2 since this is the coefficient of the difference-frequency term. This

Indicates that the pressure amplitudes for each of the two primary waves must

be measured in addition to the voltage produced at the difference frequency

due to the hydrophone nonlinearity. Only then can the nonlinear response q of

the hydrophone be determined.

In the experimental portion of the Moffett-Blue and Moffett-Henriquez

research, the two primary frequencies were chosen close together to produce a

large downshift ratio (the downshift ratio is the quotient of the average

value of the primary frequencies to the difference frequency). This avoids

several sources of error in the nonlinear measurement (to be described in

detail later on). Unfor-tunately, for the frequencies of interest in the
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current nonlinear scattering measurement, the downshift ratio is only about

2.2, corn-pared with more usual values of 50 to 100. In order to circumvent

difficulties associated with this unusually small downshift ratio, an

approximate approach to the measurement of n and K was adopted.

The following quantities are useful in describing the approach taken:

K , The hydrophone second-order sensitivity at
162 kHz and the second-order response at a
2-kHz difference frequency in the presence
of primaries at 161 and 163 kHz.

K10 2,l10 2 : The hydrophone second-order sensitivity at
102 kHz and the second-order response at a
2-kHz difference frequency in the presence

of primaries at 101 and 103 kHz.

K0 the hydrophone second-order sensitivity at 60 kHz and the
second-order response at a 60-kHz difference frequency In the
presence of primaries at 102 and 162 kHz.

It was initially assumed that K6 0 would be approximately the average of KIO 2

and K 102 ; i.e.,

K K10 2 + K 16 2  (123)K60 = 2 '

or equivalently that

o 1l02~ 162 "(124)

Equations (123) and (124) are reasonable since the nonlinear effect is

quadratic. Measurement of 4102 and n162 would not prove as difficult as

directly measuring F6)6, hecause each of these has a reasonahly large downf;hiilt

ratio (51 and 81, respectively). K10 2 and K16 2 are directly calculable froin

%l 2 and i1 6 2 by the relationship K = 20 loglnl, and Eqs. (123) and (124) can

be used to obtain K6 0 .

There are essentially three sources of error in the nonlinear calibration

of a hydrophone, all of which are minimized by the selection of a large

downshift ratio. Each of these will now be considered in detail.
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a. Generation of difference frequency by nonlinear interaction of the

primaries in the water - The entire basis for the present scattering

experiment is the fact that when sound waves of two different frequencies

are simultaneously present in water, a difference-frequency component is

generated. The problem in a nonlinear hydrophone calibration is to

minimize this so that only the difference-frequency components generated

by a hydrophone's self nonlinearity are present in the hydrophone

electrical output. This can be done in two ways. First, it is known

that the difference-frequency component generated in the water tends to

grow with distance from the source. Therefore, to minimize the effect,

the hydrophone should be placed as close as practicable to the source.

The problem of calculating the difference-frequency pressure generated in

the extreme nearfield of a piston source is not trivial. However, the

source levels can be estimated from data presented by Moffett and Mellen

[62]. Use of this data indicated that the levels generated for the

selected downshift ratios would be on the same level as pseudosound (see

Section F. 1. c below), if the hydrophone is placed 5-10 cm from the

source. Hence, this source of error can be made negligibly small.

b. Direct radiation at the difference frequency by the piston source -

Since any amplifier will be nonlinear to some extent, it can be expected

that when time-varying signals are applied to the amplifier input at two

different frequencies that a voltage will appear at the output at the

difference frequency. This will in turn be applied across the piston

source and will be directly radiated into the water. This must be

calculated beforehand, therefore, to determine if it can have a serious

effect on the received voltage at the difference frequency.

In order to do so, we first note that the equation for the normal

surface velocity of an air-backed piston face in contact with a fluid

medium (chosen to be water) is given by [63]

2czV
U 2 D(125)

Ze - jC33S/(wt)

where V - voltage applied across the piston

S - surface area of the piston face = na2

-o angular frequency of the applied voltage
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t = piston thickness

Ze = acoustic radiation impedance

and where a and C34 have the same meaning as in Section D of this

chapter. The expression for the acoustic radiation impedance of A piston

face is given by 164]:

Ze SPoC(O° - ix)

1/2 k 2a 2  ka + 0

0 
0 I ka +

8ka/(37t) ka + 0
X+ (126)

2/(nka) ka + oo

-here P0 is the water density.

It is clear from Eq. (126) that the impedance becomes very small

relative to SpoC as ka+O.

Since in Eq. (125) this impedance is combined with another term

(-JC 3jS/wt), which is much larger, the impedance term is negligible. Equating

it to zero in Eq. (125) we obtain

u = 2awtjV/(C DS). (127)
33

Equation (127) can be combined with the expression for the pressure

radiated a distance r by a periodic simple source [65]

i-r S ei - (128)

where the volume velocity S. of the source is equal to uS in the present

case. This produces the radiated pressure per unit applied voltage
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kpce (129)

P 33w

V 2 D3

where a has been replaced by the expression given for it in Section IV.

D. Using a frequency of 2 kHz (as would be present in measuring rlO2 or

n162) , and a distance of I cm, Eq. (129) yields a value of 3.02 Pa/V.

The measured amplifier output voltage at the difference frequency was at

most 6 V. This gives a maximum radiated pressure of about 18.1 Pa. To

determine what effect this would have on the measurement, the first-order

sensitivities (Table II) must be used to calculate the voltages produced

at the difference frequency by this pressure. They are

Small Sphere: 2.40 x 10- 5 V

F42D: 5.30 x 10- 4 V

Lead Metaniobate: 1.05 x 10-4 V.

These voltages are comparable to the measured voltages at the difference

f.equency. Although this indicates that a directly radiated difference-

frequency component is to a certain extent significant, it nonetheless

does not invalidate the nonlinearity calibrations but rather sets a bound

below which the nonlinearity of the hydrophones in question cannot he

accurately determined. This is sufficient for the purpose of this

experiment.

c. Pseudosound - In any acoustical measurement, a hydrophone's motion is

uncertain by an amount of the same order as the difference between

Lagrangian and Eulerian coordinates (since the hydrophone cannot be

completely free to move with the fluid nor can it be completely rigidly

held in a fixed position). Hence, there is an uncertainty in the mnoning

of the value of the measured acoustic pressure that corresponds to the,

difference between the Lagrangian and Kulerian frames of reference. This

is presently a fundamental experimental limitation In that it cannot be

fully eliminated using present-day technology (although it can be reduced

by using a massive receiver well below Its lowest mechanical

resonance). The difference in acoustic pressure between a Lagrangian and
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IulorLan frame o reference is known as psetidosound. An estinate can ho

made of the level of pseudosound by expanding any Lagrangian quantity

qL(a,t) in terms of the appropriate 9ulerian quantity qE(x,t) as 1661

L E
q (a,t) = qE(xt)

x8E(x,t)

E qq x-a
=E( xt) xI __ - a(xt) + ''" (130)

For definitions of a, x, C see Section 11. B. Using Eq. (130) to expand

the pressure gives

Pp(at) = P((xt) (x,t) Ix f(x,t). (131)pL~'t) eE~'t)x=a a- x- x=0

To obtain an upper bound for pseudosound, the pressure present may he

represented as plane waves as follows

pE(x,t) = pIE(x,t) + P2E(xt)

(132)

ReP 1 ei(kXl xt) ( 32(k)x-t

where PIO,P 2 0 are real constants. Equation (132) may be combined wit

Eq. (51) to obtain the following expression for (x,t) in terms of

pressure

r,(x,t) = F I(x,t) + F,2 (x,t)

- Re ILk1 2 (133)
P oal P o W2

Equation (132) may also be used to express 
[apE(x,t)]/3x as

apE(x,t) _ Re!ik PE(x,t) + EkP g(x,t)]. (134)
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Hence, pseudosound (the difference between the Lagrangian and Eulerian

expression for the pressure) may be written

L E E E
P _ P = Re[ik Pi (x,t) + ik2P2 (x,t)

k IPi1E X't) k 2 P2E9(x,t)

x Reli(-- -- + -] 15

Po~l Pow 2

At this point, it is helpful to make a few definitions:

ZI ik1P1

Z2  ik2P2

a, MP 1 1(O 2 )

a2  1/(P 0w2
2 ).

Equation (135) may now be expressed as

P l1 - P = R (ZI+Z 2 )Re(aIZI + a2Z 2 )

I (Z1 + Z + + Z2*)(aZl + aZ* + a2 Z2 + a2Z2*)" (136)

Contributions to the difference frequency can arise only from the cross-

terms; therefore, pseudosound at the difference frequency is given by

(PL _ P1E) 1 (a2ZtZ2, + a2Z*Z + atZ2Zt* + a Z2,Z (137)
'diff 2 ( 2 1 2* 2 1 2 1 2 1 1Z2*Z1) 1

or

L E klk2(PL - PEdiff 2 ( 2 2 ploP2 0. (138)

Using the experimental values involved In the nonlinear calibration In

Eq. (14L) yields less than 0.1 Pa in both measurements. Hence,

pseudosound is a rather negligible source of error in this measurement.
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2. Measurement Setup and Results.

Figure 29 is a schematic representation of the measurement configuration

used in the nonlinear calibration. Table 111 gives the results. The

quantities T'60 and K6 0 are the values obtained using Eqs. (123) and (124).

The results shown in Table Ill can be misleading. Apparently the mal

spherical hydrophone is less nonlinear than the F42) hydrophone (due to lts

smaller value of n60 ). However, 1160 cannot be considered independently of the

first-order sensitivity m. An important quantity in determining the

desirability of a hydrophone for use in a nonlinear experiment is the apl)prent

pressure present at the hydrophone at the difference frequency that

corresponds to the electrical signal produced by the nonlinearity of the

hydrophone. Let the ratio of this quantity to the product of the primary

pressures be called the "nonlinearity" and be given the symbol D. The

apparent pressure (in Pa) may be calculated from the product of the primaries

in terms of the first- and second-order sensitivities as

p 6 P1 2 . (139)

app m

Therefore, the quantity D (measured in units of apparent Pa per squared Pa ot

primary) may be calculated from

D = 106 /m. (140)

[The factors of 106 in Eqs. (139) and (140) above are required to render

consistent the units chosen.) Using the data in Tables 1I and [II in Eq.

(140) gives for the small spherical hydrophone and the F42D hydrophone the

following results:

DSmall = 4.74 x 10-8 Pa(app)

Sphere Pa2 (primary) (141)

OF42D - 5.43 x 10
- 9  Pa(app)

Pa2 ( primary). (142)
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Although r)60 for the F42D hydrophone is about 2.5 times greater than that for

the small spherical hydrophone, it is not the more nonlinear of the two.

Results in Eqs. (141) and (142) show that the small spherical hydrophone is

more than 8.7 times more nonlinear than the F42D hydrophone.

Although the value of D for the F42D hydrophone is apparently

sufficiently low to perform the nonlinear scattering measurements, preliminary

results gave anomalously large values for the difference frequency. This

indicated that the values of D obtained by the above method are not applicable

to this experiment for two possible reasons:

a. The value of D obtained by the Moffett-Blue and Moffet-Henriquez

approaches at high downshift ratio may not apply to low downshift ratio

(indicating the hydrophone nonlinearity is extremely sensitive to

downshift ratio).

b. The hydrophone nonlinearity is a function of the angle at which the

primaries intersect at the hydrophone (in the Moffett-Blue and Moffett-

Henriquez approaches, this is always exactly 00; but in a nearfield

scattering experiment, a wide continuum of angles is simultaneously

present).

In order to determine whether either or both of the above possibilities were

present during the experiment, a new approach to determine hydrophone non-

linearity (which more closely approximated the experiment of interest) was

attempted. The geometry of this measurement is shown in Fig. 30, and a sche-

matic representation of the measurement configuration is presented in Fig. 31.

In this measurement, the hydrophone of interest is placed at a distance X

from the center of the active surfaces of the piston and the cylinder.

Acoustic pulses are sent from each source that are of sufficient lengths to

overlap at the position of the hydrophone at the moment of measurement (i.e.,

of length just greater than X). This ensures that no difference frequency

will he generated by the fluid medium, since the waves will not have had time

to overlap in the fluid. (Hence, all measured difference frequency will be

generated in the hydrophone itself.) The piston and cylinder were driven at

the same frequencies as were to be used in the nonlinear scattering
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P ISTON CYLINDER

Fig. 30 -Geometry of new method of

nonlinear hydrophone calibration
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exprtment , 162 and 102 kliz, respectively. The product of the pressure levels

of the primaries was also similar to that in the nonlinar scattering

experiment, specifically 1010 Pa2 . The values of D obtained using this method

on the same hydrophones tested using the Moffett-Blue and Moffett-Henriquez

approaches are presented in Table IV.

Table IV. Values of D Obtained from Second Hydrophone
Nonlinearity Calibration Method

Hydrophone 
D Pa(apparent)

(Pa2 ) (primary)

Small Sphere 2.47 x 10- 7

F42D 6.51 x 10-8

Lead Metaniobate 5.34 x 10-8

(Valueb accurate to within 7% as determined by reproducibility
of experimental data)

It can be seen from Table IV that the results were considerably greater

in all cases than the values obtained by the Moffett-Blue and Moffett-

Henriquez methods. In an attempt to find a suitable hydrophone, several

others were tested. The results are given in Table V.
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Table V. Values of D for Some Additional Hydrophones

Hydrophone 
D Pa (apparent)

(Pa2 ) (primary)

F42C50 4.81 - 10- 8

F42D36 5.92 x 10 - 8

F42D14 7.40 x 10- 8

(Values accurate to within 7% as determined by reproducibility
of experimental data)

Since the product of the pressure values of the primaries in the

nonlinear scattering experiment everywhere gave values of order l0 Pa2 and

since typical pressures expected theoretically at the difference-frequency

Component were of the order of 100 Pa, it was clear that no hydrophone

avallablc was sufficiently linear to perform the experiment.

G. Suggestions for Future Measurements

As we have seen, it is the hydrophone self-nonlinearity that precludes a

successful measurement of the difference-frequency pressure generated in the

water when a plane-wave scatters from a vibrating cylinder. Until such time

as a sufficiently linear hydrophone is available, it would appear that

confirmation of the theory is not possible. However, if a method can be found

for increasing the difference-frequency pressire generated in the water whi l-

maintaining the product amplltode of the primary waves approximately constant

it may he possible to make the difference-freciency volt;age generated by the

hydrophone self-nonlinearity a small part of the total difference-frequency

signal. It will be recalled that during the discussion regarding the choice

of the experiment, it was remarked that having the difference frequency lower

than either primary frequency was highly desirable because it greatly

simplified the necessary electrical filtering (as well as avoiding harmonics

of the primaries). Unfortunately, due to the severe constraints on the
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possible frequency of the cylindrical source (recall that 100 kHz was judged

to be about the maximum possible), the difference-frequency choice was also

severely constrained. The 60-kHz difference frequency chosen was about the

greatest possible that also allowed electrical filtering to distinguish it

from the primaries, and yet it resulted in a pressure-amplitude too small to

measure once the hydrophone nonlinearity was discovered. However, it may be

possible to choose a difference frequency above the cylinder frequency and yet

sufficiently removed from the higher cylinder harmonics, such that their

disturbing influence on the measurement becomes acceptably small. For

example, if we retain a l00-kHz cylinder frequency but allow a I-MHz plane

frequency, the difference frequency of 900 kHz represents the ninth harmonic

of the cylinder. For a cylinder pressure-amplitude of 105 Pa, the nintp

harmonic is approximately 6 Pa (in the plane-wave case). However, since the

difference frequency in this case scales approximately as the square root of

the primary frequencies and directly as the difference frequency (see the

expression for the farfield limit given in Chapter II), the difference-

frequency pressure should be approximately 37.5 times greater than in the case

experimentally studied here. This gives (for directions away from the

forward-scattering direction) a difference-frequency pressure of about

900 Pa. Of course, even this suggested measurement is not without great

difficulties. The worst of these are: I) The 900-kHz difference frequency is

only about 1 dB below the -Mliz planar primary frequency, resulting in even

greater electrical filtering difficulties. 2) Once again the plane-wave

frequency is above the resonance frequency of the cylinder. Hence, the

cylinder will not act as a rigid body, and the primary field will again have

to be determined empirically. This is far more difficult to do in this case,

however, since the wavelength of the scattered primary field (- 0.15 cm) is

becoming small compared with any currently available hydrophone. Hence,

accurate phase measurements needed to determine the scattering coefficients

would be very difficult to perform.

Another possibility is to operate the cylinder at a higher frequency

(using a higher harmonic or a different vibrational mode). Although the

radiated pressure amplitude of the cylindrical wave will be substantially

lower, if a significant increase in difference-frequency pressure is possible

due to frequency scaling, then a more favorable overall experimental condition

might result. For example, if the cylinder can be operated at a frequency of
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I MHz, and the plane-wave frequency is chosen to be 1.5 MHz, the 25-Pa

difference-frequency pressure computed for the present research would scale to

over 2000 Pa. Hence, even if the pressure amplitude of the radiated

cylindrical wave is two orders of magnitude less than that at its 102-kHz

resonance, the difference-frequency pressure will remain comparable to that

predicted with the parameters chosen for the experimental measurement

attempted here. This would result in approximately two orders of magnitude ol

Improvement in the ratio of the nonllnear fluid signal to the liydrophone '

self-nonlinearity signal. On the other hand, 20 Pa is still not a very large

signal and may remain below the noise floor of the receiving equipment

(although measurement at angles near 0 = 00 might nonetheless be possible

since the difference-frequency pressure at these favorable angles may be of

sufficient amplitude to measure). Of course, if no cylinder resonance

frequency can be found that generates a cylindrical primary pressure amplitude

greater than an amplitude three orders of magnitude less than that produced by

the 102-kHz frequency used, it Is doubtful even at 0 = 00 that a sufficient

propagation distance exists to simultaneously yield difference-frequency

pressure amplitude large enough to measure and also satisfy the constraints of

Lbh theory in regard to the region of validity.

Thus, we see that there is no obvious or straightforward way to improve

the experimental measurement. However, it may nonetheless be possible to i-i

some manner take advantage of the direct scaling of the difference-frequenc.y

pressure with the difference frequency to avoid the significant interference

of the difference-frequency signal associated with hydrophone self

nonlinearity.

V. CONCLUSIONS

The objectives of this research were threefold: 1) To re-derive the

simple-source formulation of the second-order nonlinear wave equation for

arbitrary primary fields. 2) To investigate theoretically the solutinns ol

this equation for three cases Involving the scattering of acoustic waves by

vibrating obstacles. 3) 'To subject the case of plane-wave scattering by a

vibrating cylindrical obstacle to an experimental analysis. The first two of

these objectives were successfully achieved, but accomplishment of the third
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objective was inhibited by hydrophone nonlinearities that were larger than

were previously thought to exist.

In deriving the simple-source formulation of the second-order nonlinear

wave equation, care was taken to avoid using perturbation analysis until the

final step. While the acuracy of a solution obtained via a perturbative

approach becomes questionable when second-order fields become comparable to

first-order fields, this is not so for analyses based on the inherent physical

dependence of the acoustic variables on Mach number. Since the derivation of

the simple-source formulation of the second-order nonlinear wave equation

presented here was based on the inherent dependence of the variables on the

Mach number (in all but the final step), the validity of all second-order

equations up to this point are not restricted when the second-order quantities

become comparable to the first-order quantities. Also, since third-order

acoustic quantities are never significant in water and since no restriction

was placed on the geometry of the fields, this equation may be viewed as being

valid in a very general sense.

The problem of nonlinear scattering of acoustic waves by vibrating

obstacles was solved via a perturbation solution of the simple source

formulation of the second-order nonlinear wave equation for: 1) plane-wave

scattering by a vibrating plane, 2) cylindrical-wave scattering by a vibrating

cylinder, and 3) plane-wave scattering by a vibrating cylinder. Since the

solutions were obtained via a perturbation method, they are restricted to

situations in which the second-order fields remain small relative to the

first-order fields. This means the solutions are restricted to the nearfield

of the scattering obstacles. It was further demonstrated that the solutions

to this problem obtained via the Censor approach for the sum- and difference-

frequency pressures are of the order of pseudosound. Since the solutions of

the second-order nonlinear wave equation for the sum- and difference-frequency

pressures tend to grow with increasing distance from the scatterer's surface,

they overhelm the effect predicted by Censor within a fraction of a wavelength

of propagation distance (as was conjectured by Rogers (241). Graphical

results were presented in the case of plane-wave scattering from a vibrating

cylinder for both Censor's theory and the nonlinear theory.

Although a successful comparison of theory and experiment was not

achieved, several significant observations were made. No previous
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experimenters had performed measurements of nonlinearly generated difference-

frequency acoustic signals in the extreme nearfield of the sources. Several

potential sources of error in such measurements were identified. They

included: 1) direct radiation of difference-frequency pressure by the

sources, 2) electrical filtering problems due to experimental constraints, and

3) difference-frequency voltage generated nonlinearly in the hydrophone.

Although solutions to the first two difficulties were found, the third

difficulty proved to be unresolvable. However, several significant measure-

ments of hydrophone nonlinearity were made via a new technique. This new

technique represents a significant advance over the technique of Moffett-Blue

and Moffett-Henriquez. As of the writing of this thesis, a positive effect of

the new nonlinearity measurement presented herein has been a significant

expansion of the effort to develop a linear hydrophone at the USRD.

It is hoped that this work has firmly established the rather general

validity of the simple-source formulation of the second-order nonlinear wave

equation. Similarly, it is hoped that the new technique of hydrophone

nonlinearity calibration developed during the course of this work will form

the basis for a standard method of second-order hydrophone calibration.
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APPENDIX

A NEW TECHNIQUE FOR EVALUATING A GENERAL CLASS OF

INDEFINITE INTEGRALS

1. The Technique.

We consider integrals of the form

m

1 = fdxf(x) R R (W (Al)

i=l

where R1 ~ ()(x) is the ith type of special function of order pi obeying the
I

following set of recurrence relations:

S(x) = a (x)R )(x) + b (x)R W, (A2a)

DR( 1)(x) =c (x)RM1 (x) + d ())() (A2b)

Integrals of the form (Al) are considered by several other authors [67-

74] when the functions R(1 )(x) are Bessel functions. In relations A2, a., b 1

C., and d are known functions corresponding to R('). The symbol 0 represents

d/dx. The function f(x) and the product 7R(') are both assumed bounded and

continuous (or with at most a finite number of discontinuities) over an

interval [x1 ,x2 ], insuring that the Integral I exists in the same interval.

Recurrence relations [Eq. (k2)] may be combined to show that the

functions R(') satisfy the differential equation
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S. ... ......... . .. .... - ... ....... . . . ... .. . .y-- -

+ a 1- d - - c+ Dd (Dd DRM

+ Dc EDc

d- (d+ c a )1 t )R - 0. (A3)

b P-I

Equation (A3) is a special case of the Sturm-Liouville differential equation

D[p(x)Ds(x)] + iS(x) + yr(x,] 4;(x) 0 , (A4)

where r (x) = 0

P(X) =exp {fdx ca d - C -C Ddj

c d d-
S(x) = - Dc 1 + dDd -b (d +ca

p p-

*(x) R (x)
M

If either Eq. (A2a) or (A2b) is a two-term recurrence relation (i.e., if

b. or dP is equal to zero for all v), then the above expressions are undefined

and R(i) does not satisfy the Sturm-Liouville differential equation. In this

case R(t) satisfies Instead a first-order differential equation and is in the

form of an exponential. This may be readily seen by letting d, = 0 in

Eq. (A2b), in which case

R~i)(x) - exp[fdxc] (A5)

On the other hand, if bp - 0, we obtain from Eq. (A2a): M a R( '

which when combined with Eq. (A2b) yields
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(x)= exp lfdxlc1 +(d/ai)d. (A6)

An extensive search of the literature indicated that functions satisfying

the recurrence relations [Eq. (A2)J have not previously been named. For the

purposes of this Appendix we shall refer to them as birecurrent functions.

Most of the special functions of physics fall into this category (including

all Bessel functions, Legendre functions, Hermite polynomials, etc.). We

exclude the special cases given in Eqs. (A5) and (A6) from this category,

preferring to call them exponential terms instead.

At this point it will be noted that the assumed form [Eq. (Al)] may be

applied to the integrals occurring in Eq. (115) with the following

identifications made

f(x)+r'

)M + Z~m)(knr'),n

witere Z(m)(knr') is the Xth order Bessel function of the mth kind. For m =

I, ZX may be taken to be Jr, the Bessel function of the first kind. For M =

2, Zk may be taken to be either HX( I ) or Ht(2 ), the Hankel functions of the

first and second kinds, respectively. The quantity kn is taken to be any of

the appropriate wavenumbers occurring in Eq. (115). Hence, the technique

herein described could potentially be applied directly to the integrals

occurring in this equation (as will be noted later, this turns out to be

somewhat impractical).

The integration technique presented in this Appendix involves a general-

ization of the method (described by Watson 1681) used by Sontne 1671 to evalu-

ate certain indefinite integrals of Bessel functions. The integral to be

evaluated in Sonine's method is replaced by a differential equation. A par-

ticular solution of the differential equation is then sufficient to express

the result of integration. In the present work we generalize the method to

include all functions obeying the relations (Eq. (A2)). In addition we
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describe an approach for obtaining and solving the appropriate differential

equations.

2. The Details.

We assume the integral [Eq. (Al)) may be expressed in the form,

I 1 1 m
X X .. A pm(x) 11 R P (A7)

Pl=O P2O pm.O Pl'P2'"m' i-I i

where the 2m coefficients AplP 2 ,...,pm(X) are functions to be determined.

For convenience, we will represent the multiple summation and the coefficients

in Eq. (A7) by the shorthand notations I and A . respectively. In order to{p} P

determine the functions Ap, we differentiate Eq. (A7), substitute for DI the

integrand from Eq. (Al), and obtain

f(x) 11 R(i) iD R 1  + (DAp) i- R(i) (=l Pi (p) I fi P -1 Pt+pi tift  U i+pi] (A8)

Due to the recurrence relations JEq. (A2)), it is always possihle to

express the first sum on the right-hand side of Eq. (A8) in the form

SA ... 7 B n11

(pI P ql=O q 2 -0 q qp i-1 i+qi

or

M B A 11 R i) (A9)

(p) q) Pq q .1l

where the 22m coeffLcients Bpq = B l,P2,",Pql ,q2,""",q,(x) are known

functions resulting from repeated applications of the relations [Eq. (A2)) and
m

the regrouping of terms in the form H R (M)

i-
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Using Eq. (A9) w. can rewrite Eq. (48) Lo obta;in

f W)11 R =JDA + B A R (AIO)i~l i (p1L p (q}IP q i~ iP

We can now obtain a coupled set of differential equations for the

functions Ap by imposing the sufficient condition that the coefficients of

like special functions on each side of Eq. (AlO) be equal. Doing this, we

obtain the following coupled set of linear inhomogeneous differential

equations of first order

m

f(x) N 6 =DA + B A (All)
O'p pq q

J=lq P qP

where 6 is the Kronecker delta.

In solving the set [Eq. (All)] of 21 equations in the 2
m unknown

functions Ap. one normally proceeds by differentiation and algebraic

manlulation to uncouple a particular function from the remainder. This

results in a differential equation of order 2m+ l . A particular solution of

this uncoupled equation involves a particular choice of 2m+l constants. Since

this is exactly the number of arbitrary constants that the original set

[Eq. (All)] involves, one must be careful not to introduce any further

arbitrary constants. In this case we obtain the remaining functions by

expressing them in terms of derivatives of the initial function that has been

calculated, rather than in terms of integrals of it. Regardless of the method

tised in obtaining a particular solution of Eq. (All), one must avoid

Introducing more than 2m+ l arbitrary constants. Otherwise, the solution so

obtained will neither satisfy Eq. (All) nor provide, via Eq. (Al), a proper

representation of the integral Eq. (Al).

When the integrand of Eq. (Al) contains more than one birecurrent

function, it may be desirable to move one (or possibly more) of the

birecurrent functions out of the product term and treat it as part of 1(x).

Each birecurrent function appearing in the product term doubles the number of

unknown coefficient functions Ap and, hence, doubles the number of coupled

differential equations to be solved. Thus, we halve the number of
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differential equations each time we move a birecurrent function out of the

product term and group it with f(x). However, each function so grouped will

appear in the inhomogeneous term of the final set of differential equations.

Conversely, none of the birecurrent functions grouped In the product term will

appear explicitly in the final set of differential equations.

Any particular solution of Eq. (All) will give a set of functions A that
p

can be used in Eq. (A7) to express the result of the integration. We can see

this if we differentiate the expression that results by substitution of this

particular set into Eq. (Al). The resulting Eq. (A8) is obviously satisfied

since the A p are a particular solution. The fact that only a particular,

rather than a general, solution is required is a powerful aspect of the

technique.

The coupled set [Eq. (All)] is a standard form of linear inhomogeneous

differential equations of first order that may be solved by well-known

methods. A particular solution of Eq. (All) is easier to obtain than one may

-uspect since each equation contains exactly one term involving the derivative

of a particular function Ap and the derivative of each of the functions Ap

appears in only one equation.

The technique described above is equally applicable, with slight

modifications, when one or more of the birecurrent functions in the product

term of Eq. (Al) is replaced by an exponential term of the form Eq. (AS) or

(A6). Because the exponential terms satisfy two-term recurrence relations, we

do not have to include p - I terms for them in Eq. (A7). This reduces the

number of unknown coefficients Ap and the resulting coupled differential

equations by a factor of 2. Moving the exponential term from the product term

into f(x) does not change the number of differential equations to be solved.

3. An Example.

To illustrate the technique, we obtain the result to the following well-

known integral: I - fdxxsinux. In this case, f(x) - x and R,(x) = sinpx.

The simplest way to apply the technique to this problem is to consider

sinux as the imaginary part of the exponential R.t(x) - exp(ipx) and assume

that I - A(x)exp(ipx). Only one term, and hence only one unknown coefficient

A(x), is required in I in this case because differentiation of the exponential
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does not produce new functions (i.e., recurrence relation [Eq. (A2b)] reduces

to a 2-term equation relating DR to R ).

We shall use instead a somewhat more complicated approach that requires

two unknown coefficients in order to illustrate several important aspects of

the technique. This approach is based on the fact that the set of two

functions sinux and cosox is closed under differentiation so that it is

convenient to choose R,,= sinux and R,,+, = cospx. We now proceed to obtain

the integral following a step-by-step procedure:

a. We assume I may be expressed in the form

I - A0 (x)sinux + At(x)cosux . (Al2)

b. Differentiation produces DI - pAo(x)cosix + [DAo(x)lsinux

- jiAj(x)sinpx + [DAl(x)]cospx.

c. Equating DI to the integrand xsinpx and separately equating coeffi-

cients of sInx and cosx, we obtain the following differential equations

DA0 - pAI = x, (Al3a)

M 0 + DAt = 0. (Al3b)

d. We now uncouple A0 and A1 by substituting into Eq. (Al3a) the

expression for A0 obtained from Eq. (Al3b). This gives

D2 A1 + i
2A1 = -Ijx. (A14)

e. A particular solution of Eq. (A14) is

A1 (X) - -x/11. (A15)

Substitution of Eq. (A15) into Eq. (Al3b) yields

A0 (X) = i,2. (AI6)
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E. Substitution of Eq. (A15) and Eq. (A16) into Eq. (A12) gives the

result fdxxsinpx - (sinpx - Dxcospx)/u 2 .

In order to investigate the consequences of using a different particular

solution than the one chosen, we first obtain the general solution of Eq.

(A14). It is

AI(x) - CIsinux + C 2cosux - x/P, (A17)

where C1 and C2 are arbitrary constants. Substitution of Eq. (A17) into Eq.

(Al3b) yields

Ao(x) - -C cosox + C2sinox + l/ 2 . (A18)

Substitution of these general solutions for AO and A1 into Eq. (A12) produces

the following expression for the desired integral:

fdxxsinox = (sinpx - pxcosx)/ 2 + C 2 . (A19)

Equation (A19) involves only a single arbitrary constant to which the

indefinite integral under consideration is entitled. Since the completely

general solution to Eq. (A14) was used in obtaining Eq. (A19), it is clear

that any particular solution to Eq. (A14) would have sufficed, with only the

constant C2 in Eq. (A19) being affected by a different choice.

4. A Second Example.

Although the first example provides a succinct illustration of the

present integration technique, an integration-by-parts approach would

certainly have been more straightforward.

Another example is presented that is less susceptible to standard

techniques and is more relevant to the nonlinear scattering problem at hand.

We note again that the integrals contained in Eq. (115) may all be put

into the form Eq. (Al). Unfortunately, if this were done directly, it would

result in a set of eight coupled first-order differential equations.
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Uncoupling of this equation has not, as yet, proved to be a tractable

problem. However, if the Zeroth-order Hankel function (which occurs in all of

the integrals) and one of the other of the two remaining Bessel functions are

replaced by their asymptotic forms (for large argument as compared to order),

the following general type of integral is obtained

I = fdrr'Zv(r)exp(ir), (A20)

where Zv(r) is an arbitrary Bessel function of one of the first three kinds of

real argument r, and the range of integration is restricted to r>O. For

generality, both the order v and the exponent P are chosen to be complex.

To begin the technique, we assume that I may be written as

I = A0 (r)Z V(r) + Al (r)v+l(r)  (A21)

Differentiating Eq. (A21), expressing the resulting Bessel function deriva-
tives in terms of Z. and Zv+1 by use of the appropriate recurrence relations,
equating the result to the integrand of Eq. (A20), and imposing the sufficient

condition that coefficients of like-order Bessel functions be equal, we obtain

the following coupled set of differential equations

A 0 - DA1 + [(v + 1)/r]A 1 = 0,

DA0 + (v/r)A 0 + AI = r~exp(ir). (A22)

These equations may be uncoupled to yield

02A 1 - (/r)ODA 1 + (I + (I - v2 )/r2 ]A I riexp(ir). (A23)

We now define a function p(r) such that

AI(r) - rt(r). (A24)

Substitution into Eq. (A23) yields
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r2 D2 p + rDp + Ir2 _ = rP+1exp(ir). (A25)

One particular solution to Eq. (A25) is an associated Bessel function as

defined by Luke 1691, namely, p(r) - ill+lH,v(-ir), so that

Al(r) - i rH (-ir). (A26)

Use of the known properties of the associated Bessel funktions results in

A0 (r) = ?i+lr [(p - v)(p - v - 1)Hl 1 (-ir)

+ (-ir)pexp(ir)]/(2u + 1), (A27)

when the expression for A1 given by Eq. (A26) is substituted into the first of

the Eqs. (A22). We thus have

fdrr Z (r)exp(ir) - Ir{[(0 - v)(u - v - 1)Hl ,v+l(-ir)

+ (-ir) iexp(ir)]/(2u + 1)}ZV(r)

rH V(-r)Z V+l(r) (A28)

This result is identical to that obtained by Luke [73] using a specialized

integration technique developed by McLachlan and Meyers (74] for certain inte-

grals involving Bessel and Struve functions. Luke (731 provides formulas by

which the associated Bessel functions appearing in Eq. (A28) may be evaluated.

The above example resulted in a differential equation that was

recognizable. However, the technique is still applicable even if no

previously known solution to the differential equation exists. We first try

to obtain a particular solution to our inhomogeneous differential equation by

using standard methods [751 such as the method of Lagrange or the method by

Cauchy. If none of these methods proves satisfactory, we can always obtain a

solution in the form of an infinite series. As an example of this, we again
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return to Eq. (A23) and assume that A1 may be expressed as

A, = exp(ir) B rm +I (A29)1 m

where the coefficients Bm are constants to be determined. To simplify

subsequent calculations, we chose the form of the expansion to be compatible

with the inhomogeneous term. If Eq. (A29) is substituted into Eq. (A23) and

coefficients of like powers of r are equated, the following recursion relation

is obtained for the B.:

(m + v + v)(m + p -v)B m 1 + i1
2 (m + p) -lIBm M 6mMl. (A30)

We can obtain a particular solution to Eq. (A30) and, hence, to Eq. (A23)

by setting Bm = 0 for m>l and solving for the nonzero coefficients Bm, m = 1,

0, -1, ... ,. The resulting descending power series representation for A1 can

be expressed in terms of a hypergeometric function as

A, = iI r{(-1)+l (ir) exp(ir)3 F1  (A31)

[1,-u+v,-u+v,-u-v; (1/2)-u; (1/2)irj/(2p+l)}.

In view of Eq. (A26), it is not surprising that the quantity in brackets

is identical to the series representation of H.,1 (-ir) given by Luke [69].

The solution (Eq. (A31)] is not defined if p - -1/2. It is also not defined

if p is an odd multiple of 1/2 unless both p * v are positive integers or

zero. The solution is a terminating series if either p + V or p - V is a

positive integer. The infinite series obtained otherwise is an asymptotic

representation of A1 that is valid for r-.

We can obtain a second particular solution for A1 by setting Bm 0 for

m<1 and solving Eq. (A30) for B,, m - 2,3,...,. The hypergeometric

representation of the resulting ascending power series in r is

153



A1  i r ((-ir) 2F2

3
(1, + v; - V + 2, i + v + 2; -2ir)/

[0 - v + )(u + v + )]). (A32)

The quantity appearing in braces in Eq. (A32) is the series representation of

the associated Bessel function hv,,(-ir) as defined by Luke [691. This

function is a second particular solution to the differential equation

satisfied by H,, and hence can be used in place of H in the solution

(Eq. (28)] to the original integral.

The solution [Eq. (A32)] is a terminating series if p is a positive odd

multiple of -1/2 (other than -1/2) and if both V * v are not positive

integers. It is not defined if either p + v or p - v is a negative integer

and p is not a positive odd multiple of -1/2 (other than 1/2).

5. A'ditional Illustrative Examples.

The two previous examples illustrate the power and versatility of the

current integration technique, but two objections may be raised: The first

example can be handled trivially, and the second example is one involving

products of Bessel functions and, hence, is amenable to the original approach

proposed by Sonine. The examples that follow will serve to illustrate the

applicability of the current technique to integrals that are not of the Bessel

function type. Although some of these may be solved by standard techniques,

they nonetheless illustrate the broad range of integrands that can

successfully be handled via this technique (and to the author's knowledge,

several of these integrals have not been previously tabulated).

a. Some integrals involving Legendre functions. We now consider some

examples of integrals of the general form

I- fdxPV(x)f(x), (A33)
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where Pv(x) is the Legendre function of order V and f(x) has the same meaning

as in Eq. (Al). We assume the integral I may be represented in the usual way

as

A(x)P (x) + B(x)PV+1 (x). Following the procedure outlined in Section 2, we

obtaitwo coupled equations for A and B which can be uncoupled to yield

A(x) - -xB(x) + (l-x B'(x), (A34)(v+l) () A4

where

(l-x 2)B"(x) - 2xB'(x) + v(V+l)B(x) - (V+l)f(x). (A35)

As a first example of an integral of the form Eq. (A33), we consider the

case where f(x) - 1. A particular solution to Eq. (A35) for this case is B(x)

- (1/v). Equation (A34) now determines A(x) to be A(x) - -(x/v). Substitution

of A and B into the representation for I now produces

fdxP (x) P - P v + -V P V * 0 (A36)

We next consider a more challenging integrand [i.e., one which cannot be

handled by direct manipulation of the recurrence relations for Pv(x)]. Let

f(x) be ln(lx). In obtaining a particular solution to Eq. (A35) we use the

inhomogeneous term as a guide and assume B(x) U Klln(l*x) + K2 , where K, and

K2 are undetermined constants. Direct substitution into Eq. (A35) gives

KI  1 /v and K2 - l/[v2(v+l)]. Equation (A34) may next be used to show

that A(x) - (-(x/v)ln(l*x) + i/[v(v+l)] - x/v2}. Substitution of A and B

into the representation for I results in

(x)-1- 2.]Px

fdx ln(l*x)P (x) =[- ln(l*x ) * ) ( x )

+ [Lln(l*x) + 1- ,,
S(V 2(V+l)

V * 0,-1 (A37)
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b. Some integrals involving Hermite functions. We next consider

integrals of the general form

I M fdxHV(x)f(x), (A38)

where Hv(x) is the Hermite function of order v, and once again f(x) has the

same meaning as was used in connection with Eq. (Al). We assume the integral

of Eq. (A38) m&V be represented as A(x)HV(x) + B(x)Hv 1(x). (Note that HV and

Hvl are used to represent the integral as opposed to H. and H,+1 . This

difference is inconsequential. Any two orders separated by one integral value

will be adequate to implement the procedure.) Omitting the details, we

uncouple the resulting coupled set to obtain

A(x) - - B(x) - 2v (A39)

v 2v ' A)

where

2vf(x) - B"(x) - 2xB'(x) - 2(v+l)B(x). (A40)

As a first example of this general form, we let f(x) e-X 2 . [This is

the usual weighting function used in the orthogonality integral for Hv(x).]

If we assume a particular solution of Eq. (A40) of the form B(x) = Ke-x  (with

K an undetermined constant), direct substitution gives K - -1. Equation (A39)

gives A(x) - 0 so that

2 2

fdxe-x HV(x) -e-x Hv-I(x). (A41)

As a second example we let f(x) - x- , where for the moment P is an

arbitrary exponent. If we assume a particular solution of the form B(x)

K1x
- K2 , where K, and K2 are constants, direct substitution into (A42) produces

2vx-  = -K 1K 2(K2+1)x 
2  + 2Kl[K 2 - (v+l)x 2 . (A42)
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There are two sets of values for the constants K1 , K2 , and P for which

Eq. (A42) is satisfied: K -~l~2 1K2 -v+l , iiv+3 ; and

V
K = - - K 2 1, -1 Using the first set of values, we obtain

the result

fdxH (x)X~'~ ~ 4 H~ (x)

(v4-1)v+) )+2) V-

v g'-1, -2.

We obtain from the second set of values

fdxxH V (X) (7 +2 2  H V(x) - (v+2)- H V-(x) (A44)

v #~ -2.

For a final example involving Hermite functions, we let f(x) =xeiy

where y is a constant initially assumed to be arbitrary.

A particular solution to Eq. (A40) can be obtained with B(x) -Ke"'

where K is an unknown constant. Direct substitution shows that a solution

exists for y - i/2(v+l) and K - iv//2-(v+1) . Using the resulting solution for

B in Eq. (A39) to obtain A, we then have

fdxxe i2 -(x4l)x H (x) e eiV2(v4l)x -i [(, 3+) H (x) + ,jvj: HVi(x)]

V *-1. (A45)
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c. Some examples involving Laguerre functions. We nov consider

integrals of the general forim

where L,(x) is the Laguerre function of order v, and f(x) has the same meaning

as in Eq. (Al). As usual, ye represent I in the form A(x)L V(x) + B(x)L V-(x)

and obtain the following uncoupled equations

A(x) 1 . B(x) + 1B'(x), (A47)

where

vf(x) - xB"(x) + (x+l)B'(x) + (v0+l)B(x). (A48)

As an example of this case we let f(x) - xe-(v+l)x. To obtain a

particular solution of Eq. (A48), ye assume B(x) -Ke(\lX Direct

substitution gives K -l/(v+l). Using this value yields the integral

fdx- '+IxLV (vxl [-(l+x)L V(x) + L 1-(x)]

V * -1.(A49)

As a final example, we let f(x) _x(l+x)-(v*3). A particular solution to

Eq. (A48) can then be obtained assuming B(x) - K(l+x)-(v+l), where again K is

an unknown constant. Direct substitution into Eq. (A48) yields

K - v/[(\.+l)(v+2)lso that

fdxx(l+x)-(v*3) L (x) (x- (V2) x L,(x) + ( v/ Lvi(x)J

v -1,-2. (A50)
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d. Some final results. The following is a tabulation of some additional

results obtained using the integration technique described in this paper. For

the sake of brevity the derivations have been omitted.

2 (-+-2)
fdxxe-  H(x)H (x) - ex 2 H (x)H V(x) + (-)(x)H. (x)

+ (uv)2 _l 7 v-I (x)Hu-1 W

(A51)

where H is a Hermite function and p - v 1 * I.

2 .x22
fdx[P (x)] -) [P (x)2 + P (x)2 1 - P (x)P_ (x) (A52)

and

P[ +1) - ] JdxP - P(P-l) (x)X i-2

(+ V (I) +l 1 - (V ) jvx

_XP p +(x) + [ I+l _ (1-. 2 )x p- 1 ]P W

v * -I. (A53)
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