
AD-A129 272 AF-CORAL LANGUAGE FEATURES TO INTEGRATE MASCOT WIT H /
CORAL 66(U) ROYAL SIGNALS AND RADAR ESTABLISHMENT
MALVERN (ENGLAND) T A WHITE NOV 82 RSRE-82019

UNCAS DIC-B-8751 FG 92 N

IF:ommmms

QI LI

11111125 11l4 ~1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS- I963-A

op

J v

el

A71

MR. FNU , ,

ins10- w

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Report No 82019

Title: AF-CORAL : LANGUAGE FEATURES TO INTEGRATE MASCOT
WITH CORAL66

Author: T A D White

Date: November 1982

SUMMARY

This paper briefly describes AF-CORAL II, an addition to the
computer programming language CORAL66, which allows a pro-
gramer to write software for a MASCOT designed system with
improved clarity and program integrity.

Some knowledge of CORAL66 and MASCOT is assumed.

Aeeossion For
NTIS GRA&I

'DTIC TAB
Unannounced o
Justification

By
Distribution/
Availability Codes

[Avail and/or

Dist Special

* Al

Copyright lb
C

Controller HMSO London
1982

AF-CORAL: Language Features to integrate MASCOT with CORAL66

0. Abstract

This paper briefly describes AF-CORAL II, an addition to the
computer programming language CORAL66, which allows a programmer
to write software for a MASCOT designed system with improved
clarity and program integrity.

Some knowledge of CORAL66 and MASCOT is assumed.

1. Introduction

MASCOT, a Modular Approach to Software Construction Operation and
Test [11, became the MoD preferred design method for real-time
software systems in 1978. MASCOT is not a programming language i
and therefore requires the support of a programming system.
Moreover, MASCOT is independent of programming language which
implies that within each language used to support a MASCOT
application there must be techniques of realising MASCOT objects,
operations and facilities. Languages possessing powerful features
will enable the programmer to model certain of these MASCOT
features more securely than less rich languages which may well
present the programmer with an onerous task wherein there is much
lost opportunity for compile-time checking.

CORAL66 [2) was adopted as the MoD standard computer programming
language for real-time applications (the kind of system for which
the use of MASCOT is encouraged) in 1970. It can thus be seen
that CORAL66 predates MASCOT. MASCOT features can easily be
mapped into CORAL66. It was realised, however, that an addition
to the language would allow the features to be used
straightforwardly whilst achieving improved clarity and program
integrity. The success of the CORAL66 standardisation programme
and resulting wide availability and use of CORAL66 suggested that
an addition to CORAL66 was to be preferred to the design of a
special MASCOT language.

AF-CORAL is an addition to CORAL66 which allows MASCOT ideas to
be expressed conveniently, clearly and more securely than in
CORAL66. The current version of AF-CORAL, referred to as AF-CORAL
11 [31, is based on the Official Handbook of MASCOT [4), which
was issued by the MASCOT Suppliers' Association in early 1981.
Annex A contains a summary of AF-CORAL in a tabular form similar
to that used by the official Handbook to summarise MASCOT.
AF-CORAL II is controlled by a committee one of whose parent
committees is ZECCA (the MOD Inter-Establishment Committee on
Computer Applications).

1

This paper assumes some familiarity with both CORAL66 and MASCOT.

2. MASCOT Features

MASCOT allows software to be partitioned i;.to MASCOT Subsystems
which are composed of Activities communicating through
Intercommunication Data Areas (IDAs). Shared IDAs enable
Activities from one Subsystem to communicate with Activities from
another.

Subsystems may be controlled; thus, they may be STARTed to allow
their constituent Activities to proceed, they may be temporarily
HALTed and RESUMEd, or they may be TERMINATEd. Additionally,
Subsystems are brought into existence by the MASCOT FORMing
process, and are dismantled by DELETion.

Subsystems are constructed from MASCOT System Elements (SEs),
which are CREATEd as needed and DESTROYed when redundant. System V
Elements are built from software templates and belong to one of
two kinds: they are either built from an IDA template when they
represent a passive data area used in communication (an IDA), or
they are built from a Root Procedure, a template describing an
active process which will eventually produce an Activity.

The software templates are known, unsurprisingly, as System
Element Templates (SETs). They are coded in terms of programming
language constructs and define the properties of a type of data
area or active process. SETs need to exploit the primitives
defined by MASCOT to enable the programmer to achieve MASCOT
disciplines when controlling real-time interactions. MASCOT
primitives also allow the programmer to monitor data and events,
and to handle peripheral devices which are external to the
software system. Templates, when they have been successfully
compiled, are registered, and hence are made available for future
use, by MASCOT ENROLment; they are removed from use by
CANCELation.

The Official Handbook of MASCOT indicates that there are several
categories of implementation and defines, for each category, the
MASCOT constructs which must be present. There is, of course, a
set of constructs present in all categories of MASCOT
implementation.

Complete discussion of MASCOT is given in [4].

3. CORAL66 Features

CORAL66 is a block-structured, procedural language which provides
the programmer with classical Algol60-like features: numeric
types, arithmetic expressions, some control structure,
parameterised procedures, etc. In addition, it provides
independent compilation and statements which allow the programmer
access to the computer hardware.

CORAL66 is fully defined in [2J.

2

4. AF-CORAL Features

AF-CORAL provides language features, lacking in CORAL66, which
allow the programmer to exploit MASCOT objects, operations and
facilities more readily, thus encouraging the production of
correct program text and providing greater opportunity for
compile-time or construction-time checking.

While AF-CORAL provides a syntax and semantics for all MASCOT
constructs and primitives it is not sensible to expect every
construct and primitive to be implemented by a particular
compiler (or pre-processor) if the underlying MASCOT
implementation does not provide the necessary capabilities.
AF-CORAL users should therefore be aware of the category of
MASCOT implementation they are using.

The AF-CORAL features are, of course, designed to reflect MASCOT
while being within the style and spirit of CORAL66.

AF-CORAL will evolve as MASCOT itself evolves ([4], Preface): the

current version, AF-CORAL II, is defined in [31.

4.1 MASCOT Construction Database

Most programming languages, CORAL66 amongst them, regard a
software system as a single monolithic program which is segmented
at the programmer's peril since inter-segment checking is
considerably reduced. MASCOT does not recognise the concept of
the monolithic program but regards software as a set of
essentially independent modules which interact according to given
connectivity constraints. MASCOT would appear to demand not only
that software should be highly segmented but also that there
should be a good degree of checking between modules.

The Official Handbook of MASCOT postulates a database which holds
all information necessary to the construction of a MASCOT
application. This information is termed the Construction Database
(CDB). An AF-CORAL compiler (or pre-processor) is concerned with
gathering that information which will allow it to check the
validity of AF-CORAL source text presented to it - such
information is held in the CDB. Thus the CDB is, amongst other
roles, the mechanism by which CORAL66 independent compilation is
extended to a form of separate compilation.

4.2 Subsystems

AF-CORAL provides statements which allow the control of
subsystems. The syntax of the statements conforms to that
recommended in the Official Handbook of MASCOT. Subsystems are
named, and their use can be policed by AF-CORAL compilers and
pre-processors using information held in the CDB.

For example, we may write

START (display)

HALT (simulator input)

3

HALT (simulator output);

to schedule the Activities in the Subsystem named "display", and
to deny execution to the Activities of the Subsystems named
"simulator input" and "simulator output" (at least until a
corresponding RESUME is used).

RESUME and TERMINATE can be used similarly.

Before Subsystems are eligible to be STARTed they must be brought
into existence by FORMing. Subsystems are built from System
Elements, which have previously been created, and it is possible
for AF-CORAL compilers and pre-processors to use the creation
information, held in the CDB, to check that certain connectivity
constraints are satisfied.

The syntax of FORM is that recommended by the Official Handbook.

For example

FORM simulator := radar simulator (time, constants,
traffic, display data)

obey request (commands, traffic);

will bring the Subsystem "simulator" into existence by allowing
the Activity "radar simulator" access to the data areas "time",
"constants", "traffic" and "display data" and the Activity "obey
request" access to the data areas "commands" and "traffic".
Notice that the data area "traffic" is accessible to both
Activities so that it provides communication between them.

MASCOT makes provision for the allocation of Activity priorities
at FORM time. Should this method of priority allocation be
implemented, AF-CORAL allows it to be exploited by extending the
syntax of Subsystem declaration to include a machine dependent
priority specification.

4.3 System Elements

System Elements too must be built. The syntax of the CREATion
statement follows that recommended in the Official Handbook of
MASCOT.

Examples of System Element creations are

CREATE (radar pool) constants;

CREATE (display chan) display data;

which create the IDAs "constants" and "display data" of type
"radar pool" and "display chan" respectively.

In addition to these simple declarations AF-CORAL allows the
programmer to supply values to satisfy size parameters which will
therefore determine the actual size of the data area created.
Initialising procedures may also be invoked.

4

For example

CREATE (buffer [101) input buffer

CREATE (buffer 120]) output buffer

would cause two IDAS to be created, both fundamentally of the
same structure but differing in size. An example creation which
includes initialisation is

CREATE (message channel) transfer INITIALISE set up (0)

where an initialisation procedure "set up" is invoked with the
value 0.

Furthermore, SEs may be supplied with the specification of
machine dependent characteristics which are intended to allow
such information as physical hardware mappings to be provided
when the SE is created.

As has been seen, CREATion builds actual SEs which belong to a
given type: types (with size and initialisation details as
appropriate) are described by software templates.

4.4 Templates

A software template is the detailed specification of the
properties of a MASCOT module in terms of programming language
declarations and statements.

In AF-CORAL, the statements and declarations may be normal
CORAL66 or they may be drawn from the set of AF-CORAL additions.
The additions allow MASCOT primitives, operations and facilities,
defined in the Official Handbook, to be written directly into the
source text.

Templates are of two kinds: a template is either an IDA template,
when it will describe the properties of a type of data area, or
it is a Root Procedure, which is a template describing the
properties of an active process which will eventually become an
Activity.

4.4.1 IDA Templates

Within an IDA template a programmer may exploit MASCOT primitives
to control real-time interaction. The MASCOT control queue (a
data type in AF-CORAL) is available to the programmer and he can
operate upon control queues using the control queue primitives.
The control queue primitives have been imported directly from
MASCOT but, of course, are written in CORAL66 style.

For example,

CONTROLQ reader q , writer q

declares two control queues which can then be used to control

access to some resource using the mutual exclusion primitives so

JOIN (reader q) ;

LEAVE (writer q) ;

The cross-stimulation primitives are similarly available.

It is of course now possible to check at compile-time that
objects of type CONTROLQ are used precisely as arguments to the
MASCOT synchronisation primitives.

The usual CORAL66 data types are used to describe the data area
of an IDA. CORAL66 data types may be parameterised to allow IDAs
of the same structure but different sizes to be created.

The idea of a simple data area is not enough, however. MASCOT
interaction implies that users of an IDA are denied direct
knowledge of the structure of the area but instead are provided
with a method of access to it. Such MASCOT Access Procedures may
be written in AF-CORAL and are similar to CORAL66 procedures.

For example

INTEGER ACCESS PROCEDURE read;
BEGIN

INTEGER a value;

JOIN (read q);
WHILE empty DO
WAIT (read q);

a value :- data;
empty :- true;

STIM (write q);
LEAVE (read q);

ANSWER a value
END access procedure read;

illustrates how the author of IDA source text provides a method
to access the data contained in the IDA but at the same time
protects that data from uncontrolled access.

AF-CORAL provides a method of decomposing the code of Access
Procedures. Thus, a local procedure may be called from several
Access Procedures within the same IDA specification. The names of
Access Procedures (but not local procedures) are available to the
authors of Root Procedures.

Special access to an IDA is provided by the Handler. It is
intended that Handlers would be receiving data from a MASCOT
Device and may therefore need to operate in a privileged mode.
AF-CORAL provides a CORAL66-like syntax for this interrupt
processing.

6

IDAs are characterised by the access mechanism interface they
present to the Root Procedures that use them; indeed, the data
area and the algorithmic details of the Access Procedures may be
changed (provided the interface is not altered) with no
consequent effect on any user Root Procedure.

4.4.2 Root Procedures

The Root Procedure is that SET which allows the programmer to
describe the properties of a type of active process which
eventually produces Activities.

Root Procedures interface to formal data areas, in an analogous
fashion to the provision of formal parameters to CORAL66
procedures. The formal IDA parameters specify not only the type
of data area to which the Root will have access, but further
specifies the names of the Access Procedures available to the
Root. Thus, direct knowledge of the structure of data areas is
denied and access is in a controlled fashion by Access Procedure.

For example, the Root "copy" may be given access to an IDA in
which data is being placed, and to an IDA into which it places
processed data for consumption by another Activity:

ROOT copy (CHANNEL (data) input USING read;
CHANNEL (data) output USING write)

The bodies of Roots may contain normal CORAL66 statements and
declarations of local data. They may also contain constructs
drawn from the AF-CORAL additions, which, of course, reflect
MASCOT disciplines. Access Procedures are made available to a
Root by inclusion in the Root USING list, they may then be used
by coupling the Access Procedure name to the name of its formal
IDA with the language word OF.

For example

ROOT copy (CHANNEL (data) input USING read;
CHANNEL (data) output USING write);

BEGIN
INTEGER next;

FOR ever DO
BEGIN

next %- read OF input;
SUSPEND;
write OF output

U END read write loop

END root copy;

specifies an Activity which has the (rather simple) function of
reading a datum for one data area and copying it to another,
while forcing a re-schedule between these two operations.

Roots can, of course, be complex pieces of program which may

7

require further procedural decomposition. AF-CORAL II desribes a

method for decomposing a Root into Subroots.

4.4.3 Other MASCOT Primitives

It has been shown how the MASCOT control queue and its associated
primitives may be utilised in IDAs and how the scheduling
primitives are used in a Root. Other MASCOT primitives are
applicable equally to IDAs and Roots. Such primitives may cause
an Activity or Access Procedure to prematurely finish its
processing slice and delay for a specified time, others allow the
state of MASCOT monitoring to be affected.

5. Concluding Remarks

This paper has briefy described AF-CORAL II, an addition to
CORAL66 which allows MASCOT to be exploited more safely and
easily than in CORAL66 without additions.

It has been stated that not all implementations of MASCOT will
offer the same facilities; implementations of AF-CORAL, which
merely reflect the underlying MASCOT implementation, may,
therefore, provide only a subset of the constructions described.
Moreover, as the design method MASCOT is language independent the
language provided by a MASCOT implementation may not be AF-CORAL
at all; it may not even be CORAL66 based. In such cases the
MASCOT programmer should expect to find advice in programming
manuals which details precisely how MASCOT objects, operations
and facilities are provided by that language system.

AF-CORAL II has been implemented in a commercially available
product [5] which has been used for MoD contracts; a second
implementation [63 is also proposed. An alternative approach is
illustrated by the development of an AF-CORAL II pre-processor
173 which will allow MASCOT modules written in AF-CORAL II to be
targetted to MASCOT700 (8] and to ASWE MASCOT 19].

RSRE are procuring a test capability [10] to allow them, on
behalf of IECCA, to approve MASCOT Machine implementations for
use on future MOD projects. The test software will be written
using AF-CORAL II.

MASCOT and AF-CORAL II are contolled by JIMCOM - the Joint IECCA
MUF Committee on MASCOT. The secretariat of JIMCOM and MUF (the
MASCOT Users' Forum) are held by Computer Applications Division,
RSRE.

6 ~i..

Annex A

MASCOT Facility AF-CORAL

(referenced by Chapter
of the Official Handbook)

Constructing Building CHANNELSPECs and POOLSPECs
(Chapter 3) specify the properties of

SETs using data items and
various kinds of access
mechanism. They are prepared
by AF-CORAL compiler/linker
or some form of preprocessor
Access mechanisms are made
available to Root Procedures
by a USING clause and are
written as a compound names
with an OF.
ENROL
CREATE
FORM

Dismantling CANCEL
DESTROY
DELETE

Controlling START
(Chapter 4) TERMINATE

HALT
RESUME

Scheduling Synchronising The data type CONTROLQ.
(Chapter 5) JOIN

WAIT
LEAVE
STIM

Timing DELAY
TIMENOW

Suspending & SUSPEND
Terminating ENDROOT

9

Device Handling The data type CONTROLQ.(Chapter 6) CONNECT
DISCONNECT
STIMINT
ENDHANDLER

Monitoring Recording RECORD
(Chapter 7)

Selecting SELECT
EXCLUDE

10

References

I] Jackson K and Simpson H, MASCOT - A Modular Approach to
Software Construction, Operation and Test, RRE Technical Note
778, October 1975.

[2] Woodward P, Wetherall P and Gorman B, Official Definition of
CORAL66, HMSO, 1970.

131 JIMCOM, Additional Features to integrate MASCOT with CORAL66,
JIMCOM, July 1982.

(41 MASCOT Suppliers' Association, The Official Handbook of
MASCOT, MSA, December 1980.

[5] System Designers Ltd., CONTEXT 3.1 (User Guide), January
1981.

[6] Study of MASCOT on the GEC 4000 Series Computers, GEC
Computers Ltd, 1981.

[7] Stammers R, MASCOT Additional Features Preprocessor, SPL,
1981.

[8] Software Sciences Ltd/Ferranti CSL, MASCOT700 (User Guide),
October 1980.

[9] Miles J, ASWE MASCOT Operating System (Reference Manual),
ASWE, 1979.

L: 11

U

