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SECTION I

INTRODUCTION

In deriving far field conditions for unsteady flows at high

subsonic Mach numbers, one usually makes the assumption that in the

distant field the deviations from a parallel flow with the given

free stream Mach number are small. Two quantities are of importance,

the ratio of the velocity perturbations to the free stream velocity

of sound and the ratio of the velocity perturbations to the

difference between the free stream velocity and the sonic velocity

(the velocity for which velocity of sound and velocity of motion

are the same). Accordingly, it is not permissible to choose a

boundary of the computed part of the flow field for which the local

Mach number reaches the value of one. The distance from the profile

for which this prerequisite is satisfied increases to infinity as

the free stream Mach number approaches one.

The original goal of the research effort reported here was

the derivationby means of asymptotic techniques, of far field

conditions for small unsteady perturbations with harmonic time

dependence superimposed to a steady flow with the free stream Mach

number one. It was planned to illustrate the mathematical technique

by applying it to problems with a high subsonic free stream Mach

number. This attempt led to some developments beyond those found

in the literature. Usually one assumes that the perturbations

arriving at the outer edge of the computed flow field can be

approximated by cylindrical or spherical waves whose origin is

known. (Actually, it must be estimated.) The analysis leads to

equations for which the wave fronts may have a more'general

character, although one must assume that they are rather smooth.
The information provided in the standard methods by estimating

the location of the origin is then derived from flow field data.
Furthermore, it is a rather simple step to proceed from perturba-

tions which are harmonic in time to general unsteady perturbations.

Of course, asymptotic results are not always applicable. The

requirement that the frequency of harmonic oscillations is fairly



high or that changes of the flow field with time are rather

quick is not always satisfied. Moreover, the description of

the perturbation field by means of smooth wavefronts is not always
A possible. Then one must apply far field conditions (of a more

complicated nature) in which such assumptions are not made (Ref.

1 and 2). Of theoretical interest is the relation of surfaces
of constant phase (which play an important role in the asymptotic

considerations) to characteristic surfaces in the space spanned

by the space coordinates and the time.

Accordingly, this report consists of two nearly independent

parts, one consisting of Sections II to VI which deals with far

field conditions at a high subsonic Mach number and the remainder
which treats far field conditions for oscillatory flows at a free

stream Mach number one.

Regarding the latter we make the following observations.

We deal with small unsteady perturbations with harmonic time

dependence superimposed to a steady flow with the free stream

Mach number one.* Because of the so-called freezing of the Mach

number distribution in the flow field for free stream Mach numbers
in the vicinity of one, the results are also applicable for flow
fields with such Mach numbers. In this study the linearization

is carried out for the vicinity of a steady flow perturbed by the

presence of a body, (while in the derivation for subsonic Mach

numbers, one linearizes for the vicinity of a parallel undisturbed

flow). It is assumed that the boundary at which the far field

conditions are to be applied lies at such a distance that the flow

field can be approximated by the dominant term in the development

with respect to distance.* For these perturbations. analytic
expressions are available, even for the axisymmetric problem. They

have been found, simultaneously by a number of authors (Randall,

Mueller and Matschat, and Euvrard, Refs. 3, 4, and 5). We shall

use the form given by Randall. The conventional treatment of

far field conditions for subsonic flows makes use of analytical

expressions for the unsteady linearized far field. 'For flow fields

with a free stream Mach number one, such expressions are not

2



available. One can dispense with. information of this kind by
asymptotic considerations. This is a technique used in physics

to make the transition from wave to ray optics. The asymptotic

expressions are valid if the frequencies are sufficiently high.

Such techniques have been applied before for problems of sound
radiation (for recent applications see Bayliss, Gunzburger, and
Turkel, Ref. 6, 71. The mathematical nature of conventional f.r

field conditions seems to indicate that one comes into the realm of

such high frequency approximation as the free stream Mach number

approaches one.

3
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SECTION II

THE SUBSONIC PROBLEM, BASIC EQUATIONS, PARTICULAR SOLUTIONS

Let x,y be a system of Cartesian coordinates, E the time,
and T the velocity potential which describes the deviations from

a parallel subsonic flow. The linearized differential equation

which we take as point of departure for the present investigations

can be obtained either by linearizing the potential equation for

unsteady flow for the vicinity of a steady parallel flow, or by a

transformation of the equation for the propagation of sound in air

at rest. The differential equation for the latter problem is

given by

+2 - - =0 ()
xx yy tt

where "a" is the constant sound velocity. The equation for
perturbation in air that moves from right to left with the

velocity U is obtained by the following transformation

*(x,y,t) = E

where

i + UtE

(2)

t. = t'.

One obtains

(1-U+ - 2(u/a2)f,, - ( 2) = 0. (3)

4



We introduce the free stream Mach number

M = U/a

make all length dimensionless with a characteristic length L, for

instance the chord of the profile,

x = i/L,y = /L

and introduce a dimensionless time

t = a E/L = a /L. (4)

Then one has instead of Eq. (2)

S= L(x-M t).

With '(x,y,t) =;(x,y,t), one then obtains from Eq. (3)

)xx + yy 2M$xt - tt = 0 (5)

This derivation emphasizes the fact (actually a rather obvious

one), that perturbations once introduced behave like perturbations

in still air, except that they float downstream with the velocity

U. In the last equation, U is replaced by the dimensionless

velocity M. We now consider particular solutions which are

periodic in time with the circular frequency v

$(x,y,t) = *(x,y) exp(ivE)

or

(R,,f = *(x,y) exp(i(vL/U)(Ut/a))

- *(x,y) exp(i u'Mt) (6)
" *(x,y) exp(iwt)

II 5



In the second version of Eq. (6) the familiar reduced frequency,

here denoted by p', has been introduced

11' = (vL/U) (7)

Furthermore, we have set

w = = (vL/a) (8)

One then obtains

(1M 2)Oxx + -yy 2iwMox + w2 =0 (9)

In Ref. 5 Eq. (9) has been transformed in the following

manner. First one carries out the Prandtl Glauert coordinate

distortion

A

x= x
A 1/2
y= (1-M) y (10)

One obtains

*A + *AA - 2iwM(l-M2) -j1*x + (1-M 2 )-lW20= 0 (11)
xx yy x w*

Next one removes the term with 0^ by the transformation

A A2 1A A

O(x y) = exp(iWM(1-M ) x(x, Y) (12)

Introducing

= (1-M 2 ) -I = W (-M 2 -lp' (13)

One obtains
A A

0A +0A +1 0 0 (14)xx y

6



This is the Helmholtz equation. Usually the Helmholtz equation
arises in the study of periodic perturbations in still air. One
then substitutes the following expression into Eq. (1)

*(iY,) = *( /L), ( /L))exp(ivt)

Using Eq. (8) one obtains

2m + a2 + W2;- 0. (15)

Notice that Eqs. (14) and (15) have different factors ,of . .
0 and 0. The substitute frequency P tends to infinity as M tends
to one. This suggests that, in the vicinity of Mach number one,
the high frequency limits of the far field conditions is applicable.
The transformations, Eqs. (10) and (12), amount to a rather com-
plicated distortion of the original flow pattern. There is no
direct physical relation between the flow fields described by the
functions and 0.

Particular solutions of Eq. (14) are given by

A A((x, y) =H 2 ()r) {cos (me) (6

m sin (me) (16)

Here

r = [J2 + 9211/2 =[x2 + (l-M 2 )y 2 ]1 1/ 2  (17)

cose = R/r = x/r } 0 < 8 < 27 (18)

sine - 1r = (1-M) y/r

H(2) is the Hankel function of order m, where m is a positive
integer or zero.

One has for large values of a complex variable z

7



H (2) = const z 1/ 2P(z-1)exp(-iz) (19)
m

where P stands for a semiconverging power series in z1. The exact

form of the constant is unessential in the present context. These

particular solutions, partially written in terms of the original

coordinates, read

= exp(iWM(l-M 2) 1x)

H (2) W(l-M2)-l(x 2 + (l-M 2)y 2)/2) cos(me) (20)m sin(me)

and asymptotically

const r-1 /2exp {iw(l-M 2 )-l[Mx - (x 2 +(l-M2 )y 2 )1 /2} IMsnme) (21)

The factor (l-M2 )-l in the exponential function and in the argument

of the Hankel functions makes it obvious that these solutions will

fail as the Mach number approaches one.

An intuitive picture can be obtained in the following manner.
Assume that one generates perturbations by short pulses spaced at

equal time intervals in a flow with Mach number M. We consider the
wave front pertaining to each perturbation at some later time t.

We mentioned previously that these fronts spread out as in air at

rest (that is, with the sound velocity "a") but at the same time
move downstream with the dimensionless velocity M. For a Mach

number smaller than 1, the system of such wave fronts is drawn in

Figure 1. The distance between two adjacent wave fronts is smaller

on the upstream side of the point where the perturbations are

introduced and larger at the downstream side compared with the

wave fronts in air at rest (which would be formed by concentric

circles). At a free stream Mach number 1 the upstream distance
reduces to zero (Fig. 2). This-accumulation of perturbations

suggests the difficulties which arises in a flow with the free

stream Mach number 1. It is obvious that in such a flow the local

8



deviationa of velocity of sound and of the particle motion from

those of the free stream conditions can no longer be disregarded.

A discussion where this modification is made will be carried out

later.

9



SECTION III

THE SUBSONIC PROBLEM, HIGH FREQUENCY APPROXIMATION

To obtain a high frequency approximation to solutions of

Eq. (9) we make the transformation

*(x,y) h(x,y) exp(-iwg(x,y)) (22)

and satisfy Eq. (9) in the dominant powers of w.

One has

x= [(hx/h) -iwg x ]

= [(hx/h)-2(hx/h)iwgx - w 2 i g 1

= _ ~2 2 _ i g y
[yy [(hy/h)-2(hy/h)iwgy - gy icg l

yyy

Then from Eq. (9)
22 2

2[(I-M 2 ) g  + g + 2Mg x - 1]

-iwh-l [(l-M2)2hxgx + 2hygy + 2Mhx+ h((1- )gxx + g)] (23)yy x

+h-l [(l-M 2)hxx + h ] - 0.

The dominant terms, (those with the factor 2) determine the

function g(x,y). One obtains the equation

(1-M 2 )gx + g+ 2Mgx_ 1 = 0. (24)

The function h(x,y) depends upon w. Including one term beyond the

lowest order approximation we set

h.(x,y,w) - HI(x,y)+W-IH 2 (x,y) (25)110

10



The terms of order w and of order 1 in Eq. (23) give respectively

Hi1,x [(1-M 2)gx +M] + H1 ,yg y + (1/2)H 1 [(3,M2 )g ggJ = 0 (26)

H 2 ;(1-M 2)gx +M] + H 2,g y + (1/2)H 2 [l-M 2)gxx +- g Iy
(27)

+(j/2)[((1-M2)H 1,x+ H I =y 0.

Eq. (24) is a first order partial differential equation in one

dependent variable. Applying a standard procedure one differenti-

ates Eq.(24) with respect to x and y

[(l-M 2gx + M]g x + g gx = 0

and (28)

[(l-M 2)gx + M19g + gyg = 0.

We denote by D differentiation in a direction given by

(dy/dx) = g y/[(l-M 2 g + MI (29)

Let D1 be the line element. Then one has

Dx (l-M2)g x+M (0

Di2' +( 2  2 1/2 (0
[gy - )g +M)I

D Dx a a (31)
*ED W1=5 ax Df aj

11ON



Curves with the slope given by Eq. (29) are called characteristics.

Then from Eqs. (28)

Dgx/D1 = 0

and (32)

Dgy/D1 = 0.

Furthermore

Dg/DZ = x (Dx/DX) + g y(Dy/DY£) (33)

and, from Eqs. (26) and (27)

D(logH1 )/D1 + (1/2) [(l-M2)gxx + gyy]/[g 2 + ((-M 2 )gx +M) 2 ] 1 2 =0
y yx

DH2 /D£+(1/2)H 2 E( I -M2 )g +g ]/ [g2 +((I-M 2 )g + M)211/2  (34)2 2 xx yy y x

+ (i/2)[(l-M2 )H1 ,xx +H1 ,yyl/[g + ((1-M 2 ) + M) 2 1 /2 - 0

It follows from Eqs. (32), that along the characteristics

gx -const and gy - const and subsequently, from Eq. (29), that
these curves are straight lines.

For a preliminary discussion, we consider characteristics

which st:art at the origin. Then

Dy/Dx = y/x

and because of Eq. (29)

- (y/x)[(1.-M 2)g x + M]

One obtains, by substituting this expression into Eq. (24)

and by solving the resulting quadratic equation,

12



gx = [-M2)'1 r-M + x/(x + ( y2 1/2]
° (35)

g= W y/(x2 + (1-M2 )y2)1 / 2

Moreover, if g 0 for x = 0 and y - 0

g = gxx + gyY

g = (1-M2)-I[-Mx + (x2 + (l-M2)y2)1/ 2  (36)

Consider a curve g(x,y) = K (where K is some constant). One finds
from the last equation that such a curve satisfies

2 2 2(x-KM) +y =K (37)

This is a circle with a radius IKI and center at the point
(x,y) = (KM,0). For K positive these are the circles shown in
Figures 1 and 2.

The limit M = 1 is readily discussed. One obtains

gy /x
(38)

gx= (l-M2 -1 -M + (x/IxI)].

Hence

gx = (+M) -1 = 1/2, x > 0

uMr = -(i-M)-l W-, x < 0. (39)
1.1+1 9x MA-(1-1 )

Actually, for M - 1 no perturbations can arrive at stations x < 0.

13



Eq. (37) shows that the factor exp (-iwg(x,y)) in Eq. (22)

anticipates the waviness of the flow field. The function h(x,y),

gives a modulation of the amplitude and since it may be complex

also some modification of phase. The phase modulation is expected

to be small. The evaluation of H1 is best carried out on the basis

of Eq. (26) rather than Eq. (34). One obtains for the coefficient

of H1

(I/2)[(l-M2 ) gxx + gyyj = (1/2)r- I

where according to the definition in Eq. (17)

r = [x2 + (l-M 2 )y 2 ] I / 2 .

Using the second of Eqs. (35) and Eq. (29), one obtains from

Eq. (26), after multiplication by r H1-1

(H,x/H1 )x + (Hl,y/H 1 )y + (1/2) = 0.

This equation is solved by

H = f(x/y) [x 2 +y2 ]-1/4. (40)

Using Eq. (22) and Eq. (36) one thus obtains the following

approximation for

- f(x/y)(x 2+y 2)-1 /4exp(-iwg(x,y)
(41)

f(x/y)(x 2 +y2) -1 /4exp[iw(lI-M 2 ) -i (Mx - (X2+(I-M2 ) 2 1/2

This is the first term in the asymptotic expressions for exact

solutions shown in Eq. (21). Comparing Eqs. (41) and (21) one

obtains

f(x/y), (x2 + y 2 )/(x 2+(l-M2 )y 2Ji/ 4 { cos(me)sin(me) (42)

where 8 is defined in Eq. (18).

14



The asymptotic expression, Eq. (21), arises from the

development of the Hankel functions. The argument of the Hankel

functions tends to infinity even as M tends to 1 for finite x and

y. This justifies the high frequency approximation. The defini-
tion for 0 in Eq. (18) shows that for M-.1, y finite and positive

and x>0, e tends to zero, and for M- , y finite and x < 0, 8

tends to w. For M close to 1 the function f(x/y) therefore changes
very rapidly in the vicinity of x = 0. This corresponds to the

accumulation of perturbations shown in Fig. 2. Notice also that

the function f(x/y) has a strong peak at x = 0 for M -i and assumes
2 1/4the value (l-M2)

In preparation for a generalization, we rewrite these equations
in terms of the direction normal to the wave fronts (given by

curves g = const) and in terms of the radius of curvature. It

was shown above, that lines g = const are circles which float
downstream with the dimensionless velocity M; at time t the circles

have the dimensionaless radius R = t. Let a be the angle of the
normal to the wave front with the x-axis at some point of the wave

front (Fig.. 3) and let 8 be the angle of the ray AB with the

x-axis. Then one has

x = R(M + cosa)

y = R sina

R1 (x + y2 ) 2  R( 2 +2Mcosa +1)1/2

(43)
tg 8 = y/x = sin a/(M+cosa)

sin8 = sina (M 2+2M cosa + 1)-1/2

cosa =(M + cos)(M2 + 2M cosa + 1)1/2.

In Eqs. (17) and (18) the quantities r and 8 have been defined.

One obtains

r - R(1+M cos) (44)

tg 0 - (i-M 2 ) 1/2tg 8

15



The expression g, Eq. (36), reduces to

g = R

With a modified function f, one then obtains from Eq. (41)

= (a)R-i 2exp(-iwR) (45)

The direction of the characteristic is given by a line e = const,
or

Dx/Dy = sina/(M + cosa) (46)

To visualize what happens in a more general case, in which

the initial line g = const is not a circle but a general closed

curve, one uses the idea that lines g = const at a later time

arise from an initial line in the same manner as in air at rest,

except that they float downstream with the dimensionless

velocity M. We already found that the characteristics are straight

lines in any case. For a point on a line g = const with normal

given by a, the slope of the characteristic is then given by-

Eq. (46).

The above description suggests that, along a specified

characteristic, * is determined by the curvature of the

initial line g = const in the same manner as for perturbations

emanating from a circle. This motivates the following representa-

tion; let the inital curve g = const be given by

x = x o(s)

y = Yo (s)

where s is the arc length

2 2(dx o/dS) + (dy0/ds) = 1. (48)
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Then the angle of the normal to this curve, denoted again by a,

is given by

cosa = dy0/ds

sina = -(dx 0 /ds)

one has

gx = Igrad gfcosa

(49)

gy = Jgrad gjsina.

By substituting the above equations into Eq. (24) one obtains

Igrad gi = 1/(1+M cosa)

and therefore

gx = cosa /(I+M cosa) (50)

gy = sina /(1+M cosa)

The direction of the characteristics is given by Eq. (29). One has

for the denominator

(l-M2)gx + M = (M+ cos)/(l+M cosa)

Therefore

Dy/Dx - sina/(M+ cosa) (51)

With a parameter p one then obtains the following parametric

representation for the characteristic
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x = x 0 + (p-po) (M + cosa)
(52)

y = Yo + (P-Po )sina

We have denoted the arc length of a characteristic by dt. One

obtains from the last equation

dk/dp = (M2 + 2M cosa + 1) 1/2. (53)

Furthermore,

dg/dp = gx (dx/dp) + gy(dy/dp) = 1. (54)

It is shown in Appendix II, that p can be identified with

the radius of curvature of the line g = const, to be denoted by R.

The function H is determined from Eq. (26). Using Eq. (50) and1
Eq. (34) one obtains

(55)

(d(logHl)/df) + (1/2) [(I-M2 )gxx +gyy 1(1+M cosa) (1+2M cosa + M2) -/2=0

In Appendix II it is shown that this leads to

d(log H)/dp + (1/2) (l/p) = 0 (56)

Hence

H = fl(s) P-1 /2

For circular waves p is given by

p = R = R1/(1 + 2M cosa + M 2)1/2 (57)

in other words, p is proportional to R1 with a factor of

proportionality which is different for different characteristics.

It is also shown that

18



1H 2 = f -2 (s)1 1/2

In the derivation of the expression for H2 in Appendix II

the assumption has been made that p is large (while p1 is not too

large). The last formulae therefore gives a good approximation

* only at a sufficient distance from the initial curve. The
parameter s characterizes the individual characteristics.

* We shall use Eq. (22) in the asymptotic form of Eq. (41),

but somewhat extended

= -f(S)R1-1/2 + f2 (s)R1-3/2]exp(-iwg) (58)

With Eq. (57) and modified functions f1 and f2 one can also write

= [fl(s)p- 1 / 2 + f2 (s)p-3/2lexp(-iwg). (58')
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SECTION IV

ASYMPTOTIC FAR FIELD CONDITIONS

Asymptotic far field conditions are obtained from Eq. (58') in

the following manner. One forms the derivative in the direction
of the characteristic. Then no derivatives of the unknown

functions fI(s) and f2 (s) will appear. Using Eq. (54) one obtains

D /D£ =(Dp/DZ) [f 1 (s) (- (1/2) p- 3/ 2-iwp-1/ 2 ) +f2 (s) (- (3/2) p-5/ 2-iap -3/2) ]exp(-iwg) (59)

The expression of Eq. (58') then satisfies

D + + i)] ( + iW)]1 = 0 (60)
D DX2p !p 0. (60)

The second operator (which is applied first) makes the term
f1(s )p-1/2 (-iwp) zero and changes the expression f2(s)p-3/2exp(iwg)

fdp/d f2 (s)-5/2 exp(-iwg). The first part of the operator
(which is applied afterwards) causes this term to vanish. For

large values of p (or of w) one may disregard the term p-3/2 and

then one obtains the simple far field condition

[_R + D£ (_ +  i(,)] 0. )

Also, the term 1/(2p) may be omitted if w is s1Tcient) large

D[. + ( iw)]O = 0. (62)

The last formulation corresponds to the original formulation of

Sommerfeld. Eqs. (61) and (62) are different forms of the far
field conditions of Bayliss, Gunzberger, and Turkel (Ref. 6,7).

The expression Eq. (60) written in detail gives

+-.22 (2+ 21w)Dd- +~) iW-W =~0. (63)
DX 2 DR. DR D. 4p P
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The occurrence of a second derivative in the boundary conditions

for a second order differential equation is unusual. In the

present problem second derivatives cannot be avoided, but they

can be transformed by means of the differential equation into second

derivatives along the contour of the computed region. If one uses

higher order boundary conditions of the Bayliss, Gunzberger, Turkel

* type, then even higher derivatives, first in the direction of the

characteristics and, after a transformation, along the contour of the

* computed region are encountered. Exact boundary conditions for

the problem have been derived in Ref. 5; they are of a global nature

(that is, all boundary points interact with each other). The

occurrence of higher derivatives means that the solution in some

vicinity of the point under consideration enters the formulation.

In this manner the underlying global character of such far field

conditions makes itself felt.

Some further details are added. Let a be the angle of the

direction of the characteristic with the x axis. Then, according

to Eq. (43),

sin 8=sin UM 2 + 2M4 cos at+ 1)-1/2
(64)

2 -1/2
Cos0 (M +cost)(M + 2M cos a+l1)

(By our definition a~ is the angle of the normal to the line g

const with the x-axis.) It may be desirable to express various

quantities in the terms of the angle 8.We introduce an auxiliary

angle 6 (Fig. 3).

Then

sin 8- M4 sin0

a - (a + 6)(65)

(M 2 + 2Mcosa+l1) 1/2 MCos + Cos6

DR/DL Dp/DZ (M cos 0+ cos61
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2 2
Now we express the derivative d 2/d2 . We introduce a local

system of coordinates E, n, where C has the direction of the
characteristic, n the direction of the tangent to the boundary

of the computed region. Then d/di = d/dE. Let, at the point

under consideration, y be the angle of the n axis with the x

axis (Figure 4).

Then

x -x 0  cos0 + n cos Y

Y-Y = sin + n.sin Y

and
0 = xx Cos 26 + 0 xy sin 28 + 0 yy sin2 a

2 .2Cx cos2Y + y sin 2y + y sin2Y (66)
T l xx xy yy

* = Oxx cos 8cos Y + *xy sin(8+y)+ yysin B sin y.

In addition, one has the differential equation for 0 (Eq.(9))

2iwMox W 2- = (l-M2)2xx +  yy"

Eliminating x ,yy' and x from these four equations one
xy yy XY

obtains

0 * [l-M2sin2 ]+enn (1-M2sin2S) -*n [2cos(8-Y)+M2 (cos(8+)-cos(8-Y))]

(67)

-(2iwM - w2)sin2 (-Y) = 0.

This equation is verified in Appendix III. It allows one to
d2 /dt2 = in terms of derivatives of and in theexpress d*d ~i em fdrvtvso n ~i h

n direction (that is in the direction of the contour of the computed

part of the flow field).
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In practice, one will choose the boundary of the computed

part of the flow field so that the n direction coincides with

either the x or the y direction. Then considerable simplification

will occur.

These results can be applied in two different forms. In a

procedure, which corresponds to that of Bayliss, et al., one

assumes that all waves originate at the same origin (somewhere in

the middle of the profile). The direction of the characteristics

is then given by rays through the origin. The simplest form is

obtained from Eq. (58)

= [fl(s)Rl - I 2 + f 2 (s)Ri 3 / 2 lexp( iwg)

where

R1 = (x2 + y 2 ) 1/2  (68)

and according to Eq. (36)

g = (I-M2 )-1 [-Mx + (x2 + (l-M2)y2)/ 2 ]. (69)

According to the derivation of Eq. (36) one has

Dg/Dt= gx (Dx/DX) + gy(Dy/Dt) = gx(x/R I ) + gy(y/RI )

•Dg/DL= g/Rr

According to Eq. (54), one has dg/dp = 1. Therefore, from Eq. (62)

(D$/DZ) + iw(g/Rl) = 0 (70)

and from Eq. (61)

(D*/DL) + [iw(g/R I) + (1/(2RI))] = 0
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The counterpart to Eq. (63) is
(71)

(D2 2/D. 2 2+(3/RI )+(2iwg/R I ) ](DO/D9)+[(3/4R 
2) +(3iwg/R 2  2=0.

A second form of the far field condition arises, if one

determines the likely origin for the waves which arrive at some

point of the contour of the computed flow field from the function

and its derivatives along the contour. One proceeds in the

following manner. The analysis is based on the assumption that

the function h changes only slowly. In principle, h and 0 are

allowed to be complex. Then one has

arg(4) - arg(h) - wg

and

-i
g = W [arg(h) - arg(4)]

locally arg(h) can be replaced by a constant.

From this expression one obtains gx and gy along the contour

of the computed region by numerical differentiation, and hence

cos a = g /(g2 + g2 1/2
x x y

(72)

sin a = g (g2 + g2) 1/2

Y/ x y

As a check (which may lead to small corrections) one has from the

first of Eqs. (50),

Igrad gj = (1 + M cosc)-
1

The fact that g = p is identical with the radius of curvature of

a line g = const, is hard to apply in a practical computation,

because one needs interpolations to identify these lines.
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In Appendix II the following formulae have been derived

gxx = R- 1 ( 1 + McosC) -3 sin2a

gyy = R-(1 + Mcosa) (M + cos a)

-1 -3gxy R (1 + M cos a) (-sin a (M + cos a))

These equations can be rewritten as

gxx/Igrad gl = R-(1 + M Cos a)-2sin 2

gyy /Igrad gj = R-l(1 + M cos a)-2 (M + cos a)2

g xy/grad gl = R-I(1 +  Cos 0)2(-sin a(M + cos a)).

Assume that the boundary of the computed region is given by a
line x = const. Along this line one can determine gyy and gxy

(if one allows the use of first derivative in the direction of the

normal to this line. Thus, one obtains two expressions for R

(which in some way must be reconciled with each other). If one

uses only derivatives along the boundary, then one has only gyy

at one's disposal.

Equivalent to this formulation is the following approach.

One determines along the boundary line the value of a from

Eq. (72). Assume again that the boundary is a line x = const.
One can then form 3/y numerically. (Since a has a direct

geometrical meaning, one will be able to judge whether a is

sufficiently accurate and smooth.) The radius of curvature is

then obtained in the following manner. If, as in Eqs. (47) etc.,
ds is the line element along the contour g = const, then one has

R- 1= da/ds-= -asina+c cosa
-X y
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Furthermore since a = const along a characteristic

a (M + cos a) + a sin a = 0.x y

Hence

R- 1 = a y(1 + M cos a)(M +Cos -)1 (74)

or

R - -a (1 + M cos a) (sin a)-ix

In these formulae (R- 1) is obtained by numerical differentia-

tion along the contour of the computed region. Equations (73) and

(74) are basically the same; this is shown in the following manner

a= arctg (g y/gx

gyygx - gxygy gyy Cos a- gxy sina
(g2 + 2 grad gj =(gyy osa-gxysina)(l+Mcosa)

x y

Then from Eq. (74)

R-l=(gyy Co s a - g sin a)(1 + M cos a)2(M + cos a) - I

Substituting here gyy and g from Eq. (73) one obtains indeed an

identity.

In the last equation one can eliminate the mixed derivative.
From the fact that along a characteristic gx and gy are const,

one obtains

gxxCos 0 + g sin 80= 0

gxyCos 8 + gyy sin 8 0

hence, with Eq. (64)
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gxy = -gyy sin a(M + Cos a)

and

gxx = gyy sin2a(M + cos a)-2.

We make the following observation. The first form of the

far field conditions, given by Eqs. (62) through (65), can be
derived from the asymptotic development of the Hankel functions,

Eq. (19). In practice, one uses only one or two terms of the
development with respect to z- 1 . The representation for fixed rw
deteriorates with m (whose meaning can be recognized from Eq. (16).
The asymptotic far field conditions (in either form) therefore are
applicable only at the outer contour where the amplitude of
does not change too rapidly and if rw is not too small.

The far field condition in the original form of Bayliss, et. al,
require that one first carry out the transformation (Eq. (12)); in
the present formulation one uses directly the original form
(Eq. (9)) of the partial differential equation. Whether it is
worthwhile to carry out the transformation Eq. (.12), -also in the
region close to the profile where the differential equation is
more complicated, depends upon practical considerations. The
two formulations are equivalent.

In one formulation of the exact far field conditions (which
have global character) (Ref. 1) one replaces the effect of periodic
perturbations in the computed field by unknown periodic perturba-

tions at the contour of the computed flow field. The local
intensity of these perturbations is one of the unknowns of the
problems. The field at a fixed point of the outer contour of
the computed flow field appears as a superposition of

perturbations at all other points of the contour. This is, of
course, a much more general approach than the asymptotic form,
which requires that the perturbations behave as if they came from
one point. The potential at some point of the contour is then

expressed by an integral which contains contributions of the
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entire contour. The normal derivative is expressed by such an
integral but in addition, it contains a term which depends upon
the local strength of the perturbations. In this formulation the
normal derivative (rather than the derivative in the direction of
the characteristics) appears.

For the purpose of determining far field conditions, the
idea of a nonreflecting wall has been put forth. If one uses a
local formulation of the boundary conditions, a wall can be made
nonreflecting only for waves of a selected direction. The
condition of Bayliss et al., gives a wall which is nonreflecting
for waves that come from the origin. In the author's opinion
this, rather than the direction normal to the wall, is the
appropriate choice. It is worth noting that in this formulation
the direction of the wall enters only if one uses approximations
of a higher order.
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SECTION V

GENERAL UNSTEADY PERTURBATIONS IN A SUBSONIC PARALLELFLOW

Equations (60) through (.62) can serve to derive asymptotic

far field conditions for more general unsteady perturbations in a

subsonic flew, if the changes with ti~me are rather rapid. This

generalization is desirable for the following reason.

Upstream of the profile where the waves propogate againsts

the oncoming flow, they move fairly slowly. Under these circum-

stances the dependence of the speed of motion and of the local

sound speed upon the amplitudes of the waves become important.

Portions of the waves where the pressure is higher travel faster

than the average. This leads to a distortion. Even if at the point
where they are generated (say at the profile) the waves are

sinusoidal in time, they lose this property as they travel over
some distance (although they remain periodic). This effect is not

taken into account in a linearized approach where the unsteady

perturbations are considered as small; there the speed of wave
propagation is solely determined by the properties of the under-

lying steady field. The wave amplitudes for which the linearized

approach is sufficient become smaller as the Mach number approaches

one. This state of affairs is clearly seen, if one studies the

propagation of one-dimensional waves in a tube. Accordingly, it

may be desirable to take nonlinear effects into account within the

computed part of the flow field. It can be assumed that the far
field is still governed by the linearized equation for unsteady

flows, only the assumption that the waves are sinusoidal in time

will be abandoned.

Asymptotic far field conditions for such flows are obtained

in the following manner. The expression Eq.(58') combined with

Eq. (6) gives

= (f1(s)p
-1 / 2 + f2 (s)p-3/ 2 )exp(iw(t-p) (75)

where s denotes a parameter which is constant along a characteristic

and p identifies the station along the individual characteristics;
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p has been identified with the local radius of curvature R of

the lines g = const. At the moment, it is assumed that one

knows the angle a which gives the direction of the normal to the

wave fronts and therefore also the angle 8 which gives the direction
of the characteristics (Eq. (64)). (Notice that Eq. (64) does not

contain the frequency w). We denoted by dX the line element

along a characteristic. We have found in Eqs. (54) and (65)

dp/dX = dR/dX = (M + 2M cos a + 1)1/2

= (M cos 8 + cos )1 (76)

For simplicity, we omit temporarily in Eq. (75) the con-

tributions of f2 " Differentiating Eq. (75) with respect to t and

di one obtains

a¢/at = fliwp exp(iw(t-p)) (77)

ao/ax = f1(ap/I).[-i - /2 - (/2)p-3/2exp(i(t-p))

Combining the equations with Eq. (75) and writing R instead of p,

one obtains the following equation which is free of w

-1(30/3t) + (R/B)[(0/at) + (2R) -] = 0 (78)

Equation (78) is obtained directly from Eq. (61), if one remembers

that each factor iw arises by a differentiation with respect to t.

This observation allows one to derive far field conditions which

take higher order terms of the asymptotic development into account

immediately from Eq. (60)

[a + R ( _R + ) + 3- 1(__ + =0

or in more detail from Eq. (63)
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2 /a2 + (aR/3) (3/R)(~a/lt) + 2 (D 2/axat)]
(79)

+ (.R/32)2 [(3/4R 2 ) + c3/R)(a;/3t) + a 2 /at 2 ] = 0

Again Eq. (67) can be used to express D2 /n 2 , which in the

notation used there is identical with D2 /D2, in terms of
derivatives along the boundary of the computed part of the flow

field.

So far, the angle a which gives the direction of the normal

to the lines g = const has been assumed to be known. Here

assumptions analogous to those of the preceding section must be

made. If one assumes that the origin of the waves is known (some

point in the vicinity of the profile, then one obtains the necessary

formulae by replacing in Eqs. (70), (71), and (72), iw by 3/at.

One obtains

(3/32£) + (g/RI) (1) /t) = 0

(3/Dt) + (g/R) (3W/ t) + (1/2RI) = 0

(/at 2)+ (3/R ) (34/3t) + 2(g/RI ) (1 2/qeat) (80)

+(3/4R 2 ) + (3g/R2 )aD/t + (g/R) (3j/ t 2 ) = 0

It is possible to derive in this general case,at least
approximately, the normal to the wave fronts. In the case that one

has sinusoidal perturbations, we assumed that along a line g =

const the amplitude of 0 and also its phase changes only slowly.

Under the present circumstances this amounts to the assumption

that

grad * ~ grad g.

One then obtains

a = arctg (0y/ x) (81)
yx
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This defines a except if simultaneously *y = Ox 0. Excluding
the vicinity of such points, one obtains the value of a and

therefore also the local values of p in the same manner as before.

One can then apply directly Equations (74) viz

R- = Oy(1 + M cos c)(M + cos a)-1  (82)

or
-1 -l

R = - ax (1 + M cos e)(sin a)-

Alternatively, one can use one of the Eqs. (73) to determine

R. The factor of proportionality between g and 0 cancels under

the assumption made here; one can replace, for instance,

gxx /Igrad gj by xx /Igrad 4:.
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SECTION VI

CHARACTERISTIC SURFACES IN THE x,y,t SPACE

The derivation of far field conditions for unsteady flows

shown in the preceding section is somewhat indirect. The

following discussion is an attempt to throw light from a different

direction on these results. As far as the practical aspects are
concerned, it adds nothing, but it gives the connection of the

* present approach with other mathematical concepts.

One observes that the surfaces of the x,y,t space given

by

t = g(x,y) + const (83)

are characteristic surfaces for the partial differential equation

(Eq.(5)). The derivation is found in Appendix IV. If along a

noncharacteristic surface the values of ad y't are given,

then one can determine by means of the differential equation the

second (and higher) derivatives of , in terms of derivatives

formed within the surface. In contrast, these derivatives are not

uniquely determined for a characteristic surface. As a consequence

it is possible that along a characteristic surface, discontinuities

of the second and higher derivatives of will occur. At a fixed

point (x,y,t) the orientations of these surfaces are determined by

the differential equations for g, namely

(l-M2 ) g2 + 2Mgx + gy
2 = (84)

We introduce coordinates ,n within one of the characteristic

surfaces, and n are identical with the x and y coordinates of

a point (x,y,t) of the surface. Let

U = ox' V = , W t (85)
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Then one has, (since t = g(x,y))

U +~U = xtgx

Vn1 = 0yy + (ytgy (86)

W E = xt +  ttgx

W = yt + Ottgy"

In order for second derivatives of to exist, the values of U, V,

and W within the surface must be connected by the compatibility

condition

- V + (2M + (1-M2)gx)WE + gy = 0. (87)

This derivation is found in Appendix IV.

A plot of lines g = const in the x,y-plane can be interpreted

in two different manners. If one considers t in Eq. (83) as fixed,

then these curves give the intersection of characteristic surfaces

in the x,y,t space with a plane of constant t. If one considers the

constant in Eq. (83) as fixed, then the curves represent a contour

map of one characteristic surface where t corresponds to the

altitude.

Assume now that for a given time a curve g(x,y) = c is

given. To construct the characteristic surface one must find the

curves g = const for other values of t. For this purpose one can

use the results found above. Consider points (x,y) reached from a

certain point (x0 ,Yo ) of the starting curve g(x,y) = c0 by traveling

along straight lines given by

(x-x0 ) = (p-p0)(M + cos a)

(y-yo) = (p-p0 )sin a
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where a is the angle of the normal to the curve with the x-axis.

These are the directions given by Eq. (52).

Since, according to Eq. (54)

dg/dp = 1 (89)

one obtains a point of the curve g = c1 by setting p-po = C1 -C0
The same point is reached, if one proceeds from the original

point in the x-direction by a distance M(c -C ) and then in the

direction of the normal by the distance cl-C o. This is in

accordance with the description, given in Section II, that a wave

front spreads as in still air except that the perturbation floats

downstream with the (dimensionless) velocity M.

For a further discussion, we consider all possible values of

x and gy (compatible with Eq. (84)), they are obtained by letting
a vary in Eq. (88) from 0 to 2. The locus of the points g = c1
which are reached from point xoy ° is then given by

x = x 0 + (C1 - Co ) (M + Cosa) (90)

y = YO + (C1 - C0)sin a.

This is a circle with center x + M(c1 - co ) and radius (c1 - C0 ).

In the x,y,t space, these circles are the contour lines of an
oblique cone with tip at point (xoy O ) and a generator given by the

above circle. At the point of the pertinent characteristic

x = x 0 + (cI - cO) (M + cosa)

and y = YO + (C1 - C0)sin a

the circle drawn for a fixed point of the line g = c1 and the line
g = C1 have the same tangent; consequently, the cone mentioned

above is tangent to the characteristic surface in the x,y,t space.

The lines of tangency are called bi-characteristics. The characteristics

in the x,y-plane with which our considerations started are the
projections into the x,y-plane of the bi-characteristics in the
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x,y,t plane. The line g = 1 can he obtained by letting the initial

line float in the x-direction by the distance M(cI - Co), by drawing

circles with radius c -c and centers at the curve so shifted, and
finally, by determining the envelope of these circles. According to
the description given here, each characteristic surface is determined

by the initial line g = const. If two such lines are tangent to

each other at some point (xoYo), then they will be tangent to each
other along the bi-characteristic that starts at this point.

It is natural to introduce in the compatibility condition

(Eq. (87)) instead of C and n, the derivatives in the direction

of the bi-characteristics and of the curve g = c0 . We denote by
i' the projection of the bi-characteristic into the x,y-plane,

and by nil, the coordinate in the direction of the tangent to the

line g = const. The projection of the bi-characteristic into the

x,y-plane is identical with the characteristic lines considered

above. The angle of with the &-axis (which coincides with the

x-axis) is, therefore, given by the angle 8, determined by
Eq. (43). The angle of the normal to the contour is denoted as

before by a. One then has

= co 8- nI sin a (91)

n = isin B + n cos a.

Hence

-- = cos B.- + sin B

(92)
a sin + Cos

and
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(Cos - sin8r-)/cos (8-a)

(sn + C, 1 (93)

S(sinc 1 + cos0-j---)/cos (8-a).

This and the expression for g and gy from Eq. (50) are now

substituted into Eq. (87); one obtains

-(I-M2 ) cos a(DU/3l) - sina(3V/Bl) + (1 + M cos)(WI

+ (M2+2M Cosa + 1)-1/2 [sine(l-M2 1 (aU/3nl)-(M + cos)(V/n 1 1

-M sinct(aW/an1 )] = 0

If one changes a by w then one obtains a second bi-

characteristic. Let 2 be its direction. The corresponding value

of 8 (denoted by 82) is then given by

cos 82 = (M - cos a)(1 - 2M cos a + M2 ) - 1 / 2
(95)

sin 82 = - sin(1 - 2Mcos a+ M2 )-1/2

The direction dnI1 is changed into -dn One then obtains

(1-M 2 )cost(aU/aY2 ) + sina(aV/a 2) + (1-Mcos a)(DW/D 2

+ (M2-2Mcos a+ 1)-1/2 [sina(l-M
2) (aU/an)+ (M-cos )(aV/an I 96)

- M sina(aW/nri] = 0.

In preparation for a discussion of far field conditions, we

now discuss the following configuration. We consider a characteristic
surface t = g(x,y)+c 0 (with c0 fixed), in the vicinity of a point

x,y. For time t > g(x,y)+ c0 let be identical to zero. At the
characteristic surface as everywhere else, is continuous, but its

first derivative changes very rapidly as far as this is compatible
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with continuous F. For t > g(x,y) + c + 6, the first derivatives0
reach some fixed (or nearly fixed) value. Ultimately, we allow E

to tend to zero, then a jump of some first derivative propagates

along the characteristic surface. In this situation the derivatives

of U, V, and W (x ,y, and 0t) with respect to n (that is within

the characteristic surface), remain bounded. The derivatives along

the bicharacteristic which belongs to the same normal to the

characteristic surface and which passes through this surface

becomes very large. We integrate Eq. (96) with respect to C2'

the path of integration goes from the undisturbed region through

the jump region to a point shortly beyond it. Let [U], [VI, and

[W] denote the jumps of these quantities; they are actually identical

with U, V, and W at the point beyond the jump region. Let the

expression containing derivatives with respect to n temporarily

be denoted by Q2" Q2 remains bounded even in the jump region.

One then obtains

(l-M 2)cosa[U] + sinc(Vi + (l-M cos) [W] + IQ2 dE2 = 0. (97)

In the limit as C ) 0, the length of 2 over which the integration

is extended becomes zero. One thus obtains

(1-M2 )cosaox + sinay + (1-M cosc)ot = 0. (98)

Because of the continuity of , and since N * 0, before the jump

the gradient of * is normal to the curve g(x,y) = t-c0 , for any

fixed time. One remembers that a gives the normal to lines g(x,y)=

const. Therefore,

x = gradol cos a(9

y= grad*l sin a.

Thus, one obtains from Eq. (98)

(.1 + Mcosa) 1gradol + ot - 0. (100)
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We introduce the direction of the characteristics in the x,y-

plane; we have found that such characteristics are the projection

of the bicharacteristics (of the characteristic surface) i-nto the

x,y plane. The angle of the characteristics with the x-axis has

been denoted by a; the line element of the characteristic by dt.

Since @ = const along the line g(x,y) = t-c 0 , one has
do

£ = Igradol cos(-) (101)

and with Eq. (64)

d = Igradol(l+M cos a)(M 2+2M cos a+ 1)-1/2 (102)

Equation (100) can then be written in the form

(30/ BM + . (M2 + 2M cosa + 1) 1 / 2 ( /(at) = 0 (103)

This is Eq. (78) combined with Eq. (77) but with the term (2R-
I)

omitted. For a jump of fgrad f along a characteristic surface

the last formula is exact.

In general, the expression fRd 2 which vanishes for a jump

will play a role. The line along which one integrates intersects

the characteristic surfaces t = g(x,y)+c. In an oscillatory flow

these are surfaces of constant phase. But for w large the phase

changes rapidly as one passes from one such surface to the next

one (this happens if one moves in the direction 2) . The derivatives

with respect to n (which are derivatives along the different line

g = const) remain bounded. One thus obtains an integral with a

strongly oscillatory integrand; as w increases the oscillations

become narrower. Hence it follows, that in a low order approxima-

tion in w-1 , the integral can be disregarded. It is perhaps

possible to estimate this integral (using integration by parts

and the second mean value theorem), but actually the derivation

of higher order formulae in the manner shown in Section V is

simpler.
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The last discussions have shown that the far field conditions

can be interpreted as an expression for the compatibility condition
for the bi-characteristics of a special characteristic surface,

defined by the postulate, that for a fixed t it intersects the

characteristic surface of constant phase t = g(x,y) + c0 , along

the curve g(x,y) = t - c0 . This special choice is necessary in

order to ensure that the factor R in the integral fRdE 2 remains

bounded.

In Eq. (103) the radius of curvature of the line g(x,y) = const

does not appear. The results agree with Eq. (78) only for R -.

In other words, one uses a relation for plane waves. The dependence

on the parameter p (which is identical with the radius of curvature

R) and which would be needed in order to derive higher order
approximations can be obtained on the basis of the last formula,

if one uses in addition the compatibility conditions for the

surface t = g(x,y) + c0 .

First we express the fact that at this surface = const.
Since a gives the direction of normal to the line g(x,y) in the

x,y-plane and since * = const, one has:

x Igrad~jcos (104)

y= Igradolsina

where Igradol refers to the function O(x,y,t) for constant t.

Along the intersection of a plane y = const with t = g(x,y) + co

one has

dt - gxdx.

Therefore, since * = 0

dx -lx
+  X 1 t g "(105)
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Hence,

ot = gx 1gradolcos a

and with Eq. (50)

t -gradj(l+M cosa) (106)

Our next task is the determination of the derivatives with respect

to n1 in Eq. (94). The expression to be evaluated is

Q1 = [sina(l-M2) (3U/anl) - (M+cosa)(aV/rI) Msina(DW/anl)

[M2 - 2Mcosa + 1]1/2 (107)

with

U X = Igradolcos a

V = y = Igrad lsin a

W = q = Igradol(l+M cos).

The derivatives of U, V, and W in the expression QI, therefore, are

expressed in terms of derivatives of Igrad l and of a with respect

to n1. The coefficient of

d Igradol

turns out to be zero, for

sina(l-M 2)cos - (M + cosa)sina + Msina(l+Mcos) = 0.

Therefore,

01 -1gradoI d (1+Mcosa) (M2 + 2Mcosa + 1)1/2
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In a similar manner, one obtains for the derivatives in Eq. (94)

2-(l-M )cosa(aU/3 I ) - sina(V/D I ) + (l+Mcosa) (DW/D I ) =

-2[Dfgradj/D&i ] (1+Mcosa)

No terms 3/3i occur. This is in keeping with Eq. (32), which

shows that along a characteristic (here bi-characteristic) gx' gy

and consequently also a are constant. One also observes that

da/dn1 = R7 I

(where as before R is the radius of curvature of a line g = const).

One thus obtains from the compatibility condition Eq. (94)

-2(djgradj/d 1 )-R-ligrad~l(M2 + 2Mcds + 1)- 1/2 = 0

In Appendix II we have identified R with a parameter p,

the line element dE1 corresponds to di. Using Eq. (53) one then

obtains

d(logjgrad~j)/dp 4 (1/2p) = 0.

Hence,

jgradj- const p-i 2  = const R"I 2 . (108)

From Eqs. (104) and (105)

Ix = const R-1 2cos a

y const R -1/2sin a1 (109)

Ot - const R-1 /2(1 + Mcosa)
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The constant in these three expressions is the same but may

vary from characteristic to characteristic. According to Eq. (77)

dR/dk = (M2 + 2Mcosa + 1) -1/2.

Note that these expressions satisfy the Sommerfeldt radiation

condition (Eq. (78)) with. the tern C2R - 1 ) omitted. This can be

shown with the aid of Eqs. (102) and (77).

The conditions (103) arise from bi-characteristics which

cross the characteristic surface along which a jump of Igrad~i

propagates. Here the contribution of Q2 vanishes in the limit

of a sudden change of Igrad~l. In this equation, no contributions

of R appears. The expressions Eq. (108) and (109) are derived

from the relations for bi-characteristics lying directly above

the characteristic surface at which the jump occurs. Here the

term QI" the counterpart of Q21 is not negligible in comparison

to other terms of the compatibility condition. This fact is

responsible for the dependence upon the radius of curvature R

of the line g(x,y) = const.
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SECTION VII

THREE-DIMENSIONAL PROBLEM

The three-dimensional problem has actually more practical

significance than the two-dimensional problem. Most of the

necessary formulae can be fairly easily derived by using the

analogy with the two-dimensional problem. Eq. (22) is now replaced

by

(x,y,z) = h(x,yz) exp(-iwg(x,y,z)). (110)

Equation (24) is replaced by

l-M 2)gx + g2  + g2 + 2Mgx - 1 = 0. (111)
(l- y z

Let D denote differentiation in the direction of a characteristic, and

let Di be the line element of a characteristic. With unit vectors
4. 4.4
ex , ey, and ez respectively in the x,y, and z directions, one

obtains

ex (Dx/Dt) + ey (Dy/DL) + e+ (Dz/Dg,)=
(112)

2 4
= const [x ((I-M2)gx+M) +eygy + ezgz ]

Then one finds, that along the characteristics

Dg /Dt = Dg y/Di = Dgz/Dt = 0.

Therefore, g x,g y, and gz are constants. The characteristics are

straight lines. Let (n,x), (n,y), and (n,z) be, respectively, the

angles of the normal to the surface g = const with the x, y, and z

axes. One has, of course,

cos 2(n,x) + cos 2(n,y) + cos 2(n,z) = 1 (113)
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Equation (50) suggests that

Igrad gj = (1 + Mcos(n,x))-
1

gx = cos(n,x)(i + Mcos(n,x)) 1  (114)

g' = cos(n,y)(l + Mcos(n,x))-
1

-1
gz = cos(n,z)(i + Mcos(n,x)) 1

On readily verifies that this is the solution of Eq. (111).

It depends upon the parameters cos(n,x), cos(n,y), and cos(n,z).
Because of Eq. (113), there are actually only two free parameters.

One also verifies that Eq. (112) is satisfied if one sets

x = x° + p (cos(n,x) + M)

y = Yo + p cos(n,y) (115)

z = z + p cos(n,z)

where p is a parameter whose meaning so far is not specified (in

the two-dimensional case, p has been identified with the radius of

curvature of the curve g = const at the point under consideration;

in the three-dimensional case, one does not have a single radius of

curvature). One then has

D£/Dp = (M2 + 2Mcos(n,x) + 1)1/2 (116)

Dg/Dp = gx (cos(n,x) + M) + gy cos(n,y) + gzcos(n,z) = 1 (117)

and hence

21/
(Dg/Dt) = (Dg/Dp)(Dp/D£) = (M + 2Mcos(n,x) + 1) " /2. (118)

If all the characteristics emanate from the origin, then

one has
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x = p (cos(n,x) + M)

-y = p cos(n,y) (119)

z = p cos(n,z);

g = gxx + gyy + gzz = p. (120)

A surface g = const is a sphere with radius p and center M p, for

one has as a consequence of Eqs. (114) and (119)

(x - Mp)2 y2 + z) p2. (121)

In analogy with Eq. (36), we set,tentatively,for this case

g(x,y,z) =(-M 2 ) [-MX + (x 2 + (1-M 2) Hy2 + z 2 )) 1/2]. (122)

Then

gx = (1-M 2 ) -1{-M + x(x 2 + (1-M 2 )(y2 + z 2 )) - 1/2]}

gy = y[x 2 + (1_M 2 ) (y 2 + z 2 ) 1 ]1/2

gz = z [ x 2 + (l-M2 )(y2 + z 2 ) ]-1/2.

Then one can verify that Eq. (111) is satisfied. Next one

must determine H. In principle, one could return to the counter-

part of Eq. (26) and evaluate the coefficients of this equation.

But one can also refer to the counterpart of the particular

solutions, Eq. (16). They are spherical harmonics, and they

have the form

-1 -1r- P(r )exp(-ipr)

with

r = (x 2 + y2 + z) 1 / 2 . (123)
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P is the generic expression for a power series. The analog to

Eq. (58) suggests the following approximations for

(124)= [ fl (X/Rl' Y/R1'Z/Rl)R 1I + f 2 (X/Rl 'Y/R1 ' z/Rl) RI lexp (-iwg (x, y,z) ).

Along a characteristic,the functions f1 and f2 ;along with the

values of g ,g , and gzare constant. This leads to the counter-
x y

part of Eq. (60)

'D R_ D i(15

+ R1 + i" D-)(D + 1L + iD 0 (125)

and the simpler (and less accurate forms)

[_2 + 1 + j 1. =0 (126)
1

and

+ Dg = (127)

Here

2 2 21/
R= (x + y + z 1/2 (128)

The direction of the characteristics is given by the rays through

the origin. One has

Dg=s _(129)
DX R 1

and g is given in Eq. (122).

For general unsteady flows with waves originating from the
origin, one than obtains the far field conditions

D2_ + 3 + Z ] [D + 1-" + g _ '1 = 0.. (130)
DXat DR Rat
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or the simpler forms

1 g
D- + +  =0 (131)

R1 R1 t

D g _
[k+ R1 1J = 0. (132)

The second derivative which occurs in the above equation is

expressed by

D 2/Dk2 = (x 2/R 1 ) (3 2/ax2) + (y2/R2) (;2 /Dy2) + (z 2/R 1 ) 2(a2/123
1 1 1(133)

+2(xy/R2) ( 2/ax~y) + 2(xz/R2)(a2 /axaz) + 2(yz/R) ( 2 /Dy~z).

Assume that one boundary of the computed flow field is a plane

x = const. From the values of and x within this plane, one

determines 0yy, z yz' xz' xy' Ot' and 0tt" 0xx is expressed

in terms of pyy Izz' Oxt' and Ott by the differential equation

for 0.

Equations (124) through (133) give far field conditions for

which one estimates the origin of the waves (in essence, the

surfaces g = const). The location of the origin determines the

direction of the characteristics (the ray through the origin of the
2 2 21/wave), the value of R1 = (x + y + z2 )l/2. One obtains

g/R1 = (-M 2)V-Mx + (x 2+(l-M2 ) (y 2+z 2 ) I[x 2 +y2 +z 2 ] I / 2

This approximation may sometimes be unsatisfactory. In three-

dimensional problems at an intermediate distance from the airplane,

surfaces g = const are more likely to resemble ellipsoids than

spheres. Then one may proceed as follows. We consider sinusoidal

perturbations. One identifies surfaces g = const with surfaces of

equal phase of 0. One determines by numerical differentiation

48



cos(n,x) = gx/Igrad gI

cos(n,y) = g /Igrad g[ (134)
y

cos(n,z) = g /Igrad gl.

One ought to have, according to Eq. (114)

Igrad gI = (1 + Mcos(n,x))-1  (135)

This gives a check (and probably also an adjustment) of the numerical

results. The characteristic direction then follows from Eq. (115)

21/Dx/DL = (cos(nx) + M)/(M + 2Mcos(n,x) + 1)1/2

Dy/D - cos(ny)/ (M 2 + 2Mcos(n,x) + 1) 1 / 2

2 n1/2Dz/DZ = cos(nz)/ (M + 2Mcos(n,x) + 1)

This defines all quantities occurring in the Sommerfeldt

far field condition, (the generalization of Eq. (132))

DO/Dt + iwDg/Dl£ = 0.

The next higher approximation which corresponds to Eq. (131) requires

the evaluation of the function h in Equation (110). Proceeding in
analogy with the two-dimensional case (Eqs. (25) and (26)), one

arrives at the analog to Eq. (34)

2 22 2 1/2

D(log H)/DZ + (1/2) [-M 2 g+gy+g]/[gy+g ((M g+M)

Using Eqs. (134) and (135), one obtains
(136)

D(logH I)/Dt +(1/2) (1-M
2 g +g +g ] [l+Mcos(nx) [M2 +2Mcos( + -1/ 2.

1 xx~~,o yy zz)M 2csn+l

Then one obtains from the approximate representation for
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= H exp(-iwg)

DO/D£ + [iw(Dg/D£) - D(logHI)/D£]4 = 0.

(logHl)D is evaluated from Eq. (136). This requires the determination

of the factor (l-M 2)gxx +gyy + gzz' which can be done numerically.

A geometrical interpretation is formed in Eq. (A.31), but it is

preferable to express directly that along the characteristics, gx'

gy, and g are constant.

gxx(M + cos(n,x)) + gxycos(n,y) + gxz cos(n,z) = 0

gxy(M + cos(n,x)) + gyycos(ny) + gyzcos(nz) = 0

gxz(M + cos(n,x)) + gyzcos(n,y) + gzzcos(nz) = 0.

We describe the procedure for a boundary surface given by a plane

x = const. There one finds g gy , and gz by numerical

differentiation. This allows one to determine cos(n,x), cos(n,y),

and cos(n,z). By further differentiation within this plane (that

is with respect to y and z) one can express

Iyy' gyz, and gzz"

Then one obtains g and gxz from the last two equations

gxy = -(gyy cos(n,y) + gyzCOS(n,z))/(M + cos(n,x))

gxz = -(gyz cos(n,y) + gzzcos(nz))/(M + cos(n,x))

and from the first equation
(137)

gxx= (gyy Cos 2 (ny) + 2g yzcos(ny)cos(nz) + g zzcos 2 (nz)/M+cos(n,x))

This allows the evaluation of d(logHl)/d£, Eq. (136).
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An interpretation of the expression

(1/2)(l-M2 )gxx + gyy + gzz][l + Mcos(nx)]

which occurs on the right hand side of the equation for D(logH1 )DZ

is given at the end of Appendix II. Using Eq. (135) one recognizes

that it represents the average curvature of the surface g = const

at the point under consideration. The average curvature is

obtained in the following manner. One forms the curvature of two

curves which arise from the intersection of the surface g = const
with two planes through the normal to this surface which are

perpendicular to each other, and then forms the average. One of

these planes can be chosen arbitrarily, the other one is then
determined. The average curvature is independent of the orienta-
tion of these planes. For a certain orientation, the radii of

curvature assumes simultaneously extreme values. Let these values

be R110 and R2 ,0 for the surface g = g0, and assume that for this

surface p = 0. The dependence upon the parameter p along a fixed

characteristic is then given by

Caverage = (1/2)(R 1 0 +p) -1+(R 20+P)

One recognizes that the expression (136) contains certain terms of

higher order in p-1.

With Eq. (116) one can now rewrite Eq. (136)

= 1-1 -1]
D(logH1 )/dp _ (R1 0+p) I+(R20+P) ].

Hence,

H1 = const [(RI0 + p)(R 2 0 + p)]-/ 2. (138)

The expression [(Rl0+p)(R 20+P)]-1/2 is the Gaussian curvature of

the surface g = const at the point under consideration. The constant

may change from characteristic to characteristic. For p large one

obtains
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H =const p

This is the form suggested by the particular solutions (123).

The present form of the far field conditions is somewhat more

general. In the two-dimensional case one of the principal radii

of curvature (and the constant in Eq. (138)) are infinite. Then

one obtains the results of the preceding section

H 1= const p 1 /2 .

The estimation of the H2 carried out in the two-dimensional

case, is valid only for p large. Then one has for the three-

dimensional case R,^ R2 and

H ,const (RiR2)~

on this basis it would be possible to formulate approximations to

the far field conditions of the next order. However, one may

have doubts whether in a practical case this refinement is

justified. The derivations are based on the assumption that

surfaces of constant g can be approximated by surfaces of constant

phase of *.' This is only an approximation. The application of

these ideas to general unsteady flows presupposes again, that the

computed flow permits one to recognize wave fronts (which define

the surfaces g = const). In critical cases it is probably

preferable to use far field conditions which are more complicated

but do not require the assumption of high frequency or the

identification of wave fronts or wave origins.
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SECTION VIII

OSCILLATORY PERTURBATIONS IN A PLANE FLOW FIELD WITH
A FREE STREAM MACH NUMBER ONE

Figure 2 shows the wave patterns obtained in the linearized

treatment of subsonic flows, which arises in the limit where the

free stream Mach number goes to one. The perturbations pile up at
the value of x where the waves originate. This happens because the

sound velocity which governs the manner in which perturbations

spread through the flow field is considered as constant throughout

the flow field. In reality, the profile generates, even at a free

stream Mach number one, a subsonic region upstream of the profile

in which perturbations will travel upstream. A pile-up of waves

will not occur, although at a great distance from the profile the

wave length pertaining to a certain frequency will be very short.

The following analysis takes the modification of the sound velocity

by the presence of the profile into account. At a sufficient

distance from the body the flow field at a free stream Mach number

one can be described by a similarity solution. In the following

we study periodic perturbation in this part of the flow field.

The differential equations for the underlying steady flow

field is obtained in the familiar manner; one assumes that the

deviations from the sonic parallel flow are small, but retains

a critical term which allows the change of the type of the

differential equation from elliptic in the subsonic region to

hyperbolic in supersonic region. The simplified differential

equation for the steady flow field is then given by

+1 342)+ - 0. (139)

Here 0Is the potential which gives in the basic steady flow field

the deviation of the flow from a parallel flow with the Mach number

one. In this field one now studies unstoady perturbations which are

small even in comparison to the steady perturbations introduced by

the presence of the body. Let * be the potential describing these
perturbations. They satisfy the following partial differential

equation
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(O-) )+ - 2 = 0 (140)ax oxx yy xt- tt (

Here the space coordinates have been made dimensionless by a

characteristic length L and the time by (La) (where "a" is the

velocity of sound. The basic potential 00 is considered as known.

Eq. (140) is the counterpart of Eq. (5). Introducing

O(x,y,t) = O(x,y)exp(iwt) (141)

one obtains

0 l) + 2yy + 20 = 0 (142)

which corresponds to Eq. (9). In analogy to Eq. (22) one sets

= h(x,y)exp(-iwg(x,y)). (143)

Substituting this equation into Eq. (142) and collecting the terms

with powers 2 and w one obtains the counterparts to Eqs. (24) and

(26)

(Y + l)0og - 2g - g2 + 1 = 0 (144)
ox x x y

and
(145)

[(Y+1) 2g x-2](Hx/H) - 2gy (H y/H)+(y+l)( oxgxx +0 oxxgx)-g yy=0.

As in Section II we reduce the integration of Eq. (145) to the

integration of ordinary differential equations by introducing the

concept of characteristics. Differentiating Eq. (144) with respect

to x and y one obtains

2

[(7+ U0gx-lg g gg + ((y + l/2)0 g 0

(146)
2

[(Y+ 1)oxgx - XY - 9y9yy + ((Y + l)/2)0oygx = 0.
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The direction of the characteristics is given by

Dy/Dx = g /(l-(y + l) og ) (147)y ox x

Notice that Eq. (144) can serve to express gy by g

It is convenient to introduce the arc length along the

* characteristics (to be denoted by s) and use it as independent

variable, although x and y can be used for the same purposes, at

* least along part of the characteristics. Then one has

Dx 1 - (Y +1)0oxg x  (148)
Do [(l-(Y+1)0 ox+) 2 gy]7/

ox x y

gy (149)Ds [(l_(y+l) ogx2 + g2]i /2(19

ox x y

and from Eq. (146) 2I
Dg ( (y+ 1)/2)g 2 %

s= [-(Y+l) 2 + g2 1 22 (150)

oxx y

=g(Y 1)/2)g 2
- xOXY (151)

Ds [(l-(Y+l)4oxx) 2 + g2]i/2
ox x y

Then

D + g . (152)
Do x s y Ds

Pinally, from Eq. (145)

D(logH) . (1/2) (Y+ 1)(4oxgxx + °xxgx)-g (153)

D[(-(Y 5 1)0 o 2 + 2 1/2



To determine the functions g xand g yywhich occur in the

last equation, one differentiates Eqs. (146), the first one with

respect to x, the second one with respect to y. One thus

obtains equations for Dg ,x/Ds~ and Dg yy/Ds in terms of g g" y, and

data pertaining to the basic field. For the developments of this

report these details are unnecessary.

Equations (148) through (151) represent a system of ordinary

differential equations for x, y, g X and g .* The unknowns g, H,

and auxiliary quantities can subsequently be found by quadratures.

For a flow field given by and a starting line in the x, y plane,

one then can determine asymptotic solutions in the form Eq. (143).

For the usual formulation of far field conditions at subsonic

flows, one assumes that the perturbations originate from a point.

There it can be justified by the observation that at a sufficient

distance from the origin outgoing perturbations can be expressed

by a superposition of particular solutions derived from Eq. (16).

In the present context, such particular solutions are not available.

Nevertheless, we make a similar assumption; namely, that the line

at which the far field conditions are applied lies at such a

distance from the profile that the exact point where the perturba-

tions originate does not matter.

Now we assume that the underlying steady flow field (described
by 0 (x,y) can be approximated in the far field by the dominant term

in the development with respect to the distance. For flows with a

free stream Mach number one, this term reflects the profile

displacement; the unsymmetry of the airfoil (including the effect

of an angle of attack) gives rise to higher order corrections.

The formulae derived here can probably be extended to include such

terms.

The dominant term in 0 (x,y) and of such corrections have the

form of similarity solutions. A survey is found in Reference 8.

one has for two-dimensional flows
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00 -i i3 y215 -(T) (154)

with

and

=(y + 1) 1 /3 x y-4/5  (155)

The intensity of the perturbation expresses itself by the constant

j.It is obtained during the computation of the basic field

(see Reference 7). Let

P (y + 1) 112. (156)

Then one has

= -1 -4/5

=ca y 1~,./ (157)

=Z3 (/5Y1

The function ?appears in a closed form if one changes the
independent variable

- -25(0a/2)-l) (158)

Then

- (1/24)a&1 5 (a 2 -6a + 48) (159)
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The function g is now determined by a similarity hypothesis
(rather than by integrating Eqs. (148) through (152). Details

of the following computations are found in Appendix V. Here we
give only an overview of the essential steps.

Let g0 be an approximation to g which satisfies Eq. (144)
in the highest power of y. One finds that g0 is then determined

from

(Y+ 2  
-

2 
0  -2 2  - 0. (160)

oxgox - ox oy

This equation arises, if one omits the term tt in Eq. (140).
One usually calls this the low frequency approximation. We set

-l 6/5 -3/5go P y6a- Yo(a). (161)

Substituting Eq. (161) into Eq. (160), one obtains

-2y2/5 - , (a+(4/3))-ija(a-(l6/3)) (dyo/da) 2-(dy /da)a(2y-(20/3))

+y0 (-3y0 + 4) =0. (162)

The expression within the braces can be regarded as a quadratic

equation for dy0 /da. One notices that the coefficient of
(dy /da)2 vanishes for a = 16/3. The curve a = 16/3 represents

in the xy-plane the so-called limiting characteristic of the far
field. (Perturbations originating downstream of the limiting
characteristic will never reach the sonic line and therefore have

no effect on the subsonic field.) In general, one of the roots
of this quadratic equation will be infinite at the limiting

characteristic. The solution which is smooth throughout the

flow field is immediately found by inspection

Yo= 4/3 (163)

58



Thus from Eq. (161)

90 U 1 (y 2 /a) 3/5 (4/3). (164)

The approximation of the next order is obtained by setting

g = g0 + gl. (165)

One assumes that for y sufficiently large, g, is sufficiently

small so that nonlinear terms can be disregarded. A hypothesis

of a similar kind can probably be used to take higher order

terms in the development of 0 into account. One obtains from

Eq. (144)

((Y+ 1)oxgox -)glx - goy gly + (1/2) = 0. (166)

1/5It follows from Eq. (161) that goy has a factor y/. A comparison

of the second and third term in the last equation then suggests

that g, has the form

1= (y 2 /a) 2/5r 1 (a). (167)

This leads to the equation

a(dy1/da) + (2/3)y1 - (1/4)/a + (4/3). (168)

The one solution that is smooth at the origin is given by

Y1 - (1/2) + (3/20)a. (169)

One thus has the following approximation for g

-l12 3/5

g -1 (y 2/5) [(4/3) + A((1/2)+(3/20)a)] (170)
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with

A = O /Y~)/ (171)

Equation (158) gives a formula for (o/y 2  which applies in the

vicinity of a =0, y = 0. In the next step one would determine

the function H. This is shown in Appendix V and one finds

that H amounts only to a correction of higher order in y.

With an approximation to g known, one can derive far

field conditions in the following manner. At a-given point of

the flow field the characteristic direction can be computed from

Eq. (147). Then one obtains from Eq. (143)

D /Ds - (D(logH)/Ds - iwDg/Ds)o= 0. (172)

In principle, D(logH)/Ds can be computed from Eq. (153), but

actually it is small of higher order. Equation (172) is a local

condition which relates the derivative in a certain direction

with the perturbation potential. Because of the simplification

introduced, this relation holds only in the far field. The

potential and its derivative at the outer edge of the computed

field must satisfy these conditions in order to match with the

far field. one still needs formulae in terms of a and y, for

these are the variables which are used in the computations. Here

only the final formulae are written down; the derivation is

found in Appendix V.

It can be assumed that for a given point (x,y), the

value of a is available. For constant a, A defined in Eq. (171),

decreases with increasing y. Only first order terms in A are

taken into account. The following formulae are related to the

direction of the characteristics. In practice one will probably

use the third one
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D(logy)/D(logar) = (4/3)(1 + (1/8)A(a+ (4/3)) (173)

D(log(-X))/D(loga) =(2/3)(1l-(5/4)a) (l-(a/2)) 1 + (1/5)A(a+ (4/3))]

D(log(-x))/D(logy)= (1/2) [(1-(5/4)a) (1-(a/2))_ + (1/5)A(cJ+ (4/3))]

(1 + (1/8)A(a+ (4/3))]- 1

At x = 0, = 0 and a = 2.' For this vicinity, Eq. (173) is used in

the form

D(-x)/D(loga) = (1/2) ((-x)/(l-(a/2) I (1-(5/4)ac) + (174)

(-x) (1/5)A(a+ (4/3))][1l+ (1/8)A(a+(4/3))I'

The term (-x)/(1-(a/2), which at x =0 is undetermined, is found

from Eq. (157) and (158),

(-x) /(1 -'a12)) u i(a/y2 -/ (175)

No difficulty arises for a -~0, y = 0, if x # 0. one will, of

course, evaluate Dy/Dx rather than Dx/Dy.

The above equations are correct only to the first order in A.

Some second order terms have been included, however, so that no

jumps occur in the characteristic slope if one passes from the

formula for D(logy)/D(loga) to that for D(logx)/D(loga).

From Eqs. (173) one can find approximate analytic expressions

for the characteristics. For the formulation of the far field con-

ditions they are not necessary; but they are useful for a comparisr

with characteristics found by direct computation; One obtains

y = Ca 4 /3 + c 3/5 u 2 (a4)(a- (8/3)). (176)

Here c is a parameter which is constant along a characteristic.
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one needs, in addition, Dg/Ds and (for completeness) D(logH)/DS.

one has

Dg/Da =(ag/3a) + (ag/ay) (Dy/Dca).

This leads to

-1 2 3/5 +A-15 9lOa
Dg/D(loga) (y la) {[-(4/5) +A-15 910G

(177)

+ D(logy)/D(logT) [(8/5) + A(4/5) ((1/2) + (3/20)a)]}

Here D(logy)/D(loga) is found from Eq. (173). One obtains in the

lowest approximation

Dg/Day =j7(4/3)a 
1 (y2 Ia) 3/5

or

Dg/Dy 1-l 2 /)3/5 (178)

and by substituting Eq. (176)

Dg/Dy 11,y1/

In the lowest order approximation of remarkable simplicity

D(logH)/D(logy) =-(1/2) (179)

or
-1

D(logRE/Dy " y

Accordingly, the contributions of D(logH)/dy-in the far field condition

is small in comparison to that of Dg/Dy.

Equations (173) serve to determine the direction of the

characteristics Dx/Dy and Do/Ds.
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One has

Ds/Da ((Dx/Da) 2 +rYDa

This, then, allows one to compute for a given point (x,y) all data

needed to evaluate Eqs. (172).
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SECTION IX

UNSTEADY PERTURBATIONS IN A THREE-DIMENSIONAL FLOW FIELD
WITH A FREE STREAM MACH NUMBER ONE

The treatment of the three-dimensional problem is entirely

analogous to that of the plane problem. At great distances the flow

field generated by a body of finite dimensions approaches that of an

axial symmetric body. The approximation to the basic field used here

is therefore the axisymmetric solution. As in the plane case the

characteristics are lines; for an axisymmetric flow field these lines

happen to lie in the meridian planes. In dealing with an axisymmetric

body, the contour shown is the intersection of the surface with a

meridian plane. The characteristics in the meridian plane determine,

of course, an axisymmetric surface; but this surface has no meaning

in its own right.

The following formulae are completely analogous to those of

the preceding section. The coordinate y stands for the radius in

cylindrical coordinates. The counterpart to Eq. (140) is

-(Y+ 1) -i (0 $ ) + + y 2t 0. (180)
ax ox x yy y xt kt=(10

The hypothesis

(x,y,t) = *(x,y)exp(iwt) (181)

yields

-(Y+ 1) A +  y + y - 2iwx + W2 0. (182)
ax x ox yy y - x

One sets

- h(x,y) exp(-iwg(x,y)) (183)

The terms with power 2 in Eqs. (182) give

(2 2 + 1 =0. (184)
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An approximation, H(x,y) for H(x,y) is obtained with the power w

(7+i) oxgx - 1](Hx/H) - gy (H y/H) + (7+1)/2) al oxgx)/Ix

- (1/2y) a(ygy)/ ay = 0.

Equation (184) agrees with Eq. (144). Eqs. (147) through (152)

therefore can be taken over immediately. The equation corresponding

to Eq. (153) assumes the form

DlogH = (1/2) (Y+ 1)a (goxg)/ax - (1/y) 3 (ygy)/ay (185)

Ds [(1(o +  )0 (1/22 +x2 X 1/2

Next, the expression in 0 which dominates at a great distance is

introduced

0 = j 3 Y-2/7F(T) (186)

with

and

S (+ - 4 / 7

Again,

1/3
(Y+ 1) 13

(187)
-1 -4/7

t =~ixy

and

1~ l-4/7

y -(4/7)y
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The following closed form of f has been given by Randall

= -2/ 7 (2a-1)
(189)

T= -(8/9)a1/7 (-2a 2 + 3ca + 6)

By steps analogous to the case of plane flows, one obtains

g =U-l (y2 l)5/7 [(3/10) + A((1/2) + (5/7)a)] (190)

with

A = 2(ly 2 ) 3/7 (191)

D(logy)/D(loga) = (6/5)(1 + (4/3)A(a+ (1/5)] (192)

D(log(-x))/D(loga) = (2/5) [(1-7c) (i-2a)-i +(16/7)A(a+(i/5))]

D(log(-x))/Dlogy) = (1/3)[(1-7a) (1-2)- I+ (16/7)A(a+ (1/5))]

[1 + (4/3)A(a+ (1/5)]

One obtains as approximation to the shape of the characteristics

6/5 2 1/7 3/5
y = c a + 2 c a (4a-(8/15)

Dg/D(loga) =1-1(y 2a) 5 / 7 {[-(3/14) + AU2 (-(1/7) + (25/24)a)]

+ D(logy)/D(loga)[(3/7) + AU 2 ((2/7) + (20/49)a)]}

One obtains in a first approximation

Dg/Da - U- 25/7 (3/10)

Dg/Dy - -1(y 2/ ) 5/7y-i(1/2)
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Finally, in the lowest order approximation

D(logH)/D(logy) -1.
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SECTION X

VALIDITY OF THE LINEARIZED APPROXIMATION FOR TIME

DEPENDENT PERTURBATIONS AT MACH NUMBER ONE

It is conceivable that the velocities caused by the unsteady

perturbations decrease more slowly as one goes to infinity than

the deviation of the velocities in the basic flow from the free stream

velocity. These velocities and the pertinent sound velocity determine

the propagation of perturbations. We have assumed that the unsteady

perturbations are small and that their effect on the speed of

propagation of perturbations can be disregarded. But, if the

unsteady contributions do not stay small in comparison to those of

the steady flow, then the present analysis is not valid at great

distances, although it might be valid in an intermediate range.

we carry out this discussion first in the two-dimensional flow.

There one finds from the similarity solution (Eq. (154)) together with

the second of Eqs. (157) that along a line a = const

OX& -' Y25(193)

For the superimposed unsteady flow one obtains as dominant terms,
respectively, in ;tand

-wH

and

;= Hwg x

it follows from Eqs. (161) that along a line a= const

go , y 2/5  (194)
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This shows that in a perturbed flow, x dominates t at a large

distance. One notices that for the basic flow, one has the power
-2/5 .+2/5
y in the expression 0x, and y in the expression x for the
superimposed perturbations. This makes the investigations carried

out in this section necessary. The question whether at infinity

the perturbations can still be regarded as small in comparison to

the basic field cannot be dismissed. Decisive is the behavior of the

function H. Along a characteristic, H is given by H or y-1 /2, but
characteristics differ from lines a = const. According to Eq. (171)

one has along a characteristic

-4/3
YO v const.

Accordingly,

H = y-1 /2f(ya 4/3) (195)

where f is used as a generic expression. It has nothing to do with
the functions f used to describe the basic field. Some information

about f is obtained by considering the function H in the vicinity

of the negative x axis. It is reasonable to assume that in the x,y

plane, H is a smooth function. If one approaches the negative axis

along a line (-x) = const, then by Eq. (175)

y-2 = const,

but H is likely to behave in the vicinity of the negative x axis as

a power of (-x).

Expressing the assumption that on this path H remains smooth,

one obtains from Eq. (182)

H - y f(ya 3/4)N (ay-2) (196)

Obviously, the function f must have a singularity at the x axis.

We write,
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f(y3/4) = -3/4) ( -3/4)
f (ay3 ) =U 1 a

If one moves to infinity along a line a = const, then ay-4/3 0.

In other words, in this limiting process the argument of f goes to

zero, throughout the flow field, one can choose a in such a manner

that f then assumes a finite limiting value. Thus, one obtains from

Eq. (196)

-/2 -3/4 y1 2 a
y (cry-i2 .

The powers of a and y on the left and rigat must match

1 3

a-2B

Hence

a = 2/5

and

H = (al/y2) 2/5 i(ay-3/ 4 )

One finds accordingly that for superimposed perturbations

ox = a 2/5y4/
5gox y-2/5

Accordingly, the perturbations have the same dependence upon y along

a line a = const as the basic flow.

The same result is found for the three-dimensional flow. One

has in the basic steady flow along a line a = const

ox Ao y-6/7

gx y+6/
7
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and

H = y-1 f(y/a6 /5) = const.

For lines -x = const. One has again (o/y-2) = const.

Then one has in a corresponding computation

a = 8 = (6/7)

and H "y1

along a line a = const.

Consequently, the basic flow and the superimposed unsteady
perturbation change with the same power of y along a line a = const.
If the unsteady perturbations are small at an intermediate distance,
they will be small also at large distances.
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SECTION XI

COMPARISON OF EXACT AND ASYMPTOTIC EXPRESSIONS FOR g

The analytical formulae for g derived in Sections VIII and IX

are valid only at a sufficient distance from the origin. We show

here a comparison of these analytical results with data obtained by

a numerical integration of the characteristic equations. Of course,

these computations need not be performed if one merely wants to

apply the far field conditions.

For the plane flow with free stream Mach number one, the

equations to be integrated are Eqs. (148) to (152). In these

equations the underlying steady flow enters via the function 0

Here the asymptotic expressions for the steady flow are used. One

has according to Eqs. (A.50)

(y+ 1 ) 1 2 (a/y2 ) 1/5((1/4)a - 1) (204)(7 )ox=

Hence with Eqs. (A.49)

(Y+ 1)o (a/y2 ) 3/5(a-(2/3))(a + (4/3)) -1 (205)

(y+ l)0oxy = i 2y(/y 2 )6/5(-(i/2)a+ (4/3)(a + (4/3))-l

P is a constant determined by the underlying steady flow.

In these expressions the variable a is encountered. It is

expressed in terms of x and y (which, for the integration along

the characteristics, are dependent variables) by Eqs. (157) and

(138). To determine a for given x and y, one first evaluates

-1 - 4/5
= -1xy (206)

and then determines a from Eq. ((159), i.e.,

- c-215 ((a/2) - 1). (207)

72



This can be done by a Newton procedure. One obtains a correction

Aa to an approximation a° from

= -(a o)
A0 =ao (208)

(dZ/da)/ a=a
0

.(ao) and d-/da are found from Eqs. (207) and (A48), respectively.

0

The method deteriorates in the vicinity of the negative

x-axis. There - . There one iterates as follows

(n+l) -5/2 (n)/5/2

(nl) (-~ (1 - (a /2)5/

The superscript n refers to the iteration number. In principle,

one must prescribe g along some initial curve. Let this curve be

given by

x = x(y) or y =y(x)

and consider a fixed point (xoy o) of this curve. Therefore, one

has for the system (Eqs. (148) through (152)), initial values for

x = x0 , y = Yo, and g = g(xo, yo). One can also assign an initial

value for H. To find initial condition for gx and gy, one forms

the derivative of g along the initial curve

dg/dx = gx + g y(dy/dx). (209)

Here dg/dx and dy/dx are known. Combining this relation with the

partial differential equation for g, Eq. (144); namely,

2 2 + 1 0 (210)(7+ l)Oox x 0x  y

one can determine g and g
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This is the general procedure. In our computation, we

assumed the initial curve to be a small circle around a point

(xoY o), whose radius goes to zero. From this circle, characteristics

go out in all directions. In this case one has the same value of

xo for all starting points of the characteristic. Moreover,

Eq. (209) can be disregarded. If one assumes that g = const along
this small circle, then dg/dx = 0. For any choice of gx and gy
one can find a direction (dx/dy) along a circle for which Eq. (209)

is satisfied.

As initial condition for the integration of the system

(Eq. (148) to (152)),one then has x = xo, y Yo, g = 0. The

derivatives g and g must be chosen in such a manner that Eq. (210)x y
is satisfied. To obtain characteristics whose direction is reasonably

spaced, we have proceeded in the following manner. Equation (210)

is rewritten in the form

(_(Y+l)xl(xo,Yo))-l [_(Y+l)x(xoYo)gx+l]2 2[_(Y+l)ox(xo,Yo)+l

[ (Y+) x(Xo,Yo) ]-1

This equation is satisfied if one sets

gy = r sine

[-(y+l)ox(xo,yo)gx+l] -(Y+l)x(Xoyo)]-l = r cosO

with

= -xoyo) +1]1/2] [(Y+1) ( X o y o -1/2

Then,

gx = [r(-(y+l)o (xoYo))cose-l1[-(y+l)o x(xoYo 0
- 1

The initial direction of the characteristic is found from Eq. (147)
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Dy/Dx = (-(Y+ 1)x (x ,Yo)-1 /2tge

The axisymmetric case is treated in an analogous manner. In

this case the point (xoy o ) is chosen on the negative x axis. If

one chooses it away from the axis of symmetry, then one must

assume that the initial surface is an infinitely thin ring, whose

centerline intersects the meridian plane at the point (xYo). In

this case the characteristics (line) will lie in the meridian plane.

With slight modifications, one might also treat the case where

the initial surface is a small sphere with center at (xoYo ,Z° =0).

In this case, one would obtain a two-dimensional family of

characteristics, which in general are not confined to a meridian

plane.

The necessary formulae are

(Y+1)0ox = l(/y2 ) 3/7(8/3)(a-1)

oxx(7+l)Ooxx = U ( G/ y 2 ) 5 / 7 ( ( 8 / 3 ) a - (4/5)) (a+ (1/5))-i

(y+l)0oxy =v 2 (16/3)y(a/y 2 ) 10/7 (-a +(4/5))(a + (1/5))-l

= -1 -4/7
U=i x y

= -2/ 7 (2a -1).

The initial conditions are chosen in the same manner as in the two-

dimensional case.

The computations have been carried out for 1 = . (See
Eqs. (54) and (186).) Then, according to Eq. (156) and (187)

ii (y~l)1/3U =(Y + 1) / .

We have chosen y = 1.4.
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Figure 5 shows in a plane flow with the free stream Mach

number one a set of computed characteristics which start at some

point of the negative _x-axis and also the corresponding one-term

approximation. Figure 6 shows the corresponding two-term approxima-

tion. The axisymmetric counterparts are shown in Figures 10 and 11.

These curves correspond to the straight lines in Figure 2. Some

of them start in the upstream direction but eventually all of them

are swept downstream. The curves have been terminated at the

limiting characteristic belonging to the basic flow field. The

approximate curves have been chosen in such a manner that they

coincide with the exact curves at the outer points. In practice

exact characteristics are not available. In the application of

the asymptotic far field conditions the slope of the characteristics

is needed. The asymptotic two-term expression gives a satisfactory

approximation to these slopes.

Figures 7 (for plane flows)-and 12 (for axisymmetric flows)

show one- and two-term approximations for the wave fronts given

by lines g = const. They are drawn for g = 10, 20, and 30. One

sees that the additional term in the approximation makes an

essential difference. Figures 8 (for plane flows) and 13 (for

axisymmetric flows) show computed characteristics and, marked by4 asterisk, computed values of g (g = 10, 20, 30) and also the
asymptotic two-term approximations for g. The computed values are

rather well represented by their asymptotic curves, especially

if one takes into account that in the determination of g a

constant remains open. The curves correspond to the circles in

Figure 2. One no longer encounters a piling up of the wave fronts,

although they come closer together at a large distance from the

origin. Figures 9 show for plane flow corresponding curves fcrr

waves starting at different points. The asymptotic representation

of the curves g = const remains the same. One sees that it is

not too important where the waves ori.ginate.
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No counterparts for the three-dimensional case have been
drawn because the characteristics for points off the negative x

axis will, in general, not be curves that lie in the meridian

planes.

One recognizes that the asymptotic expressions developed

above can indeed be used to formulate far field conditions,

provided, of course, that the boundary of the computed field is

not too close to the profile.

9I
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APPENDIX I

SOME REMARKS ABOUT THE HYPOTHESIS EQ. (22)

The hypotheses Eqs. (22) and (12) have a similar effect. In

each case a factor is split off from the expression for the
2 -1-potential. The factor exp(iwM(1-M )_ x) in Eq. (12) generates a

field with equal waviness in all directions. Because of the
interpretation of g(x,y) given by Eq. (36), the factor exp(-iwg(x,y))

in Eq. (22) anticipates the waviness of the flow field completely

but only for outgoing waves. The original differential equation
admits incoming as well as outgoing waves. This holds also for

the differential equation for h which one obtains by setting the

remaining terms in Eq. (23) equal to zero. To illustrate the

effect of the transformation in Eq. (221 we consider the problem
for three-dimensional perturbations in air at rest. There the

discussion is particularly simple because of the availability of

closed solutions. Accordingly, we consider the partial differential

equation

Orr + (2/r)or - Ott = 0

The hypothesis

= O(r) exp(iwt)

then leads to

Orr + (2/r)Or + 
2 = 0

Particular solutions are given by

= r- exp(±iwr) (A.1)

(and also by derivatives of this expression with respect to

x,y or z)
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If one sets in analogy to Eq. (.22)

= h(r) exp(-iwg(r)) (A.2)

then one has immediately

girl = r

The two particular solutions for h corresponding to those in Eq. (40)
are given by

h(r) = r-  

(A.3)

and h(r) = r-1 exp(i2wr) (A.4)

In the expression for outgoing waves (Eq. (A.3)), the waviness has

vanished while that for incoming waves (Eq. (A.4)) has waves which

possess half of the original wave length.

This has interesting consequences for a numerical approach.

If one knows that only outgoing waves are present, then the function

h is smoother than the function #. The mesh for computing h can,

therefore, be coarser than that for $. But one ought to be aware

of the fact that in a coarse mesh incoming waves will be greatly

distorted.

In cases where the partial differential equation can be

solved by a product hypotheses, so that ultimately one is led to

an ordinary differential equation in r, one is tempted to build

up the solutions of this ordinary differential equations from

particular soltuions which are obtained by solving initial value

problems. Roughly speaking, the stiffness of such ordinary

differential equations is determined by the largest eigenvalue.

If one solves the differential equation by a predictor-corrector

method, then the stiffness causes an instability of the procedure

which is remedied by a reduction of the step width. This happens

even if the particular solution which is being determined does not
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contain the particular solution which causes stiffness. The stiff-

ness of the differential equation for o is determined by the value

of w, that of the differential equation for h by 2w. Of course,

this discussion is rather academic, for in those cases where a

product hypotheses can be used it is likely that the ordinary

differential equations can be solved in a closed form.
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APPENDIX II

GEOMETRIC INTERPRETATION OF CERTAIN ANALYTIC EXPRESSIONS

First we determine the curvature of a curve g(xy)=const.

At a point xo,yo we introduce a local system of Cartesian coordinates

, t, where C is normal to the curve g(x,y) = g(xoy o ) and

tangential to it (Fig. 14).

Developing g with respect to E and C but retaining only the

terms of the lowest order, one obtains

g(x,y) = g(xoy O ) + Igrad gj + gE-

Here it is assumed that the C axis points in the direction of
increasing g. The curve g(x,y) = g(xoy O ) is then given by

2-Igrad g g-I

The curvature of a curve y = f(x) is given by the familiar formula

- = _f I/(l+f '2) 3/2

It gives a positive value for R if the region under the curve

y = f(x) is convex (Fig. 15). In the present case one, therefore,

obtains

- 1= Igrad g -Ilg

Returning to the original x,y system one observes that

(x - x0 ) = E cos( ,x) + cos(1,x)

(y - yo) = E cos(&,y) + C cos( ,y)

where (F,x), etc. stands for the angle between the respective axes

(here the x and the & axes). Since the E and c axes are
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perpendicular to each othrer one has

cos( ,x)CoS(4'X) + cos( ,y)cos(4,y) =0

One then has

= gCos 2( ,x) + 2g cos(EX)cos(Ey) + g cos (Ey)9E xxy yy

Let, (Fig. 16)

(tX) =a

= (f/2 - a)

(Ex (7r/2 - a)

(E' Y) = (r - a)

(The signs of these angles do not matter because one encounters in

the above formulae only the cosines of these angles.1 one obtains

gE gxxsin 2a - 2g XYsina cosa + g yycos 2a

and

=(g sin 2c a 2g sin cosa + g Cos 2a)/(g 2 + g 2) 1/2  (A.5)xx xy yyx y

Notice that in this formula specific properties of the g-field

are not taken into account. This is done presently.

One has

*g = Igrad gicos a

g. -grad gisin a

Substituting these expressions into Eq. (24) one finds

grad gI C .2 + M cos a)' (A.6)
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Therefore,

gx= cos(l + M cosa)-

(A.7)

gy= sinc(l + M cosa)-i

The direction of the characteristic is given in Eq. (29). One now

obtains

Dy/Dx = sinc/(M + cosa) (A.8)

It was found in Section II that gx gy and therefore also a and

Dy/Dx are constant along a characteristic. Introducing a parameter

p which, at the point under consideration assumes the value P

one obtains the following parametric representation for a

characteristic

x =x 0 + (p - po) (M + cos a)

(A.9)

y = YO + (p - po)sin a

Along such a line one has the relation

Dg/Dp = gx(M + cos a) + gy sin a = 1 (A.10)

Equations (A.9) and (A.10) lead to the following geometric

interpretation. We consider a point (xoy O ) of the curve g = go"

According to Eq. (A.10), the value of p, to be denoted by pI, for

a curve g = g1 is given by

Pi - Po = g1 - go.

One has for the point xl,Y1 , originating from (xo,po)

(x1-x0 ) = (pl-Po)cOsa + (pl-Po)M

(yo-yo) - (pl-po)sina.
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Accordingly, the line g = gl arises from the line first g =go

by proceeding in the direction of the normal by a distance

(pl-po) - (gl-go) and afterwards by translating .he curve so

obtained in the x-direction by a distance (pl-po)M. The first

step amounts to the determination of a curve equidistant from

g = g by the distance (pl-po). By this process, the radius of

curvature is changed from Ro(at(xo,yO) to R1 = Ro + p - po (at

the point corresponding to (xvy)I. The subsequent translation

leaves the radius of curvature unchanged. Identifying p0 with Ro
one finds that at the points of subsequent curves g = const, the

parameter p is identical with the radius of curvature.

The analytical derivation of this result is somewhat cumber-

some. One can proceed as follows. The fact that gx and gy are

constant along characteristics is now used to expresss gxx,gyy
and gxy in terms of R- . It follows from Eq. (A.9) that

Dgx/D p = gxx (M + cos a)+ gxy sin a= 0
(A.11)

D gy/Dp = g xy(M + cos a)+ gyy sin a= 0.

Moreover, from Eq. (A.5) in conjunction with Eq. (A.6)

gxx sin 2a - 2g sina cosa + g yyCos2 - R-1 (l+Mcosa) -1  (A.12)

Equations (A.11) and (A.12) form a system of linear eqt.-tions for

gxx~gxy, and g yy One verifies that

gxx= R- 1 sin 2a/(l + M cos a)3

x -1R sin a (M + cosa))/(l+M cosa) (A.13)

gyy- R-(M + Cos*) 2/( + M cosa) 3 .
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Hence

gx(l-M 2) + = R 1 /( + M cos a) (A.14)

In these expressions R is the local radius of curvature.

So far the relation between R and p has not been established.

For this purpose we express the derivative of R- along a

characteristic from Eq. (A.14), keeping in mind, that a = const

along a characteristic

-R - 2 (dR/di) = (1 + M cosa) [(l-M2) (dgxx/DZ) + (Dg yy/Dk)] (A.15)

The second derivatives of g encountered here are subject to

compatibility conditions (as are all higher derivatives), which

are derived from Eq. (28). One obtains by forming derivatives with

respect to x and y

[(l-M 2) gx + M)gxxx + gygxxy + (l-M 2 )g 2  g 2 = 0

[ (lM 2)gx + M]gyyx + gygyyy + (-M2 xy2 + gyy = 0

2)g + Mgxyx + gyg + (l-M2 )gxg + gyg = 0.

x xyx y xyy xy xx yy xy

It follows from Eqs. (A.7) that

2[l-M )gx + M] = (M + Cos) )/(I + M Cosa).

Then with Eqs. (A.7) and (A.9)

Dgxx/Dp + (1 + M cos )[(l-M 2)g2 + g2] = 0

Dgyy/Dp + (1 + M cos e)[(l-M2 )gy + g = 0 (A.16)

2
Dg XY/Dp + (1 + M cos o) [(1-M )gxx + g yy]gx = 0.
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This is a system of three nonlinear ordinary differential

equations for g g yy and gxy" It holds along a characteristic.

The previous result, that p is identical with R, which in the
present context is to be regarded as a conjecture, suggests that

one particular solution is given by Eq. (A.13) with R replaced

by p. If this is correct, then one has

Dgxx/D p = -p-2sin 2c/(l + M cosa) 3

Dg xy/Dp = p- 2sina(M + cos a)/(l + M cos )3  (A.17)

-2 2 3Dg yy/Dp = -p (M + cos a) /(l + M cos )3.

Equations (A.13) (with R replaced by p) are indeed particular

solutions. One obtains, for instance, by substituting into the first

of Eqs. (A.16)

-p sin 2 (l+Mcosa)-+p-(1+Mcosa) [(-M n4 + 2a(M+cosa)2] =

Equations (A.13) give only a particular solution, for they do not

contain three constants of integration. Actually, one does not

need the general solution, for at the initial point (p = po) ,

Eqs. (A.13) (with R replaced by p) assume, of course, the values
of gxxgxy, and gyy expressed in terms of R0.

So far we have identified R with p only at the point (xo ,yo).

The identification at other points of the characteristic is still

a conjecture. Substituting Dgxx/Dp and Dgy/Dp (Eq. A.16) into

Eq. (A.15) and remembering that according to Eq. (53) dp/dk=const

along a characteristic, one obtains

-R- 2 (dR/dp)=-(l+Mcosa)p- 2(l-M2 )sin 2 a + + Cosa)2]/(I+Mcosa)3

-R- 2 (dR/dp) W -p-2.

Hence

R7 - + const.
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The constant vanishes, because one can choose at the point (x01y0 )

pO = RO•

This fits with the above conjecture. The identification of p with

the radius of curvature is therefore justified.

To determine HI, we rewrite the first of Eqs. (34) using

Eqs. (53)

D(logH)/Dp=-(1/2) [1-M 2)g +g ][g 2 +(((_M 2)g +M)2 ]-/2 [M2+2Mcosa+l 1/2
1xx yy y x

Hence, with Eq. (50)

D(logH)/Dp = -(1/2)[1-M 2)gxx + gyy] (1 + M cosa)

and with Eqs. (A.13) with R replaced by p

D(logH1)/Dp = -(1/2)p-

Hence,

H= const p-1/ 2  (A.18)

The form of the function H2 (introduced in Eq. (25)) is

suggested by the asymptotic developmert of the Hankel functions,

(Eq. (19)). In the present setting H2 is found by integrating the

second of Eqs. (34). With p as independent variable, Eq. (34)

assumes the form

DH2/dp + (1/2)p-IH 2 + (i/2)t(1-M2 )HlJxx + H ly] (l+Mcos) = 0 (A.19)

Crucial is the inhomogeneous term. The constant in Eq. (A.18) may

differ from characteristic to characteristic. Accordingly, we

write

H1 - fl(s)p -1 / 2  (A.20)
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where s is the arc length of the ini4-ial curve (see Eqs. (47) and

(48)). The value of s is then attached to the characteristics that

start at the initial curve. To estimate the inhomogeneous terms,

we proceed as follows. Introducing s into Eqs. (A.8) we write

x = x(p's) = x O(s) + (p-po (s))M + cosads))

(A.21)

y = y (p, S) = Yo(S) + (p-p0 (s)) sin at(s)

Inverting this transformation, one obtains

p =p(x,y)

s s s(x,y) .

one has the following relations

ap/ax = (ay/aS)/D

9s/9x = -3/p/
(A.22)

D/y= (ax/Dp)/D

with

D = (x/Bp) (y/as) - (ay/ap)/(x/as) (A.23)

Differentiating Eqs. (A.21) one obtains

ax/ap = M + cosct(s)

=ya sincz(s)

a -a -.(ap 0/as) CM + Cosaz) + (ax 0/3 ) -(p-po(s))sini( c/3s)

a -a -(ap 0 /s)sina + (Oy0/as) + (p -p0 (s))coscd(;a/3s).
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The parameter s is the arc length along the initial curve, a the

angle of its normal with the x axis, and p0 the local radius of

curvature. Therefore

aa/as = Po

axo/as = - sina

ayo/as = cosa

and

x/as = -(ap 0 /as) (M + cosa) - (p/pc)sin a

ay/as = -(Op 0 /s)sin i+ (p/p0)cos a

and from Eq. (A.22)

D = (p/po) (M cos a + 1).

Then, from Eqs. (A.22)

ap/3x = [-(po/p)(ap o /as)sin a + cos a](M cosa+ 1)

as/ax = -(p /p)sinM (M cos a + 1)- (A.24)

ap/ay = [-(po/p)(po /3s)(M + cosa) + sina](M cosa + 1)1

as/ay = (p /p)(M + cos a)(M cosa+ 1)-1

From these equations one finds the order of magnitude of

the expressions for large values of p. apol/s and p0 are

considered as quantities of order 1. One finds
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Wpax = (1); asax =O(pl ); ap/ay = O(l);as/ay =O(p ).

The orders of magnitude are needed also for derivatives of the next

order. One has

ax ~~ 4R 7d\d/-X\d

and similar formulae for the other derivatives.

In forming derivatives of (ap/ax), (ap/ay), (as/ax), and

(as/2y) with respect to s, the order of magnitude of the terms

remains unchanged; in forming derivatives with respect to p, the

order is lowered by a factor p

a 2 
=/a O(p )0(l) + 0(1)(p) O(p~1

IV7a p/ay2  O(p-1 )O(l) + M (-l O(-l

a2 S/ax 2 = O(p-2 )O(l) + O(p-1 )O(p 1l) -O(p 2 )

2 s/ay 2 = O(P-2 )O(l) + O(P-1 )O(p-l ) -OP

Now we can estimate the second derivatives of H One has

aH /ax - (DH /as) (as/ax) + (aH /ap(ap/ax)

a 2H /ax 2= (a 2H /35 ( as/ax) 2+2(a 2H /asap) cap/ax) (3s/ax)+

+(32H 1 /3p2)(ap/ax)2 (aH 1/as)a2 s/ax + OaH 1/ap) 9p/ax )

and similarly for a 2Ha 2
H1/

Now according to Eq. (A.20)

H1  f(s)p1 2
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Then,

a 2H /Dx 2  O(p-1/2)O(p-2)+O (p-3/2)0(t)O(P-l)+O(P-5/ 2 )O()

+ O(p-i/2)O(p 2 )+O(P- 3 / 2 )O(P - )

3 2 Hl/ax 2 = O(p - 5 / 2)

Similarly,

a2Hl/3y2 = 0(p-5/ 2).

The inhomogeneous terms in Eq. (A.19) is therefore O(p- 5 / 2). A

particular solution of this equation therefore is O(p
-3/ 2). The

solution for the homogeneous part has O(p
-1/ 2), but this

contribution can be incorporated in H1. This is the expected

result for H2 .

To arrive at an equation analogous to Eq. (A.14), for the

three-dimensional problem, one can proceed as follows.

First one derives a formula for the average curvature
at a point xo,Yoz 0 of a surface g = const in the x,y,z space.

We introduce a local system of Cartesian coordinates t, n, . The

C axis has the direction of the normal to the surface g = const

through the point (x oYo 0z). The t and n axis then lie in the

tangential plane. The directional cosines with respect to the

x,y,z system are denoted by cos(t,x), cos(t,y), etc. One has

cos 2( ,x) + Cos2(nx) + cos 2 (cx) = .

Hence

cos 2( ,x) + cos 2 (n,x) = sin 2 (i,x)

cos 2 (,y + cos 2 (n,y) - sin 2 (C,y) (A.25)

Cos2( ,z) + cos2 (n,z) - sin2 (,z)
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and because the xy and z axis are perpendicular to each other

cos(E,x)cos(,y)+ cos(n,x)cos(n,y) = -cos(i,x)cos(,y)
(A.26)

cos(C,x)cos(E,z)+ cos (n ,x) cos (n ,z) = -cos(c,x)cos(C,z)

cos( ,y)cos(,z)+ cos(n,y)cos(n,z) = -cos(r,y)cos( ,z).

The coordinate systems are related by the equation

x-x o = Ecos(E,x) + n cos(I,x) + ; cos(U,x

(A.27)

Y-yo = &cos(,y) + n cos(n,y) + C cos(r,y)

z-z o -9cos(,z) + n cos(Iz) + cos(z,z).

Developing g in the vicinity of the point (xo'y ,z) up to terms

of second order, one obtains

g(x,y,z) = g(xoyoz 0 ) + Igrad gjE

+ g&(&2 /2) + g (n 2/2)+gE( 2 /2)

+ gnn + gE + gnrn •

The intersection of the surface g = g(xoYoz o) with the plane

n = 0, is then given by

Igrad gI I + gE(/2) + g 2/1 0.

Let R1 be the radius of curvature of this curve at the origin.

One finds

R7I - g./Igrad gj.

Here it is assumed that the region g < g(x oyoZ o) is convex

and the center of curvature lies on the inner normal to this

region.

93



In a corresponding manner, one obtains for the radius of curvature
of the intersection of the plane = 0 with the surface
g - g(xo,yo,zO )

2 - /Igrad gi

with corresponding rules for the choice of the sign.

The average curvature is then given by

(A.28)
Ca= (1/2)(RI1 + R1) = (1/2)(gC + g n)/Igrad gI.average 1 2

We shall see that Caverage does not depend upon the orientation
of the C and i axes (as long as they lie in the tangential plane
and are perpendicular to each other). We express (1/2)(g, + g T)
in the x,y,z system. Using the transformation formulae (Eq. (A.27)
one obtains

(1/2) (gC +grl) = (1/2)gxx(cos 2(,x) + cos 20,x))+(1/2)g yy(Cos 2 ,y)

+cos (n ,y))+(l/2)g zz (cos 2 (E z) + cos 2 (n ,z))

+ gy (coS(g,x)cos(y) + cos(n,x)cos(n,y)

+ gxz(COS(. ,x)cos(E,z) + cosCnx)cos(nz)

+ gy (cos(E,y)cOs(Ez) + cos(ny)cos(n,z)).

Hence, with the relations CEqs. (A.25) and (A.26)

( 1/2) g +g ) (/2 ) sin2  2 2
(12 t+n) (12gxi (;,x)+Cl/2)g yysin (c~y)+(l/2)g zz sin ( ,Z)

-gxycosC,xjcos(Cy) - g xzCOS(4'x)COS(;'z)-g yZ CO s { 'y )cO s ( 'Z ) "

(A.29)

This is the analogon to Eq. (A.14) for the two-dimensional case.
The directional angles for the & and n axes are no longer present.
This shows that this expression does not depend upon the
orientation of these axes in the tangential plane.



Again, gxg and g are constant along the characteristics

(see Section VIII) which are given in parametric form in Eq. (115).
The C direction is the direction of the normal to a surface

g - const. One then obtains

gxx(M+cos(;,x)) + gXY cos(,y) + gxzcos(C,z) - 0 (-M+cos(U,x)

gxy(M+cos(C,x)) + gyy cos(,y) + gyzcos(Cz) - 0 cos(t,y) (A.30)

gxz(M+cos(;,x) + gyzcos(,y) + gzzcos(c,z) - 0 cos( 1 ,z).

Multiplying the equations with the factors shown on the right and
adding the results to Eq. (A.29) multiplied by 2, one obtains

2
g + g x(l-M ) + g + g.

The average curvature (.Eq. (A.28)) is therefore given by
(A.31)

C (1/2)(Rl + R21 (1/2)(gx(l-M2) + g + g )/Igrad gj.average 1 2x y z

In Eq. (115) the characteristics have been represented in
terms of a parameter p. To determine the dependence of the
average curvature upon p, we use the geometric interpretation of
Eq. (115) already applied in this Appendix for the two-dimensional

case. Constructing a point of the surface g - g, - const from
point (xo,yo,zO ) of a surface g - go - const, one first proceeds
in the direction of the normal to the original surface by a
distance pl-po - gl-g o (because of Eq. (117), and then shifts
the surface in the x-direction by M(pl-po). In the first step
one constructs a surface equidistant to g - g0 at a distance

,1-9o, in the second the surface as a whole is translated in
the x-direction.

The radii of curvature R and R refer to the lines of
intersection of a surface g = const with two planes - const
and n " const, which are perpendicular to each other and contain
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the normal to this surface. Among the possible orientations of

these planes, there is one where R1 and R2 have their extrema.

One then obtains the principal radii of curvature. For these

orientations of the planes the normal to the surface g = const

remains within the planes even at points of the surface which

deviate from (xoI , ) by a first-order distance. One then obtains

points of the surface g = g, by proceeding from a point of the

line of intersection of g = g0 with =0, say, to the "corresponding"

point of the surface g = g, by proceeding within the surface

E = 0. In determining the radius of curvature of the intersection

of the surface g = g, with the plane & = 0, we can confine our

attention. to this plane. If the radius of curvature of the line

of intersection of the surface g = g0 is given by R1 = R10 , one

finds for the corresponding radius of curvature RI1 , at g = g,

R i R10 + (Pl - Po)

If one sets po = 0, then one obtains for the average curvature

(Eq. (A.31))

Caveragel = 21 ((RI 0 + p) + (R2 0 + p )-)

Caverage,l = i/2)[(l-M2)gxx + gyy + gzz]/Igrad gj )

= (1/2) [(R0 + P)-I + (R20 + p)-l

where R1 0 and R20 are the principal radii of curvature at the

point x0 ,y0 ,z0 . Only for large values of p will this expression-ll
behave asp
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APPENDIX III

VERIFICATION OF EQUATION (67)

It is practical to rewrite Eqs. (66) and the next equation.

Let

R a1  = R2  -- * , R -3  n (A.32)

R 4 2iwo x 2 0.

Furthermore

X = (/2)(0xx+ yy

Y= (1/2)(0xx - yy) (A.33)

z 
0Y

Z- xy"

The following trigonometric identities are used

cos 2 8 = (1/2) (1 + cos 20)

cos 2 y - (1/2) (1 + cos 2y) (A.34)

sinSsiny- (1/2) (cos(O-y) -cos(a+y)).

For later use we note some further identities

cos 2B+cos 2 y = 1+(1/2)(cos 28+ cos 2y)=l+cos(B+y)cos(O-y)

cos20+cos2y - 2cos(B+y)cos(8-y)

cos2 -cos2 y - (1/2)(cos 28-cos 2y)= -sin(B+y)sin(8-y) (A.35)

cos2B-cos2y - -2sin(0+y)sin($-y)

sin28-.in2Y - 2sin($-Y)cos(O+Y)

sin2B+sin2Y - 2sin(0+Y)coz(0-y)
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Equations (66) then assume the following form

X + Y cos20 + Z sin2B = R

X + Y cos2Y + Z sin2Y = R

X cos(8-Y) + Y cos(8+Y) + Z sin(8+y) = R3  (A.36)

X(2-M2) - Y M = R4

Equation (67), which is to be verified, now appears in the form

R1 (l-M 2sin 2y)+R 2 (l-M 2sin2 )+R 3 [-2cos(s-Y)-M2 (cos(O+y)-cos(a-Y))]

(A.37)

-R4sin2(B-y) = 0

To carry out this verification one must show that the scalar product

of the vector formed with the left hand sides of Eqs. (A.36) and

the vector formed with the coefficient of R1 through R4 in Eqs.

(A.37) vanishes. Accordingly, one must evaluate the scalar product

+Y cos2S +Z sin28 1 - M2sin2

X +Y cos2y +Z sin2y 1 - M2sin8

Xcos(O-y) +Y cos(O+y) +Z sin($+y) (-2 cos(8-y)
-M2 (cos(8+y)-cos(O-Y))

X(2-M2 ) -YM2  -sin 2 (0-y)

This expression is linear in M2. The terms not containing M2

give

2 2 csy2o(+~o(-)X[l+l-2cos (8-y) -2sin ($-Y)+Y[cos2$ + cos2y-2cos(O+y)cos(O-7)]

+Z[sin28 + sin2y - 2sin(S+y)cos(O-y)].

The coefficients of Y and Z vanish because of Eqs. (A.35). The

vanishing of the coefficient of X is self evident.

98



22

sets M 2 - 1. The second vector then becomes

[Cos 2YO, Cos 2B1 - [cos(s+y) + cos(O-y)], -sin 2(0-.Y)]+

One obtains for the coefficient of X

Cos 2Y+ Co B - Cos 2(0--y)-cos($-y)cos($+y)-sin 2(0-Y).

It vanishes because of the first of Eqs.(A.35).

The term with Y is given by

22 2 2Y[cos(20)cos y + cos(2y)cos 0 - Cos (O+Y)-cos($+Y)cos(B-Y)+sin (B-y)]

=Y[cos(2S) (1/2) (cos(2y) + 1) + cos(2Y) (1/2) (cos(2S)+l-cos2 (O+Y)

-cos(BO+Y)cos(O-Y) + sin 2 (B.y)]*

Next, with the second of Eqs. (A.35)

-Y [cos(20)cos2y -cos 2 (O+Y) + sin 2 (B-Y)]

Now cos20 and cos2Y are expressed in terms of O+y and O-y

-Y[cos 2(O+Y)cos 2(B-y)-sin 2(O+Y)sin 2(O-Y)-cos 2($+Y)+sin 2 (0-Y)

=Y[-cos 2(O+Y)sin 2(0-Y) + sin 2(0-y)cos 2 (+Y)] - 0.

The term with Z is given by

Zlsin(20)co82 Y + sin(2Y)cos 2  - sin(B+Y) (cos(O-Y)+cos(8+Y))

*-Z [sin(20) (1/2) (coos(2y) +1) + sin (2y) (1/2) (cog (20). + 1)

-sin(8+Y)cos(B-Y) -sin(B+Y)cos(B+Y) 1.



Then, with the fourth of Eqs. (A.35)

Z[(1/2)sin(28)cos(2y)+cos(28)sin(2y)) -sin($+y)cos($+y)]

=Z(J/2sin(2($+y))- sin($+y)cos(O+y)] =0.

This gives the desired verification.
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APPENDIX IV

CHARACTERISTICS

We compile here the leading ideas of the theory of

characteristics applied to the present case. The differential

equation under consideration is Eq. (5), with replaced by .

(l-M2)0xx + 0yy -2MOxt - Ott = 0 (A.38)

We consider some surface in the x, y, t space and assume that it

is oriented so that it can be parametrized by x and y. Let this

surface be given by

t = f(x,y) (A.39)

We assume that Ox = U(x,y), Oy = V(x,y) and Ot = W(x,y) are known

on this surface. Obviously, these quantities cannot be independent.

If the surface S were given by t = const, then in order for a

potential to exist, one must have Uy = Vx . To derive a corresponding

relation for a general surface, we consider the following system

of equations

1 0 0 f 0 0

0 1 0 0 fy yy Vy

0 0 1 fy 0 0 Oxy Uy

o 0 1 0 0 Oxt = V (A.40)

0 0 0 1 0 fx Oyt Wx

0 0 0 0 1 f Ott Wyj

The arguments of the derivatives of 0 are x, y and f(x,y) = t. The

arguments of the derivatives of f, U, V, and W are x and y.

Premultiplying Eq. (A.34) by the matrix
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1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 -f 0
y

0 o 0 1 0 _
0 0 0 0 1 0

0 0 0 0 0 1

one obtains

1 0 0 f x 0 0 Oxx U x

0 y 0 0yy y
0 0 1 0 0 -fxf Uxy U = U-Wxfy

0 0 1 0 0 -fxfy Oxt Vx-Wyfx

0 0 0 1 0 f x yt Wx

0 0 0 0 1 f W
-- y ,Ltt y

-The left side of the third and fourth equations in this system are

identical. Therefore, the right sides must be identical also.

Uy-Wxfy = Vx-Wy fx (A.41)

In deriving the characteristics condition, one will omit either

the third or fourth equation, but add the partial differential
equation for Eq. (A.38), which so far has not bee used. Accordingly,

one considers the system

1 0 0 f x 0 0 " xx Ux

o 1 0 0 fy 0 yy Vy
o 0 1 0 0 -ff x = Uy-Wfy

0x y xy y X y
0 0 0 1 0 fx Oxt Wx
0 0 0 0 1 f y W

y yt y
(1-M2) 1 0 -2M 0 -1 0

10.2



The systematic elimination of the unknows xxl yy, etc. amounts
to premultiplication of the system by the following 1 by 6 matrix:

[-(I-M2), -1, 0, 2M+(l-M 2) x,  fy, 11.

This yields the relation
(A.42)

[(2M+(l-M 2 )fx)fx + f2 -i] 2(2-M2) -V + ( 2 M+ ( 2- M2 ) )Wx+fy W= 0

For a characteristic surface, the derivatives (among them

tt ) are not uniquely determined. Along characteristic surfaces

discontinuities in the second (and higher) derivatives may, therfore,

be encountered. Furthermore, derivatives within the surface cannot

be chosen independently. This can be recognized in the last equation.

One has a characteristic surface, if the factor of tt vanishes

(1-M2)f2 + 2Mfx + f2 -1 = 0 (A.43)

But then the right hand side must also vanish and one obtains the

compatibility condition

-(I-M2)U x -Vy + (2M+(l-M 2 )fx)Wx + fy W = 0. (A.44)
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APPENDIX V

THE TWO DIMENSIONAL UNSTEADY FLOW FIELD AT MACH NUMBER ONE
DETAILED COMPUTATIONS

In the main text the general course of the computations is

shown. The details are rather cumbersome, although certain

expressions which at the beginning, have a rather unwidely form

can be considerably simplified. The present appendix gives these

computations in sufficient detail to allow a sceptical reader to

check the results. The function g is determined from the

differential equation (1441

(Y+ 2 -2 + 1 = 0 (A.45)(7 )oxg -x -gy

In this equation the term $ox which is determined by the basic

field appears. it is expressed by Eqs. (154) through (159).

We add the following expression.

It follows from Eqs. (155) and (156)

x -uy4/5

Hence, with Eq. (158)

-x = (a/y2) -2/5 (i-(a/2) (A.46)

and

(a/y2) =115/2 (x)-5 / 2 (1-(a/2))5/2  (A.47)

The following formulae will be needed, because we shall use a and

y (instead of x and y) as independent variables.

One has, from Eq. (158)

da/dT- (10/3)a 1 5 (a+ (4/3))- (A.48)
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Then with Eqs. (159)

3a(x,y)/ax = (d/d3 (a/7x) -1 (10/3)y-4/5a 7y 5  (4/ 3))-1

(A.49)

aa(xy)/ay = (da/dZ (Z/ay) 
= - (4/3)y-I a(-2)(a+ (4/3))-1

It follows from Eqs. (159) and (A.48) that

d-f/dC - W(ld/d) =O a1/5 (a/4) -i)

Then from Eqs. (154),(155), and (156)

= 02 (/ y2) 1/5 ((a/4)-l). (A.50)

As a preliminary hypothesis we introduce, instead of Eq. (161)

.-1 6/5go P -i y6/ 0(c) "  (A.51)

Then

Mv-2 y2/5 7/5 1idod A 2

gox (10/3)y a (a+ (4/3))- djo/da (A.52)

goy = v-1y1/
5 [(6/5):'o - (4/3)a(a-2)(a+ (4/3))-1 do/dal.

This expression is substituted into Eq. (160). One obtains with

Eq. (A.50)

-2 y2/5 1/5 ((/4)-1)(10019)a 14/5 (a+ (4/3)) -2 (d o/da)
2

- (20/3)a I (0+ (4/3))- (d7yo/da)

-[(6/5)To-(4/3)a(a-2) (a+ (4/3))-ldy0 /da] 21 0
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Next we set

= & 3 1 y 0 (a)(A.53)

d~/do = a-8 15 (- (3/5) yo + a (dyo/do))

Then, except for a common factor, one obtains integral powers of

o in the last equation

U-2 /56{(100/9)a((a/4)-l)(+(4/3))- - /)+ (yo/a)

-(2O/3)ar(a+ (4/3)) -1 (-(3/5)y + a (dy 0/do)) (A-54)

-[(6/5)Y 0- (4/3) (a-2) (a+ (4/3))1 (-(3/5)Y 0 + (dy 0 /d'l)) 2 =o0

The coefficient of y0in the last term reduces to

(6/5)y -(4/3) (a-2)(a (4/)- ((/+
0 0

-(a+- (4/3)) 12ay0

one thus obtains for the whole expression (Eq. (A.53))

-(20/3)(a+ (4/3))(-(3/5)Y 0 + a (dy 0/do))

-a[2Y - (4/3) (-2) (dY /dC)] 2 ). 0.

Next we collect within the braces the quadratic terms with

different powers of dY /dY

Quadratic terms:

(dy 0 /do) 2[(lOO/9)(o/4)-l)a 2 a(l6/9)(a-2) 2

2 2 2
-(dyo /do) 0[0 4o -64/9) -(dyo /do) a(o + 4/3))(a (16/3))
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Linear terms

(dyo/da)a[(100/9) ((a/ 4)-.) (-6/5)yo -(20/3) (a+ (4/3)+ (16/3)y 0 (a-2)]

= (dy 0/da)ay8/ + 2a)-(20/3)(a+ (4/3))]

=(dy 0/dr) a (a+ ( 4 / 3 ) )I2y- -(20/3)]1.

The terms within the braces which do not contain dyoIda are

(l00/9)((a/4)-l)(9/25)Y2 - (20/3)(a+ (4/3))(-3/5)yo -4aY]2
0 0

=ay
2  - 4Y2  + W(+ (4/3))y - 4aY2
0 0 0 0

-(a+ (4/3) (-3Y +4) Y
0 0

One thus obtains

P_ y / 0/(+ (4/3))la (a-(16/3)) (dyo/da) 2+a(2y o-(20/3) (dy o/da)

+ (-3y 0 + 4)y0 }= 0.

The solution which is smooth, even at a - 16/3 (the limiting

characteristicl is immediately obvious

Y= 4/3 (A.55)

Combining Eq. (A.51), (A.53), and (A.55), one obtains

go- (4/3) 1 y 6/5 a-3/5 (A.56)

A correction g, to go is computed from Eq. (166)

((y+ l)$oxgo lxl)glx gyl + (1/2) - 0 (A.57)
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One has from Eqs. (A.561 and (A.49)

gOX= -- 2 (8/3)y2/5a-1 /5(a+ (4/3))-i (A.58)

= -1 (8/3)yI1/5a2/5 (a+ (4/3))-i

and, with Eq. (A.50)

(Y+l)ogo = - (8/3)((a/4 )-l)(a+ (4/3))-l
ox ox (A.59)

(y+l) oxgox -1 = ( (/ 3)a + (4/3))(a+ (4/3))-

First we set

gl = y4/5 7i(a )  (A.60)

Then one has, with Eqs. (A.49)

glx =  (i0/3)a/ (a+ (4/3))- (d~i/da)

gly= y-1 /5[(4/5):I - (4/3 )(a-2)(a+ (4/3))-la(dyi/da)].

Substituting this into Eq. (A.57), one obtains

(-(5/3)a+ (4/3))(a+ (4/3))-1 1 (103)a7/5 (a+ (4/3))- -(d- 1/da)

-P-(8/3)yi 5 2 5 (a+ (4/3)) y- 5 [(4/5)y I(4/3)(a-2)

(a+(4/3)) 'a(d: 1 /da)-] + (.1/2) = 0.

This equation simplifies

(a+ (4/3))-I U- a2/5 1-2 (d-y/da- (32/15)J} + (1/2) =0 (A.61)
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This shows that with the hypothesis (Eq. (A.57)), one obtains an

ordinary differential equation in which y does not appear.

Next, one introduces

S -2/5 (A.62)

Substitution into Eq. (A.61) gives

{(4/5)y 1 - 2a(dyl/da) - (32/15)y1  = -(1/2)(a+ 4/3))

and finally,

a(dyl/da) + (2 /3)y1 = (1/4)(a+ (4/3)).

The solution which is smooth at a = 0 is given by

71 = (1/2) + (3/20)a (A.63)

Thus,

g1 u U y4/5 a-2/ 5((i/2) + (3/20)a) (A.64)

From Eqs. (A.56) and (A.64), the following approximation is

obtained

g U-ly 6/Sa-3/5 [(4/3)+A((1/2) + (3/20)a)] (A.65)

with

A (0/y2) 1/5

In the vicinity of the negative x-axis, one uses Eq. (A.47)

to evaluate (O/y 2
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Next, formulae for the characteristic directions are developed

on the basis of Eq. (147). Parts of the numerator and denominator

of the right side are found in Eqs. (A.58) and (A.59). For the

missing contributions of gl, one finds from Eq. (A.64) and (A.49)

-1/5 -2/5.(gly U y -  a 1(4/5)((1/2) + (3/20)a) (A.66)

-(4/3) (a-2) (a+ (4/3))-1 [-(2/5) (1/2) + (3/5) (3/20)o]}

This simplifies to

gly = ((16/15)y-/5 3/5(a + (4/3))- (A.67)

Moreover, from Eqs. (A.64) and (A.49)

93 4 5 (a-7/5 ((1/5)+(9/100)a)-il (10/3)Wy-4/5a7/5(a+(4/3))-i

glx = (-(2/3) + (3/10))(a+ (4/3))-1

Then with Eq. (A.50)
(A.68)

(7+l)ooxglx aU2(a/y 2 ) 15((a/4)-l) (-(2/3) + (3/10)a) (a+ (4/3)) - 1

Combining Eqs. (A.67) and (A.68) with (A.59) and (A.58) and using
the definition of A, Eq. (A.65), one obtains

1 -(Y+ l)0og = (a+.(4/3))-1i[(5/3)a-(4/3)) + A((a/4)-l) ((2/3-(3/10))a]

gy =U-1yl/5 a2/5(a+ (4/3))'i (8/3) [1 + (2/5)A]

Then, from Eq.- (147)

Dx/Dy - j(a/y 2)-2/5Y- l[(5/8Ya - (1/2)

+ A((a/4)-l)(1/4)-(9/80)a[l+(2/5)A]
-  (A.69)
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To obtain Do/Dy, we proceed as follows. It follows from Eq. (A.46),

that along a curve a- a(y)

dx/dy=.y-I (a/y2) - 2/ 5 [(4/5) ((a/2)-l)+(3/10) (a+(4/3))d(loga)/d(logy)]

One obtains, by substituting into this equation the value of Dx/Dy

for the characteristics, Eq. (A.69)

(5/8) - (1/2) +A ((Q/4) -1((1/4) - (9/80) ) (4/5) ((/2) -i) (3/10) (o (4/3)) D(logo)/D (logy)
1 + (2/5)A

Hence

(3/10)(a+ (4/3))D(loga)/D(logy) -

- (1+(2/5)A) {(5/8)a-IA((/4)-I)((1/4)-(9/80)O)-(I+(2/5)A)(4/5)((O/2)-)}

= (I+(2/5)A)-I {(9/40) (a +(4/3))-A(9/320) (o+(4/3) (a-(28/15))}

Hence,

D(logo)/D(logy) = (1+(2/5)A)1 (.3/4) (I-(1/8)A(a-(28/15))]

One may develop the denominator with respect to A. Then one obtains

D(logo)/D(logy) - 3/4(I-(I/8)A(o+ (4/3))].

Usually, it is convenient to consider a as independent variable.

Again, developing with respect to A, one obtains

D(logy)/D(logo) - (4/3[1-(I/8)A(a+ (4/3))] (A.70)

Next, we derive an expression also for D(log-x)/Dloga. One finds from

Eq. (A.46)

Dlog(-x) -(4/5)d(logy)-(3/10) ( +(4/3)) (1- (a)/2))-d(loga).
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Equation (A. 70) is used to eliminate d (logy). One then obtains

(A. 71)
D(log(-x))/D(loga)= (2/3) [(l-(5/4)a) (l-(a/2)) l+(l/5)A(a+ (4/3)].

No development with respect to A has been carried out in deriving

Eq. (A.71) from Eq. (A.70). Although both equations neglect terms

of higher order in A, they will give the same directions in the x,y

plane. The same holds for the quotient of Eqs. (A.71) and (A.70)

D(log(-x))/D(logy) = (A.72)

(1/2) [(l-5/4)a) (l-(a/2))- 1 +(l/5)A(a+ (4/3))](l+(l/8)A(a+(4/3))]f1

For the vicinity of the y axis, one writes

D (-x) /Dlogy)

-(1/2) [(l-(5/4)a) (-x) (l-a/2)) l-x(l/5)A(a+ (4/3))] (l+(l/8)A(a+(4/3))]F1

and uses Eq. (A.46) to express (-x) (l-(a/2))- , which for x = 0

gives (0/0).

An analytical expression for the characteristics is found
from Eq. (A.70). In the lowest approximation in A, one obtains

y = C a4/3  (A.73)

where c is the constant of integration. To take first order terms

of A, we introduce

u = log y

v = log a.

This is substituted into Eq. (A.70) and the specific form of A is

introduced. One obtains

Du/Dv =(4/3) +(1/6p 2 exp(-(2/5)u) texp((6/5)v) + (4/3)exp((l/5v)]=0.
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In the first approx imation, one obtains the above results

u 0 (4/3)v + log c.

Next, one sets

SUUo +U 1

* . and neglects higher order terms in u. Then

DU1 /DV=(1/6) 2 (exp(-(8/15)-(2/5)logc) [exp((6/5)v)+(4/3)exp((1/5)v) ]=0

DU1 /Dv=(/6)j 2c-2/5 [exp(U2/3)v) + (4/3)exp(-((l/3)v)J = 0

u1 =2c'2/ 5 [(i/4)exp((2/3)v) - (2/3)exp(-(l/3)v)].

Therefore, accurate to the next order

u = log c + (4/3)v + U2 2c-2/ 5 [(I/4)exp((2/3)v)-(2/3)exp((-1/3)v)]

y = c a 4 / 3exp[ 2 c-2/ 5 (1/4)a2/ 3 - (2/3)a- 1/3]

For c large (y large) the argument of the exponential function is

small. Developing the exponential function, one obtains

y = c a4 / 3 + p 2 c 3 /5[(1/4)a 2 - (2/3)a] (A.74)

For the application of the far field conditions one needs
the derivative of g along the characteristics. The formula which
is correct to the first order in A is Eq. (177). The lowest
approximation is simply by substituting Eq. (A.74) into Eq. (A.56)

go (/3)'1 6/5
o (4/3)i -lc

or

go (4/3)U' 1 c 9/20 y3/4
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Hence,

D g0/Da = (4/3)1u-  c6/ 5 (1 + 0(A)) (A.75)

= (4/3)U- I c6/ 5 (1 + 0(y-2/ 5))

and

Dgo0/DY - c 9/20 Y-1/4

Also needed is DlogH/Dy. One has from Eqs. (153) and (149)

D(logH)/Dy = (1/2) [(Y+1) (3(0oxgx)/3x) - g yy]/gy. (A.76)

We evaluate this expression only to the lowest order in A.

According to Eq. (A.59)

(y+ l) oxgox = -(8/3) ((a/4)-l) (a+ (4/3))-i

Hence with Eq. (A.49)

(y+l) a ( / =- (8/3) (1/4) (a+(4/3)) -( (cV4) -1) p-1 (10/3) y-4/5 7/ 5 (a+(4/3)) -1

(a+ (4/3)) 2

= - i (320/27) (a/y2) 2/5a(a+ (4/3))-3. (A.77)

According to Eq. (A.58)
(A.78)

yJ -1(8/3)y1/5a2/
5 (a+ (4/3)1 -Ul(8/3)y(a/y

2 2/5 (a+ (4/3))-lgoy=

Then with Eq. (A.49)

goyy -1 (8/3)y-4/5a2/5{(a+(4/3))- 1(1/5) +

[(2/5)a - (a+ (4/3))- 1 -(a+ (4/3)) -2 (-(4/3)a(a-2)(o+4/3)-1 }
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Hence

govP- 83 / -22/5 (o+ (4/ 3))3l(1/5) 0+ (8/15)+(1/5(/)/y*-3 2+ (16/45)

-(4/3)(a-2) [(2/5)(a+ (4/3))-al} (A.79)

-1 22/5 -3 02

goyy -- 1 (8/3)(o/y 2 ) (a +(4/3) [a -(16/9) + (16/9)]

Then from Eqs. (A.77) and (A.79)

(7+I) (o oxgox)p x-gyy 1 (0/y 2 ) 2/5 (a+(4/3)) -3 (8/3) [-(40/9)c - a2

+ (16/9)o - 16/91 = u-l (Co/y2 ) 2/5 (8/3) (a+(4/3))-I

and from Eq. (A.76) together with (A.78)

D(logH)dlogy = -(1/2) (A.80)

Along a characteristic is the

H = const y

In the expression for the far field conditions, Eq.(80), DlogH/Ds

nd Dg/Ds appear in the coefficient of %. For large y,

DlogH/Dy v y

and according to Eq. (75), Dg/Dy -y-

The. contribution of DlogH/Dy is therefore negligible. Equation

(80) is important in the demonstration of Section IX.
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APPENDIX VI

THE AXISYMMETRIC UNSTEADY FLOW FIELD AT MACH NUMBER ONE
DETAILED COMPUTATIONS

The computations are identical with those for the two-
dimensional case, except of course for the specific form of the
analytical expressions.

The function g satisfies the same differential equation as
before

2g - g2 + 1 = 0. (A.81)
+)oxgx - x y

The term for ox, by which the basic field enters is found from
Eqs. (186) through (189). We add, (from Eq. (187))

4/7-

and with Eq. (189)

-x - (a/y 2 ) - 2 / 7 (1-2a) (A.82)

and

2 7/2 - 7/2 7/2
(a/y )  11 . (-x) (1-2a) (A. 83)

One obtains, from Eq. (189)

da/dZ = (7/10)a 9/7(a+ (1/5))- 1  (A.84)

and, with Eqs. (188)

aa(x,y) /ax =U-1i(7/10)y -4/7 a 9/7 (a+(i/5))-i

(A.85)

(x,y)/ay = -12/5)y - I a(2a-i) ( + (1/5))-
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It follows from Eqs. (189) and (A.84), that

drf/d-C (8/3)a a3/7 (a-i).

Then, from Eqs. (186),(187), and (188)

(Y+l)0 x ] 2 (r/y 2 ) 3/7(8/3) (a-i). (A.86)

We make the preliminary hypothesis

go 1i1 1 0() (A. 87)

Then,

g = 2i (7/10)y 6/7 a 9/7 (a+ (1/5))-l dy0/da

gy= P-1 y3/7 o(077 (/)(a1)o 15-d.dl (A.88)

The function g0will satisfy Eq. (A.81) in the highest power in y.

One has specifically

(log 2  - 2gx- g 2  =0.
(1oox ox oy

One obtains, by substituting Eqs. (A.86) and (A.88)

11- 2 y6/7{a 3/7-(8/3) (a-i) (49/lOO)al
8 /'7 (a+ (1/5))-2 (d70y/da)

2 I

-(7/5)a 9/7 (a+(1/5) )1 (d Iyoda)

* (10/7)7,0 -(2/5)a(2a-1) (a+ (1/5))-ld7y0 /dcy] 2  0.

* Next we set

TO =0/7Y (A.89)

dT0-/da - a-12 /7 [-(5/7)y 0+ a(dy 0/do))
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Then one obtains

-2 y6/7 -10/7 (98/75)a(a-1) (a+(1/5)) -2(-(5/7)y 0+ (dy o/da))2

-(7/5)0(+ (1/5))- (- (5/7)Y0 + 0(dY o/d)) (A.90)

-[(10/7)y 0 - (2/5) (2a -1) (a+(1/5))-i (- (5/7) Yo+ a(dY /da) )]=0.

The coefficient of Y in the last term reduces to

-1(10/7)Y -(2/5) (2-1) (a+ (1/5)) (-5/7)Y0

a(a+ (1/5)) -12Yo

One then obtains for the whole expression, Eq. (A.90)

-2 y6/7 - 3/7(a+ (1/5))-2 {(98/75) (a-l)(-(5/7)y° + a(dy /da)) 2
0

+ (a+ (1/5))(yo - (7/5)a(dy /da))

-[2y 0 + (2/5)(l-2a)(dyo/da)]2 = 0.

Next we collect within the braces the terms with different powers

of dy0/da. Quadratic terms:

(dy o/da) 2 [ (98/75) (a-l)a 2 _ (4/25) a(l-2a) 2]1

2 2_2/ ) -42 ) d d )2=(dyo/da) [(2/3)a2-(293)a-(4/25)] = (dyo/da)2a(2/3) (a+(i/5)) (a-(6/5))

Linear terms:

(dy /da)E(98/75) (a-i) (-10/7)ayo -(7/5) (a+ (1/5)a-(/8/5)a(l-2a)y0 ]
0o 0

=(dyo/da)a(a+ (1/5)[(4/3)y -(7/5)].
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Terms without dy0/da

(98/75) (a-l) (25/49)y 0 + (a+ (1/5)y 4a/y 2
0 0 0

= y [-(1 0/3)y 0 + 1](a+ (1/5)).

One thus obtains, from the terms within the braces

(a+ (1/5)] (dyo/d) 2 (2/3)(a-(6/5) + (dy /da)a((4/3)y0 - (7/5)

+ y 0[-(10/3)y 0 + 1)} =0

The solution which is smooth, even at a = (6/5) is given by

Y 0 = 3/10. (A.91)

Combining Eqs. (A.87), (A.89), and (A.91), one obtains

go = (3/10)p-1 10/7 -5a (A.92)

A correction, g, to go, is obtained from Eq. (A.81) by retaining

only first order terms in g,

((Y+ l) oxgox -l)glx - goy gy + (1/2) = 0. (A.93)

One has, from Eqs. (A.92) and (A.89)

gox = -- 2 (3/20)y6/7 a-3/7(a+ (1/5))-i (A.94)

goy . U 1 (3/5)y3/
70 2/7(Y+ (1/5))-1

and with Eq. (A.86)

(+ oxgox - -(2/5) (a-1)(+ (1/5))-1 (A.95)

(y+ 1) oxgox-1-(-(7/5)+(1/5)) (1+1/5)A)
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we set

g1 - y4/ 77 1 () (A.96)

Then, with Eqs. (A.49)

glx = 1 (7/10)a 9/7 (a+ (1/5)) 1 d7l/da

gly = Y- 3/ 7 [(4/7)-I(-2/5) (2a-1) (a+ (1/5))- ody /do]

Substituting this into Eq. (A.93), one obtains

(-(7/5)a +(l/5))(a+ (1/5))-l -1 (7/10)o 9/ 7 (+ (1/5))-id:1 /da

_- i(3/5)y 3/7a2 /7 (a+(1/5))-l[(4/7)y1 -(2/5) (2a-1) (o+ (1/5))-iady1 /da]

+ (1/2) = 0.

This equation simplifies to

(A.97)

(1/5)(G+ (1/5))-1 a 2/7[-(5/2)a(d7i/da) - (12/7)Ti]+(i/2) =0.

Next one introduces

71 = Ua-2/7 1

Substitution into Eq. (A.97) gives

(1/5) [(5/7)y -(5/2)a(dyl/da)-(12/7)yl]] + (1/2) (a+ (1/5)=0

and finally

a(dyl/da) + (2/5) = (a+ (1/5)).

The solution which is smooth at a = 0 is given by
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y= (1/2) + (5/7)a (A.98)

Thus

91= Uy4 / 7 a- 2 / 7 ((.1/2) + (5/7)a) (A.99)

From Eqs. (A.92) and (A.99), one thus obtains the following
approximation

g = p-i y 10/7 a-5/7 [(3/10)+A((1/2)+(5/7)a)]

with

A = 2(a/y2) 3/7 (A.100)

In the vicinity of the negative x axis one uses Eq. (A.83) to

evaluate (a/y2).

Next, formula for the evaluation of the characteristic

directions are developed. Since the differential equation for g,

Eq. (144),is the same for the plane and the axisymmetric problem,

one obtains the same formula for the characteristic directions, viz

Eq. (147). Parts of the numerator and the denominator are found
in Eqs. (A.94) and (A.95). For the missing contributions of gl'

one finds from Eqs. (A.99) and (A.85)

gly 2 )Y-3/7 -2/7 {(4/7)(1/2)+(5/7)a) + (-(1/7)+(25/49)a)

- (2/5)(2a-i)(a+ (1/5))- 1 [(1/2)(-2/7) + (5/7) 2 at.

This simplifies to

gly u(24/35)y 3 /7 a5/7 (a+ (1/5))l1 (A.101)
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Moreover, from Eqs. (A.99) and (A.85)

glx 47(y4 / 7  (-(1/7) + (25/49)a)p-1 (7/10) y-4/7 a9/7 (a+ (1/5)) 1

gx= (-(1/10) + (5/14)a(a + (1/5))

Then with Eq. (A.86)
(A.102)

(Y+l) 0oxglx= (ay2) 3/7 (8/3) (a-l) (-(l/l0)+(5/14)a) (a+ (1/5))-I

Combining Eqs. (A.101) and (A.102) with (A.94) and (A.95) and

using the definitions for A, Eq. (A.100), one obtains

1- (y+l)%oxg x = (g + (1/5))l [(7/5)a-(1/5) +A(o-1) ((4/15)-(20/21)a)]

gy = p-1(3/5)y3/7 a 2/7(+(1/5))-l(l + (8/7)A).

Then, from Eq. (147)
(A.103)

p2-2/7 -1 -Dx/Dy=ll(a/y 2) -2 / y ' [ (7/3) a- (i/3) +A(a-1) ((4/9) -(100/63) a) [i+(8/7) A]-1

To obtain Do/Dy we proceed as follows. It follows from Eq. (A.82)

that along a curve a= a(y)

dx/dy -py-l (a/y 2)-2/7 [(4/7) (2a-1) +(10/7) (a+(I/5))d(loga)/d(logy)]

One obtains, by substituting into this equation the expression (A.103)

for the value of Dx/Dy along a characteristic

(7/3) a- (i/3) +A (a-i)((4/9)-(1°°/63)-a)=(4/7) (2a-1)+(10/7)(a+(1/5))

(1+(8/7)A) D (loga) /D (logy)

Hence,
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(10/7) (a+(1/5)D(loga)/D(logy)

- (1+(8/7)A) {(7/3)a-(1/3)+A(a-1) ((4/9H-100/6 .3)a)-(1+(8/7)A) (4/7) (27-1)~

- (1+(8/7)A) l{(25/21) (a+ (1/5) -A.(100/63) (a+(l/5) -(23/35)))

Hence,

D(loga)/D(logy)- (1 +(8/7)A) -1(5/6) (l-(4/3)A(aF-(23/35))].

Developing the denominator with respect to A, one obtains

D(logc)/D(logy) - (5/6)(1-(4/3)A(a+ (1/5))]

usually it is convenient to consider a as the independent variable.

Again, developing the denominator one obtains

D(logy)/D(loga) = (6/5) (1 + (4/3)A(a+ (1/5))]. (A.104)

We derive an expression also'for D(log(-x))/Da. One finds from

Eq. (A.82)

d(log(-x)) - (4/7)d(Jlogy)+(10/7) (a+(1/5)) (2a-1)- dloga

Equation (A.104) is used to eliminate d(logy). Then

(A. 105)

D(log)-x))/Dloga)- (2/5) E(1-7a) (l-2a)- +(16/7)A(a+(1/5))].

Here no development with respect to A has been carried out. The

quotient of Eqs.,(A.105) and (A.104) gives

D(log(-x) )/D(logy)=(1/3) (l-7a) (l-2a) +(16/7)A(a+(l/5) )

(1 +(4/3)A(ar+(l/5))] -1
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For the vicinity of the negative y axis one writes

D(-x)/D(logy) - (l/3)[l-7a)(-x)(l-2a)- + (16/7)(-x)A(a+ (1/5))]

(J+(4/3)A(a+(1/5))I-

and uses Eq. (A.82) to express (-x) (l-2a) -

To find an analytical expression for the characteristics, we

set

u -log y

v = log a

Then from Eq. (A.104) and (A.100)

Du/Dv = (6/5)+ (8/5)4 exp(-(6/7)ufexp((lO/7)v)+(1/5)exp((3/7)v)]

one obtains in the first approximation

U0  (6/5)v + log C.

Next one sets

u=U0 + u
0 1

and neglects higher order terms in u l. Then,

Du /Dv=(8/5)p 2 (exp(-(36/35)v -(6/7)logc) (exp((lO/7)v+(1/5)exp((3/7)v)I

Du 1/Dv - (8/5)11 2 c 6/7 (exp(12/5)v)+(l/5)exp(-(3/5)v]

tU1 Mu2c-6 /7 [4 exp((2/5)v) - (8/15) exp(-(3/5)v)].

Therefore, correct to the next order,
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u =logc + (6/5)v + 2c-6/7 [4 exp((2/5)v)-(8/15)exp(-3/5)v)

y= ca6/5exp{ 2 c - 6 / 7 [4a 2 / 5 - (8/15)a-3/51

For c large (y large) the exponential function is developed. One

obtains

6/5 2,i/7 3/5
y = c a + Vc a (4a -(8/15)). (A.106)

We compute in the lowest approximation the derivative of g

along a characteristic. This quantity occurs in the application

of the far field conditions. One obtains by substituting Eq. (A.106)

into Eq. (A.92)

-1 10/7

go= (3/10)p c

or

-1 25/42 5/6
90 (3/10)ui c y

Hence

Dg /D=a (3/i0)-Ic10/7 (1 + O(A))

(3/10)-Ic1 0/ 7 (1 + O(y -1 / 2)) (A.107)

and

Dgo/Dy= (1/4)u--1c25/42y-1/6 (l+0(y-1/2

Also needed in the far field condition (at least until it

has been shown that its order can be disregarded) is D(.logH)/Dy.

The characteristic directions are given by the same general

formulae in the axisymmetric and in the plane flows. One obtains

from Eqs. (185) and (149)
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D(logH)/Dy = (1/2) [(y+l)a( oxgx)/ax)-y-l(ygy)/aylgy. (A.108)

We evaluate this expression only to the lowest order in A.

According to Eq. (A.95)

(Y+ l)o = -(2/5) (a-i) (a+ (1/5))-1.

Hence with Eq. (A.85)

= -(2/5) a+(i/5)-(a-l) -1 (7/lO)y-4/ 7 a9 /7 (a+(1/5)-1
(a+ (1/5)2

= -1 2 2/7 - 3
(42/125) (a/y ) / a (a+(1/5) (A.109)

According to Eq. (A.94)

-1 ~10/7 2/7 -
' goy = -l(3/5)y 0 (a+ (1/5))- (A.110)

Then with Eq. (A.85)

Y1(ygoy )/y = U-l (3/5)y-4/7a2/7 (10/7)(a+ (1/5))-1 +

+11-(2/5a2-)(+15
[(2/7)a (C-i+(1/5)) -(a+ (1/5)) [-(2/5)l(2o-1)(o+(1/5)-i]

Y-13(y goy)/y=u- 1 (3/5)(a/y2) 2/7 (c+ (1/5))-3 {(10/7)(a+ (1/5))2

+ [(2/7) (a+ (1/5))-a] [-(.2/5) (2a-1) }

y-1 (y goy ) /  -1- ( 3 / 5 ) (G/y 2 ) 2 / 7 (a+ ( 1 / 5 ) ) - 3 ( 1 / 7 ) ( I ~ a 2 + 4 a+ ( 2 / 5 )

+ (2/5) (1-2a) (-5a+ (2/5))

y-1 3(y goy)/ay U-1 (6/5)(c/y 2) 2/7 (a+ (1/5))-3(a2+(3/25)a + (1/25))

(A. 111)

Combining Eq.. (A.109) and (A.111) one obtains
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(Y+ 1)3(dOxgo)/ax - y- I (ygo )/ay

-1 (aly 2 )2/7 (a+ (15) 3{(42/125)a- (6/5) a2 -(18/125)cY-(6/2.5))}

-1 2 2/7 -=-]I1 (6/5)(a/y ) (a+ (1/5))l

Hence, from Eqs. (A.108) and (A.110)

D(logH)/Dy = y 1(A.112)

H =const y-

Comparing Eqs. A.112) and (A.107), one recognizes that in the

evaluation of the far field conditions D(logHIjDy is negligible in

comparison to Dg/Dy. Equation (A.112) is, however, important in

the demonstration of Section IX.
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Figure 1. System of Wave Fronts for a Subsonic Free
Stream Mach Number in Linearized Theory.

Figure 2. System of Wave Fronts for a Free Stream
Mach Number One in Linearized Theory.
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Figure 3. Normal to a Wave Front and Characteristic
for a Wave Spreading out from the Origin.

Y-Yo
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Figure 4. Coordinate System for the Evaluation of
Derivatives at the Edge of the Computed
Region.
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C6

I x

,x 9(x~y)wg(XoIYo)

Figure 14. Coordinate System Used to Determine
the Radius of Curvature of a Wave
Front.
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y= f(x)

R>O

Figure 15. Curve with Positive Radius of Curvature.
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Figure 16. Orientation of the 9, System with.

Respect to the x,y System.
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