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SECTION I
INTRODUCTION

In deriving far field conditions for unsteady flows at high
subsonic Mach numbers, one usually makes the assumption that in the
distant field the deviations from a parallel flow with the given
free stream Mach number are small. Two quantities are of importance,
the ratio of the velocity perturbations to the free stream velocity
of sound and the ratio of the velocity perturbations to the
difference between the free stream velocity and the sonic velocity
(the velocity for which velocity of sound and velocity of motion

are the same). Accordingly, it is not permissible to choose a
boundary of the computed part of the flow field for which the local '
Mach number reaches the value of one. The distance from the profile i
for which this prerequisite is satisfied increases to infinity as |
the free stream Mach number approaches one.

The original goal of the research effort reported here was
the derivation, by means of asymptotic techniques, of far field
conditions for small unsteady perturbations with harmonic time
dependence superimposed to a steady flow with the free stream Mach
number one. It was planned to illustrate the mathematical technique
by applying it to problems with a high subsonic free stream Mach
number, This attempt led to some developments beyond those found
in the literature. Usually one assumes that the perturbations
arriving at the outer edge of the computed flow field can be
approximated by cylindrical or spherical waves whose origin is
known. (Actually, it must be estimated.) The analysis leads to
equations for which the wave fronts may have a more general
character, although one must assume that they are rather smooth.

The information provided in the standard methods by estimating

the location of the origin is then derived from flow field data.
Furthermore, it is a rather simple step to proceed from perturba-
tions which are harmonic in time to general unsteady perturbations.
Of course, asymptotic results are not always applicable. The
requirement that the frequency of harmonic oscillations is fairly
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high or that changes of the flow field with time are rather

quick is not always satisfied. Moreover, the description of

the perturbation field by means of smooth wavefronts is not always
possible. Then one must apply far field conditions (of a more
complicated nature) in which such assumptions are not made (Ref.

1 and 2). Of theoretical interest is the relation of surfaces

of constant phase (which play an important role in the asymptotic
considerations) to characteristic surfaces in the space spanned
by the space coordinates and the time.

Accordingly, this report consists of two nearly independent
parts, one consisting of Sections II to VI which deals with far
field conditions at a high subsonic Mach number and the remainder
which treats far field conditions for oscillatory flows at a free
stream Mach number one.

Regarding the latter we make the following observations.
We deal with small unsteady perturbations with harmoni§ time
dependence superimposed to a steady flow with the ffee stream
Mach number one. Because of the so-called freezing of the Mach
number distribution in the flow field for free stream Mach numbers
in the vicinity of one, the results are also épplicable for flow
fields with such Mach numbers. In this study the linearization
is carried out for the vicinity of a steady flow perturbed by the
presence of a body, (while in the derivation for subsonic Mach
numbers, one linearizes for the vicinity of a parallel undisturbed
flow) . It is assumed that the boundary at which the far field
conditions are to be applied lies at such a distance that the flow
field can be approximated by the dominant term in the development

with respect to distance. For these perturbations. analytic

expressions are available, even for the axisymmetric problem. They -
3

have been found, simultaneously by a number of authors (Randall,
Mueller and Matschat, and Euvrard, Refs. 3, 4, and 5). We shall
use the form given by Randall. The conventional treatment of

far field conditions for subsonic flows makes use of analytical
expressions for the unsteady linearized far field. For flow fields
with a free stream Mach number one, such expressions are not

e ——-_—
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available., H One can dispense with information of this kind by
asymptotic considerations. This is a technique used in physics

to make the transition from wave to ray optics. . The asymptotic
expressions are valid if the frequencies are sufficiently high,
Such techniques have been applied before for problems of sound
radiation (for recent applications see Bayliss, Gunzburger, and
Turkel, Ref. 6, 7). The mathematical nature of conventional f.r
field conditions seems to indicate that one comes into the realm of
such high frequency approximation as the free stream Mach number
approaches one. ‘




SECTION II
THE SUBSONIC PROBLEM, BASIC EQUATIONS, PARTICULAR SOLUTIONS

Let X,y be a system of Cartesian coordinates, T the time,
and ¢ the velocity potential which describes the deviations from
a parallel subsonic flow. The linearized differential equation
which we take as point of departure for the present investigations
can be obtained either by linearizing the potential equation for
unsteady flow for the vicinity of a steady parallel flow, or by a
transformation of the equation for the propagation of sound in air
at rest. The differential equation for the latter problem is

given by

where "a" is the constant sound velocity. The equation for
perturbation in air that moves from right to left with the

velocity U is obtained by the following transformation

?F(irl-’rg) = §(X,¥,€)

One obtains

02 /a2 |
(1-u%/at) fgg + Bop - 20/ad Gz - (1/a)) Gy




We introduce the free stream Mach number

M = U/a

make all length dimensionless with a characteristic length L, for
instance the chord of the profile,

x = ¥/L,y = ¥/L
and introduce a dimensionless time
t =at/L=at/L. (4)
Then one has instead of Egq. (2)
X = L(x-M t).
With 8(x,y.,t) =$(;,§,E), one then obtains from Eq. (3)

(LG + by = Mby - dep = O (3)

YY

This derivation emphasizes the fact (actually a rather obvious
one), that perturbations once introduced behave like perturbations
in still air, except that they float downstream with the velocity
U. In the last equation, U is replaced by the dimensionless
velocity M. We now consider particular solutions which are
periodic in time with the circular frequency v

2 $(x,y,t) = ¢(x,y) exp(ivE)
or

,L $(X,¥,8) = ¢(x,y) exp(i(VvL/U) (Ut/a))
= ¢(x,y) exp(iu'Mt) (6)
= ¢(x,y) aexp(iwt)




In the second version of Eq. (6) the familiar reduced frequency, ﬁ
here denoted by u', has been introduced

(vL/U) (7

Furthermore, we have set

p'M = (vL/a) (8)

w

One then obtains

2 . 2 _
(1-M )¢xx + ¢YY 21mM¢x + we¢ =0 (9)
In Ref. 5 Eq. (9) has been transformed in the following
manner, First one carries out the Prandtl Glauert coordinate
distortion
X = x
v = (1-u%) /2 (10)
One obtains
Y e I M2yl 2 _
o35 + ¢§Y 2iM(1-M") oo + (1-M%) “w¢= O (11)
Next one removes the term with ¢z by the transformation
~ A . 2 _1A A A A
¢(x,y) = exp(iwM(1-M") “x)¢(x,y) (12)
Introducing ' |
b
u o= (1-M%) "l = Me1-m?) "L (13) '
One obtains
orn +orn + ue =0 (14)
XX Yy




This is the Helmholtz equation. Usually the Helmholtz equation
arises in the study of periodic perturbations in still air. One
then substitutes the following expression into Eq. (1)

TE.T.8 = $(X/L), (F/L)) exp(ivt)
Using Eq. (8) one obtains

323 22F 2

— + = + wd = 0. (15)
3(%/L) 2 3(3/L) 2
Notlce that Egs. (14) and (15) have different factors of - R

¢ and ¢. The substitute frequency M tends to infinity as M tends
to one. This suggests that, in the vicinity of Mach number one,

the high frequency limits of the far field conditions is applicable.
The transformations, Egs. (10) and (12), amount to a rather com-
plicated distortion of the original flow pattern. There is no
direct physzcal relation between the flow fields described by the
functions ¢ and 9.

Particular solutions of Eq. (14) are given by

b (2.0y = (2) cos (m8)
¢m(x'Y) = H ur) {sin(me) (16)
Here .
r = [22 + ?2]1/2 = [x2 + (l_Mz)yzll/z (17)
cog® = R/r = x/r 2.1/2 } 0<ec<o2n (18)
8in® = §/r = (1-M°) "/ “y/r
Héz) is the Hankel function of order m, where m is a positive :

integer or .zero.

One has for large values of a complex variable 2z

m~




Héz) = const z -I/ZP(z-l)exp(-iz) (19)

where P stands for a semiconverging power series in z°l. The exact

form of the constant is unessential in the present context. These
particular solutions, partially written in terms of the original
coordinates, read .

1

¢ = exp(in(l-Mz)- x) .

1,.2

(2) | 0 2=
Hp' (w(1-M%) sin(mé)

(x

and asymptotically

1/2 2)1/2]}{cos(me) (21)

exp {iw(1-M) "Timx - (x%+(1-u%)y sin (mg)

¢ = const r
The factor (l-M?')"1 in the exponential function and in the argument
of the Hankel functions makes it obvious that these solutions will
fail as the Mach number approaches one.

An intuitive picture can be obtained in the following manner.
Assume that one generates perturbations by short pulses spaced at
equal time intervals in a flow with Mach number M. We consider the
wave front pertaining to each perturbation at some later time t.
We mentioned previously that these fronts spread out as in air at
rest (that is, with the sound velocity "a") but at the same time
move downstream with the dimensionless velocity M. For a Mach
number smaller than 1, the system of such wave fronts is drawn in
Figure 1. The distance between two adjacent wave fronts is smaller
on the upstream side of the point where the perturbations are \
introduced and larger at the downstream side compared with the
wave fronts in air at rest (which would be formed by concentric
circles). At a free stream Mach number 1 the upstream distance

reduces to zero (Fig. 2). This accumulation of perturbations
suggests the difficulties which arises in a flow with the free
stream Mach number 1. It is obvious that in such a flow the local

i




deviations of velocity of sound and of the particle motion from
those of the free stream conditions can no longer be disregarded.

A discussion where this modification is made will be carried out
later.




SECTION III
THE SUBSONIC PROBLEM, HIGH FREQUENCY APPROXIMATION

To obtain a high frequency approximation to solutions of
Eq. (9) we make the transformation

¢(x,y) = h(x,y) exp(-iwg(x,y)) - (22)

and satisfy Eq. (9) in the dominant powers of w.

One has

8,=L(h,/h) ~iug, 16

by = [(h /M) =2(h /h)ing, - w’gl - iwg,1¢
- _ . 22
¢yy [(hyy/h) 2(hy/h)1wgy wigy 1wgyy]¢.

Then from Eq. (9)

2 2, 2 2
-w°[(1-M )gx + gy + 2ng - 1]

~i0n"l(1-w) 20, g, + 2hg, + 2k B(QAIG + g )] (23)

+h'1[(1-M2)hxx +h 1 =0.

The dominant terms, (those with the factor w?) determine the
function g(x,y). One obtains the equation

2, 2 2 -
(1-M )gx + gy + 2Mg_~1 0. (24)

The function h(x,y) depends upon w. Including one term beyond the
lowest order approximation we set

hix,y,0) = H) (x,y) 40" H, (x,y) (25)

10

ot = o e

PP, AR A T TR




The terms of order w and of order 1 in Eq. (23) give respectively

2 2 -
Hy (L(-M) g 4 + B g+ (1/28 (FM)g 49 1 =0 (26)

+ (L/DH,[(1-M2) g, + g, ]

2
Hz,x[(]"M )gx+M] + HZ, g vy

Yy
(27)

+(i/2) [(1-M%)H + H

1,2x ¥ Hy,yyl! =0

Eq. (24) is a first order partial differential equation in one
dependent variable. Applying a standard procedure one differenti-
ates Eq.(24) with respect to x and y

2, _
[(1~-M )gx + M]gxx + gygxy =0

and (28)

2
- + = 0.
[(-u')g, + Mig, + 9.9,

We denote by D differentiation in a direction given by
(dy/dx) = qy/[(l-Mz)gx + M] (29)

Let DL be the line element. Then one has

(1--1*!2)9x + M

5= T 3,172 (30)
(62 + (141 g, 40 %)

| g

D =

of (o2 + ((1-§T)gx+mfll/2

D Dx 9 D 3

BT 5L W * Bf N (31)

11




Curves with the slope given by Eq. (29) are called characteristics.
Then from Egs. (28)

Dgx/Dz
Dgy/Dz

Furthermore
Dg/DL g, (Dx/DL) + gy(Dy/Dl)

and, from Egs. (26) and (27)

D(logH;) /D + (1/2) [(1-M7)q,, + g, 1/1g2 + ((1-MD g +m) 21/ 2=

DH,/De+(1/2)H, [ (1-M%) g, +g, 1/1g2 +((1-MD)g, + m)?11/2

+ (i/2) [(1-M%)H, __+

2,1/2
1,xx Hl,yy ]

1/1g; + ((1-P)g, + W) = 0

It follows from Eqs. (32), that along the characteristics .
g,= const and gy = const and subsequently, from Eq. (29), that
these curves are straight lines.

For a preliminary discussion, we consider characteristics
which siart at the origin. Then

Dy/Dx = y/x
and because of Eq. (29)

Iy

= (y/01-M) g, + M)

One obtains, by substituting this expression into Eqg. (24)
and by solving the resulting quadratic equation,
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g, = (147 em + 3702 + (1-MDyH V2
(35)
9y = y/(x2 + (l-Mz)yz)l/2
Moreovei', ifg=0forx=0andy =0
g = gyX + 9,¥ .
g = (1-M%) " Lromx + (22 + (1-M%)y?3) 172 (36)

Consider acurve g(x,y) = K (where K is some constant). One finds
from the last equation that such a curve satisfies

(x =K M)2 + yz = Kz. (37)

This is a circle with a radius |K| and center at the point
(x,y) = (KM,0). PFor K positive these are the circles shown in
Figures 1 and 2.

The limit M = 1 is readily discussed. One obtains

g, = v/|x|
(38)

- 2,~1

g, = (1-M%)"7[-M + (x/[x])].
Hence
-1
g, = (1+4) = =1/2, x > 0

ﬁif Ix = ﬁi? -(1-w7t = e x <0 (39)

Actually, for M = 1 no perturbations can arrive at stations x < 0.




Eq. (37) shows that the factor exp (-iwg(x,y)) in Eq. (22)
anticipates the waviness of the flow field. The function h(x,y),
gives a modulation of the amplitude and since it may be complex
also some modification of phase. The phase modulatioﬁ is expected
to be small. The evaluation of H1 is best carried out on the basis

of Eq. (26) rather than Eq. (34). One obtains for the coefficient

of Hl

o e g T e o B A i 1

(1/2)U1-M1) g,y + g, 1 = (1/2)r '

where according to the definition in Eq. (17)

r = [x2 + (1—M2)y2]1/2.

Using the second of Egs. (35) and Eg. (29), one obtains from
Eq. (26), after multiplication by r Hl-l

(Hl,x/Hl)x + (Hl,y/Hl)y + (1/2) = 0.
This equation is solved by
H = £(x/y) [x2+y2171/4, (40)

Using Eq. (22) and Eqg. (36) one thus obtains the following
approximation for ¢

-1/4

o = £(x/y) (x°+y®) " 4axp (~iwg(x,y)

(41)

“1/4xplin(1-M%) "L (Mx - (x2+(1-M%)y2) 172y, )

= f(X/y)(x2+y2)

This is the first term in the asymptotic expressions for exact
solutions shown in Eq. (21). Comparing Egs. (41) and (21) one
obtains

£0/y)=1x% + y2)/ (x2+(1-MP) y?) /4 ( S28 (m0) (42)

where 0 is defined in Eqg. (18).

14




The asymptotic expression, Eq. (21), arises from the
development of the Hankel functions. The argument of the Hankel
functions tends to infinity even as M tends to 1 for finite x and
y. This justifies the high frequency approximation. The defini-
tion for 6 in Eq. (18) shows that for M+l, y finite and positive
and x>0, 6 tends to zero, and for M+l, y finite and x < 0, @
tends to n. For M close to 1 the function f(x/y) therefore changes
very rapidly in the vicinity of x = 0. This corresponds to the
accumulation of perturbations shown in Fig. 2. Notice also that
the function f(x/y) has a strong peak at x = 0 for M+l and assumes
the value (1-M2)~174,

In preparation for a generalization, we rewrite these equations
in terms of the direction normal to the wave fronts (given by
curves g = const) and in terms of the radius of curvature. It
was shown above, that lines g = const are circles which float
downstream with the dimensionless velocity M; at time t the circles
have the dimensionaless radius R = t. Let a be the angle of the
normal to the wave front with the x-axis at some point of the wave
front (Fig. 3) and let B be the angle of the ray AB with the
x-axis. Then one has .

x = R(M + cosa)
Y = R sina
R1 = (x2 + yz)l/2 = R(M%+2Mcosa +1)'1/2
(43)
tg 8 = y/x = sin a/(M+cosa) ,
sinf = sina (M2+2M cosa + 1.)"1/2 -ﬁ
cosB =(M + cosa)(M2 + 2M cosa + 1)-1/2.
In Egqs. (17) and (18) the quantities r and 6 have been defined.
One obtains
r = R(1+M cosa) (44)

tg 6 = (i-M%)1/2%g g




The expression g, Eq. (36), reducés to
g =R
With a modified function £, one then obtains from Eq. (41)
o = f(a)R-l/zexp(-in) (45)

The direction of the characteristic is given by a line ¢ = const,
or

Dx/Dy = sina/(M + cosa) (46)

To visualize what happens in a more general case, in which
the initial line g = const is not a circle but a general closed
curve, one uses the idea that lines g = const at a later time
arise from an initial line in the same manner as in air at rest,
except that they float downstream with the dimensionless
velocity M. We already found that the characteristics are straight
lines in any case. For a point on a line g = const with normal
given by a, the slope of the characteristic is then given by
Eq. (46).

The above description suggests that, along a specified
characteristic, ¢ is determined by the curvature of the
initial line g = const in the same manner as for perturbations
emanating from a circle. This motivates the following representa-
tion; let the inital curve g const be given by

xo(s)
= Y, (s)

where s is the arc length

(dxo/ds)z + (dyo/ds)z =1,




D

Then the angle of the normal to this curve, denoted again by a,
is given by

cosa = dyo/ds

sina = -(dxo/ds)

one has
9, = |grad g|cosa
(49)
g, = |grad g|sina.
By substituting the above equations into Eg. (24) one obtains
grad g| = 1/(1+M cosa)
and therefore
g, = cosa / (1+M cosa)
(50)

gy = gina /(1+M cosa)

The direction of the characteristics is given by Eq. (29). One has
for the denominator

(l-Mz)gx + M = (M+ cosa)/(1l+M cosa)
Therefore
Dy/Dx = gino/(M+ cosa) (51)

With a parameter p one then cbtains the following parametric
representation for the characteristic

17




x=x, + (p-po)(M + cosa)
(52)
Y =y, t (pP-p,)sina
We have denoted the arc length of a characteristic by df&. One
obtains from the last equation
d2/dp = (M2 + 2M cosa + 1)1/2, (53)
Furthermore,
dg/dp = g,(dx/dp) + g, (dy/dp) = 1. (54)

It is shown in Appendix II, that p can be identified with
the radius of curvature of the line g = const, to be denoted by R.
The function Hy is determined from Eq. (26). Using Eq. (50) and
Eq. (34) one obtains
(55)

(d(logH,)/a8) + (1/2)[(1-M2)gxx+gyy](l+M cosa) (1+2M cosa + M%) "1/2-g

In Appendix II it is shown that this leads to

d(log Hi)/dp'+ (1/2) (1/p) =0 (56)
Hence
= -1/2 {
H, = fl(s) p
For circular waves p is given by . 1

p=R= Rl/(l + 2M cosa + Mz)l/2 (57) .

in other words, p is proportional to R, with a factor of
proportionality which is different for different characteristics.
It is also shown that
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H, = £,(s)p" /2.

In the derivation of the expression for H2 in Appendix II
the assumption has been made that p is large (while Py is not too
large) . The last formulae therefore gives a good approximation
only at a sufficient distance from the initial curve. The
parameter s characterizes the individual characteristics.

We shall use Eq. (22) in the asymptotic form of Eg. (41),
but somewhat extended
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6 = [£,()R; 72 + £,(s)R, "3 P exp (~iug) (58)

With Eq. (57) and modified functions f1 and f2 one can also write

-3/2

¢ = [f1<s)p'1/2 + £,(8)p7% ?lexp(-iug) . (58")
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SECTION IV
ASYMPTOTIC FAR FIELD CONDITIONS

Asymptotic far field conditions are obtained from Eq. (58') in
the following manner. One forms the derivative in the direction
of the characteristic. Then no derivatives of the unknown
functions fl(s) and fz(s) will appear. Using Eq. (54) one obtains

-5/2_. 3/2

Do/DR, =(Dp/D) (£, (8) (~(1/2 0™ 2iup™2) 4£,(s) (- (3/2)p ) Jexp(-iug) (59) -

The expression ¢ of Eq. (58') then satisfies

(35 + i 1(57 + PRz + iw ¢ = 0. (60)

D
5z * 2p

25

The second operator (which is applied first) makes the term
£ (s)p -1/2 (-iwp) zero and changes the expression f (s)p =3/2 exp(iwg)
into - dp/ds £, (s)~>/?

(which is applied afterwards) causes this term to vanish. For
-3/2

exp(-iwg) . The first part of the operator

large values of p (or of w) one may disregard the term p and

then one obtains. the simple far field condition

+ BB (= + iw))¢ =

Slo

L] A

o]

Also, the term 1/(2p) may be omitted if w is su*¥:iciently large

D

[SE + (g% iw)l¢ = 0. (62)

The last formulation corresponds to the original formulation of
Sommerfeld. Egs. (61) and (62) are different forms of the far
field conditions of Bayliss, Gunzberger, and Turkel (Ref. 6,7).

The expression Eq. (60) written in detail gives

2
D™ D 3 D Dp, 2 3 3. 2
___%_ + _—% (5 + Ziw)s%— + (5%) [;;2 + 5 iw-w e =0. (63)

D D




The occurrence of a second derivative in the boundary conditions

for a second order differential equation is unusual. 1In the

present problem second derivatives cannot be avoided, but they

can be transformed by means of the differential equation into second
derivatives along the contour of the computed region. If one uses
higher order boundary conditions of the Bayliss, Gunzberger, Turkel
type, then even higher derivatives, first in the direction of the
characteristics and, after a transformation, along the contour of the
computed region are encountered. Exact boundary conditions for

the problem have been derived in Ref. 5; they are of a global nature
(that is, all boundary points interact with each other). The
occurrence of higher derivatives means that the solution in some
vicinity of the point under consideration enters the formulation.

In this manner the underlying global character of such far field

conditions makes itself felt.

Some further details are added. Let B be the angle of the
direction of the characteristic with the x axis. Then, according

| to Eq. (43),
Y sin 8 = sin a (M%+ 2M cos a+ l)']'/2
(64)
cos 8 = (M + cosa) (M2 + 2M cos a+ 1) "1/2,

(By our definition a is the angle of the normal to the line g =
const with the x-axis.) It may be desirable to express various
quantities in the terms of the angle 8. We introduce an auxiliary

angled$ (Fig. 3).
Then

sin 8= M sin 8
a = (B + §) (65)

(M2 + 2M cos o+t 1)1‘/2 = M cos B + cos §
1l

DR/DS = Dp/Di = (M cos B+ cos §)
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Now we express the derivative d2¢/d22. We introduce a local

system of coordinates £, n, where { has the direction of the
characteristic, n the direction of the tangent to the boundary
of the computed region. Then d/d% = d/d&. Let, at the point
under consideration, Yy be the angle of the n axis with the x
axis (Figure 4). ‘

Then
XxX-x, = E cos B + n cos v
Y- Y, = &sin g + n siny

and

6. = 6. cos®g + ¢__ sin 28 + ¢__ sin’g

X3 XX Xy YY

6 = o cos’y + ¢__ sin 2y + ¢__ sin’y (66)

nn XX Xy vy

= . + . .
¢£n ¢xx cos Bcos vy + ¢xy sin(B Y)+¢yys:.n B sin Y.

In addition, one has the differential equation for ¢ (Eq.(9))

2iuM - wle = (l-M2)¢xx + gy

Eliminati ng ¢ ¢ and ¢ from these four equati ons one
. xy ’ vy ’ Xy
obtains

2

[I'MZSi“ZY]*¢nn‘1‘M sin28)-¢5nIZCOS(B-Y)+M2(COS(B+Y)-COS(B-Y))]

(67)

Yeg

- (2i0Mp - w2¢)sin(8-y) = 0.

This equation is verified in Appendix III. It allows one to
. express d2¢/d£2 = ¢g£ in terms of derivatives of ¢ and ¢E in the

n direction (that is in the direction of the contour of the computed
part of the flow field).
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In practice, one will choose the boundary of the computed
part of the flow field so that the n direction coincides with
either the x or the y direction. Then considerable simplification
will occur.

These results can be applied in two different forms. 1In a
procedure, which corresponds to that of Bayliss, et al., one
assumes that all waves originate at the same origin (somewhere in
the middle of the profile). The direction of the characteristics
is then given by rays through the origin. The simplest form is
obtained from Eq. (58)

¢ = [fl(s)Rl‘l/2 + fz(s)Rl-3/2bxp64wg).
where
R, = (x* + y3) 12 (68)
and according to Eq. (36)
g = (1M Lemx + (22 + 1-uB)yDH 12, (69)

According to the derivation of Eq. (36) one has
Dg/Di= gx(Dx/Dé) + gy(Dy/Dz) = gx(x/Rl) + gy(y/Rl)
- Dg/D&= g/RI
According to Eq. (54), one has dg/dp = 1. Therefore, from Eq. (62)
| (D¢/DL) + iw(g/Rl)¢ =0 (70)
and from Eq. (61)

(D¢/DL) + [iw(g/R,) + (1/(2Ry))1¢ = 0
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The counterpart to Eq. (63) is
(71)

(024/D22) +[(3/R)) +(2i0g/R,) ] (D/DL) +1 (3/4R3) +(3iwg/R}) - (gu/R)) 214=0.

A second form of the far field condition arises, if one
determines the likely origin for the waves which arrive at some
point of the contour of the computed flow field from the function
¢ and its derivatives along the contour. One proceeds in the
following manner. The analysis is based on the assumption that
the function h changes only slowly. In principle, h and ¢ are
allowed to be complex. Then one has

arg(¢) = arg(h) - wg
and

w-l[arg(h) - arg(¢)]

g9

locally arg(h) can be replaced by a constant.

From this expression one obtains Iy and gy along the contour
of the computed region by numerical differentiation, and hence
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cos o gx/(gi + g;)

(72)

sin a gy/(gi + 93)1/2

As a check (which may lead to small corrections) one has from the

first of Egs. (50),

Igrad gl = (1 + M COSG)-l

The fact that g = p is identical with the radius of curvature of
a line g = const, is hard to apply in a practical computation,
because one needs interpolations to identify these lines.
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In Appendix II the following formulae have been derived

R RI(1 + Mcos a)™3 sine |
1
g.. = R‘l(l + Mcos a)-3(M + cos a)2
YY
-1 -3 .
gxy =R (1 + Mcosa) “(-sin a(M + cos a)).

. These equations can be rewritten as

9.,/ |9rad g| = R-l(l + M cos a)-zsinza :
i

R | -2 2 ]

gyy/|grad gl =R (1 + Mcos g) "(M + cos qa) i
f

-1 -2, . ‘

gxy/lgrad gl =R (L + M cos a) “(-sin a(M + cos a)). |

Assume that the boundary of the computed region is given by a

line x = const. Along this line one can determine gyy and gxy
(if one allows the use of first derivative in the direction of the

normal to this line. Thus, one obtains two expressions for R
(which in some way must be reconciled with each other). If one
uses only derivatives along the boundary, then one has only g

Yy
at one's disposal.

Equivalent to this formulation is the following approach.
One determines along the boundary line the value of ¢ from
_ : Eq. (72). Assume again that the boundary is a line x = const.
l One can then form j3¢/3y numerically. (Since a has a direct
t geometrical meaning, one will be able to judge whether o is
. g sufficiently accurate and smooth.) The radius of curvature is
j then obtained in the following manner. 1If,as in Egs. (47) etc.,
B ds is the line element along the contour g = const, then one has

-1_ - _
R~ = da/ds = .a,8ina+ &y cos a
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Furthermore since a = const along.a characteristic
ax(M + cos a) + ay sin a = 0. _

Hence
rRL = ay(l + M cos a) (M +cos a)-l (74)

or .
R_l = -a_(1 + M cos a) (sin a)~1

In these formulae (R’l) is obtained by numerical differentia-
tion along the contour of the computed region. Equations (73) and
(74) are basically the same; this is shown in the following manner

6 = arctg (gy/gx)
9.,.,9, - 9..9 g cos a- g sin o
%y = yyzx gy L - 2y =(g yS0Se=9 sina) (1+Mcosa)
(g +9,) |grad g Y Xy

Then from Eq. (74)

1

R—ls(gyycos a-g sin a) (1 + M cos a)z(M + cos a)

Xy

Substituting here gyy and gxy from Eq. (73) one obtains indeed an
identity.

In the last equation one can eliminate the mixed derivative.
From the fact that along a characteristic Iy and gy are const,
one obtains

9,5 SO8 B + gxy sin g =0 s

s s o

gxy°°° g + gyy sin g =20

hence, with Eq. (64)
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g.. = -gYY sin a(M + cos a)-l

and

= g sinza(M + cos a)-z.

Ixx vy

We make the following observation. The first form of the
far field conditions, given by Eqs. (62) through (65), can be
derived from the asymptotic development of the Hankel functions,
Eq. (19). In practice, one uses only one or two terms of the
development with respecﬁ to z-l. The representation for fixed rw

deteriorates with m (whose meaning can be recognized from Eqg. (16).
The asymptotic far field conditions (in either form) therefore are
applicable only at the outer contour where the amplitude of ¢

does not change too rapidly and if rw is not too small.

The far field condition in the original form of Bayliss, et. al,
require that one first carry out the transformation (Eq. (12)); in
the present formulation one uses directly the original form
(Eq. (9)) of the partial differential equation. Whether it is
worthwhile to carry out the transformation Eq. (12), .also in the
region close to the profile where the differential equation is
more complicated, depends upon practical considerations. The
two formulations are equivalent.

In one formulation of the exact far field conditions (which
have global character) (Ref. 1) one replaces the effect of periodic
perturbations in the computed field by unknown periodic perturba-~
tions at the contour of the computed flow field. The local
intensity of these perturbations is one of the unknowns of the
problems. The field at a fixed point of the outer contour of
the computed flow field appears as a superposition. of
perturbations at all other points of the contour. This isg, of
course, a much more general approach than the asymptotic form,
which requires that the perturbations behave as if they came from
one point. The potential at some point of the contour is then
expressed by an integral which contains contributions of the




entire contour. The normal derivative is expressed by such an
integral but in addition, it contains a term which depends upon

the local strength of the perturbations. In this formulation the
normal derivative (rather than the derivative in the direction of
the characteristics) appears.

For the purpose of determining far field conditions, the
idea of a nonreflecting wall has been put forth. If one uses a
local formulation of the boundary conditions, a wall can be made
nonreflecting only for waves of a selected direction. The
condition of Bayliss et al., gives a wall which is nonreflecting
for waves that come from the origin. In the author's opinion
this, rather than the direction normal to the wall, is the
appropriate choice. It is worth noting that in this formulation

the direction of the wall enters only if one uses approximations
of a higher order.
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, SECTION V
GENERAL UNSTEADY PERTURBATIONS IN A SUBSONIC PARALLEL FLOW

Equations (60) through (62) can serve to derive asymptotic
far field conditions for more general unsteady perturbations in a
subsonic flow, if the changes with time are rather rapid. This
generalization is desirable for the following reason.

Upstream of the profile where the waves propogate againsts
the oncoming flow, they move fairly slowly. Under these circum-
stances the dependence of the speed of motion and of the local
sound speed upon the amplitudes of the waves become important.
Portions of the waves where the pressure is higher travel faster
than the average. This leads to a distortion. Even if at the point
where they are generated (say at the profile) the waves are
sinusoidal in time, they lose this property as they travel over
some distance (although they remain periodic). This effect is not
taken into account in a linearized approach where the unsteady
perturbations are considered as small; there the speed of wave
propagation is solely determined by the properties of the under-
lying steady field. The wave amplitudes for which the linearized
approach is sufficient become smaller as the Mach number apprdaches
one. This state of affairs is clearly seen, if one studies the
propagation of one-dimensional waves in a tube. Accordingly, it
may be desirable to take nonlinear effects into account within the
computed part of the flow field. It can be assumed that the far
field is still governed by the linearized equation for unsteady
flows, only the assumption that the waves are sinusoidal in time
will be abandoned.

Asymptotic far field conditions for such flows are obtained
in the following manner. The expression Eq. (58') combined with
Eq. (6) gives

b= (£,(8)p° Y2 + £,(8)p73/?) exp (i (t-p) (75)

where s denotes a parameter which is constant along a characteristic
and p identifies the station along the individual characteristics;
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p has been identified with the local radius of curvature R of

the lines g = const. At the moment, it is assumed that one

knows the angle a which gives the direction of the normal to the

wave fronts and therefore also the angle B8 which gives the direction
of the characteristics (Eq. (64)).(Notice that Eg. (64) does not
contain the frequency w). We denoted by df% the line element

along a characteristic. We have found in Egs. (54) and (65) .

dp/ds dR/d% = (M% + 2M cos a + 1) ~1/? ' .

1 ~ (76)

(M cos B + cos Y)~

For simplicity, we 6mit temporarily in Eq. (75) the con-
tributions of f2. Differentiating Eq. (75) with respect to t and
d% one obtains

39/3t 172

flimp- exp (iw(t-p)) (77)

26/32 = £, (ap/3%) [-iwp /2 - (1/2)p73/?exp(iv(t-p))
Combining the equations with Eq. (75) and writing R instead of p,
one obtains the following equation which is free of w

(3¢/3%) + (3R/38) [(34/3t) + (2R) "1o] = 0 (78)

Equation (78) is obtained directly from Eq. (61), if one remembers
that each factor iw arises by a differentiation with respect to t.
This observation allows one to derive far field conditions which

take higher order terms cf the asymptotic development into account

immediately from Eq. (60) )
3 3R , 5 3 ) 3R, 1 3 )
[31 + =7 (fﬁ + 5{)][3; + —gf(iﬁ + 3¢)1¢ =0

or in more detail from Eq. (63)
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325/322 + (3R/32) [(3/R) (38/32) + 2 (3%5/3%0¢t)]

(79)

+ (3R/30) 21 (3/4RH)§ + (3/R) (3§/3t) + 3%5/3t%] = 0

Again Eq. (67) can be used to express 826/812, which in the
notation used there is identical with 925/352, in terms of
derivatives along the boundary of the computed part of the flow
field.

So far, the angle a which gives the direction of the normal
to the lines g = const has been assumed to be known. Here
assumptions analogous to those of the preceding section must be
made. If one assumes that the origin of the waves is known (some
point in the vicinity of the profile, then one obtains the necessary
formulae by replacing in Egs. (70), (71), and (72), iw by 3/3t.
One obtains

(3§/32) + (g/R,) (3§/3t)
(33/3%) + (g/Ry) (3§/0t) + (1/2R)§ = O
8%/38%)+ (3/R)) (38/30) + 2(g/R)) (3%F/320E) (80)

0

+(3/4R§)$ + (3g/R§) 3§/t + (g/Rl)z(th]S/atz) =0

It is possible to derive in this general case,at least
approximately, the normal to the wave fronts. 1In the case that one
has sinusoidal perturbations, we assumed that along a line g =
const the amplitude of ¢ and also its phase changes only slowly.
Under the present circumstances this amounts to the assumption
that

érad $ ~ grad q. ]

One then obtains

a = arctg (¢y/¢x) (81)
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This defines a except if simultaneocusly ¢y = ¢x = 0. Excluding
the vicinity of such points, one obtains the value of o and
therefore also the local values of p in the same manner as before.

pTWITE

: One can then apply directly Equations (74) viz

o]
I

= ay(l + M cos a) (M + cos a)-l (82) .

- a (1l + M cos a) (sin @)L,

w
n

Alternatively, one can use one of the Egs. (73) to determine
R. The factor of proportionality between g and ¢ cancels under
the assumption made here; one can replace, for instance,

gxx/lgrad g| by ¢xx/[grad o] .
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SECTION VI
CHARACTERISTIC SURFACES IN THE x,y,t SPACE

The derivation of far field conditions for unsteady flows
shown in the preceding section is somewhat indirect. The
following discussion is an attempt to throw light from a different
direction on these results. As far as the practical aspects are
concerned, it adds nothing, but it gives the connection of the
present approach with other mathematical concepts.

One observes that the surfaces of the x,y,t space given !
by |

t = g(x,y) + const (83)

are characteristic surfaces for the partial differential equation
(Eq.(5)). The derivation is found in Appendix IV. If along a

noncharacteristic surface the values of ¢x' ., and ¢, are given,

then one can determine by means of the diffeantial equation the
second (and higher) derivatives of ¢, in terms of derivatives
formed within the surface. 1In contrast, these derivatives are not
uniquely determined for a characteristic surface. As a consequence
it is possible that along a characteristic surface, discontinuities
of the second and higher derivatives of ¢ will occur. At a fixed
point (x,y,t) the orientations of these surfaces are determined by
the differential equations for g, namely

2

2, 2 =
(1-M )gx + 2ng + gy =1 (84)

We introduce coordinates £,n within one of the characteristic
surfaces, £ and n are identical with the x and y coordinates of
a point (x,y,t) of the surface. Let
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Then one has, (since t = g(x,y))

UE = ¢xx * ¢xtgx

(86)

<
"

+
n = byy T Hyedy

=
]

g Oxt ¥ PetIx

In order for second derivatives of ¢ to exist, the values of U, V,
and W within the surface must be connected by the compatibility
condition ' '

+ gW =0, (87)

(1-m2 - _m2
(1-M7)U Vn + (2M + (1-M )gx)WE v

g

This derivation is found in Appendix IV.

A plot of lines g = const in the x,y-plane can be interpreted
in two different manners. If one considers t in Eq. (83) as fixed,
then these curves give the intersection of characteristic surfaces
in the x,y,t space with a plane of constant t. If one considers the
constant in Eq. (83) as fixed, then the curves represent a contour
map of one characteristic surface where t corresponds to the
altitude.

Assume now that for a given time a curve g(x,y) = ¢q is
given. To construct the characteristic surface one must find the
curves g = const for other values of t. For this purpose one can
use the results found above. Consider points (x,y) reached from a
certain point (xo,yo) of the starting curve g(x,y) = Cq by traveling

along straight lines given by

(x-xo) (p-poXM + cos q)

(y-yo) = (p-po)sin o
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where a is the angle of the normal to the curve with the x-axis.
These are the directions given by Eqg. (52).

Since, according to Eq. (54) ;
dg/dp = 1 (89)

one obtains a point of the curve g = clvby setting P-P, = C,7C,.
The same point is reached, if one proceeds from the original

point in the x-direction by a distance M(cl-co) and then in the
direction of the normal by the distance €1=Cy- This is in i
accordance with the description, given in Section II, that a wave
front spreads as in still air except that the perturbation floats
downstream with the (dimensionless) velocity M. F

For a further discussion, we consider all possible values of }
9. and qy (compatible with Eq. {(84)), they are obtained by letting
a vary in Eq. (88) from 0 to 2m. The locus of the points g = c

1
which are reached from point X 0¥y is then given by

X = X, + (¢, - co)(M + cosa)

1l
Yy =y, %+ (cl - co)51n O

This is a circle with center X, + M(c1 - co) and radius (cl - co).
In the x,y,t space, these circles are the contour lines of an
oblique cone with tip at point (xo’yo) and a generator given by the

above circle. At the point of the pertinent characteristic

»
]

xo + (cl - co)(M + cosa)

and Yy =y, + (cl - co)sin a

the circle drawn for a fixed point of the line g = ¢, and the line

g =c have the same tangent; consequently, the conelmentioned

above is tangent to the characteristic surface in the x,y,t space.

The lines of tangency are called bi-characteristics. The characteristics
in the x,y-plane with which our considerations started are the

projections into the x,y-plane of the bi-characteristics in the

o i o il )
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X,Y,t plane. The line g = cl can bhe obtained by letting the initial

line float in the x-direction by the distance M(_cl - co), by drawing

circles with radius ¢, - q and centers at the curve so shifted, and
finally, by determining the envelope of these circles. According to

the description given here, each qharacteristic surface is determined
by the initial line g = const. If two such lines are tangent to

each other at some point (xo,yo), then they will be tangent to each

other along the bi-characteristic that starts at this point.

It is natural to introduce in the compatibility condition
(Eq. (87)) instead of £ and n, the derivatives in the direction
of the bi-characteristics and of the curve g = oo We denote by
51' the projection of the bi-characteristic into the x,y-plane,
and by U the coordinate in the direction of the tangent to the
line g = const. The projection of the bi-characteristic into the
X,y-plane is identical with the characteristic lines considered
above. The angle of El with the £-axis (which coincides with the
x-axis) is, therefore, given by the angle B, determined by
Eq. (43). The angle of the normal to the contour is denoted as

before by a. One then has

g = Elcos B - nl sin o

(91)
n = EISLn g + n, cos a.
Hence
3 - 9 i 0 g9
EEI = CcoSs BaE + sin B M
(92)
3 - ) 9 .
33; sin WSE' + cos a‘?ﬁ
and
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9 ] . 9
T (COSG§EI - SLnBEHI)/cos (B=a)

- . , ) ] (93)
n (s;naggz + °°SB§ﬁI)/°°s (B-a).

This and the expression for Iy and gy from Eq. (50) are now
substituted into Eq. (87); one obtains

-(1-M2) cos a(3U/3E;) - sina(dV/3g;) + (1 + M cosa) (3W/E,)

+ (M242M cosa + 1)-1/2[sina(l—M2)(aU/anl)-(M + cosa) (3V/an,)

-M sina(BW/anl)] =0 (94)

If one changes a by m then one obtains a second bi-
characteristic. Let 52 be its direction. The corresponding value

of B (denoted by 82) is then given by

cos B, = (M - cos a) (1L - 2M cos a + Mz)-l/2
(95)
sin By = = sina(l - 2Mcos a+ Mz)-l/z.
The direction dn1 is changed into -dnl. One then obtains
(1-4%) cosa (3U/3E,) + sina(3V/3E,) + (1-Mcos a) (3W/3E,)
(96)

+ (M2-2Mcos a+t 1)-1/2[sina(1-M2)(8U/8n1)+ (M-cos a)(BV/anl)

- M sina(3W/an1] = 0,

In preparation for a discussion of far field conditions, we
now discuss the following configuration. We consider a characteristic
surface t = g(x,y)+co (with S fixed), in the vicinity of a point
X,y. For time t > g(x,y)+ o let § be identical to zero. At the
characteristic surface as everywhere else, § is continuous, but its
first derivative changes very rapidly as far as this is compatible
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with continuous 5. For t > g(x,y) + c, + €, the first derivatives
reach some fixed (or nearly fixed) value. Ultimately, we allow £

to tend to zero, then a jump of some first derivative propagates
along the characteristic surface. 1In this situation the derivatives
of U, V, and W (¢x, ¢y' and ¢t) with respect to n (that is within
the characteristic surface), remain bounded. The derivatives along
the bicharacteristic which belongs to the same normal to the
characteristic surface and which passes through this surface

becomes very large. We integrate Eqg. (96) with respect to Eor

the path of integration goes from the undisturbed region through

the jump region to a point shortly beyond it. Let [U], [V], and

[W] denote the jumps of these quantities; they are actually identical
with U, Vv, and W at the point beyond the jump region. Let the
expression containing derivatives with respect to n temporarily

be denoted by Qz. Q2 remains bounded even in the jump region.

One then obtains

(l-Mz)cosa[U] + sing[V] + (1-M cosaq) [W] + szdgz = 0. (97)

In the limit as ¢ ~ 0, the length of g, over which the ihtegration
is extended becomes zero. One thus obtains

(l-Mz)cosacpx + sincx¢y + (1-M cosa)¢t = 0. (98)

Because of the continuity of ¢, and since ¢ = 0, before the jump
the gradient of ¢ is normal to the curve g(x,y) = t-co, for any
fixed time. One remembers that a gives the normal to lines g(x,y)=
const. Therefore,

o, = |grade| cos a
(99)
¢y = |grad¢| sin a.
Thus, one obtains from Eq. (98)
(1 + Mcosa) |gradg| + ¢, = 0. (100)
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We introduce the direction of the characteristics in the x,y-
plane; we have found that such characteristics are the projection
of the bicharacteristics (of the characteristic surface) into the
X,y plane. The angle of the characteristics with the x-axis has
been denoted by 8; the line element of the characteristic by dg.

Since ¢ = const along the line g{(x,y) = t—co, one has
d¢ _
H% = |grad¢| cos(B-a) (101)

and with Eq. (64)

$ = |gradg| (144 cos a) (M2+2M cos o+ 1) 172 (102)
Equation (100) can then be written in the form
(36/32) + . (M2 + 2M cosa + 1) "Y/2(34/3t) = 0 (103)

This is Eq. (78) combined with Eg. (77) but with the term (ZR-l

omitted. For a jump of [g;ad¢i along a characteristic surface

)

the last formula is exact.

In general, the expression fRd&;2 which vanishes for a jump
will play a role. The line along which one integrates intersects
the characteristic surfaces t = g(x,y)+c. In an oscillatory flow
these are surfaces of constant phase. But for w large the phase
changes rapidly as one passes from one such surface to the next
one (this happens if one moves in the direction Ez). The derivatives
with respect to n, (which are derivatives along the different line
g = const) remain bounded. One thus obtains an integral with a
strongly oscillatory integrand; as w increases the oscillations

become narrower. Hence it follows, that in a low order approxima-
1

roen

tion in w —, the integral can be disregarded. It is perhaps
possible to estimate this integral (using integration by parts
and the second mean value theorem), but actually the derivation
of higher order formulae in the manner shown in Section V is

simpler.
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The last discussions have shown that the far field conditions
can be interpreted as an expression for the compatibility condition
for the bi-characteristics of a special characteristic surface,
defined by the postulate, that for a fixed t it intersects the
characteristic surface of constant phase t = g(x,y) + Cor along
the curve g(x,y) = t - Co* This special choice is necessary in
order to ensure that the factor R in the integral J'RdE2 remains

bounded.

In Eq. (103) the radius of curvature of the line g(x,y) = const
does not appear. The results agree with Eq. (78) only for R -,
In other words, one uses a relation for plane waves. The dependence
on the parameter p (which is identical with the radius of curvature
R) and which would be needed in order to derive higher order
approximations can be obtained on the basis of the last formula,
if one uses in addition the compatibility conditions for the
surface t = g(x,y) + Coe

First we express the fact that at this surface ¢ = const.
Since a gives the direction of normal to the line g(x,y) in the
X,y-plane and since ¢ = const, one has:

x | grade¢ | cosa
(104)
| grad¢ |sina

¢

*y

where |grad¢| refers to the function ¢(x,y,t) for constant t.
Along the intersection of a plane y = const with t = g(x,y) + ¢

o
one has
dt = gxdx.
Therefore, since ¢ = 0
ax _ -1
¢t + ¢x 3t ¢t + Iy ¢x' (105)
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Hence,

_ _.~1
¢ = -9, |grad¢|cos o

and with Eq. (50)

[}

¢, = —lgrad¢| (1+M cosa) (106)

Our next task is the determination of the derivatives with respect
to ny in Eq. (94). The expression to be evaluated is

Q = [sina(l-Mz)(aU/anl) - (M+cosa) (3V/3n,) - Msina(3W/3n )]

M2 - 2Mcosa + 11172 (107)
with
U=, = |grad¢|cos a
VvV = ¢y = |grad¢|sin o
W=¢ = |grade| (1+4M cosa).

The derivatives of U, V, and W in the expression Ql' therefore, are
expressed in terms of derivatives of |grad¢| and of o with respect
to Ny The coefficient of

d
- |grads|
1
turns out to be zero, for
sina(l-Mz)cosa - (M + cosa)sina + Msina(l+Mcosa) = 0.
Therefore,

d 1
Q) = -lgrads|gy— (1+Mcosa) (M2 + 2Mcosa + 1)172,
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In a similar manner, one obtains for the 51 derivatives in Eqg. (94)

-(l—Mz)cosa(BU/Bél) - sina(3V/38,) + (l+Mcosa) (3W/3E,)
—2[3|grad¢|/3£l](1+Mcosa)

No terms aa/agl occur. This is in keeping with Eg. (32), which

shows that along a characteristic (here bi-characteristic) Iy gy
and consequently also a are constant. One also observes that . 3

da/dnl = R-l

(where as before R is the radius of curvature of a line g = const).
One thus obtains from the compatibility condition Eg. (94)

-1/2

-2(d|grads|/dg)-R L grade| 4 + 2mcosa + 1) =0

In Appendix II we have identified R with a parameter p,

the line element d&l corresponds to df. Using Egq. (53) one then
obtains

d(log|gradé|)/dp .+ (1/2p) = O.

Hence,
|gradé|= const p-l/2 = const R™1/2, (108)
From Eqs. (104) and (105)
¢, = const R 208 a
¢, = const R"Y2gin o )
- (109
¢, = const R 1/2(1 + Mcosa)
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The constant in these three expressions is the same but may
vary from characteristic to characteristic. According to Egq. (77)

dr/4s = (Mz + 2Mcosa + l)-l/z.

Note that these expressions satisfy the Sommerfeldt radiation
. condition (Eq. (78)) with the term (2R-l) omitted. This can be
shown with the aid of Egs. (102) and (77).

Lot The conditions (103) arise from bi-characteristics which
cross the characteristic surface along which a jump of lgr&d¢{
propagates. Here the contribution of 02 vanishes in the limit

of a sudden change of |grad¢|. In this eguation, no contributions
; of R appears. The expressions Eq. (108) and (109) are derived
from the relations for bi-characteristics lying directly above

the characteristic surface at which the jump occurs. Here the
term Ql’ the counterpart of Qz, is not negligible in comparison
to other terms of the compatibility condition. This fact is

responsible for the dependence upon the radius of curvature R
of the line g(x,y) = const.




SECTION VII
THREE-DIMENSIONAL PROBLEM

The three-dimensional problem has actually more practical
significance than the two-dimensional problem. Most of the
necessary formulae can be fairly easily derived by using the
analogy with the two-dimensional problem. Eq. (22) is now replaced
by '

¢(x,y,2) = h(x,yz) exp(-iwg(x,y,2)). (110)

Equation (24) is replaced by

2

2 =
¥ + g, + 2Mg, 1 =0. (111)

2, 2
(1-M )gx + g
Let D denote differentiation in the direction of a characteristic, and
| let D% be the line element of a characteristic. With unit vectors
Ex, gy, and 32 respectively in the x,y, and z directions, one
obtains
& _(Dx/DL) + Ey(ny/nz) +&_(pz/D1) =
(112)
_ > _2 -+ ->
= const [ex((l M )gx+M) +eygy + ezng

Then one finds, that along the characteristics

Dg,/D% = Dg /DL = Dg,/D% = 0.

Therefore, gx,gy, and g, are constants. The characteristics are
straight lines. Let (n,x), (n,y), and (n,z) be, respectively, the
angles of the normal to the surface g = const with the x, y, and 2z
axes. One has, of course,

cosz(n,x) + cosz(n,y) + cosz(n,z) =1




Equation (50) suggests that

lgrad g| = (1 + Mcos(n,x)) !
9, = cos(n,x) (1 + Mcos(n,x))-l (114)
gf»= cos(n,y) (1 + Mcos(n,X))-1

1

g, = cos(n,z) (1 + Mcos(n,x)) .

On readily verifies that this is the solution of Eq. (1l1l1).
It depends upon the parameters cos(n,x), cos(n,v), and cos(n,z).
Because of Eq. (113), there are actually only two free parameters.
One also verifies that Eq. (112) is satisfied if one sets

»
]

X, + P (cos(n,x) + M)

<
]

Yo + P cos(n,y) (115)

z =z + p cos(n,z)

where p is a parameter whose meaning so far is not specified (in
the two-dimensional case, p has been identified with the radius of
curvature of the curve g = const at the point under consideration;
in the three-dimensional case, one does not have a single radius of

curvature). One then has
De/Dp = (M2 + 2Mcos(n,x) + 1)1/2 (116)
Dg/Dp = gx(cos(n,x) + M) + gycos(n,y) + gzcos(n,z) =1 (117)
and hence
(Dg/Dg) = (Dg/Dp) (Dp/DL) = (M? + 2Mcos(n,x) + 1)"1/2, (118)

If all the characteristics emanate from the origin, then
one has
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x =p (cos(n,x) + M)
~y = p cos(n,y) (119)
z = p cos(n,z);

g=9x+gy+g2z=p,. (120)

Yy
A surface g = const is a sphere with radius p and center M p, for
one has as a consequence of Egs. (114) and (119)

2

2 4 22 = p2. (121)

(x - Mp)2 +y

In analogy with Eq. (36), we set,tentatively,for this case

g(x,y,2) =(1-4)) Tmx + (2 + (- (¢ + 2212 (122)
Then

Iy = (1-M2)_l{-M + x(x2 + (1~M2)(y2 + 22))-1/2]}

g, = vIx* + (1-4%) (y* + 22)1~1/2

g, = z[x2 + (1-M2)(y2 + 22)]‘1/2.

Then one can verify that Egqg. (111l) is satisfied. Next one
must determine H. 1In principle, one could return to the counter-
part of Eq. (26) and evaluate the coefficients of this equation.
But one can also refer to the counterpart of the particular
solutions, Eq. (16). They are spherical harmonics, and they
have the form

r-IP(r-l)exp(-ipr)

with

r = (x2 + y2 + 2412 (123)

46




P is the generic expression for a power series. The analog to

Eq. (58) suggests the following approximations for ¢
A (124)
-1 -2 ,
¢-=[fl(x/Rl,y/Rl,z/Rl)Rl + fz(x/Rl,y/Rl,z/Rl)Rl lexp(-iwg(x,y,2)).

Along a characteristic,the functions fl and fz;along with the
values of gx,gy, and g,-are constant. This leads to the counter-
part of Eq. (60)

D 4, 3 ,3,09(D ., 1 ., Dy _
(Dz + R + iy Dl)(Dz + R, + iw D2)¢— 0 (125)
and the simpler (and less accurate forms)
D 1 . D _
[ﬁ + q + 1y —D%](b =0 (126)
and
_D DI 14 =
[Dl + iw DL 19 0. (127)
Here
Ry = (22 +y? + 2512 (128)

The direction of the characteristics is given by the rays through
the origin. One has

o

= 9 (129)
Ry

and g is given in Eq. (122).

For general unsteady flows with waves originating from the
origin, one than obtains the far field conditions

D , 3 +.9 2, L .. 9 3,
Bz * & * | + + L 21e = 0. (130)

R at][Dl R R

1 1




or the simpler forms

3 1 g 3 _
57 + = * —x 5 it =0 (131)
1 1
g
[Br + —= —agl¢ =o. (132)
1

The second derivative which occurs in the above equation is
expressed by

p2/pe? = x%/8%) (a%0x?) + (yH/RD) 0%/ayh) + (2%/RD) (329 133
1
2 2 2 2 2 2
+2(xy/Rl)(3 /3x3y) + 2(xz/Rl)(3 /9x3z) + 2(yz/R1)(8 /3ydz) .

Assume that one boundary of the computed flow field is a plane
X = const. From the values of ¢ and ¢x within this plane, one

¢

determines ¢yy' ¢zz’ vz’ ¢xz’ ¢xY' ¢t' and ¢tt' ¢xx is expressed
in terms of ¢yy’ ¢zz’ ¢xt’ and ¢tt by the differential equation
for ¢.

Equations (124) through (133) give far field conditions for
which one estimates the origin of the waves (in essence, the
surfaces g = const). The location of the origin determines the
direction of the characteristics (the ray through the origin of the

wave) , the value of R, = (x2 + y2 + 22)1/2. One obtains

1 172 2 -1/2

a/R; = (13 Homx + (P (1-M2) (y2422) V2 (xPayPes?)
This approximation may sometimes be unsatisfactory. In three-
dimensional problems at an intermediate distance from the airplane,
surfaces g = const are more likely to resemble ellipsoids than
spheres. Then one may proceed as follows. We consider sinusoidal
perturbations. One identifies surfaces g = const with surfaces of

equal phase of ¢. One determines by numerical differentiation




cos(n,x)

g,/ |grad g|

cos(n,y) = gy/]grad gl (134)

cos(n,z) = gz/lgrad gl.

One ought to have, according to Eg. (114)

1

|grad g| = (1 + Mcos(n,x))" (135)
This gives a check (and probably also an adjustment) of the numerical
results. The characteristic direction then follows from Eg. (115)

Dx/DL = (cos(nx) + M)/(M2 + 2Mcos(n,x) + l)l/2

Dy/Df = cos(ny)/ (M2 + 2Mcos(n,x) + 1)1/2

Dz/D%. = cos(nz)/ (M2 + 2Mcos(h,x) + l)l/2

This defines all quantities occurring in the Sommerfeldt
far field condition, (the generalization of Egq. (132))

D¢/DL + iwDg/Di¢ = 0.

The next higher approximation which corresponds to Eq. (131) requires

the evaluation of the function h in Equation (110). Proceeding in
analogy with the two-dimensional case (Eqs. (25) and (26)), one

arrives at the analog to Eq. (34)

1/2

D(log H)) /DL + (1/2) [1-M) g, +g  +9, 1/1g5+gs +((1-uD) g ?] =o.

Yy

Using Eqs. (134) and (135), one obtains
. (136)

D(logH, ) /DX +(l/2)[1-M2)gxx+g +gz¥][1+Mcos(nx)[M2+2Mcos(nx)+l]-1/2.

Yy

Then one obtains from the approximate representation for ¢




b = Hl exp(-iwg)

D¢/DL + [iw(Dg/DR) - D(long)/Dzlcb = 0.

(long)D is evaluated from Eq. (136). This requires the determination
2

of the factor (1-M )gxx + gyy

A geometrical interpretation is formed in Eq. (A.31), but it is

+ = which can be done numerically.

preferable to express directly that along the characteristics, Iyt

g.., and g, are constant.

y
gxx(M + cos(n,x)) + gxycos(n,y) + gxzcos(n,z) =0
gxy(M + cos(n,x)) + gyycos(n,y) + gyzcos(n,z) =0
gxz(M + cos(n,x)) + gyzcos(n,y) + gzzcos(n,z) = 0.

We describe the procedure for a boundary surface given by a plane
X = const. There one finds Iy gy, and 9, by numerical
differentiation. This allows one to determine cos(n,x), cos(n,y),
and cos(n,z). By further differentiation within this plane (that
is with respect to y and z) one can express

3

vy’ ¢

yz' and =

Then one obtains gxy and Iz from the last two equations

gd.., = cos(n,y) + g

xy -(gyy zcos(n,z))/(M + cos{(n,x))

) 4

ez = -(gyz cos(n,y) + gzzcos(n,z))/(M + cos(n,x))

and from the first equation
(137)

e = (gyycosz(n,y) + Zgyzcos(n,y)cos(n,z) + gzzcosz(n,z)/M+cos(n,x))2.

This allows the evaluation of d(long)/dl, Eq. (136).
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An interpretation of the expression

(1/2) (1-MA) g + g

vy + gzz][1 + Mcos (nx) )

which occurs on the right hand side of the equation for D(long)Dl
is given at the end of Appendix II. Using Eq. (135) one recognizes
that it represents the average curvature of the surface g = const
at the point under consideration. The average curvature is
obtained in the following manner. One forms the curvature of two
curves which arise from the intersection of the surface g = const
with two planes through the normal to this surface which are
perpendicular to each other, and then forms the average. One of
these planes can be chosen arbitrarily, the other one is then
determined. The average curvature is independent of the orienta-
tion of these planes. For a certain orientation, the radii of
curvature assumes simultaneously extreme values. Let these values
be Rl,o and Rz'0 for the surface g = 9o’ and assume that for this
surface p = 0. The dependence upon the parameter p along a fixed
characteristic is then given by

_ -1 -1
caverage = (1/2) (Ry4+p) +(Ryp*p) -

One recognizes that the expression (136) contains certain terms of )

higher order in p I.

With Eg. (116) one can now rewrite Eq. (136)

1

D(logH,) /dp = = E[(R,o+p) "1+ (Ryq+p) 11,

Hence,

H) = const [(R;y + p)(Ryy + p) 17172, (138)

E:
The expression [(R10+p)(R20+p)]-1/2 is the Gaussian curvature of :
the surface g = const at the point under consideration. The constant 1
may change from characteristic to characteristic. For p large one
obtains
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Hl = const p-l.

This is the form suggested by the particular solutions (123).
The present form of the far field conditions is somewhat more
general. In the two-dimensional case one of the principal radii
of curvature (and the constant in Eq. (138)) are infinite. Then
one obtains the results of the preceding section
H, = const p-l/z.

The estimation of the Hz carried out in the two-dimensional
case, is valid only for p large. Then one has for the three-
dimensional case Rl o R2’ and

-1
H, v const (R1R2) .

On this basis it would be possible to formulate approximations to
the far field conditions of the next order. However, one may
have doubts whether in a practical case this refinement is
justified. The derivations are based on the assumption that
surfaces of constant g can be approximated by surfaces of constant
phase of ¢. This is only an approximation. The application of
these ideas to general unsteady flows presupposes again, that the
computed flow permits one to recognize wave fronts (which define
the surfaces g = const). 1In critical cases it is probably
preferable to use far field conditions which are more complicated
but do not require the assumption of high frequency or the
identification of wave fronts or wave origins.
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SECTION VIII

OSCILLATORY PERTURBATIONS IN A PLANE FLOW FIELD WITH
A FREE STREAM MACH NUMBER ONE

Figure 2 shows the wave patterns obtained in the linearized
treatment of subsonic flows, which arises in the limit where the
free stream Mach number goes to one. The perturbations pile up at §
the value of x where the waves originate. This happens because the
sound velocity which governs the manner in which perturbations
spread through the flow field is considered as constant throughout

the flow field. In reality, the profile generates, even at a free
stream Mach number one, a subsonic region upstream of the profile
in which perturbations will travel upstream. A pile-up of waves
will not occur, although at a great distance from the profile the
wave length pertaining to a certain frequency will be very short.
The following analysis takes the modification of the sound velocity
by the presence of the profile into account. At a sufficient
distance from the body the flow field at a free stream Mach number
one can be described by a similarity solution. In the following
we study periodic perturbation in this part of the flow field.

The differential equations for the underlying steady flow
field is obtained in the familiar manner; one assumes that the
deviations from the sonic parallel flow are small, but retains
a critical term which allows the change of the type of the
differential equation from elliptic in the subsonic region to
hyperbolic in supersonic region. The simplified differential
equation for the steady flow field is then given by

+1 3 (.2 -
“Li‘ 5= (05, )+ ¢°yy 0. (139)

Here ¢o is the potential which gives in the basic steady flow field %
the deviation of the flow from a parallel flow with the Mach number
one. In this field one now studies unstcady perturbations which are
small even in comparison to the steady perturbations introduced by
the presence of the body. Let ¢ be the potential describing these
perturbations. They satisfy the following partial differential
equation
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200 %) + 8. - 26, - b, = 0. (140)

- (y+ l)ax OoX'X Yy xt tt

Here the space coordinates have been made dimensionless by a

characteristic length L and the time by (La) "1

(where "a" is the
velocity of sound. The basic potential ¢o is considered as known.

Eq. (140) is the counterpart of Eq. (5). Introducing .

$(x,y,t) = ¢(x,y)exp(int) (141)

one obtains

(v Dg2 (0,000, + 6 - 2iws, + w¢ = 0 (142)

which corresponds to Eq. (9). In analogy to Eg. (22) one sets

e T Lt ANy Y TR

¢ = h(x,y)exp(-iwg(x,y)). (143)

Substituting this equation into Eq. (142) and collecting the terms
with powers m2 and w one obtains the counterparts to Egs. (24) and
(26)

2
(y + 1)¢oxgi - 29, - gy +1=0 - (144)

and
(145)

[(Y+1) 9,,29,-2] (H /H) = 29, (H /H)+(Y+1) (&, 905 *b 00y Ty) =9, =0

As in Section II we reduce the integration of Eq. (145) to the
integration of ordinary differential equations by introducing the
concept of characteristics. Differentiating Eq. (144) with respect
to x and y one obtains

2

[(y+ 1)¢oxgx-1]gxx - gygxy + ((y + 11/2)¢°xxgx =0
(146)
2
[(y+ l)¢°qu-1[gxy - gygyy + ((y + l)./2)¢°xygx = 0.
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The direction of the characteristics is given by
Dy/Dx = gy/(l-(v + 1)¢,,9,)

Notice that Eg. (144) can serve to express g _ by Iy ®

Yy
It is convenient to introduce the arc length along the
characteristics (to be denoted by s) and use it as'independent

(147)

variable, although x and y can be used for the same purposes, at

least along part of the characteristics. Then one has

1 - (v +)o_9,

Dx _
Ds [(1-<Y+l)¢oxgx)73-q§f172
Dy _ gy

5 = 3172

2
[A=(y+1) 0,90~ + 9]

and from Eq. (146)

g,  ((y+ /g2 o,

bs 2, 2,172
S -, g + ol

Dg ((v+ 1)/2) 920,
P2 (e ey e 2 + g2

Then

Dg . Dx Dy
ps -~ Ixbs T Iy Ds*

Finally, from Eq. (145)

D(logH) , (4,2 (vt 1) (055 Txx +¢oxxgx)'g¥¥
Ds
]

((1-(y+ 1)¢ Yig4 g

oxIx Y
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To determine the functions Iyex and gyy which occur in the
last equation, one differentiates Egs. (146), the first one with
respect to x, the second one with respect to y. One thus
optains equations for Dgxx/Ds and Dgyy/Ds in terms of Tyt gy, and
data pertaining to the basic field. For the developments of this

report these details are unnecessary.

Equations (148) through (151) represent a system of ordinary
differential equations for x, vy, Iy and gy. The unknowns g, H,
and auxiliary quantities can subsequently be found by quadratures.
For a flow field given by ¢ and a starting line in the x, y plane,
one then can determine asymptotic solutions in the form Eg. (143).

For the usual formulation of far field conditions at subsonic
flows, one assumes that the perturbations originate from a point.
There it can be justified by the observation that at a sufficient
distance from the origin outgoing perturbations can be expressed
by a superposition of particular solutions derived from Eq. (16).

In the present context, such particular solutions are not available.
Nevertheless, we make a similar assumption; namely, that the line
at which the far field conditions are applied lies at such a
distance from the profile that the exact point where the perturba-
tions originate does not matter.

Now we assume that the underlying steady flow field (described
by ¢o(x,y) can be approximated in the far field by the dominant term
in the development with respect to the distance. For flows with a
free stream Mach number one, this term reflects the profile
displacement; the unsymmetry of the airfoil (including the effect
of an angle of attack) gives rise to higher order corrections.

The formulae derived here can probably be extended to include such
terms.

The dominant term in ¢o(x,y) and of such corrections have the
form of similarity solutions. A survey is found in Reference 8.
One has for two-dimensional flows
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¢, = WYV TE(T) (154)
with

T = il
and

C o= (y + 1)7Y/3y y7Y/5 (155)

The intensity of the perturbation expresses itself by the constant
H. It is obtained during the computation of the basic field
(see Reference 7). Let

b= (v + Y3, (156)
Then one has
T = u-l % y-4/5
3T/ax = u L yY/5 (157)
3T/3y = -(4/5)y )%,
The function f appears in a closed form if one changes the
independent variable
T = 0"¥3((o/2)-1) (158)
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The function g is now determined by a similarity hypothesis
(rather than by integrating Eqs. (148) through (152). Details
of the following computations are found in Appendix V. Here we
give only an overview of the essential steps.

Let g be an approximation to g which satisfies Eq. (144)

in the highest power of y. One finds that 9 is then determined
from .

2 2 _
(y+ l)¢°xgox - Zgox - goy = 0. (160) ' F

This equation arises, if one omits the term ¢tt in Eq. (140). 1
One usually calls this the low frequency approximation. We set

_ =1 _6/5 _=3/5
9y = M Yy o yo(c). (161)

Substituting Eq. (161) into Eg. (160), one obtains

u'zyz/so'lfs(o+(4/3»'1{o(o-(16/3))(dvo/do)2-(dyo/do)o(zy-(20/3))

Y, (=3y, + 4)} =0. (162)

The expression within the braces can be regarded as a quadratic
equation for dYo/do. One notices that the coefficient of
(dyo/dc)2 vanishes for o = 16/3. The curve ¢ = 16/3 represents
in the xy-plane the so-called limiting characteristic of the far
field. (Perturbations originating downstream of the limiting
characteristic will never reach the sonic line and therefore have
no effect on the subsonic field.) 1In general, one of the roots 1
of this quadratic equation will be infinite at the limiting :
characteristic. The solution which is smooth throughout the

flow field is immediately found by inspection

Yo = 4/3 (163)
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Thus from Eq. (161)

Py

3/5

g, = u %02y . (164)
The approximation of the next order is obtained by setting

g =g, +9;. (165)

One assumes that for y sufficiently large, 9, is sufficiently
small so that nonlinear terms can be disregarded. A hypothesis
of a similar kind can probably be used to take higher order
terms in the development of ¢° into account. One obtains from
Eq. (144)

((y+ l)¢oxgox --l)glx - g 9, * (1/2) = 0. (166)

oy “ly

1/5.

It follows from Eq. (161) that goy has a factor y A comparison

of the second and third term in the last equation then suggests
that 9, has the form
9, = ¥¥/0)* v (). (167)
This leads to the equation
o(dy;/do) + (2/3)y, = (1/4) /0 + (4/3). (168)

The one solution that is smooth at the origin is given by

One thus has the following approximation for g

g = 1 y2/a) 35 1(a73) + A(1/2)+(3/20)0) ] (170)




with

A= uz(c/yz)l/s.

(171)
Equation (158) gives a formula for (0/y2) which applies in the
vicinity of 0 = 0, y = 0. In the next step one would determine
the function H. This is shown in Appendix V and one finds

that H amounts only to a correction of higher order in y.

With an approximation to g known, one can derive far
field conditions in the following manner. At a .given point of
the flow field the characteristic direction can be computed from
Egq. (147). Then one obtains from Eqg. (143)

D¢/Ds =~ (D(logH)/Ds - iwDg/Ds)¢= 0. (172)

In principle, D(logH)/Ds can be computed from Eg. (153), but
actually it is small of higher order. Equation (172) is a local
condition which relates the derivative in a certain direction
with the perturbation potential. Because of the simplificaticn
introduced, this relation holds only in the far field. The
potential and its derivative at the outer edge of the computed
field must satisfy these conditions in order to match with the
far field. One still needs formulae in terms of o and y, for
these are the variables which are used in the computations. Here
only the final formulae are written down; the derivation is
found in Appendix V.

It can be assumed that for a given point (x,y), the
value of ¢ is available. For constant o, A defined in Eg. (171),
decreases with increasing y. Only first order terms in A are
taken into account. The following formulae are related to the

direction of the characteristics. In practice one will probably
use the third one
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D(logy) /D(loga) = (4/3) (1 + (1/8)A(c+ (4/3)) | (173)
D(log(-x))/D(logs) =(2/3) [(1=(5/8)0) (1-(a/2)) L + (1/5)A(0+ (4/3))]

D(log(-x))/D(logy)= (1/2)[(l-(5/4)c)(1-(cr/2))-l + (1/5)A(o+ (4/3))]

[1L + (1/8)A(g+ (4/3))1°*

At x = 0, = 0 and ¢ = 2. For this vicinity, Eq. (173) is used in
the form

D(=x) /D(logo) = (1/2) [{(-x)/(1-(0/2)} (l-(5/4)0) + (174)

(-x) (1/5)A(o+ (4/3))][1+ (1/8)A(o+(4/3))17L

The term (-x)/(l-(c/2), which at x = 0 is undetermined, is found
from Eq. (157) and (158),

2/5, (175)

(-x) /(1 - ‘0/2)) = ula/yd”
No difficulty arises for ¢ - 0, vy = 0, if x # 0. One will, of
course, evaluate Dy/Dx rather than Dx/Dy.

The above equations are correct only to the first order in A.
Some second order terms have been included, however, so that no
jumps occur in the characteristic slope if one passes from the
formula for D(logy)/D(logc) to that for D(logx)/D(logo).

From Eqs. (173) one can find approximate analytic expressions
for the characteristics. For the formulation of the far field con-

"ditions they are not necessary; but they are useful for a comparisc-

with characteristics found by direct computation. One obtains

vy =c o3+ 35 12(g/4) (a- (8/3)). (176)

Here ¢ is a parameter which is constant along a characteristic.
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One needs, in addition, Dg/Ds and (for completeness) D(logH)/DS.

One has

Dg/Do = (3g/30) + (3g/3y) (Dy/Do).

This leads to

Dg/D(logs) = u t(y2/0)3/5 {1-(4/5) + A(-(1/5) + (9/100)0]
(177)

+ D(logy)/D(logo) [(8/5) + A(4/5) ((1/2) + (3/20)0) 1} '

Here D(logy)/D{(logoc) is found from Eq. (173). One obtains in the

lowest approximation
Dg/Do =1f1(4/3)o_l(y2/c)3/5

ox
pg/Dy =i t(y%/0)3/3 (178)

and by substituting Eq. (176)

pg/Dy vy L/4.

In the lowest order approximation of remarkable simplicity

D(logH) /D(logy) =-(1/2) (179)

or
D(logH) /Dy y’l.
Accordingly, the contributions of D(logH)/dy.in the far field condition
is small in comparison to that of Dg/Dy.
Equations (173) serve to determine the direction of the

characteristics Dx/Dy and D¢ /Ds.
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One has

2)1/2

Ds/Do = ((Dx/Do)2 + (nNy/Do)

This, then, allows one to compute for a given point (x,y) all data
needed to evaluate Egs. (172).
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SECTION IX

UNSTEADY PERTURBATIONS IN A THREE-DIMENSIONAL FLOW FIELD
WITH A FREE STREAM MACH NUMBER ONE

The treatment of the three-dimensional problem is entirely
analogous to that of the plane problem. At great distances the flow
field generated by a body of finite dimensions approaches that of an
axial symmetric body. The approximation to the basic field used here
is therefore the axisymmetric solution. As in the plane case the
characteristics are lines; for an axisymmetric flow field these lines
happen to lie in the meridian planes. In dealing with an axisymmetric
body, the contour shown is the intersection of the surface with a
meridian plane. The characteristics in the meridian plane determine,
of course, an axisymmetric surface; but this surface has no meaning
in its own right.

The following formulae are completely analogous to those of
the preceding section. The coordinate y stands for the radius in
cylindrical coordinates. The counterpart to Eq. (140) is

S(r+ 1) g (0gy B * Byy + By = 28y - B = 0. (180)

The hypothesis

$(X.Y't) = ¢(x,Y)exp(iwt) (181)
yields
d . 2,
-(y+ 1) 3% (¢ox ¢x) + ¢yy + ¢y/y - 21w¢x + wé= 0. (182)
One sets
¢ = h(XIY) exp(‘iwg(er)) (183)
The terms with power m2 in Eqs. (182) give
(y+ 1)¢_ g2 - 29, - g2 +1=o0. (184)
ox°x b y
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An approximation, H(x,y) for H(x,y) is obtained with the power w

[(y+1) ¢, 9, — 11 (H /H) - gy(Hy/H) + (v+1)/2) 3(¢,9,)/ 3x

AT

- (1/2y)8(ygy)/3y = 0.

Equation (184) agrees with Eq. (144). Eqgs. (147) through (152)
therefore can be taken over immediately. The equation corresponding
to Eq. (153) assumes the form

(y+ 1)a(4, .9,)/3x - (l/Y)B(ng)/ay

2 2 .1/2
[(1=-(y+ 1)¢oxgx) + gy ]

DlogH _ (4,7

Ds (185)

Next, the expression in %6 which dominates at a great distance is

introduced
¢ = B3y Te(yy (186)
with
T =it
and
¢ o= (v D73y,
Again,
wo= (v 03
. (187)
° and
/93X = u-ly-4z7
(188)
3T/ y = -(4/Ny LT,
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The following closed form of £ has been given by Randall

§
:t
T =0 2/725-1) %
(189)
i
T = -(8/9)07(-26% + 30 + 6) g
f
By steps analogous to the case of plane flows, one obtains ;
. i
g =n"t (y2/a)3/71(3/10) + A((1/2) + (5/1) )] (190) |
with
A = u2ayH 7. (191)
D(logy) /D(logs) = (6/5) (1 + (4/3)A(c+ (1/5)] (192)

D(log(-x))/D(loga) = (2/5) [(1-70) (1~20) "1+(16/7)a(c+(1/5)) ]
D(log(-x))/Dlogy) = (1/3) [(1-70) (1-20) "1+ (16/7)alg+ (1/5))]

(1 + (4/3)A(0+ (1/5)] }

One obtains as approximation to the shape of the characteristics

y=¢ 06/5 + u2 cl/7 03/5 (40 - (8/15)

o alde .-

pg/D(loge) =n"t(y2/0)3/7 {1-(3/14) + M2(-(1/7) + (25/24)0)]

+ D(logy) /D(logo) [(3/7) + Auz((2/7) + (20/49)0) 1}

One obtains in a first approximation ' 3

5/7

pg/pe = u Lt(y¥ar’7 o"1(3/10)

pg/Dy = wr(y?/a) % Ty L (1/2)
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Finally, in the lowest order approximation

D(logH) /D(logy) = -~1.
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SECTION X

VALIDITY OF THE LINEARIZED APPROXIMATION FOR TIME
DEPENDENT PERTURBATIONS AT MACH NUMBER ONE

It is conceivable that the velocities caused by the unsteady
perturbations decrease more slowly as one goes to infinity than
the deviation of the velocities in the basic flow from the free stream
velocity. These velocities and the pertinent sound velocity determine
the propagation of perturbations. We have assumed that the unsteady
perturbations are small and that their effect on the speed of
propagation of perturbations can be disregarded. But, if the
unsteady contributions do not stay small in comparison to those of
the steady flow, then the present analysis is not valid at great
distances, although it might be valid in an intermediate range.

We carry out this discussion first in the two-dimensional flow.
There one finds from the similarity sclution (Eq. (154)) together with
the second of Egs. (157) that along a line ¢ = const

-2/5

by ¥ (193)

For the superimposed unsteady flow one obtains as dominant terms,
respectively, in at and 5

X
$t = wH
and
5x = Hug,
It follows from Egs. (161) that along a line = const
Iox ™ Y2/5 (194)
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This shows that in a perturbed flow, 5x dominates 5t at a large
distance. One notices that for the basic flow, one has the power
y.z/5 in the expression ¢x' and y +2/5 in the expression $x for the
superimposed perturbations. This makes the investigations carried
out in this section necessary. The question whether at infinity

the perturbations can still be regarded as small in comparison to

the basic field cannot be dismissed. Decisive is the behavior of the
function H. Along a characteristic, H is given by H or y-l/z, but
characteristics differ from lines ¢ = const. According to Eq. (171)
one has along a characteristic

Yo-4/3 ~ const. 5

Accordingly,

H = y-l/zf(yo-4/3)

(195)
where £ is used as a generic expression. It has nothing to do with
the functions f used to describe the basic field. Some information
about £ is obtained by considering ;he function H in the vicinity

of the negative x axis. It is reasonable to assume that in the x,y
plane, H is a smooth function. If one approaches the negative axis
along a line (-x) = const, then by Eq. (175)

gy ° = const,

L

but H is likely to behave in the vicinity of the negative x axis as 4
a power of (-x), 1

Expressing the assumption that on this path H remains smooth,
one obtains from Eq. (182)

2,8

“1/2¢(y6™3/ 4y, (0y™2 (196)

H=y

Obviously, the function f must have a singularity at the x axis.
We write,
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£(oy" ¥4 = (oy ¥4 %E(oy™*

£(oy ).

If one moves to infinity along a line o = const, then oy-4/3 + 0.

In other words, in this limiting process the argument of f goes to
zero, throughout the flow field, one can choose o in such a manner
that f then assumes a finite limiting value. Thus, one obtains from
Eq. (196)

y-l/z(gy’3/4) v (oy /28,

The powers of 0 and y on the left and right must match

G-ge- -
a = 8
Hence
a = 2/5
and

2)2/5 p 3/4

H= (a/y floy /%)

One finds accordingly that for superimposed perturbations

5 = g2/5,74/5

-2/5
x vy .

Jox
Accordingly, the perturbations have the same dependence upon y along
a line o = const as the basic flow.

The same result is found for the three-dimensional flow. One

has in the basic steady flow along a line ¢ = const
-6/1
o VY /

+6/17
g, v v/
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H = y-lf(y/cs/s) = const.

‘ For lines -x = const. One has again (o/y-z) = const.

] Then one has in a corresponding computation

B = (6/7)

]
"

and gy 12/7

along a line o = const.

Consequently, the basic flow and the superimposed unsteady
perturbation change with the same power of y along a line o = const.
If the unsteady perturbations are small at an intermediate distance,

they will be small also at large distances.




SECTION XI
COMPARISON OF EXACT AND ASYMPTOTIC EXPRESSIONS FOR g

The analytical formulae for g derived in Sections VIII and IX
are valid only at a sufficient distance from the origin. We show
here a comparison of these analytical results with data obtained by
a numerical integration of the characteristic equations. O0f course,
these computations need not be performed if one merely wants to
apply the far field conditions.

For the plane flow with free stream Mach number one, the
equations to be integrated are Egs. (148) to (152). In these
equations the underlying steady flow enters via the function ¢°.
Here the asymptotic expressions for the steady flow are used. One
has according to Egs. (A.50)

Y/5((1/8)0 - 1)

(r+ Lo, = u(a/y?)

Hence with Egs. (A.49)

(v Do = ulo/y)3 3 (o-(2/3)) (0 + (47371

1

(y+ 1) ¢ w2y (/92875 (=(1/2) 0+ (4/3) (0 + (4/3))"

oxXy

# is a constant determined by the underlying steady flow.

In these expressions the variable o is encountered. It is
expressed in terms of x and y (which, for the integration along
the characteristics, are dependent variables) by Egs. (157) and
(158) . To determine ¢ for given x and y, one first evaluates

E = u-lxy'4/5
and then determines ¢ from Eq. ((159), i.e.,

T =0%5((/2) - 1).




This can be done by a Newton procedure. One obtains a correction

Ao to an approximation % from

T -z(g))
g = —— 2 (208)

(dZ/da)/ _
(o]

E(oo) and dz/do are found from Egqs. (207) and (A48), respectively.

The method deteriorates in the vicinity of the negative
x-axis. There 7T+ - =, There one iterates as follows

o) o (73201 - (oM )52,

The superscript n refers to the iteration number. 1In principle,
one must prescribe g along some initial curve. Let this curve be
given by

x =x(y) or y = y(x)

and consider a fixed point (xo,yo) of this curve. Therefore, one
has for the system (Egs. (148) through (152)), initial values for
X=X, Y=Y, and g = g(xo,yo). One can also assign an initial
value for H. To find initial condition for 9y and gy, one forms

the derivative of g along the initial curve
dg/dx = 9, *+ gy(dy/dx). (209)

Here dg/dx and dy/dx are known. Combining this relation with the
partial differential equation for g, Eg. (144); namely,

2 2

(Y+ D)9y = 29, -9y +1=0, (210)

one can determine Iy and gy.
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This is the general procedure. In our computation, we
assumed the initial curve to be a small circle around a point
(xo,yo), whose radius goes to zero. From this circle, characteristics
go out in all directions. In this case one has the same value of
$xo for all starting points of the characteristic. Moreover,
Eg. (209) can be disregarded. If one assumes that g = const along
this small circle, then dg/dx = 0. For any choice of gy and gy,
one can find a direction (dx/dy) along a circle for which Eq. (209)

is satisfied.

As initial condition for the integration of the system
(Eq. (148) to (152)) ,one then has x = Xgr Y =¥y 9= 0. The
derivatives Iy and g_ must be chosen in such a manner that Eg. (210)
is satisfied. To obtain characteristics whose direction is reasonably
spaced, we have proceeded in the following manner. Equation (210)

is rewritten in the form

(—(Y+l)¢x(xo.yo))-1[-(y+1)¢x(x°,y°)gx+l]2+g§ =[-(y+1) ¢x(xo,yo)+l)]

-1
[- (Y+1) 0, (%, ,¥,) ]
This equation is satisfied if one sets

= r sin
gy ing

[- (Y+1) 0 (X 1 ¥.) 9,11 [- (y+1) o, (%, ¥ )1 T = £ coso
with

1/2 -1/2

P I=(y+1) ¢ {x_,¥ )] .

r o= [=(v+1) ¢, (x ,y,) +1] x oo .

Then,

g, = [r(=(y+1) ¢, (x,y,))cose-1][-(y+1) o, (x_,y )1

The initial direction of the characteristic is found from Eq. (147)
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tgb

DY/Dx = (-(v+ 1) o, (X ,¥,)

The axisymmetric case is treated in an analogous manner. In
this case the point (xo,yo) is chosen on the negative x axis. If
one chooses it away from the axis of symmetry, then one must
assume that the initial surface is an infinitely thin ring, whose

‘ centerline intersects the meridian plane at the point (xo,yo). In
this case the characteristics (line) will lie in the meridian plane.
y With slight modifications, one might also treat the case where
the initial surface is a small sphere with center at (xo,yo,zo =0) .
In this case, one would obtain a two-dimensional family of
characteristics, which in general are not confined to a meridian

plane.

The necessary formulae are

3/7

(v+1 o, = u?(o/v?) 37 (8/3) (o-1)

5/7

(Y1) 0 = 100/ >/ T ((8/3)0 - (4/5)) (o+ (1/5))71

(1+1) b =u2(16/3)y(0/y2) 1 T (=0 +(4/5)) (@ + (1/5) 7

-E - u-lx y-4/7

T=0%"20 -1).

The initial conditions are chosen in the same manner as in the two-
dimensional case.

The computations have been carried out for g = 1. (See
' Egs. (54) and (186).) Then, according to Eq. (156) and (187)

. b= (y+ Y3,

We have chosen vy = 1.4.
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Figure 5 shows in a plane flow with the free stream Mach

number one a set of computed characteristics which start at some
point of the negative x-axis and also the corresponding one-term
approximation. Figure 6 shows the corresponding two-term approxima-
tion. The axisymmetric counterparts are shown in Figures 10 and 1l.
These curves correspond to the straight lines in Figure 2. Some

of them start in the upstream direction but eventually all of them
are swept downstream. The curves have been terminated at the
limiting characteristic belonging to the basic flow field. The
approximate curves have been chosen in such a manner that they
coincide with the exact curves at the outer points. In practice
exact characteristics are not available. In the application of

the asymptotic far field conditions the slope of the characteristics
is needed. The asymptotic two-term expression gives a satisfactory
approximation to these slopes.

Figures 7 (for plane flows) and 12 (for axisymmetric flows)
show one- and two-term approximations for the wave fronts given
by lines g = const., They are drawn for g = 10, 20, and 30. One
sees that the additional term in the approximation makes an
essential difference. Figures 8 (for plane flows) and 13 (for
axisymmetric flows) show computed characteristics and, marked by
asterisk, computed values of g (g = 10, 20, 30) and also the
asymptotic two-term approximations for g. The computed values are
rather well represented by their asymptotic curves, especially
if one takes into account that in the determination of g a
constant remains open. The curves correspond to the circles in
Figure 2. One no longer encounters a piling up of the wave fronts,
although they come closer together at a large distance from the
origin. Figures 9 show for plane flow corresponding curves fcr
waves starting at different points. The asymptotic representation
of the curves g = const remains the same. One sees that it is
not too important where the waves originate,
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No counterparts for the three-~dimensional case have been
drawn because the characteristics for points off the negative x
axis will, in general, not be curves that lie in the meridian

planes.

One recognizes that the asymptotic expressions developed
above can indeed be used to formulate far field conditions,
provided, of course, that the boundary of the computed field is
not too close to the profile.
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APPENDIX I
SOME REMARKS ABOUT THE HYPOTHESIS EQ. (22)

The hypotheses Eqs. (22) and (12) have a similar effect. 1In
each case a factor is split off from the expression for the
potential. The factor exp(imM(l-Mz)'lﬁ) in Eq. (12) generates a
field with equal waviness in all directions. Because of the
interpretation of g(x,y) given by Eq. (36), the factor exp(-iwg(x,y))
in Eq. (22) anticipates the waviness of the flow field completely
but only for outgoing waves. The original differential equation
admits incoming as well as outgoing waves. This holds also for
the differential equation for h which one obtains by setting the
remaining terms in Eq. (23) equal to zero. To illustrate the
effect of the transformation in Eq. (22) we consider the problem
for three-dimensional perturbations in air at rest. There the
discussion is particularly simple because of the availability of

closed solutions. Accordingly, we consider the partial differential
equation

©
+

rr (2/x)0, - beg = O

The hypothesis

~

¢ = ¢(r) exp(iwt)

then leads to

b+ (2/0)6_ + w26 = 0

Particular solutions are given by

¢ = 1 exp(iur) (A.1)
(and also by derivatives of this expression with respect to

X,y or 2z)
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If one sets in analogy to Eq. (22) ' %
$ = h(r) exp(-iwg(r)) (A.2)
then one has immediately

g(r) = r

The two particular solutions for h corresponding to those in Eq. (40)
are given by

h(r) = r (A.3)

and h(r) = r 1 exp(i2ur) (A.4)

In the expression for outgoing waves (Eg. (A.3)), the waviness has
vanished while that for incoming waves (Eq. (A.4)) has waves which
possess half of the original wave length.

This has interesting consequences for a numerical approach.
If one knows that only outgoing waves are present, then the function
h is smoother than the function ¢. The mesh for computing h can,
therefore, be coarser than that for $. But one ought to be aware

of the fact that in a coarse mesh incoming waves will be greatly
distorted.

In cases where the partial differential equation can be
solved by a product hypotheses, so that ultimately one is led to
an ordinary differential equation in r, one is tempted to build
up the solutions of this ordinary differential equations from
particular soltuions which are obtained by solving initial value

problems. Roughly speaking, the stiffness of such ordinary

differential equations is determined by the largest eigenvalue.

If one solves the differential equation by a predictor-corrector

method, then the stiffness causes an instability of the procedure . A
which is remedied by a reduction of the step width, This happens

even if the particular soclution which is being determined does not
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contain the particular solution which causes stiffness. The stiff-

ness of the differential equation for 3 is determined by the value

of w, that of the differential equation for h by 2w. Of course,
this discussion is rather academic, for in those cases where a
product hypotheses can be used it is likely that the ordinary
differential equations can be solved in a closed form.




APPENDIX II
" GEOMETRIC INTERPRETATION OF CERTAIN ANALYTIC EXPRESSIONS

v

First we determine the curvature of a curve g(x,y)=const.
At a point X 1Y, We introduce a local system of Cartesian coordinates
&, ¢, where ¢ is normal to the curve g(x,y) = g(xo,yo) and §
tangential to it (Fig. 14).

Developing g with respect to & and ¢ but retaining only the
terms of the lowest order, one obtains

2
g(x,y) = glx,,y,) + |grad g|z + g, 5

e e OO YR

Here it is assumed that the 7 axis points in the direction of
increasing g. The curve g(x,y) = g(xo,yo) is then given by

2
¢ = -lgraa gl Ts,, &

e ot Arear

The curvature of a curve y

f(x) is given by the familiar formula

R—l

~£ /(1+£ 532

y = £(x) is convex (Fig. 15). In the present case one, therefore,
obtains

] It gives a positive value for R if the region under the curve
{

- -1
R = |grad gl ggg

Returning to the onriginal x,y system one observes that i

(x - xo) = £ cos(f,x) + ¢ cos(g,x)

(y = y,) = & cos(g,y) + ¢ cos(z,y)

where (§,x), etc. stands for the angle between the respective axes
(here the x and the £ axes)., Since the § and [ axes are
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perpendicular to each other one has

cos(§,x)cos(g,x) + cos(g,y)cos(zZ,y) 0

One then has

e AR g Y TR TmeYeps ~ T SAin Oa  E0

Ieg = gxxcosz(i,x) + 2gxycos(6,x)cos(£,y) + gyycosz(iry)

Let, (Fig. 16)

L}
P

(2,x) = a §
A(g,y) = (/2 - a) |

(,x) = (/2 - a)

(E,y) = (r - a)

(The signs of these angles do not matter because one encounters in

the above formulae only the cosines of these angles.) One obtains

deg = gxxsin a - 2gxysina cosa + gyycosza
and

-1 _ L2 . 2 2 2,1/2

R™ = (gxx81n o ngy31na cosa + gyycos a)/(gx + gy) (A.S)
Notice that in this formula specific properties of the g-field

are not taken into account. This is done presently.

One has

9y, = [grad g|cos a

' 9y = |grad g|sin o

Substituting these expressions into Eq. (24) one finds

|grad g| = (1 + M cos a) %t (A.6)
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Therefore,

cosa(l + M cosm)_l

gx
(A.7)

g sina(i + M cosoz)-1

y

The direction of the characteristic is given in Eg. (29). One now .
obtains

Dy/Dx = sina/(M + cosa) (a.8)

It was found in Section II that gx,gy and therefore also a and
Dy/Dx are constant along a characteristic. Introducing a parameter
p which, at the point under consideration assumes the value P,

one obtains the following parametric representation for a

characteristic

x=x_+ (p - po)(M + cos a)

(o}
(A.9)
Y=y, + (p - po)51n a
Along such a line one has the relation
Dg/Dp = gx(M + cos a) + gy sina =1 (A.10)

Equations (A.9) and (A.10) lead to the following geometric
interpretation. We consider a point (xo,yo) of the curve g = g,.
According to Eq. (A.1l0), the value of p, to be denoted by Py for
a curve g = g, is given by

One has for the point X)0¥ye originating from (xo,po)
(xl-xo) = (pl—po)cosa + (pl-po)M
(yo-yo) = (pl-po)sina.

84

© e met————— v e
PR

T et s



Accordingly, the line g =9 arises from the line first g = It
by proceeding in the direction of the normal by a distance
(p;-P,) = (9,-9,) and afterwards by translating :he curve so
obtained in the x~direction by a distance (pl-po)M. The first
step amounts to the determination of a curve equidistant from

g = g, by the distance (plqpo). By this process, the radius of
curvature is changed from Ro(at(xo,yo) to Rl = R, +p - P, (at
the point corresponding to (xl,yl)L The subsequent translation
leaves the radius of curvature unchanged. Identifying P, with Ro
one finds that at the points of subsequent curves g = const, the
parameter p is identical with the radius of curvature.

The analytical derivation of this result is somewhat cumber-
some. One can proceed as follows. The fact that Iy and g _ are

Y
constant along characteristics is now used to expresss gxx’gyy'
and gxy in terms of R‘l.r It follows from Eq. (A.9) that
Dgx/Dp = gxx(M + cos )+ gxy sin = 0
(A.11)
Dp = M+ + sin = 0.
Dgy/ P gxy( cos a) dyy Sin @
Moreover, from Egq. (A.S5) in conjunction with Eq. (A.6)
g sinza - 29 sing cosa + g cosza- R.]'(l+r4!cos¢:g)"1 (A.12)
xx Xy YY

Equations (A.l1l) and (A.12) form a system of linear equ-tions for

gxx'gxy' and gyy. One verifies that

= p-1 2 3
Iex = R sin“a/(1 + M cos a)

g, = -R!

xy sin a(M + cosa)/(1+M cosa)3 (A.13)

gyy = R'l(M + cosa)z/(l + M cosu)3.
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Hence

’ 2 - -l
gxx(l M®) + gyy =R ~/(1 + M cos a) (A.14)

In these expressions R is the local radius of curvature.
So far the relation between R and p has not been established.
For this purpose we express the derivative of R—1 along a
characteristic from Eq. (A.1l4), keeping in mind, that a = const.
along a characteristic

-2 _ 2
R “(aR/dL) = (1 + M cosa) [(1-M") (dg,,/DL) + (Dg,. /D] (A.15)

The second derivatives of g encountered here are subject to
compatibility conditions (as are all higher derivatives), which
are derived from Eq. (28). One obtains by forming derivatives with

respect to x and y

2
Xy

|
[

t 99y t (l-Mz)qix tg

2
{(1-M )gx + M)gxxx yIxxy

2 2, 2 2
1-M + M + + (1~ + =
LM gy + MIGyyx + yTyyy © 1MV y + Gyy = O

+ (1-M>) g g._ + g

2
[(1-M )gx + M]gx ygxyy xyTxx

+
yx ~ 9 yyIxy

It follows from Egs. (A.7) that
[1-M%)g + M) = (M + cosa) /(1 + M cosa) .
Then with Egs. (A.7) and (A.9)

I= 0

él\)

Dg,,/Dp + (1 + M cos a)[(l-Mz)gix + g

1=0 (A.16)

L V)

quy/Dp + (1 + M cos a)[(l—Mz)giy + g

2
Dgxy/Dp + (1 +Mcos o [(1-MT)g_ + nylgxy = 0.
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This is a system of three nonlinear ordinary differential

equations for = gyy, and gxy. It holds along a characteristic.

The previous result, that p is identical with R, which in the
present context is to be regarded as a conjecture, suggests that
one particular solution is given by Eq. (A.13) with R replaced
by p. If this is correct, then one has

Dgxx/Dp = -p-zsinza/(l + M cosa)3

Dgxy/Dp = p-zsina(M + cos a)/(L + M cosa)3 (2.17)
_ =2 2 ' 3

Dgyy/Dp = -p “(M + cos a)“/(1 + M cos )",

Equations (A.13) (with R replaced by p) are indeed particular

solutions. One obtains, for instance, by substituting into the first
of Egs. (A.l6)

2

3 2

-p 2sin%a(1+Mcosa)” +p (1+Mcosa) "> [ (1-M2) sina+ sinla(M+cosa)?] = 0.
Equations (A.13) give only a particular solution, for they do not
contain three constants of integration. Actually, one does not

need the general solution, for at the initial point (p = po),

Egs. (A.13) (with R replaced by p) assume, of course, the values

of gxx'gxy’ and gyy expressed in terms of Ro'

So far we have identified R with p only at the point (xo,yo).
The identification at other points of the characteristic is still
a conjecture. Substituting D Dp and D Dp (Eg. A.1l6) into
3 g Dg,./Dp 9yy/ PP (Eq

Eq. (A.1l5) and remembering that according to Eq. (53) dp/df=const
along a characteristic, one obtains

-R'z(dR/dp)=-(1+Mcosa)p'2[(l-Mz)sinza + (M + cosa)Z]/(1+Mcosa)3.
-R"%(ar/ap) = -p~2.

Hence
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This fits with the above conjecture. The identification of p with

the radius of curvature is therefore justified.

To determine Hy, we rewrite the first of Egs. (34) using
Egs. (53)

D(1ogH, ) /Dp= —-(1/2) 1-M2) g 1tgZ +((1-17) g0 2172 P+ 2mcosar1) 2

xx yy
Hence, with Eq. (50)

- - _ul
D(long)/Dp = -(1/2) [1-M )gxx + ng](l + M cosa)
and with Egs. (A.13) with R replaced by p
D(logH,)/Dp = -(1/2)p™ .

Hence,

=172 (A.18)

Hl = const p
The form of the function H2 (introduced in Eq. (25)) is
suggested by the asymptotic developmert of the Hankel functions,
(Eg. (19)). In the present setting H2 is found by integrating the
second of Egs. (34). With p as independent variable, Eq. (34)
assumes the form

DH,/dp + (1/2)p” Hy + (i/2) (1-MY)H, . +H

1,%xx 1,yy](l+Mc°s°) =0 (A.19)

Crucial is the inhomogeneous term. The constant in Eq. (A.18) may
differ from characteristic to characteristic. Accordingly, we
write

Hy = fl(s)p’l/z (A.20)




where s is the arc length of the init+ial curve (see Egs. (47) and
(48)). The value of s is then attached to the characteristics that
start at the initial curve. To estimate the inhomogeneous terms,
we proceed as follows. Introducing s into Egs. (A.8) we write

»
"

j x(p,s) = x_(s) + (p-p,(s)) (M + cosa(s))
X (A.21)
| Y y(p,s) = yo(S) + (p-po(s)) sin a(s).

Inverting this transformation, one obtains

p = p(x,y)
s = s(x,y).

One has the following relations

3p/3x = (3y/ds) /D
3s/9x = -(9y/dp)/D
(A.22)
dp/dy = -(93x/3s)/D
ds/dy = (9x/3p)/D
with
D = (3x/93p) (9y/3s) - (3y/3p)/(3x/3s) (A.23)

Differentiating Eqs. (A.21) one obtains

dx/3p = M + cosa(s)

3y/3p = sina(s)
dx/%g = -(3p°/3s)(M + cosa) + (3xo/3s)-(p-po(s))sina(aa/as)

dy/%g = -(3p°/3s)sina + (3yo/3s) + (p -p,(8))cosa(3a/3s).
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The parameter s is the arc length along the initial curve, a the
angle of its normal with the x axis, and Pq the local radius of
curvature. Therefore ‘

da/9s p;I
axo/as

ayo/as

9x/3s -(3p°/as)(M + cosa) - (p/po)sin a
dy/9ds -(apo/as)sin<x+ (p/po)cos a

and from Eq. (A.22)
D = (p/p,) (M cos a + 1).
Then, from Egs. (A.22)

9p/9% = [~(p_/p) (3p /3s)sin a + cos o] (M cosa+ 1)t

39s/3x = -(p_/p)sina (M cos &+ 1) -1

9p/dy = [-(p,/P) (3p_/3s) (M + cosa) + sina](M cosa + n-t

9s/dy = (P,/P) (M + cos a) (M cos o+ l).1

From these equations one finds the order of magnitude of
the expressions for large values of p. 3po/as and p, are
congidered as quantities of order 1. One finds




dp/9ax = 0(1l); 3s/0x = 0(9-1); 3p/dy = 0(1);38/3y = O(p-l).

The orders of magnitude are needed also for derivatives of the next
order. One has

2

| 2% (@) - () i

ax

and similar formulae for the other derivatives.

In forming derivatives of (3p/3x), (9p/dy), (3s/3x), and
(3s/%) with respect to s, the order of magnitude of the terms
remains unchanged; in forming derivatives with respect to p, the

order is lowered by a factor p-l
32p/3x2 = o(p~hHo(1) + omyop™l) = op~h) - t
32p/3y2 = o(p"yo(1) + oo™y = o(p~h

32s/3x% = 0(p™3)0(1) + o(p~Ho(p™l) = o(p2

32s/3y2 = 0(p~210(1) + otp Hop™h) = o(p~?)

Now we can estimate the second derivatives of Hl‘ One has
anl/ax = (aHl/as) (3s/3x) + (aHl/ap(ap/ax) 3

52Hl/ax2 = (a%1,/32) (3s/2%) 2+2(2%H, /3s0p) {0p/0x) (28/0x) + i

+(3%1,/0p%) (ap/a%) 2 + (aH,/28) (3%s/9x%) + (3H,/3p) (3%p/9x2)
' 2 2
and similarly for 3 Hl/ay .
Now according to Eq. (A.20)

Hy, = £(s)p~2/2,

Si i




otp"Y?0(p™2) +0(p"3 3 omoip ™l +o(p™> 30 (1)

o(e 3 o(p™3)+0 (6733 00p7h

32H1/3x2 = o(p~ %%,

Similarly,
221, /9y2 = o(p™>%) .

The inhomogeneous terms in Eq. (A.l9) is therefore O(p-s/z). A

—3/2). The

particular solution of this equation therefore is O(p
solution for the homogeneous part has O(p'l/z), but this
contribution can be incorporated in Hl. This is the expected

result for Hz.

To arrive at an equation analogous to Eg. (A.14), for the
three-dimensional problem, one can proceed as follows.

First one derives a formula for the average curvature
at a point Xy 1¥q12%, of a surface g = const in the Xx,y,z space.
We introduce a local system of Cartesian coordinates &, n, 7. The
z axis has the direction of the normal to the surface g = const
through the point (xo,yo,zo). The £ and n axis then lie in the
tangential plane. The directional cosines with respect to the

X,y,z system are denoted by cos(E,x), cos(&,y), etc. One has
cosz(e.x) + cosz(n,x) + cosz(;x) =1,

Hence

cosz(s,x) + cosz(n,x) sinz(c,x)
cosz(Epy) + cosz(n,y) Sinz(CcY)

cosz(e,z) + cosz(n,z) sinz(:,z)




and because the x,y and z axis are perpendicular to each other

cos(E,x)cos(&,y)+ cos(n,x)cos(n,y) —cos(;,x)cos(;,y)

cos(Eg,x)cos(&,2)+ cos(n,x)cos(n,z) = -cos(g,x)cos(z,z) (8-26)
cos(E,y)cos(&,2)+ cos(n,y)cos(n,z) = -cos(Z,y)cos(g,2z).
. The coordinate systems are related by the equation
. xX-x, = gcos(g,x) + n cos(n,x) + ¢ cos(g,x
(A.27)

Y-Y, = Ecos(&,y) + n cos(n,y) + % cos(g,y)

z-2z, = gcos(g,2) + n cos(n,z) + L cos(g,2z).

Developing g in the vicinity of the point (xo,yo,zo) up to terms
of second order, one obtains
g(x,y,2) = g(x, .,y .2,) + |grad g|&

+ 955(52/2) + Inn (n2/2)+ggg(c2/2) 1

Y GpEn * g 8+ g g

ng

The intersection of the surface g = g(xo,yo,zo) with the plane
n = 0, is then given by

2
|grad glg + 955(8/2) + g (P2 + g, & = 0.

s - Let Rl be the radius of curvature of this curve at the origin.
One finds

-1
R~ = g,./|grad g|.
1 gE

Here it is assumed that the région g < g(xo,yo,zo) is convex
and the center of curvature lies on the inner normal to this
region. : -

B




ot

In a corresponding manner, one obtains for the radius of curvature
of the intersection of the plane £ = 0 with the surface
g = q(xo.yo,zo)

-1
R Iqn /l9rad gi

with corresponding rules for the choice of the sign.

The average curvature is then given by
(A.28)
-1 -1
Caverage = (1/2)(R;™ + Ry") = (1/2)(95g + gnn)/lgrad gl.

We shall see that Caverage does not depend upon the orientation

of the £ and n axes (as long as they lie in the tangential plane
and are perpendicular to each other). We express (1/2)(g55 + gnn)
in the x,y,z system. Using the transformation formulae (Eq. (A.27)

one obtains

(1/2) (g, +9,,) = (1/2)g,,(cos?(£,%x) + cos®(n,x))+(1/2) g, (cos?( Ey)

Yy

+cosz(n.Y))+(1/2)gzz(cosz(5,z) + cosz(n,z))

+ g, (cos(E,x)cos(E,y) + cos(n,x)cos(n,y)

Xy
+ gxz(cos(E,x)cos(E,z) + cos(n,x)cos(n,z)

+ gyz(cos(s,y)cOs(a,z) + cos(n,y)cos(n,z2)).

Hence, with the relations (Egs. (A.25)>and (a.26)

(1/2) g 49, ) = (1/2) 9, 81n° (2 ,%) +(1/2) g 8in (3,y) +(1/2) g, sin% (¢, 2)

-gxycos(c,xlcos(c,y) - gx’zcos(c.x)cos(c,z)-gy'zcos(c.y)cos(c,Z).
(A.29)

This is the analogon to Eg. (A.l14) for the two-dimensional case.
The directional angles for the £ and n axes are no longer present.
This shows that this expression does not depend upon the
orientation of these axes in the tangentiai plane.

94

T .



"~ Again, gx,gy, and g, are constant. along the characteristics
(see Section VIII) whieh are given in parametric form in Eg. (115).
The ¢ direction is the direction of the normal to a surface
g = const. One then obtains

gxx(u+cos(;,x)) + gxycos(c,y) + gxzcos(c,z) = 0 (=M+cos (%, x)

Iny 2c08(%,2) =0 cos(z,y) (A.30)

(M"’COS(C:X)) + QYYCOS(C,-Y) + gy

gxz(u+cos(c,x) + g,,co8(z,y) + g ,cos(%,2) =0 cos(C,z) .

b4

Multiplying the equations with the factors shown on the right and
adding the results to Eq. (A.29) multiplied by 2, one obtains

2
Teg * Inn Fax (1M + Gy * Gype

The average curvature (Eq. (A.28)) is therefore given by
(A.31)

+ g,,)/|grad gf.

= -1 -1 2
Caverage = (1/2) (R;™ + Ry7) = (1/2)(gxx(l-M.) +g

Yy

In Eq. (115) the characteristics have been represented in
terms of a parameter p. To determine the dependence of the
average curvature upon p, we uss the geometric interpretation of
Eq. (115) already applied in this Appendix for the two-dimensional
case. Constructing a point of the surface g = g, = const from
point (xo,yo,zo) of a surface g = Jo = const, one first proceeds
in the direction of the normal to the original surface by a
distance P1"Pg ® 9179, (because of Eq. (117), and then shifts
the surface in the x-direction by M(pl-po). In the first step
one constructs a surface equidistant to g = 9 at a distance
9)=95 in the second the surface as a whole is translated in
the x-direction.

The radii of curvature Rl and R2 refer to the lines of
intersection of a surface g = const with two planes { = const
and n = const, which are perpendicular to each other and contain

9s
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the normal to this surface. Among the possible orientations of

these planes, there is one where R, and R, have their extrema.

One then obtaing the principal radii of curvature. For these
orientations of the planes the normal to the surface g = const

remains within the planes even at points of the surface which

deviate from (xo,yo,zo) by a first-order distance. One then obtains
points of the surface g = 9; by proceeding from a point of the *
line of intersection of g = 9, with £ = 0, say, to the "corresponding"”
point of the surface g = 9, by proceeding within the surface '
£ = 0. In determining the radius of curvature of the intersection

of the surface g = 9, with the plane £ = 0, we can confine our
attention. to this plane. If the radius of curvature of the line

of intersection of the surface g = 90 is given by R, = R, One

1
finds for the corresponding radius of curvature Rll’ at g = 9,

Riy = Ryp * (py - By

If one sets P, = 0, then one obtains for the average curvature
(Eq. (A.31))

™1 -1

(.(.R10 + p)'l + (R20 +p) )

caverage,l =

2
Caverage,l = {(l/Z)[(l-M Ydux * 9

vy * g,,1/|grad gl}l

-1 -1

= (1/2)[(.R10 + p) + (R20 + p) 7]

where Rlo and Rzo are the principal radii of curvature at the
point Xo1¥qr23g" Only for large values of p will this expression

behave as p ~. .
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APPENDIX II1
VERIFICATION OF EQUATION (67)

It is practical to rewrite Eqs. (66) and the next equation.

Let
"1 =¢£§’ Rz ) ¢nn' R3 i} ¢En (a.32)
R4 = 2iw¢x - w2¢.
Furthermore
X = (1/2)(¢xx + ¢YY)
Y = (1/2)(¢xx - ¢yy) | {ar.33)
zZ = ¢xy'
The following trigonometric identities are used
coszs = (1/2)(1 + cos 28)
cos®y = (1/2) (1 + cos 2y) (a.34)
sinBsiny= (1/2) (cos(B-Y) =cos(B+Y)).
For later use we note some further identities
coszs+coszy = 14+(1/2) (cos 28+ cos 2v)=l+cos(B+y)cos(8=~Y)
cos28+cos2y = 2cos(B+y) cos(g~y)
coszs-coszy = (1/2) (cos 28-~cos 2y)= -sin(B+y)sin(g-vy) (A.35)

cos2f~-cos2y = =2s8in(g+y)sin(g-y)
8in2g-sin2yY = 2sin(B-Y)cos(B+Y)

sin2g8+sin2y = 2gin(B+Y) cos (B~Y)




Equations (66) then assume the following form

X + Y cos28 + 2 sin28 = R1

X+Y cos2Y + Z sin2y = R2
X cos(B-Y) + Y cos(B+Y) + Z sin(B+Y) = R3 (A.36)
2 ) .

x(2-u%) - Y * =R,
Equation (67), which is to be verified, now appears in the form

Rl(l-Mzsinzy)+R2(l—Mzsin23)+R3[-Zcos(B-y)-Mz(cos(B+Y)-cOS(B-Y))]
(A.37)

-R4sin2(3-y) =0

To carry out this verification one must show that the scalar product
of the vector formed with the left hand sides of Egs. (A.36) and

the vector formed with the coefficient okal through R4 in Egs.
(A.37) vanishes. Accordingly, one must evaluate the scalar product

X +Y cos2g +2Z sin2g T [ 1 - Mzsinzy 1

X +Y cos2y +Z sin2y l - Mzsinzs
-2 cos(B~-y) }
-M2 (cos (g+y) -cos (8-y) )

- 2(g~
1L sin<(B-vy) J

2

Xcos(B-y) +Y cos(g+y) +Z Sin(B+Y)' {
2

X(Z-Mz) -YM

This expression is linear in M2. The terms not containing M

give
x[1+1-2cosz(8-y)-2sin2(5-y)+Y[cosZB + cos2y-2cos(B8+y) cos (B8-v)]
+2[sin2p + sin2y - 2sin(B+y)cos(B-v)]. .

The coefficients of Y and 2 vanish becéuse of Egqs. (A.35). The
vanishing of the coefficient of X is self evident.

a8




Next we evaluate the terms with Mz. It suffices if one

sets Mz = 1. The second vector then becomes

2

[cos®y, cosze, - [cos(B+y) + cos(B~y)], -sin2(8-1)1+.

One obtains for the coefficient of X

cos?y+ cos?g - cos?(g-y) -cos (8-y) cos (8+y) -sin? (8-v) .

It vanishes because of the first of Eqs.(A.35).

The term with Y is given by

2

Y[cos(2B)cos®y + cos(ZY)coszs - Eos2(8+y)-cos(3+y)cos(3-y)+sin2(3-y)]

= Y[cos(28) (1/2) (cos(2y) + 1) + cos(2Y) (1/2) (cos(28) +1-cos? (B+Y)
-cos (8+Y) cos (B-y) + sin®(B-v)].
Next, with the second of Egs. (A.35)
=Y [cos(28)cos2y -cos?(B+Y) + sin?(B-Y)]
Now cos82B and cos2yY are expressed in terms of B+Y and B-Y
=Y [cos? (B+Y) cos? (B-v) ~sin? (B+Y) sin? (B-Y) ~cos? (B+Y) +sin? (B-Y) ]
=Y[-cosz(B+Y)sin2(B-Y) + sinz(B-Y)cosz(B+Y)] = 0.

The term with 2 is given by

2

Z(sin(2B8)cos“y + sin(zY)coszB - s8in(B+Y) (cos (B-Y) +cos (B+Y))]

=2 [8in(28) (1/2) (cos(2Y)+1l) + sin(2Y)(1/2) (cos(28) + 1)

~gin(B+Y) cos (B-Y) -sin(B+Y) cos (B+Y)].

R TPy Sy
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Then, with the fourth of Egqs. (A.35)
Z2[(1/2)sin(2B)cos(2y) +cos(2B)sin(2y)) = sin(B+y)cos(B+Y)]
= 2(1/2sin(2(B+Y))- sin(B+Y)cos(B+Y)] = 0.

This gives the desired verification.
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APPENDIX IV
CHARACTERISTICS

We compile here the leading ideas of the theory of
characteristics applied to the present case. The differential
equation under consideration is Eq. (5), with § replaced by ¢.

) _
(1-M )¢xx + ¢ -2M¢xt = b T 0 (A.38)

YY
We consider some surface in the x, y, t space and assume that it
is oriented so that it can be parametrized by x and y. Let this
surface be given by

t
Wi

f(x,y) (A.39)

We assume that by = u(x,y) ., ¢y V(x,y) and by = W(x,y) are known

on this surface. Obviously, these quantities cannot be independent.
If the surface S were given by t = const, then in order for a
potential to exist, one must have Uy = Vx‘ To derive a corresponding
relation for a general surface, we consider the following system

of equations

1 o o £, o o] [e..] (u_]

x XX p 3

0 1 0 0 fy 0 ¢yy Vy

0 0 1 fy 0 0 ¢xy Uy
0 0 1 0 fx 0 ¢xt = Vx (A.40)

0 0 0 1 0 fx ¢yt Wx

) 0 0 0 01 g ey W
The arguments of the derivatives of ¢ are x, y and f(x,y) = t. The

arguments of the derivatives of £, U, V, and W are x and y.
Premultiplying Eq. (A.34) by the matrix




e e

1 0 0 0 0 0

0 ~ 1 0 0 0 0

0 0 1l -f 0

. 0 ‘ Y
0 0 0 1l 0 -fx
0 0 0 0 1 0
L_0 0 0 0 0 1 1
one obtains
B m [ 7 [~ .
1l 0 0 fx 0 0 ¢xx Ux
0 0 0 £ v
0 Y 0 ¢YY y
0 f £ -W_ £

0 1 0 0 xfy ¢xy _ Uy xEy
0 0 1 0 0 -fxfy ¢xt Vx-wyfx
0 0 0 1l 0 fx ¢yt Wx
0 0 0 0 1l £ i W
t Y _ |.¢ttd 4 B

‘The left side of the third and fourth equations in this system are
identical. Therefore, the right sides must be identical also.

U -foy = Vx-WY fx

v (A.41)

In deriving the characteristics condition, one will omit either

the third or fourth equation, but add the partial differential
equation for Eg.(A.38), which so far has not bee used. Accordingly,
one considers the system
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1 0 0 £, 0 0 | [0,y U, ]
0 1 0 0 £, 0 - v,
0 0 1 0 0 -f £l 16| = U
0 0 0 1 0 £, bpr W
0 2 0 0 0 1 £, " W,
(1-4%) 1 0 -2M 0 -1 | |944] 0 ]




The systematic elimination of the unknows ¢xx’¢yy' etc. amounts
to premultiplication of the system by the following 1 by 6 matrix:

(-(1-M%), -1, o, 2M+(1-M2)fx, £, 1).

This yields the relation
(A.42)

2 2 o o (1-M2v11 2 -
[(2M+(1-MT) £ )£ + fy =llé., = -(1-MT) U VY+(2M+(1 M )fx)Wx+ny 0

For a characteristic surface, the derivatives (among them
¢tt) are not uniquely determined. Along characteristic surfaces
discontinuities in the second (and higher) derivatives may, therfore,
be encountered. Furthermore, derivatives within the surface cannot '
be chosen independently. This can be recognized in the last equation,

One has a characteristic surface, if the factor of ¢tt vanishes

2, 2 2 _
(1-M5) £ + 2ME, + £ - 1 =0 (A.43)

But then the right hand side must also vanish and one ocbtains the
compatibility condition

2 2 -




APPENDIX V

THE TWO DIMENSIONAL UNSTEADY FLOW FIELD AT MACH NUMBER ONE
DETAILED COMPUTATIONS

In the main text the general course of the computations is
shown. The details are rather cumbersome, although certain
expressions which at the beginning, have a rather unwidely form
can be considerably simplified. The present appendix gives these
computations in sufficient detail to allow a sceptical reader to
check the results. The function g is determined from the
differential equation (144}

2

(y+ 1)¢°xgx

- ng - g§ + 1 =0 (A-45)

In this equation the term ¢ox which is determined by the basic

" field appears: it is expressed by Egs. (154) through (159).
We add the following expression.

It follows from Egs. (155) and (156)
x =yd/5E
Hence, with Eq. (158)
-x = u(o/y%) "%/5(1-(0/2) (A.46)
and

(a/y2) =u3/2(2x)73/2(1.(0/2))3/2 (A.47)

The following formulae will be needed, because we shall use ¢ and
y (instead of x and y) as independent variables.

One has, from Eq. (158)

dc/aT= (10/3)07/5(a+ (4/3))7 L. . (A.48)
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Then with Egs. (159)

20 (x,9) /3% = (d0/ad (3T/3%) =i +(10/3)y 456 /5 o+ (4/3)) L

(A.49
0 (x,y) /3y = (do/87 (37/3y) = - (4/3)y-la(o-2) (o+ (4/3))-1 !
It follows from Eqs. (159) and (A.48) that
dT/AT = (8F/do)do/dE) = o*/>(o/8)-1)
Then from Eqs. (154),(155), and (156)
(y+l o, = u2(eryH) 3 (tora)-1) (a.50)

As a preliminary hypothesis we introduce, instead of Eq. (161)

9 = Wy ola) . (a.51)
Then
goy = 1 220/3yY® 675 (o+ (4737 &Y /40 (a.52)
5oy = 1P U6/51T, - (4/30l0=2) o+ (473))7F dT /Aol

This expression is substituted into Eq. (160) . One obtains with
Eq. (A.50)

w2y?/5{1/5 ((o/4)-1) (2007915145 (o4 (4/3)) 72 (47 /300 ®
~(20/3)07/5 o+ (4730171 (a7,/a0)

~1(6/5)7 - (4/31 a(0-2) (a+ (4/3)) “tay/ac1?} =0
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Next we set

= o g3/5

Yo Yo(c)

(A.53)
ay./do = 0‘8/5(-(3/5)y + o(dy_/da)).
(o) (o] o

Then, except for a common factor, one obtains integral powers of
¢ in the last equation ‘

w2 ¥5578/5{(100/9) 5 ((a/4)-1) (c+(4/3)) "2 (= (3/5)y + (ay_/dc))>

-(20/3) 0o+ (4/3) 7L (=(3/5)y, + o(ay_/do)) (A.54)
-1(6/5) Yy~ (4/3) (0-2) (0+ (4/3)) 1 (=(3/5) 7, + (av/am)1% ) =0.
The coefficient of Yo in the last term reduces to

(6/5) Y - (4/3) (6-2) (o+ (4/3)) "1 (=(3/5) ¥,

1

= (o+ (4/3)) “20v_.

o
One thus obtains for the whole expression (Eq. (A.53)) ]

=2,2/55-1/5 (g, (4/3))'2'{(100/9)((0/4)-1)(-(3/5)Yo+ (dYo/dU))z

u
-(20/3) (0+ (4/3)) (~(3/5)Y, + 0(dy /do)) f
2
-o[2Y, - (4/3) (0-2) (v /a0 12} = 0.

Next we collect within the braces the gquadratic terms with
different powers of dYo/dc

Quadratic terms:
(dy/do) 21(200/9) (6/4)~1) 6% - 9(16/9) (0-2)°
= (dvo/dc)zc’[o2 - 40 - 64/9) = (dyo/dc)zc(o + 4/3)) (0 - (16/3))
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Linear terms
(dy,/da) 0 [(100/9) ((0/4)-1) (-6/5) v, =(20/3) (o+ (4/3)+ (16/3) v, (0-2)]
= fdyo/dc)o[yo(8/3 + 20)=(20/3) (o+ (4/3))1
= (dyo/dc)o(o+ (4/3)) [2y-(20/3) 1.
The terms within the braces which do not contain dyo/do are
(100/9) ((0/4)-1) (9/25)¥2 - (20/3) (o+ (4/3))(-3/5)vo -40v2)
2 2

= oYy - 47

+ 4o+ (4/)7, - 40Y§

= (o+ (4/3)(-3Y°+4)Y°.
One thus obtains

w2y?/5571/5 (04 (473017 Ho (0-(16/3)) (av/do) P4a (2v,- (20/3) 8y /do)

+ (=3yg + 4y, )= 0.

The solution which is smooth, even at o = 16/3 (the limiting
characteristic) is immediately obvious

Yo = 4/3 (A.55)
Combining Eq. (A,51), (A.53), and (A.55), one obtains
go= 4/t y¥/3 o735 (a.56)
A correction 9, to 90 is computed from Eq. (166)

((v+ 1) 0,901 97y = +(1/2) =0 (A.57)

gnglY

)
!
i




One has from Egs. (A.56) and (A.49)

Iox = 0 2(8/3yY 567 5o+ (ay3) 7
Goy = 1 (8/39Y %6 3 o+ (4/3) 7

and, with Eq. (A.50)

(Y+1) 8,9, = = (8/3) ((6/4)-1) (o+ (4/3))7%

(y+1) 6,9, -1 = (= (5/3)5 + (4/3)) (o+ (4/3)) 7%,

First we set

4 —-
7

Then one has, with Eés. (A.49)
91, = 1 H(10/3) 673 (o+ (4/3)) 71 (8¥,;/d0)

91y = ¥ /P04/9)7) - (4/3) (-2) (o+ (4/3)) "Lo(a7,/d0) 1.

Substituting this into Eq. (A.57), one obtains

1

(=(5/3) o+ (4/3)) (o+ (4/3)7F u"H(20/3) 673 (o+ (4/3)) L (a7, /40)

-1 -1/5

134230+ (473071 y™5104/5) ;- (4/3) (0-2)

- Ls/ay
(04-(4/3))710(d?1/do)_J + (1/2) = 0.
This equation simplifies :

(o+ (4/3))~ 1yl 02/5'{-2 (¥, /a0 - (32/15)71} + (1/2) =0
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(A.61)




This shows that with the hypothesis (Eq.(A.57)), one obtains an
ordinary differential equation in which y does not appear.

Next, one introduces

- 0-2/5

Yy = u Yy (A.62)

Substitution into Eq. (A.61l) gives
{517, - 20(ay,/d0) - (32/15)y;} = -(1/2) (o+ 4/3))
and finallg,
o{dy,/do) + (2/3)y, = (1/4) (o+ (4/3)).
The solution which is smooth at ¢ = 0 is given by
Yy = (1/2) + (3/20)0 (A.63)
Thus,
9; =uyY> 3 (1/2) + (3/20)0) (A.64)

From Eqs. (A.56) and (A.64), the following approximation is
obtained

g = "1y6/5,-3/5

[(4/3)+A((1/2) + (3/20)0)] (A.65)
with

Aw u2(°/y2)1/5

In the vicinity of the negative x-axis, one uses Eq. (A.47) ;
to evaluate (o/yz) j
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Next, formulae for the characteristic directions are developed
on the basis of Eq. (147). Parts of the numerator and denominator
! of the right side are found in Egqs. (A.58) and (A.59). For the

; missing contributions of g, One finds from Eq. (A.64) and (A.49)

Y —— T

- - |
gy, =uy 20723 {(4r5) ((1/2) + (3/20)0) e,

-(4/3) (0-2) (o + (4/3)) "L [-(2/5) (1/2) + (3/5)(3/20)0]}

This simplifies to

9y = u(16/15)y 175 3/5(6 4 (ay3)) L (3.67)

Moreover, from Egs. (A.64) and (A.49)

a1, =uyY37 5 - (/s +9/2000 00w (10/2)y™4 5675 (o4 (a/3)) 7

91x = (-(2/3) + (3/10)0) (o+ (4/3))71

Then with Egq. (A.50)

(A.68)
= 12(a/y2) Y3 ((0/4) 1) (~(2/3) + (3/10)0) (o+ (4/3)) "L

(Y+1)¢oxglx

Combining Egs. (A.67) and (A.68) with (A.59) and (A.58) and using
the definition of A, Eq. (A.65), one obtains

1 ~(y+ 1o, = (o+ (4/3))711(5/3)0=(4/3)) + A(0/4)-1) ((2/3-(3/10))0)

= w1 155275 6+ (4/3))"L(8/3) 11 + (2/5)A]

Iy

Then, from Eq. (147)

Dx/Dy = u(q/y2) "%/ L1 (5/8Y0 - (1/2)

-1 (A.69)
+ A((o/4)-1)(1/4)-(9/80)0] [1+(2/5)A]




To obtain Do/Dy, we proceed as follows. It follows from Eq. (A.46),
that along a curve o= o (y)

dax/dy=y" Y (0/v2) "2/51(4/5) ((0/2)-1) +(3/10) (o+(4/3)) d(loga) /d (logy) ]

One obtains, by substituting into this equation the value of Dx/Dy
for the characteristics, Eq. (A.69)

‘5/9’9:‘113)+§‘£°(;};3;‘1/4’"9/9°12?-(4/5)((c/z)-1)+(3/1o)(o+(4/3))o(1ogo)/o(1ogy>

Hence
(3/10){a+ (4/3))D(logo)/D(logy) =
= (1+(2/5)A)-l{(5/8)0-%+A((q/4)-1)((l/4)-(9/80b’)-(1+(2/5)A)(4/5)((0/2)-1&

= (1+(2/5)A) "1 (9/40) (o +(4/3))-A(9/320) (g +(4/3) (g-(28/15))}

- Hence,

D(1ogo) /D(logy) = (1+(2/5)A)"1(3/4) [1-(1/8)A(0-(28/15))]

One may develop the denominator with respect to A. Then one obtains

D(logo) /D(logy) = 3/4([1-(1/8)A(c+ (4/3))].

Usually, it is convenient to consider ¢ as independent variable.
Again, developing with respect to A, one obtains

D(logy) /D(loga) = (4/3([1-(1/8)A(c+ (4/3))] (A.70)

Next, we derive an expression also for D(log-x)/Dlogc. One finds from
Eq. (A.46)

Dlog(-x) = (4/5)d(logy)-(3/10) G +(4/3)) (1 - (0)/2)) td(logo).




Equation (A.70) is used to eliminate d(iogy). One then obtains
(A.71)
D{log(-x))/D(logo)= (2/3)[(l-(5/4)0)(1-(0/2))-1+(1/5)A(0+ (4/3)1.

No develophent with respect to A has been carried out in deriving

Eq. (A.71) from Eq. (A.70). Although both equations neglect terms

of higher order in A, they will give the same directions in the x,y .
plane. The same holds for the quotient of Egs. (A.71) and (A.70)

- D(log(-x))/D(logy) = (a.72)
(1/2)[(1-5/4)0)(l-(0/2))-l+(1/5)A(U+ (4/3))][l+(1/3)A(0+(4/3))]-1

o e T P BTN T N ST T T

For the vicinity of the y axis, one writes

D(-x) /Dlogy)

1 1

=(1/2) [(1-(5/4)0) (-x) (1-0/2))  ~=x(1/5)A(c+ (4/3))1[1+(1/8)A(c+(4/3))]1"

and uses Eq. (A.46) to express (--x)(l-(cr/Z))-1

gives (0/0).

. which for x = 0
An analytical expression for the characteristics is found
from Eq. (A.70). In the lowest approximation in A, one obtains
y=cog (A.73)

where ¢ is the constant of integration. To take first order terms
of A, we introduce

u=log y
v = log o.

This is substituted into Eq. (A.70) and the specific form of A is
introduced. One obtains $

Du/Dv = (4/3) +(1/6)u2exp(-(2/5)u)[exp((G/S)V) + (4/3)exp((1/5v)1=0.
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In the first approximation,.one obtainslthe abovevresults
u, = (4/3)v + log c.

Next, one sets
u = u, +u

and neglects higher order terms in u,. Then

Dul/Dv=(1/6)u2(exp(-(8/15)-(2/5)logc)[exp((6/5)v)+(4/3)exp((1/5)v)]=0

2c-2/5

Du, /Dv=(1/6)u exp((2/3)v) + (4/3)exp(-((1/3)V)] = 0O

u, =251 (1/0)exp((2/3)v) - (2/3)exp(-(1/3) W) 1.

Therefore, accurate to the next order

-2/5

u=1log c + (4/3)v + ule ((1/4)exp((2/3)v)=~(2/3)exp((~1/3)V)]

4/ 3expu2c=2/5(1/8)0%/3 - (2/3;0°1/3

y=co
For c large (y large) the argument of the exponential function is
small. Developing the exponential function, one obtains

4/3 4 1235 (1/4)0%- (2/3)0] (A.74)

y=co
For the application of the far field conditions one needs
the derivative of g along the characteristics. The formula which
is correct to the first order in A is Eq. (177). The lowest
approximation is simply by substituting Eq. (A.74) into Eq. (A.56)

g, = (473"l /5

or

g, = (4/3u"lc 3/20,3/4, f

13 4




Hence,

-1 c6/5

D go/Dc = (4/3)u (1 + 0(a))

(A.75)

-1 c6/5

= (4/3)u (1 + o(y~?">))

and

by /Dy = y"le 9720 -1/4

Also needed is DlogH/Dy. One has from Egs. (153) and (149)

D(logH) /Dy = (1/2)[(Y+1)(3(¢°xgx)/BX) - gyy]/gy. (A.76)

We evaluate this expression only to the lowest order in A.
According to Eq. (A.59)

(+ Do, Tox = -(8/3) ((6/4)-1) (o+ (4/3))77.

Hence with Eq. (A.49)

)/ ==(8/3) (1/4) (G+(4/3))-((Q’4) l) (10/3)Y 4/50'7/5(o+(4/3))"1

(y+1) 3 (¢ Jox
ox (o+ (4/3))2

=~ (320/2m00 A ¥ P00+ (473)) 73, (A.77)

According to Eq. (A.58)
(A.78)

g°y=u'1(s/3)yl/5oz/5(o+ (473"t =uL(8/3)y(0/y2) /3 (04 (47301

Then with Eq. (A.49)

Sogy = W L8/ Y56 3 (s a3 T ass) +

[(2/5)0 Yo+ (4/3)) 1= (o+ (4/3))‘2(-(4/3)o(o-z)(o+4/3)‘1}




—— or— T ———

(A.79)

Hence
Soyy™ (873 (/v ¥ e (a3 H{ass 0?8185 + (16/45)
-(4/3) (0=2) [(2/5) (o+ t4/3>)-ol}
Yoyy =u'l(8/3)(c/y2)2/5(o +(4/3)'3[02-(16/9) + (16/9))

Then from Egs. (A.77) and (A.79)

2/5

(Y+1)3(9 90,0 /3,9 = 1 L (a/y?)

Yy
+ (16/9)0 - 16/9] = v L(a/y*)?/5(8/3) (0+(a/3)) 71
and from Eq. (A.76) together with (A.78)
D(logH)dlogy = -(1/2)
Along a characteristic is the

H = const y'l/2

(+(4/3)) " 3(8/3) [-(40/9)0 - o2

(A.80)

In the expression for the far field conditions, Eg.(80), DlogH/Ds

nd Dg/Ds appear in the coefficient of ¢. For large y,

DlogH/Dy ~ y 1

and according to Eq. (75), Dg/Dy Vv = Y-1/4-

The. contribution of DlogH/Dy is therefore negligible.
(80) is important in the demonstration of Section IX.
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APPENDIX VI
THE AXISYMMETRIC UNSTEADY FLOW FIELD AT MACH NUMBER ONE
DETAILED COMPUTATIONS

The computations are identical with those for the two-

dimensional case, except of course for the specific form of the
analytical expressions.

The function g satisfies the same differential equation as
before

(y+1) o, 92 - 29 - g; +1=0. (A.81)

The term for Pox? by which the basic field enters is found from
Egs. (186) through (189). We add, (from Eqg. (187))

x = uy4/7f
and with Eq. (189)
-x =u(o/y%) "%/ 7 (1-20) (A.82)
and
(0/¥%) = w2 (%)~ 72 (1-24) 772 (A.83)
One obtains, from Eq. (189)
do/dT = (7/10)0%/ 7 (o+ (1/5)) 7% (A.84)

and, with Egqs. (188)

30 (x,y) /3 x = L (7/10)y~ 47 6%/ 7 (g+(1/5)) L 1
(A.85)

30 (x,y) /3y = -(2/5)y"} o(20-1) (o+ (1/5))" %
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It follows from Egs. (189) and (A.84), that

3/7

df/dy = (8/3) ¢ (0-1).

Then, from Egs. (186),(187), and (188)

(vl oo, =u>ta/y$)¥7(8/3) (o-1). (A.86)

We make the preliminary hypothesis

9, = 1 7 T (. (A.87)
Then,
9oy = 1 207/200¥%7 7o+ /517 a7 _sa0
_ -1.3/7 - -1~
oy = H Y [(10/7)Yo -(2/5)0(20-1) (o+ (1/5) dyo/do]. (A.88)

The function 95 will satisfy Eq. (A.81) in the highest power in y.
One has specifically

2 2
(Y1) doy9ox = 290x Yoy ~© 0.

One obtains, by substituting Eqs. (A.86) and (A.88)

w"2y8/ {637 (8/3) (o-1) (49/100)6*8/7 (a+ (1/5)) % (a7 /do) 2

-(7/5)6° 7 (o+(1/5)) 1 (a7 /40)

‘ -1(10/1)7, =(2/5)0(20-1) (a+ (1/5)) "1a7_/do1?} = o.

Next we set

7, = vy
° o  (A.89)

d?é/do = 0-12/7[-(5/7)7o + o(dyo/do)]
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Then one obtains

w287 o777 L198/75) 6 (0-1) (04 (1/5)) "2 (= (5/T) v+ o (ay /o))
-(1/5)0(0+ (1/5))"H(= (5/7)Y, + 0(dY /do)) (A.90)
-[(10/7)Y, - (2/5) (20 -1) (0+(1/5)) 1

The coefficient of Yo in the last term reduces to

(10/7)Y,-(2/5) (20-1) (0+ (1/5))-1(-5/7)Yo
= oo+ (1/5)) Ly .
One then obtains for the whole expression, Eq. (A.90)
u-2y6/7

2

o”3 7 (o+ (1/5)) {(98/75)(0-1)(-(5/7)yo + o(ay_/do))?

+ o+ (1/5)) (v, = (7/5)a(dy /do))
; 2
-o[ZYo + (2/5)(1-20)(dY°/d0)] } = 0.

Next we collect within the braces the terms with different powers
of dyo/dc. Quadratic terms:

(dy_/d0)2[(98/75) (9-1) 02 (4/25) 0 (1-20) 2]

=(dy/d0)% ((2/3)0%-(2/3)0-(4/25)] = (av_/d0) %0 (2/3) (0+(1/5)) (0= (6/5))
Linear terms:

(dy,/do)((98/75) (9-1) (=10/7) oY= (7/5) (0+ (1/5)0=(/8/5)5(1-20)Y,]

=(dy,/do)o(o+ (1/5) [(4/3)y,-(7/5)].
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Terms without dyo/do
(98/75)(0-1)(25/49)Y§ + (o+ (1/5)Y, - 4o/y§
= Yol-(10/3)Yo + 1) (o+ (1/5)).
One thus obtains, from the terms within the braces
(o+ (1/5)1} {(dYo/dc)z(z/BY(o-(G/S) + (dvo/dO)o((4/3)Yo-(7/5)
+ Yo[-(10/3)Yo + l)} =0
The solution which is smooth, even at ¢ = (6/5) is given by

Yo©= 3/10. (A.91)

Combining Egs. (A.87), (A.89), and (A.91), one obtains

-1l 10/7 _-5/7
y 0/ 5/ .

g, = (3/10)u o (A.92)

A correction, 9 to 9g’ is obtained from Eq. (A.8l) by retaining
only first order terms in 9,

((v+ 1)¢oxgox -l)g1x - goygy + (1/2) = 0. (A.93)

One has, from Egs. (A.92) and (A.89)

9o = 4 2(3/200y%/7 077 (0r (175072
(A.94)
Yoy = wL3/5)y3 70 27 (0x (1/5)) 72
and with Eq. (A.86)
-1
(vy+ L)o__g _ = =(2/5) (0=1) (o+ (1/5))
ox“ox (A.95)

1

(Y+ 1) 9, Goy=1=(=(7/5) 0+ (1/5)) (a+(1/5)) "
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We set

g9, = y4/771(c) (A.96)

Then, with Egs. (A.49)

91, = T (7/1006° T o+ (1/5)) 7LaT, /40

91y = ¥ L4/DY (-2/5) (26-1) (o+ (1/5)) "LodT, /do]
Substituting this into Eq. (A.93), one obtains

(=(7/5)c +(1/5)) (g+ (]_/5))-l u'l(7/10)°9/7(c+ (1/5))-1d7i/d0

-11'1(3/5)113/"02/7(cr+(1/5))'1[(4/7)7l -(2/5) (20-1) (o+ (1/5)) "‘od¥,/do]

+ (1/2) = 0.

This equation simplifies to

(A.97)
W sy o+ (17507 0¥/ 71-(5/2)0(d7,/d0) - (12/T)7;1+(1/2) =0.

Next one introduces
- _ 0-2/7Y

Yy T H 1

‘Substitution into Eq. (A.97) gives

(1/5)[(5/7)Y1 -(5/2)c(dyl/do)-(12/7)yl]] + (1/2) (o+ (1/5)=0
and finally
c(dyl/dc) + (2/5) = (o+ (1/5)).

The solution which is smooth at ¢ = 0 is given by
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Yy = (1/2) + (5/T)o (A.98)

Thus
g, = wy¥7 ¥ (s2) + (5/10) (.99)

From Eqs. (A.92) and (A.99), one thus obtains the following
approximation

g =L y19/7 575/7 1 (3/10) +A((1/2) +(5/7) q) ]
with

A = uz(d/y2)3/7

(A.100)
In the vicinity of the negative x axis one uses Eqg. (A.83) to
evaluate (o0/y2).

Next, formula for the evaluation of the characteristic
directions are developed. Since the differential equation for g,
Eq. (144),is the same for the plane and the axisymmetric problem,
one obtains the same formula for the characteristic directions, viz
Eq. (147). Parts of the numerator and the denominator are found
in Eqs. (A.94) and (A.95). For the missing contributions of gy
one finds from Egs. (A.99) and (A.85)
= yy~¥7572/7 {(4/7)(1/2)+(5/7)o) + (=(1/7)+(25/49)0)

gly

- (2/5) (20-1) (o+ (1/5)) " L((1/2) (-2/7) + (5/7)20}.

This simplifies to

ay, = u(24/35)y%7 o>/ T(ov (1750 7h (A.101)
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Moreover, from Egs. (A.99) and (A.85)

-4/709/7 1

a1, =uy?7 ™7 casn + 2s/a9 0 Hr/100y (o+ (1/5))°

9y, = (-(1/10) + (5/14)a(o + (1/5)) 7.

Then with Eq. (A.86) ! r
(A.102)

1

(v+1) ¢, g1, =n2 (0/¥3) 37 (8/3) (0-1) (-(1/10)+(5/14) 0) (o+ (1/5))~
Combining Egs. (A.101) and (A.102) with (A.94) and (A.95) and

using the definitions for A, Eq. (A.100), one obtains

1-(y+1) o, g, = (o+ (1/5)) 7 ((7/5)0-(1/5) +A(o-1) ((4/15)~(20/21)0)]

3/702/7

g. = u"t(3/5)y (+(1/5)) L1 + (8/7)A) .

b 4

Then, from Eq. (147)
(A.103)

-2/7y~l

Dx/Dy=u(c/y2) [(7/3)0-(1/3)+A(0‘1)((4/9)-(100/63)0)[1+(8/7)A]-1

To obtain Dg/Dy we proceed as follows. It follows from Eg. (A.82)
that along a curve g= agl(y)

ax/ay =y~ (a/v%) "2/ 7[(4/7) (20-1)+(10/7) (0+(1/5))d(1ogo) /d (logy) ]

One obtains, by substituting into this equation the expression (A.103)
for the value of Dx/Dy along a characteristic

(7/3)0-(1[3)+A(o-1)((4/9)-(100153)0)3(4/7)(zc-l)+(10/7)(o+(1/5))
(1+(8/7)a) D(logo) /D(logy) '

Hence,
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(10/7) (6+(1/5)D(logo) /D(logy)

= <1+(8/7)A)‘1{(7/3)o-<1/3)+A(c-1>((4/9»«100/63>o)-(1+(s/7)A)(4/7)(zc-l)}
= (+(8/1a) "H{(25/21) (o+ (1/5) ~A(100/63) (0+(1/5) -(23/35))}

Hence,

D(logo)/D(logy)= (1 +(8/7)A)-l(5/6)[1-(4/3)A(o-(23/35))].
Developing the denominator with respect to A, one obtains
D(logs) /D(logy) = (5/6) [1-(4/3)A(c+ (1/5))]

Usually it is convenient to consider o as the independent variable.
Again, developing the denominator one obtains

D(logy)/D(logg) = (6/5) (1 + (4/3)A(o+ (1/5))]. (A.104)

We derive an expression also for D(log(-x))/Dc. One finds from
Eq. (A.82)

1

d(log(-x)) = (4/7)d(logy)+(10/7) (o+(1/5)) (20-1) ~dlogo

Equation (A.104) is used to eliminate d(logy). Then
) (A.105)
D(10g)-x))/Dlogo)= (2/5) [(1-7g) (1-20) ~1+(16/T)A(a+(1/5))].

Here no development with respect to A has been carried out. The
quotient of Egs. (A.105) and (A.104) gives

D(log(-X))/D(1°9y)=(1/3)[1-70)(1—20)-1+(16/7)A(a+(1/5))]

[1 +(4/3)AC0+(1/5)) 1" .
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For the vicinity of the negative y axis one writes
D(-x)/D(IOQY) = (1/3)[1-70)(-x)(1-20)-l+ (16/7) (-x)A(o+ (1/5))]
[1+(4/3)A(0+(1/5)) 1L

and uses Eq. (A.82) to express (-x)(1-20)—l.

To find an analytical expression for the characteristics, we
set

u=1logy
v = log o

Then from Eq. (A.104) and (A.100)

Du/Dv = (6/5)+ (8/5)u2exp(-(6/7)u[exp((10/7)V)+(1/5)eXP((3/7)V)]
One obtains in the first approximation

.u.o = (6/5)v + log c.

Next one sets
= +
u u ul

and neglects higher order terms in u Then,

ln

Dul/Dv=(8/5)u2(exp(-(36/35)v -(6/7)1logc) (exp((10/7)v+(1/S)exp((3/7)Vv)]

Zc-6/7[

Dul/Dv = (8/5)u exp(12/5)v)+(1/5)exp(-(3/5)v]

Zc—6/7

@, - [4 exp((2/5)v) - (8/15) exp(-(3/5)v)].

Therefore, correct to the next order,
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u = logc + (6/5)v + uzc-6/7[4 exp((2/5)v)~-(8/15)exp(~3/5)v)

- 6/5

Y = oo -6/7 5 _

expin2c™%/7140%/5 - (8/15)073/5]}
For c large (y lafge) the exponential function is developed. One
obtains

vy =c o%° + 12 7:3/5 (46 -(8/15)). - (A.106)

We compute in the lowest approximation the derivative of g
along a characteristic. This quantity occurs in the application
of the far field conditions. One obtains by substituting Eq. (A.106)
into Eq. (A.92)

Io = (3/10)1,1"1 c10/70
or
90(3/10)u-lc 25/42 y5/6.
Hence
Dg_/po= (3/100u et (1 + o(a))
= 37100 71+ oy (2.107)
and

-1c25/42y-1/6

Dg /Dy= (1/4)u (1+0(y~1/%y).

Also needed in the far field condition (at least until it
has been shown that its order can be disregarded) is D(logH)/Dy.

The characteristic directions are given by the same general
formulae in the axisymmetric and in the plane flows. One obtains
from Egs. (185) and (149)




D(1ogH) /Dy = (1/2) [(y+1) 3 (8., 3,)/2%) =y "2 (yg,) /3y1q, - (A.108)

We evaluate this expression only to the lowest order in A.
According to Eq. (A.95)

(v+ 1)0,,9., = -(2/5) (9-1) (o+ (1/5)) 71,

e e e

Hence with Eq. (A.85)

.

-(2/5) —2*{1/5)=(0=1) ;=1 (9,10)y"4/ 7597 (64(1/5)71

(y+1)3(¢__g . _)/3x
oxX~0OX (o+ (1/5;2
= -~ (a2/125) (0/y*) %75 (o+(1s5) >, (A.109)
According to Egq. (A.94)
Y 9oy = 1137519762/ 7 o+ (1/5)) 72 (A.110)

Then with Eq. (A.85)
ylatyg )70y = wHa/s)y 76 M {0/ (ar /s
+ 12/ 6 Lo+ (1/5)) "L (o+ (1/5))'21[-(2/5)0(20-1)(c+(1/5)'11}

ytaty 9o ) /3v=u L (3/5) (o/y%) 2 Tior (/50173 { @o/n) (o (1/5))2

+ 1(2/7) 0+ (1/5))=0] [~ (2/5) (20-1) }
v 1oty gg )72y (3/5) (a/v%) 2/ (o4 (1/5)) 3 1/ 1) { (1002 4404 (2/5)

+ (2/5) (1-20) (-50+ (2/5))}

ylaty 9o /3y m76/5) (07913 T (04 (1751173 (0P 4 (372500 + (1/25))
(A.111)
Combining Eqs. (A.109) and (A.lll) one obtains
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(Y+ 1) 39,90y /3% - y'lo(ygoy)/ay

= HoyH 7o+ (/573 {-(42/125)0- (6/5)0° -(18/125)0-(6/25))}
=" (6/5) (o/y) ¥/ T (o+ (1/5)) L.

Hence, from Egs. (A.108) and (A.110)

D(logH) /Dy = y'l (A.112)

H = const y I.

Comparing Eqs. A.1ll12) and (A.107), one recognizes that in the
evaluation of the far field conditions D(logH)/Dy is negligible in
comparison to Dg/Dy. Equation (A.1ll2) is, however, important in
the demonstration of Section IX.
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Figure 2. System of Wave Fronts for a Free Stream
Mach Number One in Linearized Theory.
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Figure 3. Normal to a Wave Front and Characteristic
for a Wave Spreading out from the Origin.
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Figure 4. Coordinate System for the Evaluation of
Derivatives at the Edge of the Computed
Region.
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Figure 14.

— X

9(x,y)=g(x4,¥o)

Coordinate System Used to Determine
the Radius of Curvature of a Wave
Front.
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Figure 15. Curve with Positive Radius of Curvature.
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Figure 16. Orientation of the £,7 System with
Respect to the x,y System.
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