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Abstract

We-consider the random-accessing problem of a single,

collision-type, slotted, packet-switched communication channel

by a large number of independent, data transmitting bursty

users. Wepropose and analyze an easy-to-implement algorithm
under the realistic assumption that each user inspects the

channel outcome feedback only whenever he is blocked. -W asurc

binary feedback which informs the users only about whether or not

there was a collision in the previous slot. We-ehem-that the

algorithm results in finite average delays for transmission at

rates less than 0.36 packets per channel slot, and we give an

exact upper bound for the average delay/ , j

. .... . . . . .. . . . II -77-"
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1. Introduction

The multiple-access problem in communications is the problem

of organization, or coordination of a population of users for

the efficient sharing of the resources of a single channel used

by the users for information transmission. This situation

arises in a number of applications: Computer-communication

networks, packet-radio networks, satellite communication networks,

local area networks.

Random multiple-access schemes are an important class of

techniques that employ distributed control algorithms to cope

with the multiple access problem. These schemes are especially

useful in the presence of an asymptotically large number of

ill-specified, independent bursty users. The users gain access

into the channel on a contention basis. The accessed channel is

a collision-type, packet switched, time-slotted transmission

channel. Some form of feedback information associated with

the message transmissions is always assumed to be available to

the contenting users. For this general model, a variety of

access algorithms (protocols) has been proposed and analyzed

by several authors. The properties of these algorithms vary

considerably with the level of the feedback information assumed

available to the users.

In [4-81 it is assumed that immediately after each channel

slot a ternary feedback is broadcasted to the users. This is
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f known as 0,1,e feedback and informs the users whether the previous

slot was empty (0), or contained one packet (1), or contained a

collision (e). A collision occurs wnenever more than one users

attempt transmission within the same slot. All information

contained in the collided packets is assumed lost, and these

packets must be retransmitted at later times.

The algorithms developed in [9] use binary feedback. Binary

feedback is less informative compared to ternary feedback and

may be available in three different forms: "Collision/No Collision"

feedback, "Something/Nothing" feedback and "Success/Failure"

feedback (notation suggested by Mehravari and Berger [1).

Several recent efforts of developing more efficient

realizable algorithms have used more informative types of feedback

than ternary feedback. In [10] it is assumed that after each

collision the number (up to an upper maximum limit) of the

packets involved is revealed to all users, through a bank of

energy detectors. Also, in [ll] it is assumed that additional

information (four-valued, or five-valued feedback) is available

to the users through the use of control mini-slots. All the

algorithms in the papers mentioned so far require that each user

inspects the feedback broadcasting for every channel slot over

the entire operation of the random-access system. In the slotted

Aloha algorithm [1, 2] (which is unstable for an asymptotically

large number of users) each user inspects only the slots that

correspond to his own attempts.

Tsybakov and Vvedenskaya [12] proposed and analyzed a

"limited-sensing" algorithm, called "Stack" algorithm, where

.....
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J each user inspects the feedback broadcasting only whenever there

is an unsuccessfully transmitted packet in his buffer. The

"Stack" algorithm uses ternary feedback and achieves a maximum

stable throughput of at least 0.384 packets per slot.

Using the same feedback level as in (12] Papantoni-Kazakos

and Marcus (131 developed a limited channel sensing algorithm

for a limited number of data users.

In the present paper, we propose and analyze a Limited

Sensing random access Algorithm with Binary Feedback (LSBFA).

The user and channel models assumed are described in section 2.

In the LSBFA, users with new packets transmit their packets in

the first slot following their arrival, and then they resolve

any collisions using the "Capetanakis-Tsybakov-Mikhailov-

Collision-Resolution-Algorithm" (CTMCRA) [141. In contrast to

the "Tree-type" random access algorithms [4-111, where there is

an explicit and separate collision resolution period, the

LSBFA, like the "Stack" algorithm, allows new packets to continuously

enter into the system independently of the collision resolution

process already in progress. From a practical point of view, the

"continuous-entry" feature is very significant, since the users

monitor the feedback channel only whenever they have a packet to

send (limited-sensing). Thus, the undesirable in several

applications necessity of all users monitoring the feedback

channel constantly--even if they have no packet to send--is

eliminated.

The organization of the paper is as followst

Q 7
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In section 2, we present the user and channel models, and

the LSBFA statement and general operation.

In section 3, we analyze the algorithm by expressing and

studying a system of recursive equations for the expected

length of collision resolution sessions; we evaluate the

stability region of the algorithm and the expected length of

a session.

In section 4, we use the results of section 3 to give

an exact upper bound for the average packet delay.

In section 5, we compare the LSBFA to other random access

algorithms.



2. The Model and the Statement of the Algorithm

We assume that an infinite population of spatially

isolated, independent, bursty users (transmitters) share a

single channel to communicate with a central facility (common

receiver). The users transmit data packets of fixed duration

taken to be the unit of time. The channel time is divided

into unit-time-segments called slots. The unit interval

(t, t+l) is called slot t (t = 0, 1, 2, . . .). All users

are synchronized to the starting points of the channel slots,

and they attempt transmission of some packet only at the

beginning of some channel slot.

The users do not communicate with each other directly;

therefore, the probability of more than one users attempting

transmission of a packet within the same slot is nonzero. A

j channel slot is a collision slot if more than one packets

attempted transmission within it. All information in the

I packets involved in a collision is assumed lost, and these

I packets have to be retransmitted. A channel slot is empty if

no packet attempted transmission within it, and it is successful

I if exactly one packet was transmitted within it. In the later

case it is assumed that the transmitted packet reaches its

I destination error free.

j A feedback channel from the common receiver informs the

transmitters at the end of each slot whether or not there was

a collision in that slot. We assume that the feedback channel
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is a noiseless broadcast channel, and that propagation delays

are negligible. Therefore, immediately at the end of slot t

a user who is interested in the outcome of that slot can learn

it be monitoring the feedback channel. Let the random

variable Ztdenote the outcome of slot t. We have

INC if slot t contained < 1 packets (no collision)
t C if slot t contained > 2 packets (collision)

The Collision/No Collision (CNC) binary feedback assumed

here uses less information compared to the 0,1,e ternary

feedback, since the former does not distinguish an empty slot

from a successful slot. Its implementation can be based on

a simple binary acknowledgment scheme from the central facility

to the users ("NC" or "C").

Let the random variable N(t) denote the number of new

packets appearing in the system for transmission from all users

combined during slot t. It is assumed that MNt)1(t = 0, 1, 2,. . ..

is a sequence of independent and identically distributed

random variables. Let p n = Pr{N(t) = n} be the probability

mass function (p.m.f.) of N(t)(t = 0, 1, 2, .),and let

A=E{N(t)) be its expectation, which is assumed being finite.

Thus, A is the intensity of the cumulative input traffic

measured in number of packets per slot. For the infinite-population

model, only one packet requiring transmission can be present

at a station at any given point of time.

The following definition will be used in the statement of

the algorithm.

4 7t



7

Definition 1 At any time t a user may be either active or inactive

At any time t an active user may be either new

or blocked

A new user at time t is a user with a packet

generated during slot t-l

A blocked user at time t is a user with a packet

that has attempted transmission and experienced

collision at some slot prior to slot t

At time t a packet is new or blocked if it belongs

to a new or blocked user respectively

The statement of the algorithm is contained in two simple

rules. For the implementation of the algorithm in a distributed

fashion, it suffices for each user to have a counter and a

binary fair coin. The rules of the algorithm are followed by

the active users only, and are as follows:

Let the random-access system start at t=O with all counters

set at 0.

Rule 1 At time t (t = 0, 1, 2 . . . ) blocked users with

counter at 0 and all new users transmit their

packets in slot t

Rule 2 At the end of slot t (just prior to time t+l) all

active users inspect the feedback channel. If

slot t were collison free (Zt =NC) , the user who

transmitted his packet (if any) leaves the system

(becomes inactive), and all blocked users decrement

their counters by one. If slot t were a collision

slot (Zt =C) , each collided user tosses a binary



1fair coin and sets his counter to 0 or to 1

according to the outcome of the coin tossing. All

other blocked users increment their counters by

one.



3. Algorithm Analysis

The two most important performance measures of a random-

access algorithm are the average delay of a packet and the

maximum stable throughput of the system. The delay of a packet

is the time between the instant the Packet originates as a

new packet until the instant it is successfully transmitted.

Let 6 nbe the random variable that denotes the delay of the n t

packet.

A random-access algorithm or system is called stable if

the lrn supE{6 n ) is finite, assuming that the limit exists.

This means that for a stable algorithm the delay of a packet

will remain finite with probability one. The throughput or

output rate of a random-access system is the long-run average

number of successfully transmitted packets per unit time; it

is denoted by n. Given an algorithm, let n* be the supremum

of n~If the input rate x is less than n*, then the throughput

is x, and the system is stable. If the input rate x exceeds the

maximum output rate n*1 , then the average packet delay becomes

unbounded (Little's result) and the system is unstable. Thus,

n= sup{X\: the system is stable)l

We call n* the efficiency of the given algorithm. The

interval (0, n*) is its stability region.
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In this section we study the stability region and the

average packet delay for the algorithm described in section 2.

We proceed with the following definitions:

Definition 2 A clock instant t R is a renewal instant

if all active users at t R (if any) are new

users

Definition 3 A session is a sequence of consecutive

channel slots, that begins and ends at two

consecutive renewal instants.

Definition 4 A session starting at some renewal instant

t R is called a session of multiplicity k

if the number of active (new) users at t R

is k; k = 0, 1, 2,..

if t Ris a renewal instant, then at t R" by definition 2,

there are no blocked users in the system. Thus, any previously

blocked packet has been successfully transmitted prior to slot

tR' From definitions 1 and 3, and the independence of the

incoming traffic from a particular session, it is clear that the

lengths of consecutive sessions are independent and -dentically

distributed random variables. Let the random variable T denote

the length of an arbitrary session, and let T k denote the length

of a session of multiplicity k. The distribution of both random

variables T and T k depends only on the probability mass function,

that models the incoming traffic (input), and on the rules of the

algorithm, but not on the particular session.

The sessions with multiplicity 0 or 1 are trivial and both

have length equal to one slot. The session of multiplicity 0 is

called the empty session.
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I Let ts and te be the two random consecutive renewal instants

th
that denote the starting and ending instants of the n nonempty

session respectively. Since at both ts and te there are no

blocked users present at the system, the number of successfully

transmitted packets during the course of the session is simply

the random number of packets that appeared to the system

requiring transmission during the time interval (ts-l, te-l).

Let the random variable M denote the random number of success-

fully transmitted packets during the nth nonempty session. The

average packet delay of a nonempty session is defined as follows:

-1 M
D=E{M 6m} (i)

m=l

where 6 is the delay experienced by the mth successfullym

transmitted packet during the session.

It is clear that D is independent of the particular session,

because sessions are independent of each other, and because the

j input traffic is a process with independent and identically

distributed increments (N(t)). Thus, the average packet delay

j of the nth session, given by (1), is the average packet delay

of the system, that is over all sessions.

i Since all the packets of the session requested transmission

fnot earlier than ts , and were successfully transmitted not later
than te-1, we have

16 < T-l; m = 1, 2, . . (2)

1where T is the length of the session. From (1) and (2) we have

4

' _ _ _.. . . .__ _ . ..
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the following upper bound for D:

D D<L- (3)

where L = E{TI is the mean length of a nonempty session. Let

Lk be the mean length of a session of multiplicity k. Then,

Lk = E{Tk}. The mean length L of a nonempty session is

expressed in terms of Lk and the probability mass function pk

of the input, as follows:

L = (1-p0)- PkLk (4)
k=l

The algorithm is stable if and only if D is finite. Hence,

using the bound given by (3), the condition L<- is sufficient

for stability. Furthermore, the region of convergence of the

series given by (4) is a subset of the stability region of the

algorithm.

We proceed now with the investigation of the region of

convergence of the series given by (4) by deriving and studying

a system of equations for Lk; k = 0, 1, 2, . . .

3.1 Mean Length of a Session of Given Multiplicity

Theorem 1

Let Tk be the random length of a session of multiplicity k.

Then,

O= 1 =i

and

Tk 1+ -I+M + T k-I+N; k. 2 (5)

where I, M, N are independent random variables.

____ ,___ __ .. ... . . .__ __-_
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The random variable I is binomially distributed:

Pr{I=i} = bk(l) () 2 k

The random variables M and N are identically distributed with

Pr{M=i} = Pr{N=i} = p(i)

where p(-) is the p.m.f. of the input increment.

Proof

For the trivial sessions of multiplicity 0 or 1, by definition,

T0 = T1 = 1. For k > 2 let the session start at the renewal

instant ts with k new users. According to the first rule of the

algorithm all the k users transmit their packets in slot ts.

Hence, slot ts is always a collision slot. At instant ts +1 there

are no other blocked users except for the k collided users, who,

according to the second rule, toss a fair coin and set their

counters either to 0 or to 1. Let the random variable I denote

the number of those from the k users,who set their counters to

0. Then, k-I is the random number of blocked users with their

counters set at 1. Clearly, Pr(I=i} (.)2 - k ; i = 0, 1, k.

Let the random variable M denote the number of new users

at instant t +1. These are the users with a packet originated

during slot ts . Clearly, Pr(M=m} = Pr{N(ts) = m} = Pm' and M

is independent of I. According to the algorithm a total number of

I+M users transmit their packets in slot ts+l, while the k-I

blocked users with their counters previously set to 1 inspect the

feedback channel and increment (decrement) their counters by one

4 f for each subsequent collision (collision-free) slot respectively.

IJ
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The crucial observation here is that all the k-I blocked

users have identical counter indication until the random instant

t at which this indication becomes 0 for the first time.

Furthermore, it is not difficult to see from the rules of the

algorithm, that the identical counter indication of the k-I

blocked users is always greater than the counter indication of

any other blocked user in the system. Thus, at instant tO there

are no other blocked users in the system except of the k-I

users who all have their counters set to 0. This means that the

I+M packets that started accessing the channel in slot t

and all the packets that appeared to the system during (t s-1,

t -) have been successfully transmitted by the random instant0

tO0

Let the random variable N denote the number of new users

at to. Clearly, Pr{N=n} = Pr{N(t0 -l) = n) = Pn and N is

independent of I and M. In slot t a total of k-I+N userso

transmit their packets, since there are k-I blocked users with

counter indication 0 and N new users. Consequently, the I+M

users may be thought of as starting an independent session of

random multiplicity I+M , that begins at ts+l and ends at to.

This session is immediately followed by a session of multiplicity

k-I+N. This later session starts at to and ends at te, which

is the first renewal instant after ts . Thus,

"k -  = 1 + (to - (ts+l)I - (t - to)

=l+r +I+M k-I+N 
Q.E.D.

...



Let G(k, z), 0 < z < I denote the moment generating function

of the random variable Tk-1:

G(k, z) E(z )

In view of Theorem 1, the following theorem is straightforward:

Theorem 2

G(O, z) G(I, z) 1

k 2G(k, Z) I Y, I b bk(i)p(m)p(n)z2 G(i+m, z)G(k-i+n, z)

i=O m=O n=O
(6)

where bk(i) () 2 -k and p(-) is the p.m.f. of the input increment.
k

For the mean length of a session of multiplicity k we have:
Lk = E(k ) = a G(k, z) + 1; k = 0, 1, 2, . . .

k iz=l

By differentiating (6) we respect to z, or by directly

taking expectations in (5) we have:

Corollary 1

L =L = 1

k k
Lk= 1 + 2 1 1 bk(i)p(j)Li+j = 1 + 2 1 qk(m)Lm; k > 2

i=0 j=0 m=0

(7)

where
v

qk(m) = bk(m)*p(m) = bk(i)p(m-i) (8)
i=0

v = min(k, m)

*denotes convolution
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It is noteworthy that the coefficients qk(.), given by (8),

are the values of the convolution of the binomial p.m.f. bk(.)

with the p.m.f. of the input increments p(.). Thus, qk(.) is the

p.m.f. of the sum I+J of two independent random variables: The

random variable I, which is binomially distributed, and the

random variable J, which is distributed according to p(-).

But this is exactly what the continuous entry algorithm does

to resolve collisions. After a collision the collided users (k)

toss a fair coin, and those who tossed 0 (I) transmit their

packets in the next slot along with the newcomers (J). Note

also that for p(0) = 1, p(i) = 0, i > 0 equation (7) becomes

equation (3.12) of (14], that gives the system of equations

satisfied by the conditional mean length of a collision resolution

interval for the CTMCRA.

The system of linear equations for Lk, given by (7),

will be of central interest in this paper. In what follows, we

investigate the conditions, under which system (7) has a unique

nonnegative solution, such that 0 < Lk < for 0 < k <

4
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3.2 Stability

We consider a general system in that corresponds to
k

the system given by (7):

X 0 X 1x0 = I 1

xk  1 + 2  q k (m)x M k > 2 (9)

m=0

where qk (m) are as given in (8).

We are interested in investigating the conditions, under

which system (9) has a nonnegative solution, that is bounded

for finite k.

Given a sequence Y = {yk with YkER (k = 0, 1, 2, . .),

we define the operators A and B (assuming that they exist) as

follows:

A[Y] {Ak[Y]}; k 0, 1, 2, .

such as: A0[YJ = A1 (Y] A I

Ak[YI I 1 + 2 Y qk(m)Ym; k > 2 (10)

m=0

and

B[Y] = {Bk [Y] ; k = 0, 1, 2, . .

such as: B0 [ Y ]  B1 [ Y ] A 0

Bk[YJ = 2 1 q k(m)ym; k > 2 (11)
m=2

Let also An[y] (Bn y]) denote the sequence resulting from

the n times repeated application of operator A(B) respectively

on the initial sequence Y (A*[Y] = B0 [Y] = Y).

I
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Using the operator A system (9) becomes:

x0 = I = 1

X k  A kX; k > 2

The following theorem gives a genemal sufficient condition,

under which system (9) has a unique, nonnegative, bounded (for

finite k) solution.

Theorem 3

In the class of sequences X such that

00lim max Y q k(m) lxm = 0 (12)

i-- k<i m=i

system (9) has a unique solution X = {x k } if the p.m.f. of the

input increment p(.) is such that, there exists some no <

(n0 = 1, 2, . . .), such that

(B 0)k[F(X, r)] > 0 for every k > 2 (13)

where

F(X, r) = 2- k fk (X, r)}; k > 2

fk(X, r) (1 - 2X)k + r(l - 2X) - 2X (14)

A = I ip(i), r = p(l)/p(O), and B is the
i=O

operator defined in (11)

If (13) is true, then for every k, we have:

0 < (Ak ( 0 ) X ] < xk for every n > 0;

.. . , . ..4rl i I1

'i nn II --------.
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xk < (An)k[x(0)] for every n > no, and

xk = lim(An)kt (0)XI = lim(An)k[X(o ) ]
n- n-4

where

(0) X = (0) k} with (0)x 0 = ( 0 )X 1 = 1 and (0)x k = b'k-c';

k > 2

b' = 2/(1-2X), c' = 2b'A+l
X(0)_ (0)} with (0) ()k

- {x0 x0 = x =1 and x 0) = bk-c; k >2

b = max((B n)k(G(r)]/(B n0)k[F(X, r)])
k>2

G(r) = {2-kgk(r)}, gk(r) = 2(k+r+l)

F(X, r) is as defined in (14), A is as defined in (10)

and B i as defined in (11)

The proof of this theorem is given in Anpendix A.'

For n0 = 0, condition (13) of Theorem 3 becomes:

(B 0)k[F(Xr)] = 2-k fk( Xr) > 0 for every k > 2

The above condition is satisfied if f2(X,r) - 0, since then

fk(),r) is a monotone increasing sequence.

JCorollary 2

In the class of sequences Y, satisfying (12), system (9)

has a unique solution X = {Kk),

1. - ' 4 J
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0 < b'k -c'< < bk- c

if f2(0, r) = (1 - 2)) (r + 2) - 2X > 0 (15)

where

b = g2 (r)/f 2 (X, r) = 2(r + 3)/((l - 2X)(r + 2) - 2X)

and

X, r, b', c', c are as defined in Theorem 3.

If the incoming traffic is Poisson distributed, that is

iA -A
pi) . e

then, condition (15) can be expressed in terms of the traffic

intensity A only, since r = P(1)/P(0) = A.

Corollary 3

For the Poisson distribution, system (9) has a unique

solution X = {xk ' satisfying (9),

2 (k-2X) - 1 < 2 (+3) (k-2) - 1
l-2A k-X - <xk -: A+-2-2A (X+3)

for A < A = 0.35078
p

where A is the positive root of the equation X+2-2X(X+3) = 0.P

For the rest of the paper, we assume that the input process

is Poisson. The following lemma gives an easily computable

recursive expression of the n th power of the operator B, that

will be very helpful in improving the sufficient condition given

in Corollary 3, and in calculating the solution of system (9)

(if it exists):

4
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Lemma 1

Let the sequence Y = lykI be such that

Yk (a0 + b0 k) 2 - k  >2

where

a0, b0 ER

Then, for the Poisson distribution

n n k
(B k)[Y] = [(an (i) + kb (i))v. (16)k i=On 1(1

where

v = 1/2, vi+1 = (i+vi)/2 , a0 (0) = a0 , b0 (0) = b 0

n-1
a n(0) = -2exp(-) ((l+Xv i)a n-(i) + Xvi n-I

i=0

n-i
b n(0) = -2exp(-A) (an- (i) + bnil(i))vii=0

an (i) = 2exp(-A(l-Vi-l) (an 1 (i-i) + Xvi I bn-1 (i-n)), i < i < n

bn (i) = 2exp(-A(l-vi 1 ))vil(l + viI) 1bn-1U-l), 1 _< i < n

The proof of Lemma 1 is given in Appendix B.

4

.. . . .. .. -- - : - ' .. ... . . . .. '-- " ' " ,, : -
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Theorem 4

For p(i) the Poisson distribution, problem (9) has a unique

nonnegative solution satisfying (12) if

X < 0.3601

Proof

Using condition (13) of theorem 3, it suffices to find some

n0 <- such that:

Bn 0

(B )k[F(M)I > 0 for every k > 2 and X < A = .3601

where

F(X) = {2-k fk(X)}

fk() (l-2x)k - A(I+2x); k > 2
n o  no)

If x1 < X2 then (B )k[F(11)] >_ (B )k[F(X 2 )], since, for

every k >_ 2 ,fk( ) is a monotone decreasing function of X, :.d

the defining coefficients qk(m) of the opey -or B i - (11) are

nonnegative. Thus, to prove the theorem, -t suffices to find

some n0 < -, such that:

nO0

(B )k[F(T)] > 0 for every k > 2 (17)

Let a0 = -X(i + 2T) and b0 = (1 - 2T). Then, using Lemma 1

it is not difficult to show that (17) is true for n0 > 5.

To indicate the tightness of the above sufficient condition,

we mention that (B ) [F(0.3602)] remains negative for at least

n < 75.

i0

_ _ __ _ __ _ _ _
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The next two theorems are parallel to Theorem 4 and 5 in (121.

Theorem 5

For p(i) the Poisson distribution, system (9) has no nonnegative

solution satisfying (12) if

X > 0.363.

The proof of Theorem 5 can be found in Appendix C.

Theorem 6

If system (9) has a solution satisfying (12), then it

increases not more rapidly than linearly with k.

The proof of Theorem 6 is omitted.

We proceed with a theorem that links the finite solution

of system (9) (if it exists) to the solution {L k} Of system (7)

for the mean session length with specified multiplicity of the

algorithm. This -'s necessary, since, formally, system (9) always

has the trivial solution x 0 = x 1 = , x k~ k > 2. We have

Theorem 7

if X ={x k} is a solution of system (9) satisfying condition

(12), then L k =x k# k > 0.

The above theorem is parallel to Theorem 6 in 1121 and

its proof is omitted.

In view of Theorems 4, 6, and 7 we conclude that the average

session length L given by (4) is finite if X < .3601. But if L

is finite, then the average delay D is also finite, since D < L-1.

Hence, for the Poisson distribution the algorithm is stable if the

input intensity X is less than 0.3601 packets per channel slot.
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4. Average Delay

In this section, we calculate the mean session length L,

which serves as an upper bound for the average packet delay D

in the stable region of the algorithm.

We first solve system (7) to find the mean session length

of specified multiplicity Lk for X in the stable region. From

Theorem 3 we have

(An) k[(O)X] < Lk < (An)k[X(0)) for every n > no; k > 2

and

Lk = lim(An) Y( 0 )X1 = lim(An)k[x(0 )i; k > 2
n-o n-*

where A, n (0)X, X ( 0 ) are as defined in Theorem 3.

After simple calculations, we have

Ak[(0)X] = b'k-c' + 2 p(O)b'2-k; k >_

Ak (X(0) = bk-c - 2p(O)((b(I-2x)-2X)k-X(I+2x)b-2(x+I)2-k

k > 2

wee(0), X( 0 ) bb' c
where X x b, b, c, c' are as defined in Theorem 3.

In view of (10) and (11) it is not difficult to prove that

the following are true:

(An)k [ (0)X1 = b'k-c' + nl (B i)k ()Y (18)
i=O

n-l
(An) [X ( 0 ) ] = bk-c - / (Bi)k[Y(O) ] (19)

k ki=0
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where

(0)y = {(0)yk (0)yk a; 2 -k k>2

a' 2p(O)b'

and

y(0) - ( 0) = (a + b0 k)2-k k > 2

a 0 = -2p(0)(X(I+2A)b-2(A+l))

b 0 = 2 p(0) (b(l-2X)-2X)

The forms of the lower and upper bound for the solution Lk

given in (18) and (19) respectively are well suited for the

application of Lemma 1. We used Lemma 1 to calculate the powers

of the operator B appearing in (18) and (19). For X < 0.3 we

found that the values of the upper and lower bound coincide up

to the fourth decimal point within the first fifty iterations.

We should note here that using Lemma 1 one can calculate the

exact solution of system (7) for the mean session length with

arbitrary accuracy for any A in the region of stability of the

algorithm.

In Table 1, we give the values of the mean length of

sessions of multiplicities up to ten for different values of the

input intensity.

The values of Lk given in Table 1 were used in (4) to

calculate the mean session length L. The results are plotted in

Figure 1, which gives the upper bound L-1 for the average packet

delay of the algorithm

illl-- -- 77 -- .I I



5. Comparison of the LSBFA to Other
Access Algorithms

A random-access algorithm that can be implemented using

CNC binary feedback was first treated by Capetanakis [4, 51, and

by Tsybakov and Michailov [6). This algorithm uses the CTMCRA

to resolve collisions and there are two versions of it, a static

version and a dynamic version. For the Poisson model and infinite

user population the static algorithm achieves a maximum stable

throughput of 0.346 packets per slot (p.p.s.), while the dynamic

algorithm achieves a maximum stable throughput of 0.429 packets

per slot. Recently, Mehravari and Berger [9] proposed a

first-come-first-served collision resolution algorithm with CNC

binary feedback,which is stable for input rates less than

0.4422 packets per slot. Also, Hajek and Van Loon [151 have

recently shown that Aloha-type retransmission control policies,
-i

that achieve a maximum stable throughput of e = 0.3678

packets per slot, can be implemented on a random-access channel

using CNC binary feedback.

All these schemes assume that each user monitors the

feedback channel constantly (for every channel slot at all

times) even if he has no packet to send. This feedback requirement

can be reduced in the scheme proposed in [15] at the expense of

increased average delay.

In contrast to all the schemes mentioned above, the LSBFA

eliminates completely this undesirable and not practical

" i .__ _ _ _ _ _...
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necessity by allowing continuous entry of new packets into the

random-access system. Furthermore, the LSBFA is easier to

implement than all these schemes--its implementation requires

only a single counter possessed by each user.

In section 3 we showed that the LSBFA is stable for input

rates less than 0.3601 packets per slot. Obviously, as the

level of feedback information inspected by each user decreases,

the maximum stable throughput decreases also. Notice, hL'wever,

that the LSBFA outerperforms the static "Tree" algorithm [4, 5]

(0.360 p.p.s. versus 0.346 p.p.s.), even though the later uses

more feedback information.

The LSBFA uses the "continuous-entry" idea introduced in

the "Stack" algorithm [12]. The "Stack" algorithm uses ternary

feedback (0,1,or e),and for the Poisson-infinite-population

model it is stable for input rates less than 0.384 packets per

slot. Thus, in cases where a central facility supplies the

feedback information by an Acknowledgment scheme, simplifying

from ternary feedback to CNC binary feedback does not significantly

reduce the efficiency.

The LSBFA is easier to implement than the "Stack" algorithm

because it eliminates the memory necessity in the later algorithm.

In the "Stack" algorithm each blocked user at time t has to

'Iemember' the outcome of the last nonempty slot. The LSBFA

requires no memory by the users.

We now proceed to compare the two algorithms in terms of

robustness in the presence of channel errors. The LSBFA resolves

any collisions using the CTMCRA, while the "Stack" algorithm

I
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resolves any collisions using the CMTMCRA. In [14] Massey

showed that under the more realistic situation where channel

noise can affect the transmissions on the forward and/or

feedback channel, the CTMCRA is extremely robust, while the

CMTMCRA can suffer deadlock. It is clear that the "Stack"

algorithm, even though it uses the CMTMCRA, does not suffer

deadlock because ofthe continuous entry of new packets into the

random access system. Nevertheless, we can easily show that it

is less robust than the LSBFA. From all the possible types of

errors consider the one where an "empty" slot is detected as a

"collision" slot by the blocked users because of noise on the

channel. In the terminology of "Stack" algorithm, all users

with a packet in cell "r" (r>l) of the stack place their packets

in cell "r+l". Thus, each time an "empty-to-collision" error

occurs, both cell "0" and cell "1" become empty, and the

algorithm proceeds to resolve a nonexisting collision. All

blocked users detect a sequence of empty slots but they do not

move their packets downwards, since the last nonempty slot was

a collision slot (in this case a false collision). This deadlock

situation lasts until some new packet(s) enters the system.

This happens with probability l-p(O) independently at each slot.

Therefore, the average length of a .eadlock period is Id = l/(l-p(O))

slots. Under light traffic conditions, the average deadlock

period becomes long resulting in increased average packet delay.

For example, if p(.) is the Poisson distribution with X = 0.1, then

id = 10.5 slots.

I
I
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In contrast to the "Stack" algorithm, the LSBFA overcomes

the same error by wasting only two slots independently of the

input intensity, as it can be seen from the rules of the algorithm

given in section 2.

Using similar arguments like the one used in the "empty-to-

collision" type of error case, we can easily show that the LSBFA

compared to the "Stack" algorithm exhibits superior robustness

in the presence of channel errors of every possible sort.

prsne vr
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APPENDIX A

Proof of Theorem 3

Existence Consider the sequence x n=0, 1, 2, ., defined

as follows:

x(n) = (n )

0 1

(n) - (An) [X( 0 ); k > 2 (A.1)
Xk k

where

x (0) 0 , x °) = bk-c, k > 2

beR , c 2bX+l, and A is the operator defined in (10).

For n=l, after simple calculations, we obtain
I k- fb-kk k

x(1) X(0) - 2p(O) (2kf b-2k ), k > 2 (A.2)

Iwhere
fk( , r) = (1-2A)k + r(l-2) - 2x

9k (r) 2 (k+r+l)

A= [ ip(i), r = p(l)/p(O)
i=O

From (A.1) and (A.21 for k > 2, we have

(n+l = x(n) - 2p(O) ((Bn)k[F(X, r)lb - (Bn)k[G(r)]) (A.3)

where 
F(x, r) = f2-kfk(A, 

r)

4 G(r) = {2 gk (r)}

and the operator B is as defined in (11).
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If the p.m.f. of the input increment p(.) satisfies condition

(13), then

(B )k[F(X' r)] > 0 for some n0 < - and every k > 2

Hence, in view of (A.3) we can always find a bER + such that

(n+l) (n)
N nl xi n for every n >_ n0 and k.

For a given p(.), let

n0 no
b = max((B k[G(r)]/(B k[F(X, r)]), k > 2 (A.4)

k

Clearly, if b is chosen as in (A.4), then for every k > 2,
(n ) (n 0 +1) (n0 +2)

the values xk  , k , , . . . form anonincreasing

sequence.

If X < 1/2, then xkn) is nonnegative for every k and n,

since with b chosen as in (A.4) x ( ) is nonnegative for every k

and the operator A is nonnegative (qk(.) > 0). Note that if

X > 1/2, then there is no n0 for which (13) is true.
(n0 ) (n0 +1) (n0+2)

Since xk , x k , Xk , . . is a nonnegative

nonincreasing sequence the following limit exists for every k > 2:

xk = xrm x(n) (A.5)
n-wk

Clearly, if (13) is true, then 0 < x( n ) < for every n < n and
k0

2 < k < . Moreover for every n > n0 we have

N kl2 (n o <

Thus, for every n and 2 < k < - the nonnegative series

(n)M-Ok (m

m= 0

.......................................................
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is absolutely convergent (satisfies condition (12)). Therefore,

for arbitrary c > 0 and n there exists a K0 , such that foi:

arbitrary K > k 0 we have:

q x (n) < /10, k < K (A.6)m=X k i. m'

In view of (A.5) and for the given E and K we have
,(n) -0)

x k n _ Xk= x k < E/5, for all n >N > no and k < K

(A.7)
Then, for arbitrary k0 <- we obtain

K-I
A[X < X 2 (m)xm - i I + L <

xk0 -k0 k0 mok0 mx5-

(n (n K-i(nn

IX(n+l) 2 < (n) _ 1 + <xn+l) - A ]l(n) + c Ck 0m m 0 k 0

Hence X {xk } is a solution of system (9), since the above

inequality is true for arbitrarily small c > 0.

We proceed now with the lower bound sequence (n)X, n 0, 1, 2,

which is defined as follows:

(n)x0 (n)xl = I

(n) xk = (An)k[ X], k > 2

where

(0) x (0)Xk) '  (0)X = b'k-c', k > 2

b' = 2/(1-2X), c' = 2b'X + 1

for n=l after simple calculations, we obtain

(1) Xk = (0) x k 2p(0)2-kb, (A.8)

71 7
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In view of the fact that the operator A is nonnegative

(qk ( . ) > 0), it follows from (A.8) that for X < 1/2 and fr

every k > 2, the values (0)X (1)k" (2) xk . . . form a

nondecreasing sequence. This sequence is also bounded from

above by the sequence X n . Indeed, if condition (13) is true,

then b' < b, where b is as defined in (A.4). (If b' > b then it

follws f rom (A.k2) that x( > (0) for every k > 0 and consequently
f) - k

condition (13) cannot be true.) Thus, (0)x= b'k-c' < bk-c = X( 0 )

k k

for every k > 2 and since the operator A is nonnegative it

folows that

(n) (n)xk<X for every n and k > 2

Since (0)x k , (1) xk  (2) xk  . is a nondecreasing sequence,

which is bounded from above by the sequence x n, the following

limit exists for every k > 2:

i k _ (A.9)

Following the same steps as in the case of X = {xk} we can
I

prove that the sequence X' = {xj} is a solution of system (9)

satisfying (12).

Uniqueness To prove the uniqueness of a solution we assume

that system (9) has two distinct solutions satisfying (12) and

we end up with a contradiction. The proof parallels the one given

in [12, p. 236] and it is omitted.

From the uniqueness of t- solution, we have

I ,(n) (n)
N ~lr xk 1limx ='k

"Moab- - --
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APPENDIX B

Proof of Lemma 1

We prove lemma 1 by induction. For n=l, we have

B kY] 2 qk(m)(a 0 + b0m) V

(m) qm)v + b0  [ qk(m)mv O - (a~qk(0) + !(a +b0)qk(1

m=0 M=0

(B.1)

where qk(.) is as defined in (8) and v0 = 0.5. In particular,

k Ic

qk(0 ) = exp(- )v k , and qk(1) = exp(-x) (k+x)v k . After simple

calculations, we obtain

k

in = fvl~

q k(r.) vm = exp (- x(l-v)) 2- - (B.2)

m=-0 qk(m)mvm = exp (1~-v)) vl k + v) (--! (B.3)

Substitution of qk(0), qk(1), (B.2), and (B.3) with v=v0 into

(B.1) gives

k k k kc
Bk(Y] = a(0)v k + a ( 1 )v k + b l (0)kvk + bl (1 )kvk  (B.4)

where

v = (l+v0 )/2,

a 1 (0) = -2exp(-x) (a 0 + )v 0 (a 0 +b 0 )),

b1 (0 ) = -2exp(-x)v 0 (a 0 +b 0) ,

a1 (l) = 2exp(-A(l-v 0 )) (a 0 +Av0 b 0),

b1 (1) = 2exp(-x(l-v0 )v0 (l+v0 )- b 0

o |
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Equation (B.4) proves the lemma for n=l.

Next we assume that (16) is true for n=j and we prove that

it is true for n=j+l as well. We have

(B3k [Y] (a (i) + kb. (i))v
k

i=O 3 1

(BJ ) [Y] Bk[BJ[YI] = 2 1 qk (r) (a(i) + mb.(i))v m

m=2 i=O

= 2( a(i) (m) vm + b(i) qk(m)mv m -

i=O m iO m=0

- (qk(O) aj(i) + qk(1) i (aj(i) + bj (i)vi)

(B.5)

Substitution of qk(O), qk(l), (B.2) and (B.3) with v=v i into

(B.5) gives

j+l
(J+l) k[YJ = I (a j+l() + kb j+l(m))vk (B.6)1=0m

where a j+l(r), bj+l (r), r=O, 1, ., j+l, are as given in (16).

Equation (B.6) proves the lemma for n=j+l.

4i

IiI
_______~~~~, ______________
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APPENDIX C

Proof of Theorem 5

Consider the following truncated system of equations

n
Xk = 1 + 2 1 qk(m)X m 2 < k < n

m=O

or in matrix notation

1( - Q =c (C.l)
2 n Qn -n -n

where

xi (x2"X3 . .. F n l

T
-c = (c " , c 3 " ' C l ) ' C k + q k (0 ) + q k 1 ,

k =2, 3, .,n+l

Q (qij) is a (nxn) nonnegative, irreducible, square

matrix with qi- = ni(J), 2 < i < n+l, 2 < j < n+l,

and I is the (nxn) unit matrixn

The following theorem gives the conditions that ensure

positivity (x > 0) of solutions to the equation system (C.1).

Theorem [16, Th. 2.11

A necessary and sufficient condition for a solution

xn (xn > 0, # 0) to equations (C.1) to exist for any Cn > 0, 0

is that r < 1/2; where rn is the Perron-Frobenius eigenvaluenn

of the nonnegative, irreducible matrix Qn' In thiq case, there is

only one solution xn , which is Rtrictly positive and given by

= ( I- Q) c
-n 2 n n -n

L

1I
-]* * -------.
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It is known from the theory of the nonnegative matrices (see

[161) that

rn+l > rn  and lim rn = r (C.2)

where r is the Perron-Frobenius eigenvalue (the reciprocal

"convergence norm") of the infinite dimensional matrix Q; where

Q=lim Qn as n-w (Qn is the (nxn) northwest corner truncation of

Q).

From the above theorem and (C.2) it follows that if for

some n0 we have r > 1/2 then for all n > no system (C.1) has

no nonnegative solution. In this case, equation system (9) has

no nonegative solution satisfying (12), since it is obtained

from equation system (C.1) as n--. To calculate the Perron-

Frobenius eigenvalue r we made use of the following lemma:
n

Lemma [171

If s(T) and S(T) are the minimal and maximal row sums of a

square nonnegative, irreducible matrix T with Perron-Frobenius

eigenvalue r, then

s(T) < (s(T 2 ))1/2 < (s(T 4 ) ) 1/4 < < r < . . .<

<(S(T 4 ))1/4 < (S(T 2 )) < S(T)

Calculations made for n0  10 show that r1 0 > 1/2 for X = 0.363.

Thus, for A > 0.363 equation system (9) has no nonnegative

solution satisfying (12).

4
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- Lk(O) Lk(. 05) Lk(.10) Lk(.15) Lk(,20) Lk(.25) Lk(.30)

2 5.0000 5.6196 6.4780 7.7456 9.8057 1 3.7369 24.1140

3 7.6666 8.7282 10.1977 12.3662 15.8884 22.6068 40.32q1

4 10.5238 12.0455 14.1520 17.2608 22.3103 31.9422 57.3431

5 13.4190 15.4054 18.1553 22.2137 28.8060 4 1.3b09 74.5359

6 16.3130 18.7646 22.1586 27.1674 35.3036 50.8234 91.7358

7 19.2009 22.1173 26.1548 32.1133 41.7919 60.2535 108.9139

8 22.0853 25.4.663 30.1468 37.0542 48.2741 69.6756 126.0768

9 24.9690 38.8144 34.1377 41.9938 54.7546 79.0950 143.2339

10 27.8532 32.1629 38.1291 46.9339 61.2355 88.5150 160.3906

Table 1. Lk(X): %lean length of a session of multiplicity k.
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A J Fie. I. The upper bound L-I on the expected packet delay D

for the LS3FA.
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