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Seismic Hazard Study for Utah

I. INTRODUCTION

Several of the proposed deployment modes tor the MX missile system have in-
volved basing of the system in the alluvial basins of Nevada and western Utah, In
support of the MX missile program, the Terrestrial Sciences Division of the Air
Force Geophysics Laboratory has undertaken a program to cvaluate the scismic
hazard with these two states, In this report, results of the analysis for the Utah
arca are presented,  Both probabilistic and deterministic approaches to the esti-
mation of scismic hazard have been employed, The results of the study are set
forth as contour plots of maximum credible and probabilistic peak ground motion
estimates for hard rock sites, In addition, annual risk curves are presented for
risk assessments in Utah, No attempt has heen made to modify the rock site
accelerations to compensate for the deep alluvial cover tvpical of the potential \IX
basing sites,

The approach taken in this study was to produce a conseryative, though realis-
tic, estimate of the seismic hazard in the arca of interest, tlowever, the long-term
scismicity patterns in this region arc not well-defined and subject to debate, To

provide some sense of the nneertainty associated with the analysis, two distinet

(Received for publication 26 October 1982)
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models of the regional seismicity have been used in the probaoilistic ¢valuation,

The results from both assumptions-are presented and compared. i

2. UTAH SEISMICITY

The earliest record of seismic activity in Utah is of a tremor felt in central
Utah in 18:’)3.1 Since that event, earthquakes of sufficient size to be felt have
occurred within the state at the rate of approximately one per vear, 2 During the

historical era, earthquake epicenters in Utah have been concentrated in a distinct

band, running from the southwestern corner of the state to north-central Utah
(Figurc 1), Although the preinstrumental earthquake catalog is biased in favor of
this zone by virtue of the population distribution during most of the state's history, :
instrumental coverage in the last two decades has re-emphasized this pattern of
seismic activity. However, significant earthquakes have also occurred widely
throughout the state and outside of this trend,

The largest earthquake within the state was the 1934 Hansel Valley earthquake

that had a reported magnitude of M=6,8, This cvent was centered just north of the
Great Salt Lake, At least 57 carthquakes have been recorded in Utah between 1853
and 1978, causing at least minor damage, Modified Merealli intensity VW or greater, 3
With use of the carthquake catalog for all of Utah from 1850 to 1974, cvaluation of

recurrence curves for Utah gives an incremental curve of

log N =1,15 - 0,76 M (1)
and a cumulative curve of
log N =147 -0,79 M 2)

where N is the number of events per year per 1000 ka of magnitude, M, for the

inci cmental curve or equal to or greater than M for the cumulative curve,

1. Cook, K. L., and Smith, R, B, (1967) Seismicity in Utah, 1850 through Junc
1975, Bull, Seismol, Soc., Am 57:689-718,

2, Cook, K, L,(1972) Earthquakes along the Wasatch Front, Utah - The record
and the outlook, in Environmental Geology of the Wasatch Front, 1971.
L. S. Hilpert, ed., Utah Geol, Assoc., Publ, 1, pIl1-1129,

3. Meyers, H., and von Hake, C. A, (1976) Earthquake D)ata File Summary,
National Geophysical and Solar-Terrestrial Data Center, Report KGRD-5,

4, United States Geological Survey (1976) A Study of Earthquake Losses in the
Salt Lake City, Utah Arca, U, S. Geological Surv. Open File Report 76-89,
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Farthquakes in the Utah area tend to be shallow events, with the majority of
epicenters having depths above 10 km, > However, onlyv the 1934 Hansel Valley
carthquake can be associated with surface faulting, An carthquake swarm in
southwestern Utah in 1971 produced fractures in alluvium that might be related to
faulting, & In general, the pattern and locations of earthquake epicenters in Utah
tend to be diffusce and difficult to associate with specific faults. 6 Although faults

are common throughout most of Utah (Figurce 2), the age of most recent faulting
. 7

is unknown on many of thems. In the assessment of earthquake hazard, faults
having Quaternary displacements, those younger than 2 million vears, are often
considercd potentially active, 8 Using the limited data available, Anderson and
Miller have compiled a map of Quaternary faults in Utah (Figure 3). They consider
this map to be preliminary; additional faults are likelv to be reported with further
geologic studies, The distribution of known Quaternary faulting supports the
general conelusion attained from the historical earthquake record: That while most
seismice activity is associated with the Wasatch, Eisinore, and Hurricane Fault
zones, pote. tial exists for significant seismic activity in other areas of the state,
Historically, the 1834 Hansel Valley carthquake marks the largest event oc-
curring in Utah, However, it is possible that larger earthquakes will occur there
in the future, Detailed studies of the geologic evidence of Holocene fault displace-
ments along the Wasatch Front suggest that individual surface faulting cvents have
produced displacements in the range of 0.8 to 3,7 m. 9 Given the fault displacement,
13, the causative event magnitude, M, can be estimated by the functional relationship

derived for normal faults, 10 The Wasateh [Fault zone can then be assumed to have

5, Smith, R. B., and Sbar, M, 1., (1974) Contemporary tectonics and seismicity
of the Western United States with emphasis on the inter-mountain seismic
belt, Geol, Soc, Am, Bull, 72:1205-1218,

6. Dosicr, D, I,, and Smith, R. B, (1982) Scismic moment rates in the Utah
region, Bull, Seismol, Soc. Am, 72:525-551,

7. Anderson, 1, W,, and Miller, D, G, (1979) Quaternary faulting in Utah, in
Earthquake Hazard along the Wasatch and Sierra Nevada l'rontal Fault
Zones, U, 5, Geol, Surv,, Open File Report 80-801, pp. 194-226,

8, Allen, C, R, (1975) Geologic criteria for evaluating seismicity, Geol, Soc.
Am, Bull, 86:1041-1057,

9, Swan, F. H,, Schwartz, D. P., and Cluff, L. S, (1979) Recurrence of surface
faulting and moderate to large carthquakes on the Wasatch Fault zone at
Kaysville and Hobble Creck sites, Utah, in Earthquake Hazards along the
Wasatch and Sierra Nevada Frontal Fault Zones, U, S, Geol, Surv,, Open
File Report 80-801, pp. 227-275.

10, Slemmons, D. B, (1977) Faults and Earthquake Magnitude, U, S. Army Engin,
Waterways Experiment Station, Miscellaneeus Paper 5-73-1,

10
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Figure 2. Known and Suspected Faults in Utah, Known faults, solid lines;
suspected faults, dashed lines. [After Cook and Smith (1967),

supported carthiquikes of magnitude \M=6.7 10 7,1 repentedly during the Holocene,
approximately the Iast 10,000 vears, It must be assumed that an earthqu.tke of
about magnitude M-7,5 could occur in Utah, ot least along the Wasateh Fault zone,
[his valus iz commonly taken as the maximum eredible earthquake for Utah, N
The historical record of carthquakes implics, through g, (2), the recurrence
of 1 major earthquake of magnitude M=7,0 or greater, approximately once overy
52 vears in Utah, or 130 years for an M=7, S5event, Based on several assumptions,

as well as extrapolation, the geologic evidence suggests that carthquakes of this

11
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order of magnitude should have return periods between 50 and 400 vears along the
Wasatch Fault zone, ! During the last 130 vears, only the Hansel \ allev event
approached this level of maenitude, In geologic terms, the historical record is
extremelyv short and extrapolation trom these data for magnitudes which have not
been recorded is probabilistic,  Analvsis of earthquake catalogs for China, Japan,
and the Middle East, covering periods between 2,000 and 3,000 vears, indicate
that spatial and temporal variations in seismicity of periods cqual to or longer than

11, 12 . . . , .
4 Using various windows of the Uiah

the Utah historical record are Common.tﬁ,
catalog, Arabasz et al have shown that return perious of hetween 5 and 1, 505 vears
could be estimated for a 7. 8M earthquake on the Wasateh front, ) Typically, an

estimate of the order of several hundred vears is assumed for the maximum cred-

ible earthquake of M = 7,5,

3. SEISMIC REGIONALIZATION

Subdivision of the ttah area into seismic source regions is roguired in order
to analyze the seismic hazard in the state, The goal of this regionalization is to
produce a set of seismic source regions whose seismicity is homogencous and
well-defined, Limitations imposcd by short seismic historv, the diffuse nature of
the seismicity in the area of study, and questions concerning the tectonic proce sses
of the region -- all affeet the process of defining these source regions,  In this
section, two regionalizations arc made in an attempt to compensate tor the uneer-
tainties previously stated,

The nain trend of seismic activity through the state is associated vith vhe
Intermountain Seismie Belt (ISB), a trend of carthquakes ranging from northwestern
Arizona north to the NMontana-British Columbia border (Figure 1), 7 This zone is
one of the most active seismic regions in the continental U nited States, 1t has been
suggested that the [SB defines the active margins of scveral subplates of *he North
Aneerican Plate,  he subplate muargins are believed to correlate eszentially with

the phvsiographic province boundaries that arce also =hown in tigure 4, Scismicity

11, MceGuire, R, K, (1979 Adequacy of simple probability models for ealeualating
felt shaking hazard, using the Chinesce varthgquake cataloge Bull, Seismol,

12, York, J, K., Cardwell, R,, and Ni, J. (1970) Seismicity md Quaternars
faulting in China, Bull, Scismol, Soc. Am. 66:1183-200U,

13, Arabasz, W, J,, Smith, R, B., and Richins, W, D, (1979 Farthgiike stadies
along the Wasateh Front, Utah: network monitoring, scismicity, and sei-mie
hizards, in karthquake Hazards along the Wasateh and Sicrra Nevada
Irontal 'ault Zones, T, S, Geol, Sury,, Open 1ile eport 80-801, pp. 1-34,
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witiin the ISH appe ws to result from foree= associated with the interaction of the
North American and Pacitie Plates and pos-inly modified by a hypothesized mantle
plime presently centerdsod at Yellowstone,  [n the Utah area, the ISB divides the
Basm and Range provinee on the west from the Middle Rocky Mountains and the
Colorado Plateau on the east,  The distinet tectonics of cach of these provinces is
significant in the seismic regionalization of the area,

Fpeirogenic uplift Las oceurred in all three provinces, but it is the dominant
tectonic foree onlv in the Colorado Plateau and the Middle Rocky Mountains. In
the Colorado Plate wi, the uplift has been uniform throughout the provinee, with
little crustal detormation,  The rough topography of the plateau is primarily the
rosult of tlhuvial crosion of undisturbed sedimentary deposits, The widespread
noture of the 2plitt and lack of erustal deformation suggest a relatively stable zone
ot low =lew el s i=micity that would be unitormly distributed; in fact, concentrations
of seismic microactivity that have ocgurred in this region appear to be associated
AIth human activity <uel. 1= mining., 1 In thie Middle Rocky NMountains, the epeiro-
venic uplift has been accomplished by extensive normal faulting and mountain forma-
tion, On the scale of interest in this report, the scismic aetivity would also be
cypeeted to be uniformiy distributed, but the region would be expected to have a
higher fevel of seismicity than the Colorado Plateau, Each of these provinees can
be considered a single source region with uniform potential for seismic activity,

\nn exeeption is the margin of the Colorado Plateau abutting the Basin and Range;
this will be discus=ed Later,

I'he major tectonic process in the Basin and Range is the lateral crustal exten-
sion which has been occurring tor the last 30 million yvears, ? The rifting has
continucd cpisodically to the present dav, although the orientation and center of
active extension has changed, During this period, tvpical estimates of the amount
of spreading range from 50 to 300 km, with the most common estimate being about
100 km, 1°
graben turmation, and voleanism., Although probably related to the broad uplift

The spreading has been accomplished by extensive normal faulting,

of the region, the exact relationship between uplift and extension of the Basin and

Range, as cause or cffect, is uncertain, ‘

14, Smith, B, B,, Winkler, ’, 1., Andcerson, J. G., and Scholz (1974) Sourcc
mechanisms of micro-ecarthquakes assoriated with underground mines in
castern Utal, Bull. Scismol, Soc, Am. 64:1295-1317,

15, [aton, G. P. (1979) A plate tectonic model for late Cenozoic spreading in
the Western United States, in Rio Grande Rift: Tectonics and Magmatism,
R. E. Riecker, ed,, Am, Geophys. Union, Washington, D, C., pp. 7-32,

16, Thompson, G, A.,, and Bruce, D, B, (1974) Regional geophysics of the Basin
and Range province, in Annual Review of Earth and Planetary Sciences,

', A. Donath, ed., Annual Reviews, Inc,, Talo Alto, California, pp., 213-238,
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A question with significant implications for scismic regionalization is the
distribution of active extension in the Basin and Range, During historic times,
most significant earthquakes in the province have occurred in very limited zones
that tend to be at the margins of the province, Late Quaternary faulting in the
region is, however, very uniformly distributed as is low level scismicity, 17 At
least three hypotheses have been advanced in an effort to explain this apparent
discrepancy,  First, the historieal record is a short-term distribution of earth-
quakes in the province; second, the seismic activity (and presumably, extensional
activity) is concentrated in very limited zones at any one time; these zones migrate
throughout the Basin and Range, 18 Return periods for large carthquakes in any
speeifie arca are thought to be of the order of thousands of years, Finally, the
Iast concept assumes that extensional, as well as seismic activity, is confined to
the Basin and Range margins and, on the castern cdge, could be gradually migra-
ting into the Middle Rocky Mountains and Colorado Plateau, o

Historical, as well as geologic evidence, is insufficient to determine the
correct analysis of the seismicity of the Basin and Range, Each hypothesis, how-
cever, would require a different approach to the scismic regionalization of the
province., The first concept would imply that the Basin and Range could be con-
sidered as a single or at least a limited number of zones having uniform seismic
activity, Using the second hypothesis, one would have to delineate any area with
indications of recent major carthquakes as a potential earthquake source, As the
future migration of the active zones cannot be predicted, the remaining area would
be assumed to have a uniform probability of carthquake occurrence, On the scale
of regionalization used in this study, this would degenerate into the same conditions
as the first approach. On the basis of the last thesis, secismic activity would be
confined to the province margins with low -level background seismicity in the
interior of the Basin and Range,

It is concluded that two models of scismic regionalization will provide an
adequate range of seismie hazard estimations for the Utah area, In the first,
known as the [ niform Seismicity (US) model, a major earthquake is assumed to
have uniform probability of accurrence within several gross regions; in the sccond,
the Subplate Margin Seismicity (SMS) model, the major seismic source regions arce
assumed to align with the historical sceismicity patterns of the region. The primary

distinction is in the treatment of the Basin and Range province earthquake potential,

17, Slemmons, . B, (1967) Pliocene and Quaternary crustal movements in the
Basin and Range Province, USA, Journal Geosciences, Osaka City Univ,,
10:91-103,

18, Ryall, A, (1977) Earthquake hazard in the Nevada regieon, Bull. Seismol, Soc,
Am, 67:517-538,

16

RSNt 2, . ) ?;i.vt\in._

i




3.1 Uniform Sewsmicity Model

t'or the Uniform Seismicity Model, the western United States was subdivided

into the regions shown in Figure 5., This regionalization and the associated
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Figure 5. Uniform Seismicity Model Regionalization [ (Modified From Greensfelder,
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S . . . 19
seismicity parameters are based primarily on the work of Greensfelder et al,
Additional analysis of seismicity was conducted for the Colorado Plateau-Rocky

Mountains region to the east of the area included in that studv., The regionalization

is based on late Cenozoic patterns of deformation, relative Holocene strain rates,

“ and instrumental historic seismicity, Greenstelder et al, conclude that Holocene
S strain rates and historic seismicity are in rough agrecement with differences of less :
b
i than a tactor of 3. Other investigators have suggested that the differences are .
‘ primarily duc to the methods used for estimating strain rate rather than changes f
. . ... 6
" in long-term seismicity. !
Based on post-instrumental scismicity, 1932 to 1973, the seismicity param- ;
eters for cach region were calculated (See Table 1), The values given for regions :
1 through 6 are based on carthquakes west of region 6 to 108°W,  The method of !
analysis for region 7 was similar to that used for the other regions, :
i
Table 1, Uniform Seismicity Model Parameters !
i
#
Retui,. Teriod ¥
of 7.0 M or '
10g N* : A-bL M ] (jreater f
Source Area L | Maximum Earthquake ;
Region (103 km?) A B T ML Years
o
r
1 74.6 3.18 1.0 7.7% B85
2 25.3 2.04 .91 T SERS
3 253.5 2.54 0.91 TL6 11.°¢
{
a 30,0 2000 1. 7.0 i |
|
5 134.7 1.70 .o s panl l
‘ t
6 118.9 2.7 DL TLON s ‘
i
7 295.8 1.6 1.0 (SR J
] *N = number of events of magqnitude M or greater per year per 1000 km'

19, Greensfelder, R, W,, Kintzer, I, C,, and Somervill, M, R, (1930) Scismo-
teetonic regionalization of the Great Basin, and comparison of moment rates
computed from Holocene strain and historie scismicity: summary, Goeol,
Soc, Am, Bull, 9):518-523, -
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In addition to recurrence curve information, maximum magnitude carthquakes i
are also assigned for each region and shown in Table 1, These values are based '
on interpretation of geologic evidence or the largest event to occur in historical
times, In general, modifving this value has a significant effect only on the hazard
estimation for very long return periods. Unless the maximum magnitude carth-
quake is grossly in error, probabilistic risk estimates in the range of interest for

this report will not be modified substantially by changing this paramewer,

3.2 Subplate Margin Seismicity Model

In this model, the regional seismicity is assumed to concentrate at the sub-
plate margins, as suggested by historical seismic activity. D The basic regional-
ization of the unitform seismicity model is maintainea outside of Utah,  The mnjor :
distinction between this mordel and the previous one is the lowering of the sei=mic
potential in region 3 and the redefining of region 6 by subdivision into two new !

zones, with alteration of the activity levels in cach noew zone (Figure 6),  The new

!

|

1

|

i
{
|

—~—t

l

|

!
J
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(
() ARIZONA

L i . 1 L L
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Figure 6, Subplate Margin Seismicity Model Regionalization
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region 6h corresponds to the Wasatch Front Study Area defined by Arahasz et al.;

it is an arcal expansion of the equivalent segment of region 6 from the uniform
scismicity model, 13 Adjustments in the abutting regions 3 and 7 are required
by this change.

The recurrence function used for the now region 3 was derived h‘op) a previous
study for o area of Nevada elosely resembling the redefined region 3, 20 It iz felt
that the different area used in this evaluation would not introduec errors of a magni-
tude approaching thosce expected trom the statistieally short duration of the carth-
gaadie sample, For regions 6a vt 6b, =pecific analyv=is of sceismic recurrence for
cach was conducted using the instrurmental carthguake catalog from 1932 to 1978,
hi= included an analysis of complotencss of the catalog to ensure statiztical
stabilits, -1 wdition, the modeled maximam magnitade eawthguakes in regions 3
and a oy ere reduced in order to provide 1 lower Tevel of seismice activity in the=e
regions s compirred to region 61 ax indicated by the historical record, The recur-

repce parametors for the subplde margin -cismicits model are given in Table 2,

Table 2, Subplate Marzin Seisricity Model Parunmicters

]

} 1 x

; L hetuarn Porriod 1‘

oot TLoM oy |

| . - . 1 !

. L BE  A-b M . orenter |

ared o . s Maximum | Harthquake |

I (103 km-) A B T\'.I \ (Years) |‘

_ : .|

{ T |

Ta. . lh 1.0 7.75 i BR. & !
[ 25.3 2.0 0.91 7.0 i 845
3 217.7 1.87 0.91 7.¢C 14¢
4 39,2 2.60 1.0 7.2 739
5 134.7 1.70 1.0 7.0 1481

6a 65,6 1.50 .81 7.0 225.%

Ob 129.9 0.19 0.54 7.75 32
7 282.4 1.96 1.0 6.75 [N

20, Battis, J. C., and Hill, K, T. {1977) Analysis of Seismicity and Tectonics
of the Central and Western United States, Texas Instruments, Inc., Interim
Scientific Report ALEX -ISR-77-01, Dallas, Texas.

21. Stepp, J. C. (1972) Analysis of completeness of the carthquake sample in the
Puget Sound arca and its effect on statistical estimates of earthquake hazard,
in Proceedings of the International Conference on Microzonation for Safer
Construction Research and Application, Univ. of Washington, Seattle,
Washington, pp. 897-3500,
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L. PROBABILISTIC HAZARD ESTIMATION

he probabilistic hazard estimation process is based on a method pr9posed by
Cornell and implemented in a FORTRAN computer program by McGuire, 22,25
Using this program, we found that the temporal and spatial distribution of seismic
activity is combined into a single statement of the probability of reaching or exceed~
ing a given ground motion level at any site of interest, In addition to the statistical
models of seismicity, given in the preceding scetion, knowledge of ground motion
attenuation in the region of interest is required, In the following paragraphs, the
statistical method, ground motion attenuation, and results of the analvsis tfor Utah

arce discussed,

t.1 Risk Estimation Method

In the procedure used for this study, carthquake occurrence within each sub-
division is considered a Poisson process, This implies that the occurrence, in
space and time within anv subregion, is indcpendent of any preceding event, There
is strong evidence that this is not true and that future earthquake occurrence is con-

s U . 24
nected to past seismie activity in the region, 18,

However, the use of the
Poissonian assumption is conservative; it does not introduce additional restrictions
which at best could only be based on extremely limited data samples.

Using the Poisson process, we note for cach source region the probability
that the ground motion will reach or exceed a specified level, ag. defined as the
integral of the product of three parameters: the independent probability density
functions for occurrence of an earthquake of magnitude S, fs; the density function

that it will occur at distance R, f,; and the conditional probability that given an

R’
event of magnitude s and at distance r, the ground motion will reach or exceed ag.

This can be stated as:

o ’\g;\ :1;1, R .-\g z :1g| s and rJfS(s)l'R(r)dsdxu 3

N . ces iys 23
where X A\L,f/ a ls and ri s the conditional probability,
_—

(3™
3

2, Cornell, C, A, (1968) Engineering seismic risk analysis, Bull, Seismol,
Soc, Am, 358:1503-1606,

23, McGuire, R, K. (1976) FORTRAN Computer Program for Scismic Risk
Analysis, U, S, Geol, Survey, Open IFilc Report, 76-67.

24, Sykes, L. R, (1971) Aftershock zones of great earthquakes, seismicity gaps,
and earthquake prediction for Alaska and the Aleutians, J. Geophys. Res,
76:8081-8041.

y AT S 4. i ;"Mh' i £ s e

Sllate.




The function fs(s) is derived from the source region recurrence curve while
fR(r) incorporates the spatial relationship between the total source region and the
site of interest, The conditional probability is derived from a ground motion
attenuation function discussed in the next section, Evaluation of the integral yields A
the probability that onc event from the given source region will reach or cxceed ag.
By multiplying this value by the expected number of events in the region for one
year and summing over all source regions with some predetermined distance, we
obtain the total expected number of events per year, or annual risk, RA.

The risk can be stated in alternate forms; for example, return period, PR, or
lifetime risks, RN. The return period is given by the inverse of R A and corre-
sponds to the average interval of time between the site of interest experiencing the
specified acceleration or greater. The lifetime risk, RN’ is the probability of ex-
ceeding the specified acceleration in any N vear period. 1 or a Poisson process,

this value is given by: i

_ N
Ry=1- (1-R ™, (4)

b
y
As an example, a 475-vear return period ground motion, RA;‘ 0, 0021, is '

equivalent to RSO = 0.1, This is equivalent to stating that in any 50-vear period ‘
the level of ground motion having a 475-vear return period will not be exceeded at '

the 90 percent confidence level,

4.2 Ground Motion Attenuation

The conditional probability density function discusscd in the preceding section
is derived from ground motion attenuation functions, Various cmpirical studics
have been conducted to derive these functions (see Ref, 23), Typically these

equations have the torm

g o e2MR 4™ )

where g is the predicted motion level, M is earthquake magnitude and R the event-
to-site distance. At best, these equations are of limited accuracy due to lack of
radiation pattern or local travel path and site geologv corrections, and the standard
deviations associated with them are typicallv large. Most cquations are based on
data largely from southern California and presumed not tyvpical of all regions of

25
the world, ™

25, Battis, J, C, (1481) Regional moditication of acceleration attenuation fune-
tions, Bull, Scismol. Soc, Am, 71:1309-~1321,
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. . 13
Strong ground motion attenuation in the Utah area is not well determined.
Lacking adequate data upon which to base an attenuation function, we used curves

derived for the California area. The function parameters for the peak acceleration,

velocity, and displacement attenuation functions are given in Table 3. The

Table 3, Peak Ground Motion Attenuation Function Parameters

a M -a
= a : +
g 1 € 2 (R a3) 4
] Source
Ground Motion al a2 a3 a4 8 Reference No.
Accelerasion 160,20 0.908 25.0 2.076 0.707 24
(cm/sec*)
Velocity 5.64 0.921 25.0 1,20 0,629 25
(cm/sec)
Displacement 0.393 0. 99 25.0 0.88 N, 76 25
(em)

Aacccleration curve was derived o0 Battis, nd the remaining two functions were

. 24,20 . . . . .
evalusted by AeGuaire, ™ 07 Phe<e cgiations give peak ground motion values for
rocic uel < <oil sites,
£ Statisheal Hazard Resnlts

fopr cwch of the oo okl o cprived in Section 3, peak ground aeceleration
it wclovity contonr mp- sere corlunted for Utah using two different lifetime
periods, 10 w0 et 50 s, i the calenlations were carricd out at the
“U}wa«wﬁ.wnni4vnwvltﬂtl‘n mun‘uwwwhqnw-“{\so.lh For the 10=-vear lif timee,

the groumd motion evels corre=porid 1o the #H-vear roturn period motions; for the
50-vear tifetime, to 475-vear return period motions, These contour maps are
shown in Vignres 7 through 14,

Two facts concerring these map+ should be pointed out,  First, the ground
motion levels arce for stitf soil and rock sites: they have not been modified in any
wav tor lacal geologie conditions., Particularly in the alluvial basins of western
Utah, =urfacce ground motions could be expected to be significantly different from

reported values, Scecond, the general contour trends are determined by the areal

31
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extent of each source region,  Anv change in the source region definitions would be
expected to alter the ground motion predicted at anv particular location, The
limitations of available geologic data and the diffuse naturce of seismicity in this
region allow only gross outlines of source regions to be made. This, in turn,
limits application of these maps to anything morce than a regional overvicew,

Variations in the seismic hazard predicted by the two seismicity models e
apparent in Figures 7 through 14, This is especially true in western tah and
along the Wasateh tront area and expected from the different manner in which cach
model distributes the seismic activity in this arca, As would be expected from the
seismicity models, the seismice hazard based on the uniform model predicts higher
levels of ground motion overall and specifically in the Basin and Range Province
region of western Utah.

In addition to these contour maps, annual ground motion risk curves werce
evaluated for four sites that approximatelv correspond to Cedar City (38°N, 113°W),
Wendover (415N, 1147 W), Salt Lake City-Ogden (417 N, 1127 W) and Manti-T.a Sal
National Forest (3%\;1\’. 110°W), The scismic risk evaluated at these loeations
show the range of hazard in the state and demonstrates the effects of the model
variations, The annual risk curves for these locations arce shown in Figures 15
through 22, The ground motion levels for specific annual risks for each site are
given in Tables 4 through 7. l'or purposcs of comparison, the annual scismice
risk curves for Vandenberg Air Foree Base, California arce shown in Figure 23, ok
Viandenberg Air Foree Basce is located in a region of California that has a modoer-

ately higli s« "smice hazard level,

Lt Composite Design Response Spectra

The speetral characteristics of ground motion are typically represented in the
form of response spectra, These spectra represent the maximum response of n
simple, viscous-damped harmonic oscillator over a range of natural periods. Vor
specific levels of damping, methods have been developed to estimate upper Himit

. . . ; 28 .
response spectra given the predicted ground motions tevels at some site, I'hese

26, MeceGuire, R, K. (1971 Seismic Structural Response Risk Analvsis Incorpora-
ting Peak Response Regressions on Farthquake NMagnitude and Distance,
“ivil Tng,, Rescearch Report R71-51,

27, Battis, J, C., (1979) Scismic Hazards Estimation Study for \Vandenberg AIFB,
USAI Geophysics ILaboratory, AFGIL.-TR-79-0277, ADA082458,

28, flays, W. W., Algermissen, S, t., Fspinosa, A, F., Perkins, D, M., omd
Rinchart, W, A, (1975) Guidclines for Developing Design Farthquake

Response Spectra, U, S. Armyv Construction Fng, Rescarch I.aboratory,
']'n(‘ilni(‘.'ll f{oport Al-114,
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ANNUAL RISK

1.0 T T T T — LIRS0 ) B B ymmannsl
-
C
F VELOCITY ACC(EG:ERATZ;ON
o (cm/sec)
]
Ol E —10 r_g
= C
|- > )
- £
[~ e
m
i 2
L DISPLACEMENT 8
(cm) -
M
0.0 —100 »
» o]
_ @
|
i
4ol 1 1 pea] 11 111 1j000
oo0 i 10 100 1000
PEAK GROUND MOTION
ANNUAL SEISMIC RISK CURVES FOR VANDENBERG AFB
Figure 23, Annual Seismic Risk Curves for Pt Arguello (Vandenberg AFB),

California




Table 4.

Peak Ground Notiva Annual Risk Levels for the Cedar City Area

g{
Return | Acceleration (cm,sec”) Velocity {cm/sec) Displacement {(cm)
Annual Period
Risk (Years) UsS Model SMS Model US Model | SMS Model US Model | SMSE Model
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Table 5. Peak Ground Motion Ynnual Risk Levels for the Wendover \rey
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Table 6., Peak Ground Motion Annual Rick Levels for Salt Lake City - Ogden Area
2 .
Return Acceleration (cm/sec ) Velocity (cmssec) Displacement (cm)
Annual Period
Risk (Years) UsS Model SMS Model US Model | SMS Model 'S Model | SMS Model
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Table 7.. Peak Ground Motion Annual Risk levels for the Manti~T.a Sal National
Forest Area
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are known s design response speetra, Newriark et al have developed one set of

. . . . . e 24
commonly used amplification factors given in Table 8. I'hese values are used to

Iable 8. Hovizontal Desiun Response Specira Amplification Factors
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modifyv the ground acceleration and displacement levels in order to obtain response
speetral levels at specific frequencies. The levels of eritical damping correspond
to different foundation soil conditions, with the lowest eritical damping values being
for hard rock, and the highest damping values for soft soil. These spectra repre-
sent the mean plus one standard deviation spectral values for anv specified ground
motion.

Composite response speetra have been caleulated for the 100-vear return
period ground motions at cach of the four sites specificd in Section 4.3, These
spectra are given in Figures 24 to 27, These curves correspond closcely to the
10-vear lifetime, 90 pereent confidence level responsce spectra, It should be noted
that the curves do not necessarily represent the predicted spectra for anv one
carthguake,  The peak ground motions at the 100-vear return period could be
generated by different earthquakes oceurring at different times and loeations,
Thus, it is more accurate to view this representation as ostimated upper level

values for anv one event over limited frequency windows.

29, Newmark, N, M,, Blume, J. A., and Kapur, K, K. (1973) Design Hesponse
Speetra for Nuclear Power Plants, Am, Soe, Civil ng., Structural Eng,
\feeting, San Franciseo, California,
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5. MAXIMUM CREDIBLE GROUND MOTION

With use of the map of known and suspected Quaternary taults in Utah (Figure 3,
maximum credible ground motions were estimated for the (tah region, s manvy
fault segments on this map could be incompletely plotted, cach fault seement was
assumed to be able to support the maximum credible carthquake for the sonree
region in which it is located, The maximum credible carthquake s are Lased on
the subplate margin scismicity model (Table 2),  Ground motion di=trinution is
based on the 80 percent confidence level motions prodicted by the attenuation fune -
tions given in Table 3, The resulting contour plots are shown in Figures 28 throuch
30, Bascd on the available fault data, which in many areas is incomplete, these
contour maps show the largest ground motions expected at o hard rock site in U tah

without regard to the likelihood of occurrence in anv time prriod,
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6. DISCUSSION OF RESULTS

The level of uncertainty in the evaluation of seismic hazard for any repgion is
high, and particulacly true for this studv, The source of this uncertainty includes:
the dertinition ot the scismicity characteristies throughout the region; the seismic
attenuation properties of the crust; and the relation between the accelerations gen-
crated by an carthquake and the size of the event,  The effeet of this uncertainty
can be scen by comparison of the annual risk levels given in Tables 4 throuch 7.
Variations greater than 400 pereent can be found where the only modification being
conzidered is the diztribution of scismicity.

In the present study, the definition of the seismic regionalization and the =cis-
mic characteristics of cach region, such as maximum magnitude and recurrence
rates, are beliceved to be the major source of error., s onc example, the b-value
of the recurrence curves i< often found to have zienificant variations when derived
using distinet time windows of carthquake historv within a specified region, | his
iz a real offect which derives from the statistical nonstationarity of the earthau ke
process,

Beeause the length of the historical record is short when compared to the
duration time-scale of geologic processes, choice of the proper seismicitv model
is adifficult task. To some degree, the analvsis done for this report attempts to
handle those questions by using two models representing approximations of the
extremes. The subplate margin seismicity model is considered the better mode-l it
onc proiccts historical secismice activity into the tuture.  tlowever, it the hiziorical
scismicity does not represent the long-term trend, as sugeested by Ryvall, then
the uniform seismieity could be more accurate,

IFor predicting sceismie hazard over the noar-term, up o <everal huindvoen
vears, the author holds that the subplate margin model provides 1 better picture
of future carthyuake activitv, The primary reason for thi= concliu=ion iz thu s
the geologic processces oceur over long tinme perjods, chnges it the processos

will also occur over relatively lony periods,

. CONCLUSIONS {
1

With the use of two distinet seismic regionalizations, sci=mic hwaed oy il !
tions were conducted for 1tah, depicting the possible extremes in future sei-mic l
activity in the Utah area,  The primary distinetion in the models woas the tre e l
of I'n=in and Range scismicity, it one model, the <cismic aetivity in this provise: ]
5 |

!

!

.“'(




was uniformly distributed, whereas in the scecond, it was concentrated at the prev-
ince boundaries. On the basis of these models, contour maps of peak accelera-
tion and velocity were constructed for U'tah and annual risk curves evaluated for
specific sites within the state. In addition, deterministic hazard estimates were
made based on known and suspected Quaternary faults in Utah,

It has been concluded that for near-term hazard evaluations, the subplate mar-
gin model provided the most useful hazard projection, Based on this model, 90
percent confidence level accelerations in Utah are less than 115 rm/swz for anyv
50-year period, The deterministic modeling predicts that acceelerations over
0.8 g are possible throughout much of western Utah and, in particular, the pro-
posed MX basing arca, However, it is likely that accelerations of this magnitude
would ocecur on the order of less than once in sceveral thousand vears at any

specific site within the state,
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