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0. Introduction

The theory of Ito stochastic differential equations has been applied with
great success to stochastic nonlinear filtering and control theory. It is con-
venient to begin with a brief outline of the main developments of nonlinear fil-
tering that concern us in this paper.

Let the unobserved signal process X = (Xu) be a Markov process taking values
in Rk. It is assumed that the generator of X is known or that it satisfies an
Ito stochastic differential equation. The canonical model of the observation
process is given by
(0.1) | Y, = fgh,(X)du+W , 0stsT,

t

where h: [0,T] x Rk -*'Rd is a measurable function such that

(0.2) fg lhu(xu)|2du <w a.s.

In (0.1), W = (Wt) is a standard, d-dimensional Wiener process. Under very
general assumptions on the dependence between X and Y, Fujisaki, Kallianpur and
Kunita derived in [10] a general stochastic differential equation for conditional
expectations Ht(f) = E[f(Xt)le, 0<s<t] for a class of f's belonging to the do-
main of the infinitesimal generator of X. Subsequently, the problem of existence
and uniqueness of the solution of the stochastic differential equation satisfied
by the optimal filter -- either as an equation governing a measure-valued process
or as a stochastic partial differential equation for the conditional density --
has been investigated by several authors (Kunita [17], Szpirglas [24], Pardoux
[20,21], Krylov and Rozovskii [16]. Also see further references listed in [16]).
An equivalent but more convenient equation to work with is the one for the unnor-
malized conditional expectation (or conditional density) due to Zakai [25].
Recently, Clark and D avis have used the Kallianpur-Striebel (K-S) formula and

also the Zakai equation to obtain a robust solution to the filtering problem




([s1,161,[7]).

A point of view which questions the practical validity of the observation
model (0.1) has been put forward by Balakrishnan in a series of papers which are
the forerunners of the present work [1,2,3]. According to him, the model (0.1)
is not suitable from a practical standpoint because the results obtained cannot
be instrumented [3]. While this objection to the applications of the Wiener pro-
cess in physical problems may not be new, Balakrishnan goes further in insisting
that the theoretical framework for nonlinear filtering must be faithful to the
observed phenomena which, in the present situation, means working with a Hilbert
space of possible observations that has Wiener measure zero. This model which we
designate the white noise filtering theory model is rigorously defined in Section
2. The noise in the observation is modeled not by the Wiener process but by fi-
nitely additive Gaussian white noise. The latter is the same as the Gaussian weak
distributions that were first introduced by Segal in connection with certain pro-
blems of Quantum Physics [22]. Nonlinear transformations involving weak distribu-
tions were also studied, somewhat later by Gross ([12]. See the comments in {1]).

The aim of the present paper is to further develop the white noise approach
to nonlinear filtering in the important special case when the signal is indepen-
dent of the observation noise. We begin by setting up the necessary finitely ad-
ditive framework for our problem in the first three sections. These include the
white noise versions of the Bayes (or K-S) formula and of the Zakai equation. In
Section 4, another form of the Zakai equation -- a partial differential equation
for the unnormalized conditional density (in the finitely additive context) -- is
derived and the existence and uniqueness of its solution in the distributional
sense is established.

The last section is devoted to robustness questions and to the relation be-

tween the white noise and Tto calculus approaches to the subject. Theorems 5.1




s

and 5.2 show that
(a) the white noise theory leads to a robust procedure when the observations are

restricted to the Hilbert space HT and

.(b) the robust solutions obtained by Davis in the standard, Ito formulation of

the problem can be approximated by the solutions in (a). Further details are

given in Section 5.

[t is not easy to make a strict comparison of the results of Sections 4 and 5
with those of Pardoux [20,21]. Under somewhat weaker conditions than ours Pardoux
has shown that the unnormalized conditional density pt(x,Y) is the unique solution
in the distributional sense of a stochastiec PDE ([21], Corollary 3.3 to Theorem
3.1). In Theorem 3.2 of {20] it is shown that for every Y in C[0,t], pt(x,Y) is
the solution in the distributional sense of a PDE which is the analogue of the
"Zakai" equation of Section 4. On the other hand, the conclusions of Theorems
4.2 and 5.1 of our paper are stronger. Theorem 4.2, for instance, cannot be de-
rived as a consequence of Pardoux's results or by using his methods. Moreover,
all our theorems are pathwise results which cannot be obtained with the technique
of stochastic calculus.

In connection with his work on robust filtering, Davis has introduced a semi-
group of transformations in which the path Y ¢ C([O,T],lfl) figures as a parameter

[ 7]. An analogous semigroup Tz t (s<t) but with y restricted to H, is defined in

T
Section 3. The brief discussion given there shows that the absence of stochastic
formalism makes things simpler and permits a more general definition.

The theory outlined in this paper can be extended to infinite dimensional pro-

blems. In this case the Hilbert space HT is replaced by a Hilbert space

.Lz([O,T];K) of square integrable functions taking values in a separable infinite

dimensional Hilbert space K. Certain aspects of this problem will be taken up in

a later paper.
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Finally, it must be mentioned that the main results in this paper have been
established without any approximation procedure whatever. In this sense, the
white noise approach stands by itself and is entirely different in spirit from

the many attempts to find approximations to Ito stochastic differential equations

and their solutions discussed at length in Tkeda and Watanabe's book [13].




1. A Bayes formula for a finitely additive filtering model.

We start by recalling some definitions regarding integration with respect ton
cylinder measures on Hilbert spaces. These definitions are implicit in Gross
[12].

Let H be a separable Hilbert space. Let P be the class of projections on 4
with finite dimensional range. For P ¢ P, let CP = {P_IB: B a Borel set in Panre
P} and let C = U{Cp: PeP}. Then, Cp is a o-field for each PeP and hence C is a
field. The sets in C are called cylinder sets. A cylinder measure n on H is a
finitely additive measure on (H,() such that its restriction to Cp is countahly
additive for all PeP.

Let L be a representative of the weak-distribution corresponding to the
cylinder measure n. This means that L is a linear map from H* (identified with
H) into L(QI,AI’HI) - the linear space of all random variables on a countably

additive probability space (QI’AI’HI) - such that
(1.1) n(h: ((h.hl).(h,hz),---, (h,hk)) € B)

= T, ((Lh)),L(hy) ..., Lhy)) € B)

k

for all Borel sets B in R, h . hk e Handk 2 1. (Two maps L,L' are said

170
to be equivalent if both satisfy (1.1) and the equivalance class of such maps is
the weak distribution corresponding to n).

A function f on H is called a tame function if it is of the form

(1.2) £(y) = ¢((y,h;)5..., (¥5h))

for some k 2 1, hl""’ hk ¢ H and a Borel function ¢:Rk + R. For a tame func-

tion f given by (1.2), denote by f  the function ¢(L(h1],L(h2),..., L(hk)).
Definition. Let L(H,C,n) be the class of functions f on H such that the net

{(foP)™: PeP} (here P

< P2 if Range P1 ¢ Range Pz) is cauchy in 0. -measure.

1

1

Furthermore, let




to

f7 = 1im in Prob. (foP)".
PeP

It may be observed that 'the map g = g~ is an extension of that for tame
functions and is linear,multiplicative while the intrinsic integration notions
such as the distribution of g~ depend only on the function g and the weak distri-

bution (or the cylinder measure) and is independent of other arbitrary choices

{such as the representative L of the weak distribution or of a basis of H, etc.)."

(Gross [12]).
In view of this remark, it is natural to make the following:
Definition: f ¢ L(H,C,n) is integrable iff f 1is integrable and in that casc,

we set -
[€an=[ £ dn .

The finitely additive cylinder measure m on (H,C) such that
2

[, exp(- —=—) dx , h e H
2{[nf?

1
(1.3) m{yeH: (y,h)sa} = ——
v2m[h{f

is called the cannonical Gauss measure on H. The identity map e on H, considered
as a map from (H,C,m) to (H,C) will be called Gaussian white notse.

The abstract version of the white noise non-linear filtering model considered
in this paper is given by
(1.4) y=E +e
where £ is an H valued random variable on a countably additive probability space
(22,A,M independent of e. To make (1.4) meaningful, £ and e should be defined on
a single probability space. To this end, let E = H X Q and

F= oY Cp ® A

where CP ® A is the usual product o field. For PeP, let ap be the usual product
of m restricted to Cp, which is countably additive and T, (so that ap is a counta-

bly additive probability on (E,CPGA)). It is easy to see that the ap's are con-

sistent and thus determine a finitely additive probability on F such that a = o,

on CPGA.




Let e,£,y be H valued maps in E defined by

(1.5) e(h,w) = h
E(h,w) = E(w)
y(h,w) = e(th,w) + E(h,w) , (h,w) e H xQ .

Then, & is the signal, e is the noise and the observation y is given by (1.4).
Lemma 1.1, y: (E,F,a) » (H,C) is measurable in the sense that

B = {(h,w): y(h,w)eC} belongs to F for all C € C and further n defined by

(1.6) n(C) = a(y € C)

= Mgy (4@, CeC

(where mh(C) = m(C - h),heH) is a cylinder measure.
Proof: Fix PeP such that CeCP. Let C = P'lD, where D is a Borel set in
Range P. Then

B = {(h,w): PE(w)+PheD} € CP ®AcfF.,

Furthermore, using Fubini's theoren,

a(yeC) = ap{(h,w): PE(w)+PheD}

[ mip~! (D-PE(w)) 1dN(w)

f mep1p-£(w)) dn(w)
 m(C-E(w)) dM(w)
= My (€ dN(W)

The finitely additive measure n is called the distribution of y.
Let g be an integrable function on (Q,A,N). In analogy with the usual de€i-
nition of conditional expectation, we make the following

Definition: If there exists a v ¢ L(H,C,n) such that

1.7 [ @)1 (yh,w))dath,w) = [ v(y)dn(y)

then we define v to be the conditional expectation of g given y and express it as

A e AT A aced

o i g e

=




E(gly) = v .

As in the proof of lemma 1.1, it can be seen that the integrand in (1.7) is

Cy®A measurable, where CeCp. Let
(1.8) ¢g(C) = [ g(w)1 (y(h,w)dafh,w) , Cc Cp.

Again, as in lemma 1.1, it can be shown that

(1.9) ¢,(C) = f g(@mg ) (C)dN(w)

We now proceed to ...w the existence of E(gly). In fact we obtain an ana-
logue of the Kallianpur-Striebel formula for Efgly). Since we are going to usc
it later, we state an abstract version of the formula here. For a proof of
this, see lemmas 11.3.1 and 11.3.2 in Kalliannur [15].

Lemma 1.2. Let (Qi,Ai,Hi), i = 1,2 be probability spaces, and (QS,AS,FSW =
(Ql,Al,Hl)a(Qz,Az,Hz). Let p(wl,wz) be a positive A3—measurab1e function such
that

f p(wl,wz)dﬂl(wl) =1 for all w2 € 92 .

Let X be a measure on (,A.) defined by

AB) = f plwp,w,)dll (W ,w)) , Be A

BXQZ

Let AO = A1®{¢,Qz}.

Let g be an integrable function on (QZ,AZ,HZ) and let

0, (B) = B£Q g (W) p(w ,w,)dll (W ,w,)
2
Then Qg << X and
dQ [ 2(w,)pw ,w)dl, (w,)
E(g(Ao) =TX&(“’1) - 2 1’72 2772
[ o) ,w,)dl ()

Now, let {ej} be a CONS in H. Let Bno be the Borel o-field on Rm and let

W= TG N0, For hoe H, let w = N7 N(hi,1), where h, = (h,e,). It is




well known that My Zu (i.e., uh << |y and y << uh) and

(1.10) ilEh-(x) = exp( ? x.h, -1 ; h?)
' du = is1 il 2 j=1 1 ?
X = (%)%, )eR
= q(x,h) say

Let xj(f) =X, X = (x L) € Rm, be the coordinate maps on Rf Define

j Xps e
a map L from H into L(R R B , 1) by

(1.11) L(h)(x) = ) <h,e.>X.(x)
D7 eyl

It is easy to check that the series appearing in (1.11) converges a.e. u and that
the distribution of L(h) under u is N(O,l[hnz), so that L is a representative of
the weak distribution corresponding to the Gauss measure m. Since uh = u, L can
also be considered as a map into L(]{ B uh )} and the distribution of L(h) under
uh is N((h, hd)llh” ) and thus is a representatlve of the weak distribution cor-
respondlng to mho. Further, By = = 1 implies that the map £ > f~ is the same when

L is considered as a representative of the weak distribution corresponding to m

or mh . Thus for C ¢ C, we have
0
(1.12) () =wu (€)Y , h, eH
", hy 0
where C~ ¢ B is given by
(1.13) (lc)~ = 1C~ .
Now, let

V(B) = [p q(x,E)dN (x,w) , B e A
A(D) = V(D) , De B

s




[p @ (x)dv(x,w)

(1.14) Wg(D)

o(g,x) = [ g(w)q(x,&(w))dN(w).

Then, by Kallianpur-Striebel-Bayes formula, Lemma 1.2, we have

(0 = 9@ -y say
o(1,x)
and hence
(1.15) YD) = [puodi(0 . De 3

The following lemma is an immediate consequence of (1.6), (1.8), (1.12),
(1.14) and Fubini's theorem:
Lemma 1.3

o

(1.16) (i) V(AxB) = J’B pg(w)(A)dH(m] , AeB,BeA

(e o}

(i1) ¥ (D) = [e(@up(, (D)MW , DeB
1.17) (iii) n(C) = AM(C) , Ce C and C~ is defined by (1.13)

(1.18) (iv) ¢g(C) = Wg(C~) , C,C” as in (iii).

e g e e e -

Now, (1.16}, (1.14) and the fact that uh = u implies that X = p and hence L
can be considered as a map into L(]{D,Bm,X). (1.17) implies that it is a repre-
sentative of the weak distribution corresponding to the cylinder measure n.

Also, as remarked earlier, the map f + f is the same for the cylinder measures

n and m. Thus, even though we have a family of cylinder measures {mh: heHlu{n},

the symbol f~ has a unique meaning.

Let
(1.19) q(y,h) = exp{(y,h)- -;—lthZ} .
and
(1.20) o(g,y) = [g(w)qly,&(w))dN(w)

e PRSI L ‘.,..i ,A\i - ) " ‘




Observe that q(y,h) < expC%HyIlZ) and hence the integral appearing in (1.20) .
is well defined.

Finally, let

- _9(g,y)
vl = Sy

Then, we have
Lemma 1.4
(i) v e L(H,C,n)
(ii) v =u
(iii) v satisfies (1.9), i.e.,

IC v dn = ¢g(C) for all C ¢ C

Proof: Let Py denote the projection onto Span {el,..., ek}, k 2 1. (Recall that
{ej} is a fixed CONS in H). Let Bk = o(Xj: 1 <j <k). Let h denote a generic

element in H and let hj = (h,ej). Then

k oo
(1.21) (o(e,Pm1™ = [f gwexp | hyt,- %‘121 EDanew 1"

k ©
= | glwexp( ) X;E.- 7 | EDan(w) .
i1 i1

On the other hand,

k k
(1.22) (32,1 [B) = [ aexpC } X;E,- %-iglaf)dncw)

Denoting [ |f|du by llful, we get from (1.21) and (1.22)

[+ +}

§E2yan(e
izk+l *

0~

0|t

[l {oCe,Ph)17-E, (g, ) (B[] = B[] g(w) [exp( leigi- %i 1Ei)(l-exp(-

1

(1.23) = [l | (-expe- Higll®s Jllp, el P ance.

If for P e P, BP denotes o(L(h): h ¢ Range P), then as in (1.23), it can be shown

that




Il {ote.Ph) 17, (T2 ) (BT |

= [ letd | (1-expt- Fllel?+ Hipell %)) ancw)

By the martingale convergence theorem (see p. 96, Neveu [19]), we have
- - . 1
(1.25) {Eu(o(g,°)|BP)}P€P + a(g,*) in L (u).
From (1.24) and (1.25), we get
~ - . 1

{{o(g,Ph)] 7}, p *+ O(g,*) in L7 (u)
and hence in p-probability. Thus o(g,h) ¢ L(H,C,n) and [o(g,h)] = O(g,*). Since
the map f + f~ is multiplicative, we get v ¢ L(H,C,n) and

~oa [O(g’h)]~

v o= [c(1, )T

- o(g,x)
a(1,x)

= .

Finally, for C € C and C~ defined by (1.13), we have

¢ - .
g(C) Wg(C ) by (1.18),

[~ulx)dA(®) by (1.15),

[ aa

[1v dn by definition of [fdn

[c van . 0

We have shown the existence of a function v satisfying (1.7) and thus E(gly)
exists as a function in L(H,C,n). We may remark that here ég and n are cylinder
measures such that for all € > 0, there exists a § > 0 such that n(C) < & implies

¢g(C) < € for C ¢ C. However, there is no general result known to us that implies

AT it Sl e S e "W‘ 4. . oo Ly, e o
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the existence of the Radon-Nikodym derivative :“;Ain the class L(H,C,n). What

we have done in Lemma 1.4 is to produce such a derivative. We may add that

Gross [11] has a definition of Radon-Nikodvm derivative which alwavs exists as

in the countably additive theory, but in his definition, the derivative is a ran-
dom variable on the 'representation space' ((]?,Bm,k) in our set up) and not on

fH.C.n) and thus is not appropriate for defining conditional expectation.

We summarize the results of this section below. This is Bayes formula for the
conditional expectation in our set up analogous to the Kallianpur-Striebel formula
(Lemma 1.2).

Theorem 1.1: Let y,§ be as in (1.5). Let g be an integrable function on (Q,A, ).

Then - 1 2
[ gexp((y,E(w)) - 3| EW) || ) dN(w)

f exp(y,&(w))- %—ll& (w) || zdﬂ(w)

E(gly) =

o Has atya, . ,
i e WO & 2% <IN e e

i o Buien frme




2. A white noise model of non-linear filtering.

In this section, we apply the results of the previous section to the usual
filtering model.

Let X = {Xs: 0 < s < T} be a Markov process on a probability space (Q,A,T)
and taking values in a complete separable metric space S and let (LS) be the ex-
tended infinitesimal generator of X and let D = QD(LS)'

For 0 £t < T, let ht: S + R™ be such that

(2.1) I} lht(xt)l2 dt <o a.s. T .

Writing ( , ) for the inner product in R" and [+] for the norm, for each t

in [0,T] define
H, = {6: [0,t]-R": olel’ (0,1} .
Ht is a Hilbert space with the inner product
<0,0,> =[5 (0,,0,) du .

A function ¢ € HT’ when restricted to [0,t] will be denoted by ¢t and is obvi-
ously an element of Ht'

Let Es(w) = hs(Xs(w)), 0 <s <T. Inviewof (2.1), & = (Es) is an HT valued
random variable and for 0 <t < T, Et is an Ht valued random variable. Let
e = (es: 0 <5 <T) be Ht valued 'white noise' independent of X.

The non-linear filtering model considered in this paper is the following:
(2.2) g = hs(xs) + e 0<s<T
or equivalently
(2.2)! y=§+e.

Applying the results of the previous section (to the Hilbert space Hy and random

variables yt = £t + et) we have, for an integrable function g
alg,y") t
(2.3 E(g|yu: Osust) = gy ) 4 th

o(1,y%)




where
t t .t
(2.4) olg,y ) = | glwqly ,& (w))dN(w)
and
(2.5) ay", 6" w) = expley’ £ @), - <€t W), £ w)>))

Since q(yt,Et(w)) < exp(%<yt,yt>); O(g,yt) is well defined.

If we define Gt(g,y) = G(g,yt) and qt(y,E) = q(yt,ﬁt) then we can rewrite (2.3)
and (2.4) as

(2.4)° o.(g.y) = [ glw)a, (v,E(w))dl(w)
and
: 0. (8,y)
(2.3) E(g]yu: O<ust) =0t(1’Y) , el .

It may be remarked that though yeHT appears as a parameter in Gt(g,y), ot(g,y)
is by its definition, a nonanticipative functional of y. We prefer the form (2.3)'
because in the next section we obtain a differential equation for ot(g,y) and for

this, it is convenient to consider a fixed yeHT as the parameter.

R [P

BT ST SN, . o e . _
. S - e il' e 3




3. A white noise version of the Zakai equation,

In this section, we obtain an analogue of the Zakai equation in our set up.

We sill show that (under suitable conditions) for feD, we have

d

m . .
- T = + 1 1
(3.1) 3t O (T y) = o (L ELy) + iZlot(ftht,y)yt

where £ (0 = £(X (@) , h(w) = h (X (@)

~ 1 2 ~ ~
%f=ttf-7mt|f , and L F = (L )X ()

First, observe that for a g such that E|g| < =,
(3.2) o, (g,y) = o, (E(g|F),y)
o t e’ t t’
where F: = o(X(s): s<t). This follows from (2.4)' and the fact that qt(y,E(m\)
is F: measurable.
Fix feD and let g,: Q>R be defined by
g (W) = £(X) - [T(L_£)(X )ds
t XT t s s ‘

Then proceeding as in [14] it follows that

5.3) E(g, [FD) = £(X)
and hence
(3.4) 0, (£,,¥) = 0,(g,.y)

Now, g,»q, are absolutely continuous functions of t and

d _ -
at 8 = Lefe o
a7 EW) = %wawntifl LR 1%
and hence
(3.5) 2,9, (,E) = go+[o(L.F ) (,E)dse zfgshsysq (y,£)ds

1t o 2
o8I [“a (y, 8)ds .




o

1f

.60 JRALE D+ T lglIniIvEl LR, 121g, 1) dsan < =
) 0"'"s’s 501 B 1 1MgH1Y 210! 1Bg

then by Fubini's theorem it follows that

m .
_ t = A B | = 2
(3.7)  o.(g,.y) = Egy + [([0 (LF,y) + izl°s(gsﬁg’Y)Ys - 5 0 (8 B |7,y 1ds

so that (3.2), (3.3), (3.4) and (3.7) give

(3.8) o (F,.0) = Egy + [Llo (LE,y + :

i

e~

= i F1F 12
RACRI AR SAC NI L

m . .
t T F il 1
Efy + [olo (LE ,y) + iZlcrs(fshs,y)ys]ds .

Equation (3.8) is the integral version of (3.1) and thus it follows that (3.1)

holds for all feD for which (3.6) holds.

From now on, we will consider Gt(g,y) only for g of the form g(w) = f(Xt(w))

and hence we modify our notations slightly.

For a function f: S » R and 0<t<T, such that Elf(Xt)| < o , we define

0 (£,y) = [ £F(X)a (y,5(w))dN(w)

With this notation, we now state the result proved in this section.

Theorem 3.1. Let feD be such that (3.6) holds. Then for all ycHT,

m . .
d _ ~ i i
(3.9) Eot(f,)’) = ct(Ltf’Y) + 12-1 Ut(htf’)')yt .

a.e. t in [0,T] .

Remarks. To compare (3.9) with the usual Zakai equation, define
u
HT = {Y: Y(u) = IO y(s)ds , OsusT , yeHT}

The map y » Y = fg')y(u)du is an isomorphism between the Hilbert spaces ”T
and HT (equipped with the appropriate inner product). Writing ot(f,Y) = ot(f,y)

v = e




where Y and y are related as above, (3.9) can be rewritten as

m . .
_ T 1 1
(3.9 do (£f,Y) = o (L f,Y)dt + _2 o (fh_,Y)dY, .

i=1
(3.9)' is an analogue of the Stratonovich version of the Zakai equation (Davis
and Marcus {8]).
The unnormalized conditional expectation at(f;y) and the Zakai equation (3.9)
can be expressed by means of a semigroup (TZ,t) , 0Ss<t<T, yeHT as follows,
Write

a5y, EW) = expl[Sly € (@)du - 3 [C]g (w)|%au} , ossstet

Then for each yeHT, qi(y,-) is a multiplicative functional of the Markov process

X (recall that € (@) = h (X (@))). Hence TZ . defined by

Y = S =
(3.10) (75,¢ ) = EIfX)a (y,8) [X,=x]
is a semigroup, i.e., for each y in HT’
- Yy y -1y
(3.11) Ts,u Tu,t = Ts,t , 0<s<ustsT .
Furthermore,
(3.12) de (Ty,¢ ) dr(x) = 6, (£,)

where ' is the distribution of XO. In this set up, the Zakai equation (3.9) can

be written in the form
d .y -1 «F
(3.13) 3€(To,t f) = TO,t[Ltf + (he,y ) f] .

From the semigroup property and (3.13) it can be shown that the generator AY of

{17 .} has the form
s,t

b4

Yo _ 1 2
(3.14) ALE = Lf s [(h,y,) - 7|ht| 1f .

S A e RO o oLickc- - <R e A b o J




The semigroup {Tz't} is similar to but not identical in definition to the semi-
group introduced by Davis in [7]. The objective of [7] is to establish a formula
analogous to (3.14) for the extended generator of Davis's semigroup, the underlying
idea being that the semigroup determines the unnormalized optimal estimate Ot(f,y).

The white noise approach appears to be more general and is consideiably simpler.

The assumption that h(Xt) is a semimartingale, made in [7] is unnecessary. More-
‘ over, the difficulties connected with the Ito stochastic integral with respect to
the semimartingale h(Xt) simply do not appear in our treatment of the problem. We

will not pursue the question further in this paper.

|
g
¢
¢
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4. Zakai equation for the unnormalized conditional density. .

In the rest of the paper, we show the existence of the '"unnormalized condi-
tional density" in our finitely additive set up and show that it is a solution of
a partial differential equation (also called the Zakai equation), in which yeHT
appears as a parameter in the coefficients.

For yeHT, let T; be the finite positive Borel measure on S defined by

(4.1 TL®) = [ 150X (0)a, (v, E@)dN(w)

t 3
0, (15,Y)
Then, using usual arguments, it can be shown that for f such that Elf(xt)l < o,

(recall that q,(y,E(w)) is bounded by exp(3fs]y|%du))

t
(4.2) o (£,y) = [E6AT (00
and hence
1 t
E(f(X )|y : O<ust) = JE(x)dT (x)
t u F;(S) y

Thus F; is the unnormalized conditional distribution of X, given {yu: Osus<t}.

If the X is Rd -valued and F; admits a density pt(x,y) with respect to the Le-
besgue measure, we call it the unnormalized conditional density of Xt given

. 4
{yu. ust}. i

Theorem 4.1

Assume that Xt is a diffusion process with state space'Rd , initial density

¢ and generator Lt given by

d 2
_ 3 3
LE(x) = z 1ij(t,x)axi(xj £(x) + gbi(t,x)ﬁ;;f(x)

’

for fec:(Rd),
where a(t,x) = ((aij(t,x))) is positive definite, aii(t,x), bi(t,x) are bounded

measurable functions from [0,t]><l«d +R and further




(4.3) lim sup sup la..(t,x)-a,.(t,x )] =0 i,j=1,...d .
§+0 lxl—le<6, ostsT ) 1" 2
d
X »Xa€ R
Then there exists a measurable function pt(x,y), 0<t<T, xelﬁj. yeHT such that
(4.4) o (£,y) = [ £()p (x,y)dx ; yeH ,

for all f such that Elf(xt)l <o,
Further, pt(x,y) satisfies the following partial differential equation (white
noise version of Zakai's equation) in the distributional sense
Po(X,¥) = 6(x)

(4.5)
a ~
E)t pt(x»)') = L; pt(x’)') + (ht,)’t)Pt(X,Y) ) y€HT

where [ f = L f- %4ht|2f .

Also, for all 0<t<T, y»pt(-,y) is a continuous map from HT into Ll(Rd)
equipped with O(LI,L“3 topology.

Proof: Let Ft(B) = H(XteB). Then (4.3) implies that Ft is absolutely con-
tinuous with respect to the Lebesgue measure A on Rd (see Stroock-Varadhan [23],
Theorem 9.1.9). So if B is a Borel set in Rd such that A(B) = 0, then Tt(B) = 0
and hence from (4.1) P;(B) = 0. Thus F; << X, Also, from (4.1} it is easy to
check that(t,y)+F;(B) is a Borel measurable function of (t,y) for all Borel sects

B in lfi. Thus we can choose a Borel measurable version pt(x,y) of the density

é;? . From (4.2) it follows that the density pt(x,y) satisfies the required con-
dition (4.4).

From the definition of ot(f,y), it is clear that y+ot(f,y) is a continuous
map for all t, for all bounded f. Thus y*pt(',y) is a continuous map from HT
into Ll(Fg ) equipped with the c(Ll,Lm) topology.

It remains to show that P, satisfies (4.5).. For this, first observe that

boundedness of aij’bi implies that the integrability condition (3.6) holds for
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all ¢ in q;(Rd) and hence (3.9) is valid for such functions f. We can rewrite
(3.9) as

(4.6) [ £0ap (xdx = [ £000dx + [ f(L A 0P (x,y)dxds

t
+ o JF(h (x),y Ip _(x,y)dxds
for FeC:(Rd).
Now for feCS(Rd+l)(defining pt(x.y) =0 if t ¢ [0,T]) we have, from the

definition of the distributional derivative,
3 9
(4.7 [I £t 05z p (y)dxdt = =[] [ £, 1p, (x,y)dxdt .

Applying (4.6) to the function g% f(t,*) and integrating with respect to t
over R, we get

(4.8) ff f(t,X)é% P, (x,y)dxdt = -ff g% £(t,x)4(x) dxdt

I UG L e, xp (x,y)ds Jdxde

- I UG 5p £ (x),y ) (x,¥)ds]dxde

=1 s 1L + 111 say.

Now, by Fubini's theorem we have

(4.9)

—
[]

-[ 4001 gy £(t,x)dt]dx

=0

(4.10) IT

- IS US L% £0t,0dt]p (x,y) dsdx

/] (zsf)(S,X)PS(X,y)dsdx

[ £ts,0[L7 p(x,y) 1dsdx .

Observe that fgf hi(x)pt(x,y)dxdt = Elg hz(Xt)dt < o and hence again by Fubhini's

theorem, we have




(4.11) 111

SIS 2 £ee,0dt)(h (0, )p_(x,y) dsdx

[ £(s,x)(h (x),y P (x,y)dsdx .

Now, combining (4.8), (4.9), (4.10) and (4.11) we conclude that p satisfies
(4.5).

Remark: [t is worth noting that boundedness of h is not required in Theorem
4.1.

Having proved the existence of the unnormalized conditional density pt(x,y]

and having shown that it is a solution to the Zakai equation (4.5), we now turn

to the problem of uniqueness. This is very important from the point of view of i
applications.

The next result shows that, under additional conditions on the coefficients
aij’hi’ the Zakai equation has a unique solution provided y is restricted to L;

(i.e., yeH_ and bounded) and h is assumed to be bounded. Thus, the boundedness

T
assumption on h occurs only in the uniqueness part of the problem. More inter-
estingly, the two theorems together show the following:

{a) TIf yeLw, the Zakai equation has a unique solution given by the unnovwi.  -zed
conditional density pt(-,y);

(b) Furthermore, pt(-,y) for any yeHT can be obtained from (a) and by approxima-

0
tion in view of the last assertion of Theorem 4.1 and the fact that LT is dense

in H...

r
Let
V= {ueLZ(Rd) : 1%”—6 Lz(Rd)}
i

2 . . . . .
(st eLZ(Rd) means that the distributional derivative is given by an Lz-funct1on).
i

let q
9
llully = ¢f Jul®ax + ) | 245y 12
1= 1




and

(4.12)

{(4.13)

(4.14)

(a)

(b)

Then
solution
(1)

(i1)

(iii)

{4.15)

where CT

200,711,9) = fe: (0,71v: [T [lpce) || 2o

With these notations, we have the following result.

Theorem 4.2. In the set up of theorem (4.1), assume further that

h is bounded

~
Q

ﬁiiaij exists and is bounded, (aij) is uniformly positive definite,
There exists pt(x) belonging to Lz([O,T],V) such that

Ef(X.) = / F(x)p, (x)dx

fg sug[f |§g—f(x)lpt(x)dx]dt < ©  where S = {fsc:(nd) , TEll 5 511 .
fe i L

o0
for yel.., the unnormalized conditional density pt(-,y) is the unique

to

p.(o,y) € L2([0,T],y)

Po(*»y) = o(xX)

a -~
e P () = Lep (oY) + (he Ly Ip (euy)

Proof: We have already shown that p satisfies (ii) and (iii). We now show

that it satisfies (i). Observe that

llp (.0l , = supl[ fCx)p, (x,y)dx]|
L feS
= sup|o, (£,y)]
feS

A

£
CT,y ;zg [ (X)Ipt(X)dx
= Cp e (9 l|L2

1T 12
Ly = exp(zfplyl“dw




Also Il 5o=p, (=N 1|, = suplf (zo—£p, (x,y)dx|
i L feS i
< sup 0, (|5=tl,y)
feS *i
<

9
Cr.y ;t:gflg;;flptcx)dx

Now, (4.15), (4.16) and the assumption (4.14) implies that p(-,y)eLz([O,T],V).

To complete the proof, it remains to show that (i}, (ii), and (iii) have a

unique solution. For this, fix yeL? . Let A(t) denote the bilinear form on V
defined by

. - Ju dv

<A(tlu,v> = - E aij(t’x)<§§;“§§;?

du
X »V>

Z a, (t,x)«<
ii 31

+

[(h, (x),7,)~ 3he (0 J<u,v>

§9~a..(t,x]. Thus for smooth f,
X, ij

1773

B ~10.

1
where ai(t,x) = bi(t,x) - 55

<A(t)f,v> = <[tf,v> + (ht,yt)<f,v>
and hence (i1i) can be rewritten as

P, (°,Y)
caan g it ARSI .
(iii) 5t A*(t)p (-,Y)
Under the assumed conditions on a,b, (iii)' has a unique solution with the
boundary condition (ii) in the class Lz([O,T],V) (See Theorem 1.1, Chapter IV of

Lions [18]). As remarked earlier, this completes the proof.
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5. Classical solution of the Zakai equation and relationship between white noise
and Tto approaches to filtering.

We now proceed to study the existence of solution and the uniqueness problem
for the white noise version of the Zakai equation (Eqn. (4.5))}. Recall that in
Theorem 4.2, uniqueness is established for the solution in the distributional
sense for yeL:. Moreover, condition (4.14)(b) of Theorem 4.2 appears difficult to
verify.

Theorem 5.1 solves the nonlinear filtering problem in the white noise formu-
lation. Existence and uniqueness of the classical solution to Eq. (4.5) is esta-
blished. To do this, we use the transformation used by Rozovskii (sce Benes and
Karatzas [4]) so that the potential term in the transformed equation is bounded.

Our next result forms the connecting link between this paper and the current
work in the literature. 1In this respect, the significance of Theorem 5.2 is two
fold: First the white noise solution of the nonlinear filtering is robust in the
following sense. The data is represented wholly by the Hilbert space HT without
any reference to a larger space C([O,T],Rd) on which a countably additive measure
can be defined. If Yn,YeHT,Yn+Y in the norm of HT, then from Theorem 5.2, it fol-
lows that pé(x,Yn)*pé(x,Y) uniformly over compacts in [O,T]XRd. Secondly, Theo-
rem 5.2 shows that the results of the white noise filtering theory are consistent
with those of the theory based on the Ito calculus. In other words, even if one
is interested in theunnormalized conditional density p;(x,Y) of the conventional
Zakai equation where Y is now any path in C([O,T],Rd), one can obtain it using
the white noise theory. Since there exists a sequence YneHT converging in uni-
form norm to Y, the unique solutions (for each n) p%(x,Yn) of the white noise
Zakai equation (4.5) converge uniformly over compacts to pé(x,Y).

Theorem 5.1. Assume that

(1) The initial density ¢ is a bounded continuous function,




2 32

i 5g—b h §é—h a—-h. are bounded Lipschitz

(10) a b. ., h., . .
5 iy’ 5xk§ 2 ij’ j it Uit ox ijaxk i
continuous functlons in [0,TIxR
Then for all yeHT, the unnormalized conditional density pt(x,y) is the unique

classical solution to the Zakai equation

P (x.y) .
(5.1) —— * L*pt(x,y) + (h (x)yt)pt(x y)

po(x,y) = ¢(x)
in the class of Cl’z([O,T]lei) functions satisfying the growth condition

(5.2) fgf 4 |g(x)[exp(—k|x|2)dxdt < o
R

for some positive constant k.

Furthermore, for all yeHT, there exists a constant Cy such that

1
(@]

d
for all (t,x)e[0,T]xR".

Proof: Let HT = {YeC([O,T],Rd): Y

1]

t
fu y(u)du,yeHT}

t
Write
- 2
sz =)a 1]3x 8x ) bi *§:-+ cf
where
1 d aai.
b! = -b, + = ) —i and
i 2 . ox.
j=1 )
2
1 2 d Bbl 1 d 3 ai.
C=-zhl"- 1otz I mon
i=1""1 i,j=1""1i"7)

In view of condition (II) it is easy to see that the coefficients aij,b; and ¢

arc bounded and Lipschitz continuous. Now let

~(h 00),Y,)
(5.4) b (x,Y) = e Pe(%,Y)

where Yu = [8 y(r)dreﬂr. Using the fact that p satisfies the Zakai equation of




Section 4 we have

3wt(X,Y) -(h (x).,Y )~ (ht(x)’yt)
g = ¢ L*[C wt(x.Y)]
aht
- Wt(X,Y)'(jr",Yt)

(The calculations are similar to those in Benes and Karatzas [4]).

Thus we have wo(x,Y) = ¢(x) , and
(5.5) 2w oY) = U (oY) where
: ot 't ’ t't ’
-(h (") ,\ ) (h,_,Y)
(5.6) Ul = e lre Yy
oh,
- (5 Yt)f :

The first term on the right hand side of (5.6) becomes after simplification
L2f + E [2 57 (e t)]ax

2

+ 3 aijlsiiﬁig(ht’yt) . (h Y (h YOI

d
+ ) b! —-—axi(ht,Yt)f + of .
From (5.6) and (5.7),

J a 8 f

Y = of
U f(x) = (t x)ax ax +) bi(t,x,Y)-&;

+ c(t,x,V)f

where

Byt h) = b6 + ] aijct,x>5§§{ht,vt)

and

e g




(e, 0T = e(t,x) - gr(h,,Y)

2 32 z 3 3
a,. =——=—+(h,,Y ) + a,. =—(h_,Y )e+— i
ij Sxiaxj t’t ij Bxi t’t ij(ht,Yt)

+

+

.}
) bi ﬁiz{ht’yt)

For fixed Y in HT’ B& and ¢ (being products of bounded, Lipschitz continuous func-
tions) are bounded and Lipschitz continuous. Finally, the boundedness of h,

2
dh oh 3°h . . 1 2 .
B 5;;; 5;;5;; implies that, for any Y and Y in HT’

(5.8) |E&(t,x,Y1)-51(t,x,Y2)| < K sup |Yi-Y§|
1 0<t<T

IE]t,x,Yl)-Eft,x,Yz)l < K sup lYi-Yil for all t,x
0<t<T

where K is a constant.

It follows from Theorem 12, Chapter 1, Friedman [9] that (5.5) has a solution ‘
Py in Cl’z([O,T]XRd) and that i: catisfies the growth condition (5.2). We now need |
a result which under the conditions (I), (II) establishes the uniqueness of the X
distributional solutions of (5.5). (By a distributional solution, we mean a func-
tion which satisfies (5.5) in the distributional sense). Friedman has proved !
({9], Theorem 16, Chapter 1) the uniqueness of the classical solution to the pro-
blem in the class of functions satisfying (5.2). However, an obvious modification
of his arguments (pertaining to the use of Green's identity in the proof) shows E
that the solution is unique also in the class of functions satisfyiig (5.2}, where
(5.5) is taken in the distributional sense.

It is easy to see that ]

IA

fgfl{1|wt(x,Y)|dxdt lezfl{ipt(x.y)dxdt

i~

C,T




ro

T e

- 2
so that ¢ = Y. Thus weC1’°([0,T]xlfH and is the unique classical solution to

(5.5). This in turn implies that p_(-,y)eC]’z([O,T]XRd) and is the unique clas-
sical solution to (5.1).

In view of the assumption that ¢ is bounded and an estimate on the fundamen-
tal solution of (5.5) (see (6.12), Chapter 1 of Friedman [9]), it follows that
wt(x,Y) is bounded by a constant (depending on Y) and thus, pt(x,y) is
bounded by a constant which we denote by Cy'

Theorem 5.2. Assume that conditions (1), (II) hold. Let

pé(x,Y) =P, (), YeHT y Yy o= fg yudu .
Then the map Y-p!(-,Y) from HT into C([O,T]lei,lf) has a unique continuous ex-
tension to YeC([o,T],Rd).

Further {p'(+,Y): YeC([O,T],Rd)} is the unnormalized conditional density for
the filtering problem

Y, = f; h (X )du + B
where (Bt) is Rd -valued standard Brownian motion.

Proof: The same arguments as in Theorem 5.1 imply that (5.5) has a unique
solution wé(x,Y) for all YeC([O,T],Rd) . Let p{(x,Y) = w%(x,Y) exp((Yt,ht(x)).
Then p{(x,Y) is the unnormalized conditional density for the conventional filtering
problem (5.10) (see Theorem 3.2, Pardoux [20]).

To complete the proof, we will show that Y-p!(+,Y) is continuous for
YsC([O,T],Rd) . The uniqueness of the extension follows from the fact that HT
is dense in C([O,T],Rd).

Now, let Yn’ YeC([O,T],Rd) be such that Yn+Y uniformly. Let fn(t,x) =
wr_t(x,Yn) and f(t,x) = wT_t(x,Y).

To show that p%(x,Yn)+pé(x,Y) uniformly on compact subsets, it suffices to
show that if (tn,xn)*(t,x) then p; (xn,Yn)+pé(x,Y), which is the same as

n
fn(tn,xn)+f(t,x).
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Let a'(t,x) = a(T-t,x)
b! (t ,X) = E(T-t,X,Y)
(5.9) b} (t,x) = BIT-t,x,Yn)
c'(t,x) = c(T-t,x,Y)

' - ry -
cn(t,x) = ¢(T t,x,Yn)

Let {QS o (s,x)e[O,T]XRd } (respectively 02 x] be the solution to the mar-
tingale problem for (a',b') (respectively (a',bﬁ)) (see Stroock-Varadhan [23],

Chapter 6). Q are measures on C([O,T];Rd) such that for any geC;’Z([O,T]*Rd),

S,X
(5.10) 2(t,x(0)) - Sl + LDe(tx(0)dr

is a OS x martingale, where

3

x(t) = x(t,n) = n(t)

is the coordinate process on C([O,T],R@) and !

d 52 d 5 }
(Lig) = § ap(,g—f—+ 1 bilt,x5— ¢ :
i,j=1 i i=1 i

By using an obvious stopping time argument and (5.10), it can be shown that

£(t,x(0) - [SG + LDE(T,x(1))dt

is a OS x local martingale. Now, using integration by parts formula for martin-

gales (Theorem 1.2.8 in Stroock-Varadhan [23]) and a stopping time argument, it

can be shown that

fgc'(u,x(u))du

fee ! (u,x(w))du -
e £, x(t))-flar + LI+ ' (T,x(TDIE(T,x(T))e dt

is a QS x-local martingale, te{s,T]. But the fact that { is a solution to (5.5)
implies that

[g% s LY+ ' (1, x(D)F(T,x(1)) =0




and hence

f:c'fu,x(u))du
e’ flt,x(t))

is a QS X local martingale. But f and c¢' are bounded and hence it is a martin-
’

gale. Fquating its expectations at t=s and t=T and recalling that f(T,x)=

wo(x,Y)=¢(x) we get

(5.11) £(s,) = B ($(x(T))exp(f{e’ (u,x(w)du))
S, X
Similarly, we have for n21,
(5.12) £ (5,0 = E _ (8(x(T))exp(fLc" (u,x(u))du)
»X

Now let (sn,xn)+(s,x). The condition (5.8) on bﬂbé implies that Q: x
n’’n
converges weakly to Qs x (see Theorem 11.1.4, Stoock-Varadhan [23]).
Denoting the integrands in (5.11), (5.12) by G(s,n) and Gn(s,n) respectively

(the variable n is suppressed in (5.11), (5.12)), condition (5.8) on c',cg implics

that Gn+G uniformly in (s,n).

Now,
[£ (s »x )-f(s,%)] = lEQS x(c(s,n))-EQn (6Cs,m) |
’ S, s X
nn
+ |Eo" (G, (s »n)-Gs,m)) |
*n**n
< |E, (G(s,m)-E  (G(s,m}]
'S, % Qs’x
n n
+ sup|G (s ,n)-G(s,m |
n
-0 as n -+ «©
n .
as nsn,x&’Qs,n weakly and G~ G uniformly.

This completes the proof of the theorem.

Remark: It may be observed that p _(x,y) is a non-anticipative functional of
y t

y because the same is true for o,(f,y), as pointed out in Section 2.
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