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0. Introduction

The theory of Ito stochastic differential equations has been applied with

great success to stochastic nonlinear filtering and control theory. It is con-

venient to begin with a brief outline of the main developments of nonlinear fil-

tering that concern us in this paper.

Let the unobserved signal process X = (X u) be a Markov process taking values

k
in R . It is assumed that the generator of X is known or that it satisfies an

Ito stochastic differential equation. The canonical model of the observation

process is given by

(0.1) yt = ft hu(X )du + Wt , 0 t - T{01 t S0 uu t

where h: [0,T] x Rk + 1 d is a measurable function such that

(0.2) fT 1h (Xu)12du < a.s.

In (0.1), W = (Wt) is a standard, d-dimensional Wiener process. Under very

general assumptions on the dependence between X and Y, Fujisaki, Kallianpur and

Kunita derived in [10] a general stochastic differential equation for conditional

expectations Ut(f) = E[f(Xt) jY , 05s5t] for a class of f's belonging to the do-

main of the infinitesimal generator of X. Subsequently, the problem of existence

and uniqueness of the solution of the stochastic differential equation satisfied

by the optimal filter -- either as an equation governing a measure-valued process

or as a stochastic partial differential equation for the conditional density --

has been investigated by several authors (Kunita [17], Szpirglas [24], Pardoux

[20,21], Krylov and Rozovskii [lb]. Also see further references listed in [16]).

An equivalent but more convenient equation to work with is the one for the unnor-

malized conditional expectation (or conditional density) due to Zakai [25].

Recently, Clark and D avis have used the Kallianpur-Striebel (K-S) formula and

also the Zakai equation to obtain a robust solution to the filtering problem
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([s],[61,[71).

A point of view which questions the practical validity of the observation

model (0.1) has been put forward by Balakrishnan in a series of papers which are

the forerunners of the present work [1,2,3]. According to him, the model (0.1)

is not suitable from a practical standpoint because the results obtained cannot

be instrumented [3]. While this objection to the applications of the Wiener pro-

cess in physical problems may not be new, Balakrishnan goes further in insisting

that the theoretical framework for nonlinear filtering must be faithful to the

observed phenomena which, in the present situation, means working with a Hilbert

space of possible observations that has Wiener measure zero. This model which we

designate the white noise filtering theory model is rigorously defined in Section

2. The noise in the observation is modeled not by the Wiener process but by fi-

nitely additive Gaussian white noise. The latter is the same as the Gaussian weak

distributions that were first introduced by Segal in connection with certain pro-

blems of Quantum Physics 122]. Nonlinear transformations involving weak distribu-

tions were also studied, somewhat later by Gross ([12]. See the comments in [1]).

The aim of the present paper is to further develop the white noise approach

to nonlinear filtering in the important special case when the signal is indepen-

dent of the observation noise. We begin by setting up the necessary finitely ad-

ditive framework for our problem in the first three sections. These include the

white noise versions of the Bayes (or K-S) formula and of the Zakai equation. In

Section 4, another form of the Zakai equation -- a partial differential equation

for the unnormalized conditional density (in the finitely additive context) -- is

derived and the existence and uniqueness of its solution in the distributional

sense is established.

The last section is devoted to robustness questions and to the relation be-

tween the white noise and Tto calculus approaches to the subject. Theorems 5.1



and 5.2 show that

(a) the white noise theory leads to a robust procedure when the observations are

restricted to the Hilbert space HT and

.(b) the robust solutions obtained by Davis in the standard, Ito formulation of

the problem can be approximated by the solutions in (a). Further details are

given in Section 5.

It is not easy to make a strict comparison of the results of Sections 4 and 5

with those of Pardoux [20,21]. Under somewhat weaker conditions than ours Pardoux

has shown that the unnormalized conditional density pt(xY) is the unique solution

in the distributional sense of a stochastic PDE ([21], Corollary 3.3 to Theorem

3.1). In Theorem 3.2 of [20] it is shown that for every Y in C[0,t], pt(x, Y) is

the solution in the d.istributional sense of a PDE which is the analogue of the

"Zakai" equation of Section 4. On the other hand, the conclusions of Theorems

4.2 and 5.1 of our paper are stronger. Theorem 4.2, for instance, cannot be de-

rived as a consequence of Pardoux's results or by using his methods. Moreover,

all our theorems are pathwise results which cannot be obtained with the technique

of stochastic calculus.

In connection with his work on robust filtering, Davis has introduced a semi-

group of transformations in which the path Y c C([O,T],R d ) figures as a parameter

7]. An analogous semigroup Ty  (s~t) but with y restricted to HT is defined in
s,t

Section 3. The brief discussion given there shows that the absence of stochastic

formalism makes things simpler and permits a more general definition.

The theory outlined in this paper can be extended to infinite dimensional pro-

blems. In this case the Hilbert space H r is replaced by a Hilbert space

.L 2([0,T];K) of square integrable functions taking values in a separable infinite

dimensional Hilbert space K. Certain aspects of this problem will be taken up in

*a later paper.
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Finally, it must be mentioned that the main results in this paper have been

established without any approximation procedure whatever. In this sense, the

white noise approach stands by itself and is entirely different in spirit from

the many attempts to find approximations to Ito stochastic differential equations

and their solutions discussed at length in Ikeda and Watanabe's book [13].



1. A Bayes formula for a finitely additive filtering model.

We start by recalling some definitions regarding integration with respect to

cylinder measures on Hilbert spaces. These definitions are implicit in Gross

[12].

Let H be a separable Hilbert space. Let P be the class of projections on !

with finite dimensional range. For P E P, let C = {P- B: B a Borel set in Panpe

PI and let C = UOCp: PEP). Then, CP is a a-field for each PEP and hence C is a

field. The sets In C are called cylinder sets. A cylinder measure n on H is a

finitely additive measure on (H,C) such that its restriction to C is countabI

additive for all PEP.

Let L be a representative of the weak-distribution corresponding to the

cylinder measure n. This means that L is a linear map from H* (identified wit),

11) into L(IAIl 1) A the linear space of all random variables on a countablv

additive probability space (Ql,A 1,l1) - such that

(1.1) n(h: ((h,h ),(h,h 2),.... (h,hk)) E B)

= f((L(h ),L(h 2),..., L(hk)) E B)

for all Borel sets B in R k , hi . .. , h E H and k >- 1. (Two maps L,L' are said

to be equivalent if both satisfy (1.1) and the equivalance class of such maps is

the weak distribution corresponding to n).

A function f on H is called a tame function if it is of the form

(1.2) f(y) = 0((y,h1),.... (y,h))

for some k 1, h h..., hk e H and a Borel function 0:IR
k - . For a tame func-

tion f given by (1.2), denote by f~ the function O(L(h1 ),L(h 2),.... L(hk)).

Definition. Let L(H,C,n) be the class of functions f on H such that the net

{(foP)~: PcP) (here P1 < P2 if Range P1 S Range P2) is cauchy in R11-measure.

Furthermore, let



f = lim in Prob. (foP)~
PEP

It may be observed that "the map g - g- is an extension of that for tame

functions and is linear, multiplicative while the intrinsic integration notions

such as the distribution of g~ depend only on the function g and the weak distri-

bution (or the cylinder measure) and is independent of other arbitrary choices

(such as the representative L of the weak distribution or of a basis of H, etc.)."

(Gross [121).

In view of this remark, it is natural to make the following:

Definition: f E L(H,C,n) is integrable iff f_ is integrable and in that case,

we set f f dn =f f ~ 
dT

1 *

The finitely additive cylinder measure m on (H,C) such that

a x 2

(1.3) m{yEH: (y,h)a} = 1 faO exp(- dx ,h E H
2FT[[h[2(hj 2) d h

is called the cannonicaZ Gauss measure on H. The identity map e on H, considered

as a map from (H,C,m) to (H,C) will be called Gaussian white noise.

The abstract version of the white noise non-linear filtering model considered

in this paper is given by

(1.4) y= + e

where & is an H valued random variable on a countably additive probability space

(Q,A,II) independent of e. To make (1.4) meaningful, E and e should be defined on

a single probability space. To this end, let E = H x Q and

F = U C @ A

where C aA is the usual product a field. For PEP, let ap be the usual product

of m restricted to C which is countably additive and I, (so that ap is a counta-

bly additive probability on (E,C PA)). It is easy to see that the a p's are con-

sistent and thus determine a finitely additive probability on F such that a = a

on C peA.
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Let e,&,y be H valued maps in E defined by

(1.S) e(h,w) = h

y(h,w) = e(h,w) + Q(h,w) , (h,w) c H x P

Then, E is the signal, e is the noise and the observation y is given by (1.4).

Lemma 1.1. y: (E,F,a) ( (H,C) is measurable in the sense that

B = {(h,w): y(h,w)EC} belongs to F for all C E C and further n defined by

(1.6) n(C) = a(y E C)

= f m (C)dl(w) , C C

(where mh(C) = m(C - h),hEH) is a cylinder measure.

Proof: Fix PEP such that CeC p. Let C P 1 D, where D is a Borel set in

Range P. Then

B : {(h,w): PE(w)+PhED} E C a A c F

Furthermore, using Fubini's theorem,

(yEC) : ap{(h,w): P (w)+PheD}

: f m(P- (D-PC(w))]dIl(w)

: f m(P- D-E(w)) dfl(w)

= f m(C-C(w)) dII(w)

Sf mt() (C) d11(w)

The finitely additive measure n is called the distribution of y.

Let g be an integrable function on (Q,A,fl). In analogy with the usual de4'i-

nition of conditional expectation, we make the following

Definition: If there exists a v e L(H,C,n) such that

(1.7) f g(W)lc(y(hw))dx(h'w) = fC v(y)dn(y)

then we define v to be the conditional expectation of g given y and express it as



E(gly) = v

As in the proof of lemma 1.1, it can be seen that the integrand in (1.7) is

CPaA measurable, where CECp. Let

(1.8) 4) (C) = f g(W)lC(Y(h,w))do(h,w) C c CP.

Again, as in lemma 1.1, it can be shown that

(1.9) D' (C) f g(w)m (C)dTI](,j)
g = ()

We now proceed to .:,w the existence of E(gjy). In fact we obtain an ana-

logue of the Kallianpur-Striebel formula for Efg I'). Since we are goingi to use

it later, we state an abstract version of the formula here. For a proof of

this, see lemmas 11.3.1 and 11.3.2 in Kallianpur [IS].

Lemma 1.2. Let (Qi2,Aili), i = 1,2 be probability spaces, and (23,A, A47 =

IAI 1)G(Q2 A 2 T1[2). Let p(w1,w2) be a positive A3-measurable function such

that

. p(W1 ,w2 )d11(Tw) = 1 for all w ( SQ

Let X be a measure on (0,A1) defined by

,(B) f p(wlyw 2)dl[ 3( Wpw2) , B E A
BxQ 

2

Let A0 = A 104,02}.

Let g be an integrable function on (Q 2 ,A2,f12) and let

Q(B) = f g(w2)p(wlw2)dT3(wVW2)
g BX 2

Then Q « X and

gIQ f g(W 2)p(w 1,w 2)d112 (W 2)
E(gJA O) = (wl) = f P(W1 ,ow2)d1 2(W 2)

Now, let e} be a CONS in H. Let S be the Borel a-field on IR and let

TT J=i N(0,1). For h c H, let wh = T.i=l N(h.,l), where h. = (h,eJ). It is



well known that lih - u (i.e., vIh << v and P << Ph) and

du h  00 _ _ 00

(1.10) h-_ = exp( x.h - 2 h )-i=l1 i i2 l

x = (Xlx 2 ... 5R

= q(x,h) say.

Let X.(x) = xj, x = (x1 ,x2 ... E I" , be the coordinate maps on IR.. Define
CO 00

a map L from 11 into L(R , B , vi) by

00

(1.1) L(h)(x) = I <h,e.>XW(x)

j=l i -

It is easy to check that the series appearing in (1.11) converges a.e. 11 and that

the distribution of L(h) under pi is N(Ojh 112), so that L is a representative of

the weak distribution corresponding to the Gauss measure m. Since ho- 1, L can
co co0

also be considered as a map into L(R ,B uho) and the distribution of L(h) under

Lhs N((h,hdIlhll 2) and thus is a representative of the weak distribution cor-
0

responding to mh0. Further, vlh -I implies that the map f - f- is the same when
N0'

L is considered as a representative of the weak distribution corresponding to m

or m . Thus for C c C, we have
h

0

(1.12) mho0(C) = ho(C ~ ) , h0 E H

where C c C is given by

(1.13) C) C

Now, let

(M2,Alll) = (R(,i5 e (,,A,l)

v(B) = fB q(x, w())dl 1 (xw) , B E A,

X(D) = V(DxQ) , DES
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(1.14) Y gCD) = fD gCw) ID( x)dv~x,w)

cr (g, x) = f g (w) q(x, E (w) ) dfl(w).

Then, by Kallianpur-Striebel-Bayes formula, Lemma 1.2, we have

Cy (g, ,)= u(x) say.

a(1 , _)

and hence

(1.15) T g (D) = f u(x)dX(x) D B

The following lemma is an immediate consequence of (1.6), (1.8), (1.12),

(1.14) and Fubini's theorem:

Lemma 1.3

(1.16) (i) v(AxB) J'B "I((A)dR(wo) , A E Bw, B c A

(ii) 'P8(D) = fg(w)11 (w) (D)dH(w) D c

(1.17) (iii) n(C) = X(C~) , C E C and C ~ is defined by (1.13)

(1.18) (iv) 4 (C) = 'g(C~) , C,C- as in (iii).

Now, (1.16), (1.14) and the fact that h pi implies that A - i and hence L

can be considered as a map into L(IRO ,8,). (1.17) implies that it is a repre-

sentative of the weak distribution corresponding to the cylinder measure n.

Also, as remarked earlier, the map f - f~ is the same for the cylinder measures

n and m. Thus, even though we have a family of cylinder measures {mh: hcHlufn),

the symbol f- has a unique meaning.

Let

(1.19) q(yh) = exp{(y,h)- l-l1hIl 21

and

(1.20) o(g,y) = fg(w)q(y,C(w))dl(w)
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Observe that q(y,h) 5 exp(.-Ily 112) and hence the integral appearing in (1.20)

is well defined.

Finally, let

Then, we have

Lemma 1.4

(i) v E L(H,C,n)

(ii) v =u

(iii) v satisfies (1.9), i.e.,

fC v dn = D(C) for all C C

Proof: Let Pkdenote the projection onto span {e1,,. e k, k a 1. (Recall that

le. is a fixed CONS in H). Let B a (X .: 1 5 j 5 k). Let h denote a generic

element in H and let h. =(h,e.) Then

k 2o
(1.21) [oT(g,Pkh)J] [ g(w)exp( I h ~~ 1 ~dT~

P1 i i=1 i

k 10 2

f g(w)exp( X X'Vw

On the other hand,

(1.22) EP(-CT(g,) Bk) f g(w)exp( I X JE.- )

Denoti f Ifldp by 11 fill, we get from (1.21) and (1.22)

k k 0
k Pki=l i 2=1 2i=k+1

(1.23) = g(w)klI-exp(- 111t12+ IP &112 )dTT (w) .

If for P E P, B denotes G(L(h): h E Range P), then as in (1.23), it can bc shown

that
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(1.24) [a(gPh) I -E (o(g) IBp)f 1

f IgM()l-exp(- 11,&,,2+ 111 P j 2))dJT(w)

By the martingale convergence theorem (see p. 96, Neveu [19]), we have

(1.25) {E 1 a(g, .)gp)) -+ in L.) .

From (1.24) and (1.25), we get

1
{[o(g,Ph)]-} pC a(g,) in L ()

and hence in p-probability. Thus a(g,h) E L(H,C,n) and [a(g,h)]" = o(g,.). Since

the map f - f- is multiplicative, we get v c L(H,C,n) and

[c(g,h)]
V [a(l ,h) ] ~

a G(g, _)
O(1,x)

- U.

Finally, for C E C and C ~ defined by (1.13), we have

4 (C) = Y1' (C) by (1.18),g g(

= fc-u(x)dX(x) by (1.15),

= f (1cv)fdX

= f 1 v dn by definition of ffdn

= fC vdn 5

We have shown the existence of a function v satisfying (1.7) and thus E(gly)

exists as a function in L(H,C,n). We may remark that here 4 and n are cylinder
g

measures such that for all e > 0, there exists a 6 > 0 such that n(C) < 6 implies

-g (C) < C for C i C . However, there is no general result known to us that implies



9
deP

the existence of the Radon-Nikodym derivative in the class L(H,C,n). WhatdnintecasWt

we have done in Lemma 1.4 is to produce such a derivative. We may add that

Gross fll has a definition of Radon-Nikodym derivative which always exists as

in the countably additive theory, but in his definition, the derivative is a ran-

dom variable on the 'representation space' ((]R,C,X) in our set up) and not on

(H.C.n) and thus is not appropriate for defining conditional expectation.

We summarize the results of this section below. This is Bayes formula for the

conditional expectation in our set up analogous to the Kallianpur-Striebel formula

(Lemma 1.2).

Theorem 1.1: Let y,E be as in (1.5). Let g be an integrable function on (P,A,P).

Then f g(w)exp((y,(w))- 1I1(w) 112)dl(w)

E(gly) =I If exp(y, ())- _I1 (W)iI 2dIl(w)

2I



2. A white noise model of non-linear filtering.

In this section, we apply the results of the previous section to the usual

filtering model.

Let X = {X : 0 5 s 5 T) be a Markov process on a probability space (Q,A,)
s

and taking values in a complete separable metric space S and let (Ls) be the ex-
5

tended infinitesimal generator of X and let D = nV(Ls).
5 S

For 0 < t T, let ht: S- 1 m be such that

(2.1) 0 jht (Xt)12 dt < o a.s. .

Writing C , ) for the inner product in R m and 1H1 for the norm, for each t

in [O,T] define

Ht  [O,t]+R m : I'kl,2 ([O,t])}

IHt is a Ifilbert space with the inner product

<12> = ft (1'2 du.

A function 0 E HT , when restricted to [0,t] will be denoted by ' t and is obvi-

ously an element of Ht.

Let s(w) = h (X (w)), 0 < s 5 T. In view of (2.1), = ) is an HT valued

random variable and for 0 5 t - T, &t is an Ht valued random variable. Let

e = (es: 0 5 s 5 T) be Ht valued 'white noise' independent of X.

The non-linear filtering model considered in this paper is the following:

(2.2) Ys = hs (X) + e s 0-s-<T

or equivalently

(2.2)' y + e

Applying the results of the previous section (to the Hilbert space Ht and random

variables y = t + et ) we have, for an integrable function g

t

(2.3) E(glyu: 0u5t) = o(gyt) yteHt
ol,y )
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where

(2.4) C3 g, y t ) = f gC)q~yt,&t~ ))wt t

and

(2.) ~ y tt t 1 t t
(2.) q(yt,wt()) = exp(<y (o)> t  & M(),t(w)>t

t t 1 tt tSince q(ytt (w)) !5 exp( Cfy ,y >); c(g,y ) is well defined.

If we define Ot(g,y) = J(g,y t) and qt(y,) = q(yt ,t) then we can rewrite (2.3)

and (2.4) as

(2.4)' t(g,y) = f g(w)q (y,E(w))d11(w)
t t

and

(t (g, Y)
(2.3)' E(gIyu: 0<u:5t) - atl,y) ydHT

It may be remarked that though yeHlT appears as a parameter in a t(g,y), ot(g,y )

is by its definition, a nonanticipative functional of y. We prefer the form (2.3)'

because in the next section we obtain a differential equation for a t(g,y) and for

this, it is convenient to consider a fixed yeHT as the parameter.



3. A white noise version of the Zakai equation.

In this section, we obtain an analogue of the Zakai equation in our set up.

We sill show that (under suitable conditions) for fED, we have

d m(.)d - m

(3.1)-d t~ft'Y) = at(Ltf TY) + a t h t y)y

where f t (W) = f(X t(w)) , h(W) =h t(X t(w))

Lt f = Ltf - 2 ht f , and Ltft = (Ltf) (Xt t(w))

First, observe that for a g such that Elgl <

(3.2) ot(g,Y) = Ct(E(gX ),y)

where Fx = a(X(s): s<-t). This follows from (2.4)' and the fact that qt(Y'Qw)
t

is FX measurable.
t

Fix fED and let gt: P-IR be defined by

g9 ) = f(XT) - fT(Lsf)(Xs)ds

Then proceeding as in [14] it follows that

(3.3) E(gtlFX) = f(Xt)
tt t

and hence

(3.4) Tt(ft,y ) = t(gty)

Now, gt,qt are absolutely continuous functions of t and

d
d = Ltft I

dm . •

d-t qt ( y ' &M ) = qt(Y'& )}[ i ly, - iiF 2I

*and hence

(3.5) -q go+f(LsTs)q (y,&)ds+ gshsYsqs(y,)ds

=1 I qsfY'&)ds

s. .



If f iT M I--21

(3.6) ff(L T I + I Ig Hh'isy's + - s I Igsl) dsd1 <

then by Fubini's theorem it follows that

m -i 1

(3.7) at(gt'Y) = Eg + fo[as(Lfsy) + y °(gs ,y)yi a °gsIhEI ,y)]ds

so that (3.2), (3.3), (3.4) and (3.7) give

(3.8) C ( y ft1c(L ,Y) + 2 a F )
. _ ~ Eg+ (0 fta~ m,y)Ids

=l s ss
m

Equation (3.9) is the integral version of (3.1) and thus it follows that (3.1)

holds for all fEV for which (3.6) holds.

From now on, we will consider at(gy) only for g of the form g(w) = f(X t(w))

and hence we modify our notations slightly.

For a function f: S - FR and Ot_<T, such that EIf(xt)I < , we defino

Yt(f,y) = f f(Xt)qtt(Y,(w))dl(w)

With this notation, we now state the result proved in this section.

Theorem 3.1. Let feD be such that (3.6) holds. Then for all ycHT,

d t(tfy m .i

(3.9) dat(fy) = a fy) + ' athtfy)y
i=1

a.e. t in [0,T]

Remarks. To compare (3.9) with the usual Zakai equation, define

HT = {Y: Y(u) = fu y(s)ds , Ou'T , YEH T }

The map y - Y = f('y(u)du is an isomorphism between the Hilbert spaces N1T

and HT (equipped with the appropriate inner product). Writing ot(f,Y) = at(fy/
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where Y and y are related as above, (3.9) can be rewritten as

m

(3.9)' da (f,Y) = a (L f,Y)dt + a (fhiY)dY'

(3.9)' is an analogue of the Stratonovich version of the Zakai equation (Davis

and Marcus [8]).

The unnormalized conditional expectation at(f;y) and the Zakai equation (3.9)

can be expressed by means of a semigroup (Tyt) 0-st-<T, yeH as follows.
st T

Write

qt(y, (w)) = exp[ft(y 1Eu(w))du ftlu (w)1 2du] , 0_<s_<tT

Then for each YEHT, qt(y, ) is a multiplicative functional of the Markov process

X (recall that u (w) = h (X (w))). Hence Ty  defined by
u u U s,t

(3.10) (T~y f) (x) = E [ f(Xt qty, )Xs=X]

is a semigroup, i.e., for each y in H

(3.11) Ty  Ty t = Ty  , 0_<s<u_<t<T

Su u S

Furthermore,

(3.12) 'd (Tyt f)(x) dF(x) = o(f,y)

where P is the distribution of XO. In this set up, the Zakai equation (3.9) can

be written in the form

(3.13) d(TY f) ; T y  [ If + (h t y )ffdt 0,t 0,t t t

From the semigroup property and (3.13) it can be shown that the generator Ay of
t

{Ty ) has the form

(3.14) Af = tf + [(ht,Yt) - ihti 2)f

S... i
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The semigroup {Ty ] is similar to but not identical in definition to the semi-
S t

group introduced by Davis in [7]. The objective of 17] is to establish a formula

analogous to (3.14) for the extended generator of Davis's semigroup, the underlying

idea being that the semigroup determines the unnormalized optimal estimate a tf,y).

The white noise approach appears to be more general and is considelably simpler.

The assumption that h(X ) is a semimartingale, made in [7] is unnecessary. More-
t

over, the difficulties connected with the rto stochastic integral with respect to

the semimartingale h(Xt) simply do not appear in our treatment of the problem. We

will not pursue the question further in this paper.

I.



4. Zakai equation for the unnormalized conditional density.

In the rest of the paper, we show the existence of the "unnormalized condi-

tional density" in our finitely additive set up and show that it is a solution of

a partial differential equation (also called the Zakai equation), in which yEHT

appears as a parameter in the coefficients.

For yeH let rt be the finite positive Borel measure on S defined by
y

(4.1) r(B) = f IB(Xt(w))qt(y,E(w))d1l(w)

= Ct BY)

Then, using usual arguments, it can be shown that for f such that Ejf(X )I < ,
te 1 t 2

(recall that qt(y,E(w)) is bounded by exp(Tfolyj2du))

(4.2) a (fy) = ff(x)drt(x)
t y

and hence

E(f(X )IYu: O-<u<t) ff(x)dFt (x)

t u F(S)y
y

Thus t is the unnormalized conditional distribution of X given {yu: Osu<_tl.
y t

If the X is Rd -valued and Ft admits a density Pt(x,y) with respect to the Le-

besgue measure, we call it the unnormalized conditional density of Xt given

{y u_<t}.

Theorem 4.1

d
Assume that Xt is a diffusion process with state space IR , initial density

4 and generator Lt given by

d a2  a~i

Ltf(x) = I ij(tx) - f(x) + Ybi(t,x).-f(x)

for fEC0o(R )

where a(t,x) = ((a ij(t,x))) is positive definite, aii(t,x), bi(t,x) are bounded

measurable functions from [O,t]xk d -R and further



(4.3) lim sup sup lai(txl)-ai (t 0 ij=l d
6-0 rxl-X 2 k<, OItxT ' tx2) 0 i' "'"

XlX 2 Rd

Then there exists a measurable function pt(x,y), 0:t T, xER yEHT such that

(4.4) t(f,y) = f f(x)Pt (x,y)dx ; yEHT

for all f such that Ejf(X t)I < O

Further, pt(x,y) satisfies the following partial differential equation Cwhite

noise version of Zakai's equation) in the distributional sense

Po(X,y) = Vx)

(4.5)

_ P(x,y ) = p* P(x,y) + (ht,Yt)pt(x,y) , YeH T

where Lf= Ltf- 1-ht12 f

Also, for all 0t T, y-pt (.,y) is a continuous map from HT into LI (F )

equipped with (L ,L O) topology.

Proof: Let rt(B) = (X EB). Then (4.3) implies that rt is absolutely con-
t

tinuous with respect to the Lebesgue measure X on Rd (see Stroock-Varadhan [231,

Theorem 9.1.9). So if B is a Borel set in Id such that X(B) = 0, then Tt (B) = 0

and hence from (4.1) rt(B) = 0. Thus Ft << X. Also, from (4.1) it is easy to
y y

check that(t,y)+F (B) is a Borel measurable function of (t,y) for all Borel sets

d y

B in I . Thus we can choose a Borel measurable version pt(x,y) of the density

dr
Y . From (4.2) it follows that the density pt(x,y) satisfies the required con-

dition (4.4).

From the definition of at(f,y), it is clear that y4.t (f,y) is a continuous

map for all t, for all bounded f. Thus ypt C.,y) is a continuous map from HT

into LI(R d ) equipped with the a(L I,L O ) topology.

It remains to show that Pt satisfies (4.5).. For this, first observe that

boundedness of a ij,bi implies that the integrability condition (3.6) holds for

.. .. . .......



ood
a]] ' in C0 (d ) and hence (3.9) is valid for such functions f. We can rewrite

(3.9) as

(4.6) f f(X)pt(x.y)dx = f f(x) (x)dx + ftf(i f)(X)Ps(x,y)dxds

+ f ff(x) (hx) ,ys)p (x,y)dxds

¢0
for t>C0(I~d).

Now for fEC 0 (IR d+l) (defining pt(x.y) = 0 if t [0,T]) we have, from the

definition of the distributional derivative,

(4.7) ;[ f(t,X) a- pt(x,y)dxdt = -f t f(t,x)lpt(x,y)dxdt

Applying (4.6) to the function -- f(t,.) and integrating with respect to t

over IR, we get

(4.8) ff f(t,x) Pt(x,y)dxdt = -ff - f(t,x) (x)dxdt

-ff If' L' t(tx)p (xy)dsldxdt

ff [ft .-.f(t,x)(h (x),ys)p (x,y)dsjdxdt

= 1 I1 ' I say.

Now, by Fubini's theorem we have

(4.9) I = -f O(x)[f t f(t,x)dtldx

=0

(4.10) II = - if [r Lst f(t,x)dt]p (x,y)dsdx

= ff (isf)(s,X)ps(x,y)dsdx

= ff f(s,x)[Li Ps (x,y)]dsdx

Observe that fTfh 2(x)Pt(x,y)dxdt = FfT h2(Xt)dt -  and hence again by Fuhini's

theorem, we have
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(4.11) III = -ff [j f, f(t,x)dt](hs(x),ys)p s(x,y)dsdx

= ff f(s,x)(hs(X),Ys)Ps(x,y)dsdx .

Now, combining (4.8). (4.9), (4.10) and (4.11) we conclude that p satisfies

(4.5).

Remark: It is worth noting that boundedness of h is not required in Theorem

4.1.

Having proved the existence of the unnormalized conditional density pt(X,y)

and having shown that it is a solution to the Zakai equation (4.5), we now turn

to the problem of uniqueness. This is very important from the point of view of

appl icat ions.

The next result shows that, under additional conditions on the coefficients

ai ,hi, the Zakai equation has a unique solution provided y is restricted to LT

(i.e., VilT and bounded) and h is assumed to be bounded. Thus, the boundedness

assumption on h occurs only in the uniqueness part of the problem. More inter-

estinglv, the two theorems together show the following:

(a) If yELT, the Zakai equation has a unique solution given by the unnor;,. .zed

conditional density pt(-,y);

(b) Furthermore, pt(-,y) for any ycHT can be obtained from (a) and by approxima-
CO

tion in view of the last assertion of Theorem 4.1 and the fact that LT is dense

i n lr.

Let

2 d Du L2 dV={uEL2(T~d ) : xiEL (IRd)}

euL () means that the distributional derivative is given by an L 2 -function).
1

let
ju2 d ICU 12 112

IluIIv  (f Iui 2 dx + f I T- 2 dx)
i=I 1



nd2fT R t n 2

and L2 ([O,TI,V) {g: (O,T-V: 0 t dt<o,}

With these notations, we have the following result.

Theorem 4.2. In the set up of theorem (4.1), assume further that

(4.12) h is bounded

(4.13) x-a.. exists and is bounded, (a..) is uniformly positive definite,

(4.14) There exists pt(x) belonging to L 2([O,T],V) such that

(a) Ef(Xt ) 
= f f(x)Pt(x)dx

(b) fT sup -] f(x)Ipt(x)dxldt < o , where S = {fECo(I,) ,Ilfil 10fES x L1

Then for YcLT, the unnormalized conditional density pt(-,y) is the unique

solution to

(i) p,(.,y) -E L 2([0,T],y)

(ii) p0 (°,y) = (x)

(iii) (--y) p (-,y) + (htyt)pt(-,Y)

Proof: We have already shown that p satisfies (ii) and (iii). We now show

that it satisfies (i). Observe that

11pt (.-,y) I2 = suplf f(x)pt(x,y)dxl
L fes

= suplot(f,y)I

(4.15) 
feS

sup f If(x)lpt(x)dx

- CTy fES

= CT,yllPt()II 2
L2

1 T 2

where CT,y = exp(:-ffoyl du)

C
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Also ( f suplf )pt (x,y)dxl
I L fES 1

- sup Oa (I f,y)
fES 1

CTYsupf1 3 fI p(x)dx-CTyfcS 3x i

Now, (4.15), (4.16) and the assumption (4.14) implies that p(-,y)EL 2([O,TI,V).

To complete the proof, it remains to show that (i), (ii), and (iii) have a
0o

unique solution. For this, fix ycLT . Let At) denote the bilinear form on V

defined by
u 3v

< A(t)u,v> = - X a< 3 ,3 -

1 3

+ a a(t,x)<2 -. ,v>

1

1 2+ [(h N) y t
) - 1 2h~x ]<u,v>

d
where a(tx) -(tx) - ..(tx). Thus for smooth f,1 1 2l j13'

<A(t)f,v> = < tf,v> + (htyt)<f,v>

and hence (iii) can be rewritten as

(iii)' Pt y )  A*(t)p(,y)

Under the assumed conditions on a,b, (iii)' has a unique solution with the

2boundary condition (ii) in the class L ([O,T],V) (See Theorem 1.1, Chapter IV of

Lions 1181). As remarked earlier, this completes the proof.

j.



5. Classical solution of the Zakai equation and relationship between white noise

and Ito approaches to filtering.

We now proceed to study the existence of solution and the uniqueness problem

for the white noise version of the Zakai equation (Eqn. (4.5)). Recall that in

Theorem 4.2, uniqueness is established for the solution in the distributional

sense for ycLT. Moreover, condition (4.14)(b) of Theorem 4.2 appears difficult to

verify.

Theorem 5.1 solves the nonlinear filtering problem in the white noise formu-

lation. Existence and uniqueness of the classical solution to Eq. (4.5) is esta-
v

blished. To do this, we use the transformation used by Rozovskii (see Benes and

Karatzas [4]) so that the potential term in the transformed equation is bounded.

Our next result forms the connecting link between this paper and the current

work in the literature. In this respect, the significance of Theorem 5.2 is two

fold: First the white noise solution of the nonlinear filtering is robust in the

following sense. The data is represented wholly by the Hilbert space HT without

any reference to a larger space C([O,T],R d ) on which a countably additive measure

can be defined. If Y n, YEH TYn y in the norm of HT , then from Theorem 5.2, it fol-

lows that pt(xynV p~(xY) uniformly over compacts in [0,T]xRd. Secondly, 'heo-

rem 5.2 shows that the results of the white noise filtering theory are consistent

with those of the theory based on the Ito calculus. In other words, even if one

is interested in theunnormalized conditional density p (x,Y) of the conventional

Zakai equation where Y is now any path in C([O,T],R d ), one can obtain it using

n.
the white noise theory. Since there exists a sequence Y M T converging in uni-

form norm to Y, the unique solutions (for each n) pl(x,Y n) of the white noise

Zakai equation (4.5) converge uniformly over compacts to p (x,Y).

Theorem 5.1. Assume that

(I) The initial density C is a bounded continuous function,



(I)a 2  a 2

(TT) a i j  xa j , b, Tbi ha, i. ax a i are bounded Lipschitz
dj axk k xk Jik1

continuous functions in [0,T]xR

Then for all YEHT, the unnormalized conditional density pt(x,y) is the unique

classical solution to the Zakai equation

3pt(x.y)
(S.1) at - Lt (xy) + (ht(x),Yt)PtCxY)

P0 (x,y) = 4V(x)

in the class of CI' 2 ([0,T]xR d) functions satisfying the growth condition

(5.2) fTof gxlexp(-klxl 2)dxdt <

for some positive constant k.

Furthermore, for all YCHTo there exists a constant C such thaty

0 5 P t (x'Y) _< C y,

dfor all (t,x)c[O,Tjx1 d

Proof: Let Hv = {YEC([O,T],Id) Y= f Y(u)duyEHT)

Write
32ff

Lf = a x.ax. + b 1-- + Cf
1 x

where
d 3a..

= -b. + 1 d--3 and
bI i 2 j=l 3xj

12 d ab. d a 2a..

i=l 1 i,j=l i j

In view of condition (II) it is easy to see that the coefficients a. .,b! and c
13j

are bounded and Lipschitz continuous. Now let

(5.4) 4 t(x,Y) = e -(htx),Y)Pt(x,y)

where Y f y(T)dTcHT. Using the fact that p satisfies the Zakai equation ofu T
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Section 4 we have
DIPt~x'Y)t -(h t(x)'Yt) (h t(x)Yt)

= e tne IbP (xY).
Dtt t

3ht
-tp(x,Y) •(--,Yt )

(The calculations are similar to those in Benev and Karatzas [4)).

Thus we have o(x,Y) = (x) , and
I0

(5.5) (- ( -,Y) = U y 0t(-,Y) where

(5.6) UYf = e Lt [e 'Yt) f]t t

Dh-t(, Yt ) f -

The first term on the right hand side of (5.6) becomes after simplification

a -(ht,Yt) 1--
i j

a2  a ,
+ I ai [aa (ht,Yt) + --.(htY )3.ht)Y )If

13 1 .3

+ .b! -(ht Y)f + cfI x. 't )t
1

From (5.6) and (5.7),

Uf(x) a t,+ b-(tx,) 3
t~fx = aij at~x) I.Tax

1

+ c(t,x,Y)f

*where awhere bi(t,x,Y) =b!(t,x) + . ajt x. (,htYt)
1 ~~ b((t~x) +

3 3

and
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c(t,x,Y) = c(t,x) - (ht Y

a2  
+ a.

+ a i (htY + a - htY
ij x. t ij X t3 hl

+ I b! - (htY
I

For fixed Y in H b- and c (being products of bounded, Lipschitz continuous func-

tions) are bounded and Lipschitz continuous. Finally, the boundedness of h,

3h Ah 32h 1 2
7t, h ' 3 2h implies that, for any Y and Y in H

1 1 j

(5.8) Ib.(t,x,Y 1)-b.(t,x,y
2)I < K sup iy1 y2

• -t5 t- t

1 1 1 2

''(t,xy1)-c(t,xy2)1 - K sup Yt-Y2 1 for all t,x

where K is a constant.

It follows from Theorem 12, Chapter 1, Friedman [9) that (5.5) has a solution

in CI1 2 ([O,T]xiid) and that it satisfies the growth condition (5.2). We now need

a result which under the conditions (1), (II) establishes the uniqueness of the

distributional solutions of (5.5). (By a distributional solution, we mean a ftinc-

tion which satisfies (5.5) in the distributional sense). Friedman has proved

([91, Theorem 16, Chapter 1) the uniqueness of the classical solution to the pro-

blem in the class of functions satisfying (5.2). However, an obvious modification

of his arguments (pertaining to the use of Green's identity in the proof) shows

that the solution is unique also in the class of functions satisfyiag (5.2), where

(5.5) is taken in the distributional sense.

It is easy to see that

fT~fd I*t(x,Y)Idxdt !5 CXf dPt(x,y)dxdt

1C1 T



1,' d
so that .Thus 1C ([O,TlxR d and is the unique classical solution to

1 2 d
(5.5). This in turn implies that p,(o,y)eC '2([0,Tlx]R) and is the unique clas-

sical solution to (5.1).

In view of the assumption that P is bounded and an estimate on the fundamen-

tal solution of (5.5) (see (6.12), Chapter 1 of Friedman f9]), it follows that

it (x,Y) is bounded by a constant (depending onY) and thus, pt(xy) is

bounded by a constant which we denote by C .
Theorem 5.2. Assume that conditions (I), (II) hold. Let

p (x,Y) = pt(xy) , Y ,H Yt =ft Ydu

d +
Then the map Y-p'(-,Y) from HT into C([O,Tlx d

, IR ) has a unique continuous ex-

tension to YcC(fo,T],R d )

Further {p'(.,Y): YEC([0,T],] d)) is the unnormalized conditional density for

the filtering problem

Yt = ft hu(Xu)du + t

where ($t) is I d -valued standard Brownian motion.

Proof: The same arguments as in Theorem 5.1 imply that (5.5) has a unique

d
solution 4i (x,Y) for all YEC([O,T],i]d ) . Let p'(x,Y) = i/'(x,Y) exp(Yt,htx)).

Then pj(x,Y) is the unnormalized conditional density for the conventional filtering

problem (5.10) (see Theorem 3.2, Pardoux [201).

To complete the proof, we will show that Y-p,(.,Y) is continuous for

YE.C([0,T],I d) . The uniqueness of the extension follows from the fact that HT

is dense in C([O,T],id) .

Now, let Yno YcC([OT],'Rd ) be such that Y -Y uniformly. Let f (tx)

OT-t(XYn) and f(t,x) = PT-txY).

To show that pj(x,Yn)- Pt(x,Y) uniformly on compact subsets, it suffices to

tt
show that if (tn'Xn )-(t,x) then p' (xwhich is the same as

f (tn 'Xn)f(tx).

n. . ,, n ; . . ",,2 ./ _., ._ _ ... . . .. . . . .



Let a'(t,x) = a(T-t,x)

b'(t,x) = b(T-t,x,Y)

(5.9) b'n(t,x) = b(T-t,x,Yn )

c'(t,x) = c(T-t,x,Y)
c'(t,x) = c(T-t,x,Y)

nd n
Let 10 x (s,x)c[O,T]XR d I (respectively O ) be the solution to the mar-

tingale problem for (a',b') (respectively (a',bn)) (see Stroock-Varadhan [23],
n

Chapter 6). Q are measures on C([O,T,Rd) such that for any geClb2 [OTi"Id

(5.10) g(t,x(t)) - fs(- g(T,X(T))

is a 0 martingale, whereS X

x(t) = x(tn) = n(t)

is the coordinate process on C([O,Tl, Ed ) and

d 2 d
(Lig) = '(t,x) + I b!(t, x)- 9

i,j=l 1j i=l 1

By using an obvious stopping time argument and (5.10), it can be shown that

f(t,x(t)) - fs(- + LT)f(T,x(T))dT

is a 0 local martingale. Now, using integration by parts formula for martin-Sx

gales (Theorem 1.2.8 in Stroock-Varadhan [23]) and a stopping time argument, it

can be shown that

ftc '(ux(u))du foC' (u,x(u))du

e f(t,x(t))-f[. + + C'(Tx(T)]f(TX(T))e dT

is a q., -local martingale, tefs,T]. But the fact that p is a solution to (5.5)

implies that

[-L + LT + c'(T,x( ))]f(T,x(r)) 0

3Te

• ,, ... -MOM.
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and hence tf c' (u,x(u))du
e f(t,x(t))

is a Qs'x local martingale. But f and c' are bounded and hence it is a martin-

gale. Equating its expectations at t=s and t=T and recalling that f(T,x)=

q1o(x,Y)=(x) we get

(5.11) f(s,x) = E ((x(T))exp(f'c'(ux(u))du))

Similarly, we have for nl,

(5.12) f (s,x) = E (O(x(T))exp(fTc' (u,x(u))du)
n n s

n

Now let (s nxn)-(s,x). The condition (5.8) on bibn implies that qs ,x
n

converges weakly to see Theorem 11.14, Stoock-Varadhan [23]).

Denoting the integrands in (5.11), (5.12) by G(s,n) and G (s,r) respectivelyJ n

(the variable n is suppressed in (5.11), (5.12)), condition (5.8) on c',c' impliesn

that G -G uniformly in (s,q).n

Now,

fn(SnXn)-f(s,x)I - IEQ (C(sn))-En ((srl))nnnQs, x snn

+ lEon (fln(Sn,n)-C'(s,n)) I

n ,xn

n nn

+ supG C (, )-C(s,n) I)

n n
0 0 ashn 

I

as on  -*Q weakly and G - 6 uniformly.
SnX n  s,n n

This completes the proof of the theorem.

Remark: It may be observed that p t (x,y) is a non-anticipative functional of

y because the same is true for ut(f,y), as pointed out in Section 2.
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