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ABSTRACT

This report consist of two parts. In part one, a time modified

autoregressive model for interframe image coding is presented. This

method is compared with previous work in the field of interframe image

coding and it is shown that substantial simplifications occur when the

nearest integer displacement is taken into account. It is demonstrated

that when the between frame noise is minimal and the motion is pure

translation or can be modelled by translation, enough information can

be extracted from the predictor coefficients to determine the non-

integer displacement with small error.

In part two, a new concept for examining shapes as vectors in a

shape space is described. The shape space is defined in terms of its

properties and the importance of the independence of the size variable

to the shape vectors, defined on this shape space, is stressed. Also,

two theorems helpful in the process of comparing partial shapes to

the complete shape are stated and proved. A new method for detecting

the points on a shape which appear to dominate visual perception is

described. This method, called the Adaptive Line of Sight Method

detects the dominant points on a shape even though they do not always

occur on points of high curvature. With this method, the critical

points, or dominant points, of the shape that are determined are

based on a set of coordinate axes that are dependent on the shape

itself. Therefore, the points determined are independent of size,

rotation, or relative displacement. -

The Line of Sight of a point concept is also introduced and sub-



sequently utilized to extract features from a shape. These features

are then compared to the features of other shapes by a syntactic

procedure for the purpose of recognizing whether a slope is a partial

shape or is a shape in its own right. It is demonstrated that the

feature vectors determined by this procedure are independent of

size, rotation, and displacement. The results of applying these

techniques to actual shapes are demonstrated and discussed.
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PROBLEM STATEMENT

Many scientific disciplines have sought solutions for

questions associated with motion. What is motion? How is

motion defined? How is motion interpreted? These are just

a few of the endless number of questions that arise when

dealing with the topic of motion. Psychologists look to the

internal thought processes to formulate theories about human

interpretation of motion through visual stimulation.

Physiologists on the other hand are concerned with what

biological processes are necessary for the generation of the

synaptic signals associated with the sensations of vision

and motion. Engineers then try to simulate the processes of

biological vision in machines.

From research carried out in the above disciplines, it

has been found that the human visual system is a very

complex and complicated network of biological subunits.

Some examples of these subunits are the light receptors,

i.e. the rods and cones, the optic nerve for visual

transmission, and the brain with associated memory for

interpretation. Each of the subunits themselves constitute

a very complex system. So it is no suprise to find that

when the human visual system is modeled by hardware and

software that the non--biological visual system will also be

a very coml ex and - mplicated set of subunits.
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The research effort detailed within deals with one very

small subunit of the visual process, namely displacement or

motion detection and estimation.

DWSPLACEENT AD MOTION

Simply stated, motion is defined to be a time series of

spatial displacements. That is, in order for motion to be

perceived, time must pass. If artificial vision and

intelligence is to ever become a reality, then a

sufficiently good mathematical model for motion will have to

be employed. For this reason and the fact that memory space

will always be limited, the vision system for motion should

be based on some time adaptive displacement algorithm.

The problem then can be stated: Find a method to

determine spatial displacement from an image sequence such

that an estimate of the direction and magnitude of any

detected motion can be made.

The problem statement is simple enough, but the effort is

complicated by many factors. One of these factors involves

object-background and object-foreground interaction. For

example, if an object in the input frame moves in such a way

so as to uncover some background, complications will arise

in that the new information now consists not only of the

object motion but also in the new background that is

uncovered. The system must have the capacity to flag the

-2-



difference between the moving target and the non-moving

background. Another problem simpler in scope than the

above, but just as important, involves the loss of moving

objects and the addition of new moving objects from outside

the field of view. Again the system should be able to

detect and track these new moving objects and discard the

exiting objects.

Once the motion has been identified, there will be many

ties for the information thus provided. Visual tracking of

moving objects will then be possible as well as target

trajectory prediction. The displacement vector need not be

used strictly for motion related studies but may also be

used in areas of data compression, remotely piloted vehicle

control, and industrial manufacturing. With the detection

and interpretation of motion, a very important step toward

artificial vision will have been obtained.

Possible solutions to the problem that seem non-tractable

at present may in the near future be made possible due to

the advances in VLSI technology, software development,

parallel processing and electo-optical systems. So even

though the process may look overly complicated and slow at

present there may yet be hope in the future.

-3-



PREVIOUS WORK IN THE FIELD OF MOTION

There has been relatively little work in the area of

machine motion analysis until very recently when the

required hardware and software became available. The work

has concentrated in the areas of displacement estimation and

interframe image coding. One of the earliest, and perhaps

simplest, methods used for motion detection was simple image

frame differencing. That is, subtract the previous frame,

pixel by pixel, from the current frame and flag as motion

any difference greater than some set threshold.

M(i,j,t) = ABS[I(i,j,t) - I(i,j,t-r)] (1)

Motion will be defined whenever M(i,j,t) is greater than

some threshold. Although very simple, the method does show

good results for a very limited class of simple images, but

this method has many drawbacks that will limit its

usefulness. First, the output is very sensitive to noise in

the input images because it is a differentiating type

process. Also any camera motion between image frames will

translate into motion at every pixel. Finally, no

information is available pertaining to the direction or

magnitude of the motion.

Many other methods have been employed since the first

frame differencing techniques. A method by Price, Snyder,

and Rajala [74] uses a Fourier-Domain filter based on a
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model of the human visual system to detect motion. The

model divides visual perception into two distinct channels.

The first, their so called x channel, is a temporal low pass

and spatial band pass channel. This channel processes the

information contained in two dimensional patterns with high

spatial resolution but fairly low temporal dependance. They

believe that it is this channel that is responsible for

objects with structural complexity but with little or no

motion. The other, so called y channel, is just the

opposite. Its characteristics are spatial low pass and

temporal bandpass. This channel, they claim, conveys the

information of objects with high temporal dependance and low

spatial resolution. It is this y channel that is used for

the detection of motion.

Stuller, Netravali and Robbins of Bell Laboratories start

from a completely different point of view for motion.

First, the end product of their work is data compression and

not tracking, although it could be modified for such. The

model is used for normal televison data where adjacent scan

rows are scanned by an interleaved method. In the first

method of pel-recursive displacement estimation by Robbins

and Netravali [78], the image model for pure translation

with no background is given in equation 2.

I(Xkt) = I(Xk - D,t -z) (2)
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Where: I(Xkt) is the intensity of the image at the spatial

location Xk and time t. I(Xk - D,t -1 ) is the intensity of

the image at the spatial location Xk adjusted by the

displacement D at the previous time t- z. They next define

a displaced frame difference term as

DFD(Xk,D) = I(Xk,t) - I(Xk - D,t - .). (3)

An attempt is made to minimize this difference with a

steepest descent algorithm with the form of equation 4.

A A A 2
D D l/2)AV[DFD(XkDk)] (4Dk+l = Dk - D(4)

Where a is a gain term and VDk is a two-dimensional gradient

operator with respect to Dk Simplifying yields,

A A A A
Dk+l = Dk - i DFD(Xk,Dk) V I(Xk - Dkt - r). (5)

Following this same model, Netravali and Stuller [67]

formulated a method for interframe coding termed coefficient

recursive estimation. It is an extension of pel-recursive

with the further addition of a unitary transform. The

methods are similar, but now the image is broken up into

rectangular blocks of size Nr rows by Nc columns. Each

element is then multiplied by the appropriate transformation

vector. The blocks are then changed into a column vector by

column scanning the transformed block. They define the nth

coefficient of the qth block of the transformed image to be,

(q)- IT (Xqt)On (6)
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and for the estimated displaced frame,

= nq IT X ^F )4

c(q,)= (Xq - Dt -r) n  (7)

The comparable term for the previous method's displaced

frame difference is the coefficient prediction error en(q,D)

and is given by equation 8.

A A

en(q,D) = I(XqIt) - I(Xq - D,t -r)]Tn (8)

The minimization is over the squared prediction error by a

steepest descent iteration of the form in equation 9.

A A 2  A
Dn+l(q) = Dn(q) -(e/ 2 )Vgn(q)en(q'Dn(q)) (9)

or in a simpler form,

A P
Dn+1 (q) = Dn(q) - c ee(q,Dn(q))Gn(q). (10)

Gn(q) is defined to be the coefficient gradient vector.nA

G(q) = (IT(Xq - Dn(q),t - r)] n  (11)

When going to the next block the initial displacement

estimate is set to the final estimate of the previous block.

A A
DO(q) = DNrNc-l(q-l) (12)

When used for motion compensated interframe hybrid transform

DPCM coding, the coder transmits a quantized version of the

coefficient prediction error whenever it exceeds some

threshold. This allows the reciever to update the estimate

-7-



of the displacement and also correct the prediction

coefficients. Figures 1 and 2 point out the differences

between a normal hybrid transform-DPCM coder-decoder pair,

figure 1, and the motion compensated hybrid transform-DPCM

coder-decoder pair, given in figure 2.

0(E QUANTZER

UNITARY FRAME FRAME FRAME INVERSE ti.
TRANSFORM SUFFER DELAY BUFFER TRANSFORM

INPUT
IMAGE

PREVIOUS RECONSTRUCTED PRESENT RECONSTRUCTED
FRAME FRAME

Figure 1. Normal Hybrid Transform-DPCM Coding

LINITARY oc) QUANTIZER

I

PRESENT

INUT UNAR 1RAM FRAME _ FRA ME INVERSEH|TRANSFORM BUFFER J DELAY BUFFER TRANSFORM

PREVIOUS RECONSTRUCTED PRESENT RECONSTRUCTED
FRAME FRAME

Figure 2. Motion Compensated Hybrid Transform DPCM

Coding
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Results of this and the earlier pel-recursive method are

given in figures 4 through 11 for various values of gain.

The test image was a radially decaying cosine function of

radius 60 and peak-to-peak amplitude of 220 at the center

and 130 at the circurierence. The period also decreased

radially starting with a period of 20 pixels at the center

and ending with 10 pixels at the edge. The equation used to

generate the test image is as follows.

I(R) = l00exp(-0.0lR)cos(2rTR/P) + 128 (13)

The displace image was displace in the x direction 2 pixel

between time frames. Figure 3 is a picture of the actual

data used.

Figure 3. Radially decaying Cosine Function.
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g.0* 10.00 29.66 39.Be 4. go 46.6 go o.66o 716.66 0.
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Figure 4. Pel Recursive Displacement Estimationn
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Figure 5. Pel Recursive Displacement Estimation.
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Figure 6. Pel Recursive Displacement Estimation.
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Figure 8. Coefficient Recursive Displacement Estimation.
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Figure 10. Coefficient Recursive Displacement Estimation.

COEFFICIENT RECURSIVE

1 DISPLACEMENT ESTIMATIONJ

4:- -0.00020

I-zw
ER

09

ITERATION NUMBER

Figure 11. Coefficient Recursive Displacement Estimation.
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The data compression that is achieved by the system can

be attributed to two major characteristics. The first is

due to the redundancy removal that is obtained by the

prediction process and the second is due to the fact that

many of the transform coefficients can be grossly quantized

or completely neglected with acceptable results.

One of the major problems of coefficient recursive

estimation is that it is very scene dependent. In one scene

the displacement may converge in as few as 4 or 5 iterations

where for others it may fail to converge at all. Another

problem may prove to be the choice of a good value for the

gain factor epsilon. As figures 4 through 11 verify, the

choice of the gain factor plays an important role in the

proper convergence of the algorithms.

- 14 -



PREDICTION COEFFICIENT ENERGY CONCENTRATION
MODEL

Recalling again what the mathematical system is to perform

and what the restrictions and fidelity criterion will be:

1. Be able to determine if motion has occured in the

frame and if so where it has occured. Take the

information provided about the motion and be able to

track a target or recombine the needed data in such a

way so as to form a good replica of the original

input image.

2. Minimize the data required to update the system from

one image frame to the next, that is achieve a fair

amount of data compression while at the same time

keeping the fidelity sufficiently high.

3. As a fidelity criterion or restriction, minimize the

prediction error of both the displacement estimate

and the reconstructed image estimate.

Working within these quidelines it can be seen tnat

coefficient recursive displacement has met them all, but

perhaps not to the extent that may be possible. The

coefficient energy concentration model uses a similar motion

model with some major modifications in the solution. The

previous system exploited some of the available correlation

of a two dimensional image, but by no means all. The

correlation is not only available within the spatial domain,

but also over the temporal domain. For maximum data

-15-



compression both spatial and temporal correlation should be

exploited.

The image motion model is as follows. For the no

background noiseless case define the current frame pixel

intensity at the spatial location Xk to be a linear

combination of pixels in the previous frame as shown in

figure 12. The double crosshatched area represents a pixel

in the current frame and the single crosshatched area

represents the summation neighborhood in the previous frame.

The summation neighborhood is the area in the previous frame

whose pixel values are to be used for the prediction of the

current frame pixel value.

I(Xk't) = a(Yn)I(Xkt -r) (14)
n

Figure 12. Two Dimensional Previous Pixel Neighborhood.
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Rewriting Xk into the two spatial coordinates x and y

yields,

I J
I(x,y,t) =Zja(i,j)I(x - i,y - j,t -,). (15)

-I -J

For two dimension non-separable motion this would require a

matrix of (21+l) by (2J+l) prediction coefficients for each

pixel and hence little if any data compression could be

obtained.

As stated earlier, it would be advantageous to capitalize

on both the spatial and temporal correlation that exists in

most image data. In this method the spatial correlation is

exploited as a result of a linear combination being taken

within a given time frame, and the temporal correlation is

taken advantage of when the prediction is made from the past

frame to the present.

Looking at the usual 2 dimensional autoregressive model,

the previously defined model can be seen to be similar in

many respects. The form is the same with the deletion of

the prediction over time frames and the previos frame pixel

neighborhood is different.

I(i,j) = ZZ(k,l)I(i-k,j-l) + w(i,j) (16)

The values for i and j are allowed to vary over the picture

size, the values for k and 1 are then able vary to take into

account values above the current pixel and to the left in

- 17 -



the same line. Figure 13 shows the pixel neighborhood that

may be used as in zelation to that in figure 12.

Figure 13. Current Frame Pixel Neighborhood.

In equation 16 the a(k,l) matrix contains the regression

coefficients and w(i,j) then contains the error terms. Note

that this is only able to take advantage of pixel values on

one side of the current point, that is the values above it,

as is shown in figure 13. Clearly this does not exploit the

data to the fullest. Recalling that the model is normally

used with a scanning system where the values to the right

and below are not yet know by the reciever. Assuming full

knowledge of the image at the previous time frame, a

prediction over the time boundary yield the following form.

I(i,j,t) = ±.a(k,l)I(i-k,j-l,t-r) + w(i,j) (17)

-K -L
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This in the sequel be termed the time modified 2 dimensional

autoregressive model.

Noting what the physical implications are in relations to

the regression problem, it can be seen that the coefficients

are used to perform a translation and hence the model can be

simplified. Assuming the image fields can be sampled

infinitely fast such that they now become continuous

functions, the regression coefficient matrix will translate

to a delta function such that the above equation can be

written as,

I(x,y,t) = 8 (A XL )*I(x,y,t-) + E(x,y) (18)

where the function * defines the convolution operator. Now
the problem is to determine the values for A and A or where

x Y

the delta function is located. Here as in the previous

methods, the theory works exactly only for the pure

translation no background case, but approximations can be

made and steps taken to improve its usefulness for non-ideal

situations.

nTRMTNNGMAXIMUMENERG CONCENTRATON

Noting that if no noise exists then

I(x,y,t) = 8 a Xy )*I(x,y,t-r) (19)
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should hold. Remembering that the sampled version I(i,j,t)

is available, the above equation in discrete form becomes,

I(i,j,t) = 8(,& , YA ) * I(i,j,t-r) . (20)

Where the 8(, ,A ) may not fall on the sampling points and
x Y

hence amounts to convolving a continuous function with a

discrete function. The countinuous function is simply a

delta function at some displacement. The displacement of

the delta function from the origin determines the image

displacement from frame to frame. The problem is to solve

for the location of this delta function. The method used to

find the location of the delta function involves a two step

process. First the integer part of the displacement is

found via the use of a similarity metric and the non-integer

part by a four coefficient prediction process.

THE SIMILARITY METRIC AND THE NON-INTEGER
PORTION OF THE DISPLACEMENT

The similarity metric is used to find the best fit of the

current frame image block with the previous image frame.

This generates the nearest integer pixel displacement for

the current block. The similarity metric that is used is

based upon a non-linear combination of the current frame

block and the previous frame block. A few different

combinations have been tried with no real advantages or

disadvantages exhibited by any one. One involves keeping
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track of the sum of the absolute values of the differences

for various values of shift.

p P
M(i,j) =ZABS[I(m-i,n-j,t-,) - I(m,n,t)] (21)

-p -p

The values for i and j are set so as to vary over what is

assumed to be the maximum displacement from frame to frame.

The estimate for the integer displacement is defined to be

the point which minimizes the metric M(i,j). One of the

other possible metrics involves the sums of the squares of

the differences for various shifts.

P P
M(ij) =j[I(m-i,n-j,t-r) - I(m,n,t)1 2  (22)

-p -p

Equation 22 offers the advantage of penalizing the metric

greater for larger errors than for a number of smaller

errors. Here again the minimum of the metric defins the

estimate of the integer displacement. The metric that has

proved to be the most benificial to this point is based on a

counting procedure. As in the two above equations either

the absolute value or square of the difference can be used.

Further, a two value limiting function is define as L(x,y).

Where L(x,y) is define to be 1 if x<y and 0 if x>y. This

combined with the two equations yields a counting

arrangement as follows.

p p

M(ij) =12:L(x, ABS[I(m-i,n-j,t- r ) - I(m,n,t)])
-p -p (23)
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At this point the value for x is fairly arbitrary, but

somewhat loosely related to the variance of the data noise

and may even be a variable itself based on the data. Again

as before, the minimum value of the metric M(i,j) will give

the estimate of the integer part of the displacement.

Once an estimate has been determined for the integer

portion of the displacement the problem then remains to

determine where the delta function is in relation to the

integer displacement. Figure 14 shows the 4 possible

quadrants about the obtained integer displacement. For the

noiseless case where only pure translation of the image

field occurs, a similarity value indicating a perfect match

will exist in one of the 4 quadrants.

I r ~ ;LACEMENT
I I
I II

I I

I I I
I I I

Figure 14.
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The determination of which quadrant is based on the values

generated for the similarity matrix. Given that the

similarity metric is a difference operator of some sort, the

minimum indicates the quadrant containing the delta

function.

The Minimum quadrant can be found by summing the values

of the metric defining each quadrant as is shown in figure

15. H

Q (1 )-H+A+e
Q (2)-B+C+D
Q (3 )-D+E+F
Q (4 ) -F+G+H

III
I I

I0E 0 . , ... C
D

Figure 15.

LOCATION FOR NON-INTEGER
PORTION OF DISPLACEMENT

Taking the minimum of Q(l) - Q(4) indicates the correct

quadrant. This only narrows down the possibilities for the

non-integer part, the actual calculations still remain.

This is solved by assigning a coefficient to each corner of

the indicated quadrant and solving for its value in a

regression analysis. Each coefficient is multiplied by the

corresponding previous image pixel value, the four are

summed and set equal to the current image value as is

indicated in equation 24.
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1 1

I(mn,t) =Y Fa(i,j) I(m-dx-i,n-dy-j,t-r ) + a0
1-0 J=0 (24)

Where dx and dy indicate the integer X and Y displacement

estimates respectively. Note that this is very similar to

what was defined to be the two dimensional time modified

autoregressive model. The only modifications are the

summations have been narrowed to a single cell and the

addition of the estimated integer displacement values dx and

dy.

The problem then remains to find values for the predictor

coefficients or a matrix. The solution is arrived at

through the use of the normal regression approach. The

problem can be further specified by considering it a two

dimensional autoregressive model. The usual linear first

order regression problem can be written.

Y= B0 + BlXi + ei (25)

This then tries to fit a straight line through the data for

prediction purposes. The parameters of the model .re B0 and

B1 ,the independent variable is X and the dependent variable

is Y. Values for B0 , B1 , and e are unknown and hence the

problem is to determine estimates for these values. Given

that b0 is the estimate for B0 and b, likewise for B1 then

the predictor equation can be written as follows.

Y = b0 + biX (26)
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To find the estimates for bo and bi the method of least

squares is used, that is minimize the sum of the squares of

the error term with respect to B0 and BI .

SSE= (Yi - BO - BXi) (27)

Find the minimum of SSE with respect to B0 and BI . This is

accomplished by taking the partials and setting equal to

zero.
SSE = _ (Yi - B0 - BlXi) = 0 (28)

aB0

and

= -2LXi(Y i - B0 - Bixi) = 0 (29)
Bi=1

From these the estimate b, for B1 is given by,
.(xi -)(Yi -

bi = -i - 2 (30)

i-i

and the estimate b0  for Bo can be obtained from the

following.

b= - b 17 (31)

With this another way to write the prediction equation is

evident.

Yi= + bl(Xi - X) (32)

To make the notation simpler and somewhat easier to

understand for larger systems it is often advantageous to
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write the equations in matrix notation. The corresponding

matrix equation for the above analysis is given by equation

33.

Y = XB + e (33)

Y is the dependent variable vector of size n by 1. X is the

augmented independent variable matrix of size n by 2. B is

the parameter vector of size 1 by 2 containing the scaler

terms B0 and BI. The matrix normal equation can be written

as follows.

xTxb = xTy (34)

The least squared estimate for b is then obtained from the

following relation.

b = (XTX)-IxTy (35)

As stated earlier the model desired here is an

autoregressive source. The autoregressive source places a

further restriction on the regressive model in that the

prediction is made with respect to a time series. That is

future values of a time series are to be predicted on

information provided by past values. The usual

autoregressive source can be written as

Xi+ 1 = Bg + B1Xi + ei+ 1  (36)

or in matrix notation,

X - ZB + e (37)
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Where Z represents a shifted version of X. In the particular

case at hand, the derivation has to be carried one step

further, it also has to take into account that the data is

two dimensional. The two dimensional autoregressive model

as stated earlier can be written as,

11
I(m,n,t) =j- a(ij)I(m-dx-in-dy-jt-r) + a0 + e(ij)

i=0 j=0 (38)

Notice that this is not in the ordinary matrix form. Some

manipulation of the data is required in order to get the

system. into a form that is readily solvable by ordinary

regression analysis. The method for transforming the two

dimensional system into a single dimensional regression

problem is as follows.

1. Rewrite the regression coefficient matrix a(i,j) into

a regression vector B of length 5 where the first

value comes from the intercept coefficient a0 .

a

a(0,0)

B = a(0,l) (39)

a(l,0)

a(l,l)

2. Set up the independent variable matrix Z in such a

way so as to take into account the shifting that is

accomplished through the use of the double summation.
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In the equation for the Z matrix that follows, the t-

factor has been neglected for simplicity sake.

1 I(i,j) I(i'j+2) I(i+l,j+) I(i+l,j+2)

Z I I(i,j+J) I(i,j+J+l) I(i+l,j+J) I(i+1,j+J+l) 40)

1 I(i+l'j) I(i+1,j+l) I(i+2,j) I(i+2,j+l)

1 I(i+I,j+J) I(i+I,j+J+l) I(i+I+l,j+J) I(i+I+l,j+J+1)

Figure 16 shows how the scanning of the previous data

matrix is performed. Note that each value is used up

to four times in the Z matrix.

IN1

A 2 8116

Figure 16. Z Matrix Scanning Diagr m
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3. Finally row scan the current frame block data placing

it in a column vector X of length I times J, where I

and J are the x and y blocksize measurements of the

comparison block. The scanning method is graphically

shown in figure 17. Note also that the e vector

would be defined identically to that of the X vector.

I(i,j,t)

I(i,j+1,t)

I(i,j+2,t)

X = I(i,J,t) (41)

I(i+l,jt)

I(i+I,j+J,t)

IN 1 2 3 4 5 0

Figure 17. X Vector Scanning Diagram.
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With each of the variables X,Z,B, ane e defined the

current problem reverts to that of a first order regression

problem involving five regression coefficients and hence can

be solved as such. The predictor coefficients can hence be

obtained by solving the following matrix equation for B.

X = ZB + e (42)

The normal equation is then,

ZTZB = zTx (43)

and the least squares estimate for B is b and is given by

b = (ZTZ)-lzTx. (44)

As with any system that is based on obtaining a matrix

inverse it is possible that the system is ill conditioned

and the inverse may not exist. In the current system this

is remidied by using only the estimate for the integer

portion of the displacement if the current status proves the

system to be ill conditioned. When this occurs the b vector

is set to an identity transfer function, that is,

bT = [(,1,0,0,0] (45)

Solution of the regression problem will generate the four

prediction coefficients and the intercept. For the pure
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translation-noiseless case there is a very nice relationship

amoung these coefficients. First, since the power in the

past and present frames are nearly equal the coefficients

will sum very close to one. Next since the coefficients act

as a shifting mechanism each will be greater than zero.

Finally because of the symmetry involved in the values of

the four coefficient they can be thought of as being co-

planer and the off sample point location of the delta

function can be determined by finding the center of mass of

the coefficients. Hence only the location of the delta

function needs to be transmitted and the coefficients can be

generated from this knowledge. When the motion is not pure

translation and/or noise and/or non-zero background is

present, then it advantageous to transmitt the values of the

coefficients instead of the location of the delta function.

With noise, rotation, scale change and/or other non-optimal

occurances the nice features listed above may no longer

hold. This is the reason for the transmission of the

coefficient values themselves and not the delta function

location. Hence for the data compression scheme, the

quantized prediction coefficients and quantized prediction

errors are transmitted. If the displacement is constant,

then the coefficients need be transmitted only for the

blocks where non-uniform displacement has occured. A block

diagram if the system is given in figure 18 to show the

order in which each of the steps is performed.

-31-
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CONCLUSIONS AND RESULTS

With the assignment of a time modified autoregressive

model for interframe image coding it has been shown that

major simplifications can be made by taking into account

nearest integer displacement. The limits on the summations

for the regression no longer need be -p to p to resolve for

a displacement of p pixel shift in either direction, but

instead can be limited over a single cell. It has also been

shown that for the translation only-noiseless case the

prediction coefficients supply enough information to

determine very closely the actual non-integer displacement.

When combined with an appropriate coding scheme the method

should produce respectable results with fewer computations

than some of the methods previously proposed. It offers the

advantages of not having to go through an iterative

procedure to determine the displacement as well as being

well suited for parallel implimentation. Noise in the

images greatly affects the quality of the similarity metric

and hence generates false maximum energy concentration

points. The problems of rotation, scale changes,

perspective changes and other non-translation types of

motion can only be resolved with the addition of more

intelligence to the system.

Three sets of test images sequences were used for the

algorithm analysis. The first is a sequence of frames from
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a digital television transmission. This particular sequence

contains every other frame in the sequence so the problem of

interlacing that the original data possessed could be

neglected. The sequence consists of a woman talking on the

telephone while at the same time making some rather quick

motions with her head and hands. This particular sequence

will be referred to as the 'FAST PHONE' in the remaining

part of the discussion. The second image sequence was

generated identically to that of the 'FAST PHONE' sequence

but consisted of somewhat slower motion in the sequence.

The final sequence consisted of an in-house motion sequence

generation. A fixed background was placed under the vidicon

and the motion was achieved by moving the small model plane

some small distance between the image frame. These last two

sequences will from here on be referred to as the 'SLOW

PHONE' and'PLANE'.

Figures 19 a through f are the original 'FAST PHONE'

frames while figures 20 a through e are the outputs with the

associated bit rate required to transmitt.
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Figure 19. "FAST PHONE" Input Sequence.

(a) Input Image 1. (b) Input Image 2.

(c) Input Image 3. - 35 - (d) Input Image 4.



Figure 19 Continued.

(e) Input Image 5. (f) Input Image 6.

Figure 20. Output Image Sequences.

(a) Output Image 2 (.154) (b) Output Image 3 (.368)
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Figure 20 Continued.

(c) Output Image 4 (.584) (d) Output Image 5 (1.00)

(e) Output Image 6 (1.42) (?) Output Image 2
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Figure 20 Continued.

()output Image 3 (.392) Z.h) output Image 4 (.564)

()output Image 5 (.893) ()output image 6 (1.22)
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Figures 21 a through f are the originals for the 'SLOW

PHONE' image sequence while 22 a through e show the outputs

and the associated bit rates.

(a) Input Image (b) Input Image 2

4W

(c) Input Image 3. - - d) Input Image 4.



Figure 21 Continued.

(e) Input Image 5. (f) Input Image 6.

Figure 22. Output Image Sequence

(a) Output Image 2 (.453) (b) Output Image 3 (.693)
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Figure 22 Continued.

(c) Output Image 4 (.525) (d) Output Image 5 (.481)

(e) Output Image 6 (.451) 41



Finally figures 23 a through f give the original for the

'PLANE' sequence and figures 24 a through e give the outputs

with the associated bit rates.

(a) Input Image I (b) Input Image 2

(c) Input Image 3 (d) Input Image 4

42



Figure 23 Continued

(e) Input Image 5 (f) Input Image 6

Figure 24 Output Image Sequence

(a) Output Image 2 (.595) (b) Output Image 3 (.489)
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Figure 24 Continued

(c) Output Image 4 (.689) (d) output image 5 (.598)

(e) Output Image 6 (.724)
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MACHINE RECOGNITION OF PARTIAL SHAPES

USING

FEATURE VECTORS DEFINED ON SHAPE SPACE

INTRODUCTION

In this paper the problem of determining whether a

partial shape belongs to a more complex whole shape is

addressed. A parti.l shape occurs when a shape is partially

obscured by another shape, or object, or is partly in the

field of view.

At present the methods of recognizing shapes [51, [151,

[21], [221, can be categorized as either global or local in

nature. Within the class of global shape analysis algorithms

there are two categories that under certain circumstances

possess the ablity to recognize complete or whole shapes

independent of size, rotation, or location. These are the

Fourier descriptors methods and the Syntactic, or Graphical,

methods. The Fourier descriptors based algorithm perform

satisfactorily on complete shapes. The Fourier coefficients

extracted are indeed independent of size, rotation, and

location when the shapes are complete. However this method

does not perform satisfactorily and in fact fails entirely

when the class of shapes is allowed to include incomplete or

partial shapes. An example is presented in Section II that

demonstrates that Fourier descriptors method fails to work
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on incomplete shapes. The results of the experiment are

discussed in order to point out specifically why the

algorithm cannot perform satisfactorily on partial shapes.

The other class of global methods, namely the Syntactic

methods [41 have restricted use in recognition of shapes

because these algorithms tacitly assume a priori that the

shapes have been identified by their parts. These algorithms

then investigate the relationship between the various parts

of the shape. A human shape, for instance has a hand or a

face at some definite orientaion and location with respect

to each other.

The Local category of shape analysis algorithm [211 uses

'curvature' as a criterion for detecting the peaks and

valleys of a shape. These peaks and valleys are called the

local shape descriptors. This shape comparison algorithm is

not independent of rotation. In Section II specific examples

are given that demonstrate that the present comparison type

local shape analysis algorithms are not independent of

rotation. The concept of curvature is then presented from

the point of view of differential geometry for determining

why the local shape descriptors are not independent of

rotation.

In Section III, several general concepts from the

allometric disciplines [11], are combined with some entirely

new concepts concerning shapes for the purpose of providing

the foundation for a new approach to defining shape as
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vectors in the appropriate space. The properties of this

space are stated definitively, after the concept of size

variable has been solidified. This vector space is called

shape space. Two theorems useful in the partial shape

recognition problem are stated and proved utilizing shape

space properties.

In Section IV, some basic definitions regarding critical

points are presented. These definitions are used in Section

V where one of the principal results of this paper is

presented. Specifically, a new procedure of determining the

critical points of a shape is described. This procedure is

named the Adaptive Line of Sight method. In the Adaptive

Line of Sight method, the critical point determination in

based on a set of coordinate axes that are dependent on the

shape being examined. Examples are given that demonstrate

that the procedure produ,7es critical points that are

independent of rotaion, size, displacement, and correspond

closely to those produced by normal human cognitive process.

It is demonstrated in Section VI that measurements

between a set of critical points that are determined by

using the Adaptive Line of Sight method can be used to

define feature vectors for shapes. These feature vectors

remain the same whether the shape is a partial shape or a

more complex whole shape. Moreover, these feature vectors

are independent of size, rotation and displacement since

they are derived from a set of critcal points that are
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independent of the same quantities. A procedure for

comparing the feature vectors of a set of shapes is

described The comparison procedure is based on a Syntactic

method which will point out whether one shape is part of a

more complex whole shape, or whether the shapes are totally

dissimilar.
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SECTION II

PRELIMINARY THEORY AND DEFINITIONS

There exist two types of Fourier descriptors. The first

type of descriptors, used by Zahn and Roskies [22], have

been called descriptors Sn by Pavlidis [13]. In the method

of descriptors Sn the shape is represented by the continu-

ous function,

a( t(k),k) = ( k ) + t( k ) (2.1)

where t( k ) = 2'ip(k)/L

P( k ) = arc length between the starting

point and the k th point on the

curve.

0( k ) = net amount of angular change

between the starting point and

the k th point on the curve.

L= the perimeter of the curve

The descriptors S n for a continuous shape are then defined

as,
9ir

Sn (t(k), k)exp(-j27Tnt)dt (2.2)(2.2

These descriptors exhibit some notable shortcomings. Among

these are 1) the property of the closure of the curve is not

preserved 2) simple shapes such as squares and triangles

cannot be distinguished from one another when only the ver-
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tices are given. The second type of Fourier descriptors,

namely the descriptors Tn(133, (151, [171 exhibit character-

sitics that are superior to the descriptors Sn in the

sense that the reconstruction of the shape from a finite set

of coefficients leads to a closed curve. Also the conver-

gence properties are superior.

For the descriptors Tn the shape data is represented in

the complex form,

U(p) = X(p) + j y(p) (2.3)

where (x(p) , y(p)) are the coordinates of the point on the

curve and p is the arc length from the defined starting

point. The descriptors Tn are then given by,
L

T n lu( p)exp(-j2rnp/L)dl (2.4)

0

The Fourier descriptors based algorithm normalizes for
position by setting T to zero . Normalization for scale,

o

rotation, and starting point of a contour is achieved by

multiplying the n th coefficient by s exp( j ( +n )). The

parameter s scales the shape to the normalized size, the pa-

rameter ( + na ) rotates the contour to the normalized

position. The normalization is such that the coefficients

T+I and T_ 1 are pure imaginary numbers and their sum has

magnitude one.
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It is easy to see why such a normalization is necessary

for discrete data. In this case, the Fourier descriptors are

given by,

N-I
1

T( n ) = Nz ( x( k ) + j y( k ))exp( -j2Trnk/N) (2.5)

k=0

Multiplying (2.5) by s exp-j(4 + na ) the normalized coeffi-

cients ,TN ( n ) are then given as,

TN( n ) = T( n ) s expj(O + na ) (2.6)

Next imposing the requirement on (2.6), that the coefficient

be purely imaginary at n = + 1 leads to the condition that,

2nk -( + o) = 2m + (- 2_r k -( - a)) (2.7)
N N

where m is an integer.

Setting the real part to zero by appropriate choices of and

a is equavalent to normalizing for rotation and starting

point of the contour. As a matter of fact, the two equa-

tions could have been set equal to any constant.

The imaginary parts of the normalized coefficient at n

+1 are,
N-i

s

IM(TN( 1 ))=R E (-x(k)sin(2 7k - ( +a))+y(k)cos(2Trk - (+)
k=O
N-i

IM(TN(-l ))=R Z (-x(k)sin(2Trk -(-a)) + y(k)cos(2k -(-a))
k=O

Summing and equating the magnitude, of the normalized coef-

ficients at ±1, to one, yields,
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N-i

s{(E(x(k)sin( A + B)-sin(A-C))+(y(k)(cos(A-C)+cos(A-B)))/N}
-I

k=O (2.8)

where A = 27 k/N

B= +c

Another function (16] which has also been used for normali-

zation is the standard deviation of the data,

N (2.9)

E (x(k)-2) + (y(k)- )
k=O N-1

where i =1 Z x(k)
k=O
N-1

S= 1 E y(k)

Nk=0
It is apparent that both s and care linear homogeneous func-

tions of the data points.

In a real shape recognition application it is not known a

priori whether the shape under examination is a part of a

more complex shape or a shape in its own right. The above

descriptors in their present form are not capable of recog-

nizing that a partial shape may be part of a more complex

shape. We present an example to demonstrate the validity of

this contention. The shapes used are shown in Fig. 1. Figure

l-a is a complete shape, namely a swept wing plane, while

Figure 1-b is a partial shape, namely the front part of the
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plane. The plots of the real and imaginary part of the nor-

malized Fourier descriptors obtained by using (2.8), for the

complete shape are shown in Fig. 2-a. The corresponding

plots for the partial shape are are shown in Fig. 2-b. Sim-

ilar data obtained using (2.9) is shown in Fig. 3. It is

apparent that comparing the two sets of data yields nothing

more that a statement that the two shapes are dissimilar.

Two explanations for this are 1) the parameters s and a are

not independent of the shape and 2) the Fourier descriptors

method compares the 'frequencies' of the shapes. The fre-

quencies of the partial shape are not the same as the fre-

quencies of the complete shape.

The main result of this paper is the description of an

approach for determining if a partial shape belongs to a

more complex whole shape. This is detailed in section III

IV and V.

II-B LOCAL SHAPE DESCRIPTORS

The Local Shape descriptors method has been used by Wal-

lace, Mitchell and Fukunaga [21], for comparing shapes

stored in a library. In this method, the angle function is

defined as,

s(k)=arctan((y(k)-y(k-1))/(x(k)-x(k-1)) (2.10)

Curvature is then defined as the derivative of the angle

function, that is s'( k ). The peaks and valleys in s'( k
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are used for finding the peaks and valleys of the curve.

Each local shape descriptor then consists of two adjacent

peaks and a valley ( alternate angles and a distance).

Observe that (2.10) is a nonlinear transformation on the

data, also, the function is not finite at + 90 . In general,

the function may be used to locate peaks where 1) the angle

between any three adjacent points is acute 2) the shape be-

comes parallel to the y-axis. This is equivalent to places

where the angle becomes + 2-radians with respect to the x-

axis. To illustrate this point the cardioid shown in Fig.

4-a was generated sampling at constant intervals of

(2 T/256) radians and not the arc length, so that an acute

angle did not occur between any three adjacent points. The

cardioid was then rotated by 1.57 radians. The corresponding

plots for the angle, and the derivative of the angle func-

tion, and the peaks obtained using this method are shown in

Fig. 5 and Fig. 6, for both cases. Note peaks obtained by

this method are not unique and are dependent on the rota-

tion.

Curvature is known [7] to be a property of a curve inde-

pendent of its orientation in space. Despite the fact that

this orientation independent quantity was used to determine

peaks, the peaks were not independent of rotation. Clarifi-

cation of this apparent contradiction requires the concepts

of curvature and torsion of curves in space.
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CURVES IN THREE DIMENSIONAL SPACE

The problem of shape recognition is analogous to recognition

of curves in space. Therefore, well known concepts and theo-

rems from differential geometry can be utilized in shape

analysis. A theorem from differential geometry that is par-

ticularly useful is [10],

Theorem: Every regular curve c:I s -* Rncan be parameterized

by arc length.In other words, given a regular curve c:I* Rn

there is a change of variables e :Is - I e such that

(c.a)'(s)t=l, where (c.e)is a composite function.

Let c = c( s ) be the parametric representation of the

curve under analysis with s as the natural parameter(i.e

jdc/ds I 1) then the vectors t, n, b, satisfy the Serret-

Frenet equations [7], [10],

t 0 K 0 t

n = -0 W (2.11)

bj 0 -bj

where,

K = curvature,

T = torsion,

t = tangent,

n = normal at the point,

b = binormal at the point,
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and the dot notation denotes the deravative with respect to

the natural parameter s.

When the curve under analysis lies in a plane, the torsion

in general is equal to zero and the binormal b is constant.

Thus for a curve in the x-y plane (2.11) reduces to,

[n -KL0 (2.12)
Now if e is the angle made with respect to the x-axis by the

tangent to the curve then,

[41 = [cos e sin8 1[]

n -sin e cos (2.13)

where i and j are unit vectors in the x and y directions re-

spectively, Differentiating (2.13) with respect to the natu-

ral parameter s yields,

-sin e cose i

Ln cos e -sine (2.14)

Substituting equation (2.13) in equation (2.14) yields the

result,

Comparing (2.12) with (2.16)

K = e (2.16)
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In view of the different representations of the word cur-

vature (21, (211 it is necessary to emphasize that the de-

rivative in (2.16) is with respect to the natural parameter

s and not with respect to some arbitrary distance measure.

If a curve is not represented in +erms of the natural param-

eter, but some other real valued function (say e=e( s

then this transformation should be allowable. The implica-

tion is that, : s -) I is an injective mapping of the in-

terval Isonto I . Where Is and I, are the respective do-

mains in s and e over which the curve is defined.

Thus the function arctan( e) with values between + 90 or

arccos( e) with ebetween 0 and 180 are not allowable chang-

es of parameter and any property based on these transforma-

tions may not be a property of the curve but a property of

the representation. Thus if a curve or a shape has been rep-

resented in terms of the sample number 'k' and if the algor-

ithm is unable to affect the one-to-one transformation de-

scribed above, then the following fact should be exploited

[101,

ds dc

dk dk (2.17)

Using (2.17) it can be shown [10] that the magnitude of cur-

vature can be obtained from the following relationship,
r3

IKI= IC' X C''I / I C'I 3  if c'# 0

otherwise (2.18)
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Where the symbol x denotes the vector cross-product and the

symbol I denotes differentiation with respect to k. Curva-

ture is a vector quantity and it points in the direction of

the normal.

Using equation (2.18) on the cardioid and its rotated

version ( Fig. 4a and 4b ) resulted in the plots of the cur-

vature magnitudes shown in Fig. 6a and 6b. As predicted the

magnitude of the curvature is identical before and after ro-

tation. This is in sharp contrast to substantial differences

demonstrated in Fig. 5a and b.

SECTION III

BASIC SHAPE CONCEPTS

In this section several general concepts from allometric

disciplines [111 are combined with some entirely new con-

cepts concerning shapes. This combination provides the foun-

dation for a new approach to defining shape vectors in the

appropriate shape space. This new space is a combination of

properties of vector spaces and is called definitively shape

space.

Applying the shape space concepts to the shape analysis

problem provides a basis for the recognition that the fea-

tures of two or more shapes under analysis are the same. For

instance, with shape space concepts it is possible to deter-
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mine that a partial shape, independent of size or rotation,

belongs to a more complex whole shape.

Typically in a shape analysis problem, an algorithm op-

erates on the shape data according to a set of criteria for

the purpose of reaching a decision of some sort. Usually the

decision is whether or not two or more shapes are the same.

The shape analysis algorithm utilizes measurements such as

curvature, and measurements between predefined points on the

shape, such as length width, diameter, area, etc. Therefore

if K shapes are under analysis, and N measurements mki are

made on each shape, then the result is the K measurement

vectors,

n ( 1  ,m1 2  ,m13  ,. I , mlN

Mk = ( k k2  ,mk3 ,. . . , mkN ) (3.1)

MK = (mKl ,mK2 ,mK3 ,mKN)

where the first subscript of mki refers to the object be-

ing measured while the second subscript i refers to the i th

measurement between the predefined points on the k th shape.

Any two objects will then be said to have the same shape

with respect to these measurements if one vector is a scalar

multiple of the other,

Mk a ( 63.2)
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where a is a scalar greater than zero.

The geometric significance of (3.2) is that in the N dimen-

sional space of positive measurements all points on a

straight line through the origin define the same shape.

Points can be uniquely located on the positively directed

line by finding the intersection of first order surfaces

with the line defining the shape. The class of functions

which define these surfaces are linear homegenous functions

of order one, of the measurements, m i=l, 2,.N. The mathe-

matical representating for this class is,

(a mki) = a (mki)

(mki) > 33

where a is scalar

and refers to a countably infinite class of linear

functions, with members Z( mki

The distance from the origin to the intersection of a

particular member of the class Z ( mki ) with the ray

through origin defining the shape is refered to as the size,

scale factor or the normalization factor with respect to

that member. Following Mosaiman [11] terminilogy, in the

sequel Z ( m ki ) will be refered to as the size variable.

Some examples of size variable in a measurement space of two

vectors are shown in Fig. 7a and b.
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These statements merit further discussion and clarifica-

tion because of their implications. Consider for example the

two different measurement vectors extracted from the simple

shape shown in Fig. 8. The shape is a unit square. In the

first case, the measurement vector is,

MI=( Ml1 , 1 2  in1 3  , i 14 )=( 1 ,l ,1.414, 1) (3.5)

while in the second case, the measurement vector is

M 2= 1= 1~ 1m l)3 m (3.6)
M2'=( m~l ,m 2  , in 3  , m24 ) 1, 1, 1, 136

where the ' in the above equation indicates that the meas-

urements are between a different set of feature points of

the shape. Now if,

ZJ in( ) =(3.7)

is chosen as the size variable then the corresponding shape

vectors are,

S1  =(.707 , .707 , 1 , .707) (3.8)

S2  =( 1 , 1 , 1 , 1)

Comparing these two shapes without any reference to the size

variable or the points between which the measurements were

made, one would conclude that the the two shapes are not the

same. Thus not only has the functional form of the size

variable to be the same but the measurements involved in the
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functional relationship have to be between the same feature

points. Now consider the shapes in Fig. 9. This is the typ-

ical situation in which occlusion occurs or the shape is

outside the field of view of a camera (or some other measur-

ing device). Assume that both shape boundaries are repre-

sented by an equal number of samples and that every point on

each shape boundary is defined as a feature point. Now if

the standard deviation of the data is chosen as the size

variable then it is obvious that the standard deviation of

the two shape boundaries are different. Therefore, this is a

case where the size variable is dependent on the shape,

which implies that the shape vector is dependent on the size

variable. Comparision of the two shape vectors with such a

size variable is bound to lead to errors. These problems

can be alleviated by defining the quantities in the proper

context. This can be accomplished only if the variables are

defined in the proper space.

SHAPE SPACE

In this section, the concept of a snape space is intro-

duced. The space is defined in terms of its properties in

the usual manner and then two theorems addressing the prob-

lem of partial shapes are stated and proved. Assuming that

Skj(Ski) is a shape vector consisting of well defined oper-

ations on the measurements of the shape under consideration.
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It will be shown in the sequel that it is necessary to

choose a size variable that is independent of the shape un-

der comparison. A necessary first step is the definition of

shape vector [11].

SHAPE VECTOR

The Shape vector Skjis defined to be the ratio of the

measurement vector Mk to the size variable Z.

Skj = Mk/Zj

Skj( mkl , ink2 ink 3  ,N (3.4)

Zj <kki) i) 'Z <Ski) k )

It may be noted that the first subscript of Skj corresponds

to the object whose shape is under consideration while the

second subscript corresponds to the size variable chosen

from the class.

Here the points to be emphasized are that,

1)All measurements are made between pre-defined points.

2)A shape vector is defined with respect to a size variable

Zj (mki). Thus only shape vectors defined with respect to

the same size variable can be compared.

3)If two shape vectors are equal, then the two objects have

the same shape with respect to the measurements.

4)The shape vector should be independent of the size

variable.
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These measurements are the m ki 'S previously defined; the

elements ofs ki. (Ski) are obtained by the following operation,

Ski= mki /ZJ mki ) (3.9)

The shape vectorskj(ski) must satisfy the following proper-

ties in addition to the properties of normal Euclidian

space.

PROPERTIES OF SHAPE SPACE

1) The shape vector is independent of the size variable.

Sjs a ski) = Skj Ski) (3.10)

where i = 1, 2 ...... ,N, k=l, 21 .... K,

and a is a scalar.

2) The shape vector is independent of translation that is,

S( s + s )=S( s ) (3.11)
kj ki 0 kj ki
where i = 1, 2 . ..... N, k=l, 2. ....... K,

and s is a constant vector.

3)The shape is independent of rotation.

S ( 0i + u 0 ) =Sai ) (3.12)
kj kj 2

where i=l, 2. ..... N and aiis the angle made by the i th

component of S with a fixed reference axis and Lbis a

constant angle.

The vector obtained by using a set of measurements on

a partial shape must still be contained in the space.Unless

a size variable is found which is independent of both shapes

both the partial and the complete) it is not meaningfull
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to compare the shape vector in shape space. It is not pos-

sible to find a size variable which is a totally independent

continious function of measurements made on both shapes.

This being the case the only choice left is to split the

shape into parts or subshapes and define a size variable

which is piecewise continuous over these parts. Two theo-

rems relating the subshape to the complete shape in shape

space are stated and proved. These theorems are used exten-

sively in the sequel.

THEOREM 1 The vector formed by concatenating a series of

shape vector is a shape vector.

Proof: It is required to show that the shape vector result-

ing from concatenating a series of shape vectors satisfy the

three properties of shape space.Let the concatenated shape

vector be

SCj =(Sk ( slu ), $21 ( S2v ) on ( s ),..,)on ow

(3.13)

where the first subscript on S represents the object( shape

) and the second represents the size variable used to obtain

that shape vector. It should be pointed out that k, and n

are arbitrary size variables. Each element of S ( s .)cj C

can be represented by

s 6 =oi /Z d (mi) (3.14)
ci d ci

Therefore,

- 74 -



S cj(sc =( S ci ' S c2 , S c3 Sen

(3.15)

Multiplying each component of (3.13) by the scalar a yields,

a S ( s )=(a S ( s ),a S ( s ),..., a S ( s ) ... )
cj ci ik lu 21 2v 3m 3w

(3.16)

but from the (3.10) we have,

Sov ( a Sop ) = a Sov( sop ) (3.17)

using (3.17) in (3.15) results in

a S c Sci)=(a scl,a s c2, ., a S n,. .) (3.18)

or

a Scj( Sci S ( a s ). (3.19)
cj

Equation (3.19) proves property i)

To prove that the shape vector satisfies proverty ii) it is

only necessary to observe that each member of the concaten-

ated vector is a shape vector is a shape vector.Therefore

each satisfies:

ikj ( ski +So )= Skj ( Ski (3.20)

The proof for property iii) follows in a similar manner

Q.E.D

Theorem2: The shape defined by a shape vector obtained by

concatenating a series of shape vectors is unique if and

only if the size variable defining each member of the set is

known.
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Proof: - A linear homogeneous function surface will

intersect a positive directed straight line at only one

point. Since a shape is defined as a point on the shape ray,

if follows that any point on this ray can be uniquely deter-

mined by its intersection of a size variable which is de-

fined as a linear homegeneous function over the positive

quadrant.

Assume otherwise. Then there is at least one Son( sOW

shape vector in the concatenated set whose size variable

z (mki) can be choosen arbitarily. Then the concatenated vec-

tor under this assumption would still satisfy the properties

of the shape space, i.e.,

a Scj ( Sci) Scj ( a sCi )  (3.21)

Now the R.H.S of (3.21) can also be expanded as

= ( a S1k a Sp, ... ,a Son ....) (3.22)

aM 1  ,aM, .,a r ... ) (3.23)

Zk Z Zn

but since Z can be choosen arbitrarily as long as it sat-

isfies the definition of a size variable(3.4). Choose

= 7 ( a mo ) (3.24)

substituting (3.4) and (3.24) if (3.23) the following rela-

tionship is obtained

a Scj( Sci )  a M , a M 2  , 0

kP n (3.25)
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which is also equal to,

(a Slk ' a S2z' ... S ona S+l,n+l.. (3.26)

comparing (3.22) with (3.26) that,

a S .(S i) # S (a s icJ ci c j ci
which contradicts (3.21)

Q.E.D

SECTION IV

CRITICAL POINTS

When analyzing shapes represented by sampled boundries a

natural question is one regarding the points between which

the measurements should be made. A simplistic approach, an

approach which assumes that there are the same number N of

boundary points on each shape and evades the problem of ana-

lyzing shapes with a different number of boundary points,

would be to make measurements between all possible pairs of

boundary points. This leads to the number N!/(N-2)12! of

measurements for each shape.

In order to recognize the shape, a normalization and com-

parison procedure must still be used. It is obvious that for

relatively small N the computational requirements are very

large. Therefore it becomes necessary to consider measure-

ments between a relatively few representative points on the

shape. The chosen points on the shape have to be more impor-
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tant, in some sense, than all the rest. The set of points

which define a shape may be considered as a Fuzzy set in

which various points are assigned to it with various degrees

of membership. Defining a precise criteria on which a degree

of membership can be assigned to a point on a shape is very

difficult. However, past researchers have discovered [2],

[8], [18] that, the points that should have a higher degree

of membership than the rest are:

1) Points of Maxima

2) Points of Minima

3) Points of Inflection

4) Points of Intersection

5) End points of open curves

6) Points where the curvature changes sign or magnitude.

In past shape analysis efforts, points of maxima as well

as minima, and inflection points of curves have been ex-

tracted from the shape data without due consideration of the

coordinate axes. This approach inevitably lead to errors,

because these points have no meaning unless the coordinate

axes are first defined. The problem with such an approach

is that if a set of coordinate axes is chosen independent of

the shape under consideration then the maxima, minima, and

inflection points will not be independent of rotation of the

shape with respect to the coordinate axes. The conclusion
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is that the coordinate axis upon which the maxima, minima,

and points of inflection are based must be dependent on the

shape itself.

The next logical question is whether there should be one

set of coordinate axes or many. The answer is not straight-

forward. Some shapes require more than one set of coordi-

nate axes while others may require only one. Before discuss-

ing methods that may be used for determining critical

points, two definitions are presented which will be used in

the sequel.

Definintion I: A curve c is said to be in line of sight of a

point P if every point on the curve c can be connected with-

out intersecting the curve at any other point. Otherwise the

curve is said to be not in line of sight of the point P

(NLSP). Examples of (LSP) curves of a point P, where P is

the centroid of the shape then denoted as (LSC), are shown

in Fig. 10.

Definition II: Line of sight of a straight line axis L: Let

n be the normal projection of a curve c onto a straight line

L. The curve c is then said to be in line of sight of L if

all points from c can be can be mapped injectively onto n.

Examples of curves which are in line of sight of a single

straight line axis (LSA) are shown in Fig. 11 along with
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curves not in line of sight of a single straight line

axis(NLSA)

Dividing the shape into this set of projections is equiva-

lent to defining the shape in terms of single valued func-

tions. It follows from the definition of a single valued

function that fewer ambiguities should result. That is, the

critical points are now determined from single valued func-

tions rather than multivalued functions. The actual methods

for determining the critical points can now be presented.

SECTION V

ADAPTIVE LINE OF SIGHT CRITICAL POINT DETERMINATION

Several methods have been utilized in the past for deter-

mining critical points [21,[8],[181. Most of these methods

are based on operations on a fixed number, m, of adjacent

points. Since it is unlikely that an intelligent machine

will have a priori knowledge about the size of the shape to

be analyzed or the relationship of the number of sample

points to the size, the ambuiguities involved in detection

of critical points using methods that are totally dependent

on operations on fixed number of adjacent points, are high.

The classical methods of differential geometry work very

well on one dimensional data and on theoretical curves.

While each of these methods has exhibited desirable charac-
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teristics, undesirable characteristics are always present,

specially when the shape is corrupted by noise. A brief de-

scription of some of the well known classical methods

[71,[01], that work well for theoretical curves are now pre-

sented for the purpose of comparing their performace with

the approach described in the sequel, namely, the Adaptive

Line of Sight Method. Also these methods may be used in the

second pass of the this adaptive algorithm after the shape

has been rid of noise.

The method of Centroidal Vectors

In this method the ith point on a shape at a vector distance

d La i from a reference point ( typically the shape centroid

is said to be critical with respect to the reference point

if

(( Idi-I-ldil ) and ( Idil - Idi41  1 ))

or

((Ha- I and ( I )
i-1 i i i+l

have opposite sign.

This operation is very local in nature and is extremely

sensitive to noise. Round-off or truncation errors also

have a deleterious effect on the operation. It also fails

very often when dealing with smooth curves or in situ-

ations where the centroid is located away from the shape

boundary as shown in Fig. 12.
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Another method is that of Curvature Vectors. This

method is basically a two pass process. In the first pass,

the i th point on the shape with a curvature Ki is set

as a critical point if

( i-I - ) or (K. - K.

have opposite sign. In the second pass, the points at a

maximum distance from the straight line joining every two

successive critical points is set as critical. This meth-

od like the previous method, is very sensitive to noise.

Though it works for most of the smooth curves, there are

instances where it fails. For example, this method produc-

es only one critical point for the cardioid discussed in

section II.

In the Magnitude of Curvature Method the ith point is

determined to be critical if,

I KiI > = Threshold

The critical points were determined by using this method

on the shape (elephant) in Fig. 13. It is apparent that

some critical points were missed. For example the critical

points for the trunk are missing. This procedure is more

immune to the noise than the others; however an equally

critical problem is added. Specifically, a threshold must

be determined a priori. Additionally the method fails

completely on smoothly varying curves such as the cardioid

of Fig. 5.
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II

A procedure that performs well for polygonal shapes

and curves with very few boundary points is called the

Line of Sight method. In this method, if d' denotes the

normal distance of the i th point from a straight line L,

then the i th point on the shape boundary is said to be

critical with respect to the straight line L if

d - d. ) and ( d -d

have opposite sign. The set of critical points found with

respect to the set of tangent lines drawn at all points on

the shape, will then be called the critical points. It is

obvious that for shapes other than polygonal an infinite

number of axes or tangent lines are required. Nonetheless,

the attributes exhibited by this method are very desira-

ble. It is however necessary to reduce the dimensionali-

ty of the problem; this is the subject that is addressed

by the Adaptive Line of Sight method.

ADAPTIVE LINE OF SIGHT METHOD:

In the Adaptive Line of Sight method the critical point

determination is based on a set of coordinate axes that

are dependent on the shape under consideration. As previ-

ously discussed, this will allow critical points to be de-

termined with fewer ambiguities. The Adaptive Line of

Sight method is an approach used to emulate the Line of

Sight method described above without having the burden of
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excessive dimensionality. The procedure is adaptive in the

sense that it adapts to the shape data under considera-

tion.This will become evident in the sequel.

The Adaptive Line of Sight method is a two pass pro-

cess. In the first pass, the shape is divided into a mini-

mum number of segments or parts by an appropriate set of

'critical points'. The members of this segmenting set of

critical points are defined to be those critical points,

such that all boundary points in between any two adjacent

critical points have the following two properties with re-

spect to the straight line L joining critical points:

l)the boundary points are on the same side of a straight

line L joining the adjacent critical points;

2)the points are in line of sight of L.

From the definition of line of sight (Definition II) it

is clear that this means that the boundary curve has a

unique one-to-one projection on L. It should be emphasized

that the minimum number of critical points are obtained

during the first pass. This is done by an exhaustive
I

search process that locates all points such that the above

properties are satisfied. Often the minimum is not uni-

que, in which case, the required set is obtained by sum-

ming all minimum sets.
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In the second pass, the points of maxima - minima and

inflection between every two critical points are detected

using the derivative of the normal distance of the point

from L with respect to the distance along L. A moving av-

erage of these normal distance may be used to eliminate

the effect of noise. The critical points found in pass

one, the segmenting set, and the critical points found in

pass two are defined to be the members of the Fuzzy shape

set with the highest degree of membership. A thorough de-

scription of both the computational and detection aspects

of the Adaptive Line of Sight Algorithm along with a com-

plete flowchart, is given in Appendix A.

The minimal set of critical points obtained by using

the Adaptive Line of Sight on the cardioids of Fig. 4, as

predicted are independent of rotation and are shown in

Fig. 14. Fig. 15 shows a typical non minimal set of crit-

ical points obtained using the Adaptive Line of Sight

method. Part a) of the figure is the complete shape of the

plane, while part b) shows the front part of the plane

after it has been rotated, displaced and reduced in size.

In spite of the total dissimilarity, the critical points

found for both the partial plane shape and the whole plane

shape are quite close as predicted. The clusters of cri-

tial points occur because of the lack of a predefined res-

olution.
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SECTION VI

FEATURE SELECTION & COGNITIVE STEP

The features of a shape are essential to defining the

shape in terms of parameters that can be ultimately used

by machine for decision purposes. However, the manner in

which the feature defining procedure can be selected is

quite variable. Since a dependable feature selection pro-

cedure is fundamental to the shape recognition problem, it

is essential that this aspect of shape recognition be ad-

dressed with specificity. This point is punctuated when it

is realized that, irrespective of the method of defining

and detecting critical points, a cognitive algorithm is

still required which examines in some sense, the critical

points of the shape for the purpose of reaching a decision

about some aspect of the shape. Consider, for example,

the shape shown in Fig. 15-a, a shape such as this swept

wing plane may have thirty to fifty critical points. The

human eye makes numerous measurements, automatically and

sub-consciously, between the feature points and determines

their relationship to one another. The 'most important' of

these measurements combined with the relationship between

them, comprise the decision set. The term " most important

" is difficult to define mathematically, because it is the
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result of training. An unrefined cognitive procedure must

therefore consider the set of all possible measurements

between the critical points. Obviously this is a very

large number of measurements even for numbers as modest as

thirty to fifty. It is well known that observation that

this totality of measurements between critical points is

not essential to the decision process.

It is necessary therefore to determine methods for ac-

quiring the minimal set of measurements or features re-

quired for the decision process. The human, apparently

places heavy weighting on features that are formed by

critical points that are symmetrically opposite about an

axis and features that are extracted from adjacent criti-

cal points concerning the shape. without any prior knowl-

edge a human can find the sets of axes about which some

critical points are symmetrically placed with very little

effort. However, such a task is almost insurmountable

for a machine based algorithm unless it is performed at a

post-cognitive level. In the absence of noise, machine

recognition ( cognitive ) algorithms perform reasonably

well by using only features consisting of adjacent criti-

cal points.

A cognitive algorithm that utilizes measurements such

as these in a continuous sequential manner would be en-
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tirely adequate if the algorithm for detecting critical

points is totally immune to noise, round off, and trunca-

tion errors. For example any extra critical points that

are the result of a burst of noise would prevent any con-

tinuous sequential recognition algorithm from yielding

conclusive results.

One manner by which this problem can be circumvented is

to divide each of the shapes under analysis into subshapes

in terms of their features, and then compare the features

of these subshapes and the manner in which they are relat-

ed to each other. It is recalled from Section III that the

properties of shape space dictate that the measurements

which define a feature must be made from either the cen-

troid of the set of critical points or between the criti-

cal points that form the feature. It is necessary then to

determine, in some manner, the minimum number of critical

points that adequately define a feature. If each feature

were defined in terms of only two critical points, then

all features would be identical since the comparisons are

made with respect to the same shape independent size vari-

able. Therefore, the minimum number of critical points

that can form a distinguishable feature is three, and

these must be adjacent. However unless the relationship

between these three point features with its adjacent fea-
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tures is also, considered any comparison ( cognitive ) al-

gorithm almost always leads to ambiguities. The reason for

this is because the three point feature forms a triangle.

An examination of the shape shown in Fig. 15-a shows that

it contains many similar triangles.

Unfortunately the mathematics required to obtain the

optimal number of critical points that should form a fea-

ture is not yet developed. Therefore, it is necessary to

resort to the psychological aspects of the human recogni-

tion and decision process as well as the practical aspects

such as the implementation and computational requirements.

These criteria lead to the features being selected as fol-

lows:

1) Reconstruct the shape by connecting all the adjacent

points by a straight line. This is called the critical

shape boundary.

2)The feature F. is then formed by including critical
3.

points, Ci and at most three adjacent critical points on

each side of C.. The critical points chosen must be in

line of sight of C. . This means that it must be possible

to draw a straight form Ci  to each of the other critical

points defining the feature without intersecting the crit-

ical shape boundary. The feature obtained by this proce-

dure cannot be defended as optimal in any mathematical
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sense. However, it correlates quite well with those enti-

ties that humans consider features. The features corre-

sponding to critical points C12 and C13 are shown in Fig.

16.

A desirable improvement to the above feature defining

procedure is an algorithm for deciding whether the line

joining C. to another critical point in the feature lies

inside or outside the shape.

The cognitive step requires, as usual a dictionary of

the features of the complete shape against which the par-

tial shapes are to be compared. The partial shape dic-

tionary will henceforth be referred to as the problem

text. One page of the complete shape dictionary is shown

in Table 1. This page contains features twenty-one and

twenty-two of the swept wing plane of Fig. 17. The table

includes, in addition to the feature number, the critical

points of that feature along with their x and y location,

the x and y location of the centroid of all the critical

points contained in the feature, the size of the feature,

the normalized components of the shape vector, and the

normalized angle of the shape vector component.

The normalized shape vector component are defined s.i !aki

where s is obtained by the relationship,

-2 2
Sk! sqrt ((xkl-x) (Yki- Y))/ Z. (6.1)
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where the size variable was chosen to have the form,
n

Zj= z abS ) + abs (6.2)
bs1xki abs (Yk1 Y)i-i

and the subscript is the feature number. The normalized

component of the angle of the shape is obtained in a simi-

lar fashion. These same quantities are obtained to form a

dictionary for the partial shape (problem text). Each

page of both the dictionaries begins with a feature set

that is not a subset of another feature set. This feature

set is defined as the uncovered feature set. The covered

feature sets are arranged in the order of cardinality be-

low the uncovered feature set on each page. The purpose of

this architecture is to simplify the computational re-

quirements for the cognitive step.

In general all the features in the dictionary will not

be contained in the problem text. It is also true that the

problem text contains features that are not present in the

dictionary. This becomes apparent by examining Fig. 9.

Therefore, the fact that a feature is contained in the

problem text, does not imply that the partial shape is not

a part of the complete shape, because it is not necessary

for the partial shape to have fewer points that the whole

shape. Therefore, further examination is required before

a decision regarding the problem text can be made.
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TABLE 1

A PAGE OF THE DICTIONARY SHOWING FEATURES 21-4 22

CRITICAL POINT COORDINATE FEATURE VECTOR

SEQUENCE # X-LOCATION 'f-LOCATION DISTANCE NORM. ANGLE

c V, i Yki ski 'k,i

18 460 330 0.095814 -.0666
19 475 335 0.121843 -.0746
20 475 350 0.111665 -.0538
21 450 350 0.047611 -.0278
22 410 385 0.098166 -.0650
23 385 385 0.145874 -.0964
24 370 345 0.162900 -.0615

FEATURE # k - 21
SIZE - 385.71 ANG MEAN - .6889
CENTROID COORDINATES
I - 432.143 , Y - 354.286

20 475 350 0.2'19780 0. 1884

21 450 350 0.129848 0.0269
22 410 385 0.088005 -0.8084
23 385 385 0.149101 -0. 1748
24 370 345 0.192721 0. 7716

FEATURE # k - 22
SIZE - 266 ANG MEAN - i.4126
CENTROID COORDINATES
X - 418 ,Y - 363
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TABLE 2

A PORTION OF THE PROBLEM TEXT SHOWING FEATURES 12 & 13

CRITICAL POINT COORDINATE FEATURE VECTOR

SEQUENCE X-LOCATION Y-LOCATION DISTANCE NORM. ANGLE

Ci xki Xki Ski ak i

9 2.8429 11.1716 0.096285 -.0644
10 2.9844 11.4543 0.122441 -.0701
11 2.7724 11.6666 0.112214 -.0485
12 2.4187 11.3131 0.047845 -.0258
13 1.3580 11.2429 0.098648 -.0646
14 1.0043 10.8894 0.146590 -.0928
15 1.3575 10.1115 0.163700 -.0513

FEATURE # k = 12

SIZE - 7.6766 , ANG MEAN - 1.38
CENTROID COORDINATES
X - 2.1054 , Y - 11.1213

i,

11 2.7724 11.6666 0.060616 -0.0535
12 2.4187 11.3131 0.037482 0.0308
13 1.3580 11.2429 0.037192 0.0596
14 1.0043 10.8894 0.043854 0.0878
15 1.3575 10.1115 0.037192 0.0463
1 2.6298 8.8382 0.091575 0.1094

FEATURE # k - 13

SIZE - 21.5099 , ANG !E - 0.13964
CENTROID COORDINATES
X 1 1.92349 , Y " 10.3769
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The decision procedure consists of selecting an arbi-

trary word from the problem text dictionary. A problem

text word is of course a feature from the partial shape

under comparison. The shape vector from the problem text

is compared to the shape vector in the dictionary always

starting on page one of the dictionary. The comparison

continues until a match occurs. The next step is to com-

pare the next problem text feature vector in order of ,

cardinality, to the next feature in the dictionary and so

forth. An example of this technique is given by comparing

Tables 1 and 2. In this experiment a feature vector from

the partial shape was selected for comparison. It should

be emphasized that the feature vector is from the problem

text of the partial swept wing aircraft shown in Fig. 16.

The partial shape has been rotated and shifted as well as

scaled to insure that any direct template matching proce-

dure will fail. This also demonstrates that the concaten-

ated feature vector matching procedure described here is

independent of rotation, size and location. Feature vector

twelve ( word ) was arbitrarily selected from the problem

text. By comparing tables 1 and 2 it is apparent that the

word 12 matched feature vector 21 of the dictionary. It

should be noted that this match occurs even though the lo-

cation of the critical points and the centroid of the fea-

ture of the partial shape are different from those same
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quantities for the whole shape because of the rotation and

shift. In this way a correspondence table is then estab-

lished between the critical points of the features in the

dictionary to the critical points of the word in the prob-

lem text The next step is to proceed in sequential order

to the next word in the problem text e.g. word 13 (n+l)

which is sequentially next to word 12 (n) of the problem

text does not match feature vector 22 (m+l) of the dic-

tionary. However since feature vector 22 is on the same

page as feature vector 21 ( m ) of the dictionary word 13

is mismatched to feature 22 because it contains a critical

point which is not contained in word 12. An examination

of tables 1 and 2 indicates that the critical point C1 '

is contained in word 13 but not in word 12.

The mismatched critical point is first compared tc Va

correspondence table. If it is not found in the correspon-

dence table then it is stored in a mismatch table. At any

latter stage a mismatched critical point is erased from

the mismatched table if some word containing the mis-

matched critical point matches some feature of the dic-

tionary.

In general if word n matches feature m then it is ex-

pected that word ( n +1 ) will match feature ( m + 1). If

feature (m+l) is on the same page as feature m then it is
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TABLE 3

REVISED FEATURE VECTOR # 22

CRITICAL POINT COORDINATE FEATURE VECTOR

SEQUENCE # X-LOCATION Y-LOCATION DISTANCE NORM. ANGLE

Ci  Xk,i  Xki Sk,i (k,i

20 475 350 0.275903 0.3374
21 450 350 0.108797 -.4576
22 410 385 0.360555 0.1203

FEATURE # k-22 REVISED TO D
SIZE - 116.667 ANG MEAN - -0.7827
X-CENTROID-445 Y-CENTROID - 361.667

21 450 350 0.360555 0.1203
22 410 385 0.108797 -.4576
23 385 385 0.275903 0.3374

FEATURE # k-22 REVISED TO D
SIZE - 116.667 ANG MEAN - -0.7827
X-CENTROID-415 Y-CENTROID - 373.333

22 410 385 0.263178 0.4869
23 385 385 0.142178 -1.3906
24 370 345 0.334767 0.9037

FEATURE # k-22 REVISED TO D
SIZE - 96.667 ANG MEAN - .06478
X-CENTROID-388 dY-CENTROID - 371.667
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TABLE 4

CRITICAL POINT COORDINATE FEATURE VECTOR

SEQUENCE # X-LOCATION Y-LOCATION DISTANCE NORM. ANGLE

C. X Y s a
_ _ Xk,i k,i k,i k,i

11 2.7724 11.6666 0.296925 0.3375
12 2.4187 11.3131 0.117094 -.4578
13 1.3580 11.2429 0.388017 0.1203

FEATURE # k - 13 REVISED FEATURE TO P = 13,1
SIZE - 2.6183 ANG. MEAN = 0.07666
X-CENTROID = 2.18303 Y-CENTROID - 11.4075

12 2.4187 11.3131 0.388017 0.1203
13 1.3580 11.2429 0.117094 -.4578
14 1.0043 10.8894 0.296925 0.3375

FEATURE # k - 13 REVISED FEATURE TO P - 13,2
SIZE - 2.6182 ANG MEAN = 0.07666
X-CENTROID - 1.5936 Y-CENTROID - 11.1485

13 1.3580 11.2429 0.291751 1.5340
14 1.0043 10.8894 0.157579 -.3433
15 1.3575 10.1115 0.371073 -1.1907

FEATURE # k = 13 REVISED FEATURE TO P - 13,3

SIZE - 1.74413 ANG MEAN - -.19739
X-CENTROID - 1.23993 Y-CENTROID - 10.7479

14 1.0043 10.8894 0.277421 -.1909
15 1.3575 10.1115 0.083901 0.2752
1 2.6298 8.8382 0.354384 -.0843

FEATURE # k - 13 REVISED FEATURE TO P - 13,3
SIZE - 4.14820 ANG MEAN - -.76957
X-CENTROID - 1.6638 Y-CENTROID - 9.9464
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easy to isolate the mismatched point as in the above exam-

ple. If feature m+l is not on the same page as feature m

or the concept of pages is not used then in order to iso-

late the mismatched critical point then the feature m+l

and the word n+l have to be revised into concatened shape

vectors with each subshape vector of three measurements.

A revised feature vector for feature 22 is shown in Table

3. While the revised words for word 13 are shown Table 4.

A comparison of the above two tables again isolates C1 as

the mismatched critical point. It may also be noted from

tables that angle being a multivalued function is an unre-

liable variable for comparison. At the end of this com-

parison process an intelligent machine would compare other

shape parameters like curvature, symmetry etc. It may al-

so try to investigate if the mismatched critical points are

due to noise errors, or due to changes in the shape.
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CONCLUSION

In this paper, it is shown by example that several of the

previously described shape algorithms do not perform well on

arbitrary shapes. While each of the methods exhibit specific

attributes, it is relatively easy to find shapes that render

each of the algorithms useless. This is particularly true

when the shapes under comparison are partial shapes.

In particular an example was presented that demonstrated

that the Fourier Descriptors method is not suitable as a

general method for the recognition of partial shapes. It was

also demonstrated that the peaks obtained by the Local

descriptors are not independent of rotation.

In the process of defining a shape recognition procedure

that would overcome or circumvent the weaknesses of these

algorithms, the basic requirements for the shape recognition

process were stated. A new concept of treating shapes as

vector in shape space was introduced and described. Also two

theorems relating to the process of comparing partial shapes

to the complete shape were stated and proved.

A new proceedure of determining the critical points of a

shape was described. This procedure is named the Adaptive

Line of Sight method. In the Adaptive Line of Sight method ,

the critical point determination is based on a set of

coordinate axes that are dependent on the shape being

examined. Examples were given that demonstrate that the
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procedure produces critical points that are independent of

rotation, size, displacment, and correspond closely to those

produced by normal human cognitive process. The

experimental results indicate that this algorithm , like the

human eye, converges to a minimal set of critical points

called the segmenting set.

The minimal segmenting set found by this method in rare

instances does not coincide with the minimum segmenting set

found visually but the critical points turn out to be the

same. For instance, a shape that is more than a half-circle,

but less than a full circle will lead to ambiguities.

It was demonstrated that measurements between a set of

adjacent critical points that were determined by using this

method can be used to define feature vectors for shapes.

These feature vectors remain the same whether the shape is a

partial shape or a more complex whole shape. Moreover, these

feature vectors are independent of size, rotation and

displacement since they are derived from a set of critical

points that are independent of the same quantities. A

technique for comparing the feature vectors of a set of

shapes is described. The comparison procedure is based on a

syntactic technique which will point out whether the shapes

are the same, whether one shape is part of a more complex

whole shape, or whether the shapes are totally dissimilar.
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FLOWCHART FOR THE ADAPTIVE LINE OF SIGHT ALGORITHM

DO for I - I to N
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FIG 18, FLOWCHART FOR THE ADAPTIVE 1,INF OF SIGHT METHOD.
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Appendix A

Refering to the flow-chart shown in Fig. 18, Side A refers

to the condition when the computations are performed from I

to J modulo the number of points in the shape, while side B

refers to the condition when computations are performed from

J to to I. Forward track or Ftrack denotes to a condition

when I is held constant while J is incremented. Backtrack

or Btrack denotes a condition when J-1 is held constant

while I is decremented.

Initially I and J are always chosen to be adjacent

points,first going in the clockwise direction then in the

clockwise direction The details of the computational block

and the detection block/process are as follows

COMPUTATIONAL BLOCK

Find the equation of the straight line S joining I to J

Find the distance DISTAIJ between points I and J.

Find the equations of the straight lines normal to L and

joining every point P in between I and J.

Find the intersection (XINTSEIJ , YINTSEIJ) of each of

the normal lines found in the above step with the straight

line L

Find the distances DISTXIIJ and DISTYIIJ from point
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I to the intersection and from point J to the intersection,

respectively for every P.

Find the normal distance NDISTAIJ from every P to the

straight line L.

Find the normal vectors from the straight line to every

point P.

DETECTION PROCESS

In this block a detect switch is set indicating that a crit-

ical point has been detected at I and J-l, if at the first

instance, a point is found which is not on the same side of

L as other points, or a point cannot be mapped injectively

on to the straight line L. The former condition is checked

by comparing the magnitude of the sum of every two adjacent

normal vectors with the magnitude of those forming the sumt

a THRESHOLD1, while the latter condition is checked by com-

paring the sum of the distance DISTXIIJ+DISTYIIJ to DISTAIJ

I THRESHOLD2. Where thresholds 1 and 2 are set to account

for round-off, truncation, quantization and other errors.

SWITCH BOARD

This is a control block which forces the computations to oc-

cur in an alternating sequence FORWARD-TRACK -BACK-TRACK

-FORWARD- TRACK .......
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