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ABSTRACT

The basic adaptive filtering algorithm X6 X - EY (YX£ -E n)
n+ n n

is analyzed , via the theory of weak convergence. Apart from some

very special cases, the analysis is hard when done for each fixed

e > 0. But the weak convergence techniques are set up to provide much

information for small c. The relevant facts from the theory are

given. Define xE(.) by x6(t) = X6 on [nE,ne + e). Then weak
n

(distributional) convergence of {xc(.)} and of {x (. + tE)} is

proved under very weak assumptions, where t as c - 0. The

normalized errors n are analyzed, where e is a 'stable'

point for the 'mean' algorithm. We also develop the asymptotic prop-

erties of a projection algorithm, where the X6 are truncated atn

each iteration, if they fall outside of a given set.
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1. Introduction.

. This paper illustrates the power of weak convergence methods

through the analysis of the basic algorithm of adaptive filtering.

(1.1) X6 - Xn - EY (YnXn - in), X'E Rr, Euclidean r-space.n+- n .n n n n n}u

Except for the simplest cases (e.g., when {Y are mutually inde-

pendent), the analysis of-(--±- for fixed 14-- is difficult. However,

asymptotic analysis (F- - 0)via weak convergence methods provides much

information, relatively Ninlessly. Define the interpolated process

xc(.) by a

(1.2) x6(t) Xn on [nc,ne + c).n

Let {t } denote a sequence which goes to - as c 0.

In the next section, we review some definitions and results con-

cerning weak convergence. In Section 3, the weak convergence of

{xc(.)} is studied, and in Section 4, we examine the limit problem

for {xE(t + -)} to get a clearer picture of the asymptotic behavior.

In Section 5, the normalized errors are studied, and a very useful pro-

jection or truncation algorithm is dealt with in Section 7.

- -.-J
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2. Background and Definitions.

Weak Convergence. Weak convergence is an extension of the notion

of convergence in distribution to random variables with values in a

function space. The sequence {xc(.)} of (1.2) can be viewed as a

sequence of random variables with paths in the function space Dr [0,_),

the space of Rrvalued functions on [0,-) which are right continuous

and have left hand limits. As will be seen, this point of view is very

useful in applications. This space is discussed in Billingsley [1] and

Kurtz [2], two excellent references for weak convergence theory.

Under the so called "Skorohod topology" ((11, Section 14), Dr[O,) is

separable and metrizable, and the metric is complete.

The space Dr[0 ,0 ) is useful for two main reasons. First, pro-

cesses with paths in Dr[0,-) arise naturally in applications (e.g.,

the xc() of (1.2)). Second, its' topology is weaker than that of

cr[O,), the space of Rrvalued continuous functions on [0,-), so

that the criteria for compactness are less stringent, and better con-

vergence theorems can be obtained, even if the paths or their limits

lie in Cr[o,_).

For Rrvalued random variables {Xn}, we say that {Xn I converges

weakly (or in distribution) to X iff

(2.1) Ef(X) - Ef(X)

for each bounded, real valued and continuous function f(.). If Xn

and X take values in a metric space, we also say that fXnI converges
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weakly to X and write Xn -X if (2.1) holds. When the random

variables Xn are functions, we write lower case xn(.). Since

f(x()) {x(tl), ... , x(t,)) is a continuous function from CrIo, )
to Rrt, weak convergence xn(;) :,x(.) in Cr[o,_) implies the conver-

gence of multivariate distributions {xn(ti), i < } >{x(ti), i < 0i.

Similarly on Dr[O,), if the limit process x(.) is continuous w.p.l

at tl ,  ... t .

For Rrvalued Xn the Helly-Bray Theorem states the following:

If for each 6 > 0, 3 K6  compact such that P{XnE K6} > 1 - 6 for all

n, then {Xn is said to be tight and it has a subsequence which con-

verges in distribution. The definition of tightness carries over to

metric space valued {X ). Prohorov's Theorem [11 states that tightness
n

of {xn(')I implies that it has a weakly convergent subsequence.

In the sequel, we frequently use the above 'subsequence' result

in the following way. First tightness is proved. Then a weakly con-

vergent subsequence is extracted. The limit of this subsequence is

then characterized as the solution to a specific ODE (ordinary differ-

ential equation) or SDE (It8 equation). It is then shown that the

limit process x(') does not depend on the subsequence. Hence
xn
xn *x(.).

Let {X6 } be defined by Xn+l X +EF where {F Cn >O,n n E,nCn
n < }ol is uniformly integrable, and define xE(.) as in (1.2). Then

{xE(')} is tight in Dr[ 0,-) and all (weak) limit processes have

continuous paths. The assertion follows from ([1], Theorem 15.2).
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Let xn(.) *x(.), where the paths are in Cr[O,) or Dr[O,).

Since we are concerned with weak convergence only, the probability

space is not important, and we can select it in any convenient way,

provided only that the distributions of each xn(.) and of x() does

n'ot change. By a technique known as Skorohod imbedding ([3], Theorem

3.1.1) one can choose the probability space such that xn(.) x(.) w.p.l

,r r
in the topology of the (path) space C or D . This very useful

method will often be used without explicit mention.

The Martingale problem . In this paper, all limits will satisfy

ODE's or SDE's. From the point of view of usefulness in weak conver-

gence analysis, a very nice way of characterizing a limit process x()

is to show that it satisfies a martingale problem (the martingale prob-

lem of Stroock and Varadhan [41). Let C denote the space of real0

valued functions on Rr with compact support and continuous second

partial derivatives.

Define the operator ._V on E2 by
0!

(2.2) .Ygf(x) = fx(x)b(x) + i ja(x)f(x)

where {a (x)} = a(x) = o(x)o'(x) and b() and a(-) are continuous.

Let x(-) be a random process with paths in Dr[O,_). Define

ftyo~) fix(t)!. - fo-f(x(u))du.
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If Mf(') is a martingale for each f(-)EC O , then x(.) is contin-

uous and is said to satisfy tL. martingale problem for operator ..

It can be shown that there is a Wiener process w(.) such that x(.)

satisfies the It6 equation

(2.3) dx = b(x)dt + a(x)dw

Let x(-) be a right continuous process and y a countable set.

A useful method to show that x(.) solves the martingale problem is

"2
to show that for arbitrary fE C0 , arbitrary Z, and arbitrary

t I < ... < t < t < t + s not in _! and arbitrary h(-) bounded

and continuous,

t+s

(2.4) Eth(x(ti), i < )f(x(t + s)) - f(x(t)) - ftJVf(x(u))du]]=O

This implies that x(.) solves the martingale problem for operatorV

and is continuous. The x(.) in this paper will usually be the limit

r
of a sequence in D [0,-) (e.g., of the xc(.) introduced in Section

1), and a-priori we do not know that it is continuous, w.p.l. If it

is not continuous at t i or t or t + s, then we may not be able

to show that (2.4) holds. But there are at most countably many points at which

x(-)EDrO,_) is not continuous w.p.l : this set is _ Henceforth

we conveniently ignore j-.

A truncation device. In order to prove tightness, it is sometimes

useful to work with a truncated process. Referring to (1.2), for each

N, let x" N(.) denote a process which equals xL(') until first
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exit from SN = kx : IxI < N}. For each N, let there be xN(.) such

that xc'N(.) xN(-), where xN(') solves the martingale problem for

an operator Y N  defined by

N f(x) = f (x)bN(x) + N aN.(x)f x ).
xb 2 i(~fXW

i~jlj

Let bN(x) = b(x) and aN(x) = a(x) for xE SN and let the martingale

problem for operator Y have a unique solution. Then x6(.) -x('),

the solution to the martingale problem for operator _/ [5,6].

Let qN(') denote a twice continuously differentiable function

which equals 1 in SN and zero on R r - SN+l. For the system (1.1),

the N-truncation is defined by

(2.5) xN = X,,N _ Ey (YX EN ) N,

n+l n n n n nN(Xn'

xEN(t) = X6 N on [nc,ne + E), XN = X0.

Using these remarks,we will often simply proceed in the analysis as if

{xE(.)} were bounded.

Notation. When no confusion arises, we write t/c for the larg-

est integer i such that i < t/e The symbol En denotes conditioning

on {X0,Yjj < n}.
I0
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3. Weak Convergence of {x'(-)}.

Theorem 1. Let X =>x O. Assume (3.1) and either (3.2i) or

(3.2ii) for some matrix R and vector B, as n - and N -.

(3.1) {Y nYn, Yn n } is uniformly integrable

(3.2i) 1 n4-N IP 1 n+N B
j=n i _

n+N

1n+N ' Y~pj ---+ B

(3.2ii) I- E YY.R,
N=n n 3=n 33

Then x'(-) z'x(.), which satisfies

(3.3) x = -Rx + B, x(O) = xO.

Remark. Under (3.1), (3.2ii) is implied by (3.2i). There are

several approaches to obtaining (3.3), among them being the schemes in

[8]. The method here has the advantage of being easy to generalize.

The conditions are clearly related to those used in [6],[7],[8].

Reference [7] examines a recursive algorithm with 'state dependent'

noise.

Proof. We work with the N-truncation and show xE'N(.) xN(.

where

(3.4) N (-RxN + B)qN(xN), xN (0) = x.
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As noted in section 2, this implies that xc(") *x(.) satisfying (3.3).

We use (3.2ii): under (3.2.1) the proof is similar. Let n satisfy

n and En - 0 as e - 0. Fix N. By the truncation and

(3.1), fY(YX cN -)q N(X'N)}is uniformly integrable, so {x 'N(')}
n n n nN

is tight in Dr[O,o ), and all (weak) limits lie in Cr[o,-). Fix a conver-

gent subsequence (also indexed by e) with limit xN(-). Fix f EC0

and define g(X,Y,) = fx(X)-[-Y(Y'X - f)]qN(X). Henceforth we suppress
the N superscript on x sN~ and .,N
the Nsuperscriptonx (t) and X , but retain it for the limit

xN(.) Define the piecewise constant function gE(.) by

in +n -lE E
(t) = - g(X,Y, ) on [t6I ,Z6 + 6

gj=zn in C E E

Fix k, ti < t.< t + s, i < k, and let h(.) be bounded and continuous.
1

There are Ai such that IAI - 0 as e - 0 and

(t+s)/e
(3.5) Eh(xE(ti),i < X)[f(x5 (t + s)) - f(x5 (t)) - E I g(X ,Yjij)]=Ar

j~t/:

Also, by the properties of conditional expectations, since ti < t,

(3.6) Eh(x5 (ti),i < z)[f(x5 (t + s))-f(xE(t))-6t+ /  g:(z65)] =

(3.7) Eh(xE(ti),i < z)cf(xE(t + s)) - f(xE(t)) - g5(u)du] = A3.ft 3

Below, it will be shown that

(3.8) gC(v) + fx(xN(v)[-RxN(v) + B~q (xN(v)), each v, as c * 0.
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Assume (3.8) for the moment. By the weak convergence and Skorohod im-

bedding, i(t,  , x (t + s)} - {N(ti) i N Z, xN(t),

xN~t + s)} w.p.l. Using this, (3.8) and the fact that sup Elg (v)l<
S,V <t

and taking limits in (3.7) yields

N N N
(3.9) Eh(xN(ti), i < Z)[f(x (t + s)) - f(xN(t)) -

rt+s '

du f x(XN(u))[-RxN(u) + B]qN(xN(u))] 
= 0.

Eqn. (3.9) and the arbitrariness of f(.), h(.),Z,tit and t + s,

imply that xN(-) solves the martingale problem for the operator YN

defined by

Nf(x) = fx(x)[-Rx + BiqN(x)-

Thus (3.4) holds, and we need only prove (3.8).

Fix v and let X- v as c .- O. Define m = 2'n . By the

weak convergence and Skorohod imbedding x6(.) , N (.), a continuous

process. Thus X - xN (v) uniformly for jE [Z n , n + n ) as

e -) 0. Thus, by the continuity of fx(-) and qN(.) and (3.1),

m +n -l

lim gE(v) = limW T E f-'(X )[-Y.(Y--0 C--0 n j=m m x J qN(X6)

m +n -1

(3.10) = lim - I Em fx ( [ -Y(Y)X
-0 nc j=mC S xmC m j N(XM )

m +n -1
N N 1 E

q(x (v))fx(x .-0 n Em [-YC(Y - wj)],0€j~m

S1



where all limits are in probability. Finally, by (3.2ii) and the weak

convergence, the last line of (3.10) yields (3.8).

Q.E.D.
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4. Limits as e - 0 and En

Since the system (1.1) is usually in operation for a long time,

the behavior as E - 0 and En - simultaneously is of considerable

interest. Define RE(-) = xe(tE + .), where tE - - as c - 0. Weak

convergence alone does not imply that Re(.) - stationary solution to

(3.3). For example, define yE(t) = max[O, t - I/e]. Then y'(-) - zero

function, but lim ye(t) for each e. However, under slightly
t

stronger conditions than used in the last section,we do get the desired

limit as C - 0, tE  - O. First, we prove Theorem 2, and then a criter-

ion for the tightness will be given. If R > 0, define 0 = R- B.

Theorem 2. Let {X , c > 0, j < -} be tight in Rr, and assume

(3.1) and either (3.2i or ii). Then { e(.)} is tight and all weak

limits satisfy (3.3). If R > 0, then the weak limit is the constant

function with value o, the stationary solution.

Proof outline. The first assertion follows from the proof of

Theorem 1. We need only characterize the limit process when R > 0.

To do this, we exploit the stability of (3.3). For any T < -, take a

weakly convergent subsequence of the pair {R(.), • - T)}, with

limit (x(.),XT(.)). We have x(O) = xT(T). The set of possible

{XT(O)} is tight (over all T and convergent subsequences), since

{X ,e > Oj < -} is. Thus, the conclusion is implied by the arbitrari-

ness of T and the representation

T(T) x(O) (exp - RT)xT(O) + O(exp - R(T - t))Bdt

(exp - RT)xT(O) + 0 - T(exp -Rt)Bdt.

M4
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The next proof illustrates the use of the 'perturbed Liapunov

function' method (6],[g],[IV]. It exploits the stability of (3.3) to

obtain tightness of the iterates and of the sequence of normalized

errors.

Theorem 3. Let R > 0 and let {Yj,4pj} be bounded. Suppose

that

SJEnYjY - RI, Z IEnYj~j - BIj=, n n

is bounded, uniformly in n and let {X6} be tight. Then there are

N < - such that£

(4.1) {X , e small, j < c} is tight

(4.2) {(X - Wv//, c small, j N} is tight.

(If (X -6) = 0(V-), we can set N = 0).

Proof. Recall that 0 = R-IB and define 6n = XE . Thenn n

(4.3) 6+ 6 C(YnYn - R)6n - R6c + E(Ynon -Y e).

Henceforth, suppress the e superscript on 6c and suppose without

n

loss of generality that {X6} is uniformly bounded. Define V(6) = 6 6

and define the function WE (n) by

W' (n) = n  n En(YjY - R)6 n  
2 S

• n n j n(Y.~ -
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The K below are real numbers which do not depend on E and whose

values might change from usage to usage. Define the perturbed Liapunov

function V6(n) = V(6n) - WE(n).

We have

IWE(n)I < KE[l + V(6~)

(4.4)E
IW£(n)f < KEel + IV (n)lJ.

Also

EnV( 6n+i) -(n=-F-nR

-2-6 nE n(V ny - R)6 n+ 2E6 nE n(Y On - n V n )

+ O( )(1 + I6nI 2)

EnWE(n + 1) - WE(n) = -2e6 nE n(V nV - R)6n

+ 2c6En(V~ - y n yn e) + 0((lE n+ II

Thus there is a X > 0 such that for small E > 0,

E CVF£(n +41) - V£(n)= 2-6'R6~ + O(e 2)(1 + 161 21

< -E~xv'(n) + O(e2)

which implies that

EVE(n) < (1 - ex )n EVE(0) + 0(E)

(4.5)
EV(6 n) < K(l _ ,~)n EV(6 0) + 0(c).

The theorem follows from (4.5). Q.E.D.
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5. Local Behavior Near 8.

Under the conditions of Theorem 3, TIij EIX 6.12 0(c). In
n

fact, we can do much better. Define U' = (X - O)//i . Using anyn n
N satisfying the needs of Theorem 3, define uc(.) by ue(O) = UN

C N

and u£(t) =U on [je,jE + e). Let t - as c - 0 and setN~ +j F

C

a certain Gaussian diffusion. The properties of this diffusion are

quite helpful for our understanding of the effects of the noise and

stability properties on the algorithm.

Theorem 4. Define &n = (Ynn - Yn Vn), and let

n+t/E(5.1) wC() M
n j=n

converge weakly to a (possibly non-standard) Wiener process w(') with

covariance It, as c - 0 and n * . Assume (3.2i

or ii) and the conditions of Theorem 3. Then is tight and each

subsequence of {uE(.)} (resp., {uE(.)}) contains a further subsequence

which converges to a solution to (5.2) (resp., to the stationary solution

to (5.2)). If, {UE} is tight, then we can use N, = 0 and the asser-
0C

tion concerning convergence of {uc(')} remains valid if the conditions

of Theorem 3 are replaced by (3.1).

(5.2) du = -Rudt + Bdt + dw
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Remark. Assuming the weak convergence (5.1) is much more conven-

ient than stating conditions which guarantee it, since such convergence

is the subject of a large literature. See, e.g., (1].

Proof. The proof is basically a modification of that of Theorem

1. We have

I.E
c

(5.3) Un~ Un  .YYU
nl n nn

The tightness of {UN} follows from Theorem 3. For notational simpli-
NC

city, set N = 0. To prove the theorem properly, we should use the
E

N-truncation u'() of uS( -) which is defined by
CN .F,N F ,N .E,N

UI Un - EY Y'Un'Nq (un) + Vn. and then show that
n n n n N n n

uN(') u(.), where uN(.) satisfies duN N -RuNqN(u N)dt + Bdt + dw,

and then let N to obtain (5.2). But, in order to save notation

and a few details, we ignore the truncation, and simply suppose that

the {Un} are boundedt. By this boundedness and the uniform integra-

bility of {Yn Y n and the convergence Wc(.) * w(.), we have

t/e
that {e I YjY.U.} and {Wc(-)} are tight and that all limits have

0

continuous paths. Thus {uc(.)} is tight, and all limits have con-

tinuous paths.

t Actually, the {UI N } are not bounded, but for each T < - we have

lim T"hi P{ supId!NI > K} = 0. This and the cited uniform integrability

K- E jc<TJ -

and convergence of Wn(.) to w(.) are enough to get tightness of

{uL'N(.)}, with all limits being in Cr10,).
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Define the functions g6(t) and Gc(t) by

in +n -1
1 C

gE(t) = n Emn(-YYju +Y on (6 U6 + 69,
nC in inE J ?

t

GC(t) f gC(u)du.

First, we work with {uE(.)}.

We have

t/-l
(5.4) uE(t) - u:(O) = Gc(t) + WE(t) + [ = I (-Y Y'UJ + Y G:(t)].

The process in the bracket in (5.4) is tight and converges weakly

to the zero process, as t =. This can be shown by a slight modifi-

cation of the method of Theorem 1. The sequence {uF(',Wo(.)} is

tight. Extract a weakly convergent subsequence with limit (u(-),w(.)),

and indexed also by E. By the method of Theorem 1, G:(t) * ft(-Ru(s)+B)ds
I0

for each t.

The limits of the different convergent subsequences differ only

in the initial condition u(O). The argument for {u'(.)} is the

same as that for {uE(.)}, except for the stationarity part. But this

part follows from an argument like that used in Theorem 2. The last

assertion follows from the previous ones, since if {UE} is tight,

we do not need to prove the existence of N < -, and so the bounded-
C

ness of {YnYn, Y non } can be replaced by (3.1) and a truncation argument,

when working with {uC(.)}. Q.E.D.
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6. Tracking Parameter Variations.

If the statistics of Y,% change with time and their "rate of

change' is commensurate with E, then Theorem 1 can be extended. Let

there be continuous R(.) and B(.) such that for each t, (3.2)

holds if ne - t and R(t) and B(t), replace R and B, resp. Then,

under (3.1) Theorem 1 continues to hold.

7. A Projection or Truncation Algorithm.

In practical problems, the iterates {Xc are usually prevented
n

from becoming too large by using a projection or truncation, and we now

treat a simple case. Define the box H = {x :xil < k, i < r}. Let

* HH(x) denote the closest point in H to x, and let 7(x,h) denote

the projection onto H defined by

Tr(x,h) = lim[TrH(x + Ah) - x]/A.

Thus Tr(x,h) = h if x is interior to H, or if h points 'inside'

when xE 3H, the boundary of H. We treat the algorithm

(7.1) Xe = 11  ' - E = X EH.• n+l H[Xn - Yn(YnXn - n)l, XO 0 oH

Define 6x = x -9= x - R(1B, and write F(x) = E(Y - . if

{Yn Sn is stationary and R > 0, F(x) is strictly convex. The con-

straints that define the box H can be written as qi(x) < 0,

i = 1, ,.. ,2r, where the qi(x) are of the form xi - k and

-k - xi A point xEH is said to be a Kuhn-Tucker point iff there



-18-

are > 0 such that

Fx(x) + iEx) xiq 1,(X) = 0

where A(x) denotes the set of constraints which are active at x.

In the present case, x being a Kuhn-Tucker point is necessary and

sufficient for its minimizing F(.) on H.

Theorem 5. Assume (3.1) and either (3.2i) or (3.2ii). Then

xc(") -* x('), where

(7.2) x = f(x, -Rx + B), x0  x(O),

or, equivalently,

(7.3) 6k = i(x, -R6x).

Let R > 0 and let {Yn be stationary, and define xE(-) as in

Theorem 2, then xe(.) - stationary solution to (7.3), which is a con-

stant solution and a Kuhn-Tucker point for the problem of minimizing

F(x) subject to xEH.

Proof. Rewrite (7.1) in the form

XE = Xe EY (YnXn n) + ZnE
nil n n n n E

where

n H[Xn- £Yn(YnX-n)- n- CYn -n nn n
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Thus {zC, c > 0, n < -} is uniformly integrable. Using the notation ofn
Theorem 1, define the functions zc(.) and ZE(") by

En +n -1 E E

zE(t) n I En n)z on W +

ZE(t) = z£(u)du.
0

Define gE(-) and GE(.) as in Theorem 1. Since {XE} is bounded by
n

the projection, no N-truncation is needed. By (3.1), {xE(.),ZE(.)} is

tight and all limits are continuous. Also, the limits of {ZE(.)} are

all absolutely continuous because of the uniform integrability of {Zn.n
Choose a weakly convergent subsequence indexed by E and with limitt
(x(.),Z(-)). Define z(.) by Z(t) = f z(u)du. By the method of

Theorem 1

t +[
x(t) x(O) + (-Rx(u) + B)du + z(u)du.

fo JO
Note that zE = 0 if X6 is interior to H. Also, if

n n+l

Xn E H, then zn is a non-negative linear combination of the inward

normals to the 'active surfaces' at x = X n+l' This implies the following

for almost all t. If x(t) is interior to H, then z(t) = 0. If

x(t)E3H, then z(t) is a non-negative linear combination of the inward

normals to the 'active surfaces' at x = x(t). From this and the geometry

of H, we conclude that x(.) satisfies (7.2) or (7.3).

We now discuss the stability of (7.3). Let R > 0 and define

V(x) = Sx'R6x. Then V(6x) 26 x 'Ri(x,-R6x). If v(-) is continuous,

then the function K(v(x)) = v(x)'7(x,v(x))

- - - -- -- -- ..... .. ..
/
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is non-positive and upper semicontinuous in v. It is zero only at

those x where Tr(x,v(x)) = 0. Thus 6x(t) converges to the

point 6x where 7(x,-R~x) 0. This 6x is a Kuhn-Tucker point

since either (a): x is interior to H, in which case 6x = 0 and

R6x = 0, or (b): xE 3H, in which case R6x must be a non-negative

linear combination of the inward normals of the constraints which are

active at x. From this point on, the proof of the convergence of

{x(')) to the stationary solution (the Kuhn-Tucker point) is essen-

tially the same as the convergence proof for {xE(.)} in Theorem 2

and is omitted. Q.E.D.

i~
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