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1. ?[ntrdduction /Qﬁ' y A

S——— : .
: >!l'he axisymmetric jet exhausting to .sonic pressure is con- -

sidered; for simplicity, under the assumptions of transonic small
disturbance theory. )
It is Shown that the jet reaches its final state at a finite

distance from the orifice. This result for the axisymmetric Jet is
a .

thus the same as that for ﬂ;\e two-dimensional jet,jshown in Ref. 1
p. 136 ff. .

. R
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<5 Part of the argument used to show that the jet reaches its
asycptotic state ;i.s local in the hodograph. ‘&W*_t__he result should
also appi;lr to a gas dynamic flow without the restr;.ction of small
disturbance theory. In the neighborhood of its final state disturb-

ances from pairallel sonic flow are in fact small.

2. Pasic Equations end Boundary Value Problem “

- The transonic small disturbance equation for the potential cen

be ottained by an expansion of the following form
0=afx+ BGx or) + oo} (2.1)

wvhere a" = critical speed (flow speed for Mach mumber one)

8 = flow deflection angle on walls of jJet (see Fig. 2.1).
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Figure 2.1. P.hys‘ical Plane

* ' The characteristic length (= 1) 'is the radius of the jet at
its exit

x = transonic coordinate = Y = gas constant.

The resulting familiar transonic small disturbance equation is

+ 3 . (2.2)

wx* ¢x*x* = q’rr r ¢1‘

The boundary conditions, applied as an approximetion on r =1, are

tangent flow 'qar(x*,l) =l L -m<x <0

sonic pressure q;x*(x*,l) =0 0 <x*<ewo .~

The linearized epproximetion to stagnation at upsti-ea.m infinity has

P 4 - .
x - . :
Note that the pressure coefficient (p = pressure, p* = critical

pressure, p* = critical density)

» 2/3
P-P )
e, = 2 - -2 ——__] 7- . (2.3
» p* 'Y /2 ('f'l- 1) 3 an )

Ve “oa L
I 5. b ¥

ST . N
: G Ot o0 A
. , " aore 1 ‘.' b EREL TSN | .
CN. .. § . o~ Lk SR

B e e o tomstts AN

S




’

-3~

- 3. Hodogravh Eauations and Problem

The structure of the flow can be seen better in the hodograph.
In order to ocbtain a simple form some new variables are defined.

Let

r

"’"‘Px*: =9 - ' (3'1).

' Then, the basic equation (2.2) is equivalent to

w?rx* =9, +y  continuity

(3.2)
W, = :’x* irrotationality
or if v =1xo ',‘?
rwwx* =V, .
. (3.3)
rwr = Vx*
and finelly let R = r/2 so that
wW % = VR
x
: -(3.4)
ZRWR = vx* .
The transformation to the hodograph is carried ocut by
1
: N (3.5)
1l * ) .=
wR---ixv, vn'jxv'
Thus -
*
va -x, .
. ' (3.6)
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‘.. The basic eguation for R(w,v), an approximate Stoke's stream

e i i

function, is i
R .
v . .
2RR, - R+ 5 =0. _ (3.7)
* -
Once R(w,v) is known x can be celculated from (2.6).
Although the hodograph equation is also non-lirear this represen-
tation has the advantage that the final state (w =v=0) is loca_.{:ed
et e point. A Picture of the hcdograph with bounsary conditions and a

sketch of the arrroximate streamlires apgears in Fig. 3.1.
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" Figure 3.1. Ecdograrh

The origin, representing the firal state, is a singular point
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* &, _Jocal Similarity Solution j
In the neighborhood of the origin of (w,v) plane we can expect

a local similarity solution. It is clear from the boundary conditions
that the local solution is hamogeneocus of degree zero and thus has
the form

| Rw,v) =R(n) , n=—Ygpm. - (k)

o (3v/2)%/°

The similarity coordinates n = const. and the boundary conditions

are 1llustrated in Fig. b.1.
. v

F =0 |
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X
&
«\'? ) F=2
) ¢ T2

o
)
&

Figure 4.1l. local Hodograph

The equation for R(w,v) (3.7) becomes

3 a°r 2 _4F A, \d
R b ARLIES S aulil

| =<7<0 (4.2)
Ke)=0, FO0O)=12. ‘
Equation (%.2) has the usual group property of transonic small disturb-
ance equations and is invariant if

n - an

3, (5.3)

F=a




. :
. Thus for each solution ¢ }
F = 1f(n)
. | .
. 2 one yarameter family
' F= ;3 1(an) (k.%)
] ‘ is :I'.‘ound. Thls group property allows the reduction of (h.2) toa
toe : -:rirs t-oxrder differen"ial equation ina suitable phese plane. Iet
s = ;131‘ ‘ .
. . : - (&.5)
= b ar
n d1
Then . )
) 4n _ __ds .
e e )

provides amappix;g froz 2 path ir (t,s) to 1 and (L.2) becomes

a~ .t -Lks -t ,
5 (225-j(: ¥ 35) - (87)

In the deain of interest s5<0 and t2 0. A skeatck of tfe possible

- paths sppeers in Figuve 4.2

—
t. dq >0
4
t=-
..exceptional
'path
) .s.' 4
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. 't
" The exceptional path has ¢t =+ ~ g 5§ 88 8- -» and

' k
F(n) =Cn—)3—/5+ Sy ) (4.8)

Only along this path is the boundary condition R -0 as g - -
satisfied. This solution corresponds to va = 0, This path runs -

‘into the origin with t << |s|f Near the origin (h..’() is approximately

a bt
ds 3 s
so that
and

. . . l ) l : .
3{ - } = c, 1 (k.9)
(1/2)¥3 " #31 ~ 70
shcwiﬁg that the 'bounda.ry condition can be satisfied.

Now returning to (4.8) we note
340 .
R(w,v? =k_ (-w)3 5t oo (4.10)
and

* 3 1 ’ .
xwava=+2k~(-w)12+--- on q=-=, v=0. (k.11)

Thus integz;ation of (4.11) shows ‘that x approaches a finite value
as w-0- glong v = 0. The result can be checked more generally
g s:lnce' . _ .

X = vl/3 G(q) +x: .
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| The actual calculation of x, = x"(0,0) demands a mmerical
computatioﬁ, for example, of equation (3.7) for R and the use of
(3.6) for X . The use of the local similarity solution (k.1) is
helpful for these calculations. The calculations would yield the. .

shape of the Jet and the efflux.
As remarked earlier the result here is not restricted to smell-

distur‘bance flow but also applies to the full potential eguation for
_which the flow should also- a.pproach the uniform sonic state et s
finite distence fram the orifice. Since ..xe - is fixed, the actual

length x, from the orifice scales as (y.+ 1)1/3
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