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NOTE ON THE AXISYMTRIC SONIC JET

JULIAN D. COLE ELECT .

1., Introduction

-- The axisymmetric Jet exhausting to sonic pressure is con-

sidered, for simplicity, under the assumptions of transonic small

0disturbance theory.

It is shown that the jet reaches its final state at a finite

distance from the orifice. This result for the axisymizetric jet is

thus the same as that for the two-dimensional jet shown in Ref. 1

p. 136 ff.

C) Part of the argunent used to show that the jet reaches its

asynptotic state is local in the hodograph. 2i* the result should

also apply to a gas dynamic flow without the restriction of small

disturbance theory. In the neighborhood of its final state disturb-

ances from parallel sonic flow are in fact small.

2. Basic Ecuations and Boundary Value Problem

The transonic small disturbance equation for the potential can

be obtained by an expansion of the following form

0 . a*Ex + 8 q(x*,r) + ... ] (2.1) <

LSJ where a' - critical speed (flow speed for Mach number one)

LAv 8- flow deflection angle on walls of jet (see Fig. 2.1).
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Figure 2.1. Physical Plane

The characteristic length (= 1) *is the radius of the Jet at

its exit

* xx = transonic coordinate =81/3 )1/ + Y = gas constant.

The resulting familiar transonic small disturbance equation is

x * q). + 1 4P (2.2)

The boundary conditions, applied as an approximation on r = 1, are

tangent flow (*1) '-1 -..- < x* < 0

sonic pressure 9x*(x*,l) =.0 0 < x* < -

The linearized approximation to stagnation at Upstream infinity has

Note that the pressure coefficient (p - pressure, p * critical

pressure, p - critical density)

82/3

I -2 (2rV'3)

P, ~/ * •*1 1)1/3 )
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3- o Lo Ecuations and Problem

The structure of the flow can be seen better in the hodograph.

In order to obtain a .simple form some new variables are defined.

Let

Then., the basic equation (2.2) is equivalent to

WW = +:a continuity

x } (3.2)

or if V =r "
\V

rwr Vx*}

and finally let R = r 2/2 so that

,2L R =I . ..

The transformation to the hodograph is carried out by

1 V m-R

(3.5)

R xv

Thus

yR UXV
(3.6)

= 2wx~|



The basic equation for IR(W.Nv), an approximate Stokets stream

function is

Once E(w,V) is known X* can be calculated from (3.6).

Although the hodograph equation is also non-linear this represen-.

tation has the advantage that the final state (w = v = 0) is located

ata point. A .picture* of the bcdograph with boundaary Conditions and a

sk-etch of the avoroxcimate streamlines appears in Fig. 3.1.

v

Subsonic superSOMIC

iccal solticr.

R~ ~ ~ =-1s4

-R x*=

Figure 3.1. Ecdograph 4

The origin, representing the final state, is a singular Point

into which all. streamlines flow. - -'F.k1or
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ii. Lcal Biznarit y:olution

In the neighborhood of the origin of (wvV) plane we can expect

a local similarity solution. It is clear from the boundary conditions

that the local solution is hoogeneous of degree zero and thus has

the form

R(u.,V)= q)R~w,, - ,< , =(3v/2)2/3

The similarity coordinates = const. and the boundary conditions

are Illustrated in Fig. 4.1.

F MW-, , pl

1 11

Figure 4.1. Local Hodograph

The equation for R(w,v) (3-7) becom~es

I~JI

--3 + 2q - + -o
c- 2 < F < 0 (4.2)

Equation (4.2) bas the usual group property of transonic s=11 disturb- l

2r

ance equations and is Invariant if

(d) all

7 -37
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Then

provides a xaoing fr~a path in (t, s) to il and (4.2) beco~.es

s a (2s- 1)(t +3s7

In the dcr-Ain of itterest x < 0 a-nd t > 0.A sketc oft0 psi

va.ths appears in Figure 11.2

exceptional

1p_______________

Figure 4.2. Phase Plane
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The exceptional path has t a as a -4- and
2
k= + "'" 

(4.8)
(-,3/2

Only along this path is the boundary condition R - 0 as il --

satisfied. This solution corresponds to RVV 0. This path runs

into the origin with t << I sj. Near the origin (4-7) is approximately

dt 4 t

ds 3 s

so that
i ~ ~t=c.0 s /

anid

3 3= co .

showing that the boundary condition can be satisfied.

Now returning to (4.8) we note

, 1- 2 + .-. (1.1)

and

wR + ko qV 0 (4.11)

Tbus integration of (4.11) shows that x approaches a finite value

as w -* 0- along v = 0. The result can be checked more generally

since

' *-/ 3 G('e
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The actual calculation of xe = x (0,0) demands a numerical

computation, for example, of equation (3-7) for R and the use of

(3.6) for x*. The use of the local similarity solution (i.l) is

.helpful for these calculations. The calculations vould yield the.

shape of the Set and the efflux.

As remarked earlier the result here is not restricted to small-

disturbance flow but also applies to the fall potential equation for

which the flow should also approach the uniform sonic state at a

finite distance from the orifice. Since .x* - is fixed, the actual" !e

length xe  from the orifice scales as (.+ 1)13

This research was carried out with the support of AFOSR under

Grant 82-015S.
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