
AD At29 209 ASYMPTOTIC BEHAVIOR OF STOCHASTIC APPROX IMATION AND
LARGE DEVIATIONS..U) BROWN UNIV PROVIDENCE R
LEFSCHETZ CENTER FOR DYNAMICAL SYSTE. H d KUSHNER

UNCLASSIFIED JAN 63 LCOS-83- AFOSR-TR-83-0483 F 12/ .2 N

Ehhhhhhhhhhhhmml
EhEEE~hIN



i.O !in28 ____

1.JI25 LA

MICROCOPY RESOLUTION TEST CHART
N~ATIONAL BUREAU OF OFANODARDS 1 963 A



AFOSR-TR. 83- 0483

0

0
00

Lefschetz Center for Dynamical Systems
DTrELEcr~.-JUN 1 ~ t9

APprOved for pubi
W distributiofl



ASYMPTOTIC BEHAVIOR OF STOCHASTIC APPROXIMATION

and LARGE DEVIATIONS

by

Harold J. Kushner

January 1983 LCDS #83-1

DTIC
ELECTE
JUN 1 3 1983

A

AROTIEO FICE 0 ci I I !.*" )

This terc.!.r

appro.,"cl
Dtstr' * ..

Chief, Techical Informatiov DivisiOn



1JNC LA3SIF IED
SECURTY CLASSIFICATION OF THIS PAGE (R3,en Dt~e Fn~erred)

REPORT DOCUMENTATION PAGE READR INSTRUTIN OR

I F S-R 8~5R 3UBE - 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

T- 7TI LE (end Suhflt) S YEO EOT&PRO OEE

ASYNiPTOTIC BEHAVIOR OF STOCHASTIC APPROXI:-ATION TECH1NICAL
AND LARGE DEVIATIONS

6. PERFORMING O-4G. REPORT NUMBER

_________________________________________ CDS Report #83-1
7 AU'HOR(s) 6. CONTRACT OR GRANT NUMBER(s)

Harold J. Kushner ALFOSR-81-0116

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJEC T, TASK
Lefschetz Center for Dynamical'Systems, Division AREA 6 OR1N UNIT NUMBERS

of Applied Mathematics, Brown University, PE6llO2F; 2304/A4

Providence RI 02912

11I. CONTROLLING OFvICE NAME AND ADDRESS 12. REPORT DATE

Mathematical & Information Sciences Directorate JAN 83
Air Force Office of Scientific Research 13 NUMBER OF PAGES

Bolling AFB DC 20332 27

IA. MONITORING AGENCY NAME & ADDRESS(i1 different fromt Controlling Office) 1S. SECURITY CLASS. ( ,f th,s report)

UNCLASSIFIED
1Sa. DECL ASSI FI CATION DOWNORADIN5

SCHEDULE-

16. DISTRIBUJTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different frotm Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary and identify by block number)

20 ABSTRACT (Continue oan reverse aide If necessary and identity by block number)

SEE REVERSE

DD JAN73, 1473 EDITION OF INOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE f%14ien Data Entered)



-UNCLASSIFIED
SECURITY SLASSIFICA7104 OF THIS PAGE(Whanw Dae Entered)

[IE #20, CONTINUED:

The theory of large deviations is applied to the s--.dy of the asymptotic

prop- rtl.es of the stochastic approximation algorithms (1.1) and (1.2). The

r.~thod r vi~es a useful alternative to the currently used technique of obtaining

rate of converzence results by studying the sequence {'(X -)V~(o 11)
n n

where ": is a 'stable' point of the algorithm. Let G be a bounded neighborhood

of ., vnich is in the domain of attraction of -, or the 'limit ODE'. The process

x ( is defined as a 'natural interpolation' of {X. ,j 5 n, with xrl(0) = X
- n

and interroolation intervals a.,5j > n'!. Define Tn G inkt:xn(t)EG}-. Then it

is scn(an- ng other things) that P x ' < T} exp-n qV, where q depends on

(a ,c ~,and V depends on the b(-),cov ,and G. Such estimates imply
n n ns

that The asymp-ntotic behavior is much better than suggested by the 'Local lineari-

zaticin methods' , and they yield much new insight into the asymptotic behavior.

The tec'nii- e is applicable to related problems in the asymptotic analysis of

recursive algorithms, and requires weaker conditions on the dynamics than do the

'linearization methods'. The necessary basic background is provided and the

optim al control problems associated with getting the V above are derived.

U14CLASSIFIED
SECURITY CLASSIFICAT1OW 001 -' PAE'$"' Pere F...



ASYMPTOTIC BEHAVIOR OF STOCHASTIC APPROXIMATION

and LARGE DEVIATIONS t

by

Harold 3. Kushner

Divisions of Applied Mathematics and Engineering

Lefschetz Center for Dynamical Systems

Brown University

Providence, Rhode Island 02912

January 1983

+ Work supported in part by the Air Force Office of Scient if ic Reseairch 1tinder
AFOSR 81-0116, by the National Science Foundation under NSF-Eng. 77-12946-03
and in part by the Office of Naval Research tinder N00014-76-C-0279-1P6.



Abstract

The theory of large deviations is applied to the study of the asymptotic

properties of the stochastic approximation algorithms.(l.l) and (1.2). The

method provides a useful alternative to the currently used technique of obtaining

rate of convergence results by studying the sequence {(X - )/ya_- (for (1.1)),
n n

where e is a 'stable' point of the algorithm. Let G be a bounded neighborhood

of 6, which is in the domain of attraction of for the 'limit ODE'. The process

x n() is defined as a 'natural interpolation' of {X. ,j > n) with xn(o) = X ,

and interpolation intervals {a.,j>n}. Define Tn = min{t:xn(t) G}. Then it

is shown (among other things) that P ,n < T} - exp-nqV, where q depends on
x G-

{ancn}, and V depends on the b(.),cov r'n' and G. Such estimates imply

that the asymptotic behavior is much better than suggested by the 'local lineari-

zation methods', and they yield much new insight into the asymptotic behavior.

The technique is applicable to related problems in the asymptotic analysis of

recursive algorithms, and requires weaker conditions on the dynamics than do the

'linearization methods'. The necessary basic background is provided and the

optimal control problems associated with getting the V above are derived.
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1. Introduction

The paper deals with a useful and heretofore unexploited approach to

the asymptotic behavior of stochastic approximation (SA) like algorithms of

the form

(1 Xn+l X + a nb(X ) + a n n  a = (n+l) -(iinX~ n nn n'

or of the 'Kiefer-Wolfowitz' form

(1.2) X n+I  Xn + anb(X n ) + ann/cn a n (n+l) Cn = (n+l) Xn C R r,

where 0 < < 1 and 0 < Y < P/2. To avoid excess notation, let { }-- n

be mutually independent and identically distributed. The noise sequence {in}

is mean zero and Gaussian, with covariance matrix R > 0. As seen below, it

is hard to do some of the required calculations in the non-Gaussian case,

although the bAsic theory is much more widely applicable. Despite the restric-

tion to the Gaussian case, the results shed considerable new light on the

asymptotic behavior. One would expect that the order of the obtained estimates

would hold under much weaker conditions. Of particular interest are estimates

(as a function of n) of the probability that the 'tail' of the SA sequence

{X ,j > n} escapes from a neighborhood of a 'stable' point of the algorithm.

By a 'stable point' we mean a point U at which = h(x) is asymptotically

stable. Under our conditions, if X is in a small neighborhood of 0n
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often enough, then it converges to e w.p.l. We are not interested in the

w.p.l. convergence, only in the 'rate of convergence' or in the behavior of

{X } in a neighborhood of 9 So we simply assume that X n- 11 w.p.l.nn

The estimates in the sequel imply that the asymptotic behavior is much better

than one would expect from using the usual limit theory, which is based on

the asymptotic normality of the sequence of suitably normalized errors (say

of (Xn-e n //) for (1.1). The classical theory is much more 'local' about

e, and does not exploit as fully as possible the stabilizing properties of

the ODE c = b(x) in a neighborhood of a.

An additional advantage of our approach is that b(-) is not required to

have continuous derivatives, as the classical theory requires. It need only

be Lipschitz continuous. Thus one can treat problems where (e.g.) b(') is

obtained from a min-max operation, or where (scalar case) the slope of

b(.) is discontinuous at 8. E.g. b(x) = -kl(x-6) for x > u and

b(x) - -k2 (x-e) for x < e, where kI  , and ki > 0.

Results of simulations support the idea that the iterates spend

(asymptotically) almost all the time on the part with the smaller slope,

and this behavior is implied by ;ur results. Also, simple constraints can

readily be handled. For example let {X I be confined to la,b], wheren

-- < a< b<-, and b(x) > 0 on ka,bI. Then X ->b, and we can

obtain estimates of trlh behavior of the sequence near b (e.g., probability
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of escape from a small neighborhood of b). This cannot be done with the

classical rate of convergence theory for SA's.

The particular problem of interest will now be described. Let G

denote a bounded open set which is in the domain of attraction of e (for

= b(x)) and whose boundary is piecewise differentiable. Roughly, we are

interested in estimates of the type P{X G, some m > 1 1 X E neighborhood of S}
n~rn n

n-I1

and we now make this precise. Define t = a and m(t) = max{n:t < t}.
0m(t+ t) 0

Then m(t) = n and I ai/t - 1 for each t > 0. Both tn and
n

nn
m(t) depend on p. For each n, define the process xn(-) on Oc)

as follows. It is piecewise linear, with initial condition X = x n(0) andn

break points to, tnl-tn, tn+2-tn = {,,an+l+an ... }, and

xn(t m-t) = X Thus xn() 'starts' at the nth iteration. Such an inter-m n m

polation has been very useful in the analysis of the asymptotic properties of

{Xn}, and is the key to the so-called 'ODE method' [1],12). Define

Tn = min{t:xn(t) V G}. If X - 0 w.p.l (or even 'weakly'), then ETn
G n G

is not necessarily defined. But P {Tn < T} is of considerable interest

x GC-

as a criterion of performance and stability of the algorithm, where T is any

positive number. Here P denotes the probability, conditioned on theX

event that X = x E G. The dependence on Q and " and the structure

n

of b(') ts or parti 'ular interest.
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Since the probability P{tG < T} tends to zero as n - , it isxG

natural to look for a normalizing sequence. In particular, we seek a sequence

S- 0 such that the limit in (1.3) exists, where 0 < V <

(1.3) lim A log Px~n T} = -V

n n x

Under ouite broad conditions, (1.3) is continuous in x in a neighborhood

of e.

Let C [0,T] denote the sbace of Rr valued continuous functions on j
[0,T], with initial value x, and with the topology of uniform convergence.

Let A c Cx[0,T]. Then estimates for xn (n ) E A} are also

provided. We restrict attention to the Gaussian case, since it is hard to

obtain the proper normalizing sequences {X} in general, and the Gaussiann
case is quite interesting in itself. (The results in the sequel also indicate

what is needed in the more general cases.) Very similiar reasons require the

use of the 'small white noise model' in singular perturbation studies. But,

despite thiz restriction, singular perturbation theory has achieved some

significant results [3],[4]. Results on the robustness of the estimates with

respect to the noise statistics appear in [i].

Estimates such as (1.3) cannot be obtained from the classical rate of

convergence theory for SA's. In order to put our results in perspective,

some of the classical theory is outlined briefly in Section 2. The theory
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of large deviations is the appropriate vehicle for getting (1.3). The

necessary background is provided in Section 3. Our results involve a

modification of a basic theorem of Freidlin (Theoren 2.1 in [5), and in

Section 3, his result is stated, together with a rough idea of the proof, in

order to facilitate its modification for our needs. In Section 4, the basic

large deviations theorem for SA's is stated, as are the modifications to

Freidlins proof which are needed to get the extensions for our cases. In

Section 5, the basic theorem is specialized to the 'escape time problem', and

the {> } are calculated in Section 6. The V0  are obtained from the
n0

solution to a variational problem, and this is discussed in Sections 4 and 5.

The basic result is that = 0(an ) for (1.1) and X = 0 /Ca )
n n n n n

for (1.2). Also (for x near 0)

Px{T T) -exp-V nP (for (1.1))
x G-

(1.4)

P { < Y

x 1 -T exp- V n (for (1.2))

The V is constant foi PE (0,1), and their values appear in Section 6.

The estimates (1.4) imply that the asymptotic behavior is much better than

one would expect from the classical rate of convergence theory. Solving for

tie V involves solving a variational or optimal cont rol problem, as will

-- p . . . . . i I I I I I I i I.. . . , . . . .. i i I t , , i . . - . - ,
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be seen. But, the qualitative results such as (1.4) are of interest even if

the exact values of the V are not known.
P

The theory of large deviations is of considerable potential use in the

study of the asymptotic behavior of recursive algorithms. It is of potential

use, where one wants to avoid the 'local linearization' methods otherwise

used to study the asymptotic behavior, or to take greater advantage of the

stability of the 'limit ODE'. Also, see [6],[7] where it is used to obtain

estimates of the probability of breakdown of an ALOAH type communications

network. The application of the Theory of large deviations to the SA problem

involves some new considerations. The norming sequences are not standard in

the large deviations literature, and the 'Lagrangians' L(xj,s) can depend

on time here. The distinct differences between the cases P = I and P < 1

are not at all obvious.
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2. Classical Rates of Convergence for (1.1)

In order to put the results of this paper into perspective with the

other main method of studying the behavior of {X n near +, some
n

classical results are reviewed here. Our attention is confined to (1.1).

Let X &w.p.l and define U = (n+l) /2 -), and let b() be
n n n

continuously differentiable, with b(-,) = 0. Drop the i.i.d. assumption

on { n}, but let it be stationary and define R = E jj, ' where

the sum is assumed to be absolutely convergent. Then for (1.1),

(2.1) U+ 1 = [I+a (b (0) +0(1/n)]Unn1n x 2(n +1)1-n

+ (n+l)- c2n + 0(1/n) n

Define U n) as x n(.) was defined, but using {Uj, j>n) instead of

iX., j>n}. For ( = ( - < 1, resp.) let I/2+b (,)) (b x(6), resp.) have

its eigenvalues in the open left half plane. (The matrix is then said to

be stable.) Then, under quite broad conditions 8], tun(.)} converges

weakly to the stationary 'olution of the It6 equations

(2.2a) dU = (I/2+b (C))Udt + R /2dw, P =X

(2.2b) dU = b (0)Udt + R1/2 dw, 1,

where w(.) is a standard Wiener process.
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In particular, the sequence {U } converges in distribution to then

stationary random variable U of (2.2), where Up P N(O,7 ) and

I= [exp t(/2+ b())] R [exp t(I/2+ bx(e))dt,
0

= I[exp tb (J) I R exp tb (O)dt , < 1.
JO x

Note the differences between the cases P = I and P < 1. In particular,

the more stringent stability requirement on bx (e), when 1 = . The

limit (1.3) holds only under stability of * = b(x), so the more stringent

requirement on b ('-) is not needed. In fact, (1.3) can be obtained evenx

if b (,,) has a zero eigenvalue, provided that * b(x) is stable at v.x

An analysis of (2.2) can provide much useful information as the asymp-

totic behavior of -X 1. But it cannot help us with the large deviation

estimate (1.3), where the set G is fixed. This is partly because

(Xn-O) (n+ I)- P/2Un which goes to zero in probability as n - . Also

the validity of (2.2) requires continuity of b (') at x = e. Eqn (2.2)
x

also gives us a somewhat more pessimistic idea of the asymptotic behavior

than (1.3) does.

3. The Theory of Large Deviations

As mentioned in the previous section, 'central limit' type ideas cannot

be used to obtain estimates such as (1.3). The theory of large deviations

is set up for just this purpose. It has proven to be a rather powerful toolk.
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for handling realted problems in probability and statistics [9 1. Our basic

background ideas come from Freidlin [5], although they must be modified to

suit our needs. Freidlin obtains large deviations estimates related to (1.3)

for the system := b(x' (t/)) x'CR, where b(. ,:) is uniformly Lipschitz

and bounded and f(') is a bounded stochastic process. We start by re-

capitulating the main ideas, and then adjusting them to suit our needs.

Suppose that there is a function H( ,') such that for each x and

piecewise constant function J (-), the limit in (3.1) exists.

(3.1) H(x,a(u))du I ir c log E exp f (cu)b(x, )d
0 J-

(An example will be given before the lemma below). Define the dual functional

(called the Cramer or Legendre transform)

L(x,g) = sup [a's - H(x,rx)].

For ( absolutely continuous, define S(Tc) by

S(TA) = L( (u),$(u))du,

and set S(T,P) equal to m if 4(') is not absolutely continuous.

Let A C C [O,T] and let A°  and A denote the interior and closure

of A, resp.

Assume

(A3.1) H(',') is continuous and H(x,') is continuously differentiable
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for each x (this will be true for our problem).

Let P { } denote expectation conditioned on x (0) = x. Then by
X

[5], Theorem 2.1, we have the large deviations estimate (3.2).

(3.2) -inf S(T, ,) < lim Clog P x(-)EA} < lJim L log P {x L(.)CA
LE x

< -inf S(T,4)

EA

Thus, obtaining the estimates requires solving a variational problem.

For the SA problems of interest, a sequence n- 0 replaces L - 0.n

Also L(x,) can be written explicitly, and the variational problem is

equivalent to an optional control problem (see Section 5).

Example. Let b(x,) = b(x) + , where (.) is mean zero, stationary

and Gaussian with an integrable correlation function. Define

00
R = LOE (u) (0) du. If Y is scalar valued, Gaussian and EY =0

then EexpY = expE 2/2. Let A(-) be piecewise constant on [0,T]. Then

THxc()d =1 T + T~~

0 Ja (u)R :(u)du + J (u)b(x)du.

Thus H(x,c) -' Rc/2 + c b(x).

Freidlin's proof can be modified to suit our needs. Since his proof is

not short, but the modifications few, we on ly indic-at e the requ ired modifici-

tions. This will be done in the next section. But, to get a better idea of

--- , , , , , , -. . . . . . 'L ..
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what is needed, we backtrack and briefly discuss Freidlin's technique of proof.

He used the following result (of Gartner [10 1, Lemmas 1.1 and 1.2) concerning

large deviations estimates for a sequence of random vectors, in order to first

obtain a 'finite dimensional' form of (3.2). Then via a sequence of bounds

and approximations, he takes the 'finite dimensional' result into (3.2). Let

d(x,y) denote either the Euclidean distance, or the norm suplx(t)-y(t)I
t<T

if x and y are functions.

Lemma 1. ([I1,, Lemma 1.1 and 1.2) Let {r} denote a sequence of R-

valued random vectors and let there be a sequence of positive numbers

5 - 0 such that the limit HO0 (a) exists for each A E Rk

HO(:1)= im 6 C log E exp 'T/6

Let H0 () be continuously differentiable. Define the dual function

LO(3) = sup[O' F-H 0 ()]. Define 40(s) = {:L() < s}. Then for each

vector 3, and each s > 0, h > 0 and c > 0, there is an L0 > 0
0

such that for C < L
0*

C
(3.3a) 6, log P{d(nI 4 0(s)) > c} < -(s-h)

(3.3b) L log P~d(flL,(i) < c) -( 0G +li
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k
Let SE R . Then from (3.3), we readily obtain (3.4)(which is the

finite dimensional version of (3,2))

(3.4) -infBL (8) lim 6 log P{fL E B} < lim c, log P{n L E B} < -inf L

SEB _ -EB

The derivation of (3.4) from (3.3) is quite straightforward and goes roughly

as follows. Let B 0 , and define N () = c-,1ighborhood of f"

Choose c such that N () E B . Fix small h O. Then by (3.3b)
C

6 L log P I EB }_ d log Pid(r ,b) - c l,  > (Lo )+h/2),

for small c. Now choose c and ., such that the right side is within h of

-inf L0 (). Owing to the arbitrariness of h, this yields the left side
6EB

of (3.4). Next, for any s such that the (compact) set I (s) is disjoint
0

(distance > c > 0) from B, we have

L L
L log pf nE } < 6 log P{d( r 0 (s)) > c}.

Now use the (3. 3,) and the largest possible ,)(s) (this requires that s< infI L 0))

The details of obtaining (3.4) from (3.3) are readily completed.
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A rough outline of the argument of Freidlins Theorem 2.1 [5].

Now that we have the basic lemma used by Freidlin, we comment on his deriva-

tion of (3.2). In the next section the proof is extended to cover the SA case.

Starting with the above Lemma 1, Freidlin proved (3.2) by an argument along

the following lines. Fix x and A > 0 and let N = T/A be an integer.

Let Q() denote a function that is constant on each interval [iA,iA+A).

Define the function x"(-) by

(3.5) x ''(t) = x + j b(' (s), (s/C))ds, x'M E Rr.

Let 4() denote a continuous function and let PA denote the vector

{9(IL), i < N}. Define the vector x ''= {x Y (iA,), i < N}. Define the

functional and set, resp.,

se (T,P) = (W (s),P(s))ds , ( (s) - ; {*(-):c(0) = x, SP (T,,P) <

Now, using the fact that the limit in (3.1) exists, Lemma 1 can be applied to

the vectors r) x A A and with 6C = c. To see this and to

see how to obtain the HO(.) and L (.) used in Lemma 1, for a set of r-vectors

{co let a(-) in (3.1) take value (0-- + 4"" 4cN- = -O on

(+ . .. )2Z.
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the vector i by - . Then

N-I
CL xx(iA)

i=0

0  b((u) %(u/C))du + + a Nf b0(u), (u/ ))du.

Thus, since the limit (3.1) exists, H0 (-,) is well defined for each - ,

and so is L0 0S).

Applying Lemma 1 in this way yields a large deviation estimate of the

type (3.3) for the 'samples' of x E (.) and p(.), with sampling interval A.

Via a sequence of approximations based on this A-approximation, Freidlin

proves the analog (3.6) of (3.3) for the sequencet jx1Cp('),E>O}; namely that for

each fixed P(-) and each ( s > 0, h > 0 and c > 0, there is an

0  0 such that for E < L

0 - 1

C log P{d(x*),¢ (s)) > c} <-(s-h).

(3.6)

L log P{d(x , ) < c > -(S (T, P) +h)

Inequality (3.2) (with S')(T,O) replacing S(T,4))for IxW'C(.)} follows from (3.6),

just as (3.4) followed from (3.3) [5,Lemma 3.1]. The sequence of approximations

at luded to above use the fact that the be, havior of

I.'!)r the id nL i i: ii mr t,,rn,, wit h t h, ;, in f, . (Y." I

r,,Id(&, (l *': " ( ) , )'0, 1 " *),
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() and x '() between the --sample points is'regular'enough so that

if the large deviations estimates hold for the samples for small enough

A > 0, then (3.6) holds. These approximations depend heavily on the Lipschitz

continuity and boundedness of b(.,) in order to show that the path

excursions between the iA-sampling times can be made as small as desired

by making A small enough. Freidlin then proved (3.2) by using (3.6)

and a sequence of approximations with suitably chosen v(') and P(').

These approximations also use the boundedness of b(.,.) and the Lipschitz

condition to show that the excursions of x(-) between the iA-sampling

points can be made (uniformly) as small as desired, by making A small

enough. We use these comments in the next section. Next, we obtain an

estimate which will be needed to extend the result to the SA case.

A bound on the sample excursions and sums of the noise terms for (1.1)

and (1.2). Since are not bounded in the SA case, we need an estimaten

of the excursions of the paths of (the SA interpolations) xn(.) between

the iA-sampling points, when xn(t) E G for tE [0,T]. This is provided

by the following theorem.

Theorem 2. Let n I be mutually independent, mean zero and Gaussian
m(tn+ T)

with var <  < Define I a For each a > 0 and

n

M < 0 there is a A0 > 0 su-c that for A < A0

_______-
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m(t + iA+ s)
n n

(3.7) P n P{ sup sup I n a.Ejj > a} < exp-M/X
iA<T seA m(t +iA) 3

n

m(tn+ T)

If a. is replaced by a./c. and . = a./c., then (3.7) still3 n n 3J
n

holds if p-2y > 0.

Proof. We do only the first case. The second is treated in the same way.

Suppose that the Ej are scalar valued; otherwise work with one component

at a time. For any Y > 0, Chebychev'sinequality and the Gaussian property

2 2yields (using E exp o. < exp G /2)

m(t n+iA+s) m(t n+iA+s)

Pfsup I a.2. > a} = P{sup[exp y I a Jj> exp a}
s<A m(tn+iA) 3 - s<A m(tn+iA)

m(tn+iA+A) 2]
< (exp -Ya)exp 202  a.2

m(t +iA)
n

< -22 m(tn+4iA+A)a2] -

p- La2  m(tn+iA)

where the last inequality is obtained by minimizing the next to last term over

Y > 0. Repeating for -F replacing Sj , we get

(3.8) n < 2 [ exp-C/(Cin) , C = a2/202

A iA<T n in
m(t n+iA+A)

C a.2/;Cin n •
m(tu~ 4iA) n

Now, letting A be small enough yields the Theorem, since lim ./A in 0.

Q.E.D.
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4. Large Deviations Estimates for (1.1) and (1.2).

The key to the extension of Freidlins theorem to the SA case is in getting

the proper norming sequence {X } and the proper analog of the H-functionaln

introduced in (3.1). Our guide is the method of proof, via Lemma 1.

The form of H(-..) and {X } for the systems (1.1) and (1.2). Let

a(-) and P() denote Rr-valued functions which are constant on the

intervals [iiA+A) , and wherv ,(t) is bounded by suE . For each

xCG and each n define the piecewise linear function x .) as follows.

The break points are

iOt n+l-t ntn+2-tn and for j > n, set

4 k-1 j-1
(4.1) x (tk) = x + E ajb('(t -t n)) + E a. .

n n

for the case (1.1). For the case (1.2), replace by /C The

x 4,n(.) replace the x ) of (3.5), and they have the same interpolaticn

nintervals as do the x (.). Until further notice, work with case (1.1).

A natural analog of the H-functional of (3.1) is that defined by the

limit in (4.2) (if it exists, for a suitable normalizing sequence {X n)n

Recall that T - NA.

TH~ N-1 m(t +iL+A)-I
(4.2) f(x(s)s)ds = limXn logE xp I W iA) a (b(x) +" W

1= j = m(tn+ iA) j n
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Since

N-1 m(tn+iA+A) -1
(4.3) X n log E exp I Q'(iA) Ia

i0O j= m(t n+ iA)

X N-1 m(tn+ iA+A)-l
A N-i2 2

= Y c'(iA)Ra (iA) a AX
21n

a natural candidate for X (and the one we use) is
n

m(tn+ T)2

(4.4) 1 a.
n

By the same reasoning, for case (1.2), the natural candidate for n is

m(t +T) 2

n 2 2
n

In order to get the correct form of 11(x,ct,s), we need to check the limit of

(4.3) as n - .If there is a function h(-) such that

(4.5) (4.3) - jT a'f(s)ROL(5  h(s)ds, as n -

then

(4.6) H(x,ct,s) -Ct'Ruh(s)/2 + Ot'bWx.

From the results of Section 6, we get that the limit exists and that

h(s) - l/T when P < 1 and hJo (-C- (.S wh-n 1, 1 . Nfotv the
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peculiarity that the H-functional depends on s as well as on a and

x, when p = 1. For (1.2), one gets h(s) = I/T when P < 1 and

h(s) = (l-2y) es(12(0 (- eT(l2Y) when P = 1.

The next Theorem yields an analog to (3.2) for the SA case. The speciali-

zation to the escape time problem appears in the next section.

Theorem 3. If b(.) is Lipschitz continuous and is i.i.d.

Gaussian with zero mean, then for each set A c C [O,T],
x

(4.7) -inf S(T,,) < lim A log P {Xn(.)EA} E lim kn log Pixn(')EAA0n --
¢EA n n

<- inf S(T, ) ,

- EA

where

S(T,$) = J L( (s), *(s),s)ds,

(4.8a) L(x,B,s) = sup [a'3-H(x,a,s)].

In particular H(.-,-) is given by (4.6) and if R is positive definite, then

(4.8b) L(x,C,s) = h- (s)(6-b(x))'R (3-b(x))/2E t0 (x,B)h -(s).

Later, we treat the degenerate case where R -[ RJ22 and where R2 is

positive definite. For this case, define R -  by R"-lI O I

0 R 22
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Comments on the proof. In Stction 6, we show that the limits

(as n -. ) of (4.3) exist as stated for the given h(.). We now discuss

(4.7). Let () be a continuous function. By the smoothness of H(',",'),

,,,n {x''n
Gartners result, Lemma 1, can be applied to the vectors x = , <T,

S= {(iA),i < N}, just as it was applied to x, and below

(3.5). From here on one follows Freidlin [5], Theorem 2.1,almost word for

word. Only the differences will be noted here.

First, one proves the analog of (3.6) for X replacing C and x" )
n

replacing x 'E(.H. Let (-)F denote citations to Freidlin

[5]. Hiq proof uses auxiliary (Lemmas 3.1 and 3.2.) F Ineqaality (3.6) is

derived in (Lemma 3.1) . The proof of this lemma carries over, except for the

ineciuality 3 lines below (3.2) F  and the set inclusion 3 lines below 0.5)F ,

But, by our Theorem 2, the inequality below (3.2) can be replaced by the
F

tfollowing (in our terminology ): For each n > 0, c > 0 and M < -, there

are 0 > 0, n0 < -and cO > 0 such that for A < A0  and n > no ,

c} > P{d(x A ,A ) < co}

P{ sup Jx (iA+S)-xn(i,)! >q 1,

iA<T,s <A

where the last probability on the r.h.s. is " exp -M/A ' The proof uses the

finiteness of suplb(x)I and Theorem 2. Similarly, the set inclusion
xCG

L
Friedlins symbols 0,T, 6 ,c, A,;) are replaced by our

(d,XA I C'~ x n A',n A ). Also his p is simply tile Euclidean distance d.

( d x .. .... . .. ,~ n, .... . . . ... . " .. . .E "I. .- .. ... i ., .. . ..... . . .. ,
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below (3.5) F holds modulo a set whose probability is < exp -MI. for smallF- n

enough A, and large enough n. Lemma (3.2)F carries over with no change.

The counterpart to our x (.) in Freidlins proof is his , (.) (called

x ) in (3.5).

Only one change is required in the main part of the proof of (Theorem 2.1) F ,

In the paragraph below (3.13) the fact that {xcF-"(-); c > 0, t < T,

!(t) l< B = s,,p 1xKI = Q and {x (.); F > 0, t < T1 = Q1  belong to a compact
xEG

set in C [O,T] is used. (x is the x in (3.5)). This compactness isx

used to guarantee that for each 6 > 0, there is an N < - and functions

Vl ..... (not depending on e or (.)) such that the union of the

6-neighborhoods of the i cover QOU Q1 ' Our trajectories

n1

xn(.),xn(-), t < T, £ > 0, hq(t)l < B) = R do not belong to a compact

set, since the Gaussian noise is unbounded. But, by Theorem 2 we obtain the

following: For each M < - and 6 > 0 there art N < - and I..,N

such that the union of the 6-neighborhoods of the 9. covers R except for3. n

a set of paths whose probability is < k exp-M/Xn, where k does not depend

on n. Since number M in the estimates of the probabilities of the exceptional

sets can be made arbitrarily large, we can carry through all the details

(essentially as done in [5]) to obtain (4.7). The inequalities (4.7) are

specialized to the escape time problem in the next section.

... Irl I II.. .." ! -'d ,.I
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5. Escape Time Formulas

Let A = 4.:()=x, (t)VGC, some t < T}. Then by (4.7) and the

fact that A is closed,

(5.1) -inf S (T, p) < Jim X log P {[n< T) <
_EO n x G-

lim Nlog P -I n < T} < -inf S (T, ) .
n n x G- E
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In a sense, for 'almost all G', there is equality in (5.1). To see this, define

G = y:d(y,G) <51, and set A5 = {x(.):(O)=x,(t)E 3G, for some t < T,andAo=A.

Define Sx(G) = inf S (T,$). As 0 4 , S (G) decreases and it is con-

EA,

tinuous at all 5 > 0 except for a countable number. Assume

(A5.1) S (G) 4 S (G) as 4 0.

The condition always holds in the non-degenerate case described below.

Theorem 4. Under (A5.1) and the given properties of [_n} and b(-),

equality holds in (5.1).

The proof follows from the facts that (a): li SX (G) = infS(T,:), and
5 EA0

(b):by 'A5. 1), lim S () = inf S (T,{,).

Condition (A5.1) also implies that S (G) is continuous at x = 6, if it
x

holds at x = e.Thus, it is not much of a restriction to assume equality in

(5.1) and to let e = x, as we do henceforth. Now, consider the variational problem

of getting the inf S (T,O). If R > 0, we say that the problem is

OEA

nondegenerate. If R is singular, suppose for convenience that R takes

the form Rwhere > 0 and partition the vectors as follows:

x - (Xlx 2 ), O - (a ,c (2), = 0962), = (01,02). where x2,z2,82  and

have the dimension of R22. As noted below, in the non-degenerate case, we have

---------
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L(x,' ,s) = T(3-b(x))'R- (3 -b(x))/2 = Lo(X,2)T, p < 1,

(5.2)

L(x,t3,s) e (l~e-T)( b(x))'R- (3_b(x))eS/2

L0 (x,3) eS(l-e - T ) , p = 1.

Define u R-(1-b(x)). Then the variational problem of calculating

inf S (T,4) is equivalent to minimizing
EA

T 1-e -T)T s,

(5.3) S(') = u'u ds or (I- ) { e u'u ds,

(depenaing on whether j) < I or j- = 1) subject to

(5.4) = b(P) + R2u, 4'(O) = x, P(t)E3G fcr some t < T.

In the degenerate case, the variational problem is (5. '), (5.4').

T T ,.1e -T. FTs'

(5.3') S(Tp) = T u2 u2 ds or (-- e u2u2 ds,(53' S(T, ) 2 0 20

subject to

(5.4') 
b

b 2) + R u2 , (O) = x 0(t) E G for some t < T.$2 = 2(* + 22 2

6. The Values of X And H(.,.,.).n -

In this section, we evaluate X and obtain the h() in (4.6) and
n

and the V of (1.3). Until further notice, we work with case (1.1). By

the discussion leading to (4.6), to obtain I(" , ,) wt, need only find

h(.) such that
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m(tn+ t+A)

(6.1) a2/X - h(t)A + o(A).

m(t+ t) n
n

We use integrals in place of sums henceforth, since the ratios of the integrals

to the sums converge to unity in all cases, as n - -. Also JX n meanSn n

that an / S n - 1 as n-* o. By the definition of m(tn+ t), for t > 0,

m(tn+ t)-l
It - ajan.

n

6.1 The case 0 = 1 and (1.1). By definition, m(t n+t) and n

satisfy

m(tn+T) m(tn +T)

T~f s-i ds An n ds.

T
Thus m(tn+T) - ne and

(6.2) -- n-1 (le-T).

Now, in order to evaluate (6.1). We need only evaluate (6.3) for p = 1

m(tn+t+ A)

(6.3) f s- 2 P /Xn = h(t)A + o(A)

m(t n+t)
-1 -i

-T -t -A -T -

Since this equals (1-e- ) e (l-e ), we have h(t) = (1-e- ) e

6.2 Thj case p < 1 and (1.1). Here

mItn+T) n +T)2 P

n n
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We have m(t n+ T) 1P= n I + (l-P)T or m(t n+ T) n~l+ T/n 1-, and

M(t n+ T)-n -Tn P. This yields n - Tn P. Now, evaluating (6.3) yields

(6.3) = t./T + O(A). Thus h(t) 1 /T.

6.3 The case P I and (1.2), with 1 > 2Y. Here X is defined

by (4.4'). Thus x n (-Y-ln 2y-l (1eT12Y) To obtain the proper

weighing function h(-), we need to evaluate

(6.4) r n + A S2 =d/ hMOA +0(A)

m(t n+ t)

The left side of (6.4) is asymptotically equivalent to

A(1- 2 Y) et(1l
2Y) (1-e T(l-2Y) ) - + 0 (A) = Ah (t) + 0()

6.4 The case P < 1 and (1.2) with P > 2Y. Here X Tn- P+ 2 Y and

h(t) l/T.

6.5 The Lagrangian L',) and V of (1.3). Since LQ,') and

xn have common factors, we define same new terms in order to obtain the

simplest form of the asymptotic estimates. Define the set (replaces A in the

degenerate case)

AD- 4~:00) = X, $1 b 1 (0), 4(t)EaG, some t < T}.

For (1.1) the L(,,) are given by (5.2). Define
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S1 inf L0 ( (s),'(s))eS dsPEA J0

fT
so inf L0( s),( (s))dsA 0

S inf L0 s),()d.

1(PEA 1

T

-D

S 0 inf L 0(S(s)s).

D 0

For the Kiefer-Wolfowitz procedure (1.2), we need the definition

S 1(kw) = inf L0(() s) s

Define D (kw) similarly, with A replacing A.ID

For (1.1), we finally obtain for the non-degenerate case

li n < T = (for p = 1)
n x G

(6.5)

lim n- 0 109 P {TG < T} =- (for P < 1)
n lo G } S

For the degenerate case, replace S0 and S by S0 and S, resp., in (6.5).

All Sy are continuous in x in a neighborhood of . For (1.2), we have

for the non-degenerate case
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lim n-(lo-2Y)lg P {,n < T } = -S (kw) ('=1)
n x G-

(6.6)

limn n- (P-2Y)log P {, < T } = -So (P<I)
n x G- 0

with the obvious alterations of the right side for the degenerate case.

Note that S > SO . This, together with the relationship n >n' for . < 1,
1 0*

-1
implies the 'considerable' superiority of the coefficient sequence 1 = n

n
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