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Abstract
) 7
“The theory of large deviations is applied to the study of the asymptotic

S

properties of the stochastic approximation algorithms, (l 1) and (1.2). The

method provides a useful alternative to the currently used technique of obtaining
rate of convergence results by studying the sequence {(Xn—e)/vgg} (for (1.1)),
where 6 1is a 'stable' poigt of the algorithm. Let G be a bounded neighborhood
of 6, which is in the domain of attraction of < <f{or the 'limit ODE'. The process
x"(*) is defined as a 'natural interpolation’ of {Xj,ji_n} with x7(0) =

and interpolation intervals {aj,jE:n}. Define 12 = min{t:xn(t)ECﬂ. Then it

is shown (among other things) that Px{Tg i_T} ~ exp—nqv, where q depends on

{an,cn}, and V depends on the b(*),cov Sn, and G. Such estimates imply
that the asymptotic behavior is much better than suggested by the 'local lineari-
zation methods', and they yield much new insight into the asymptotic behavior.
The technique is applicable to related problems in the asymptotic analysis of
recursive algorithms, and requires weaker conditions on the dynamics than do the
'linearization methods'. The necessary basic background is provided and the

optimal control problems associated with getting the v above are derived.




1. Introduction

! The paper deals with a useful and heretofore unexploited approach to
the asymptotic behavior of stochastic approximation (SA) 1like algorithms of

the form

= = -
(1.1) )(n+1 = Xﬂ + anb(Xn) + anin > a2y (n+1) .

or of the 'Kiefer-Wolfowitz' form

= - -P _ = r
(1.2) X . =X +ab(X)+ anénlcn » a = (ntl) » ey = (atl) X €R

where 0<.<1 and 0 <Y< P/2. To avoid excess notation, let {Qn}
be mutually independent and identically distributed. The noise sequence {éj}

is mean zero and Gaussian, with covariance matrix R > 0. As seen below, it
is hard to do some of the required calculations in the non-Gaussian case,
although the bédsic theory is much more widely applicable. Despite the restric-
tion to the Gaussian case, the results shed considerable new light on the
asymptotic behavior. One would expect that the order of the obtained estimates
would hold under much weaker conditionms. Of particular interest are estimates
(as a function of n) of the probability that the 'tail' of the SA sequence
{Xm,j > n} escapes from a neighborhood of a 'stable' point of the algorithm.
By a 'stable point' we mean a point ¢ at which X = b(x) is asymptotically

stable. Under our conditions, if Xn is in a small neighborhood of 0

LIPS _w_“-‘m-y LR . R T .,ﬁ.—- X
et - e B e SanERedais e aoco
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often enough, then it converges to © w.p.l. We are not interested in the
w.p.l. convergence, only in the 'rate of convergence' or in the behavior of
{Xn] in a neighborhood of § So we simply assume that X - ¢ w.p.l.
The estimates in the sequel imply that the asymptotic behavior is much better
than one would expect from using the usual limit theory, which is based on
the asymptotic normality of the sequence of suitably normalized errors (say
of (xn—e)/JE;) for (1.1). The classical theory is much more 'local' about
8, and does not exploit as fully as possible the stabilizing properties of
the ODE % = b(x) in a neighborhood of 3.

An additional advantage of our approach is that b(-) is not required to
have continuous derivatives, as the classical theory requires. It need only
be Lipschitz continuous. Thus one can treat problems where (e.g.) b(-) is

obtained from a min-max operation, or where (scalar case) the slope of

e e g e - o e -

b(:-) is discontinuous at 8. E.g. b(x) = —kl(x—e) for x >y and

b(x) = -kz(x-e) for x < g, where kl # ky , and k, > 0.

Results of simulations support the idea that the iterates spend

(asymptotically) almost all the time on the part with the smaller slope,
and this behavior is implied by sur results. Also, simple constraints can
readily be handled. For example let {Xn} be confined to [a,b], where
-@w<a<b< o and b(x) >0 on [a,b]. Then Xn > b, and we can

obtain estimates of the behavior of the sequence near b (e.g., probability

g e e, it - .
P4t SRR e e



of eacape from a small neighborhood of b). This cannot be done with the
classical rate of convergence theory for SA's.

The particular problem of interest will now be described. Let G
denote a bounded open set which is in the domain of attraction of ¢ (for
% = b(x)) and whose boundary is piecewise differentiable. Roughly, we are

interested in estimates of the type P{Xn+m€ G, some m > 1] X € neighborhood of 5}

n-1
and we now make this precise. Define L = z a; and m(t) = max{n:tn < tl.
0
+ 1
m(tn t)
Then m(tn) =n and Y ai/t + 1 for each t > 0. Both tn and
n

m(t) depend on p. For each n, define the process xn(-) on [0,»)
as follows. It is piecewise linear, with initial condition Xn = xn(O) and

} = {0,a_, ..}, and

break points a +a
P o, tn’ n’ ntl n’

tn+1—tn’ tn+2-

n . ,
X (tm—tn) = Xm. Thus xn(-) 'starts' at the nth iteration. Such an inter-~

polation has been very useful in the analysis of the asymptotic properties of

{Xn}, and is the key to the so-called 'ODE method' [1],[2]. Define

Tg = min{t:x"(t) € G}. If X > 0 w.p.1l (or even 'weakly'), then ET?

is not necessarily defined. But PX{TB < T} 1is of considerable interest

as a criterion of performance and stability of the algorithm, where T is any

positive number, Here Px denotes the probability, conditioned on the
event that Xn = x € G. The dependence on o) and Y and the structure

of b(*) 1is of particular interest.




| .

Since the probability P#{Tg < T} tends to zero as n~ ® , it is ~
natural to look for a normalizing sequence. In particular, we seek a sequence

Xn > 0 such that the limit in (1.3) exists, where 0 <V <= .,

. n - _ . :
(1.3) lim A log P_ {TG < T} = -V |

f inder acuite broad conditions, (1.3) is continuous in x in a neighborhood “

of 9.

Let C_[0,T] denote the sbace of R" valued continuous functions on
x

f0,T], with initial value X, and with the topology of uniform convergence.

n
; Let A c<=C [0,T]. Then estimates for 1im Anlogig‘{x (+)€ A} are also
provided. We restrict attention to the Gaussian case, since it is hard to

obtain the proper normalizing sequences {Xn} in general, and the Gaussian

case is quite interesting in itself. (The results in the sequel also indicate

what is needed in the more general cases.) Very similiar reasons require the

use of the 'small white noise model' in singular perturbation studies. But,

despite this restriction, singular perturbation theory has achieved some

significant results [3],[4]. Results on the robustness of the estimates with

respect to the noise statistics appear in [11].
Estimates such as (1.3) cannot be obtained from the classical rate of
convergence theory for SA's. In order to put our results in perspective,

gsome of the classical theory is outlined briefly in Section 2. The theory




of large deviations is the appropriate vehicle for getting (1.3). The
necessary background is provided in Section 3. OQur results involve a

modification of a basic theorem of Freidlin (Theorem 2.1 in [5]), and in
Section 3, his result is stated, together with a rough idea of the proof, in
order to facilitate its modification for our needs. In Section 4, the basic
large deviations theorem for SA's is stated, as are the modifications to
Freidlins proof which are needed to get the extensions for our cases. In
Section 5, the basic theorem is specialized to the 'escape time problem', and

the {?n} are calculated in Section 6. The v, are obtained from the

solution to a variational problem, and this is discussed in Sections 4 and 5.

The basic result is that A =0(a) for (1.1) and A =0(a /CZ)
n n n n n

for (1.2). Also (for x near 9)

< T} ~ -v o

< exp on (for (1.1))
(1.4)

n P=-
PX{LG < T} ~ exp-—Vpn 2y . (for (1.2))

The Vﬁ is constant foi p€ (0,1), and their values appear in Section 6.
The estimates (1.4) imply that the asymptotic behavior is much better than

one would expect from the classical rate of convergence theory. Solving for

the Vp involves solving a variational or optimal control problem, as will




be seen. But, the qualitative results such as (l.4) are of interest even iLf
the exact values of the Vp are not known.

The theory of large deviations is of considerable potential use in the
study of the asymptotic behavior of recursive algorithms. It is of potential
use, where one wants to avoid the 'local linearization' methods otherwise
used to study the asymptotic behavior, or to take greater advantage of the
stability of the 'limit ODE'. Also, see [6],[7] where it is used to obtain
estimates of the probability of breakdown of an ALOAH type communications
network. The application of the Theory of large deviations to the SA problem
involves some new considerations. The norming segquences are not standard in
the large deviations literature, and the 'Lagrangians' L(x,B,8) can depend
on time here. The distinct differences between the cases p=1 and P <1

are not at all obvious.
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2. Classical Rates of Convergence for (1l.1)

In order to put the results of this paper inteo perspective with the
other main method of studving the behavior of {Xn} near =, soOme

classical results are reviewed here. Qur attention is confined to (1.1).

Let X > % w.p.l and define Un = (n+1)p/2

n (Xn—e), and let b(-) be

continuously differentiable, with b(<) = 0. Drop the i.i.d. assumption

1
E ;j)”O

, where

g o7 2

on {in}, but let it be stationary and define R =

the sum is assumed to be absolutely convergent. Then for (1.1),

C

2.1) U = [I+an(bx(a)+

1 )+O(l/u)]Un

2n+1yr

+ (n+1)'”/2c’,n + 0(1/)E_.

Define U"(.) as x7(-) was defined, but using {Uj, i>n} instead of
{Xj, ji:n}. For £ =1(c <1, resp.) let I/2+—bx(9) (bx(e), resp.) have
its eigenvalues in the open left half plane. (The matrix is then said to
be stable.) Then, under quite broad conditions [8], {Un(')} converges

weakly to the stationary solution of the Itd equations

1/2

(2.2a) du (I/2+bx(~3))Udt+R dw, ¢ 1,

1/

2w, o1,

(2.2b) du b\{(l))UdL + R

where w(:) 1is a standard Wiencr process.




In particular, the sequence {Un} converges in distribution to the

stationary random variable u" of (2.2), where Up ~ N(O,Ep) ard

21 = { [exp t(I/Z%—bx(é))] R [exp t(I/24—b;(e))]dt,
0

[~ '
i [exp tb_(v) ] R exp tb ©)dt , £ < 1.

o~
(]

™

Note the differences between the cases P=1 and L < 1l. In particular,
the more stringent stability requirement on bx(e), when © = 1. The

limit (1.3) holds only under stability of x = b(x), so the more stringent

requirement on bx(ﬂ) is not needed. 1In fact, (1.3) can be obtained even

if bx(&) has a zero eigenvalue, provided that % = b(x) is stable at .

An analysis of (2.2) can provide much useful information as the asymp-
totic behavior of {Xn}. But it cannot help us with the large deviation

estimate (1.3), where the set G igs fixed. This is partly because

(Xn-e) ~ (n*—l)-p/ZU which goes to zero in probability as n + ©. Also

nl
the validity of (2.2) requires continuity of bx(-) at x = €. Egn (2.2)

also gives us a somewhat more pessimistic idea of the asymptotic behavior

than (1.3) does.

3. The Theory of Large Deviations

As mentioned in the previous section, 'central limit' type ideas cannot
be used to obtain estimates such as (1.3). The theory of large deviations

is set up for just this purpose. It has proven to be a rather powerful tool

YT
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for handling realted problems in probability and statistics [9 ]. Our basic
background ideas come from Freidlin [5], although they must be modified to
suit our needs. Freidlin obtains large deviations estimates related to (1.3)
for the system iﬁ = b(xi;(t/e)), xE€Rr, wvhere b(:,J) is uniformly Lipschitz
and bounded and 5() is a bounded stochastic process. We start by re-
capitulating the main ideas, and then adjusting them to suit our needs.

Suppuse that there is a function H(-,+) such that for each X and

plecewvise constant function  «(-), the limit in (3.1) exists.
T (T/E i

(3.1) [ H(x,a(u))du = lim € log E exp j 2! (eu)b(x,5 (u))du.
0 Y 0

(An example will be given before the lemma below). Define the dual functional

(called the Cramer or Legendre transform)

L(x,B) =\sup [a'R - H(x,0)].
8

For ¢(+) absolutely continuous, define S(T,9) by

T
S(T9¢) = J L(@(U) 9&(“))dus
0

and set S(T,?) equal to « if $ () 1is not absolutely continuous.
Let AC Cx[O,T] and let A° and A denote the interior and closure
of A, resp.

Assume

(A3.1) H(-,-) is continuous and H(x,*) is continucusly differentiable
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for each x  (this will be true for our problem).
€
Let Px{ }  denote expectation conditioned on x (0) = x. Then by

[S], Theorem 2.1, we have the large deviations estimate (3.2).

(3.2) ~inf_S(T,#) < 1lim tlog P_{x (-)€a} < Tim t log P_{x (-)€a}
YEA € X S X

< -inf S(T,?).
vEA

Thus, obtaining the estimates requires solving a variational problem.

For the SA problems of interest, a sequence Kn -+ 0 replaces v+ 0.
Also L(x,B) can be written explicitly, and the variational problem is
equivalent to an optional control problem (see Section 5).

Example. Let  b(x,5) = b(x) + &, where £(:) is mean zero, statiomary

and Gaussian with an integrable correlation function. Define
_ ot
R = j EL ()& (0)du. If v  is scalar valued, Gaussian and E¥ =0,
e QO

then Eexpy = expElJZ/Z. Let ©(-) be piecewise constant on [0,T}. Then

T 1 (T . T,
J H(x,x(u))du = 3 J % (u)Ra (u)du + J ¢ (u)b(x)du.
0 0 0

Thus H(x,a) = A Ra/2 + a'b(x).
Freidlin's proof can be modified to suit our needs. Since his preoof is
not short, but the modifications few, we only indicate the required modifica-

tions. This will be done in the next scction. But, to pet a better idea of
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what is needed, we backtrack and briefly discuss Freidlin's technique of proof.
He used the following result (of Gartner [10 ], Lemmas 1.1 and 1.2) concerning
large deviations estimates for a sequence of random vectors, in order to first
obtain a 'finite dimensional' form of (3.2). Then via a sequence of bounds
and approximations, he takes the 'finite dimensional’ result into (3.2). Let

d(x,y) denote either the Euclidean distance, or the norm sup|x(t)-y(t) |
t<T

if X and y are functions.

Lemma 1. ({10, Lemma 1.1 and 1.2) Let {ng} denote a sequence of RK-

valued random vectors and let there be a sequence of positive numbers

§ -0 such that the limit Ho(a) exists for each a € Rk :

[
-

N ooy V€
HO(J) :ig qzlog E exp a'n /(SC

Let HO(-) be continuously differentiable. Define the dual function

LO(S) = sup[o’ E-—HO (+)]. Define byls) = {8:L.(R < s}. Then for each
X — 0 -
vector 3, and each $s>0,h>0 and c >0, thereisan ;> 0

such that for € <&

o
(3.3a) 5, log P{A(n°,8,(s)) > ¢} < -(s-h)
(3.3b) S, Llog P{d(n",F) < c} > —(Ly(K) +h)




k
Let B € R'. Then from (3.3), we readily obtain (3.4)(which 1is the

finite dimensional versionof (3.2))

. [N —_
(3.4)  ~inf Lo(8) < lim §_ log P{n” € B} < Tim o_ log P{n" € B} < -inf L (£).
SEB 3 < - -0
~€B
The derivation of (3.4) from (3.3) is quite straightforward and goes roughly

as follows. Let £ € BO, and define Nc(b) = ¢-neighborhood of

Choose c such that NC(S)E BO. Fix small h>0. Then by (3.3b)

S, log Pin" €B} » ¢ (d(r" «
£ 2 log Pld(n,p) < ¢} > ~(Ly(8)+n/2),
for small €. Now choose c and o such that the right side is within

-infLO(B). Owing to the arbitrariness of h, this yields the left side
BEB

of (3.4). Next, for any s such that the (compact) set Qo(s) is disjoint

(distance > ¢ > 0) from B, we have
tem L €
¢ log P{n €B} < 6, log P{d(n 105(s)) > c}.

Now use the (3.30) and the largest possible Qq(s) (this requires that s<in

The details of obtaining (3.4) from (3.3) are readily completed.
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A rough outline of the argument of Freidlins Theorem 2.1 [5].

Now that we have the basic lemma used by Freidlin, we comment on his deriva-
tion of (3.2). 1In the next section the proof is extended to cover the SA case.
Starting with the above Lemma 1, Freidlin proved (3.2) by an argument along
the following lines. Fix x and A >0 and let N =T/A be an integer.

Let w{(*) denote a function that is constant on each interval [iA,i8+ 4).
Define the function x"’“(-) by
Ve [ v,€ r
(3.5) x7P(t) = x + j b(s),b(s/€))ds, x' * (t)ER .
0
Let $(*) denote a continuous function and let @A denote the vector

= L €
{9(18), 1 < N}. Define the vector xﬁ’h= {xv’ (id), i < N}. Define the

functional and set, resp.,

T

s7(1,9) = J L@(s),0(s)ds  ,  o¥(s) = {0(-)9(0) = x, s¥(1,9) < s}.

0

Now, using the fact that the limit in (3.1) exists, Lemma 1 can be applied to
the vectors ng =X, B = ¢A and with Ge = ¢£¢. To see this and to

see how to obtain the HO(-) and LO(-) used in Lemma 1, for a set of r-vectors

{3}, let «(+) in (3.1) take value (y, + ..o tay () =35 on [0,8),

R Y -

) = 4 on  {7,20), .. sand < g INS=S T et e
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7 o= /‘—“ e :
the vector 4 by & Y0 MNL1) . Then

- N-l _t B
ot XW’E = 2 \1_ x\use(m) =
i=0

v ol ' T
@, J b@(u), $(u/9))du + ... + aN—lf b(W(u), s (v/2))du.
0 NA-A

Thus, since the limit (3.1) exists, HO(E) is well defined for each 1 ,

and so is LO(B).

Applying Lemma 1 in this way yields a large deviation estimate of the

type (3.3) for the 'samples' of xw’g(-) and ¢(-), with sampling interval A.

Via a sequence of approximations based on this A-approximation, Freidlin

proves the analog (3.6) of (3.3) for the sequence+ {xw’e(-),e> 0}; namely that for
each fixed VY(-) and each &(:), s >0, h>0 and ¢ >0, there is an

60 > 0 such that for £ < EO’

€ log Pld(x"*“,0¥(s)) > ¢} <=(s-n).

(3.6)

& log P{d(xw’t,i)) < ¢} > -(S‘P(T,@) +h) i

Inequality (3.2) (with SY(T,§) replacing S(T,8)) for 1x°(-)} follows from (3.6),
Just as (3.4) followed from (3.3) {5,Lemma 3.1]. The sequence of approximations

alluded to above use the fact that the behavior of

- . - . . ‘ . e ‘ 1 .l i
For the identificat iz of our terees with those in (W), our (270 4 . (‘hlrlub)ﬂ!ud
i

replace (Y‘ R T G IS in ).
" 0.1
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v

$(-) and «x ’E(-) between the A-sample points is'regular'enough so that

if the large deviations estimates hold for the samples for small enough

A > 0, then (3.6) holds. These approximations depend heavily on the Lipschitz
continuity and boundedness of b(-,5) 1in order to show that the path
excursions between the iA-sampling times can be made as small as desired

by making A small enough. Freidlin then proved (3.2) by using (3.6)

and a sequence of approximations with suitably chosen v (*) and ().

These approximations also use the boundedness of b(+,+) and the Lipschitz
condition to show that the excursions of xb(-) between the iA-sampling
points can be made (uniformly) as small as desired, by making A small

enough. We use these comments in the next section. Next, we obtain an

estimate which will be needed to extend the result to the SA case.

A bound on the sample excursions and sums of the noise terms for (1.1)

and (1.2). Since in are not bounded in the SA case, we need an estimate

of the excursions of the paths of (the SA interpolations) x"(+) betveen
the id-sampling points, when xn(t)E G for t € [0,T]. This is provided
by the following theorem.

Theorem 2. Let {in} be mutually independent, mean zero and Gaussian

m(tn+ T)
with var & < 02<w . pefine A= X a’ . For each a >0 and
n

M <o there is a A, >0 such that for A <A

0 0
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m(t + iA+s)
n

(3.7) PZ zP{ sup sup | ) a.g.] >a} < exp~M/A_
1A<T s <A m(e_+18) 3
m(t_+T)
y2,2
If a, is replaced by a./c, and A = ) a;/c,, then (3.7) still
- ] 3] n n J ] - —

holds if p-2y > 0.

Proof. We do only the first case. The second is treated in the same wav.
Suppose that the gj are scalar valued; otherwise work with one component

at a time. For any Y > 0, Chebychev's inequality and the Gaussian property

yields (using E exp an < exp 4202/2)

m(tn+iA+s) m(tn+iA+S)
P{sup ¥ a,s, >al =P {sup[exp Y Y a.f;j]_>_ expYa}
s<h m(egrin) 4 s<A m(ty+id)
m(t_+iA+A) '
22 n 2
< (exp -Ya)exp|Y 0O M a’ /2 ’
- m(t_+14) 3 L

5 m(tn+1A+A) 2 -1
< exp- [29_ 2 a, ] N .
- a?  m(ty+ia) I ;

where the last inequality is obtained by minimizing the next to last term over f

Y > 0. Repeating for —Ej replacing Ej , we get

2
(3.8) PZ <2 Y} exp-c/(3C.,) , C=a /202 ,
iA<T n
m(tn+iA+A)
2
C. = N ai /A .
REETCIRS TSI

Now, letting A  be small enough yields the Theorem, since 1lim sup C. = 0.
an {2 in

Q.E.D.

o e Y s
LT NS R TR P
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4. Large Deviations Estimates for (1.1) and (1.2).

The key to the extension of Freidlins theorem to the SA case is in getting
the proper norming sequence {Xn} and the proper analog of the H-functional
introduced in (3.1). Our guide is the method of proof, via Lemma 1.

The form of H(-,:) and {Xn} for the systems (1.1) and (1.2). Let

a2(¢) and V() denote R -valued functions which are constant on the

intervals  [i4,i8+d), and where [|u(t)| 1is bounded by iggfxt- For eaci

t
- . . . , . VIR !
x< G and each n define the piecewise linear function x¥’® (-) as follows.

The break points are

to’tn-Fl_tn’tn-+2-tn’ } and for j > n, set

Y,n k-1 ict
4.1 ey =x+ I a.,b@(t,-t + at. |,
(4.1) x e ) = x naJ((jn)) EJJ

for the case (1.1). For the case (1.2), replace ij by 5j/cj The

€
Xv’n(') replace the Xw’ (-) of (3.5), and thevy have the same interpolaticn

intervals as do the xn(-). Until further notice, work with case (1.1).

A natural analog of the H-functional of (3.1) is that defined by the
limit in (4.2) (if it exists, for a suitable normalizing sequence {Xn}).

Recall that T = NA.

T N-1 m(tn+iA+A)-1
4.2) f H(x,x(s8),s)ds = I%mxn logEexp Y @'(id) ¥ a, (b(x)+§ )/x .,
0 1=0 j = m(tn+ iA) j j n
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Since
N-1 m(t +1A+4)-1
(4.3) An log E exp 2 a' (i) z a.t
10 j=m(e_ +1p) 373
n
X N-l m(tn+-iA+A)—l )
= 5 1 a'(i)Ra (i) Y ai/A>
1=0 j=m(t +18) 3n

a natural candidate for An (and the one we use) is

m(t +T)
(6.4) A= ] a
n

=]

By the same reasoning, for case (1.2), the natural candidate for An is

m(t +T)
2

a’/c

(4.4%) A= N
J 1

=
3~

In order to get the correct form of H(x,2,s), we need to check the limit of

(4.3) as n + o, If there is a function h(-) such that

(4.5) (4.3) IT *'(s)R%(s) h(s)ds, as n->x,
. ) ( 22
0
then
(4.6) H(x,0,5) = &'Ruh(s)/2 + &'b(x).

From the results of Section 6, we get that the limit exists and that

-T -1
) e S when f+ = 1. Note the

h(s) = 1/T when £ <1 and h(s) = (l-¢

[P S

T A et o =
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peculiarity that the H-functional depends on s as well ason 4 and
x, when p = 1. For (1.2), one gets h(s) = 1/T when p <1 and
—T(1—2Y))-l

h(s) = (1-2y) e S1721 (1 when P = 1.

The next Theorem yields an analog to (3.2) for the SA case. The speciali-

zation to the escape time problem appears in the next section.

Theorem 3. If b(-) is Lipschitz continuous and vy is i.i.d.

Gaussian with zero mean, then for each set A C Cx[O,T],

: . 3 \ n 3
(6.7) -inf S(T,¢) < lim A log P {x" (-) €A} < Tim \_ log P ix () €A}

i
OEA n n

<_ = in_f_ S(T'Q) ’

PEA
where
T .
S(T,9) =J L(¢(s), +(s),s)ds,
0
(4.8a) L(x,8,s) = sup [a'B~H(x,2,s)].
o

In particular H(-,+,+) is given by (4.6) and if R is positive definite, then

(4.8%) L(x,8,8) = h 1(s) B-b(x)) R L(@-b(x)) /22 Ly (x,8)h7 (),

0 0
Later, we treat the degenerate case where R = [; R ] » and where qu is
22 -
_ 0
positive definite. For this case, define R 1 by R“1==[ 1]
0 R,
22

i Sl L S P Vs e e v AN, L o et o
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Comments on the proof. 1In Secction 6, we show that the limits

(as n —»«) of (4.3) exist as stated for the given h(-). We now discuss

(4.7). Let ¢(+) be a continuous function. By the smoothness of H(*,+,),

-
v e -

Gartners result, Lemma 1, can be applied to the vectors X' I M) il < T,
8 = ¢, = {o(i8),i <N}, just as it was applied to x?'t and ¢, below
(3.5). From here on one follows Freidlin [5]}, Theorem 2.1,almost word for

word. Only the differences will be noted here.

First, one proves the analog of (3.6) for kn replacing ¢ and X0
replacing xw’g(-). Let (')F denote citations to Freidlin
[5]. His proof uses auxiliary (Lemmas 3.1 and 3.2)F, Inequality (3.6) is
derived in (Lemma 3.1)F. The proof of this lemma carries over, except for the
ineguality 3 lines below (3.2)F and the set inclusion 3 lines below (3.5)F.

But, by our Theorem 2, the inequality below (3.2)F can be replaced by the

following (in our terminolog;5: For each n >0, ¢ >0 and M < =, there

are A.>0, n, < e« and o >0 such that for 4 < AO and n > nys

Pl " 9 < e} > PlaGx; o) < g

o
- p{ sup ]xw’n(iA+s)-xv’n(i3)[ >n1,
iA<T,s <A

where the last probability on the r.h.s. is < exp —M/kn. The proof uses the

finiteness of sup| b(x) | and Theorem 2. Similarly, the set inclusion
x€G

) —

- -
,6,6',wc'u,¢) .€) are replaced by our

JrFriedlins symbols {(,, N
0,T

{ —
(d,xw'n,c,c ,xw’n,¢ LA ). Also his p is simply the Euclidean distance d.
A 0 A''n
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below (3.5)F holds modulo a set whose probability is < exp -M/ln for small
enough 4, and large enough n. Lemma (3.2)F carries over with no change.

The counterpart to our xv’n(-) in Freidlins proof is his ﬁg’;(-) (called

<€y in (3.5).

Only one change is required in the main part of the proof of (Theorem 2.1)F.

Bl s eI S

In the paragraph below (3.13)F, the fact that {XS,W(_); €>0, t<T,

bo(e) ! < B = snp [z} = QO and {xe('); £>0, t< T} = Ql belong to a compact
X€G

~ ¢ N
set in CX[O,T] is used. (xE’u is the x”'% in (3.5)). This compactness is
used to guarantee that for each § > 0, there is an NS < » and functions

A

Wl""’¢N (not depending on € or Y(+)) such that the union of the

]

8

d-neighborhoods of the ¢i cover QOU Ql' Qur trajectories

&0 ,xM (), ¢ <T, € >0, |y(t)] <B} = R~ do not belong to a compact

set, since the Gaussian noise is unbounded. But, by Theorem 2 we obtain the

following: For each M < ®» and § > 0 there are §5< o and Ql""’éﬁ

; @
|
|

ot = v . i e,

such that the union of the J-neighborhoods of the Qi covers Rn except for
a set of paths whose probability is < k exp~M/Xn, where k does not depend

on n. Since number M 1in the estimates of the probabilities of the exceptional ¥

J S ey

sets can be made arbitrarily large, we can carry through all the details

(essentially as done in [5]) to obtain (4.7). The inequalities (4.7) are

specialized to the escape time problem in the next section.

!
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5. Escape Time Formulas

Let A= {¢(-):0(0) = x, ¢(t)¢G, some ¢t < T}.

fact that A is closed,

(5.1) -inf S (T,¢) < lim A logP {10 < T} <
9€A0 " X 6o

Lim ) logP {1y < T} < -inf$ (T,3).
n - ¢€A

Then by (4.7) and the
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In a sense, for 'almost all G', there is equality in (5.1). To see this, define

Gy = {y:d(y,6) <81}, and set Ag = 10(+): 9(0) = x,6(£)€ 3Gy for some t < T} andAj=A.

Define S (G.) = inf S (T,¢). As 8§ ¥ 0, S_(G) decreases and it is con-
x 0 A x5
o

tinuous at all § > 0 except for a countable number. Assume

(A5.1) S (G) + S (G) as & ¥ 0.

The condition always holds in the non-degenerate case described below.

Theorem 4. Under (AS.1) and the given properties of {En} and b(.),

equalitv holds in (5.1).

The proof follows from the facts that (a): lim S-(GS) = inf S(T,s), and
5 % $€A0

(b):byA5.1), 1limS_(G,) = inf S (T,¢).
5 % €A

Condition (A5.1) also implies that Sx(G) is continuous at x = €, if it
holds at x = ¢.Thus, it is not much of a restriction to assume equality in
(5.1) and to let 6 = x, as we do henceforth. Now, consider the variational problem

of getting the inf S (T,¢). If R > 0, we say that the problem is
dEA

nondegenerate. If R is singular, suppose for convenience that R  takes

0

the form R = [

22

0 g ] , where R_,, > 0 and partition the vectors as follows:
22

X = (xl,xz). a = (“1'02)’ 8 = (81,82). ¢ = (¢1.¢2), where xz,az,B2 and ¢,

have the dimension of R22' As noted below, in the non-degenerate case, we have

A SRR
LN
..A_a‘:h.‘ Py "




LGA ) = T@-b(x)) 'R B-b(x))/2 = Ly(x, DT, o < 1,

(5.2)
L(x,8,8) = (1-e"T) ®-b(x)) "R 1@ -b(x))e5/2

= L xR eS(1-e™) , p = 1.

Define u = R-l/z(B-b(x)). Then the variational problem of calculating

inf S(T,4) 1is equivalent to minimizing

OEA
T -T T
T -
(5.3) S(T,p) = E‘J u'u ds or GLJi—-)f e’u'u ds,
0 2 0
p < 1 or ; = 1) subject to

(depending on whether

. 1
+=b(@) + R4, ®(0) = x, P(t)€3C for some t < T.

(5.4)
In the degenerate case, the variational problem is (5.3"), (5.49).
T , -T ,
(5.3") S(T,8) = + | wu,ds or (8 | e®u,u.ds,
2 0 272 2 0 272

subject to

¢, = b,(¢)
(5.4") 1o
b, = by @) + R u,, 0(0) = x , S()€3G  for some t <T.
6. The Values of kn And H(.,-,-).
In this section, we evaluate An and obtain the h(:) 1in (4.6) and
and the V of (1.3). Until further notice, we work with case (1.1). By

the discussion leading to (4.6), to obtain H( w0 ) we need only find

h(-) such that
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m(tn+ t+A)

(6.1) T a¥/A » h()a + o).
m(tn+ t) 3n

We use integrals in place of sums henceforth, since the ratios of the integrals
to the sums converge to unity in all cases, as n > ®. Alsc Jn ~ En means
that Otn/Bn + 1 as n + »©, By the definition of m(tn+ t), for t >0,

m(tn+ t)-1

6.1 The case o =1 and (1.1). By definition, m(tn+t) and A

satisfy

Thus m(tn+T) ~ neT and

(6.2) AL~ n'l(l-e—T).

Now, in order to evaluate (6.1). We need only evaluate (6.3) for p=1

m(tn+t+ 4)
(6.3) f s = h(e)a +0(d)
m( tn+t)
e - i N
Since this equals (l-e ") e (l-e ), we have h(t) = (l-e ) e .

6.2 Th: case p <1 and (1.1). Here

T ~ s Pds . An ~ s_zpds .

m?cnﬂ‘) m cn+'r)
n n

N o ) B s : .
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1 P

We have m(tn+1')1'p =nt? 4 (1-0)T or m(t_+T) ~ n[l+T/nl- }, and
m(tn4-T)~n ~ Tnp. This yields Xn ~ Tn—p. Now, evaluating (6.3) yields
(6.3) = A/T + 0(Ad). Thus h(t) = 1/T.

6.3 The case P =1 and (1.2), with 1> 2Y. Here A is defined

_lnzy-l(l_e—T(l-2Y)). To obtain the proper

by (4.4'). Thus Xn ~ (1-2Y7)
weighing function h(*), we need to evaluate

rm&n+t+A)
(6.4) s‘zp*'”ds/xn = h(t)d+0 (4)
m(tn+ t)

The left side of (6.4) is asymptotically equivalent to
8(1-2v)e T2 (1 o TA=204"1 4 50y = An(r) + 0 (A).

-p+2Y and
n

6.4 The case P <1 and (1.2) with ¢ > 2Y. Here A ~T

h(t) = 1/T.

6.5 The Lagrangian L(*,*,") and V of (1.3). Since L(',",") and !

Xn have common factors, we define some new terms in order to obtain the

simplest form of the asymptotic estimates. Define the set (replaces A 1in the

degenerate case) :

Ay = :000) = x, &) = b,(4), #(t)EIG, some ¢t < T}.

For (1.1) the L(:,*,*) are given by (5.2). Define

MASASIRR ORI I, S L
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w|
]

T .
inf { L0(¢(s),¢(s))esds
$EA ‘0

|

T .
§0 tnff Ly (®(s),0(s))ds
Q€A ‘0

=D T . s
$, = inf J LO(‘D(S),‘P(S))E ds

¢€AD 0

_ T .
sg - inf J Ly (9 ()9 (s))ds.
@EAD 0

For the Kiefer-Wolfowitz procedure (1.2), we need the definition

- (T . LoV«
Sl(kw) = inf J Lo(ib(s),‘ﬁ(s))e(1 2Y)hds.
PEA 'O
Define '§? (kw) similarly, with AD replacing A. .

For (1.1), we finally obtain for the non-degenerate case

oo -1 n _ = _
lim n * log Px{TG_i T} = -5 (for p = 1)

(6.5)

lim n™° log P {10 < T} = -5  (for P < 1)

For the degenerate case, replace S and S by §g and 5? , resp., in (6.5).

All g.s are continuous in x in a netghborhood of U, For (1.2), we have

for the non-degenerate case

P Ly gy




lim n"(l-ZY)
n

(6.6)

Um0 P25, p {15 <

n X -

with the obvious alterations of the

n
T <
log Px { o <

=26~

T} =

right

Note that S, > S.. This, together

1 0

implies the 'considerable' superiority of

-§1(kw) . (k=1)

-S. , (P<1)

side for the degenerate case.

with the relationship n>n'" for p<1,

< s -1
the coefficient sequence Hn = n .

IR S AL
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