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ABSTRACT

~;Equations of Hamilton-Jacobi type arise in many areas of application,

including the calculus of variations, control theory and differential games.
— ST

Recently M. G. Crandall and P. L. Lions established the correct notion of
generalized solutions for these equations. This article discusses the
convergence of general approximation schemes to this solution and gives, under
certain hypotheses, explicit error estimates. These results are then applied
to obtain various representations. These include “;;x~min"r;epresentations of
solutions relevant to the theory of differential games (which imply the
existence of the “;alue"kof the game), representations as limits of solutions

of general explicit and implicit finite difference schemes, and as limits of

several types of Trotter products.
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SIGNIFICANCE AND EXPLANATION
Equations of Hamilton-Jacobi type arise in many area of application,
including the calculus of variations, control theory and differential games.
However, nonlinear first order partial differential equations almost never
have global solutions, and one must deal with generalized solutions. Recently
M. G. Crandall and P. L. Lions established the class of viscosity solutions of

equations of Hamilton-Jacobi type and proved uniqueness within this class.

Moreover, several results concerning the existence of this solution were given
by M. G. Crandall and P. 1. Lions, P. L.Lions, G. Barles and the author. This
paper discusses general approximation schemes with applications for the
viscosgity solution and gives, under certain hypotheses, explicit error
estimates. These results are then applied to obtain various

representations. These include "max-min" representations of solutions
relevant to the theory of differential games (which imply the existence of the
"value” of the game). In particular, under certain assumptions, the solutions
can be represented as the uniform limit of repeated min-max operations on the
solutions of linear problems. Other representations include limits of
solutions of general explicit and implicit finite difference schemes (with

error estimates), and limits of Trotter products. el vy e /7//'
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APPROXIMATION SCHEMES FOR VISCOSI™Y
SOLUTIONS OF HAMILTON-~-JACOBI BEQUATIONS

Panagiotis E. Souganidis

INTRODUCTION

Recently M. G. Crandall and P. L. Lions ((5], also see M. G. Crandall, L. C. Evans and
P. L. Lions [4]) introduced the notion of the viscosity solution of nonlinear first order
partial differential equations. They used this notion to prove uniqueness and stability
results for the Hamilton-Jacobi type equations, in particular the initial value problem

3u

2y He,xou,0u) = 0 in R x (0,7]

(0.1)

u(x,0) = u (x) in R

and the stationary problem

(0.2) u + AH{x,u,Du) = v in l“

where H : {0,T) X !P x R X R“ + R is continuous and Du = (3u/3y1,...,3u/ay“) denotes
the gradient of u. The existence of this solution for the problems (0.1) and (0.2) was
established by M. G. Crandall and P. L. Lions (5], P. L. Lions (18], [19), P. E. Souganidis
[20] and G. Barles {1]. Moreover recently M. G. Crandall and P. L. Lions ([6]) proved the
convergence of a general class of finite difference schemes to the viscosity solution of
the model problem

N
%f 4+ HDu) =0 in R x (0,T)

(0.3)

ulx,0) = u (x) in R

and gave an explicit error estimate.

This paper discusses the convergence of general approximation schemes to the viscosity
solution of (0.1). 1In particular, it contains a general theorem which roughly says that
any “"reasonable" scheme converges to the viscosity solution of (0.1). Under certain

hypotheses explicit error estimates are also given. (Some of the arguments in the proof of

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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these estimates parallel the ones in [6])). We then use this abstract theoream to establish
several results concerning the convergence of Trotter products and (explicit and implicit)
finite difference schemes with error estimate. Moreover, special representations (min-max)

as well as the applications of the viscosity solution in differential games and control

theory are ai 4 in tion with the above mentioned theorem.

The statement of the abstract results as they apply to (0.1) is rather lengthy and
complicated. We therefore defer it to a later section. Here we describe a simple version
of these results related to the model problem (0.3) and show how one can use them to obtain
some representations of the viscosity solution as well as the convergence of the Trotter
formulas.

To this end, for p > 0 we introduce a mapping P(p) : auc(a”) + Buc(ly)(') such
that for every u,; e BUC(IN)

(P1) P(OJu=n
(F2) The mapping p + F(p)u 1is continuous in BUC(IF)

(r3) There is a constant c' > 0 such that

(*)
IF(p)ul < Cp + lul

(P4) Fip)(u + k) = P(p)u + k for every k € R

and

(rs) 1r(plu - P(p);l < lu -~ ;I

Before we state any more assumptions we should remark that, in view of a result obtained by
M. G. Crandall and L. Tartar ({7]), (F4) and (P5) imply that PF(p) 1is order preserving in
auc(l”). In particular, if for u,v €& BUC(IF) it 18 u(x) € v(x) for every x € IF,

then

F(plu(x) < Fiplv(x) for every x € nN .

(*)BUC{() 1is the Banach space of bounded real valued uniformly continuous functions
defined on (.
(**)Por u : 0 *+ R, tul = sup [u(x)|

xe(

-d=
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Next we make an assumption concerning the behavior of F(p), when it is applied to

1
functions u e BUC(R ) N % (l“)( ' particular, we have

-
(.), then r(p)nec:"u“) and

(eoe)
1p?P(p)ul < IDVI

[1f ue c:"(-")

(r6) | Moreover

IF(p)u - ul < Czp

where C, is a constant which depends only on IDul.

Finally, we want to assume that, when applied to smooth functions, F(p) behaves as a
"generator®. We have

For every ¢ @ c:(.N)(f)

|5-P—’-";;’- + R(D$)M + 0

(r7)

as p + 0. Moreover, for each R > 0 the limit is

uniform in ¢ provided that ID§l, lbzol < R(").

Now for every partition P = {0 = to < t' € 4u0e ¢ tn(P) =17} of (0,T] and for

N .= (tte)
uy € BUC(R ) define L QT * R by

uP(x,O) - uo(x)

(0.4) up(x,‘r) = PF(T - ¢ 1)\xl,('.t J(x) 1if T € (ti_

4=1 ,t1] for some

i- 1

i = 1,...,n(P’ .

1
(), (9%}, (9ew) Co; (0) is the spaceoo; (bounded) real valued Lipschitz continuous
functions %!lnes Im 0. ror uec ' (0),Ipul denotes the Lipschitz constant of u.

(*) C‘(‘b {() is the space of k times continuously differentiable functions defined
on 0 thieh together with their k derivatives are bounded).

2 2
(#4) Por & : 0+ R such that 3 — exist, 1pig1 = | 12t—y |
axiaxj 103 Bxlaxj

(110) o = " x (0,71, oy = 2 x (0,71,

-3-
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The theorem is
Theorem. Let H : l“ + R be continuous and assume that for every p » 0
P(0) : BUC(R') + BUC(R') satisfies (F1), (P2), (F3), (P4), (F5), (P6) and (P7). If, for

9, e BUC(IP) and a partition P of (0,T)], ue BUC(QT) is the viscosity solution of

(0.3) and w, : 6,,, + R is given by (0.4), then
-
(0.5) sup _ lulx,t) - up(x.t)l + 0 as |P| » 0( )-
(x.t)eQ.r

If, moreover, H € co"(ly) and F(p) satisfies

2 N
There is a constant C3 > 0 such that for every ¢ € Cb(l )

(re)
|—'-19J-3;’- + HIDAI < Cyo(1 + 14N + 10241)

then for every uj e c:"(n")

1/2
(0.6) sup fulx,t) - u_(x,t)| < K|P} /
- P
(x.t)eQT

where K is a constant which depends only on Iuol and IDuol.

Next we describe how one can obtain, in view of the above theorem, the convergence of

N
the Trotter products related to (0.3). In particular, for i = 1,2 let Hi : R + R be
continuous. Then for uy e nuc(n“) we write ui(x,t) = si(t)“o(”) for the viscosity
solution of

au1
s:— + H‘(Dui) = 0 in QT

. N
u, (x,0) = u,(x) in R .

Por p >0 and u e BUC(IN) let F(p)u : NF »+ R be defined by
F(plu(x) = 82(9)81(o)u(x)
It is not hard to check (and we do so later) that F(p) satisfies (F1), (F2), (P3), (F4),

(PS) and (P6). Moreover, it is true that F(p) satisfies (F7) (and (¥8) in the case that

(*) Por a partition P = {0 < t_<t_< ... < €

0 1 =7} of [0,T), IP| = max(t, - ¢ )

(P) i i i-1

-4-
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for 1=1,2 u e ") wien mam e Hy. 1In view of the theorem, if, for

u, e auc(l"). ue BUC(ET) is the viscosity solution of

du
ET (n1 + az)(bu) 0 in Q‘r

u(x,0) = uo(x) in l“

- - € o0 =
and P = {0 ty < t, < tn(v)

for some i = t,,..,n(P),

T} 1is a partition of (0,7}, then, if t € (t,_,.t,)

(0.7) u({x,t) = lim (s (t - ¢

Un 15, 11?840t = £ ) el s (808 (¢ ug) (x)

and the limit ie uniform on Q.

Pinally to indicate how one goes about verifying the assumptions of the theorea we
give one more example concerning a special representation of the viscosity solution. This
result is closely related to the existence of the value of zero~sum differential games as
we will explain later. In particular, for the problem (0.3) let us assume that

gec” ) 1is such that
(0.8) H(p) = inf sup {h(y,z) + £{y,z)ep}
yey zez
wvhere Y,Z are subsets of llp ,l!q respectively (for some nonnegative integers p,q),
£ :YXx2Z» IN and h : Yx Z+ R are such that
Inty, 2}, If(y,2)] < B for (y,z) e Y x 2
and for p,q € lp p*q denotes the usual inner product. Then, for p > 0 and
ue suc(l“). let F(p)u : l“ + R be defined by
(0.9) Flp)u(x) = sup inf (-phiy,z) + u(x - pfly,2z))} .
yey zez
It is rather trivial to check that wip) ; BUC(l") > BUC(IN) satisfies (FP1), (F2), (r3),

(Fd), (F5) and (P6). Here we verify (F8). To this end, for ¢ e cé(l“) we have

-5-

B S veltaiod o B e S UL, LSX ST




PRGNS

> +9 (x=p£(y,2))=9(
(R OIIE) | gipp(x))| = foup tne (RROLZIH(xpELY, 8 2 + miopea)) =
) P
yey zez

= |sup inf {215:2511;511:2L51 - h(y,z)} + inf sup {h(y,z) + £(y,z)*Dp(x)}| =
yey zez yey zez

= |sup inf {’(X-Pf(y;z))-t(x)

- hiy,z)} - sup inf {-h(y,z) - £(y,z)+*Dp(x)}]| <

yeyY zez yey zez
£ 2,
< sup sup |9-"‘—‘L(1;£’-’—'ﬂﬁ + £y, 09 (x)| < 2= p1n?pr .

yey zeéz

1f, for u, @ sUC(®) and a partition P of [0,T], ue auc(aT) is the viscosity
solution of (0.3) with H as in (0.8) and u, : ET + R is defined by (0.4), then
up(x,t) + u(x,t) as [P} *+ 0 and the limit is uniform on ET' 1f, moreover,
uy e C:'i(lr), then
fu - upl < K|P|1/2
where K depends only on luol and IDuol. This result, in the case that
sup inf {h(y,z) + f(y,z)°p} = inf sup {h(y,z) + £(y,z)*p}

yey zez zeZ yey
for every p € IP, implies {because of the uniqueness of the viscosity solution) that the
differential game associated with the above H has a value.

The paper is organized as follows. Section 1 recalls the definition and some
properties of the viscosity solution as they are stated in (4] and [5]. Moreover, it
includes the existence results and some further properties of the solution as they are
stated in [1] and [20] as well as the general assumptions made on H. Section 2 is devoted
to the abstract convergence theorems. In particular, two theorems are given. The first
deals with schemes which satisfy an (F7) type assumption (such an assumption is identified
as a “"generator” property). The second theorem corresponds to schemes which do not satisfy
such an assumption directly. In section 3 we obtain several min-max repraesentations of the
viscosity solution of (0.1). Section 4 contains a short discussion about two players zero-
sun differential games. With the help of sections 2 and 3 it is shown here that the value

of such differential games exists. Section 5 is devoted to the convergence of several

-6~
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numerical schemes (explicit and fully implicit finite difference schemes) and gives error
estimates. In section 6 we establish the convergence of several types of Trotter
formulas. Detailed references for all the above are given in each section.

Pinally we would like to thank Professor L. C. Evans for suggesting some of these

problems and especially Professor M. G. Crandall for helpful discussions and good advice.
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SECTIOR 1
We begin this section by describing the assumptions on H. Throughout this discussion

we will agsume:

H ec([o,T] x l“ X R Xx R“) is uniformly continuous on

(H1)

N (")
fo,T] x R x [~R,R] X BN(O,R) for each R > 0

and L
[ There is a constant C > 0 such that 3
(H2) C= sup _ |H(t,x,0,0)! <= .
(x,t)EQT

Moreover, we require gsome monotonicity of H with respect to u. More precisely, we
agssume:

For R > 0 there is a YR € R seuch that
(H3) H(t,x,xr,p) - H(t,x,s,p) > YR(r - 8)

for xel“, -R€C€g<r<R 0 t<T and peiN.

Finally, we will have to restrict the nature of the joint continuity of H. The following '

Lipschitz-type assumption will be used l1

For R > 0 there is a constant Cgp > 0 such that

(H4) Inte,x,x,p) - Bt,y,r,p)] € C (1 4 Iphix -y, 3
for t e [0,T], |r|] € R and x,y,p € o

Next we state some assumptions on H which we are going to use later in addition to

the above. 1In particular occasionally we will assume:

For R> 0 there is a ER > 0 such that
(us) IH{t,x,r,p) - H{t,x,s,p)| < ixlt - 8|

N N
for x @R, -R<s<r<R O0Ct<T and peRr

N
" By(xg,R) = {(xer : |x ~ xol < R}

B T L T TR




For R> 0 there is a N > 0
(H6) Ia(t,x,x,p) - H(t,x,z.p)| < NR(l + lphle - £l

for t,; e [0,T), |r]l < R and x,p € RN
and finally

For R > 0 there is a My > 0 such that
(u7) |a(t,x,x,p) - H(t,x,r,q)| € anp - ql

for t e [0,T), x € IF, Irl] <R and p,g e B with Ipt,lal < R .

We continue now with the definitions of the viscosity solution of (0.1) and (0.2). We

have

Definition 1.1 ((4], (S5]). Let H € c((0,T] x lF x R X RP)- A function u € C(QT) is a

viscosity solution of

du
3t + H{t,x,u,Du) = 0

] (&8
if for every ¢ € C (QT)

(1.1) if u - ¢ attains a local maximum at (xg,ty) € I then

3¢
3t (xo,to) + H(to.xo.u(xo,to),DO(xo,to)) <9

and

(1.2) 4if u - ¢ attains a local minimum at (xo,to) e QT' then
3

3t (xo,to) + H(to,xo.u(xo,to),D¢(xo,to)) >0

If, moreover, u € c(éT) and u(x,0) = uo(x) in !F, we say that u is a viscosity

solution of (0.1) on éT'

Remark 1.1. Definition 1.1 is a combination of Definition 2 and Lemma 4.1 of (4].

(*) ¢ )( ) is the space of infinitely many times continuously differentiable functionsg of
conpaég support) .

-9~




Definition 1.2 ([4), [5)). Let HecC(R x Rx R), A >0 and ve c(®). A function

ue C(IP) ia a viscosity solution of (0.2) in IF, if for every ¢ € c-(!N)
(1.3) 4if u - ¢ attains a local maximum at xq e IP, then
u(xo) + Xﬂ(xo,u(xol,b¢(xo)) < v(xo)
and

(1.4) 4if u - ¢ attains a local minimum at xq € IF, then

u(xo) + Xﬂ(xo,u(xo),D¢(xo)) > v(xo) .

Next we state the theorems about the uniqueness and existence of the viscosity
solution of (0.1) and (0.2) as well as some other important results of {4}, (5]}, [1] and
{20] concerning this solution.

Theorem 1.1 ((1}], [20])('). Let H : [0,T] x !F X R X IF + R satisfy (H1), (H2), (H3) and

(H4). For every u, € BUC(R) there isa T = Tul) >0 and ue BUC(C-)T) such that
u is the unique viscosity solution of (0.1) on éT' If, moreover, YR in (H2) is

independent of R, then (0.2) has a unique viscosity solution on ET for every T > 0,

Theorem 1.2 ({11, (201)'"). Let H : R x Rx R® » R satisfy (A1), (H2), (H3) and (R4).

For every v € BUC(IP) there is a Xo - Xo(lvl,YR) such that, for every 0 < 1 < XO.

(0.2) has a unigue viscosity solution u € BUC(!N) in R

Proposition 1.1 (1.3 [5), I.11 [(5]). (a) Let ue C(QT) be a viscosity solution of

du
3t + H(t,x,u,Du) = 0 in QT .

If for ¢ e C1(QT) with ¢ > 0 and v e C‘(QT)

(*)The uniquenegs of bounded uniformly continuous viscosity solution was proved by M. G.
Crandall and P. L. Lions in (5].

-10=




(1.5) 4(u - ¥) attains a positive maximum at (xo,to) € Q,, then

) (u(xo,to) - 0(x°,t°)) %
Q(XO.to) it

Ell
(xgotg) + 30 (xg,t0)

u(xo.to) - 0(x°:t°)
0(x°.t°)

+ H(to,xo,u(xo,to). - DO(xo,to) + W(xo,to)) <0
If for ¢ e C'(Q,r) with ¢ >0 and ¢ e C‘(Q,r)
(1.6) ¢(u - ¢¥) attains a negative minimum at (xq.t4) € Oy, then
(u(xo'to) - V(xo.to))

- E1 ) k17
4lxq,t,) at (Xgrto) * 3y (Xgety) ¢

“(xo 'to) - "(Xolto)
$0x,,t,)

+ n(to,xo,u(xo,to). - N(xo,to) + w(xo,to)) >0
(b) Let T >0, Y€R and g,h @ C([0,T)). Suppose that, for every
-
nec ((0,7)), if g - n attains a strict local maximum at ty @ (0,T), we have
U + <
n (to) Yg(to) h(to)
Then for 0 < s < t< T
t s t k4
(1.1 e'g(t) < ¢"%(s) + [ & n(rrar .
s
Remark 1.2. The assumptions on ¢ in the above proposition are equivalent to saying
that g is a viscosity solution of
g' +Yg< h
as it is explained in (4], (5].

Proposition 1.2 (VI 1. (5], IV 1. (5]). (a) Por € >0 1let u e C.(0) bea solution

of
3“!:
reli cAuc + He(t,x.uc,nut) =0 in Q'r

ut(x,O) =yu_ (x}) in R

[/

du du
€ € N
with 5% ¢ axiaxj e C(QT). Assume "c +# H uniformly on [0,T] x R x ([=-R,R] x a“(o,k)

-11=
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for each R > 0. 1If cn + 0 and u, + u locally uniformly in Qn, then u € C(QT) is

n
a viscosity solution of
3du
5: + H(t,x,u,Du) = 0 in QT .
If, moreover, “Oe * uo uniformly on !P and uc + u uniformly on ET’ then u is a
n n

viscosity solution of (0.1).

2
{(b) Por € > 0 let u ec (IF) be a solution of

- A + + A u '} = v in R .
Ye e Hs(x' e'D“c’ €

Assume Hc + H uniformly on RN x [=R,R] x BN(O'R) for each R > 0 and ve + v
uniformly on . o1r en + 0 and v + u locally uniformly on lp, then u € C(IF) is

n
a viscosity solution of (0.2).

Proposition 1.3 (I.2 [5]). (a) Let u, e C(BT) be a viscosity solution of

du

m
5;— + H_(t,x,u-,bu-) 0 in QT

N
um(x,O) - uO-(x) in R

Assume “m + H uniformly on (0,T] x IN x {-R,R] x BN(O,R) for each R > 0. 1If um +u
locally uniformly in Qp, then u is a viscosity solution of
3u

sz + H(t,x,u,Du) = 0 in QT

If, moreover, u°m - “0 uniformly on IN and um + u uniformly on 6?' then u is a
viscosity solution of (0.71).

(b} Let w, e C(IP) be a viscosity solution of um + xnm(x,um,bum) - vm in lN.
Assume H.l + H uniformly on RN x [-R,R] x B“(O,R) for each R > 0 and v“l + v

uniformly on IP. If u, + u locally uniformly on !N, then u € C(IN) is a viscosity

golution of (0.2) in W'.

The following results of [20] give estimates on the “off the diagonal"™ difference of

the viscosity solutions of two problems of the form (0.1) or (0.2). Moreover, they imply

-12-




important a priori bounds on the norm, the Lipschitz constant (in the x variable) of the

o N
solution u and the differences lu - uol . fu=vli, To this end, let g e co(l ) be such

that

0<B< 1, B(0O) =1, IDBI G2, IDB| <4
(1.8)
B(x) =0 if |x| > 1

Moreover, for € > 0 let Bc(x) - B(f). Pinally, for a function f : 0 *+ R 1let

(1.9) w!(r) = sup [f(x) - £(y)!
Ix-y|<x
x,yel

denote the modulus of continuity of £. We have

Proposition 1.4 (1.4 [20)). Let u,u e BUC(ET) be viscosity solutions of the problems

) ) - - -
a—: + R(t,x,u,Du) = 0 in Q) 3¢ * Blt,x,u,0u) =0 in Q)
and
N - - N
ul(x,0) = uo(x) in R u(x,0) = uo(x) in R

- N - N
respectively, where Uy, € BUC(R) and H,H : [0,T] x IF x Rx R + R satisfy (H1) and

(H3) with the same constant YR < 0 for each R > 0. Let Ro - max(lul,lﬁ!). I1f, for

>
R Ro, €>0 and Y = YR' De'lb are so that

D, = {ix,y) e d‘x IF : |x ~ yl € €}
and

a = {ttxyzp e 10,7 x R x Rx &Y,

-YT
(x,y) €D_,Irl < min{lul,tv1},|p| < uin{-s-%—— + 1,1}}

where
L = min{ sup IDu(+,7)!, sup I1Dul*, 1)1}
0<1<T 0<T<T

then for every t € (0,T]

-13-

g e




| it

(1.10) sup  {lux,T) = U(y,T)] + 3RV B_(x - y)} <
(x,y)eDc

<o sup (Iuo(x) - ;o(y)l + 3R8 (x - y)} +
(X;Y)GDE

-y T -
+ e Y T sup |A(t,x,xr,p) - H(t,y,r,p}| .
(talelrlp)eAE

Proposition 1.5 (1.5 {20)): Let H : [0,T] x l“ x R X l“ + R satisfy (H!) and (H3) with

. YR < 0 for every R> 0. 1If, for uy @ wc(l“), ue BUC(ET) is the viscosity solution

of (0.1) in Q‘r‘ let R> 1y and Y = YR. The following are true

(a) If H satisfies (H2), then for every T € [0,T]
(1.11) Tuls, 001 < e Y '(tC + tugh)

where C 1is given by (H2)

0,1 N
(b) If H satisfies (H4) and u(*,t) e cb' (R) for every T € [0,T) with
L = gup WIDu(*,t)l, then for every Tt € {[0,T]
o<T<T
-Yt
(1.12) fouls,t)t < e (Lo + T[Cn(1 +L)])

where Lo = lDuol and Cp is given by (H4). Moreover,

T(ZCRe.YT'Y)
{1.143) L<e (Ly + 7)) .

(c) 1If uy e c:'1(l"), then for every 1 € [0,T]

(1.14) tu(*,1) - ud < te "' sup _ [H(t,x,r,p)| . |
0 -

(x,t)eQT
jel<tu_l

|p|<|03°|

1 N
(4) 1If, for every 1 € [0,T], u{e,T) € Co' (R) and sup IDu(*,T)l < L, then
b o<t<T

0,1 -
ue cb' (QT) and for t,s e (0,T]




(1.18) Tuf(*,T) - u(*,s)l < |t - llQ.Y’ sup _ |n(t,x,z,p)| .

(x,t:)e'{z,‘P

{ri<tul
153099

Proposition 1.6 (3.3 (20] ). Iat u.; e BUC(R.) be viscosity solutions of the problems

u+ AH(x,u,Du) = v in R and U+ Ad(x,3,00) = v in R

respectively, where u,ﬁ t l' x R X l" + R satisfy (H1) and (H3) with the same constant

'n for each R > 0 and v,; e !UC(IN). Let Ro - ux(lul,l\-ll). If for R > R°' €E>0

and Y = v., Dc"c are so that

D, “ltxy) e x ' ; Ix -yl <€)
and
A, = {(x,y.x,p) € M xax : (x,¥) €D,
- 6R
Irl < min{tuf,dut},lpl < min{Z= + 1,1}}
where

L = min{iDul,l1Dul}

and, moreover,

1+Ay >0
then
(1.16) sup  {lulx) = uly)] + 3R8_(x ~ y)} <
(‘oY)eD:
€ ~— aup  (lv(x) ~ S(y)| + 3R(1 + AY)B_(x - y)} +
1 + )y €
(x.y)ebt
A -
L ruracve sup [R(x,8,p) - H{y,s,p)] .

Vel (x-Yr.aP)eae

Proposition 1.7 (3.4 {20]). Let H: l“ x RX R“ + R satisfy (H1) and (R3). If, for

ve BOC(I'), ue nuc(ﬂ') is a viscosity solution of (0,2) in l". let R > ful and

Y = YR' If 1 + Ay > 0, the following are true:

-i5=-

Ty YT T T
—— .

-
I
n
4
1

PR F G TP N

pr




b rtnst s

FRTT

e et e s+ - vl S

|
!
{
i
3
i
i
I
!
I
!

(a) If H satisfies (H2), then

1

(1.17) Tut < m-

(AC + V1)
where C 18 given by (H2)

0,1 N 0,1 N
(b) If H satisfies (H4), v € ch’ (R) and ue cb' (R), then

1
(1.18) iput < T+ ay [tDvl + XCR(l + IDul)]

where CR is given by (H4). Moreover, if 1 + A(y - CR) > 0, then

1
(1.19) toul < T N (1ovt + Acp)

1, N
(c) If ve C:' (r), then

A
(1.20) fu=-vl < ™— sup_ |H(x,r,p)| .
1+ )y xeR“
Iri<ivt
|pl<ipvl

We conclude this section with some results concerning the behavior of the viscosity
0,1
solution of (0.1) or (0.2) in the case that H satisfies (H4) and ug or ve cb’ (n“)
respectively. We have

Proposition 1.8 (2.2 {20}, 4.2 {20)}). (a) 1If, for H : (0,T] x RN X R X R“ + R

0
- 0,1 =
Theorem 1.1, viscosity solution of (0.1) in QT, then u e Cb' (QT)' Moreover, the

0,1 -
satisfying (H1), (H2), (H3) and (H4) and u_ € Cb' (RN), ue BUC(QT) is the, provided by

Lipschitz constant is estimated by Proposition 1.5.
(b) 1If, for H : RF x R X np + R satisfying (H1), (H2), (H3) and (H4) and
0,1, N N
ve cb' (R), ueBUC(R) is the, provided by Theorem 1,2, viscosity solution of (0.2)

0,1 N
in lp, then u e cb' (R). Moreover, the Lipschitz constant is estimated by Proposition

1.7.
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SECTION 2

In this section we deal with the convergence of general approximsation schemes to the
viscosity solution of (0.1). Moreover, under certain assumptions explicit error estimates
are given. In particular, we prove two theorems, which, in the applications we examine
later, lead to the same conclusion, in the case that H is independent of u. The first
theorem is concerned with schemes, which satisfy a generator type assumption (like (F7),
(P8) in the introduction). In particular, we have
Theorem 2.1: (a) Por H : {0,T} x l“ x R X ll“ + R satisfying (H1), (H2) (with constant
C), (H5) (with constant L independent of R) and (H4), (H6), (H7) (with constants

0,1, N 0,1 -
CreNp/Mp regpectively for R > 0) and for u ecb (R) let uecb (QT) be the

0
viscosity solution of (0.1) in 51'. vor (t,p) €K = {(t,p) e [0,T} x loppol 1 0< p <t}
0,1, N 0,1, N 0,1, N
where P, = p,(lull) >0, let F(t,p,,) : Q,’ (R x cb' (m) » cb' (R) be such that
for every u,;,v,; e C°'1(RN)

b
(F1) P(t,0,u,v) = v.

The mapping (t,p) + F(t,p,u,u) is
(P2)
continuous with respect the 1 1 norm.

(F3) P(t,p,u,v + k) = P(t,p,u,v) + k for every k € R.

(P4) IP(t,p,u,u) - ul € C, where C1 - C1(Iul,lDul) » 0.

1
f'!‘here exists an r > 0 and L, > 0 such that if v(x) < ;(x)

N
for every x € R, then for any y @ l“, such that
(F5) Ivly + w) = vy + W), I9ly + w) = vly + w)] < Llw - wl
for every w,; e B“(o,pr), it is

Flt,0,u,v)(y) € P(t,0,u,v)(y)

where L = sup 0MIDu(*,t)! and E- nx(L1,L) + 1.
o<t<T

-{7=




[ There exists a constant C, > 0 such that

DC2
(v6) 1 tr(t,p 0t €@ “(lul +pC,)

provided that Ipul < L .

f There exist constants C3, C4 > 0 such that

T(c3+c4) -
e (IDuol + TC‘) <L

(r?) J and
p(C +C,)

tor(t,o,u,u)l <@ > 4 (ipul + oc,)

T
| provided that tul < ¢ 2(Iuol +7C,) and Ipul < L

and

2 N
Por every ¢ € Cb(l ) and x e R“ such that [Dé(x)| < L + 1, it is

iP(t,o,u,Q)(x) = ¢ (x)
p

(r8) + H(t,x,u(x),Dd(x))]| < Cglt + 1041 + lDz¢l)o

where L = gup !Du(*,r)} and c5 - cs(lul,lDul,L).
0<TL<T

For a partition P = {0 = ¢_< t_ < «es < t

0 1 =T} of [0,T], let u, 3 QT + R be

(P)
defined by

up(x,0) = uo(x)
(2.1) § wlx,t) = Fle,t = £, ou (e b, ) (et ))(x)

if te (t1_1,ti] for some i = 1,...,n(P).
Then there exists a constant K, which depends only on Iuol and lDuol, such that
(2.2) Iup - ul € KI!’IVz
for |P| sufficiently small.

(b) Por H : [0,T] x !F x R X !” + R satisfying (H1), (H2), (H4) (with constant

Cr for R > 0) and (H5) (with a constant L independent of R) and for u, e BUC(IF)

let u e auc(&T) be the viscosity solution of (0.1) in ET. For

-18-
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(t,p) ex = {¢,0) e [0,7) x (0,04 1 0t < p}, where p, = Pgllugt) >0, 1let

]
r{t,p,*,°) Bﬂc(l“) x wc(l') > soc(l") be such that, for every u,t-x,v,; e BUC(IN), it

satisfies (P1), (F2) (for u e c:"(lu)), (r3), (rF4) (for un e c:"(l“)) and moreover

There exists a constant C 6 > 0 such that

(ro) 17(t,0,u,v) = P(t,0,u,v)0 € Iy = v1 + pCglu - ul

- - 0,1
provided that u,v € cb' = .

There exists a constant C., > 0 such that

(r10) pc7
tr(t,p,u,u)l < e (lut + PC7)o

If ne c:"(n"), then P(t,po,u,u) @ c:"(n“) and

D(Ce*cg)
(r11) tDP(t,p,u,ull € o (IDut + DC9)

where C_> 0 and C -Cg(lul)>0

8 9
and
{Por ue c:"(n“) and ¢ € C:(l“)
(P12) J ‘L(EL&‘!:,—)-;_!.' n(t'.'n'm)' + 0 as o * )

Moreover, for each R > 0 the above limit is uniform

on u,8, provided that lul,iDul,ipsl,ID¢1 < R.

\

1f, for a partition P of 1(0,T], : 0.+ R is defined by (2.1}, then
Up R

(2.3) lup-uIOO as [p| *+ 0 .

Before we give the proof of the theorem we discuss some of its assumptions. 1In
particular, since non-expansive mappings commuting with the addition of constanta are
order-preserving and vice versa (M. G. Crandall and L. Tartar [(7]), (PS) is implied by (F3)
and

{P13) IP(t,0,u,v) = Flt,o,u,9)1 < kv - vl for u,v,v @ c:"(l“) .

-{Q-




Similarly, (P5) together with (

0
non~expansive on {u e Cb'

¥3) imply that, for fixed (t,p) and u, PF(t,p,u,*) |is

1(l.“) s 1pul < L+ 1}. In several applications we are going to

have (PF3) and (PF13), in which case the conditions on u in (P6), (F7) are irrelevant.

Moreover, instead of (PF8), occasionally we will assume

0,1
ror every u € Cb' (l?)

and ¢ e C:(l”)

(ri14) o

'r(t,p,u,Q) -¢) -4

+H(E,",u,D$)1 < C (1 + 1D§1 + 10210

where C, = C1o(lul,lDul)

10

which of course implies (F8).

the theorem are the ones on F.

rinally, we want to remark that the important hypotheses in

In particular, in part (b) one can assume a more general

condition than (H4) and the result is still true.

times, one needs (H4) to check (F11) and (F12).

However, in applications, most of the

Moreover, the assumption that the constant

in (HS) is independent of R has been made only for simplicity. In fact in the
applications one can always reduce to this case.

Proof of Theorem 2.1. (a) We begin with a lemma, which records some of the properties

of up. In particular, we have:

Lemma 2.1, For a partition P = {0 = ty € el < tn(p) =T} of [0,T] and
1. N -
u, € c:' (R), let W, : 0. * R be defined by (2,1). The following are true:
{a) Por every T @ [0,T)
TCz
{(2.4) lup(‘,f)l e (TC2 + luol)
and
0.1 N r(c3+c4)
. ’ .
(2.5) uP( 7) e Cb (R') and lDuPl ,I)1 < e (lDuol + TC4).

Moreover, if T @ [ti_ ,ti] for some i = 1,...,n(P), then

1

(2.6) lup(-,T) - uP(' M < C‘(T -t )

tioq i-1

- Tcz -
where C, =C,le (luol + Tcz), L)

(b) u, e BUC(QT)

-20-




Proof. (s) If T e [0,t], then, since IDuyl < L,

rcz
lup(-.T)l <e (Iuol + tcz)

and

t(c +C, )

\Du(c N <o 34 gyl + 1c,) .

A simple inductive argument, in view of (Fé) and (r7), implies (2.4) and (2.5). Moreover,
x
Af we choose & = c (e "'uuol + 2c,), L), then (2.6) follows immediately from (2.4),

(2.5) and (r4).

(b) This is obvious from (a), (F2) and the definition of wu,.

We continue now with the proof of (2.2). It is obvious that it suffices to show that :

there exists a constant Kqe which depends only on lual and Inuol, such that

172 (*)

(2-7)t sup _ (Q_Lt(uptx.f) - u(x,r))t) < X,lPl
(x,v )QT

for (Pl sufficlently small. Here we prove only (2.7)* since the proof of (2.7) is

identical. To this end, let “p bhe defined by

M, = sup _ [o-nt(u?(x,r) - u(x,r))*] .
(x,t)eQT

Without any loss of generality we may assume

!- (2.8) "r >0 .,

We know, in view of lesma 2.1(a), that there is an R, > 0, independent of the partition

; P, such that
! 1 < .
upl R‘

For R =« max(R dul) and ¢ = 1#17%, 1et 4 1 x R x [0,7) x {0,7) + R be defined by

(*) £ = max(r,0), r" = max(-r,0)
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T+s

L 2 +
¥(x,y,T,8) = e (u,(x,7) - uly,s)) +

I ¢+
ar "p

+ 3(R + 1)Be(x -~ y) + 3(R + ”Ye(t -8) -

where B (*) = B(.:) and Y_(*) -Y(';-) Vvith

B ecy(®), 8(0) =1,0¢8¢1, [0B] <2 0281 < 4, B(w) = 0 if [w| > 3

(2.9) B(w) = 1 ~ I\vl2 for |w| <

4
B(w) < 1/2 for |wi > %

and

-
Yy e co(n), Y(0) =1, 0< Yy < 1, Ipy| € 2, lozy| <4, y(t) =0 4if |t| > 1

(2.10) {y(e) = 1 -2 for It] <

73
2 and

73
Y(t) < 1/2 for lt] > 3
N N
Since 9 is bounded on R x R x [0,T] x [0,T), for every § > 0 there is a point
N
(Xy0¥,0T,08,) € R x R x (0,7T] x {0,T) such that
O(x1 Y, ,T',s1) > sup ¢(x,y,1,8) -8
(x,y,7,8)€R xR x [0,T]x [0,T)
o N N 2
Next choose [ € Co(l x R) so that 0< [ < 1, C(x1,y‘) =1, |Ipgl <1, |pz] < 1 and
N
define Y : R x R“ x (0,7} x [0,T] + R by
Y(x,y,T,s) = o(x,y,7,8) + 28%(x,y)

Since Y =& off the support of { and

Y(xi,y1,r1,a1) - 0(x1,y1,r1,s1) + 28 >

> sup ¥(x,y,T,8) + 6
(X,y.7,8)€R xR (0,7 [0,T)

there is a point (xo,yo,ro,so) e RN x RN x [0,T) x [0,T] such that
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{2.11) '(xooyoﬂo-

Moreover, for § < nin(gz, é HP),(xo,yo,to,.o) has the following properties

2
lxo - yol < (L + 28)e

(2.12) 4
ane (r - 8.2 ng~yol2
~Ye(To' lo) -1 - "2:;-2—' ,Bc(xoo yo) -1 - 52 .

To see (2.12) obhserve that, if for & < 1/2 either Ixo - yol > € or

v, - 'o' > €, then (2.11) implies

0

2(R+ 1) + (R + 1) + 28 > !(xo,yo,ro,.o) >

> ¥(x,x,t,T) > Q-Lt(up(x,t) - u{x,T)) + (R + 1) - % M,

and therefore

1
- +
28 > 2 np + R+ 1
which is a contradiction. Moreover, the above argument also shows that

1
Y(xo,yo,to,lo) > 2 "P +6(R+ 1) >0
Next observe that

_ r°+-°
B 2 ( ))+ + 28 > l 0
e up(xo,to) - u(yo,-o 2 Mp 2
therefore for § <« 1 M
rafor: 8 P
- %o*%
I ) n*sdlu o
e up(xgeTy) = ulyg:sy Y

Ll.e.
up(xo,to) - u(yo,lo) > 0.

Moreover, (2.1) again implies that

-23=

lo) > ¥(x,y,t,s) for every (x,y,1,s) @ IF x IF x {o,T] x [0,T)

( - - -
Ixo yol <eg, lro -ol <e, “p"o"o’ u(yo,-o) >0, Y(xo.yo,to,-o) >0




2(R + 1) + 3(R + 1)85(x0 - yo) + 3(R+ 1) + 26> 4

1
> Y(xo,yo,ro,ao) > Y(x,x,1,T) > Mt 3(R+ 1) + 3(R + 1)

therefore, since § < 1/24

1 26 1
0 " Y'>3 " 3R+ >3

i.e.

(2.13) B (x. ~ yo) = 1 -

Similarly, we have

2(R + 1) + 3(R + 1)1€(ro - 'o) 4 3(R+ 1) + 28 >

1
> !(xo,yo,ro,so) > ¥(x,x,7,T) » 2 "P + 3(R+ 1) + 3(R + 1)

and thus
(2.14) YC(TO -g8.) =1~

Finally, observe that since

Y(xo,y ,so) > ¥(x,y,7,8)

0'%o

and
up(xo,ro) - u(yo,so) >0

Yo is a minimum point for the mapping

-; (Yo+s )
y+ e u(y,so) - 3(R + 1)B€(xo -y) - 26:(xo,y)

N
therefore for every y e R it is

3R+ DB (xy = y) + 282lx ) - IR+ NB_xy = yo) = 260(x;,y) < i
Strgtey) Lty eey)
< e (u(y,so) - u(yo,so)) { e le0 - yol < 6(R + ')Lly - yol
|
!
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But this implies that

|=3(R + 1)ne€(xo - yo) + 250yc(xo,y°)| < 6(R + 1)L

therafore, in view of the choice of { and (2.13),

lx, = ¥o! < (L + 26)e2 .

0

There are several cases to be considered. These are: to >0 and sy " 0, to =0

and ’0 > 0 and to >0 and 8, > 0. We begin with the case ro >0 and 8y = 0.

1st case. TO » 0 and 8, =0

From (2,11) and
'(xo:Yovfolo’ > ‘(xO :Yotolo)

in view of (2.12), it follows that

2
T

uplxg,Ty) - uglyg) + 3(RO1IB_(xg = yg) + AR+ - —g') + 28gixg,y,) »
€

> ¥(x ,0) > “o(”a) - uo(yo) + 3(R+1)Bc(x° - yo) + 3(Ret) + 26c(x°.yo)

0'¥o'To

Therefore

2
T

3R+ Dluyleg,Te) = uglxg)l + 3R+ N1 = =3) > 3R+ 1)

2
€

But, in view of Lemma 2.1(a), we obtain:

T2
0 -

-— g T

c2 10
and thus

- 2
.1

(2.15) Ty € Che
where 51 is a constant which Aepends only on luol and lDuol and i{s given by Lemma 2.1

(a). Then again (2.11) implies
Iup(xo,to) - uo(xo)l + Iuo(xo) - uo(yo)l + 3(R+ 1) +3(R+ 1) + 28>

1
> V(xgiygiTge0) > THM + 2R+ 1) + IR + 1)

In view of (2.12), (2.15) and Lemma 2.1{a), we have

(2.16) M, < z[(<’:1)2 + Llouollez v a8e2 e 1)

25~




. T =0 >
2nd case 0 and '0 0

rrom (2.11) and (2.12) it follows that

2
s

0
uglxg) = ulyg,sg) + 3(R + 18 (x, = yo) + 3(R + 1t - :;) + 280(xg.y,) 2

> Y(xo,yo,o,lo) > ¥(x 0,0) >

olY°:
» uo(xo) - uo(yo) + 3(R ¢+ 1)ﬂs(xo - yo) + 3(R + 1) + 26c(xo,yo)

therefore
2
%0
3R + Nlulyg,sy) = uglyg)] + 3R + (1 - :;) > 3R+ 1)
1 -
But, since u @ co' (QT) with Lipschitz constant 1Dul, we have
s2
0
3 < IDulso
€
and thus
2
(2.17) s, < fpule .

Then again (2.11) implies

Iuo(xo) - uo(yo)l + Iuo(yo) - u(yo,so)l + 3(R+ 1) # 3(R+ 1) + 28>

1
> Y(XO,yo.O,lo) > 2 M, * I(R+ 1) +3(R+ 1)

and therefore .

2
(2.18) MP < 2(Iput  + Llnuol)ez + 46(:2 + 1) .

3rd case. TO >0 and 8, > 0

It_follows for (2.11) and (2.12) that s; is a minimum point for the mapping
'g(fo*l) 5 )
8+ e u 8) - 3(R+ 1)y _(t, -~ 8) + M therefore for s € (0,T] it is
]
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B
-8) =8y - - L
3R+ DY (T) = 8) = G2 My = 3(R+ Ny (1 = 8) + =M, <

Lz +m) St 4 )
20 200
e u(yo,o) -e u(yo,lo) <

< (B« 1ow)ie - sl < 6r+ (B4 1Dut)ls -

But then, in view of (2.10), we have

jt, ~ 8

0 K L K L
6(R + 1) ) < 6(R + 1)(2 + ipul) + o Mp S 6(R 4 1)(2 + 1pul + 21')
and thus
RL 1.2
(2.19) Ity = 8yl < (2 + Ipul + 2'1'):

Next observe that (xo,to) e Q‘l‘ is a point where O(up = ¥) attains a positive

maximum and (yo.-o) e Qr is a point where ;(u - J) attains negative minimum where

-

( -%‘('rno)
¢x,7) = o
g('nlo) %‘(n-o)
$ix,T) = u(yo,no) - 3R + 1)e ﬂe(x - yo) - 3(R + 1)e yc(t - '0) -
Ztresy) (t +8)  Frem)
~ 28e c(x.yo) + T L
(2.20) { -
- L e
¢(y,s) ~ e
- ;—'(toﬂ) li'(ro*s)
yily,s) = up(xo,to) + 3(R + t)e ﬂe(xo -y) + 3(R + e Ye“o - 8) +
L L
s(t_+s) (t, + 8) =(t_+s)
2'%0 __0 200
+ 28e z(xo,y) T HP e

This observation, in view of Proposition 1.1 (a), implies that
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- - i‘(f +8 )
L - L 200 -
0<3 (u(yo.lo) - #(yo.uo)) +J3UR 1)e Be(xg Yy) ¢
L L
- =(t +8_) (1 . +s8 )
L 200 _ - 270 007, -
+ 2 (R + Ve Ye(ro 'o) 3(R+ Ve ys(ro go) +
L L
= (Tt +8.) (T 48 )
L., 2 00 _a 2200
+ 2 e Clxgevy) =~ G Mp @ *
i (To + so) %(To*uo) _
-3 aT HP e + H(so.yo.u(yo,so),Dv(yo,ao))
if.e. - -
Y g(ro+so) g(to+s )
— . -
ar "o + 3(R + Ve YelTy = 85) €

L -
< 3 (u(yo,so) - up(xo,ro)) + H(so,yo,u(yo,so),DW(yo,so))

and, since Tt _ @€ (ti_

0 'til for some 1 = 1,...,n(P), also that

1

L
“2{T07ty-1)

(2.22) up(x,ti_1) < O(X,ti_t) + e (up(xo,To) - W(xo,to)) for every x € T

Moreover, in view of (2.9), (2.10), (2.11), (2.20) and the choice of [, the following are

true:

N e

ID¥(xg,t, ) = DVxg,T)] < 3 ID¥(xg, Tl IP]

-

(2.23) 14,6, 0 < 6(R + e T(L 4 )

2 LT 1
LIDTWLe e M € I2(R + e (62 +8)

Finally, during the proof of (2.12} we established that

Nt
2] 1]

(ro+ao)

- (t . +8.)
ID#(yo,ao)[ = [=3(R + e Dﬂc(x

o0
0o yo) + 28e Dyc(xo,yo)l <L

and thus

(2.24) IDﬁ(xo,To)l <L+ 1/2

=28~

—y




-LT
for & ¢ &—

7 since

Nt

(70010)
DV(xo,to) - D#(yo,-o) - 28e (Dyc(xo,yo) + Dxc(xo,yo))

Next observe that, 1if w,; e BN(O,(ro - t1_1)t) {(where r > 0 is given by (F5)),

then

W(x0 + "ti-“) - #(xo + V,t1_1)| <

< lﬂxo + 'lt1_1) - "(xo + "vti_‘) - W(xo'ti-‘l).(' -w| +
+ 1DHxg e, ) = DV(xg T))s (w = W] + IDH(xg,To)e (v = W)

therefore, in view of (2.9), (2.23), (2.24) and the choice of ¢,

Iv(xo + v,t1_1) - v(xo + w,t1_1)| <

- 1 tr . L _ =
< (12(7, t1_1)r(cz +68)e + 2w+ 1/2)|Pl + L+ 1/2) 1w - w|

1
So, since € = |P| /4, if 6§ <1 and |P| is so small that

1/2 1/2)eLT

(2.25) 121212001 + Ip| + g w+ e’ <12

then
Wixy + wet, ) = $lx, + w,t1_1)| <L |w-wl.

Moreover, and since in view of Lemma 4.1 (a)

IDuP('.t 1)! <L

1-
it is

Iup(xo + v,ti_1) - “p(xo + w,ti_1)l <L lw-wl

and thus (F3), (FS) and (2.22) imply that
up(xol‘o) b ’(‘0'10 - tl""“?‘. lt1_1)lup("ti_1))(x°) <

Lt
< r(ro,fo- ti_‘,up(',t1_1),0('.t1_1))(x0) ‘e (uglxg, 10) = $lx,,710))

Therefore we have
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F(T0 T = € oup (ot ) ple e ) x ) = wixgt, )

0 < = +
0~ ti-1
'g('o’t1-1’
Yty g) ~ VKT (e = )ty (x,T0) = $ixg, 7))
To = ti-q Yo~ g
But since
L
-=(t =t )
270 11 - -2
- 1. _L ()
T -t <-2t7g I
0~ “i-1
?"o*‘ ! Lr
0 < up(xo,To) - *(XO'TO) = e Y(xo,yo,ro,so) < 9(R + 1)e
and
Yix_,t ) - ¥ix,.,T) i'('r +8,) -
0 -1 0’0 1 2'T0%%0
To-t C-wurYpe t 2 (ulygesg) = ¥ixg.Ty))
0 1-1
<R_ . L R LT
+Lrrg(6R+ 1 +1+7) + 3R+ N]eIp|

in view of (F8B)

1
(2.28) T HP e

N et

+C
where r = ¢,
F 5

(2.29)

N

(To+sg) Y (Tg = 85) - v (&, 4 - 5)

+ 3(R + e
To T tiog

, (H5), (2.23) and (2.24), the last inequality implies

(T°+so)

NIt
NIt

(vt +8.) v (1 - 8.) -y (t _ ~-8)
~3rRe el 0 0 £ O 2 . te i-1 o,
0 i-1

(up(xo,ro) - u(yo,so)) < -H(to,xo,up(xo,ro),DW(xo,t1_1

2 =(R_ =
g1+ 1Db(e e, 1 + 1D (e, _INIP] + L7+ (L + (R + D)e

i
R,L) 1is given by (F8), provided that

L, ,2 Al
3 (L+3)Ipl <3

=30~
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Now we add (2.21) and (2.28). Using (2.20), (2.23), (2.24), (H7) with

"mx(k;hﬂ) and

- LT
lbv(xo,ro) - Dv(yo,-o)l < 48e
we obtain
(T +8.)

0 | = -
oM e + L(up(xo,ro) - u(yo,lo)) < ﬂ(lo,yo,u(yo,so)Dv(yo,so)) -

NIy

- - - LT
= BT 0 00y 70 ) DR yg e ) + LB ¢ @ ¢ R+ 1)y 4

(r +s) Y (t
same e O V(i - u o 22

[ 2] ] 1]

- sg) =Y (e - ao)) .
To ~ %y

- . 2. .. - < LT . L 1
+C(1 + UDb(e e, I+ 0DWLe e, IFIPl + IS || + M(48e™ + 2 (L + 5)IrD)

and therefore, in view of (H3), (H5), (H4), (H6), (2.12) and (2.19),

(t

(Y[~ 11

+8 ) - -
1 0% % A 1 = ==
(2.30) =M < (a8e” + 2 (L +5)IPK + EC,IP| +

+ 81+ 6+ 1ML+ 8) ¢ 12tr + T+ 8))1pl +
€

.

LT, RL 2
+(Cp + B+ Le )(123&4-2!;+25 + L + Ipul)e

Lr -
3R+ 1)e =R - LT
+ ) 1| + 1.(“ + (L +3)(R+ N)e|P]
’
1/4
Combining (2.16), {(2.18) and (2.30), using the fact that ¢ = |P| , Aassuming
JP] < 1 and letting 8§ 4+ 0 implies that
1/2
Mg € x‘lpl

and therefore

sup _ (u lx,T) - u(x.t))+ < ltll’lv2
(x,t)eo,r
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where

(2.31) k= e x, = 20@)% + Loy tput? + Loy 1)et” +

+ 2're“(§‘ (L + -;-)i + f.«':1 + ESH + 18(R + 1)elT) +

RL 1 LT
R, -, +
+ (CR + NR)(‘I + L)(2 + a7 L 1bul) + 3(R + 1)e )
provided that
1 1 1
(2.32) Pl < min{1, . - — .
- 1, 4 LT L 1.2
L{L + 2) (24re” " + > (L + 2))
0,1 N
(b) We begin with the observation that it suffices to assume “0 e Cb (R
N 0,1 N
1
if v, € BUC(R ), we can find a sequence {uOm} in Cb {R') such that Yom
as m + ®, Then, in view of Proposition 1.4, it is
T
- < -
fu “ml e luo “Oml
where u is the viscosity solution of (0.1) for Yom* Moreover, if uP,m H QT

defined by (2.1) for Uoms then, if T € (ti-i'ti] for gsome i = 1,...,n(P),

lup’m("T) - uP(',T)l < (Y + (1T ~ ti-1)c6)I“P,m(.'t£-1) - up(°,ti_1)l
(-t Ic
i-1"76
< e 'uP,m(.'ti-1) - “P(.'ti-l)l

A simple inductive argument implies then that

TCG
'“p,m - upl < e Iuom - uol
Combining all the above we have
- TC
TL 6
-ul € - + -
lup u (e + e )Iu0m uol '“P,m “ml
For every a > 0 there is an m such that
bt bo ol
('™ 4+ e 6)Iu -ut ¢2

om 0 2

sut then, if p = po(a,m) >0 1is so that for |P| <o

0 4

-32—
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ugt
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we have




1 - <
u u'l 2

P,m
it is

fu -ul <a
P

and thus the above claim is proved. For the rest we are going to assume that

0,1
uy e Cb' (IP). In this case, we need the following lemma
Lemma 2.2: For a partition P = {0 = ty < eee ¢ tn(P) =T} of [0,7] and uw, ecy

let Uy, ET + R be defined by (2.1). The following are true:

(a) for every t € (0,T)

1C
7
1) lup(-,r)l <e (luol + Tc7t
T(C_+C
0,7 N 8 9 -
(11) u,(',t) e cb' (R) and IDuP(',r)I <e (IDuol + rcg)
_ TC7
where Cy = cg(e (luol + Tc7)).

(411) 1f Tt e (t1_1,ti] for some i = 1,...,n(P), ¢then

Tug(*.1) = uple, e, € CulT - ¢

. ™, T(C#Cy) -
where ¢, - c1(e (lnol + IC,). e (lDuol + rcg))

1-1)

(b) u, e BUC(QT)

Since the lemma is proved in exactly the same way as lLemma 2.1, we omit its proof and we

continue with the proof of Theorem 2.2 (b). It guffices to show that

sup _ {e'L'(up(x,r) a1 s 0 as Ip| + 0
(x,t)eQT

Without any loss of generality here we prove only that if

M_ = sup _ (e-LT(uP(x,t) - uix, b
(x,7)eQ,

then
MP + 0 as |pP| »+ 0,

Since the proof has many similarities with that of part (a), we omit some of the details.

To this end, we claim that for every a > ¢ there is a po - pollu 1,a) > 0 so that

[}
if |p} < Poe then
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i
|

thus the result. Indeed, for a > 0 fixed but arbitrary, let € > 0 be so that

- a
(2.33) 2(|Du°| + 1pul + c1)e + 2mﬂ'm““m”1'm”(e) <3
where wn R is the modulus of continuity of H on [0,T) x RN x [-R,R} x BN(O'R)' t-:1 is
.

given by Lemma 2.2 (a) (iii) and IDul = sup 0IDu(*,7)l. (Note that, in view of
0.1 N 0<t<T
Proposition 1.8, wu(+,r) e Cb' (R) for every T € (0,T]). For such € choose p° >0

so that if p < p_, then

0
L 1 T S Lr
(2.34) 2'1'[0»“'“"‘(.0““”"")(2 (L1 + 2)::) + pLC, + L(“ + (L +3)(R+ 1))e p ¢+
P(t,p,u,d) - ¢ a
+1 s + H(t,*,u,D$)1] < 3
TC

where R > max(lul,e 7('l’c7 + Iuol)) and

tul,ipul,iDl,0D%1 < max[n,n1,(§15—§—1l + 1)elT, (12 > B, 4)etT)

where L, is given by Lemma 2.1 (a) (i1) so that

IDul, sup MDu (-, 7)1 <L,

<
and po > 0 is such that ocTer

We are going to show that if [|P| < Por then
(2.35) M <a .

To this end, let P = {0 = ¢t _ <t _< ... < ¢t T} be a partition of (0,T]) with

0 1 n(p)

|Pl < p,.. Without any loss of generality we assume that

0
MP>0

In this case, as in the proof of part (a), for every § > 0 we can define a continuous
N N
function ¥ : R x R x [0,T) x [0,T) + R by

-&(T + 8) .
Y(x,y,7,8) = e (ug(x,T) = uly,s)) + 3(R + ‘)Bc(x -y) ¢+
- Jirrs)
+ 3(R + 1)Y£(‘l’ 8) + 28¢(x,y) aT np
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vhere ¢ e Cp(m' X R, 06 €< 1, 10X < 1, IDE] < 1, B.(e) = B, ¥ () = ¥((), B 18
as in (1.8) and Y as follows
Yecgm, 0¢yY <1, v =1, Iy'|<2 |yl <4
(2.36) and
y(t) =0 if |t] > 1
such that there exists a point (xo,yo,to,lo) e llN x R“ x [0,7] x [0,T] 80 that

(2.37) ¥(x ,to,no) > ¥(x,y,7,8) for every (x,y,T,s) € IF x R“ x (0,7] x (0,T]

0'Yo

Moreover, as in part (a), for § < 60 = lin( 1 MP) we have

L

24" 8
- < - < -

Ixg = ¥ol € €, v, -8 1 <€, uix;,t) - uly,,8) >0 and

(2.38)
""o'yo'To"o" >0

We have to consider the following three cases: T, > 0 and s, = 0, T = 0 and

-o >0 and To >0 and 8, > 0. We begin with the case To » 0 and 8, = (4]

ist case. to 0 and s =0

It follows from (2.37) that

'g'o + 1
e (up(xo,to) - uo(yo)) + 6(R+ 1) + 28> Y(xo,yo,to,O) > 2 HP + 6(R+ 1)

and so, in view of (2.38), for § < 60

(2.39) MP < 2(IDuol + c1)e + 48

B - >
2nd case ro 0 and -0 0

Again (2.37) implies that
L
-=8

2°0 + 1
e (uo(xo) - u(yo,so)) + 6(R+ 1) + 28> !(xo,yo,o,so) > 2 "P + 6(R+ 1)

and so, in view of (2.38), for § < 60

(2.40) MP < 20pule + 48
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3rd case. To >0 and 8g 2 1]

As in the 3rd case of the proof of part (a), it follows that for & < 60, in view of

(2.34), it is

(T°+s°) -
—M_ e < ”(30'70'“(Yo'50"D*(Yo'so)) -

- I, L 1 g
" BTy XU (Yo e8g) D (¥g18g)) + Oy oy, o1y (4887 * 5 By * R)IRDD 4 g

where ¥ 18 given by (2.20) and so

LT L 1 a
(48e™" + g (L, + el + =) .

! 4T

m_ < 27{w

P H,max(lul,lbul*1)(e * wH,max(R,L1+1)

Adding (2.39), (2.40) and (2.41) and letting &6 + 0, in view of (2.33), we obtain

(2.35).

Remark 2.1. It follows from the proof of Theorem 2.1 (b), that part (b) is really a result

concerning Lipschitz continuous functions. In particular, if for (t,p) € K,

0,1 0,1 N 0,1 N
F(t,p,*,*) : Cb' (IP) x cb' (R) + cb' (R) satisfies all the assumptions of Theorem 2.1

(b) with (F9) replaced by (F13), then the conclusion of Theorem 2.1 (b) holds for every
0,1 N
u, € Cb' (R). (F9) was used only to show that if (2.2) is true for every
0,1 N N
Cy (R), then it is true for u, € BUC(R ) too.

u, € 0

0
The next theorem is concerned with schemes which, although do not satisfy a generator
type assumption, can be approximated in a suitable way by schemes of type considered in

Theorem 2.1. More precisely we have

N N
Theorem 2.2. (a) For H : [0,T] *x R x Rx R + R satisfying (H1), (H2) (with

a constant C), (HS) (with constant i independent of R) and (H4), (HE), (HT)

0,1 N
respectively for R 2> 0) and for u, € C, (R)

ith gtants
(w congtant c_,N o b

M
R’ R R

0,1 ~ -
let u e cb' (QT) be the viscosity solution of (0.1) in QT' For
(t,p) ek = {(t,p) e [0,7] x (0,01 : 0¢p< t}, where Py = polluol) >0,
0, N 0,1 N - 0,1
let F(t,p,*) : Cb' (R) » Cb' (R) be such that for every u,u € Cb' (RN)

-36~-




There exists a constant C!O > 0 such that

(F15)
- Pi0 -
1F(t,p,u) - F(t,p,ull € e tu - ul

Moreover, suppose that for every (t,p) € K there exists a mapping

- .1 0,1 0,1 N
P(t,p,*,*) : Cg (lr) QG (lr) * Cb' (R ), which satisfies the assumptions of Theorem

2.1 (a) with (P13) instead of (F%) and also

0,1 N
For every u € Cb' (R)
- 2
(F16) 1F(t,p,u) = Flt,p,u,ull < CoqP
. - 1
where C11 C‘1(|u|, Dul )
= < € voe € - £ [0 :- b

For a partition P = {0 = ty < %, t () T} of [0,T)], let u, : Q. * R be

defined by
( vy {x,0) = ug (x)

,up(°,t _1))(x) ifte (t1_1,t1] for some { = 1,...,n{P)

i-1

{(2.42)
up(x,t) = F(e,t - ¢t n

Then there exists a constant K, which depends only on luol and IDuOI, such that
(2.43) Tuy - ul < xlpl1/2
for (Pl sufficiently small.

(b) Por H : [0,T] x ny x R X RN + R satisfying (H1), (H2), {(H4) and (H5) (with a
constant L independent of R) and for Yy e BUC(RN) let ue BUC(aT) be the viscosity
solution of (0.1) in Q.. For (t,p) € K = {(t,p) @ [0,T] x (0,001 : 0 < p & t}, where

fo = po(luol} >0, let Fl{t,p,*) : BUC(RN) *> BUC(RN) be such that it satisfies (F15) for
every u,; e BUC(IF). Moreover, suppose that for every (t,p) € K there exists a mapping

= N N N
P(t,p,*,*) : BUC(R ) x BUC{(R ) » BUC(R ), which satisfies the agsumption of Theorem 2.1

(b) and also

1
For every u @ Cb (R}

(F17) 1F(t,0,u) - F(t,o,u,u)l = 0(p)

where O0(p) depends only on Jul and IDul and Eéﬂl + 0 as p + 0

-37-
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1f, for a partition P of (0,T], : Q.+ R is defined by (2.42), then
Yp ' g

(2.44) luP -ul + 0 as |P| + ©
Remark 2.2. A remark analogous to the ones following Theorem 2.1 applies here too.

Proof of Theorem 2.2, (b) For L e BUC(RN) let Upevp aT + R be defined by

(2.42). Then by a simple inductive argument, in view of (F15), it follows that

TC
1 -vhl<e 10! - v 1
Y% TV Yo T Yo

But then it is easy to see, using the arguments at the beginning of the proof of Theorem

o,

0 b
+ R is defined by (2.1) for the above F and YUy, then, in view of Lemma 2.1

1 N
2.1 (b), that it suffices to prove (2.44) for u, e C (R). To this end, observe that,

if u, - QT

(a), there exist constants R, and L, which depends only on Iuol and IDuol such that

for every partition P of [(0,T] it is

IGPI < R, and sup IDGP(-,t)I <L

! 0<t<T 1

Next and for a > 0 fixed but arbitrary, let 91 = p1(a) >0 be so that if o < 91

then
a
0{p) < C1°T [
2Te
where 0(p) 18 given by {F15) and corresponds to R, and Li. Then, if 71 € [ti 1'ti]
for some 4§ = 1,...,n(P), we have
Tupg(o,T) = u (o, S IP(T,T = ¢ Louplent, 1)) = PLT,T ~ &, (e, )0+
+ IP(T,v - tioqeuplort, 43 = FlT,T ~ tqeuploaty dougle,t, M
and thus
(t-71 )c
- i-1""10 - a
lup( 1) - up( ) < e (lup( 'ti-1) - “p("t1-1)' + -——E——;(r ti_‘)
2Te 10

An induction argument then implies that
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= TCW_.L___ g
Tu (s, 1) = uy (e, T < Te =T =3

2Te 10
Finally, since by Theorem 2.1 (b) ;P +»u as [Pl + 0, 1let 92 - pz(c) > 0 be such

that if p ¢ 90' then

- a
o, - ul <2
up T W €3

For p € lln(91,92) we have
] -ul <
u, u a
which, in view of the fact that a is arbitrary, proves the result.

(a) Here because of Theorem 2.17(a), the above relations, appropriately modified so

that they apply to this case, and (F16), for |P| sufficiently small, we have

Tc10

- 1
luP - ul < x|p| /2 + TC11e £l

vhere K and Cqy depend only on Inol and IDuol. For [P| < 1 the above implies

(2.43) with

T
k=K+1C,.e 0,

Remark 2.3. A remark analogous to Remark 2.1 applies to Theorem 2.2. In particular, if

0,1 0 N
F(t,p,*) : cb' (m cb"(n ) satisfies all the assumptions of Theorem 2.2 (b), then the
0,1 N
results hold for every 4, e Cb' (R). Moreover, it follows from the proof of part (b)
- 0,1 N 0,1 N 0,1 N
that we may assume F(t,p,*,*) : Cb' (R) x Cb' () » Cb' (R') satisfying all the

properties. Then the reault still holds.
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SECTION 3

As an application of the results of Section 2 here we establish, under certain
assumptions, a "min-max" representation of the viscosity solution of (0.1} in 5T' In
particular, if H can be written as the max-min of certain affine functions, which satisfy
suitable hypotheses, then the viscosity solution of (0.1) can be represented as the uniform
limit of repeated min-max operations on the solutions of linear problems. This is
important for the tneory of differential games, since it proves, as we are going to see in
the next section, the existence of the "value”.

N N

To this end, let H : [0,T) x R x Rx R + R be such that

(3.1) H(t,x,u,p) = sup inf {f(t,x,y,z)*p + hit,x,y,z) + glt,x,y,z)u}
yey z€ez
£ &2
where Y,Z are subsets of /R respectively (for p,q integers) and
N N N

f: (0,7 xR x Yx 2+ R, and g,h : [0,T) x R x ¥ x 2+ R satisfy the following

conditions

If ¢y is any one of three functions f£,q,h, then

¥ is uniformly in (t,x,y,z) continucus in (t,x)
and satisfies a uniform Lipschitz condition in x.
(3.2) Let B‘p and KW be positive constants such that for
every x,; e RN, t e [0,T] and (y,z) € Y x Z it is

1W(t,x,y,z) -~ ¢(t,x,y,2}] < Kwa - x|

and

(t,x,y,2)| ¢ 3
Wit,x,y,z) | v

It is easy to see to H satisfies (H2), (H4), (HS) and (H7) with the constant in (HS)

independent of R. Indeed, in view of (3.1) and (3.2), we have
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lH{t,x,0,0)] = |sup inf h{t,x,y,z)| < B,

yey zez
[H(t ,x,u,p) - H(t,x,u,p)] € (k, + xgrul + Ktlpl)lx-;l < C(1 + lul + 1pl)|x=x]
(3.4)
|8{t,x,u,p) - H(t,x,G,p)l < Bqlu - ;I

fH{t,x,u,p) - H(t,x,u,;)l < Bflp - ;I .

The above estimates, together with the uniform in (t,x,y,z) continuity of €£,9,h in
(t,x), imply that H also satisfies (H1). But then, in view of Theorem 1.1, for every

N
vy € BUC(R ) the problem (0.1) for the above H has a unique viscosity solution

ue BUC(éT) in aT. Moreover, in view of (1.2), for every T € [0,T] we have

1B
(3.5) tu(-,T)l < e 9(rsh + tugl)

Next, for (t,p) e K = {(t,p) € [0,T] x [0,7] : 0 € p <t} and u,ve BUC(lN) let

N - N
F(t,p,u,v) : R + R and F(t,p,u) : R + R be defined by

(3.6) PF(t,p,u,v)(x) = inf sup {ph(t,x,y.2) - pglt,x,y,z)ulx) + vi(x - pflt,x,y,z)))}
yey zez
and

'OQ(t,X:Y.z)

(3.7) l."(t,o,u)(x) = {nf sup {-ph(t,x,y,z) + e ulx - pflt,x,y,2z)))}

yey z€z

The theorem is

H 5 + R be

N
Theorem 3.1. (a) For u, € BUC(R ) and a partition P of [0,T] 1let u -

pUp
defined by (2.1), (2.38) respectively using the above F and F. If ue BUc(éT) is the

viscosity solution of (0.1) in 5? for the above u, and H, then

(3.8) luP -ul »0 as |p| + 0O
and
(3.9) ';P -ul +0 as || + 0
(b) 1f, moreover, u, € CZ"(R“) and ¥ in (3.2) also satisfies
(3.10) (e, xy,2) = $(E,xy,2)| <Kl - €l

then, for |P| sufficiently small,
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1/2

(3.11) luP - ut < x|p| /
and

- 1/2

(3.12) IuP - ut € Kkip| /

where K 1is a constant which depends only on Iuol and IDuoI.

Remark 3.1. The convergence of GP as [Pl » 0 (in the local uniform topology) was
proved by W. H. Fleming in [13) via considerations of stochastic differential games. The
limit function obtained in {13], in view of Proposition 1.2, is the viscosity solution of

{0.1) in 57‘

Proof of Theorem 3.1. It suffices to check the assumptions of Theorem 2.1 and 2.2, We

begin by proving (3.8) and (3.11). 1In view of (3.2), it is obvious that

N
F(t,p,u,v) € BUC(R ). Moreover

F(t,0,u,v)(x) = inf sup vi{x) = v(x)
yey zez

N - -
and thus (F1). To verify (F2) observe that for u,v € BUC(R ) and (t,p),(t,p) € X we
have
IF(t,0,u,v) - F(EL,u,vI < (lp - plB, +pu llt - tD) +
-0 5 -t + -t
+tlo -el(g + Bglul) + p(mh(lt tl) Iulmq(lt tl))

- N
and therefore the result. Next, for u,v,u,v € BUC(R) and k € R, in view of (3.6), it

is
IP(t,p,u,v)(x)| < sup sup (onh +oBlul + Ivl) < Ivl + p(B + Bh)(1 + lul)
yey zez 9 9
Flt,p,u,v+k) (x) = inf sup{-ph(t,x,y,z) - pglt,x,y,z)u(x) + v(x-pf(t,x,y,z)) + k}
yey zez
= inf sup{-ph(t,x,y,z) - pa(t,x,y,z)ulx) + vix-pf(t,x,y,z))} + k
yey zez
= F(t,p,u,v)(x) + k
and
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[e(e,p,u,v)(x) - r(t,p,;,;)(x)l Ctv-vl+ pBglu -
thus (F3), (r9) and (F10) hold.

0,1, N -
Now assume that u,v € cb' (). For (t,p) €K and x,x € IF we have

IP(E,0,0,v) (x) = P(£,0,u,v)(x)] < [p(K + K ful + B_IDul) + fovi(1 + PX, )] Ix=x{

0,1

N
p (R) and

therefore F(t,p,u,v) € C

oK
IDFP(t,p,u,v)l < e f(IDvI + p(xh + Kglul + sg)(1 + 1pul))

Moreover

[P(t,p,u,u)(x) - u(x)| <€ p(Bh + B lul + B_IDul)
g £

and thus (P4) and (F11), Vrinally, for u e c:"(n"), ¢ e c:(n“), t e (0,T], xe n“ and

p >0, in view of (3.1) and (3.6), we have
F(t,p,u,b)(x) = $(x)
(£ - p" 2L 4 Ht,x,u(x),D(x))] =

{sup inf (:gbitgxgz‘zz - eg(t,x,x,z)gg:) + d(x - pf(t,x,v,2}) = Q(x)) .

yey z€z
+ inf sup (h(t,x,y,z) + g{t,x,y,zlulx) + £(t,x,y,z)*Dd(x))| +
yey zez
dl{x - pf(t,x,y,2)) = ¢(x)
= |gup inf (-h(t,x,y,z) - g(t,x,y.z)u(x) + ] -
yey zez e
- sup inf (~h(t,x,y,2) - glt,x,y,z)ulx) = £(t,x,y,z)*Dd(x))| <
yey zez
$(x - p£( veg)} ~ &(x)
< sup sup | X £(¢ xp £ X, f(t,x,y,z)eDd(x)| < % BilDzol

yey zez

and therefore (Frid4).

Then Theorem 2.1 (b) implies (3.8) and Theorem 2.1 (a) implies (3.9) since, in view of

(3.10), we have
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IH(t,x,u,p) = HIE,x,u,p)| € (K + Eglul + Klpliit - ¢

i.e. H satisfies (H6).

0, N
For the proof of (3.9) and (3.11) it suffices to observe that for u € Sy (R)

|F(t,p,u)(x) - Flt,p,u,u){x)] €< sup sup |e-pq(t,x,y,z)u(x ~ pf(t,x,y,z)) +
yeéy zez

TB
g9 ) .

1 .2
+ pglt,x,y,z)ulx) - ulx - pf(t,x,y,z))]| < pz(BnglDul 3 Bqlule

Indeed, then we can use F(t,p,*,*) for ;(t,p,’,') in Theorem 2.2 and the result follows

- N
immediately, since for u,u € BUC(R )}, 1in view of (3.7), it is

oB
tF(t,o,u) ~ Flt,p, 000 < e Jnu - at

and thus (F15).

Remark 3.2. Obviously an analogous theorem can he proved in the case that

(3.13) H(t,x,u,p) = inf sup {flt,x,y,z)*p + hit,x,y,z) + glt,x,y,z)u}
yey zez
and

F(t,p,u,v)(x) = sup inf {—ph(t,x,y,z) - eqlt,x,y,z)ulx) + vix - pflt,x,y,z))}
yey zez
(3.14)

-oglt,x,yv,z)

F(t,p,u}(x) = sup inf {-ph(t,x,y,z) + e ulx - pf(t,x,y,z)}}

yey zez

where f,g,h satisfy (3.2). Moreover, either Y or Z can be empty. For example, if
Y=¢ and

(3.15) H(t,x,u,p) = inf {f(t,x,z)ep + hit,x,z) + glt,x,z)u)
287

then the results of Theorem 3.1 apply to this case too.

Remark 3.3. L. C. Evans proved in (9] a different min-max representation for the viscosity

1 0, N N
solution of (0.3) under the assumption that H e C (RN) cC ' (R) and u, € BUC(R ) with

lim ju(x)} = 0,
Ix| s
Remark 3.4. For examples of functions H which can be put in the form (3.1) we refer the

reader to L. C. Evans {9], L. C. Evans and P. E. Souganidis {10} and w. H. Fleming [13].
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SECTION 4.
We begin with a short discussion about two-person zero sum fixed duration differential
games. To this end, consider a system of N-differential equations
(4.1) & = f(s,k,y,z) (s <8< T)
ds e 0
with initial condition
(4.2) (8) = £, @R
. £ 8, o @R
where Y,2 are compact subsets of some Rp and RS respectively and
N
f : [so,T) X R X YXx Z+ Ry satisfies certain assumptions, which we are going to specify
later.
The set Y(Z) is called the control set for the player I(II). A measurable
function y(s) (z(s)) with values in Y(2) for almost every t is called a control
function for I(II). If we substitute into (4.1) any control functions y = y(s), z(s)

(s, < 8¢« To), then we obtain a system

0

.
(4.3) Je £(3,5(s),y(8),z(8)) (s0 <s8<T)

The conditions on f are going to be such that (4.3), (4.2) has a unigue solution

N
£ : Iso,T) + R, i.e. £ 1is the unique absolutely continuous function for which

T

E(s) = + | £ ,E(p),y(p),z(p))dp
)
0

for every s € [ao,T]. We call &(s) the trajectory corresponding te y(s), z(s).

Given any control functions vy(s), z(s) for so < 8¢<T, let £(8) be the

corresponding trajectory. Wwe introduce the functional

T
] a(s,E(8),y(s),2(8))ds

8 T
(4.4) Ply,z) =e ° 4 (E(T)) + [ h(s,E(s),y(s),2(s))ds

%o
N N
where u, : R *+ R and g,h : [50,T] x R x Yx Z+ R are some given functions. P is

called the payoff functional. In view of the previous remarks, the payoff P(y,z) is well

defined for each choice of controls made by the players I and 1II.
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Finally, we assume that the earlier introduced functions f,g and h are defined on

N N N
[0,7] x R x Y X Z and we define Ht s [0,T) x R x Rx R + R by

+
R (t,x,u,p) = inf sup {f(t,x,y,z)*p + glt,x,y,z)u + h(t,x,y,z)}
zez yey

(4.5) and

H-(t,x,u,p) = gup inf {f(t,x,y,z)*p + glt,x,y,z)u + h{t,x,y,z)}
yey zez

We say that the minimax condition (or Isaacs condition) is satisfied if

+ - N N
(4.6) H (t,x,u,p) = H (t,x,u,p) for every t € (0,T], x @€ R, u€R and peR
+ -
When this condition holds, we set H(t,x,u,p) = H (t,x,u,p) = H (t,x,u,p) and call this

function the Hamiltonian function of the differential game.

A two-person zero sum differential game of fixed duration consists of the system of
differential equations (4.3), (4.1) and the payoff functional (4.4). It is a zero sum
game, because the aim of the player I is to maximize the payoff and the aim of the
player II is to minimize it. Throughout the differential game and at any time ¢t each
player has complete information about the past (i.e. he knows everything that his opponent
did), but he has no information about the present and the future choices of controls by his
opponent. The value of the differential game described above should be the value of the
payoff when both players use their optimal strategies, which, however, do not exist in
general. This leads to several alternative definitions of the value as we are going to
explain shortly.

Differential games were first studied by Isaacs ({17)). One of his main contributions
was the heuristic derivation of the fact that the value of the game should satisfy a
Hamilton-Jaccbi type equation, in particular the Isaacs-Bellman equation. Later W. H.
Fleming ([11), (12}, [13), [14]) studied differential games by discretizing time and
solving difference equations instead of (4.3), (4.2). He defined an upper and lower value
depending on whether the 1 or the II player moves first at each step (i.e. has *he
advantage) and he examined whether these values exist and if yes whether they are equal.
Pleming introduced "“noise”™ into the game and so into the approximating discrete difference

games. He was then able to show that the upper and lower values of the approximating games
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converge as the amount of noise decreased to zero. After that A. Friedman ({15], [16]),
and later R. J. Elliott and N. J. Kalton ([8]) studied differential games directly, i.e. by
not approximating by difference equation. However, Friedman introduced the idea of upper
and lower strategy varying at only finitely many division points. Moreover, he defined an
upper and a lower value depending on which player chooses his control first at each
division point. Then Friedman (([15), [16]) and Flliott and Kalton ([8]) again introduced
"noise® and were able to show that the upper and lower values of the approximating games
(stochastic differential games) exist. All the above (Fleming, Friedman, Elliott and
Kalton) defined as the value of the game the common value of the upper and lower value in
the case they coincide. Moreover, they proved that both the upper and the lower value
satisfy, under certain conditions, in the almost everywhere senae appropriate Hamilton-
Jacobl type equations, which are, if the Isaacs condition holds, the Isaacs-Bellman
equation. Using Proposition 1.2 and the fact that the upper and lower value of the
approximating problems (when noise is introduced) satisfy parabolic equations of the type
in Proposition 1.2 and moreover converge, as the amount of noise goes to zero, M. G.
Crandall and P. L. Lions [5] obtained that, under certain assumptions, the upper and lower
value are viscosity solutions of Hamilton-Jacobl type equations. Thus in the case that the
Isaacs condition is satisfied, the differential game has a value by the uniqueness of the
viscosity solution.

Here we use the results of Sections 2 and 3 to show directly (i.e. without introducing
noise) that the upper and lower value exist. Moreover, if the Isaacs condition holds, then
the value in the sense of either Fleming or Friedman exists. It is an immediate of the

proof then that these two notions (when comparable) coincide.

(a) The value in the sense of Fleming

We begin with the following assumptions on f,h,g,uo
t e c(fo,T] x l“ x ¥ x Z). Moreover, there exists a constant K, such
(rL1) that for every t e [0,T), yeyY, z @2 and x,; e l“ it is

|f(t,x,y,z) - f(t,;,y,:)l < Kflx - ;I
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N
(FL2) hec({o,?] xR x yx2), gec(lo,T] x R x ¥ x 2))

(FL3)  u, e c(R)

0
Next, for a partition P = {0 = L T :Mp) = T} let

w;,w; : R x [0,T] + R be defined by

+

wp(x,T) = uo(x)

+

W_{x,t) = inf sup{ (¢ - t)h(t,x,y,z) +

P j+1

z€Z yey
(4.7)
(tj+1-t)g(t,x,y,z)
+ e wp(x + (tj” - t)f(t,x,y,z),tj+1)}

if te ety for 3 =0,...,n(P) - 1
and

w;(x,T) = uo(x)

W_(x,t) = sup inf {(t, . ~ t)n(t,x,y,z)

P ey zez §+1
(4.8) «

(tj+1-t)q(t,x,y,z) _
+te Wyx + (t;j*1 - t)f(t,x,y,z),tjﬂ)}
if t e (tj,t3+,) for j =0,...,n(P) ~ 1

+ -
Por (x,t) € IF x {o,T), wp(wp) corresponds to an approximation of the differential game
with dynamics (4.1), initial condition (x,t) and payoff (4.4). The question is whether
+ -
lim W_(x,t) and lim W_(x,t) exist and if yes whether the limits are equal. We need
1p{+0 1P1+0
the following definition.
Definition 4.1 (W. H. Fleming (11), [12)). For a partition P of {0,T! and
- + -
(x,t) € QT’ let wp(x,t) and wp(x,t) be defined by (4.7) and (4.8) respectively. If
+ + - - -
Hm W (x,t) = W (x,t) ( lim W (x,t) = W (x,t)) exists, then WX, ) (W (x,t)) is the
IPi+0 lpl+0
upper (lower) value of the differential game with dynamics (4.1}, initial condition

(x,t) and payoff (4.4). If, moreover, W*(x,t) = W (x,t), then W(x,t) = W*(x,t) =

W (x,t) is the value of this differential aqame.
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Now we state and prove the theorem, which establishes the existence of the upper and
lower value and, under the Isaacs condition, the existence of the value of a differential
game. We have
Theorem 4.1. 1If (FL1), (FL2) and (FL3) are satisfied, then, for every (x,t) € aT’ the
upper (lower) value of the differential game with dynamics (4.1), initial condition
(x,t) and pavoff (4.4) exists. Moreover, if the Isaacs condition holds, then the value of

this differential game exists. Finally, if £,h,g and ug also satisfy

If ¢ 4is any one of the functions f,h and g, then

there exists a constant K such that for every

v

(FL4) - - N
t,t e(0,T], x,x € R, yey and z € 2 it is
{ 19te,x,y,2) = ¥(e,x,y,2)] € KW‘It -t + Ix - xD)
and
0,1, N
{FL5) uo e Cb (R)
then, for every (x,t) € ET and [Pl sufficiently small, it is
+ + 1/2
(4.9) |Wp(x,t) - wi(x,t)] < K|p|

where K 1is a constant which depends only on luol, nDuol and RO Ixl.

Remark 4.1. Conditions (FL1), (FL2) and (FL3) are more general than (FL4) and (FL5), which
are used in [11), [12], [13). Moreover, here we use partitions of arbitrary mesh. Finally

estimates of the form (4.9) seem to he new in this context.

Proof of Theorem 4.1. Let (x,t) € 5T be fixed and choose R > 0 so that

Ix| < R .
If P = {0 = to Ctg ¢ tn(P) = T} 1is a partition of [0,T], let i be such that
t e [ti't1+1’
Then, for (y,z) € Y X Z, consider the sequence {x, (y,z))} in RN defined by

3 j=4,¢e0,n(P)

xi(y,z) - X
(4.10) X4qly,z) = xly,z) + (t‘.“‘1 - t)f(t,xi(y,z),y.z)

xj(y,z) = xj_,(y,z) + (cj - tj_1)f(tj_1,xj_1(y,z),y,z) for 3 = 4 + 2,...,n(P)
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A simple induction argument then implies that, for any

where

with

(4.12)

By, £

1£(t,0,y,2)1

x < R
Ijl

KfT _

= +
R=e (R TBi.f)
= sup
(t,y,z)e[0,TIxyxz
and H .

R 4
We continue by truncating £, h, g, LY H

R
RN * R d H+
uo’R H an R'
fn(tlwIYIZ)
QR(TiVlYIZ)
hR(T,w,y,z)
uo'R(w) =

+
HR(YIerIp)
and

HR(t,w,r,p)

It is easy to check that

1 t and

R’ gR'hR

H-

R

£{T,w,y,z) if
) (1, TfT R,y,z) if

qg(t,w,y,z) if
) g(r,TfT R,y,z) if

hit,w,y,z) if
) (T, |—:—| R,y,2z) if
uo(w) if |w| < R
uo(TfT R} if Iwl > R
= inf sup (fR

z€Z yey

= gup inf {f

u

R

yey zez

o,

R

N
£ :[0,7) x R x Yx z+ R, gp : [OTI xR xYx2Z+R h

N N
[0,T] x R x Rx R + R by

lw] € R

{fw] > R

lwl € R

lwi > R

fw] € R

lwl > R

j=4i,...,n(P),

it is

In particular, we define

N
[0,T) x R x Y x Z + R,

(T,w,y.,2)*p + gR(r,w,y,z)r + hR(r,w,y,z)}

(t,w,y,z)°p + gR(T,w,y,z)r + hR(r,w,y,zH

are bounded uniformly continuous functions
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(11) fR is uniformly in (T,w,y,z) Lipschitz continuous i1 w with Lipschitz

constant Kf.

(11i) If the Isaacs condition holds for H' and H , then it holds for
H and H, t
R HR 00.
N
Next and for each positive integer n choose hn,gn e BUC((0,T] x Rx ¥ x Z) and

u e BUC(IF), so that they satisfy (FL4) and (FLS5) and moreover

0
n
Iuol < Iuol
and
[ For every T € [0,T), w e RF, yeyY and z €2
n 1
“'l (t,w,y,2) - hR(TIHIYIZ)I < ;
(4.13) 4
n 1
la (T,w,y,2) - qR(T.w.y.z)l < =
n
n 1
l lug(w) = “O,R(")I <<

+,n - -.n
For each n and any partition P of [0,T], define wP:R : O+ R and wP:R : Q> R

by (4.7) and (4.8) using fR, hn,gn and . If, for the given (x,t) € 5T and any

u
o,R

(y,z) € Yx 2, we define ;j(y,z) by (4.10) using fR' then, since

sug IfR(T,O,y,z)l = sup |£(t,0,y,2)1
(tlsz)e[olT]xy"z (‘Ile)e[ooT]xYXz
we have that, for every n, it is
(4.14) Ix.(y.2)| < R

3
But then this, in view of (4.7), (4.8) and (4.13), implies that

TB [l
.o t,n 1 R |
.1 - ’ -—
(4.15) IW;(x,t) wp,n(x’t)l < n® [T(WR + 1) +1] }
where i
i
B = sup lg_(t ,w,y,2)|
R (1,x,y,2)0[0, TIxRxyxz "
and
™
R
W o=e (lu I '™ sup Th (1 ,w,y.2) ) !

(1,%,y,2)€(0, TIxRxxz *
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Indeed, (4.7), (4.13) and (4.14) imply that, if t e [ti’t1+1) for some

i =0,...,n(P) = 1, then
+ +,n
-w t <
|Wp(x,t) P,R(x' )

(ti+1-t)q(t,x,y,z)
< sup sup le

Wp(x + (ti* - t)f(t,x,y,z),ti+ )

1 1

z€7Z yey
!
(t,,,~t)g"(t,x,y,2)
i+1 1 X0Y s +,n
-e WPIR(x ol t)fR(t,x,y,z),tiH)l +
n
+ (ti+1 - t) sup sup |h(t,x,y,z) ~ h (t,x,y,2)|
28Z yey
and thus
+ +,n
|wp(x,t) WP'R(x,t)l <
(t -t)B
+1 +
< e 4 R sup sup [W_(x + (t - t)f(t,x,y,2z),t y -
P i+1 i+
z2€Z yey
+,n
- + -
wp,R(x (ti+1 t)f(t,x,y,z),t1+')|
{t -t)B
+1 R 1 1
+ - - -
e wR(ti+1 t) n + (ti+1 t) n

A simple inductive argument then implies (4.15) for "+" case. The "-" case follows
exactly the same way.

n =y

+ n N N
Now we define H +H : (0,T] x R x RX R + R by

+,n n n
H (t,w,r,p) = inf sup {f_(1,w,y,z)*p + g (T,w,y,z)r + h (t,w,y,z)}
z€Z yey

and

~-,n
H ' (t,w,r,p) = sup inf {f_(1,w,y,z)ep + qn(r,w,y,Z)r + hn(T:":y.Z))
yey zez

and consider the problems




t,n
+ + + N
3:1 +wr M wut o™ =0 tn R x [0,
+
(4.16)~
N
ut'n(w,T) = u;(w) in R
+ N
Since H"n obviously satisfy (H1), (H2), (H4) and (H5) and u e BUC(R }, in view of

0,R
Theorem 1.1 (appropriately modified so that it applies for the reverse time problem), we

%,

n -
have that, for each n, (4.16)t has a unique viscosity solution u e BUC(QT).

n
Moreover, in view of Proposition 1.5 (a), (c), the definition of uo and the fact that

#*'" ana H‘" satisfy (H2) and (H4) with the same constants, there are constants R/

and C, such that

and

t,n
sup IDu (s,t)0 < Cn
o<t<T

But then Proposition 1.4 implies that, for every (w,t) in ET' it is

™
+ - + - - -
(4.17) ot M w, 1) - u Pw,1)]) < Te X _sup  |H '™(T,u,xr,p) - H

tefo,T)
HE]S

|r|<Rn
|Pi<C
n

Tz, |

Finally, by Theorem 3.1 and Remark 3.2 (modified so they apply to the reverse time

problem), for each n, we have that

(4.18) T

n
B,R u"’''t +0 as [P} + 0

Now let € > 0 be fixed but arbitrary and choose n large enough so that

TB

e Rlmtw ¢ 1)+ 1] <%

a3

For such an n, let p, > 0 = so that, if |P|,lQl < Pyr then

,n €
e Wty ¢ =

twt?
PR~ Yo,R <2

Put then, in view of (4.15), we have that, for [P|,IQ]| < Poe it is

nex, 1) - vt
Six,T) - Q(x.t)l <e




This implies that there exists wt(x,t) such that

+ +
1im Wo{x,t) = W (x,t)
|pi+0

{i.e. the upper and lower value exist.

For the existence of the value observe that, if the Isaacs condition holds, then, in

£
view of (4.13) and the definition of H , it is

+ -
sup IR 'n(r,w,r,p) - H 'n(r,w,r,p)| < % 1+ Rn)
te[o,§]
weéR
{rl<R
n
<
tplec
Therefore by (4.17) we have
B T
+ -
(4.19) et - wM <;2;(TeR(1 +nn))

n
The last observation is that, since Iuol < tu

n 1
O,R' and lhR(t,w,y,z) -h (1t,w,y,z)] < o

then

B T
R <Te X (fu, I +T sup Mhe(Towy,2) ) <=

n 0.R (T,v,y,2)
Now for € > 0 fixed but arbitrary let n be large enough so that

2 BRT 2 BRT €
Slre " (1 +RrD) +2 e (Tu + 1) + 1) <3

Having chosen n as above, let po > 0 be so that, if |pP| < 90, then

+ + - - +,n +,n =N -.n £
- + - - + - -
lwp(x,t) W o(x,t)] lwp(x,r) w(x, )| + lwp,R u ] le,R u 1 < 3

We have
+ -
fw (x,1) - W (x,1)| <€
and thus the result.

For the last part observe that in the case that f,g,h and 1y, satisfy (FL4) and
+ -

(FL5), then so do fR, 9’ hR and “O,R' Moreover, if we define "P,R' "P,R : QT + R by

(4.7) and (4.8) using fR, 9’ h and u then, for every (x,t) e éT with x| < E,

R o,R’
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+
(x,t) = H;(x,t) .

W

o -+

R

Finally, we can apply Theorem 3.1 (b) to the problems

4
du, . 4+ N
78 ¢ Bi(t,w,up,Dul) =0 in R x [0,7)
1 N
uR(v,T) = “O,R(w) in R

and the functions w: R to obtain that, for |P| sufficiently small,
’
h 4
wP,R
where u: is the viscosity solution of the above problem (obtained by Theorem 1.1) and

+ 1/2
1 - u;l < x|p| /

K is a constant which depends on luo Rl, lDuol and R. Then for |x] < R we have that
’

+ 1
Wiex, e - u:(x,t)| < xiel"?

Since as [P| + O, w:(x,t) » “i(x't)' it is

w:(x,t) = ui(x,t)

and thus the result.

As a corollary of the above theorem and its proof we can obtain the following
proposition
Proposition 3.1. Suppose that f satisfies (FL1) and that h,g and u, e RUC(IN). Then
Wt(x.t) exists for every (x,t) € 6T' Moreover, it is a viscosity solution of the

problem

+ + + N
+ H°(t,x,Ww”,DW~) = 0 4in R x [0,T)

e
5,

wiix,T) = uyx) R

4+
where H : {0,T] x g'i R x l” + R is given by (4.5). Finally, if the Isaacs condition

holds, then the value W(x,t) of the differential game exists for every (x,t) € QT and

it is a viscosity solution of the Isaacs-Bellman equation
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Q2
E

N
+ H(t,x,W,DW) = 0 {in R x [0,T)

4
(o4

N
L Wix,T) = uo(x) in R

where H is the Hamiltonian function of the differential game.

Proof. The existence of w* for every (x,t) € 5T follows from Theorem 4.1. Moreover,
* -

it is easy to check using (4.7) and (4.8) that w e C(QT)' Finally, in the course of the

proof of Theorem 4.1, we showed that if |[x| < R for some E > 0, then

ho t,n
f wW(x,t) = 1im uR (x,t)
nyoe

where u:'n is the viscosity solution of an appropriately defined problem.
© N +
Now if for ¢ € C (R), W -¢ attains a local maximum (which without any loss of

N
generality can be assumed to be strict) at (xo,to) eRrR x [0,T), we claim that

3% + + (*)
3t (xo,to) + H (to.xo.w (xo,tO),DNxo,to)) >0

Indeed let i be such that

0 . -
Ixal < R0
and choose Po using (4.11). Then we know that for |x{ < Eo
+ +
W (x,t) = lim u=""(x,%)
R
e 0

N -
with the limit uniform in (x,t). But there are (xn,tn) in R x [0,T) with |xnl < Ro

+
such that ui'n— ¢ attains a local maximum at (xn,tn) and, moreover, ags n * ®
0
(xn,tn) + (xo,to)
Since it is
(**)

3¢ +.n +,n
T e LI N

in view of the definition of H*’n, as n * ®

3%

+ +
3t (xo,to) + H (to,xo,w (xo,to),no(xo,to)) »0

(*)(**)This inequality corresponds to (1.1), if one solves the reverse time problem.
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+
Similar observations for the case that W - ¢ attains a strict local minimum at

(xo.to) imply the result for w+. For W one repeats the above arguments.

(b) The value in the sense of Friedman

We begin with the following assumptions on f,h and u, (here for simplicity we take

g = 0)

N
[f ec((o,7] x R x Y x Z), Moreover, there exists
a constant Kf such that, for every t € (0,T],

(FR1) - N
yeyY, ze2Z and x,x € R, it is

[£(t,x,y,8) - £lt,x,y,2)] < R ix = x|
N
(FR2) hec((o,T] x R x Yx Z)

(PR3)  u, e c(m)

(FR1) implies that, for y : (0,7] + Y and z : (0,T] * Z measurable functions and

(x,t) e aT' the system

ak
i flr,B(r),y(t),2(1)) t<ren <7
(4.20)
E(r) = x
has a unique solution, which we denote by E(t;x,t,T‘,y,z)
For a partition P = {0 = ty <ty < s < t ) " T} of [(0,T], let
+ - -
VP' vP : QT + R be defined by
~57~
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(VI (x,T) = u_(x)
p (% ug (x
vix, 0 inf su (vIg(e,  axotat, . oyie),t, )
 MalAs i P I RAAS TS LialA LA TS L AASEAS TS|
zez(t,tiﬂ) yev(t,tiﬂ)
(4.21} <
t1+1
+ ! h(uyE(s,x,t,t1+',y,:),y(s),z(s))dl}
t
it t e [ti,t1+1) for i = 0,...,n(P) = 1
and
{ = =
vp(x,T) uo(x)
v-(x,t) = sup inf {V_(E(t 1X,t,t YeZ),t ) +
P P i+ i+1 i+1 .
er(t,tiH) zez(t,tiﬂ) ;
(4.22) 1
Eia
+ [ h(s,E(s;x,t.ti+1,y,z),y(s),z(s))ds}
t
if t e [ti,ti+1) for 1 = 0,...,n(P) = 1

where for 0 € 1T < T < T, Y(r,r}] denotes the set of measurable functions

a ~ -

y : [t,T1] + ¥ and 2(T1,T denotes the set of measurable functions z : [t1,1) + Z, (It
is assumed that y, z are defined only almost everywhere) and for y € Y(t,t) and -

N -

z e z(t,t), E(*;x,7,t,y,2) denotes the unique solution of

g% = f({x,E(s8),y(s8),2(8)) T <8¢ 1 ‘

E(T) = x

It follows from (4.21), (4.22) and Lemma 1.4 of [16] that for every (x,t) € 6?'

+ -
Vp(x,t), (Vp(x,t)) is the upper (lower) P-value of the differential game given by (4.1)
and (4.4) with initial condition (x,t). (This concept of upper (lower) P-value of a

differential game was introduced by Friedman in [15). Since it is rather lengthy, we do

* -
not explain it here). The question again is whether lim V_(x,t) and lim Vp(x,t)
ipl+0 Ip|+0




.

exist and if yes vhether the limits are equal. Before we answer it, we need the following

definition.

Definition 4.2. (A. Priedman [15), [16)) Por a partition P of [(0,T] and (x,t) € 51

+ -
let v’(x,t) and vr(x,t) be defined by (4.21) and (4.22) respectively. 1If
+ + - - _
lim Vo (x,£) = V (x,t) ( lim Vo(x,t) =V (x,t)) exists, then viix,t) (v (x,t)) is
ip|+0 ipl+0
the upper (lower) value of the differential game with dynamics (4.1), payoff (4.4) and
inftial condition (x,t). If V+(x,t) = v {x,t), then V(x,t) = V+(x,t) = v (x,t) 1is the
value of this differential game.
Now we state and prove the theorem, which establishes the existence of the upper and

lower value and, under the Isaacs condition, the existence of the value (in the sense of

Priedman). We have

Theorea 4.2. If (FR1), (PR2) and (PFR3) are satisfied, then, for every (x,t) € 6?’ the

upper (lower) value v’(x,t) (V (x,t)) of the differential game with dynamics (4.1),
payoff functional (4.4) (g = 0) and initial condition (x,t) exists. Moreover, if the

Isaacs condition holds, then the value V(x,t) exists.

Remark 4.2. Theorem 4.2 was proved by Friedman ([16]). His method is related to theory of

stochastic differential games. Here we give a direct proof using the results of Section 2.

Proof of Theorem 4.2. Using the arguments at the beginning of the proof of Theorem 4.1 we

can easily reduce to the case where

If ¢ is any of the functions f and h, then ¢ 1is uniformly
continuous in (¢t,x,y,2) and moreover, there exist constants KW and
(rR) 4 B, %0 that, for every t e (0,T), xXxeR, yey and z €2, it is
19(t,x,y,2) = v(t,x,y,2)| < Kle - x|
and
b(e,x,y,2)| < B,
and
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————— 28 e g .+t o e .

(FRS) e, e BUC(IN) .

Here we only prove the existence of the upper value, since for the lower value one uses the

same arguments. To this end, observe that if H+ is given by (4.5) (with g

+*
in view of our assumptions, H

time) problem

+
g‘Z" + 8t x,ov’) =0 in R x [0,T)

(4.23)
V*(x,T) = uo(x) in !ﬂ

has a unique viscosity solution vt in 6?' We claim that as |P{ + 0

+ +
- ] 0
lvp v e

i.e. “hat the upper value exists and it is the unique viscosity solution of (4.24).
prove the claim we are going to use Theorem 2.1 appropriately modified, so it applies to
the reverse time problem. In particular, for (t,p) € K = {(t,p) e [0,7] x

N N
[0,7) : 0<p<T-¢}, and ueBUC(R), let F(t,p,u) : R + R be defined by

P(t,p,u)(x) = infr sup {u(E(t + pix,t,t +o0,y,2)) +

z@Z(t,t+p) y€Y(t,t+p)
(4.24)
t+p
f his,E(s;x,t,t + p,y,z),y(s),z(s))ds}
t

N
The fa. hat F(t,p,u) @ BUC(R ) and, moreover, that (F1), (F2) (for uec '

g, 1

(F3), (P4) (for u e Cb

of {4.24), the assumptions on f,h and Uy and the properties of the solutions of
(4.21). Here we only check (F12) (in particular its modification for the inverse time

2 N
problem), since it is somehow more involved. We claim that for § e Cb(l ) it is

- +
(4.25) Ht ) =8 L e a0 as o e 0

p
To prove the above let us define A(t,x,p) and A(t,x) by

P(e,p,4)(x) - ¢(x)
p

f Aft,x,p) =

(4.26)
A{t,x) = inf sup {f(t,x,y,2)*Dé(x) + hit,x,y,2)}
2€Z yey

-60~

satisfies (H1), (H2), (H4) and (H5). Thus the (reverse

N
«A)), (F9), (F10) and (F11) are satisfied is an easy consequence




Then (4.25) is equivalent to

Alr,x,p) * A(t,x) as o + 0 with

(4.27)
the limit uniform in (t,x) .

Suppese that (4.27) ia not true. Then there are 50 >0 and xp, tp such that as

p+0

(4.28) IA(tp,xp,p) - A(tp,xp)l > €,
We are going to show that (4.28) leads to a contradiction. To this end, let
A e (O,T]ﬁlﬂx\'l Z+* R be defined by

(4.29) A(t,x.y,l) - t(t.X:Y.Z)'DQ(x) + h(t:x:]’lz) 3

In view of the properties of £, h and ¢, A 1is uniformly continuous in (t,x,y,z).

This implies that there is a 6, > 0 such that if, for (1,*.!.2),(;.;.;.;) e

N - - - -
fo,7) x R x ¥y x z, it is max{it - t{,ix = x|,ly « yl, 1z = 2]} < Sy¢ then

(4.30) AT ,x,7,2) = AT x,9,2)) < € /4

Next let y e Y(t,;) and z € Z(t,;)- Then for s € [t,;] it is immediate that

(4.31) E(B1%,T,T,y,2) ~ x| < (8 = L
So if oa > 0 1is chosen to be
pg = min(8 , & /8.
for t < g< t+p <t + po, we have
(4.32) A8, E(81x,t,t + p,y,2),5,2) = ME,x,y,2)] € /4

for avery (;,;) CYX Z and (yl(+),z(*)) @ Y(t,t + oo) x Z(t,t + oo).

We have to axamine the following two cases:

Case 1. Along some subsequence ok + 0 it is

A(tp X

) ~€. > Alt. .x
. Py { 0. %o )

0

Px x °x

Yor each ¢ (here for simplicity we denote the subsequence pk again as »p),
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(4.26) and (4.29), we have
A(t ,x ,p) - €_ > 4inf sup A(t ,x ,y,z)
e'’p 0 ez yey [
Since A(tp,xp,y,z) is uniformly continuous in (y,z) and Y,Z are compact seta, we can
find zp @ Z such that

A(tp,xp,p) - co > A(tp,xp,y,zp) for every y ey

If p < Por then (4.32) implies that, for every tp <8< tp +p and
(y,z) € Y(tp,tp +p) x z(tp,tp +p), it is

3 - -
(4.33) A(tp,xp,p) - %% > A(s.E(syxp,tp,tp + p,y,z),y,zp) for every y € Y

Therefore, for ever e [t ,t + and (¢) @ Y(r_,t + p) if z () e z2(t ,t + p)
’ very s € [ 0% p) y o't T PY A 0%

is defined so that zp(s) - zp, (4.33) implies

3
A(tp,xp,p) 2% "°* A(S.E(srxp,tp.tp + p.y.zp),y(s).zp(s))

0

Integrating both sides of the above inequality over (tp,tp + p) we obtain
Al ) - 3 €, >
0% T4 %o
t
p+o
{ f(s,E(s;xp,tp,tp + o,y,zp)y(s),zp(a))-DQ(E(s;xp.tp.tp + o,y,zp))ds

v
T

p
t +p
[

+

O |-

{ h(a,E(s;xp,tp,tp + p,y,zp),y(s),zp(a))ds
p

Therefore, for every y € Y(tp,tp +p), it is

3 1
A(tp,xp,p) -S€E 3 ; (Q(E(fp + pix

4 0 'tp'tp + OIY:!O)) - O(Xp)) +

p

t
9*9

{ h(s,E(srxp,tp,t
4]

+ + Dllep)'Y(B):zp(ﬂ) )ds

1
p [
So
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3 1
AL, % p) -S€ > = sup [0¢ECt, + p1x .t ,t +p,y,2)) +
"o C0T P evie .t ) p o' o' e ?
PP
£
+ { R(sElorx ,t e+ 0,¥,2)),y(8) .2 (8))as] - o(xp)]
P
and finally
3 1
e % 0) = ey 0 { inf sup [0(5(1-.p +oIx Lt Lt ¢ 0,y,e)) ¢

t +
tGZ(tp,tp*O) y!Y(tp, o p)

t
p+9

+ nis&(mx .t b+ p,y,2),y(8),2(s))d8 - Q(xp)]}

%

1
P (r(tp,xp.O)(xp) - o(xp)) - A(tp,xp,p)

which contradicts the fact that to > 0.

case 2. As p + O, A(tp,xp) > € + A(tp,xp,p).

Por p < Po and since

inf sup A(tp,xp,y,:) > ¢

+ Alt_,x _,p)
zez yey L

0
for every z € Z we can find yo - yp(z) € Y sgo that

A(tp,xp,yp(z).z) > e, 4 A(tp,xp,p)
Then, in view of (4.32), for ¢t < s<t +p and (y.2) @ (e ot 4 0) X Be b +p) we
have

- - 3
(4.34) A(-.E(-:xp,t ,tp + p,y,z),yp(z),z) H e € A(tp,xp,p) for every z € 2

(4

ror every z(°) e z(tp,tp +p) we can find a sequence (lk} of atep functions defined on

ltolto +p), such that
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sup {z(s) - zk(s)l < 61 for some k
seI
(4.35)

meas I < P

2 .
16M O
where 1 is a subset of [tD,tp +p) and M > 0 1is such that

N
|A(T,w,y,2)| < M for every (T,w,y,z) € [0,T] x R x ¥ x Z

Since
zk(s) =z
for s e Byy (1L = 1,...,10 = io(k), . Bki = [tp,tp + pl), then, if yki = yki(zki)'
(4.34) implies
- 3
(4.35) A(s,E(s:xp,tp,tp + O’Y'Z)'yki'zki) > ri A(tp,xp,p)
+
Now define Yy e Y(tp,tp P) by
yi(s) = Yy if s e B,
Then (4.35) implies
3
(4.36) A(s,E(s;xp,tp,tp + p,yk,z),yk(s),zk(s)) 3¢ ¢ A(tp,xp.o)
Moreover
t
p+9
Ut Msiblsix ,e .t + 0,y ,2),y, (s),2 (s)
[

- A(s,g(s;xp,tp,tp + p,yk,z):yk(s),z(s))dsl

{(p - meag I) 3p
< 2 co + 2(meas IM < 8 o

This inequality together with (4.36) gives

t +
0 P

Y

+ A(tp,xo,o)

3
{ Ms.Elsix ,t ,t +0,y,,2),y,(8),2z(s))ds > 5 ¢

p

Thus we proved that, for any control z(s) e Z(tp,tp + p), there is a control

y(*) e Y(tp,tp + p) such that
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1
3 [Q(E(tp + D)xp,tp.tp +P,y.2)) +

t P
P
v, 3
+ ] n(sElsix ., *+0,y,2),y(8),2(s))ds - 8(x )] > geg + ALt x .0)

t
p

therefore

3
> = +
A(tp,xp,p) s o A(tp,xp,o)

which contradicts the fact that eo > 0.
Having shown that the upper and lower value exist, the fact that the value exists, if
Isaacs condition holds, is an immedjiate consequence of the uniqueness of the viscosity

solution.

Remark 4.3. Under assumptions (FR4) and (FRS) one can prove that the upper and lower value
exist by using the fact that V; and v; are monotone with respect to |P] ([15]).

Then, by modifying some of the arguments used by Friedman in [15] and the equation of
dynamic programming, one can show directly that v+ and Vv are viscosity solutions of
the appropriate problems. This was first observed but not published by the author. (Later
it appeared in {2)). Nevertheless the arguments we gave here in order to verify (F12) are
again related to the equation of dynamic programming, which is hidden behind the recursive

relation that defines v:.

Remark 4.4. The fact that Friedman's and Pleming's definitions lead to the same value
follows from the proofg of Theorems 4.! and 4.2. Indeed in either case we showed that the
upper {lower) value, under the most general assumptions, is obtained as the limit of the

unique viscosity solutione of the same problems.

We conclude this section with some remarks about optimal control theory and a related

theorem. An optimal control problem of the kind we consider here consists of
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(1) an ordinary differential equation

%-E(t,&(t),v(r)), 0<t<T<T

E(t) = x
N
where Y is a compact subset of *F  for some p, £ : [0,T] x R x Y » l“ satisfieg (FR1)
and v : [0,T] * R is a measurable Y-valued function defined for almost every T in
fo,T].
(2) a payoff functional ©P(v) given by
T
P(v) = uo(E(fo,t,T,v)) + f his,E(s;x,t,T,v),v(s8))ds
t
N N - -

where v, ec(R), hec({o,7] x R x Y} and for 0 < Tt <1t < T, &(x,7,7,v) is the

unique solution of

a

g% = f£(s,£(8),v(s8)) T<8<T1

E(t) = x

The aim is to minimize the value of the payoff functional over all possible control
functions. The value of the problem is defined by:
T
(4.37) vix,t) = inf [uo(E(Txx,t,T,v)) + f his,E(8:x,t,T,v),v(s))ds)
vi*) t
P. L. Lions ([18], also see L. C. Evans and I. Capuzzo Dolcetta [3]) observed that v is a

viscosity solution of

3 N
=%+ inf (£(t,x,y)e0v + h(tx,y)} = 0 in R x [0,T)
t
yeyYy
(4.38)

vix,T) = uo(x) in RN

Here we state a result which proves the convergence of a certain approximation scheme

to the value of the optimal control problem. In particular, if, for a partition

p-{o-:°<:‘<...<cn(p)=r}, we define u, : Qn * R Dby




ur(x,T) - uo(x)

u, (x,t) = inf (up(x AP EIL T P A LIRS I LT t)h(t,x,y)}
yey

ifr t e [tl'ti*l) for some 1 = 0,...,n(P) - 1

then it is

T

Theorem 4.3. If f,h satisfy (PR4) and u, € BUC(IP). then, as |P| + O
luP -vli +0

where v 1is the value of the under consideration optimal control problem. 1If, moreover,

0,¥ N
£,h also satisfy (FL4) and u, e Cb' (R), then, for |P| sufficiently small,
2
Iup - vt < xlvlv

where X is a constant which depends only on luol, IDuol.

Proof. The proof is a direct consequence of Remark 3.2 and the fact that v 1is the

viscosity solution of (4.38)
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SECTION S.

The first part of this section proves the convergence of explicit finite difference
schemes to the viscosity solution of (0.1) and gives explicit error estimates. As
mentioned in the introduction such a result was first proved by M. G. Crandall and P. L.
Lions ({6]) for the problem (0.3). The theorem stated below is a generalization of their
result.

We now describe the class of difference schemes to be considered here. For notational
simplicity only, we will assume N = 2. The definitions and results for general N will
be clear from this special case and we will not state them. A generic point in R2 will

be denoted by (x,y) and we will write Du = (“x'“y)‘ let a, B be some given positive

2 hd 2
nunbers. For p >0, u: R + R and (j,k}) @ T x z( ), we define “; kG R + R,
x p 2 Yy e 2
A+uj,k : R + R and A+uj,k : R + R by
p
u (x,y) = ulx + jap,y + kBp)
Ik
X p P p
(5.1) A+uj'k(x,y) = uj*1'k(x,y) - uj'k(x,y)
y p [ P
A = ~
+uj,k(X.y) uj'k*1(x.y) uj'k(x,y)

. 2
Moreover, for p,q,r,s8 fixed nonnegative integers and u : R + R let

2 . R(p+q+1)(r+s+2)

O Pra2) (rese)

2
and 87w : &%+ & be defined by

x P x p X p
' =
A+u) {(x,y) (A+u-pl_r(x,y),...,A+uq’s#1(x,y))

(5.2) and

y 0 ) y P
(A+u) (x,v) (A*u_p'_r(x.y),...,A+uq+1,s(x,y))

0,t 2
If uec ' (R), it is easy to see that, for every (x,y) € Rz, it is

lAfuz k(x,y)l |AZ“: k(x.y)l
(5.3) 4 B L < tpul
pa p8

(*)% is the set of integers

-68~




and
A%’ oot 1aiw’ oot

t5.4) pa . 28

< AlDul

where A ~72(p + q+ 2){(r + 8+ 2) and | | denotes the usual metric in any .

2 2
Pinally, for u,v : R * R and 0< p < t< T, let ¥(t,p,u,v) : R *+ R be defined by

(a*w)® a¥v)®
(x,y), =5 (uy)) A€ 930

rlt.p,u,v)(x,y) = vix,y) - pglt,x,y,ulx,y), Py

(5.5) { and
F(t,0,u,v) (x.y) = V(X.Y)

(pta+1) (rte+2) n(p*q-*2)(r+.+1)

where g : (0,T} X Rz X Rx R + R satiasfies

g 1s uniformly continuous on f{0,T] x nz x [~-R,R] x

{¢1)
x >0
x B(p*q*”(””z,(o,a) a(mw”r‘“”(o.k) for every R
{ There exists a constant C > 0 such that
)
(G2} sup _ {g(t,x,0,0,...,0}f ¢ C
(x,t)eq,r
rror every R > 0 there exists a constant I:R > 0 such that
lglt,x,y.x,w,2z) - g(t,x,y,;,v,z)l <L lr - ;|
(G3) 2 - y
for every t € [0,T], (x,y) @R, r,r € [-R,R)
+q+ +
and (w,z) e R(p qt1)(r+as2) x R(p+q+2)(r+.+1)
FPor every R > 0 there is a constant Cp such that
lalt ,x,y,x,w,2) ~ q(t.;.;-fﬂ"!)l
(G4) |

< cft ¢ Hwa 1 = € + 1ay) = (x,9)])

for t,t e [0,7), (x,y),l%,9) & B, Ir} <R
(ptqt1) (r+s+2) x ‘(p*q+2)(r*nﬂ)

and (w,z) € R
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For every R > 0 there is a constant Mp > 0 such that

Yt Xoy ,Eowez) - GlE, X, y,T,m,2)] € Hnl(wpz) - (w,z)]
(GS)
for t e (0,T}, (x,y) e Rz, Ir] € R and

(pta+1) (r+s+2) R(p*q*Z)(r*:*1) with l('.z)|.|(;.;)| <R

(w,2),(w,z) € R
The explicit finite difference schemes of interest here are generated by (5.5). We
say that (5.5) is consistent with the equation wu, + H(t,x,y,u,ux,uy) = 0 occurring in
(0.V), 1if
glt,x,y,r,a,...,a,b,...,b) = H(t,x,y,r,a,b) for
(5.6)

2
{ tef(0,T)], (x,y) R, r€R abenRr

Moreover, we call (5.5) monotone on [~R,R], {if

2
For every u : R + R, if vix,y) € wix,y) for every

(x,y) e .2' then, for any (a,b) e l?, such that

X p y e x p y o
+v1.k(a'b)| IA’v1.‘k,(a,b)| |A+wj‘k(a,b)| IA‘_w‘,,lk

pa ! pB ! pa ! oB

8 .(a,p)!

(5.7)¢ < R

for -p< jJ* € g+ 1, -r<k*< s, -p< Jj<qg, -r<k<s ¢+,

it is P(t,p,u,v){a,b) < P(t,p,u,w){a,b). i

The main result is .

2 0,1 2
Theorem 5.1. Let H : [0,T) x Rz x Rx R + R be continuous and u_ e cb’ (R). Let

[}
l(p+q+1)(r+s+2) . ll(p*q+2)(r+s+1)

g : [0,T) x !? x R X + R satisfy (G1), (G2), (G3), (G4)

and (GS) and suppose that (5.5) is congistent with (0.1) and monotone on
= LT = = LT =
eT(ZCe ) T(2Ce +L)(IDuol + CT) + 1], where, if

R = eLTlluol 4+ TC), then c = CR. For a partition P of [0,T), define u, ¢ ar + R

(-« (1pugl + CT) + 1),e
by (2.1) and (5.5). Let u be the viscosity solution of (0.1). Then there is a 3
congtant K, which depends only on luol, lDuoI, g and T, such that, for sufficiently
small |P],

1/2
(5.8) tu, - ol < KIp| /
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Proof: 1t suffices to check the assumptions of Theorem 2.1 (a). It is obvious that, for

0,1 2 0,1, 2
every (t,0) and u,v @ cb' (R), P(e,p,u,v) e cb' (). Moreover, (F1) follows from

(5.5). Next, for u e c:'i(lz) observe that
(ayw® )
IP(e,p,u,0)(x,¥y) ~ ulx,y)| =plglt,x,y,ulx,y), oa  (Xe¥), T (x,y) 1

and therefore
1P(t,p,u,u) - ul € pc‘(lul,lbul)

where c‘(lul,lDul)- sup |jgl(t,i,r,w,2)|
ce[ozr]
EeRrR
{x(<lul
|w <Al Dul
| 2] <Al put

with A given by (5.4). The fact that (t,0) + F(t,p,u,u) is continuous in the

0,1, 2

1 l-norm for ueC (R') follows from the above inequality and (G2), (G3), (G4),

b
{GS5). Pinally, (P3) is satisfied in view of (5.5).

Now we want to verify (FS). To this end, let
r =v2 (max{p,r,q + 1,8 + 1} + D)max{a,B}

-~ - 2
and assume that v(x,y) € w(x,y) for every (x,y) € .2. If for some (x,y) € R it is

Ivix + a,y + b) - vix + a,y + b)],lwlx + a,y + b) -

(5.9) _ . - - -
- w(x + a,y + b)| < L|(a,b) - (a,b)]
. - a(Deaget™) -
for (a,b),(a,b) € nz(o,pz) and L = ¢ (lDuol + CT) + 1, we claim that, for any
1
ue c:’ (l“).
(5.10) P(t,0,u,v)(X,¥) € F(t,0,u,v)(x,¥) .

This together with the fact, that, in view of (G2), (G3), (G4), (5.6) and Proposition 1.5

0,1 2

(), u(-,r)ecb (R') for every T with

- ir -
sup 1Du(s,1)1 ¢ ef(2Ce *L)

(louol + CT)
[ $4%4

implies (F5). To prove (5.10) we use the monotonicity of the scheme. In particular, for

-7q=

-t -

RS
—— e e G

b

i
)




some J,k with =-p <€ j< g, =-r< k<€ g+ 1 it is

x P
AvVik - - vix +pti + a7 + okB) - v(x + pia,y + ok8)
ISk G- -~ |

But (p(3j + 1)a,pkB), (pja,pkB) € Bz(o,pr), therefore by (5.9) it is

X p

|A+vj

(;,;)| < Lpa
.k
and similarly

x P
+ 3.k

(5.10) then follows from (S5.7).

3] (Gevtt < Boa, 136, LGty 18, LGt < Tes

For (F6) observe that the discussion after the statement of Theorem 2.1 implies that,

1 2
1t uecl (RY) with 1Ipul <L + 1, then

b
1F{t,p,u,u) - P(t,p,u,0)! < Iul
Therefore
IF(t,p,u,u)l < Iul + IF(t,p,u,0)t
But
IP(t,p,u,0)(x,y)| = l-pg(t,x,y,ulx,y),0...0,0...0)| < p(Ltul + C)

and thus

tF(t,p,u,u)l < epL(lul + pC) .

C0,1

2 L =
o’ (R) such that Iul < e’P(lul + ™C) and Ipul < L, let

Next, for u €
- 2
u: R *+ R be defined by
ulx,y) = ulx + n,y + £)

for some (n,E) e .2. We have

|P(t,o,u,u)(x,y) -~ F(t,p,u,u)(x +n,y + £)] < 'F(t,p,u,u) - r(t,p,u,G)l +

alwf (a¥w)®
+ plglt,x,y,ulx,y), —-;;—-(x +n,y +E£), ——;E—_(x +n,y +£)) -
(a%w® aYw?
~glt,x + n,y + £,u{x +n,y +§), oo (x + n,y + £), -—;E——(x +n,y +£))'

therefore
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IP(t,p,u,u){x,y) - Plt,p,u,u)(x + n,y + £)} <
< tout [(n,E)] + oLADul I(n,E)] + pC(1 + 1DuB))(n,E)}

which implies
p (L+C)

1DF(t,p,u,uMl < e (1pul + Cp)

Since
.T“‘*C)(louol +C1) <L
(F7) holds.

1 2 N 2
Pinally, for u € Cg' (IF) and ¢ e c (R), if (x,y) € R is such that

IDp(x, )| <L+ 9
then, for p > 0,

Pst‘g‘ ‘!z‘ ‘!2 '!! ‘!2
] u xp x + H(t,x,y,u(x,y),Ox(x,y).Qy(x,y))|

T3 3 (a¥4)*?

= |g(t,x,y,ulx,y), pa (x,y), pa (x,¥)) -

- g(t,x,y,u(X.y) ,Ox(x,y) 2o ,OX(X'Y) .Oy(xoy) seee ;Oy(xly) ) |
therefore

Fle,pou,d)(x,y) = ¢(x,y) M
lp(t u : x + H(tnhvlu(x;}')ﬁx(x:y) loy(x'y))l < H|DZ¢I9

M - = d . !

where M 2AMmax(IuI,L+1)t and thus (F8) -
The second part of this section is devoted to the convergence of certain fully

implicit finite difference schemes to the viscosity solution of (0.1). We now describe the

class of difference schemes to be considered here. For notational simplicity only, we will

assume N = 2, The definitions and results for general N will be clear from this special
case and we will not state them. A generic point in -2 will be denoted by (x,y) and we

will write Du = (ux,uy). let a,8 > 0 be some given positive numbers. For o > 0,

X, .0 2 t,p
u

2
u:R * R we define A : R+ R ana AY'E Py, Rz + R by
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[ﬁx'+'pu(x,y) = u(x + ap,y) = ulx,y)

x,

A -'pu(x,y) = u{x,y) - u(x - ap,y)

(5.11) s

Ay'*'pu(x,y) = ul{x,y + pB) = ulx,y)

AY'-'pu(x.y) = u(x,y) - uix,y -~ pB)

0,1 2
If nec '’ (R), it is easy to see that, for every (x,y) € Rz, it is

IAx't'pu(x,y)[ lAY’t'pu(xll)l

pa pB

(5.12) < Ipu!

2 2
As far as H : [0,T] x R x Rx R » R 1is concerned, here we assume that it satisfies
(), (42),
There is a constant L > 0 such that

H(t, (x,¥),r,(p,q)) - B(E,(x,¥),T,(p,q))] €

e <Lilt - €1 + lx,y) = (5,91 + Ir = x| + [(p,q) = (p,)I
for every t,t e (0,7, r,F € R and (x,y),(x,%),(p.q),(5,q) € B

and

() H 1is monotone with respect to p and q for

every t @ [0,T], re@R and (x,y),(p.,q) € .2

2
Por u,v,w € BUC(lz) and 0 <p € t< T let T(t,p,u,viw : R * R be defined by

t:xcp' AtaY:p
(5.12) T(t,p,u,v)wix,y) = vix,y) - pH{(t,x,y,u(x,y), oo {(x,y), -1§r_‘ (x,y))
+ +
where we use A' ‘%" (a ,y,p)' if H is nonincreasing with respect to plq), and

~X,P a1

A ), if H is nondecreasing with respect to pl(q). In view of (5.11), (H1),

a
2

(H2) and (H8), it is obvious that T(t,p,u,v)w @ BUC(R ). Moreover, we have

lemma 4.1. Por a,B sufficlently large, T(t,p,u,v) has a fixed point in HUC(IZ). 1f,

0,1, 2 0,1 2
moreover, u,v € Cb' (R"), then the fixed point is in Cb' (m).
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Proof. We first show that, for a,8 gufficiently large, T(t,p,u,v) is a strict

2
contraction in the ! l-norm. Indeed, if w,z € BUC(R ), then

Ir(t,p,u,v)wix,y) - T(t,p,u,v)e(x,¥y)] €

tvxopw t.y.ov
< plH(t,x,y,u(x,y), pr (x,¥}, o8 (x,y)) -
%, t.v.0
A ~ .1
- B{t,x,y,ulx,y), —-;—-'- (x,y), =3 £ (x,9))1 < 22 L(g + ‘;')lw -z .
So, if C -2/51.(1#1) <1, we have
’ 0 a B 2’
(5.13) I7(t,p,u,v)w = T{t,p,u,v)el < Colv -zl

By the contraction mapping principle, (5.13) implies the existence of a unique fixed point
of T(t,p,u,v) in wc(nz).
If uvwe c:”(nz), it follows directly from (H8) and (5.12) that
(5.14) lor(t,p,u,v)vl < 1DVl + pL(1 + 1Dul) + colnwl
80, if w is such that
IDvl + pL(1 + IDul) + C

1—C°

fow <

(5.14) implies

1Dvt + pL(t + IDul) + co
1-C

(5.15) 'M(t,p,“,v)" <
0

PA

0,1 0 2
In view of (5.13), it follows that T(t,0,u,v) cb' (lz) » Cb (R') has unique fixed

point w e c:"(lz), which satisfies
[ 1ovl + pL(1 + Ipul) + C

Towl <
1-¢,

0

(5.16) J and

vl + pL(C + tul) + C

1-Co

0
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where the second inequality follows from (H2) (C is the constant in (H2)}), (H8) and
(5.17) IT(t,p,u,v)wl € Ivl + p(C + Jul) + C Iwl
and it is valid even when u,v,w € BUC(RZ)

2 2 2
Next for 0 < p < t< T let F(t,p,*,*) : BUC(R ) x BUC(R ) + BUC(R ) bhe defined by

If p =0, then P(t,p,u,v) = v
(5.18) If p > 0, then PF(t,p,u,v) {is the unique

2 2
fixed point of T(t,p,u,v) : BUC(R ) + BUC(R )

The theorem is:
2 2
Theorem 5.2. (a) Let H : [0,T] x R x Rx R *+ R satisfy (H1), (H2), (H8) and (K9) and

u, € BUC(R'). For a partition P of (0,T), define u, ET + R by (2.1) and (5.18).

Let u be the viscosity solution of (0.1). Then

(S.19) IuP -ul >0 as |p|] + 0.

(b) 1f u, e C:"(lz), then, for sufficiently small |P|,

0
1
lu_ - ul < K|p| /2
P
where K 1is a constant which depends only on luol, IDuol.
Proof. (a)} It suffices to check the assumptions of Theorem 2.1 (b). (F1) is satisfied

because of (5.18). Moreover, (F3) is an immediate consequence of the definition of

rl(t,p,u,v) and T(t,p,u,v). To check (FP4) observe that, in view of (5.16), we have

tr(t,0,u,u) - ul < p sup _ IH(t,x,y,u(x,y),p,q)|
((x,v),T)eQT
lDuI+TL(1+lDuI)+Co
1(p,q) < 1-C
0
0,1 2
The continuity of (t,p) + F(t,po,u,u) for u e Cb (R) follows from the above inequality

for p = 0 and from the properties of T(t,p,u,u) and (5.15), (5.16), (5.17), in the case
that p > 0.

For (F9) we need to specify the monotonicity of H. 1In particular, here we are going
to assume that H 1is nonincreasing with respect to p and nondecreasing with respect to

q. If another combination is true, then one has to modify what follows in an appropriate
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way. If p = 0, then
1F(t,0,u,v) - P(t,0,u,v)0 = Iv - vi

If o >0, then w= F(t,p,u,v) and v = r(t,p,u,;) satiefy

+,.%x,p ) 41

wix,y) + pH(t,x,y,u(x,y), Y ¥ (x,¥), A‘;E‘-! (x,y)) = vix,y)
(5.19)

;(x,y) + Dn(t,x,y,ﬁ(x,y), é:é;:g! (x,y), A ;::9' (x,y)) = ;(x,y)
We are going to show that
(5.20) sup , (wix,y) - wix,y))' € tv = W1+ pulu - @

(x,y)eRr’

The above, together with a similar {nequality for sup (;(x,y) - w(x,y))-, which is
(x,y)eR
proved exactly as (5.20), implies (F9). To this end, observe that, if
- +
sup (wix,y) - wix,y})) =~ 0
(x,y)eR
then there is nothing to show. Without any loss of generality, we may assume
- +
(5.21) sup , (w(x,y) - wix,y)) > 0.
(x,y)eRr
In this case let ¢ ll2 + R be defined by
- +
d(x,y) = (wix,y) - wix,y))

2
Since ¢ is bounded, for every § > 0 there is a (x1,y1) e R such that

0(x1,y,) >  sup 2 (wix,y} - ;(x.y))+ -8
(x,y)enr

Next choose ( € c:(lzl such that 0¢ { < 1, |pC| < 1, z(x1.y1) = 1 and define
Y : Rz + R by
Yix,y) = d(x,y) + 28¢(x,y)

Since Y = ¢ off the support of { and

'(xi,y1) - 0(x1,y1) +28 > gup d(x,y) + &
{x,y)er
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there is a point (xo,yo) e Rz such that
2

(5.22) Y(xo,yo) > ¥(x,y) for every (x,y) € R .

1 - +
Moreover, it is easy to gee that, for § < - sup 2 (wix,y) ~ wix,y)) ,

(x,y)eR
w(xo,yo) - w(xo,yo) >0

(5.23) and

sup , (wix,y) - wix,y* < (wixg,yg) - v':(xo,yc‘))+ + 2§
(x,y)er

Using (5.19) and (5.23) we have

sup . (w(x,y) - wix,y))¥ < v = T8 + 28 +
(x,y)em
- +lxlp; A-IYIp;
+ pa(t,xo,yo,ulxo,yo). oo (xo,yo). o8 (xo,yo)) -
+,%,p “e Y0
- PHIE, Xy, kg ,yo) . T (x4,¥q), Y (x50¥4))

therefore

- + - -
sup (w{x,y) = wix,y)) < lv - vl + 2§ + pLly - ul +

(x,y)El
+:x:9; 'lY:D;
MLLISTE A0 AP IS PO oa (xo.yo), s (xq:¥5)) -
+lepw -'YIp'
- ""“""o"’o'“"‘o"o)' o (xo,yo), 8 (xo,yo))
But, in view of (5.22) and (5.23), it is
+,%,p +,x,p= +,.x,0
A ' w A ' v _ AT’
pa XorYo) € T pa (xgr¥e) T 28 T (xg4vy)
and
A-'Y'pw A-UYIp; A'JY;D
Y {x5/74) 2 o8 (xgr¥4) = 28 ___Lpe (x4.9g)
Thus, by the monotonicity of H, we have
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+x,p A-'Ylpv
Bt X, ,¥q,u(x,,¥0), oa (x50¥0) s TR (X570} =
A*:X.O-
- n(t,xo,yo,u(xo,yo), o (xo,yo) +
+.x,P T eXeP- =e¥eP
A 5% ¢! A . A ’
- 28 7—; (xo,yo), 7—! (xo,yo) - 2§ —p—B——; (xo,yo)) >0

The above inequality, together with (5.24) and (H9), implies

sup (w(x,y) = ;(x,y))+ <fv=-9l + pLIu - ul + 26c1

(x,y)er

where Cy is a conatant which depends on L,x,8. Lletting § + 0 we obtain the result.

Next we check (F10). 1In view of (F9), we have

|?(t.9,u,\l)| < lp(t'D,“,“) - P(t,p,0,0“ + .r(tlplolo)' <

Moreover, if w = P(%,0,0,0),

+,x,0
wix,y) = -pH(t,(x,y),0, A-—_—_! (x,y),

But (5.16) and (5.18) imply

thus

< (1 +pLMul + tP(t,p,0,0}1

then

“eY P

oo o8 (x,y))

TL + Co
1= Co

17(t,p,0,0)1 < p sup 1R(T,(x,¥),0,p,q) |

and

(X'y)e‘
telo,T]
TL+C

0
'(P'Q)"'T:E'
0

tree.o,u,ut < Pt + oc,)

-79-




c, = aup - IH(Tley:OlPoq)'

7 ((x,y),t)eQT
TL*CO
ltp,q) I$—5
0
0,1, 2 0,1 2
For (F11) observe that, if u e C (R), then F(t,p,u,u) € C (R) by Lemma 5.1 and

b b

2 - 2
(5.18)., Let (E,n) @€ R. If w=F(t,p,u,u), let w : R + R be defined by
| ;(x,y) = wix +§,y +n) .
It is easy to check that

; = F(tlpl‘;l‘-l + Df)

where
ulx,y) = ulx + £,y + n)
and 1
- +,x,p; -IYIPQ
£{x,y) = H(t,x,y,u(x,y), oa (x,y), -—;E'—‘ (x,y)) -
+,X,D; A':Y:Q'

A (x,y))

(x,y), 0B

- H(t,x + £,y + a,u(x,y),

But then (F9) implies
Tw-wl < lu- (a0+pf)l +pLlu - al

So, in view of (HB),

IDwl < (Dul + oL + pLIDul < e”“(IDul + pL)
and thus (F11),

Finally, we want to verify (F12). We are going to show that
(s.2a)} sup , (F(t,0,ud)(x,y) - $(x,y) + OR(E,X,y,u(x,¥),Dp(x,y)))" <
(x,y)er’
< g1+ |02¢| + 1Dp1 )p2

where C_ = CS(IDuI). Here we prove only (5.24)+, since (5.24) can be shown in exactly

L]

the same way. Let w = P(t,p,u,4). Without any lose of generality, we may assume that

sup , (wix,y) = $(x,y) *+ pH(t,x,y,ulx,y),060x,y1)* > 0
(x,y)em




In this cage let & Rz + R be defined by

¥(x,y) = (wix,y) - ¢(x,y) + on(t,x.y.u(x.y),m(x.y)))+ i

2
Since ¢ 1is bounded, for every 6 > 0 there is a point (x1,y1) e R such that

0(x1,y1) > sup d(x,y) - §
(x,y)€R

Next choose [ e c;(nz) such that 0< ¢ <1, Ipgl ¢ 1, 1Ll € 1, &lx,y) =1 and
define Y . ‘2 + R by
Y(x,y) = d(x,y) + 28¢(x,y) .

Since Y = ¢ off the support of [ and

Y(x',y') - 0(x1,y’) + 26 > sup 2 d(x,y) + 6
(x,y)en’

there is a point (xo,yo) e l2 such that

(5.25) T(x ) » ¥{x,y) for every (x,y) e Rz .

0'¥o

It is easy to check that if

1 +

§ < 2 8w, (wix,y) =~ é(x,y) + pH(t,x,y,ulx,y),Dd(x,y))

(x,y)eRr
then
v(xo;yo) - 0(x°,y°) + pH(t,xo,yo,u(xo,yo),Dt(xo,yo)) >0 !
and ;
. +
(5.2¢ sup , (wix,y) - é(x,y) + oH{t,x,y,u(x,y),Dd(x,y)) ¢

(x,y)ex’

< (w(xo,yo) - ¢(xo,yo) + pH(t,xo,yo,u(xo,yo).D@(xo,yo)) + 25

P

In this case we have

(5.27) v(xo,yo) - o(xo.yo) + pn(t,xo.yo.u(xo.yo).D¢(xo,y°)) =

=P [n(tlxo lYo :“(xo .Yo) :¢x(xo:y°) .0y(xo tyo)) -

A"'lxopw -IYIpw
= Hlt,xg,¥q.ulxg,y,), Toa - (xgevg). T (Xgeye?)]
But, in view of (5.25), it is
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A+,x,9' 1 %0
oo (xo,yo) < oo A (6 - pH(t,*,* ,ul*,*),D(=,*)) - 26((-,'))(x0.yo)

and

A‘lYlp 1 -
S (xyg) > o b YPp - pH(E, e a0 ,DRL o)) = 2BLC ) (xpLy)
The above inequalities together with (H8), the monotonicity of H, (5.12), (5.26) and

(5.27) imply

sup (wix,y) - d(x,y) + pﬁ(t,x,y,u(x,y),D@(x,y))+ <
(x,y)eR

< 285 + p[n(c,xo,yo,u(xo.yo).¢x(xo.y°).¢y(x°.yo)) -

+,x,p

1
- H(t,xo,yo,u(xo,yo), a A (¢ - pH(t,*,*,ul*,*),Dd(*,*)) ~

1 e 1]

- 2600 (xguyg)s o5 87 V00 ~ oRIE, s o u,D) = 260)(xy,yy))) <
= 2 2 2

< 26 + /2 (max(a,B)DGl + L(1 + Ipul + ID“91) + 28)10° .

Letting & + 0 we obtain (5.24)%.

(b} 1t follows from Theorem 2.1 (a), since in part (a) above we checked all of its

hypotheses.

Remark 5.1. One can prove the same result in the case that H satisfy (H4) type

assumptions.

Remark 5.2. Assumption (H9) is not really restrictive. In particular, it is easy to check

that, {f u e BUC(ET) is the viscosity solution of
{ u, + H(t,x,u,Du) = 0 in QT

{ u(x,0) = uo(x) in l”
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then v(x,t) = u{x - tc,t), where c € f‘, is the viscosity solution of
vt + H(t,x - tc,Dv) + c°Dv = 0 in Q‘r

v(x,0) = uo(x) in g

where c°Dv denotes the usual inner product l”. In view of (H9), we see that, with an

appropriate choice of ¢, we can always achieve (R10).

T i PO, g 4 e
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SECTION 6
N
We begin by introducing some notation. In particular, if for uo € BUC(R ) and
08T

N
(u + H(t,x,u,bu) = 0 in R x (8,T]

t

(6.1)4

u(x,s) = uo(x) in RN

N
has a unique viscosity solution u € BUC(R x [=,T)), then we write
(6.2) U(t.s)uo = u(s,t)

Similarly, if for uy.w € BUC(RY) and 0< s8¢ T

u, + H(t,x,w(x),Du) = 0 in RN x (s,T]

(6.3)

ulx,8) = u (x) in g

has a unique viscosity solution u e BUC(RN x (s,T]), we write
(6.4) U(t,s,w)uo = u(s,t) .
Moreover, if for A > 0, t e (0,T] and v e BUC(®)
(6.5) u + AH(t,x,u,Du) = v in RN
has a unique viscosity solution u € svc(n”}, we write
(6.6) J(t,A)v = u
Finally, if for A > 0, t € [0,T] and v,w € BUC(K') the problem
u + AH(t,x,w,Du) = v in RN
has a unique viscosity soivtion u e BUC(lp), we write
J(t,A,wlv = u .
The first theorem of this section is
Theorem 6.1. (a) For 1=1,2 let H : [0,7] x R x Rx R + R satisfy (H)), (H2),
(H4) (with constant cy independent of R) and (H3) (with constant Yi < 0 independent
of R). For u, € BUC(IN) let ue BUC(&T) be the viscosity solution of (0.1) in 5

T

with H = H1 + HZ‘ 1€, for a partition P of (0,7, up : 6T + R is defined by (2.42)
using F(t,p,v) = Uz(t,t - 0)01(t,t - p)v, then

(6.9) luP -ul + 0 as |p| » 0O
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(b) Suppose that, for i = 1,2, Hy satisfies (H1), (H2), (H4), (H5), (H6), and (H7)

with constants Ll'“i N

defined by either (2.1) using P(t,p,w,v) = Uz(t,t - p,w)U,(t,t - p,w) or (2.42) using

0,7 N -
independent of R. If u €C. ' (R) and W, Q.+ R is

M o ¢ %

F{t,p,v) = Uz(t,t - 9)01(t,t - p)v, then there exists a constant X depending only on

luol and Inuol such that

1/2
(6.10) lup - ul < K|P| /

for |P| sufficiently small.

Remark 6.1. The assumption, that R,,H, satisfy (H3) or (H4) and (R7) with constants

independent of R, is made only for simplicity. 1In fact, one can always reduce to this

case by using Proposition 1.5, truncating Hy,H, in an appropriate way and restricting, if

necessary, T.

Proof of Theorem 6.1. (b) We first prove (6.10) in the case that up is defined by (2.1)

for

(6.11) FP(t,p ,W,v) = Uz(t,t - p,v)U1(t,t - p,W)V

To this end, it suffices to check the assumptions of Theorem 2.1 (a). In view of
Proposition 1.9, if w,v @ c:’1(ns), then F(t,p,w,v) € C:"(IF). Moreover, since for
i=1,2, Ui(s,s,w)v=v for every w,v e c:"(l?), it is immediate that (F1) is
satisfied. (F2) follows from the fact that, for i = 1,2 and u,v,v & c:"(-s), the

vigcosity solution of

du
e + ﬂi(T,x,u(x),Dui) =0 in ;2,r
ui(x,O) = v in R"

is Lipschitz continuous with respect to 1 and, moreover,
tu (e,,u)v - ui(t,a,u);l < v -9
(P3) i3 an immediate consequence of the definition of the viscosity solution. Next, and
N

~ 0,1
view of (1.11), for u,v,v € cb’ (R) it is

IP(t,p,u,v) - Plt,0,u,v)! < Iy - v
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which, by the discussion after the statement of Theorem 2.1, implies (FS) for ; = a0,
1
Moreover, in view of (1.12), for u e c:' (n“) we have
TP(t,p,u,u)l € 10 (£,t - p,ulul + p(C, + Ldul) <
< tuf + D(L1 + Lz)'UI + O(C1 + Cz)

and thus (¥6), whgre_tot i=1,2, C1 is given by (H2} and ii is given by (HS).

T(Ly*Ly) - 1 i

For R = e (luol + T(C1 + Cz)) and i = 1,2, 1let ci = CR' where CR is
given by (H4). In view of (1.13), we have
(2C,+L )p -
IDU1(t.9,u,u)l < e (Ipul + pc,)

and

(252+Ez)p (251+E')p - _
'DF(t,p,u,u)t < e (e (1Dul + pc1) + pcz)

i.e.

[2(C#C,) (L #L,) 1P ..
10F(t,p,u,ult < e (tDul + D(C1 + Cz))

which proves (P7). Proposition 1.5 also proves (F4), since (1.16) implies that

1F(t,p,u,u) - ut <

< o sup lﬂz(r,x,u(x),p)l + sup |H1(t,x,u(x).p)) :
(x,t)ele [t-p,t) (x,t)Elett-p,t] '
|p|<|DU‘(t,t—p,\.\)ul |p{<iDut R

1

Finally, we need to check (F8). To this end, for i = 1,2, consider smooth functions H

'ﬁ: : [0,T) x R“ x n“ + R which satisfy the same conditions as H;, with constants
depending on the constants of H,., fut, TDu! and are such that

~n

Hi(t,x,p) * Hi(t,x,u(x),p) as n* =@

N
uniformly on [0,T] x R x BN(O,R) for each R > 0.

Then, in view of the previous discussion and Proposition 1.5,

0,1 ~ ~
b’ (lr) where U: corresponds to H: by (6.2) and

2 N =
b e cb(- ). Moreover, there exists a constant C depending only on lul, 1Duf, Hi' ¢

Bg(t,t - p)?)‘(t,t -p¥ec

and 1ppl such that
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100,(1,T = 0,ulU,(t,t = p,u)$l, 1DV (t,t - p,ull < c
(6.12) and

IDG;(t.r - o)TJ"‘(t.t - p)ol.ln'ﬁ';(t,t - p)gl < C

for every (1,0),(t,p) @ K. Then, in view of Proposition 1.4, we have

2
(6.13)  1P(t,p,u,6) - Tpte,e0 )T (e, e 00 <0 [ wup _ IH(T,x,p) - H (T,x,ulx).p)]
i=1 (x,t)EQ,r

lpl<c

and therefore

(6.14) |'—(5‘Eﬁ:-'-’—’—'-’- + B (6,0 ,0,08) + Hy(2,*,u,08)1 <

ﬁ;(t,c - D)G:(t.t -0)0 -6
<t p + (4 Hy) (e, ,0000 +

n

2
+ 2 E sup _ IHi

1=1 (x,t)eQT
Ipl<c

(t,x,p) - Hi(t,x.u(x),p)l .

In order to finish we need the following lemma.

N N
Lemma 6.2. (a) Let H1 : {0, *x R x R + R be smooth and assume that it satisfies

(H1), (H2), (H4), (HS5), (H6) and (H7) with constants independent of R. If, for

¢ e c;llr), u, e BUC(IF x {t,:]) is the viscosity solution of

3u1

N -
F—# H1(T,X,D“1) =0 {n R x (t,t]

u1(x,t) = ¢(x) in IF

then for t €& [t,:]
Tu (+,1) = 4+ (T = OB (E,,0001 ¢ T (T = 6)(E = (1 + 1ogt + 10241)

where P1 depends only on the constants related with H,.

(b) Let H, @ {0,7] » RN x lr + R satisfy the same hypotheses as H, in part (a).

1 o, e BUC(R® x [t,t)) is the viscosity solution of

-87-

. Mo AR N, L . o, N
. DA g SAIAIPIENIET - 4. =S




%)

Y2 N -
Eraid HZ(T,x,Duz) =0 in R x (t,t]

- N
uz(x,t) = u1(x,t) in R

then for T e [t,t)
(6.16)  Mu,(s,T) = ¢ + (T = €)H,(E,°,D9) + (t = €)M (€,2, DO <

ST (T - £)(E ~ £)(1 + IDdI + 10%1) + Pu (+,€) = ¢ + (E = £)H (£, ,Dp))
where F2 1s a constant, which depends only on the constants related with H,, H1 by
(H4), (HS), (H6) and (H7). N
Proof. (a) Here we only show that
(6:17)  K(uy(+,1) =& + (T = )6 (€,4,00)"1 < T (x = £)(E = €101 + 1Dp1 + 1D741)
since the other inequality can be proved in exactly the same way. To this end, let
m: [t,t] * R be defined by
(6.18) m(T) = supy (u(x,T) - ¢(x) + (1 - t)H1(€,x,D¢(x)))+

x€R
We claim that there is a constant P1 sach that m is the viscosity solution of
(6.19) m*(t} € P1(1 + IDpt + ID2¢I)
and therefore by Proposition 1.! (b) the result. To prove this claim, let n € Cn((t,;))
and assume that 1 e (t,E) is a strict local maximum of m - n on
I = [; - a,; + al (t,:) for some a > 0. We want to have
(6.20) at(t) < T (1 + 1040 + wzu)
If m(T) = 0, then T 4is a local minimum of n, therefore n'(t) = 0 and (6.21) is
satisfied. If m(t) >0, let & : R x I+ R be defined by
di{x,T) = (ulx,t) ~ ¢{x) + (1 - t)ﬂ1lz,x,Db(x)))* -~ n({1)
Since ¢ 18 bounded, for every & > 0, there ig a point (x1,T1) e IN x I, such that
0(x1,r1) > sup S(x,7) - §
(x,7)eR x (¢, t]
Next choose [ e c;(nN) so that 0< 7 < 1, |Dg) € 1, lchl < 2, l,'(x1) = 1 and

define Y : l“ x I+ R by

(6.21) Yix, 1) = &(x,7) + 257(x)

-88~




Since Y = ¢ off the support of § and
Y(x1,T1) > sup Slx,1) + §
(x,7)er 1
there is a point (xo.to) e l“ x I such that
(6.22) Y(xo,ro) > ¥(x,t) for every (x,7r) @ l" x I
We claim that (xo,To) satisfies

as 8§+ 0, Tg* T and
- +
(6.23) (u(xo,to) ~ o(xo) + (to - t)n1(t,x°.00(xo))) -

= ulxg,Tg) = dlxg) + (1, ~ t)ﬂ1(€,xo,00(xo)) + m(T)

To see this, observe that, if for some subsequence (which for simplicity is called again

§) §+ o0, to > ;, then, in view of (6.22), we have

m(To) + 28 - n(to) > Y(xo,to) > ¥(x,T) >

> (ulx,1) = #tx) + (1 = O (E,x,000 0" = alr)

therefore
m(To) - n(to) + 28 > Yix,,T0) > m(t) - n{tr) for every T €1 .
This implies that
®(t) - n(T) > m(1) - n(1)
and thus T - 1. Moreover, for every Tt € I
n(ro) + 28 ~ n(To) »
- +
> (u(xo,to) - O(xo) + (10 - t)H‘(t,xo.Do(xo)) - n(to) + 28 > m(1) -~ n(1)

therefore for 1 = T

- - —— - -Q -
mn(T) - n(T) > Lim (u(xo,To) - ¢(xo) + (to - t)H1(t,xo,D¢(xo))) - n{1) >

o
-
o

\ 4
[
o~

- + -
‘: (u(xo.To) - O(xo) + (to - t)ﬂ,(t,xo,oo(xo))) = n(t) >

|

Ol

» m(T) - n(T)
and thus (6.23), since m(T) > 0.
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Now since (xo,ro) [] nr x (t,;) is a local maximum of
(x,T) * u(x,T) = $(x) + (T = £)H (£,x,D8(x)) + 28g(x) = n(1)
in view of (1.1), we have
n'(ro) - H1(€,xo,D0(xo)) + 51(ro,xo,00(xo) -
- (t, = £)DH (£, ,Dd(*))(x,) = 26DC(xy)) € O
therefore
n'(TG) S N (E = T )(1 + 1DP1) + M (1o~ £) DR (E,%,D0(+))(xg)] + M 26
where N‘, M1 are defined by (H6) and (H7) respectively. Moreover, in view of (H4) and
(H7), we have
IDH, (€, D8 (+)) (xg) | € C,(1 + IDpN) + M 1D?5N
where C, 1is given by (H4). Combining all the above and letting § + 0, we obtain

1
at () < (€ -y +uS s w07« et + %)
thus the result.
(b) Here we use

(6.24) m(T) = H(u,(+,T) = ¢ + (T = ), (E,2,D8) + (£ = €IH (E,*,08)) 1

Since the proof is similar to the one given in (a), we omit it.

Now we continue with the proof of Theorem 6.1(b). In view of (6.14), (6.16) and the

way that H: are chosen, we have

lfi&iﬁifiﬁl-:—ﬁ + (B + H)(t,2,u,D8)1 < T, (1 + IDYL + 10600 +

2
+ 2 Z sup _ |H:(T,x,p) - Ht(T,x,u(x),p)I
i=1 (x.f )SQT
Ipl<c

where P2 is a constant which depends only on Jul and Hili = 1,2). Letting n + =
implies the result.

To prove (6.10) in the case that u, is defined by (2.42) for
(6.25) F(t,p,v) = u,(t,t = p)U (t,t = p)v

we need to check the assumptions of Theorem 2.2 {a). The fact that F(t,p,v) € C
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and (F15) are immediate consequences of Propositions 1.4 and 1.8. Moreover, for every
(t,p)eX and u,ve c:"(-P), let
;(t,p,u,v) - Uz(t,t - o,u)01(t,t - p,u)v
The only assumption we need to check is (F16). To this end, let u € c:"(u“). It is easy
to check, using (1.1), (1.2), that 01(1,1 -~ plulx) and Uz(r,t - p)U‘(t,t - plu(x) are

viscosity solutions of the problems
3, du

2 ~ N 1 ~ N
.3‘\'_ + Hz(T:X,Dnz’ 0 in R x {t - p,t) 3T + ﬂi(‘l’.x,Du') =0 in R x (t - p,t)
and
u (Xt = p) = U (t,t - plulx) in R u(x,t - p) =u

respectively, where

iz(f,x,p) = Hy(T,%,0,(1,T = p)U (t,t = p)ulx),p)

‘l;‘(t,x,p) = H‘(T,X,U1(T,t - plu(x),p).
Moreover, in view of Propositions 1.5 and 1.8, there is a constant A = A(lul,IDul) such
that, for every (t,n),(t,0) € X, it is
100,(t,T - 0)U (t,t - Plul,IDO (t,t ~ plul < A
and
IDuz(t,t - o,u)01(t.t - p.u)ul,lw1(t,t -~ p,ulul < A
It follows from Proposition 1.4 that

17(t,p,u) - F(t,p,u,u)l € 10, (e, = plu - D (t,t ~ p,u)ul +

+p sup lﬂz(t,x,uz(r,r - 0)01lt,t - pluix),p) - Hz(r,x,u(x),p)l

Ipl<a
te(t-p,t]
< oL sup 10 _(t,t - 9)01(t,t - plu-ub + E, sup lU,(T,t - plu-ul)
reft-p,t) telt-p,t)

Pinally, (1.16) implies that
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(6.26) IF(t,p,u) - F(t,p,u,u)l < p'e (L)) sup _ |H, (1,x,x,p)| +
2 2
(x,7)€Q
Ipl<a
|r|<R
+L(L, + L} sup _ I8 (T.x.x,p)D)
(x,T )QT
Ipl<a
lri<iul
L +E1)
where R = e (tal + T(C2 + C1))-

(a) To verify (6.9) in the case that up is defined by (2.42) and
F(t,p,u) = Uz(t,t - D)U1(t,t - plu
we first assume that Hy satisfies (H5) with constant Ei independent of R. Then it
suffices to check the hypotheses of Theorem 2.2 (b). 1In particular, by Proposition .4 we
have

_ P(L+L,) _
TF(t,p,u) - Flt,p,u)l < e Pu - uf .,

.1 N .
(R) » C0 1(!N) be

- 0,1 N 0
Next, and in view of Remark 2.3, let P(t,p,*,*) : Cb' (R) x Cb b

defined by
Flt,p,u,v) = Uy(t,t =~ p, U (£t = p,u)v
Using the arguments of the first part of (b) it is easy to see that ;(t,o,°,') satisfies

- - 0,1
(F1), (F2), (F3), (F4), (F10), (F11). For (F9) observe, that if u,u,v,vec’ (lN), then

b
1F(t,p,u,v) - F(t,0,u,9)0 < IF(t,p,u,v) - Flt,p,u,v)l +
+ PPlt,p,u,v) ~ Flt,p,u,v)l
It follows from Proposition 1.4 that
1P(t,p,u,v) = F(t,p,u, V) = 10U (£, = p, WU (t,t = p,u)v -

- U, (et - p UL (2t - p,ulvl < 10, (t,t - p,u)v = U (t,t - o 0V € Iv - ¥
Moreover, if R > max(l;l + r(L1 + Ez)lul + p(c1 + Cz),l;l + p(I_.1 + iz)lal + O(C1 + Cz)),
then by Proposition 1.5 (a) and Proposition 1.4, for € > 0 and 8 as in (1.8), we have

€

sup  {|F(t,p,u,v)(x) = F(t,p,u,v)(x)] + IRB_(x = y)} <
| x-y |<&

< sup (lu,(t,t =p,0)v(x) - u, e, - P, ulviyl| + 3RB_(x - y)}
| x=y |<€
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+p sup |H_{T,x,u(x),p) - H (t.y,uly),pll <
2 2
1x-y |<€
lplsB
{ri<Rr
1e(0,T]

< sup (Iv(x) = w(y) + 3RBe(x -y} +
Ix-yl<e

+ p[ sup |H2(T,x,u(x).p) - Hz(r.y.u(y),p)l +
Ix~yl<e
Ipi<s
lzl<Rr
te(o,T]

+ sup M (T,x,u(x),p) - B (1,y,uy),p)] -

'x-yf‘E
lpl‘B
|z I<R
te(0,T]
where B 1is such that
sup IDU1(T,T - p,G);l, sup IDUZ(t,t - p,G)U,(t,t - p,;);l < B .
te{t-p,t] 1€e[t-p,t)

Then, in view of (H4), (HS), the above inequality implies

17(t,0,u,v) ~ Flt,p,u,v)f < fovic + p(£1 + Zz)»pile

+p(L, + L )IDule + p(c1 + 2 Y1 + IBl)e
1 2 R1 R1

- i
where for 31 = max(fuf ,ful) and 1 = 1,2, cR is giver by (H4). Letting € ¢+ 0 above
1

we obtain

1P(t,0,u,v) = F(t,0,u,v)1 < p(L, + iz)uu -l

and thus the result. Moreover, we want to verify (F12). To this end, for

0,1

2 N
ue Cb (lp), ¢ e Cb(l ) and with the notation used for the verification of (F8) in (b),

we have

2
|!3$494§41111 + R B (e, 0,000 ¢ 2 ) sup _ IRN(TLx,p) - M, (5,x,ulx),p) |
is1q (x,t)EQT
lpi<c

Tpte e = 0)Ujle,t - 0)o-d

+1 S + (R ¢ Hy) (20,0
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where now for { = 1,2, H  satiafy (H1}, (H2), (H4), (H5), (HE) and (H7) with consatants

i
depending on n. For N > 0 choose n large enough, so that

2
2 ¥ sup _ |H:(T,x,p) - Hi(t.x.u(x).p)l <%
i=1 (X:T);QT

Ipicc
In view of Lemma 4.2 we have

ottt - p)TTe,t - 0)0 - ¢

~n ~n n 2
] o + (H' + Hz)(t,'.DQ)l < r2(1 + ID$L + ID"¢l)p

If o 1is such that

n 2 n
r2(1 + IDdt + 1D "¢ )p <« 2

then

F(tpsué) - ¢
L : + (B, + By)(t,*,u,09)0 <n

which implies (r12). Pinally (F16), and therefore (F17), is proved here the same way as in

(b).
To prove (6.9) in the case that Hy,H, satisfy (H3), with constants Y, Y <0

2
0
independent of R, observe that it suffices to assume v, e Cb'
0
0 0

n+ ®, PBut, in view of Proposition 1.4, it is easy to see that, if u: : ET + R is

defined by (2.42) for initial value u: and u" is the viscosity solution of (0.1)

5, for H = Hy + H,y, then

“T(Y_+Y,)
n 12 n
lu~-ul <e Iuo - uol
and
n -T(Y1*Y2) n
Tp gl e T = ! -
Then
“T(Y +v,)
12 n n n
({6.26) IuP - ul € 2 Iuo uol + lu - upl

and thus the claim is proved.
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(R). Indeed, for every

u, e BUC(IF) we can find a sequence {u;} in Cb'1(lr), such that Iu: ~ufl +0 as

in




Next we assume that u € c:"(u"). By Proposition 1.5 (a) if R > 0 is such that

"(71"72)‘!'
. (luol +'r(c1+c2+z)) <R

then

(R ] ,lu}I <R

where, for 1 = 1,2, Ci is given by (H2). Moreover, if, for i = 1,2, c-1 - C: is given

by (u4), then, by Propositions 1.5 (c) and 1.8,

sup IMDul*,t)}, sup lmp(n‘r)l <C
o< [ 444 ¢

-y 1#1 )T

. (AE e, )e “Y 0T ..
where C = o (Ibuol + 21'(c1 + cz)). Now for 4§ = 1,2 consider

H: : (0,7 x l' x R x .n + R satisfying (H1), (H2), (H4), (HS) and such that

(1) ll'il *H as n*e uniformly on {0,T] x l' x [-R,R) x B'(o,t-:)

(11) The constant C. 1in (N2) is such that ci’ <cg +.

1
i,n i,n i
{(11i) The constant (:'l in (AS) is such that (':'t < 2cR for R> 0

(iv) n: satisfies (H)) with the same constant as H.

n - n n n n -
If u 1is the viscosity solution of (0.1) in QT for H l!1 + Hz and if u, : QT + R

is defined by (2.42) using

(t,o,u) = U;(t,t - p)Ute,t - p)u

where u: correspond to ll:. then by Proposition 1.5 it is

|u"l,|u:| <R

and

sup loun(-,f)l, sup Im;(',f)l <c
[, 3% 4 [ 3444

Moreover, in view of Proposition 1.4, for ¢ > 0 and Se as in (1.8) we have
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n =-{y Wz)'r
sup {lu(x,T) - u'(y,t)] + 3Re B (x - y}} <
I~y |<E
'(11*12)1
< e sup {lun(x) - uo(y)l *+ 3RB_(x - y)} +
1x-yl<e
’(Y,*Yz)f n n
+ e T sup I(H, + H))(t,x,r,p) - (H + H))(t,y,r,p)l
Ix-yl<e
te{o0,T]
Irl<R
Ipi<c
and
n -(v1+72)r
sup flup(x,t) - up(x,t)l + 3Re B (x - y)} <
[%-yI<e
-(Y1*Y2)1
<e sup Iluo(x) - uo(y)l + 3R8_(x - y)} +
Ix-y|<e
-(Y,+Y2)t n n
+ Te Z sup Ini(t,x,r,p) - Hilt.xlr:P)l
i=1 |x-y|<e
te(o,T)
Iz|<R
Ipl<c

where the last inequality is proved by a simple inductive argument. The above then imply

n -(Y1*Y2)T n n
fu=-ul € Te sup _ |51(tnxrf:9) - Hl(t.x.!‘.PH +
i=1 (x,t)eQT
'tl‘B
Ipl<c
=Y 47T . _ -
t e (Inuol + 2(c1 +CH(1T+CIM €
2
and
n -(V1*'2)T 2 n
lup - upl < Te sup _ lﬂi(t,x,r,p) - ﬂi(t,x,r,p)l +
i=1 (x,t)eQT
lrlérR
Ipl<c
-(Y,*YZ)T - _ -
+ e (Ipu g + 2(C, + C.)(1 + C)T)e
(1] 1 2
-96=
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Letting € * 0 we obtain

n n -(11*72)7 ¢ n
l% - ul <€ l% -ul + 2Te I sup _ |ﬂ£(t:x:fop) - Hi(t;x.l’:!’”
i=1 (x.t)GQT
fri<r
Ipl<c
Por N >0 let n be such that
={Y,+Y,)T n
2Te 172 sup _ Ini(t,x.r,p) - H:(t,x,r,p)l < %
i=1 (x,t)Q.r
IxI<R
Ipl<c
Since n: satiafy (HS) we know that lu: ~u+0 as [Pl »0. 1f Py 1is such that, if
Ip| < Pgs then

Tug = wl <n2 !

then, by the choice of n,
Iun -ul <y

and thus the result.

Remark 6.2. Using the ideas involved in the proof of (a) above one can prove that, if

for i = 1,2, nz satisfy (H1), (H2), (H4) and (HS) and up is defined by (2.1 using

Flt,p,w,v) = Uztt,t - p.v)n,(t.t - p,w)v, then luP -ul 0 as |[P] *+ 0. since the

proof is almost the same we omit fit.

Remark 6.3. One can formulate a convergence theorem for schemes, for which we cannot

verify directly the conditions of Theorems 2.1 and 2.2 (for example Theorem 6.1 (a)). 1In

e

particular, we have to assume that for given H and P, we can find a seguence {Hl"l)' L
which satisfies the assumptions of Theorems 2.1 and 2.2 and, moreover, converges in a i

suitable sense to H and P. This is exactly vhat was done in the proof of Theorem 6.1
(a).

The second theorem of this section is concerned with the convergence of “"resolvent®-

type Trotter products, i.e. products formed by (6.6) or (6.8). In particular, we have
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Theorem 6.2. (a) For 1 = 1,2, 1let ll1 s [0,T] x l“ x R x ln + R satisfy (HY), (H2),

(R4) (with constant C, independent of R) and (H3) (with constant 11 < 0 independent

n of R). Por uy e BUC(IF), let v e nuc(ET) be the viscosity solution of (0.1) in éT |

with H =~ H, + H,. If, for a partition P of (0,7, u, : ET + R is defined by (2.42)

using P(t,p,v) = J,(t,p)J (t,p)v, then ' .
(6.27) I% -ul + 0 as |p| + 0
(b) Suppose that, for 1 = 1,2, H; satisfies (H1), (H2), (H4), (8BS5), (H6) and (H?)

0,1 N
with constants independent of R. If u € cb' (R) and for a partition P of [0,T]

U B,r + R 1is defined by either (2.1) using F(t,0,w,v) = J (t,0,w)T (t,0, ¥}V or (2.42)

using F(t,p,v) = Jz(t,o)J1(t.o)v, then there exiats a constant K depending only on

luol and louol, such that

(6.28) tu, - u < xie) /2

for |P| sufficlently small.

Remark 6.4. A remark analogous to Remark 6.1 applies to Theorem 6.2 too. |

Proof of Theorem 6.2. (b) We first prove (6.28} in the case that u, ie defined by (2.1)

for

Flt,p ,w,v) = J,(t,0, )T, (t,0,w)V

To this end, it suffices to check the assumptions of Theorem 2.1 (a). 1In view of

0,1 N
:'1(13), then F(t,p,w,v) € cb' (R), provided that p is

Proposition 1.9, if w,v € C
sufficiently small. Moreover, since for i = 1,2 Ji(t,o,v)v = v for every
w,v e c:"(n"), it is immediate that (P1) is satisfied. (F2) follows from Propositions
1.6 and 1.8. 1In particular, if A > 0 such that

lD!(t,p,n,u)l,IDJ‘(t,p,u)ul <A

for (t,p) € K (such an A exists by Proposition 1.8), then
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17(¢,p,u,u) ~ P(t,P,u,w) € 13,(t,0,u)7 (t,p,ulu - Jz(C,S.u)J1(e,p,u)u +

+ 13,(2,6,u)3,(£,0 ,)u = J,(E,6,u)3,(E,0,0)ul

+ 2 e sup _ lli(t,x.u(x)ol’) -31(€;x.u(x).p)| +
i=1 (x,t)Qr
Ipl<a
+ 10 -9l sup _ I (x,x,utx),p)i
(xn‘)Qr
Ipl<a

1

and thus the claim. (P3) is an immediate consequence of the definition of the viscosity
solution. MNext, and in viev of (1.17), for u,v,v € c:"(n') it is
1P(t,p,u,v) = F(t,0,u,v)l < bv - W
which, by the discussion after the statement of Theorem 2.1, implies (FS) for L=a.
Moreover, in view of Proposition 1.7, u € C:"(l“) we have
1P(e,p,u,ul € 1T (t,0,uldl +p(C, + f.zlul) < tul + p(l-.‘ + t..z)lul +p(c, +C,)

and thus (P6), where for 1 = 1,2, C L, are given by (H2) and (HS) respectively. If,

17
- - - 1
for { = 1,2, c1 is given by (H4), then, by Proposition 1.7 and for p(c, + Cz) < 2 it
is - -
(‘x‘ﬂ.')p -
IN1(t,p,u.u)l <e (Ipul + pc‘)

and

(2 ol )0 (20,4000 - -

for(t,p,u,u)l € o (e (1pul + pCy) + "cz)

i.0.

tz(czoc1)+(t.,ﬂ.z))o

for(t,p,u,u)l € @ (1put + 9(61 + Ezn

which proves {(F7). Proposition 1.7 also implies P4, since

2
I®*(t,p,u,u) ~ul < p 7 sup |ni(t,x,u(x).p)|
i=1 (x,tT)eR
Ipi<a

where A is as in (6.30). Frinally we need to check (F8). To this end, for { = 1,2,




consider smooth functions Tl: : [0,T) % l“ x n“ + R which satisfy the same conditions as

Ry, with constants depending on the constants of Hi and lul,1Dul and, moreover,
R(t,x,p) + H (t,x,u(x),p) as n+ =
uniformly on (0,71 x R x B (0,R) for each R> 0.
Then, by the previous discussion and Proposition 1.5, 3;'(:,9)3;‘(:,9)0 e c:"(l“), where
3: corresponds to ;: by (6.6) and ¢ € c:(l“). Moreover, there exists a constant E
depending only on [ul,lDul ,Hi,lﬂ and 10§l such that
(6.31)  1D3,(7,0,u)3, (t,p,u)él, 1DI (£,0,u)bl, IDT(T,0)T4(t,0)81, 1DT}(t,0)41 < C

for svery (T7,0),(t,p) € K. Then, in view of Proposition 1.6, we have

2
(6.32)  IF(t,p,u,8) - T (t,p)T(t,0)80 < p |  sup I (r,x,p) - H, (1,x,u(x),p)|
2 1 - 1Py 1
=1 (x,1)€0
Ipi<cC
and therefore
(6.33) (EEP ) =8 Ly Ly y(e,e 0,080 <
] 1 2
2 .n
<2 ] sup_ [H[(t,x,p) - H (T,x,u(x),p)l
1=1 (x,7)€Q,
Ipi<c
Ot O T S
+ 1 ry + (n, + nz)(t.'.DQ)l

In order to finish we need the following lemma

Lemna 6.2. (a) Let l~|1 s [0,T) x l“ x l“ + R be sgmooth and assume that it satisfies

(A1), (H2), (RH4), (RHS), (H6) and (H?7) with constants independent of R. 1If, for
2

¢ e cb(l“), u, e BUC(I“) is the viscosity solution of

N

u, + pﬂ1(t,x,Du1) =¢ in R

then
2 2
(6.34) ln’ -¢ + pﬂ,(t,',m)l <p l‘3(1 + ID$) + ID 1)
where T'3 depends only on the constants related with ﬂ1 by (H4), (HS), (H7).
(b) Let "2 : [0,T) x l" x lu + R satisfy the same hypotheses as H, in (a). If

N
u, € BUC(R ) is the viscosity solution of

=100~




W
u, + pnz(t,x,buz) =u, in x
then
2 2
(6.3%) lu2 -¢ + PR (L, ,Dp) + az(t,uoo)l S p T, (1 + D4l + D791

where T M is a constant, which depends only on the constants related with HyHy by (HA),
(8S), (A7),
Proof. (a) Here, as usual, we only show
Vu, - ¢ + 0B (e, ,000% < o7 (1 + 10p1 + 1D%90)
To this end, without loss of generality, we assume
T(u, - ¢ +pR(t,*,0))71 > 0
and we define ¢ ; l“ + R by
$(x) = (u,(x) - $(x) + PH (t,x,Dé(x) )"

Since ¢ {s bounded, for every & > 0 there is» a point x € IF, such that

®(x.) > sup_ ¥(x) - §
1 x!l“

Next choose [ e c;(n") so that 0< ¢ < 1, ozl <, lnzcl < 2, Tixy) =1 and
define VY : IP + R by
(6.37) Ti{x) = d(x} + 285(x)

Since Y = 9 off the support of { and

¥i{x, ) > sup,_ ¥(x) + §
1 xe.ﬂ

there is a point Xy e IF such that
?(xo) > ¥(x) for every x @ o
We claim that x, satisfies
As 8 ¢+ 0

+
(6.39) (u,(xo) - O(xo) + DH1(t.xo.DO(x°))) - u(xo) - O(xo) + pn1(t,x°.00(x°))

—> sup (u (x) = d(x) + ,H, (t,x,D8(x)))"

To see this observe that, in view of (6.38), we have
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+H  — +
l(\l1 -4+ PH,(t,*, D)) LI ::: (u(xg) = é(x5) + pH (t,x,,D4(x,)))" >

+ +
> i%g (u (xg) - #(xg) + pn‘(t.xo,DQ(xo))) > Mo, - ¢+ pﬂ1(t,~,00))l

(-]

and thus (6.39).

Now since x, & l“ is a local maximum of x + u,(x) = ¢(x) + oﬂi(t,x,DQ(x)) + 287 (x)

in view of (1.3), it is
u1(xo) + pn1(t,xo.00(x°) - DDH1(t.':DO)(x°) - ZGDZ(xo)) < O(XO)
therefore
u'(xo) - ¢(xo) + DH'(t,xo,DO(xo)) <
< 9(51(t.xo,n¢(xo)) - H1(t,xo.D¢(xo) - pDﬂ1(t,',D¢)(xo) - 28Dz (x)))
< pM1(p(C1 + n1)(1 + 1D§t + lpzol) + 28)

where ¢C M, are given by (H4), (H7) respectively. letting § + 0 above impliesg (6.36)

11
with

r3 - H1(C1 + H1) .

(b) BHere we define
80 = (u,(x) = $(x) + p(B (t,x,D8(x)) + H,(t,x,08(xN))"

Since the proof is similar to the one of (a), we omit it.

Now we continue with the proof of Theorem 6.2 (b). In view of (6.33), (6.35) and the

n

N are chosen, we have

way that ;

,ﬂh&ag.&)_:_! + (g + B (e, 0,000 €T (1 + 1041 + 10200 +

n

2
+ 2 I sup _ ‘Hi

i=1 (x,t)gQT
Iplec

(t,x,p) - Hl(f.x,u(x).p)!

Letting n + ® we obtain the result.
To prove (6.28) in the case that up is defined by (2.42) for
(6.40) F{t,p,v) = Jz(t,p)Ji(t,p)v

0,1, N
we need to check the assumptions of Theorem 2.2 (a). The fact that F(t,p,v) € cb' (R)
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and (P15) are immediate consequences of Propositions 1.7 and 1.8. Moreover, for every
(t,p) €K *and u,v € c:"(l') let

Fie.p,u,v) = 3, (0,003 (t,0,u)v
In view of the previous discussion, the only assumption we need to check is (Fi6). To this
end, let u € c:"(l'). It is easy to see, using the definitions, that J (t,p)u and
Jz(t.o )J1(t,o)u are viscosity solutions of the problems

u, + By(t,x,Du,) = 3 (t,p)u and u, + H (t,x,0u) = u

respectively, where

i'(t,x,p) - n‘(t,x,ai(t,p)u(x),p)
and

Hy(tox,p) = By(t,x,3,(t,0)3, (£, u(x),p) .
Moreover, by Propositions 1.6 and 1.8 (b), there is a constant A = A(lul .IDul) such that
1DF(€,p ,ull DT (t,0 ,u)k 1 DF(t,p ;u,u)l,IDI (t,0,u,u)l < A

It follows from Proposition 1.6 that
1P(t,p,u) - F(t,p,u,ull € 1T (t,0)u = I (t,0,ulul +

+p sup _ 'iz(‘ x,p) - Hz(t .X.u(x)ap)l
(x,neg,r
Ipl<a

<€ PULIT,(¢,0)3 (t,p)u = ul + L3, (t,p)u - ul)

Pinally Proposition 1.7 implies that

_ p TMESL,) o
1P(t,p,u) ~ Flt,p,u,u)l < p7e ((!.2) sup _ |uz(t,x,r,p)| +
(x,t)
Ipl<a
lri<r
+EL(L, + L) sup _ lE (Txp) D)

(x")

Ipl<a

iri<r

mizoi,)
where R = @ (fat + T(C, + Cz))
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(a) The proof of (a) is almost identical with the proof (a) of Theorem 6.1 (a) with

the appropriate modifications, therefore we omit it here.

Remark 6.5. A remark analogous to Remark 6.2 applies to Theorem 6.2 too.
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ABSTRACT (cont.)

under certain hypotheses, explicit error estimates. These results are then
applied to obtain various representations. These include “max-min" representa-
tions of solutions relevant to the theory of differential games (which imply
the existence of the "value" of the game), representations as limits of solu-
tions of general explicit and implicit finite difference schemes, and as

limits of several types of Trotter products.
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