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ABSTRACT

We prove the existence, continuity and uniqueness of solutions of the
Cauchy problem and of the first and mixed boundary value problems for the
equation
(E) u, = ¢(u)xx + b(u)x.

¢ and b are assumed to belong to a large class of functions including the
particular cases ¢(u) = um, b(u) = ux; m>» 1 and A > 0. These results
significantly sharpen those currently available in the substantial literature
devoted to (E) over the last two decades . In particular, the unigqueness is
proved in a generality whic¢': allows (E) to model problems invoking the

evaporation of a fluid through a porous medium.
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N/ S

SIGNIFPICANCE AND EXPLANATION
During the last two decades a great deal of progress has been made on the

mathematical analysis of flows through porous media. Such phenomena led to
degenerate nonlinear parabolic equations. The equations obtained are of
different nature when the fluid movement takes place in a horizontal column of
the medium rather than in a vertical column of the medium. The latter case
gives rise to first order nonlinear perturbations of the former case and
equations of this more general sort also model the evaporation of a fluid
through a porous medium. A significant technical difficulty arises in the
evaporation case; the first order nonlinear terms can be singular at the

points where the solution vanishes.

In this paper the authors give a mathematical treatment of the Cauchy

problem as well as the first and mixed boundary value problems for the

relevant eguations. Existence, continuity and uniqueness of generalized

solutions are proved thereby improving earlier results in the mathematical

literature.
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ON A NONLINEAR DEGENERATE PARABOLIC EQUATION IN
INFILTRATION OR EVAPORATION THROUGH A POROUS MEDIUM

J. Ildefonso p1az{ 1 (") and Robert Xersner'?)
§1.Introduction,

This paper deals with the nonlinear parabolic equation
(®) u, = Q(u)xx + b(“)x
where ¢ and b are continuous real functions.

Equation (E), sometimes called the nonlinear Fokker-Planck equation, arises, for
axample, in the study of the flow of a fluid through a homogeneous isotropic rigid porous
medium. If O(t,x,y,z) denotes the volumetric moisture content and v (t,x,y,z} the
velocity then the continuity equation is

:—: +aivveo
the density of the fluid being assumed constant. By the Darcy law

>
v = -K(8) ¢ grad ¢

where X(0) is the hydraulic conductivity and ¢ 1is the total potential. If absortion

and chemical, osmotic and thermal effects are neglected, then, for unsatured flows, ¢ may

be exprassed 4s the sum of a hydrostatic potential due to capillary suction ¥(6) and a
qravitational potential ([3),{32]). Thus, if we choose the (x,y,z) coordinate system in
such a way that the 2-coordinate is vertical and pointing upwards, we may write.

= y(6) + 2z .

Then we obtain

a8 _ 9
(1.1) It div (D(0) grad 6} + 36 K(8)
where
- 1]
{1.2) D(8) K(9) 30 (0) .

(1) ?acufg:ﬁﬂsz‘ﬁ;QQLXE{EXQ;.bnlvetsldad Complutense de Madrid, SPAIN
(2) Computer and Automation Institute of the Hungarian Academy of Sciences, Budapest,
HUNGARY .
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If the fluid movement takes place in a vertical column of the medium, equation (1.1)

takes the form

(1.3) 8, = #(8)_ - + b(O),
baing
(1.4) os) = I: Dlr)dr, b(s) = K(s) for r e R .

If the fluid wovement takes place in a horizontal column of the medium and x denotes !

distance along the column, (1.1) reduces to the equation

(1.5) Ot = 0(0)xx .
Equation (1.5) also appears in many other contexts. It is also remarkable that the

mathematical theory for this equation is fairly well advanced at the present, in contrast

with that of equation (1.3). (See, for instance, the survey article of L.A. Peletler in

{aol ).

The functions D and X (and then ¢ and b) are usually determined empirically

according to the nature of the flow problem, as well as of the nature of the porous

medium. In any case a reasonable choice for D and K would be }
x .

o1
D{u) = Do“ , K(u) Kou

where Do' ko’ m and ) are positive constants. After a suitable rescaling of the
independent variables the equation (1.3) yields (by changing z by x)

[ A
(2_ ) ut-(u)xx+(u)x-

m, A
The flow problem which has been treated more frequently in the mathematical literature

corresponds to the phenomena of absorption and downward infiltration of a fluid (e.g.

water} by the porous medium (e.g. soil). 1In those cases, some physical experiences sghow
that the corresponding functions K and V are such that ¢ € Cz(lo,-)),
#00) = 9'(0) = 0, ¢'(r) >0, ¢"(r) >0 if r >0 and b e ci(lo,®), blo) = o,
b'(r) > 0, b*(r) > 0 4if r > 0. (see (35 p. 220] and [3 p. 511]. 1In terms of equation
(!.,A) those cases corraespond to the assumptions m > 1 and A > 1, {Some mathematical
papers on such problems are [19), [16], [14], {27}, (371, (11], and [38)).
Nevertheless, there are other interesting flow problems that give rise to different

elections of the functions K and ¢ (and then of ¢ and b); at present, no mathematical
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literature exists on the corresponding equations.

Thus, the physical problem of evaporation from bare soil when the surface is so dry
that water loss is limited by the rate of soil-water movement upwards has been studied for
wmany years (see o.g. {[31], (35] and the references therein). 1In such problems, the

hydraulic conductivity function K is a regular concave function (see [24, p.425), (31,

p+357] and {35,p. 259] and D is a reqular increasing function). An immsdiate change of
variables shows that the value of m and A for which equation (E., A) governs the
evaporation problem are m > 1 and 0 < ) <1,

The main objective of this paper is to consider the equations (E) and (Bn, A) in a
general framework, which includes the corresponding equations of evaporation problems in
particular.

To be precise, we ghall study the following three problems for equation (E):

u, = o(u)xx + b(u)x on 8 = (0,T) x(-wn,w)

(CP)
: ulo,x) = u (x) on (-=,=) ,
u, = O(u)xx + l::(u)x on R = (o,T) % (11,12)
(FBVP) u(t.ll) = $~(t) , u(t.lz) = y(t) on (o,T)
u(o,x) = uolx) on (1',12)
and u, - O(u)xx + b(u)‘ on H= (o,'r)x(--.lz)
(MBVP) u(t,lz) = Yy(t) on (o,T)
u(o,x) = uo(x) on (--,12) .

It is important to remark that the most interesting problem in evaporation (as well as
in downward infiltration) corresponds to (MBVP) with 12 = 0, (see [31, p.359] and (35, p.
229]).

Like the porous media equation, (E)} is a degenerate parabolic equation. At points
(t,x) where u > 0 it is parabolic, but at points where u = 0 it is not. 1In
consequence, we cannot expect the above problems to have a classical solution {(in fact,

between & region where u > 0 and another one where u = 0, u need not be smooth). It
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is, therefore, necessary to generalize the notion of solutions of these problems. Among
the different notion of solutions, we shall follow the one introduced in [19).

Definition 1.1. A function u(x,t) defined on 5 is said to be a generalized solution of

the (C.P) problem if

1) u_is bounded, continuous and nonnogativo(‘)

11) u_satisfies the integral identity

t, X x, t,
g, = [0 [ (etwig, + ug, - blulg ldxdt - [ © ucaxt
t x x t
o 1 1 o
t x
-1 s ael P -0
t 1
o
for all P = (t°t1] x [x1,x2] and for all ¢ e C:': {P) such that
’

C(t.x’) = ((t,xz) =0 for any t € [to,t1].
1i1) u(o,x) = uo(x) for all x @ (-o»,=),

Definition 1.2. A function u{x,t) defined on R is said to be a generalized solution of

the (FBVP) problem if

1) u_ is bounded, nonnegative and continuous on R.

1i1) u_ satisfies the integral identity I(uw,;,P) = 0 for any P = [to,t1] x [xi,le CR

1,2
and any ¢t e ct,x (P) such that :|x-x1 = c'x'xz 0.

1i1) u(t,11) - *-(t)' u(t,lz) - ¢¢(t) for all t € (o,T] and u(o,x) = uo(x) for all

x € [11,12].

Definition 1.3. A function u(x,t) defined on H is said to be a generalized solution of

the (MBVP) problem if

i) u_1is bounded, nonnegative and continuous on H.

i1) u_satisfies the integral identity I(u,Z,P) = 0 for any

1,2
t,x

P~ [to,t1] x [x',le CH and any [ eC (P) such that "x-x - i = 0.

x=x
1 2
11i) u(t,lz) = $(t) for all t € [o,T] and vulo,x) = uo(x) for all x e (--,12).

(1) We shall limit our attention to the physically reasonable case of nonnegative data.
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To prove the existence of a generalized solution for each one of the three problems we
shall follow the constructive method given initially by O.A. Oleinik, A.8. Kalashnikov and
B. Yui Lin in (28] for the case of equation (1.5). To do this, we first obtain a sequence
of classical solutions of (E) defined on an expanding sequence of cylinders. We shall

show that it tends-pointwise-to a function that we call limit solution. (Such a function

satisfies all the properties required except, perhaps, the continuity). This will be done ‘
in Section 2.
In Section 3 we shall prove that under additional hypotheses the limit solution is

continuous (i.e. i8 a generalized solution). Such results are well known when

bec'lo,) ana i

(1.6) ] ]
[ {lemx)| + Ib"(r)l}ar e L (0, 1)

({14)). In the case of equation (Bn X)' this corresponds to the assumption
’

m> 1 and A > 1. The atudy of the regularity of its solutions is made in {19]) and
[16]. In both cases, optimal estimates on the modulus of continuity of the solution are
given; in fact, such estimates are independent of b and . In consequence, the idea
that the transport term b(u)x has not any fundamental importance on the behaviour of the
solution is defended in the previous literature. Here we shall show that such conclusion
is, in general, erronecus (e.g. X > 0) since when 0 < A < 1 the modulus of continuity
of the solution depends on . More generally, if the function J defined by

r

= das

J(r) = Io -
b(¢ (s))

is finite for r > 0 (this is the case, for instance, of ¢(u) = um, b(s) = sX and
m > ) then we shall prove that the modulus of continuity of the solution of (E) can be
estimated in terms of the function Jo¢ and the data of each problem.
in Section 4 the uniqueness of the generalized solutions is consideread. The problem
of uniqueness has been a polemic subject in the existing literature. Indeed, the first

uniqueness result seem to be the one obtained in 1975 by A.S. Kalashnikov. In his paper
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[{19]), the uniqueness of a generalized solution of (l-' x) is shown under the assumptions
>t and A > 1. In 1976, B.H. Gilding and L.A. Peletier in [16], made a systematic
study of equation (X -,x’ in a way which is totally independent Kalashnikov's work. In
fact they introduce a different notion of solution of the problem (CP): they substitute
condition 1i) and 1ii) of the Definition 1.1. by

11)* (u™) has a bounded generalized derivative with respect to x in 8,

11i)* u satisfies the identity

Hs to (™, + o'l - ¢ ulaxae = [Jotx,00u (x)ax

for all ¢ € c' (S) which vanish for large [x| and for t = T. The uniqueness result of
[16]) for such class of solutions (called weak solutions) is obtained under the assumption
A '/2 (me1), The important work [16] has been the object of several generalizations in
the last years. TPor instance, B.H. Gilding in (14] proved the uniqueness of weak solutions
of (CP), (FBVP) and (MBVP) under the hypothesis

L] 2 1 +
(1.7) (b ) (s) = 0(¢ (s)) as s +0 .
More recently, Wu Dequan in (37] has proved the unigqueness of the generalized solution of

(FBVP), assuming
L] [] a + 1 v

(1.8) (b )(s) = 0((¢ ) (s)) as 8 * 0, ¢ (s) >Ks for s > 0, and
a>»V if ve2 and aslh - if vr2.,

We remark that in terms of equation “n,x) condition (1.7) is equivalent to A > % (m+1)
and condition (1.8) is equivalent to A >V (m+3) if m <3 and A >-,:-' if m > 3.
(Other uniqueness results are given in [27), (28] and {11] for some variations of equation
(B)). Finally, we point out some recent results obtained in [4] by a different approach.
In this paper we give a general and unified answer to the problem of unigueness of
solutions of (CP), (FBVP) and (MBVP). Our assumptions on ¢ and b are weaker than those
of the above papers. In particular, they are fulfilled if in the equation !m,x we assume
ma>1 and A > 0. On the other hand, in Section 3 the equivalence between the
generalised and weak solutions is proved. Thus, the uniqueness of a weak solution is also

engured.
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Our unigueness result is a particular consequence of some L’- estimatea. These also
show the continuous dependence of solutions with respect to the initial data as well as
comparison results. Such estimates also show that the semigroup operator defined by the
solution is a nonlinear semigroup of contractions on the space L’(--.O),

L‘(l,,lz) or L‘(-.lz) respectively. Some comments are made about the way in which
that conclusion is obtained by the theory of accretive operators on Banach spaces.

In order to provide the reader with a swmary collecting some of the results of this
paper, we shall restrict ourselves the consideration of problem (PC) for equation

(= - x)- We can state the following result:
’

Theorem 1.1. Assume @ 2 1 and ) > 0. Let u, 0 on (-w,») be such that u: is
Lipschitz continuous for some 8 such that
max {(m=1}, (-—M"} <8<am (h*qux{h,o)).

Then there exists an unique generalized solution u _of the (CP) problem for the equation

vv =
(s,,))+ In addition u e€C,37 (8) for v= win{1,1/,} (being such exponent v, in

general, optimal), (u”) € L7(5) and u_coincides with the unique weak solution of (CP)

(As usual cv‘ % (8) denotes the Banach space of the functions u(t,x) which are HSlder
continuous with respect to x and t, of exponents V and ; respectively).

We point out that our results can be easily extended to a more general class of
equations of th; form

u - Q(x.t,u)xx + b(x,t.u)x + Cix,t,u) ,

where ¢(°,*,u) 1is strictly increasing ¢(x,t,0) = Q"l(x.t.o) =0 and b{°+,*,u) and
cl{*,*,u) are allowed to be nonnecessarily Lipschitz continuous at u = 0 (some
additional hypotheses must be made on b and c, e.g. <¢(°,*,u) non-increasing in u, and
80 on).

In a forthcoming article the authors study some qualitative properties, including the
propagation of the support of solutions, extending the well-known results for the case
where b is Lipschits continuous at u = 0 and presenting some new properties of the

solution of evaporation type problems associated to !n for m »1 and 0 ¢ X\ < V.

WA
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§2. Existence of a limit solution.

The basic idea in the study of degenerate equations, like (E), consists in obtaining
the solution as the limit of a sequence of functions which are solutions of some adequate
non-degenerate parabolic equations approaching equation (E). This idea can be carried out
by two different ways: a) by consideration of the equations

Ue, e ™ ((¢'(u) + E)(“E)x)x + be(“e)x '
or, b) by replacing uo(x) > 0 by the sequence “o'e(x) > € > 0 and then showing (via the
maximum principle) that the corresponding solutions ue satisfy ue(t,x) > €, 80 they are
solutions of the nondegenerate equations.

Method a) is very useful if the signs of the data (for instance u, for (CP)) are not
"a priori” prescribed. However, the passage to the limit is often a difficult task (see
the results of [6) and [34] for the case b = 0). Here we shall follow the method b)
introduced in (29]. Then we shall obtain a sequence of classical solutions defined on an
expanding sequence of cylinders and we shall prove that they converge pointwise to a
function that we call limit solution. In the next sections we shall prove that, under some
supplementary hypotheses, the limit solution cdincides with the unique generalized
solution.

Proposition 2.1. Assume that there exigts o € [0,1] such that

(2.1) ¢ € 20,41 ne’(10,%)) , 4(0) = 0, and 4'(x) >0 if r >0
(2.2) b e 2% (0, .
Then:

1) For every u, e cb(-'.)(1)' v > 0 there exists at least one function u

defined on § such that u » 0, u e L-(S) and u satjsfies ii) and iii) of

Definition 1.1,

ii) Por_every u ec ([1,.121), u, 2 0, ¥=, \+ e C ([o.t]), ¥, v o and

¥=(0) = u (1,), ¥ (0) = u (1,) there existe at least one function u defined on

R__such that u>»0, ue L.(R) and u satisfies ii) and {ii) Definition 1.2.

(1) C{(Q) denotes the set of all the bounded continuous functions defines on .,

-8-
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iii) Por every v, e Cb((-'.lzl), u, >0, e c(l{o,t]), v >0 and y(0) = uo(lz)

there exists at least one function u defined on H such that u satisfies 11)

and iii) of Definition 1.3.

The proof of Proposition 2.1 is already standard after the deep work [29) and its
generalizations (see for instance [19], [16], [27)). Nevertheless, in the next sections we
shall need some properties of the function u which are obtained by using the proof of
Propogition 2.1, This is the reason for our sketch.

We shall use the following result of the classical theory of quasilinear nmarabolic
equations.

Lemma 2.1. (see e.g. [14]) Let Q= (n, nJ x (0,71 , &, a€ (0,1 and me (0,=).
Suppose that u_ e c***((n ,n. 1), ¥,.¥, €' “[0,7) ana

eSu M, <P, ¥, <N

Wi(o) = “o(ni)’ W;(o) = O(uo)'(ni) + (b(uo))‘(nx) for 1 = 1,2.

Then (under assumptions (2.1) and (2.2)) there exists a unigue function u{t,x) such that

1,2

ec
vE S, x

- 1,2 -
(Q), o(u)x e Cx,t(Q)' e<u<M in Q

u, = ¢(u)xx + b(u)x on Q

=u (x) on [nn,]

u(x,o) 172

ult,n ) =y (t) on [o,T), for 4 = 1.2.
s

Proof of Proposition 2.1. We shall prove i). We can always choose M > 0,

{Sk): {Gk) and {uo'k} such that

fek' a € (0,1 , € »0 as %k » =,

k k

2+a
LA e Cc T k(-w, o), € < uo.k(x) < Mif [xl<k and uo,k(x) =M if |x]| >k

(2.1) <

uo,k+1(x) < uo,k(x) for all x € (~=, =)
LI u a8 k » @ uniformly on compact subsets of (-w, =)
Let Q. ~ {(~k,k+1) x (0,T}. Then, by Lemma 2.1, there exists a unique function
1,2, ~ 1,2
u e Ct,x(Qk) such that: i) (“k)x e Ct,x ‘Qk)' Ek < u <M, ii) u, satisfies (E)
-9-
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b

in Q. 111) u(0,x) = u ,, (x) for Ix|] <k + 1,
iv) v (t,2(x+1)) =M for t e (o, ). Then, by a standard application of the maximum

principle we obtain that u (t,x) € uk(t.x) for all (t,x) e Ek. Hence, we can define

k+1
(2.2) u(t,x) = 1lim u (t,x)

| $o0d uk
for all (t,x) € 8. The function u is nonnnegative, bounded and satisfies the integral

condition 1i) in Definition 1.1. The proof of ii) and iii) are similar. The natural

modifico%ions now being that 1y are only defined in [1,,12)(in the proof of part (ii) of

Yo
Proposition 2.1). Also, there exist {0_,k] and {W+,k} (sequences in C1+“k((0,T}))

<
such that € < ¥_ .\, v#,k < M, w-,k#1 < 0~,k' Vo ket *+,k

‘+,k(°) - “o,k(‘z,' (W_'k)'(o) - (0(“o,k)).(11)' + (b(“o,k)'(11)'

(‘+,k)'(°) - (‘(“o,k)).(12) + (b(u°

PV 00 = u (L),

[ ]
,k)) (12).
Pinally ¢ * V.. ¥ + % uniformly on [0,T) when k » =,
+,k +! Y=,k -
Remark 2.1. Obviously, we can also consider more general quasilinear equations or choose
data uo,(uo,v_,&+) and (uo,w), not necesasarily continuous (see [17) and [4]). We

remark that the result applies to the equation (E ) when 0 < m< 1. When b

113
o

m, A

such equation arise in plasma physic (see the exact references in [30]).

§3 Reqularity of the limit solutions. Existence of generalized solutions.

We shall now prove that, under some additional hypotheses, all limit solutions are
continuous and, therefore, generalized solutions.

The continuity of the solutions of degenerate parabolic equations is one of the most
difficult points in the study of such equations. After the precise estimates on the
smoothness of the solution of the porous media equation obtained by Aronson and Kalashnikov
in [1] and (8) respectively, the question of the continuity of the solution of the porous
media equation in higher dimensions remained an open question for a long time. However,
positive answers are well known today, concerning a large class of equations includiag the
porous media equation and some particular formulations of equatior (E) when the dimension

is equal to one (see (8), [7), ([10], (34] and [40]).

-10-




Here we shall study the smoothness of the solutions of (E) and we shall try to
estimate the modulus of continuity of the solutions. Results of this kind are well known
for (l_'x) when > 1 and X > 1 (see [19]) and more generally for (E) when ¢ and
b satisfy (2.1), (2.2) as well as

be c‘(to,-))
(3.1
I} Ueron + prindar e o, n
(see (14]). Our special interest is centered on (E) under several assumptions which
include the case of equation ('-,A) when m > 1 and 0 <X < 1.

An important tool in our study will be the fact that if we define the improper

integral
J(r) = f: ~—£§T-
bi¢ (s))
for every r > 0 (we can suppose, without loss of generality that b(o) = o) then, when
d(s) = " and b(s) = cA, J(r) is finite if and only if m > A. Then our fundamental
hypothesis will be J(r) < + = for gome r € (o,®).
In order to prove the continuity of the limit solution u constructed in §2, we shall
first obtain estimates on the modulus of continuity of y  which should not depend on
k. Afterwards we shall pass to the limit when k + + @, We start by studying the general
nondegenerate problem given in Lemma 2.1.

Proposition 3.1. Given § e (O, U&(nz—n1)) and 1 @ (0,T) let

QG = (0,T] x (n1+6,n2-6); Q(t) = (t,T] x (n,.nz), Qs(r) = (1,T) x (n1+6,n2—6). Assume

(2.1), (2.2) and that for every r € (0,e) the following hypotheses hold

(3.2) J(r) < + =
(3.3) b*(r)b(r) < - <, $'(r)
(3.4) 1$°(x) ] < c,Ip™(n) |

for some positive constants C,4 and cz. let f be the real function defined by

(3.5)  £r) =" "0 N x)) for r>0.

Then for any v, and *1 given as in Lemma 2,1, the solution u satisfies: for any §

and _t there exists a constant C (depending only on_t, § and M) such that

-11-
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(3.6) (e (u)) | € c in Q1) .
If in addition, u, verifies
-1
sup It {u (x))'] =L <+ ,
(3.7) <“1+5'“2-5) °

then (3.6) holds in QG'

Before proving the above result, let us explain some facts about the proof. The
method we use is due to Bernstein. As is well known, the major difficulty of this method
appears in the selection of the function of u to be estimated. The estimate

g(u)) | < c in Q.(t)
has been obtained by different authors in the following cases:

a) g(s) = ¢(s) (See [1] for b =0 and (14] if b satisfies (3.1))

L L]
b) g(8) = f Q_égl , if such integral converge and b Z o (see [1] and [18). The
o
estimate (3.6) is completely new.

Por equation (E )}, all the hypotheses of Proposition 3.1 are satisfied if

m,A
0<AC<T<m,

In this case a single computation shows that f-1(s) - ;?T m-k. More generally we can

prove (using Proposition 3.1) that
8
(3.8) |(u )xl < C in Qa(t)
for all B € R such that
max {(m-1),(m-07'} < B <m
where h* = max {h,0}. Then, estimate (3.8) includes also the estimates of [1), (19" ‘nd

1)

[16) for equation (E )

m,A

Proof of Propogition 3.1. Set w = f-j(u). From equation (E) we obtain

1 2
(3.9) v, = Tl (¢(f(v))]ww(wx) + ¢'(f(w))wxx - b'(£(w)) v, .

Using the definition of J and f we have

(1) Recently Ph. Benilan has introduced in ([5) a general method to obtain estimates like
(3.6). Estimation (3.8) can be found by this method but this is not the case of the
general estimate (3.6).
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b'(f(w)) b(f(w))

-1 -
e = 3 )] ' (£(w))

b(f(w))

f'(w) = ' (L(v))

and

[$(L(w))]
(3.10) ———m—————s m b'(f(w)) .

£'(w)
Then
2
] - (]
(3.11) v, " $°(Lf(w)) L +b (f{v))wx 3 (f(u))wx .
Consider now a smooth function ([ (t,x) such that { = 1 on 55(1), =0 on the
parabolic boundary of Q and 0 < { € 1 in 5. Define the function =z = czpz where
p » w1 at any point (to,xo) € Q where =~ attains a positive maximum one has
- - & .
z, 0 and z, $ (f(w))zxx »0
Hence, at (to,xo) we have px = -cxp and
2 - @ - ' R T |
4 P(Pt ¢ (t)Pxx) > ( 1 + ¢ (t)CCxx + 2 ¢ (f)Cx)P .
Differentiating (3.11) with respect to x, multiplying the result by :2 P and using the

former relations we obtain

4

- b“(f)f'(z P < LP’[-O'(I)!'C Sy Zb’(f)(x - b (L)L'g) +

(3.12) 2 2
+PUleg, - dnEE - 2 0(E)g, -b'(f)cxcl .

Using the hypotheses (3.3) and (3.4) we can find two positive constants K, and K,

depending only on ¢, b and M, such that

2 2

(3.13) 23" P < K,CIPI + K, at (to,xo) .

2
By an elementary argument, (3.13) implies that

2(t_x ) <K, +VaKk2 =K

o'"o 1 4%, 3

and hence

1
swp v | < 13/2
96(1)

To prove the second part, we note that wal is now bounded at t = 0. Hence we may take
a cut~off function ({(t,x) = [(x) and allow z ¢to attain its maximum at a point of the

lower boundary of Q. Otherwise the proof is the same.
=
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The main result of this section is the following

Theorem 3.1. let ¢ and b satisfying the hypotheses of Proposition 3.1. Then

(a) Por every u € C,(-=,®), u >0 and for any t € (0,T) the limit solutions u

of (CP) satisfy

Go1) 1 Nt x)) - £ e ] € K Oxo-x 12 + 1t £ |12
* 1'% 2°72 172 | I ]

for some constant K which depends only on T and M = lu | - ,» and for all
L (-.l.,
(t1.x1).(tz,x2) e [1,T] x (=»,»), If in addition E"(uo) is lipschitz continuous i.e.

-1 -1
I (uo(x1)) -f (uo(xz))l < le,-le

for some L > 0 and all x‘,x e (-»,») tnen the conclusion (3.14) holds for any

2

(t‘.x1). (tz,xz) es, and K depends only on M and L.
(b) For every u, e %([11,12]), u, 20 and ¥, "* ec ({o,T]),

v_. t’ > 0 satisfying 0_(0:1-:0;11), 11*(0) - “0(12) and for any
T €(0,T and 8> 0, & < ~—33-1— , the limit solutions u of (PBVP) satisfies

(3.14) for every (t',x'), (tz,xz) e [1,T] x [1,+26 ,12 ~ 268}. In particular
£ 1w e c® (11,1 x (1,.1,)). If in addition t"(uo) is locally Lipschtz

continuous on (14, 12) then u € c°([o,'x') x (11,12]).

(c) A similar conclusion to (b) holds for the (MBVP) problem

Proof of (a). Applying Proposition 3.1 to the sequence uy constructed in the proof of
Proposition 2.1 we obtain
-1 -1
£ (u gte,x ) = £ Tu Gt ,x )] < Clxy=x, |
where C depends only on M and T and for every
(t1,x1), (tz,xz) e [1,T] x [~k=-1,k+1], Now set wx(t,x) = f-1(ux(t,x)). Then vy
satisfies the equation
(wk)t - Ak(t.X) ('k)n + Bk(t.x)(wk)x
being
lk(t,x) = 0'(f(uk))(t,x) and Bk(t,x) = b'(f(vk))[(vk)x-ll(t,x) .
Using Proposition 3.1 we know that

0 <A lt,x) ¢M* ana |B(t,x)] < M

-14- .




vhere M* depends only on M and T . Then by a well known regsult (see [13]) there
exists a constant X which depends only on M* (i.e. on T and M but not on k) such that
-1 -1 2 Vo
(3.15) £ (U (tyex)) = £ (uk”(tz.xz))l <K (lx1-x2| + It‘-t2|}
for all k > |,(t1,x1),(t2,x2) e (7,T] x {=-k=1,k+1}, Hence
(3.16) lt"(u(c x -t Vute,x 0] € K {x,=x 12 + Je -t l)'/2
° 17 272 172 172
for all (t‘,x1), (tz,xz) e [t,T)] x (~»,4+»), This proves the first part of (a). The
second statement is a direct consequence of the second conclusion of Proposition 3.1,

choosing now u), 8o that I(.!-1(u° k))'(x)l €L for gome x € (-»,®) and k > 1.
[

Proof of (b). Arguing as in part (a) we obtain that (3.16) holds for any

(t:‘,x‘),(tz,xz) e [t,T] x [11+26,12~26] and, therefore, it is clear that
ue c°( (0,7l x (11,12)) when £-1(uo) is Lipschitz continuous on (11,12). To prove
that u is continuous at the points (o,T] x {11} and fo,T) x (12}, it is enough to prove

(for instance, for [o,T] x [11}) that for any t_e [o,T)

(3.17) 1im sup u(t,x) < V_(to)
("-"‘)’(‘0011)

and

(3.18) lim inf u(t,x) > v_(to)-
(t,x)*(to,l.l)

Proving (3.17) 1s easy because

lim sup u(t,x) €< lim sup u k(tex) = ¥ k(to,
(t,x) » (topl') (t,x) +» (t°111)

and then letting k + » we conclude the result. The proof of (3.18) is more complex (if
t_(to) > 0). This was shown by B.H. Gilding in [14) (Theorem 5) when ¢ and b satisfy
(3.1). His argument is the following: for any € € (0, v_(to)) he constructs a function
w(t,x) on (0,T] x [11,12] such that

Lim inf w(t,x) = y_(t )-€

(t,x) » (t°,11)
and such that

u.k(t,x) > wit,x)

-15-
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for all (t,x) e [0,T) x [1‘,12] and k large enough. We remark that the hypothesls

(3.1) is only used by Gilding in the definition of w when the convergence of the integral

p (e) = M ¢'(r)dr

o cer+b(r)+8

is required (c is any positive constant and B8 = 1 + sup|b(r)|). Our conclusion follows

0<r<m
by the same argument of Gilding noting that
$(M)
p (e = g -?a - :
cd (8)+b(d (8))+B

Then, p (c) < ® for every c € (0,2) if the assumption (3.2) is made. The details are

extremely technical and hence omitted here. The proof of {c) is analogous to the part (b).

Remark 3.1. Arguing as in [18] we can estimate the modulus of continuity of u in terms of
function € when (£—1)' >0 on (0,8). When (f-1)" € 0 then the modulus of continuity
is a lineal function. In particular, for the equation (Em,l’ we obtain that the solution
u of the (CP) problem is such that

ue cv,v/z

({0,T] x (-=,®))
for v = min{1,1/8} and B and real number such that
max{(m=-1),(m-2)*} < 8 < m.

A further reqularity result is the following:

Theorem 3.2. Let ¢ and b satisfying the hypotheses of Proposition 3.1 Then

-1
i) For any u° > 0 such that f (uo) is bounded Lipschitz continuoug on (~=w, =)

there exists at least one generalized solution u of (CP) such that f-i(u)x e L.(S)

{where the derivative is taken in the sense of distributions). 1In particular

olw) e L7(8) and u satisfies

(3.19) [5 [ (8 6tw)_+ blu)) -6, u} axat = [78(0,%) u_(x)dx

ii) For any u . Vy_ and W+ nonnegative functiong such that o(uo) is locally

Lipschitz continuous on (11,12), and such that ¢(¢_) and O(W,) are absolutely

-16~-
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continuous on {0,T) and ¢_(0) = u°(11). #*(0) - uo(lz), there exists at least one

generalized solution u of (FBVP) such that o(u)x e Lz(R) (distributional derivative)

and_u satisfies the identity

1
(3.20) [] {8, t6ta) sb(w) - 6 ulaxat = 11: 8(o,x)u_(x)ax.

for a1l 6 e c'(R) which vanish for x =1, x=1, and t=T.

2
11i) Por any “o' ¥ nonnegative functions such that O(uo) is locally Lipschitz

continuous_and bounded on (--.12). $(¥) is absolutely continuous on [0,T), and

y{o} = uo(lz), there exists at least one generalized solution u of (MBVP) such

that o(u)x eL 2

1oc (W)

(distributional derivative) and such that

1
(3.21) J1 48, (60w +btu)] - 6 ulaxae = j_ie(o,x)uotx)dx .

1 -
for all 6 e ¢ (H) which vanish for x = 12, for large x| and for t = T.

The proof of i) is a simple consequence of the fact that
-1 -1
= * o ¥ o
|¢(“k)x| |o(E(E (“k)))xl < C*eff (uk)xl < C*+C
where C* = max b(uk(:,x)) and x > 1. Otherwigse the proof is standard (see e.g. [14]).

In order to prove ii) we need the following estimate near the boundary.

lemma 3.1. Agsume ¢ and b as in Proposition 3.1. Let u, and *1 satisfy the
assumptions of Lemma 2.1,(3.7) and

T
(3.22) [ ety (e))fde < L+ for 1= 1,2 (L*>0) .

0

Then, for any § > 0 , there exists a constant C*, which depends only on L,L*, M, T and

§, such that

(3.23) I {¢(u)x}2dxdt <cr
Q(T)*QG(T)
or any t € (0,T).

Proof, We shall only prove that
T n,+s .
1.0 etw Yaxae < £
n x 2
¢ 1
T "2 2 c
(the estimate [ [ ° o {#(u) }“dxdt < = s obtained in a similar way). The key idea is
0 2
due to Gilding [1='. Let Y (t,x) = 0(u(t.x))-0(¢1(t)). If we take equation (E),

multiply it by x and integrate by parts we obtain
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T

T n,+8
.20 [ ' (eew PPaxae = [ (0w )(e,n#8) + blute,n +8))}x(t,n +6) at -
o ™ x 0 x

T n‘¢6 T n‘+6
-f In b(u) ($(u)) dxdt - [ ]n u éluldxde +
0 1 1} 1
T n'+6
+ [ [ T (t,x) ¢ty (t))axd .
n t 1
0 1
We denote the four integrals on the right hand side of (3.24) by I,, I,, I3 and I,
respectively. The only difficult term to estimate is 1, (see [14]). But by Proposition
3.1 we know that

E lf-i(u)x(t,n1+6)l €C for any t € [0,T) . §

160w)_(e,n+6)1 = 19*£7 (7 (uh)_(e,n +8)] < c*
for some C > 0. So
Iz,] € 2 ¢(MIT(C' + sup b(s)) .
8 C (0,M] -

Proof of ii) of Theorem 3.2. Now the functions L *—’k and 0+ x °can be agssumed to
’

satisfy the conditions given in the proof of Proposition 2.1 as well as i}
for any § € (0,1) there exists a constant L(§) such that
IO(uo,k)'(x)I < L(8) for all x e (1,46,1, = &)

and
T

T
Io"‘*-'x“”"dt' Io 1ot, . (e 1A < o .

Then, by Lemma 3.1, there exists a constant C* (which depends only on

1,1,
L(8), L*, M and T(B = =——)) such that
4
1,428 T 2 1, T )
(3.25) | / (ocu ) }axde + [ / {#w ) }° dxat < c*
1 0 1 0

y 2-28

for all k > 1. On the other hand, by Propogition 3.1 there exists a constant Cy which
depends only on L (B} and M such that

(3.26) I(O(uk))x(t,x)l ¢ C, for all (t,x) e {0,T]) x [11+2B.12-281 .

R




From (3.25) and (3.24) we obtain that (13" is uniformly bounded and by using the

)
XX 12w
fact u, is & classical solution it is easy to see that the weak limit

ve Lz(ll) of “(“k)x} can only be Q(ulx. The proof of {ii) is analogous. -

Remark 3.2. By using a generalization of the Nash Thecrem ([25) p.204), it is not
difficult to show that, under the aasumptions of Theorem 3.2, the generalized solution
obtained in the above result is a classical solution of (E) in a neighborhood of any
interior point (t,, x,) where wu(t.,x.) > 0 (see e.g. [1] or [14]).

Remark 3.3. Suppose, for instance, that Db(s) > 0 for any s > 0. Given 1 e R, we

define the satationary function

-1, =1
(3.27) U, = (10 = {: N

It is easy to see that u 1is a generalized solution of (MBVP) and satisfies u(0,x) =
£((1-x)*) for 0< x <= and u(t,0) = £{)) for t e [0,7]. Moreover

et = -ty
hence (1—1(“))x =0 if x> 1 but (f-‘(u))x /-1 when x 7 1. Then the estimate (3.14)
is exact and can not be improved. (The function (3.27) will be used in a forthcoming paper
of the authors in order to prove the boundedness of the right boundary of the support of
the solutions of (B)).
Remark 3.4. In some previous works (see {'6], {14]) a different notion of solution of (CP)
(respect.(FBVP) and (MBVP)) is introduced by means of the integral equality (3.19)
(respect. (3.20) and (3.21)). Thus, following (14], a function u defined on S is said

to be a weak solution of (CP) if u satisfies i) and 1i11) of the Definition 1.1 as well as

the condition
T
. D -
13.29) Io ) {6, [#(u), + Blu)] -6 ulaxde = j_-e(o,x)uo(x)ax
for every O @ C1(§) such that 0 vanish for large | x | and t = T. Analogously, it
is defined the notion of weak solutions of (FBVP) and (MBVP) by substituting the integral
conditions of Definitions 1.2 and 1.3 by the conditions (3.20) and (3.21) respectively.

Theorem 3.2 state that, under some natural assumptions, every generalired solution is also
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a weak solution. The following result shows the equivalence between both notions of
solution.

Theorem 3.3. Assume ¢ € c’([o,-)) and b e co([O,O)). Then every weak solution of (CP)

(resp. (FBVP) and (MBVP) is a generalized solution of (CP) (resp. (FBVP) and (MBVP)).

Proof. We shall follow an idea suggested by M.G. Crandall to the first author of this

paper. Let u be a weak solution of (CP) and let P = [to,t1] x [x',le

1,2
t,x

ne Cz(l) be such that

and [ € C (P) such that C(t,x1) - C(t,xz) =0 for any t € lto'til c to,1}. Let
a) ni{r) = 14if r< «1t and n(r) =0 if r >0
b) n'(0) = n'(-1) =0 .

For every € > 0, we define the test function Ge(t,x) as

In( e ) if (t,x) e P

L{t,x)n{ P In( c c P

ee(t,x) =
0 otherwise .

From the definition of n, it is immediate that GE e c1(§) (and support Oe) c P. By

assumption we have

T 00
(3.29) 0 =-[ [T o
0

T - T ap
,gudxat + !o I B, () dxdt + Io I-“ee'xb(u)dxdt
= X + I + I .

One has
t-t t -t x~X X, =
1 o

) % ¢ t-t,
-11'€-ffpcx u n— I (—2)n (-1 )dxdt+!!P = ('

n{ In( Inl )}dxdt~

€ €

t -t
-] za (n¢ )n'(—"c—) nC NG ddxdt = f{ pn( Il InC InC ddxde +
Pe P

x. 0 t ,t

2 o 1 X=X R _=x
+ Ix']to—t' C(er+t1,x)u(£r+t1,x) n{

+ On—2in—=—) aroar -

€
x, ° t -t x=x, X ~%
-, g - Begretimiute et g ~On—In(——In" (ndr .

€
Then when € converges to zero, we obtain

X X
- ——— _ 2 2
Iye = 1£ ¢, udxdt lx, gt xlule,,x)ax + jx, Gl xult ,x)ax

~20-
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Analogously
t *2
Tye® [j' B, P u) dxdt = jto ee,x““"x1°‘ - JIP B, xx#()axdt =

t 1 t-t to‘t 1 X’Xz X =X
- -—n ! -
I‘o {2, n) nONONOW) + & =) (=) ' (—ZFInt—)

x=x 1 2

T x2
m=—=—) ) ‘:1 at - IIP B, xxt(Blaxdt ~ I,  +1 .

- I

€ € 2,¢c 2,¢

Thanks to the fact that (t,xi) =z (t,xz) = 0, one has

t

1
e !‘o (& (t,x )e(ult, x,)) = & (t,x )élult,x,)))at .

On the other hand

2 1 X=Xy XX
e " ]!P L NONONON O u)dxd + 2 JJP &, M0N0 o (—F I n(—)

1 x-x2 , x,-x 1 . x-xz R"'X
- g NI e (wiaxae + [ gt )n()[:;n (~—"nt~—2)
X=X X =X x-s X =X
2 2 1 L x )
-3 NI ) ¢ 2 NE—2) N (=11 9(u))dxdt .

Arguing similarly as in the integral I1 e’ we obtain
’

) X"Xz 31“8 1 X'Xz X“X t1
L] - ’ — -
[e pOnO i (—SIn—) = o' (—=1l—) blu)dxat *!to(cx(t.xz)O(u(t.xz)

- zx(t,x1)0(u(t,x‘))dt )
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when € + 0. Moreover

t=t t ~t x, ~X x=x t, O
2* 1 1 o . 1 2 1
1" zgljpcn( (==t )Olw)dxdt-]tojx1_x2

€

€

t,X PET t -t X_,X
g(C'"2 ) ) 172
- n{ p g . ) + 1) T n"(t)¢(ult,x

+€£1) )dxdt

2

and then

2,¢
(we recall that n*(0) = n'(-1) = 0). We also remark that

2,* €+0 t1 0 “ t1
10 = !to (8, (%, )4 ult,x,)) [Z, " t(nanae = ftotx(taxz)Q(u(t.xz)dt

t-t‘ to-t x-x2 b P
e prz(t.x)n( LT

. 1 -
: P e ( c Int( P )¢(u(t,x))dxdt = 0

X, =X

2

for every € > 0 such that 0 < € < . Then

€0 t, x-x2 t, x=x2
2,e e SUICH] I ffpcxx¢(u)dxdt -2 ft Lot ° de
o 1 o 1
t X=X
= [ ¢ _stwaxat -~ [V . s(w) 2a .
PTxx to X x-x’
Finally, i{n a similar way we obtain

€+0
3, " Jpt bluraxat.

Then, making € + 0 in (3.26) we obtain that -I(u,{,P) = 0 and then u is a generalized

solution of (CP). The cases of the problems (FBVP) and (MBVP) are similar.

54. Uniqueness, comparison results and continuous dependence

In this section we prove that the generalized solution obtained in Proposition 2.1 and
Theorem 3.1 (i.e. the limit solution) is the unique generalized solution.

Our uniqueness result will be a consequence of some L‘- estimates that also prove the
continuous dependence of the solutions on the data. Other important consequences of these
L'-e-tinates are the comparison results showing the monotone dependence of the solutions
with respect to the data.

To formulate general results about the comparison of solutions we introduce the

following definjition:
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Definition 4.1. Let G be a closed set of 8. A function v(t,x) defined on G is a

generalized supersolution (resp. subsoclution) of the equation (E) in G if

a) v__is nonnegative, bounded and continuous

b) v__satisfies the integral inequality

I({v,{,P) € 0 (resp. > 0)
)

(I_give in the Definjtion 1.1) for any rectangle P = [to, tyl x lx,, le, PC G and

for all ¢ e c:':(r) such that c(t,x,) = 4(t,x,)) = 0 for any t € [to,t1].
’

In this section we shall assume the following hypotheses:

¢ e C1([0,'))ﬁc2 ((0,2)),9(0) = ¢°(0) = 0 and there exists a convex function
(H)
¢ ue c°(to.-))r\c2 ({(0,%)) such that u(o) = 6 and 0 < p'(r) € ¢'(r) for r > 0 .

b e c®((0,)) N c2((0,%)), lim inf b'(r) > == and
+
(Bb) r+0
1im sup b"(r) < +» if lim sup b’(r) = +e .

+ +
r+0 r+0

We remark that (B.) obviously holds if ¢ is a convex function and (Hb) is
trivially ve—~ified if b € C1([0,')) {(no condition on b" is requested in that case). On
the other hand, if b(s) = -X' A €R, then (Hb) is satisfied if X > 0,

We start considering the (CP) problem. The main result of this section ia the
following:

Theorem 4.1 Assume (H,) and (H} or (H_).

¢
Let u be a limit solution of (CP) continuous on S and let u (resp. u) be a

generalized supersolution (resp. subsolution) of (E) on G = s. Then for every

0 €t <T we have

(4. 7 tute,m-uie, o Yax < f7 (u(0,x-300,x0) Tax

__(g(O.x)-u(O.x))‘dx), where r' = max (r,0} .

® +
(zesp. [__(u(t,x)-u(t,x)) dx < [
As a firat consequence of the above result we can state our main result about

uniqueness.
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Theorem 4.2. Assume (H¢) and (H ) or (H_).

Let uo e Cb(-,ﬂ), “0 > 0. Then under one of the following hypotheses there exists

an unigue generalized solution of (CP):

1) (3.1) is satisfied and o(uo) is Lipschitz continuous.

2) (3.2),(3.3) (3.4) are satisfied and f"(uo) is Lipschitz continuous (f defined

in (3.5)).
Before giving the proof of the above result let us make some remarks. FPirst of all,
we recall that by Theorem 3.3 every "weak solution"” (see the definition in Remark 3.4) is a
generalized solution. Then, by means of the regularity shown in Theorem 3.2, Theorem 4.2
gives automatically the uniqueness of weak solutions, improving the knowledge in the
literature about equation (E) (see the Introduction). Secondly, if we consider the

particular case of ¢(s) = sm and Db(s) = sX (i.e. (E) coincides with (E

m,A)) then,

for adequate data, Theorem 4.2 shows the uniqueness of generalized (and weak) solutions
under the following restrictions: 4
m>1,A>0.
In particular the uniqueness of solutions for the evaporation type problems (X € (0,1))
follows.
Other consequences of Theorem 4.1 will be commented upon later.

Proof of Theorem 4.2. Under the assumptions of the theorem, we know the ~x'stence i #°

least one limit solution of the problem. Moreover, this limit solution 1s continruous (see
(14) and Theorem 3.1). Then, if u is another generalized solution of (CP), we can
- i

obviously apply the estimate (4.1) and then u € u on 5. Analogously u is also a i

generalized subsolution of (E) on S and the dual estimate of {

(4.1) implies that u < u on s. In conclusion u = u.

Proof of Theorem 4.1. Let u = lim L be the limit solution of (CP) obtained in
koo

Proposition 2.1. {i.e. (uk) are classical solutions of (E) on the sets i

Qk = (0,T)x(~k-1,k+1). We start approximating u by classical solutions of (E) but
defined on full set S = (0,T) x (=w,6+m), To do this, we construct a sequence of

L] . ®
5" ec (R), ii) uo,j(x) + u(0,x) as j + =, 4

functions {uo, (x)} such that i) u ,

b
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uniformly on every bounded interval of R, iii) U, (x) € ugr (x) for all j > 1 and

I+t 3
(x) <M for all 3 > 1 and x € R, being

x @R and iv) 0 < €, € u e

3 3

tj +0 as j » += and M = sup u,. Now, by applying Proposition 2.1 to the case of u,

S obtain a sequence uy of classical solutions of (E) on 8 such that

€, € u,(t,x) <M for every j > 1 and “j is monotone nonincreasing in 8. Finally

3 3

ult,x) = lim u,(t,x) in S.
jru 3
We shall prove estimate (4.1) by showing the inequality

L]
(4.2) [ tult,x)-ult,x)) wix)ax < [ (ui0,x)-u(0,x)) ax

-0 -

for every w € c: (R}, 0€ w < 1, To do this, we suppose that (supp w) = [-L,L]. For
every t* € (0,7}, let P = (O,t*) x (~r,r) be where r > L + 1. Let [ e c:'i(p) such
’

that ¢(t,-r) = g(t,r) = O for all t € (O,t*]. Then I (u,,§,P) - I (u,Z,P) >0, i.e.

3

(4.3 ffr(u (t*,x)~a(t*,x)L(t*,x)dx < ]fr(u (0,%x)~u(0,x))£(0,x)ax +

b] 3

tr - e -—
~[g (et (e, r))=4(ule,r)Ig (e,00ae + [ [olu, (t,-5))=¢(ult,-)) g, (¢, -r)dt

3 3

+ [f (uj-;)(Ct+Aj;xx-szx)dxdt
P

where

4.0y AY = ¥t = [ 0tceu (e, +(1-0)T(E,x))a0

3

and ;

4.5 B3 = 8de,x = j; b’ (Bu, (t,x) + (1-0)ult,x))dd .

3

By assumption (H°) and the properties of uj we have

(4.6) 0 < %— u(e ) < Aj(t,x) <M

j 3

for every (t,x) € P and for some M, independent on j. On the other hand, thanks to

1

hypothesis (Hb) there exist two real numbers M; and M,, (M, independent of j), such
that

(4.7) M, < Bj(t,x) < M (1)

for every (t,x) € P. Indeed, if -o ¢ llm* inf b'(8) < nn+ sup b'(s) < +=» , there exist
[ 24] 8+0

M, and M, (both independent of j} such that n2 < b'(s) < H3 for every s € {0,M) and
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then (4.9) is obvious. 1If lln’ sup b’(s) = +», then by the second part of (H,), there
8+0
exist M, and "3' {both independent of j) such that

[
“z < b'(s) and Db"(s) < M3

for every s € (0,M]. Therefore

+ (1-)wre0 < |} b (0c,)a0 + Jq Myt8tu e ) + (1-01w a0

1.,
M, < Jq p'tOu ¢y

3

1

< = b(e ) + ln;),n .

3

1 -
Then (4.7) holds with M,(J) = — b(ej) ML LI
Analogously, if we suppose (H_ ;) we can find two real numbers M,(j) and M; (M3 independent
on j) such that Hz(j) < Bj(t,x) < L for every (t,x) e P. Hence, in any case, we can

assune that Hz(j) < Bj(t,x) < Hs(j) for every (t,x) @ P.

Jex,»
and {Bn }

Define now, on P = Pr' two sequences of smooth functions, {A:'r} =1’

n=1
satisfying

{Ai'r} is monotonically decreasing on n and converges uniformly

to Aj, on Pr (when n + +=),

(B:'t} ie e.g. mcnotonically increasing on n and converges uniformly
to Bj, on Pr (vhen n + +=),

Then, by (4.6) and (4.7) we have

1_ Jer
°<€u(€j)‘hn <H1

and

Jer :
"2 < Bn < MJ(j)'

On the other hand, inequality (4.3) can be written in the following way:
r * - % » r -
(4.8) Lr (ug(e 2 = ult ,x)gle ,x)dx < f_r(uj(o,x) - ul{0,x))g(0,x)ax +

T - te -
+ o [ty (t,-r)) - ¢(ule,-r))Ig, (t,~r)at - I [#tu (r,0)) ~ #lalt,r)]g (x,0)a

I, (a’-n’;‘)(ujJG)cxxaxat I ANLELAE a’)(uj-i)cxaxdt N
r r
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j.x - plef -3
+ ]fpr(A n Sex * S BTp S0 (ugmulaxae .
Now, let { = ‘j;r be the classical solution of the linear parabolic problem

Lg = Aj'rc - Bj,r‘x +te - 0 on P

n xx n r

(4.9) z(e?,x) = w(x) x(x) on (-x,r)

g(t,~x) = g(t,r) =0 on (0,t*)
where X is a given function such that x € c: (R) and 0 € x € 1 {(The existence and
uniqueness of { 1s a well-known result (see [25])). One of the crucial points in the
present proof is based on the following estimates of the solution of (4.9).

Lemma 4.1. let [ De the solution of (4.9). Then

1) 0 < g(t,x) < max |w{x) x{x)] € 1, for all (t,x) e Pr
i1) There exists M,~ H‘(j) such that
0 < Ct,x) S MUY) e Sl eor a1 (t,x) e F; .

111) There exists M, = Mg(j) such that

max {|T (&, 021,18, (t,=r) ]} < Mg(3) e, for a1l t e (0,t*] .
iv) There exists Mg ™ Mg(j) such that
e (t.x) ] € Mc(3) for all (t,x) e P
v) There exists M, = M,(3,r,t*) such that
*
Jo ff e p%axat < w(3,m,e0) for all (t,x) e .

Proof of Lemma 4.1. ~ We ghall follow some of the ideas introduced in [28]. 1) is a

consequence of the maximum principle. To prove ii) let us consider the function w = z -
g, where
z(t,x) = C exp (~x + B(t*-t)).
where C and 8 will be chosen later. Let P. = (0,t*)x(0,r). then we have

fw = exp (-x*e(c'-t))(A’;’- 8) < exp (-x+s(:--t)){n' + M) - 8} <o

1£ B> M+ M) .

wit?,x) = C e * - w(x)x(x) » 0, for every x @ (0,r]

L L

if C 6" ~130 i.6. C>e"

.B(t'-t)

w(t,0) = >0, for every t € (0,t¢],

wit,r) = C exp (~r+8(t®*-t)) > 0, for every t € [0,t*] .
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Hence, by using the maximum principle we have

.B(t‘-t)'-x

0< ¢ (t,x) € < H:(j)c-x

on p’, being
¥ V(M M _(§)+1)
1 L 13
M (J) = e e .
4
On the set P; = [0,t*]x[-r,0] we use the auxiliar function w = 2-f, where now
z(t,x) = C exp (x+B(t*~-t)) .
Then we obtain
0 < zit,x) < Hi(j)ex
on P;, with
2 L t'(!,—Hz(j)+1)
M (]) = e e .
4
This prove ii) for M,(3) = max (M}(j).ﬂi(j)}. (We remark that if M, and My are
independent on j, the same holds for M4).
In order to prove iii), we define the function
wit,x) = e-t+1 exp B(x~r+1) - 7(t,x)
for some B8 to be chosen. Consider the cylinder P(r-1,r) = (0,t) x (r-1,xr). Then we
have

- u(e
Lws e exp 8(x-r+1)(62Aj;t - Bag'r} >e ra'exp Bi{x~r+1) (B E-E—-i -BH3(j)) >0
3

Hj(j)e
if B > max{ wie )’ 1},
b
-r+1 -r+1
wit,r=1) = ¢ - L{t,x=1) < C e
wit,r) = e **1B

-t+leB(x~r+1)

wit®,x) = e (we recall that r > L) .

-r+
Then, w(t,x) attains the positive maximum o © ‘ee

ge? - n; (4)

at (t,r). Hence

-r+1 B(3l+1

1
cx(t,r-o) e for “5 = 8(j)e

Now, if we consider the function

r+1

wit,x) = e exp B(x-r+1) + C(t,x) ,

we have cx(:,:-o) > -~ H;(j)e-r. Finally, by using the auxiliary functions

wit,x) = e "' exp Bixtr-1) & c(t,x)
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on the set P(-r,-y+1) =« (0,t*) x (-r,-r+1), for some suitable 8 we obtain
lcx(t,-r*O)l < Hg(j) e T for some Hi (3. This proves iii) for
1 2
Hs(j) max (Ms(j). Hs(j)} .
Jer
n

Part iv) is a consequence of the fact that the coefficents Aj;t and B are bounded

independently of n and r. Indeed, in these circumstances we can apply the results of

the classic theory of linear parabolic equations (see {25]). PFinally, to show v) we

multiply the equation in (4.9) by cxx and we integrate. Then

t* r jr 2 t* r [ A 4 $r
(4.100 [ [ A (g )axae = - [ Llodxat + [ [ 80 gk axdt =1 +1,.
0 ~r 0 -r 0 =~r

Integrating by parts, it results

et r roa 2 r 2 L a 2
I, = Io [ g8 =) (ge xtxn‘ax =% [ g @xax <[ Sw xix) ax
- -r r -L ax

1
- H7 .

On the other hang,

t.It e, 2, Vot T 2,402 ¢ (o0 20172
1, < [jo -r(n“ ¢,)" axat) [[o I-‘(cn) axde)’2 < (e* 2r) 2 max{(My(3) 1, (My(3) 1}

t* r 1
[ g 0 axae) 2"

1
(¢, ) axae12= W3, en (] )

t* r
-r 0

m(H tf |
6 0
Therefore, from (4.10) we deduce

t* r 2 € 1 2 t* r 2 )
[ 1] 0 ) axae <« ——~ W) + W3 r,enrf | (g ) axat) 2 -,
0 0 -r

Y XX uie,)

3

This ends the proof.

Proof of Theorem 4.1 (continued). By substituting the solution ¢ = Cj;r' solution of

(4.9), in the expression (4.8) and applying Lemma 4.1 we have
r - r -
(4.11) f (u,(t',x)-u(t',x))u(x)x(x)dx < f (uj(o,x)-u(o,x))*dx 4

-r -y
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+ t* Hs(j)o-r( max [¢(u (t.r))-o(;(t,r))l + max I.(u,(t.-r))-’(;(t,-t))l) +
octst” 3 [:T{ X< 44

+ max lAj-Aj;tl max luj-ul M (3,r,t%) + max lBj;f- 83| max luj-zl 2t*rM (1) .
Pr

4

T r

By taking limits, first with respect to n (n + +=) and then with respect to r (r + =) ,

we obtain
«»

-
(4.12) [ tu, (2%,%)=0(t*,x))elx)x(x)dx < [ (u,(0,x)-u(0,x)) ax

M e

(we recall that |u’-u| < M and that l0(u,)-0(u)l< ¢(M)). Letting, now 3 aiverge to

infinity, we have

(4.13) [ (ult®,x)~u((t?,x) Jalx)x(x)dx < | (u(0,x)-u(0,x)) ax .

- -
Finally, relation (4.13) is also true for the function x given by x(x) = 1 on the set
{x t uw(t*,x) > u (t?,x)} and x{x) = 0 otherwise. (Indeed: it suffices to approximate the

function x by x- e c;(l) and then passing to the limit on m). This concludes the proof

1 is a subsolution of (E) on 8, by an analogous argument we obtain
L J

of (4.2). PFinally, if
-
[t (t0-ute,x) e(dx € [ (ulo,x)-ulo,x)) *ax
for every w € c: (I;T 0 € w< 1, and the proof o;.'meoren 4.1 is finighed. -
For the problems (MBVP) and (FBVP) our answers are similar to theorem 4.1 but the

proof is somewhat more delicate.

Theorem 4.3. Assume (HL) and (Rb) or ‘H~b)'

a) Let u be a limit solution of (FBVP) continuous on R. Let ;(to.g. u) be a

generalized supersolution (resp. subsolution) of (E) on G = R such_that

V() S e, ), (e) < ultl,)

(resp. ¥¢_(t) > u(t,1.) , ¥ () > ult,l,)) for every t € [0,T}. [Then

1, _ . 1, _ .
(4.19) ]1 (ult,x)~ult,x)) ax < jl (u(0,x)~u{0,x)) dx
1 1
(xesp. Ilz (g(t,x)-u(e,x))’dx < [12 (u(0,x)-u(0,x)) @) .
1 1

b) Let u be a generalized solution of (MBVP) continuous on H. let u (resp. u be
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4 _generalized supersubsolution (resp. subsolution of (E) on G = H. such that

vie) € T\(t,lz)

(resp. W¥(t) > _l_l(:,lz)) for every t @ [0,T) . Then

12 - + "2 - +
(4.18) [ _Stute,x-ult,x)) ax € [_S((uto,x)~u(0,x)) ax

1, + L +
(xesp. [ “tultx)-ult,x)) ax < [ “(u(0,x)-u(0,x)) ax) .
- -
About the uniqueness gquestion we have

Theorem 4.4. Assume (a,) and (W) or (H_,) .

) Let u €C((1,,1,]), u >0 and ¥_, ¥, €C({0,T1), ¥, ¥, >0, satisfy
v_(0) = uo(l‘), 0+(0) - “0“'2)' Then, under one of the following hypotheses there exists

an_unique generalized solution of (FBVP):

1) (3.1) is satisfied o(uo) is locally Lipschitz continuous on

(1',12) and $(v,).4(y_) are absolutely continuous on [0,T).

2) (3,2),(3.3) and (3.4) are satisfied and f“(uo) is locslly Lipschitz continuous on

(1,.1,).
b) Let u € C ((-=1,]), u >0 and ¢ e€C([0,T]), ¥ > 0. satisfy ¢(0) = u,(1,). Then
under one of the following assumptions there exists an unique generaliged solution of

{MBVP):
1) (3.1) is satisfied ¢(u°) is Lipschite continuous on (--,12- §) for every

§ >0 and 4(y) is absolutely continuous on fo,T].

2) (3.2), {3.3) and (3.4) are satisfied and f°'(u°) is Lipschitz continuous on

(*‘,12-6) for every 8 > 0.

Proof of Theorem 4.3 a) let u be a limit solution of (PBVP) continuous on

R and let u be a generalized supersolution of (E) on G = R such that
¥_(E) € Blt,1) and () < ult,1,)
for every t € [0,T). Let P = (0,t*) % (11,12). Then if u = lim uy we obtain as in

(4.8), the following
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1

1
a6 [,2 tugter,-utes,xnpies,xiax < ;2 t0,x)-l0,m) ) glo, x)ax +
1 1

3
e t* _

+ fo (O(Uj(t;11))-0(u(t,l1))5x(t,1')dt - !o (O(uj(t,lz))‘0(u(t,12)))6x(t,12)dt +

- j- j -—

-u)g dxdt + HP (B,~B") (u -u)g dxdt +

3
s [ e+ ct-a’ g ) u -u)dxdt,
P

+ [/ (Aj-Ag (u
P

n’xx n 3j
where {A:) and {B:} are two sequences of smooth functions as in the proof of Theorem
4.1. Now define ([ = ci to be the classical solution of (4.9) after substituting
Aj;' ‘ Bj;r and P by A:, B: and P respectively. Our intention is to pass to the
limit in (4.16) first with respect to n and afterwards with respect to j. To do this we
need to distinguish two different casel:(1)
ay) u(t,1,) >0 and u(t,1,) > 0 for every t € [0,7]

. ‘2) u(t°,11) =0 or u(to,lz) = (0 for some to e (o,T).

1f a,)-takes place then we can choose V_ 3 and 0, j such that

r ,

(4.17) ej < #_’j(t) < u(t,11) and ej '3
for every t € [0,T]. Thus, remarking that Cx(t,11) > 0 and cx(t,lz) <0 for every

<, L (8) <ult,l)
t € (0,t*] we obtain the conclusion after passing to the limit in n and 3}
respectively as in the proof of Theorem 4.1.
It is clear that (4.17) cannot be possible in general (for inatance if
u (to,l‘) =0 or E(to,lz) = 0). Now we shall obtain estimates on Cx(t'll) and

Cx(t,lz) which are sharper then those stated in Lemma 4.1.

Lemma 4.2. Assume (H,) and (H ) . or (n_b). Let C be the solution of

[ b
z Al -pd -
.L‘c_Ancxxx;ncxi»ct 0 on P
(4.18) g(t*,x) = w(x) x(x) on (1’,12)
Lee,1,) = g(e,1,) =0 on (0,t*)

where x is a given function such that xe c; (11,12) and 0 < y < 1, Then there exist

two_constants Mg(j) and Mg(j) such that

(1) The authors wish to thank M. Berstch for pointing out some omissions at this point of
the proof in a preliminary version of this paper.
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(4.19) 0 < (x(t,11) < Hs(j),
(4.20) Mglj) < Cx(t;lz) <0

for every t € (o,t*) Moreover

0(8’)“‘(3) + 0 and O(Cj)ﬂg(i) + 0
when + -,
Proof. We shall prove (4.20), (4.19) being obtained in a similar way. To do this, we

construct an adequate function o,(x) in such a way that the function w(t,x)

3

- o’(x) + {(t,x) has a positive maximum at (t,1,). Then we gshall deduce that

cx(t,lz) > - 05(12), that is, (4.20). Consider the cylinder P(lz-d,lz) -
i = (o,t) x (12—6,12) for some § > 0 fixed. Then if o; >0 and u; > 0 we have
! 3 3 ule,) 2
\ = L] - ) ____L - - []
; Lws AL %008 ix) > Ej o"(x) Ma(j)o (x) = Kj >0
' for some X, € R if we choose
i T Ll W
{ o(x) -cj Ha(j)c e u(ej) --—1-—-"(’) xi'!.j
; b] 3
! ! for every C, and L, satisfying

3 Ha(j)ej K2
(4.21) ¢ exp(——l (1,~8)) - 3 >0 (o' >0 condition)
b u(cj) 2 "RED)
and 2 R 3
K ule,) M (J)e
—d_ . b| b
(4.22) Lj > Ha(j) 12 Cj Ms(”ej exp (u(tj) 12) (w(t,lz) > 0 condition).
(We have used the estimates on A: and B: given in the proof of Theorem 4.1. It is

clear that we may suppose Hs(j) > Q).

On the other hand, on the parabolic boundary of "”2'5'12’ we have

w(t,lz) = "3(12)
w(t,12-6) < oj(12-6) + 1
wit¥,x) = oj(x) ({f we choose & such that oi{x)x(x) = 0 for x € (12-6.12)).
Then, as 05 » 0, w attaine a positive maximum at (c,lz) if we have
2
c.1j(].2~-6)+1 < 03(12) i,e, if Kj and cj satiafy
; 2
i xjc ple,) ti)e M. (3)e 6
{ 4,23 - - -
H ( ) "3”) < C:i Ha(j)cj exp ( W(e) 12)[1 exp( u(ej) ] 1.
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It is easy to see that if we choose

“Myldre,l, 1
cy = exp( Wiz ) ) min (Lor TR M (37¢,8 }
~ (&+ ) exp(- )
(e, ENETD ule)
and
2
M_(3) uie,) M. (Jle X
23 (c l ep (221 -
3 [ ju_.,’(j)t:j u(cj) 2 HJ(j)

then (4.21) and (4.23) are satisfied. Thus Cx(t,lz) » =0l(1,) being

3 T2
My (1)e 2
2
Now, the sequences {Cj exp (Ha(:::jtz)} and {ﬁ;;:;} are bounded and then
O(tj)oa (1,) + 0 when j+ =, -

Proof of Theorem 4.3 (continued). Suppose that a, holds. Then if we denote

I ={t e (o,t*):0(y_
e iy _
[o (@€¥_ 4(E) = #Cult,10))g (£,1,)dt < Ix(o(v_d(c)) ~¢(ult,1,0)g (t,1,)de <

(t)) > u'&(e,z,)n we have I = {t e (o,t'):;(t,11) = 0} and then

< t* $(c.) Ma(j)

3

(because on I we can choose ¥ _ j(t) = ej)- By lemma 4.2 we have
t* ’
J’o (Blb_ 4(£)) = d(ult,1,0)5 (r,1,)at » 0
when Jj converges to infinity. BSimilarly
t'
] sy

+
o Va3

when Jj converges to infinity. Then the conclusion follows by passing to the limit in

(£)) - O(u(t.lz))(x(t,lz)dt +0

(4.16) in n and then in §.
We remark that in order to prove the conclusion for subsolutions it is not necessary
and ¥

to use Lemma 4.2, because in all cases we may choose v satisfying
’

b +3

g(t.li) < v_'j(t) and g(t,lz) < ‘+,j(t’
for every t € [0,T).
The proof of part b) is an easy modification of the proofs of Theorem 4.1 and the
above part a).
pe -

The proof of Theorem 4.4 is analogous to that of Theorem 4.2,
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Other important consequences of Theorems 4.1 and 4.3 are included in the following
theorem, which shows continuous and monotone dependence of generalized solutions with
respect to the initial data. ( We shall consider only the (CP) problem, analogous

statements holding for the others).

Theorem 4.5. Assume the hypotheses of Theorem 4.2.

i) let u,u be generalized solutionas of (CP) corresponding to the initial data

-

u  and u_ respectively. Then
o —/ o

(4.24) ul{t, )-ult, ) < u -\:
AT °°\m

for every t € (0,T].

11) Let u_be a generalized solution of (CP) and u,u generalized super- and

subsolutions of (E) on G = 8.  Then if #l0,x) < u (x) < o,x) on (-=,®) it

follows that
(4.25) u(t,x) < ult,x) € u(t,x)

for every (t,x) € 8.

Proof. The asgertion i) follows from part a) of Theorem 4.1 by applying the estimates to
u= :n and u = ;. Part ii) is also a trivial consequence of such estimates. -
Other estimates giving the continuous dependence on the initial data as well as the
numerical treatment of equation (E) for b e C,( {(0,%)) can be found in [33].
We shall end this section by making several comments on the obtained results.
Remark 4.1. The conclusions of Theorem 4.1 are true even under more general hypotheses.
So, for the (CP) problem e.g9., it is enough that u, u, u be in the function space
c((0,T] : Lloc(l)). The existence of solutions of (CP) in such a function space is not
difficult and some hypotheses on ¢ and b wmade in Theorem (3.1) can be weakened (See,
e.g. the approach made in (2] considering a different nonlinear degenerated parabolic
equation).
Ramark 4.2, If we denote by S(t)uo = u(t, } the generalized solution of (CP)
corresponding to the initial datum u, it is not difficult to show that S(t) is a

semigroup. The estimate (4.24) shows that it is a semigroup of contractions on the space
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X = L‘(l). Our conclusion, then, coincides with the one obtained by the abstract theory of

accretive operators on Banach spaces and evolution equations. Such an approach has been
applied to the concrete case of equation (E) by different authors (see [38), (37] and
{5)). We remark that, by means of such an approach, it is possible to prove the existence
and uniqueness of a function satisfying (CP) in an adequate sense. This is made under very
general assumptions on ¢, b and u, (see [5]). Such type of solution is, in fact, a
generalized solution of (CP) under hypotheses weaker than that the one in Theorem 4.1.
However, the abstract approach does not guarantee the continuity nor the uniqueness (among
all the possible generalized solutions) of such a function.
Remark 4.3. There exists a vast literature about the existence and uniqueness of solutions
of (CP) when function ¢ 18 not assumed to be strictly increasing on n+. It is clear
that the approach is very different from ours. Indeed, such an approach includes the case
¢ = 0 and then equation (E) reduces to the "conservation law®” equation

u - b(u)x =0
for which it is well known the existence of discontinuous solutions. The uniqueness of
solutions is then found by introducing a different notion of generalized solutions of (CP)
(see, e.g. (36], (23}, (12), [38], {39) and [26]).
Remark 4.4. - Comparison results like the one in part ii) of Theorem 4.5 are of a great
utility in the study of the qualitative properties of solutions (see e.g. [19}, (15], [9],
{21] and [22]). In a forthcoming paper by the authors, Theorem 4.5 will be systematically
used to derive some qualitative properties of the solutions of the evaporation equation

(Em,l' m> 1, 0 <X < 1),
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