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Corzelation Algorithm Report

1. INTRODUCTION

LY

. 1.1. Purpose

\\7 This uportjlc:sctibu the findings of the Algorithm Analysis Subtask

group working on the U.S. Army Intelligence Center and School (USAICS) Software
Analysis and MNanagement System task (USAMS) regarding Electronic Intelligence
! (BLINT) correlation algorithms used in five of the intelligence~gathering

systems under USAICS cognizance. The statistical mathematics on which the
slgorithms are based is examined with partiounlar reference to assumptions.

Individual algorithms are analyzed to determine whether they are performing ﬂ

their functions properly. Algorithms that perform the same function in differ- i
ent systems are compared to determine which ones are best according to various

i
4

criteria, (— i

i b b

The algorithms examined in this report are taken from the BETA, TCATA
ELINT, ITEP, QUICKLOOK, and AGTELIS systeas, They were chosen from the more
than 40 deployed intelligence systems for which USAICS is Combat Developer
because some documentation was available and because they represented a range
of ELINT applications, The ELINT correlation algorithms have been chosen simce
they sre most nearly automatic, that is, require the least operator interven—

tion and rely on technical parameters most amenakle to statistical techmigues.

1.2. Backgrousd

Each of the more than 40 intelligence systems under USAICS cognizance
employs several types of algorithms to carry out its gathering and processing

e R L e R U A - A O TR Ik - A

of intelligence data, Two important types of these algorithms, geographic
transformstion and correlation, have been chosen for analysis during this year.
The former tramslates grid-szone locations, for example, from latitude-longitude
to Universal Tramsverse Nercator (UTN), while the latter resolves manmy indivi-
dual sitings into militarily recognizable targets amd situwation reports based
chiefly on stamdard statistical procedures. It is importaat to develop a set

®A report om geographical transformation slgorithms has been submitted in FYS2
l and a report on possible slgorithm analysis methodologies is scheduled for
“83.
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of parameters to characterize these algorithms to determine how they should be
catalogued. Yhen these activities are completed, it becomes possible to compare
algorithms that perform the same function in different systems and finally to
develop improved algorithms that pecform the fumctioa,

For this repoxrt the JPL Algorithm Anslysis Subtask group has examined
ELINT radar correlation algorithms for five of the systems under USAICS cogni-
zance, namely Battlefield Rxploitation and Target Acquisition (BETA), TRADOC
Combined Arms Training Activity (TCATA) ELINT Processor, Interim Tactical
ELINT Processor (ITEP), Airborne Non—Communication Emitter Location and Iden-
tification System (Quicklook), and Automated Ground Transportable Emitter Loca-
tion and Identification System (AGTELIS). BETA is s Test Bed program for
correlating data received from several types of sensor systems and making '

target nominations. Both automatic correlation and aggregation techniques and

interactive graphics are used in the operator’s analysis. The TCATA ELINT |
Processor and ITEP are similar data analysis tools that integrate many sitings
into various intelligence reports, AGITELIS and Quicklook are both collection
and analysis systems; as collection systems they do not integrate data from as
wide a range of sensor systems as do the otuers. These systems would generally
be employed at Brigade through Corps level or at an Air Force Tactical Air
Control Element (TACE) or Allied Tactical Air Force (ATAF), target nomimations
sand tactical situation reports would be available to commanders and their
staffs from Brigade through Echelons Above Corps (EAC).

USAICS has cognizance of & large number of slgorithms integral to
intelligence—gathering systems in various stages of development and deployment,
The state of '‘deployment’ of algorithms ian the USAICS inventory ranges from
that of produots of research contracts not yet implemented in any system to
those .. fielded systems such as Quicklook. In the latter systems the algo—
rithms are documented in design documents (narrative English and equations),
and/or in machine readable design language, and in code. Often not all of
these forms of documentation are available for any ome system, For research
algorithms not yet implemented, actual code, or oven dotailed flow charts, may
not be available, sad snalysis must rely solely on mathomatical descriptions.

""Algorithms’’ will mean any set of rules for carrying out a single
conceptual operation on & set of data, such as transforming from latitude and

-2
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longitude to UTM coordinates or determining a position from a numbez of direc-
tion measurements taken at kaown points.’® Algorithms sre often hierarchiosl, .
lover—level algorithms being used to describe higher—level slgorithas snd i 4
theredy illuminating the underlying logical structure. Thus results from one

N et e A gt

algorithm may be data for amother. This occurs extensively for the correlation !
algorithms, and correctly identifying the assumptions made in linking the hier— v
archical levels is critioal. USAICS is interested in algorithms performing

intelligence data processing functions central to its systems’ missions and

those performing crucial support functions common to a number of systems such

as geographic location. Data management or mathematical function algorithms,

although vital to the efficient functioning of the systems, are not being

treated in these first algorithm analyses.

1.3, User Benefits
These analyses can benefit users in several ways, First, a catalogue

of existing algorithms will help USAICS avoid having algorithms redeveloped for
new systems from first principles. Second, analysis of individual algorithms .

may, in a few cases, identify deficiencies worth correcting on the next system
revision, Third, and most important, the comparison of algorithms performing
the same funbtion in different systems can lead to identifying guidelines for
developing and/or selecting algorithms to include in s>w and revised systems,
Selected algorithms from the systems studied will begin to form a library of
intelligence algorithms with associated computer subroutines that will be
anslogous to the Colleoted Algorithms of the Association for Computing Machia-
ery (ACM). The creation of such a library is in the spirit of Ada*, the
Department of Defense langusge for embedded systems, and the Ada eaviroament,

1.4, nl'h-uv.l Schematics

There are several steps in identifyiang enemy locations using electro—
nic intelligence methods. These steps are arranged in s hierarchy beginning at
the bottom with odbserving and estimating emitter charscteristics and moving

These conceptusl models can be presented simply and logically, but the pre—
sentation of their technical implementation is often significantly more compli-
cated to present.

*Ada is s trademark of the Department of Defense,
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through successive levels of data imtegration. Often ome of several assump—-
tions comceraiag the behavior of these observatioms can be chosea when moving
from one level of the hierarchy to the next., How each level is modeled and
) o what amalytical techniques are chosen depend on these assumptions. Lates in 5
‘K this report tho. assumptions behind some developed systems will be discussed,
: This section introduces a framework for the entire hierarchy, providing s
context for the more detailed and technical discussions to follow. .

LRV ENRY * DD GIpYY
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There are four stages in the antomatic processiang of ELINT data as
implomented in most curremt systems: collection, separation, self-correlation,

and cross—correlation, These sre illustrated schematically in Figures 1-1 and i
1-20

3
i

The first step in this ’"automatic’’ radar target acquisition and
nomination process, called collection, gathers lines—of-bearing and signal
parametrics associated with different emitters. Examples of signal parametrics
normally collected are radar frequemcy, pulse repetition interval, and pulse
width, During collection, error in the estimates of enemy radar location and

signal parametrics enters, primarily through measurement error., Understanding

this error is vital to understanding self-correlation. The different assump-
tioans about the behavior of this error made will be discussed in detail, bdut
the actual mathematics of collection will be deferred to a later report,

e G g

The second step, called separation, identifies which observations come

from which omitters., A subset of observations is thus identified for each ¢
emitter. REach subset is a sample from the population of all possible observa-
tions of that radar by a sensor system, If the sensors are unbiased, they will
gather samples whose averages will estimate the true radar characteristics.
(Because the sensors are unbiased, the true radar charactoristics and the mean
of all possible observations are identical). The sample variance can be used
to estimate the measurement error, Separating one radar’s sample out of the
collected observations and determinming the mean and elliptical error probable
(BEP) is usually oaslled determining the '"fix’’ for a radar. How well the
observations sre separated according to their populations depends on the den-
sity of the radars, the agouracy of the sensor system for both locations and
signal parametrics, and the statistical techniques chosen. Examples of statis-
tical tochmiqumes ' sed are jackknifing and sequential searching.
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Fig, 1-2: Correlation Algoritims
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Juokknifing determines if a subset of observatioas is interneslly
consistent by evaluating bow closely each of the observations can be estimated
using the rest of the observations, To do this, for each obgservation x the
location estimate of the remaining ohservations is calculated and the differ—
ence between its line-of-bearing and that of x is determined. If for every x
in the subset this difference is less tham a prespecified value, the subset is
consistont and conmsidered as coming from the same emitter,

Sequential searching usually involves taking all observations falling
within some distance of, or somehow ’'clustering’® with, another observation
and determining if they are dense enough to be considered as coming from one
emitter. This density may be determined by calculating the variance from the
best location estimate., This process is then repeated for other points. Spec-
ial rules for computing any given fix are usually applied to ensure observa-~-

tions sre made from different locations.

Although no new random error is introduced in separation, other error
is introduced if separation is not dome correctly. Both jackknifing snd
sequential searching may fail under reasomsble conditions, in which case emit-

ter locations or signal parametrics estimates based on them may be ‘phantoms’’
and not represent existing radar characteristics. Not only can this provide a ’
false target, but it will simultaneously hide st least one true one, Thus r
separation shapes much of the input to the self-correlation phase, and will be
considered in its own right in another report.

The third step, and the focus of this report, is called self-correla— {
tion. Candidate radars, specified by either directly collected lines—of-

bearing and signal parametrics or their estimates coming from separation, are
compared with ’known’’ radars, If the new information seoms to refer to a
radar slready identified, it is used to refine what is known about that radar
location. MNany self-correlation algorithms also try to determine if the candi-
date represents observations of s ‘‘known’’ radar which has moved or ome which
has shifted its signal parametrics logically, A candidate which canmot be
associsted with any radar in the database is considered a ""new’’ radar and is
added to the database., In this manner the database of ’known’’ radars is
built, the first ocandidate is new by default (since the database is empty), the
second is either sucoessfully associated with the first or is added as a second
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database entry, and so on. VWhen a database entry is sufficiently refined, or
supported by enough candidates, it can become a target nomination,

Rules for assoolating candidates with database entries vary from
system to system, They usuaslly assume that location estimates are normally
distributed and signal parametrics either fall betweon intelligence-specified
bounds or have some statistical distribution whose parameters can be estimated.
All systems analyzed to this point seem to assume that all measured attributes
are independent. Some systoms use a final ''measure of correlation’ for
association which combines the various measures using subjective weighting

factors.

The final step in this intelligence anslysis, called cross—correls—-
tion, identifies more complex entities, such as Division Command Posts with the
known simple entities of which they are composed. These simple entities are
provided by previous processing, Either the simple or the complex entity may
be the new candidate. The measures of association used relyon information
contained in templates. These templates, based on intelligence estimates,
indicate what specific complex targets should look like. The problems arising
in cross—correlation will be studied in another report.

Turaing nov to s slightly more detailed view of self-corrzelation,
figure 1-2 concentrates on its interface with separation, illustrating the
mathematiccl assumptions made to tie the system together, These assumptions
prescribe which mathematical techniques can be used for building the
algorithms,

Two levels of assumptions underlie the distributions used for location
and signal parametrics in the self-correlation algorithms, The first is that
sll observations used to calculate an estimate were made of the same emitter,
Ground truth, the array of emitters with which these sensor system must actual-
ly cope, includes multiple emitters, Thus, either the separation algorithm
itself or the operational capadility of the collection sensor system is assumed
to classify observations accurately, differentiating those coming from separate
emitters.

The second level of assumptions deals with the shape of the distridu-
tions of the radar charscteristics and the statistical independence of the

ot niie il
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Fig. 1~3: General Mathematiecal Assumptions fer Self-Cerrelation
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samples. Givea the validity of the first assumption, the uabiased normal dis~
tribution for location estimates can be established by classical statistiocal
arguments, Distridutions for the various signal parametrics apparently are
determined dy Bayesian techniques supported by intelligence—community esti-
mates, vhere the term Bayesian is uanderstood in the popular sense of relying om
predetermined priors (probability estimates) which may be modified by incoming
data, (All the statistical inference found in the systems surveyed is classi-
oal). The ubiquitous tacit assumption of independence among signal paramet-
rics, underlying their joint distribution and dictating the appropriate statis—
tical tests, seem dubious at bests, even location and signal pasrametrics are
probably made statistiocally dependent by tactics. Dependence among the various
radar characteristics measured or inferred will be considered in greater
detail in later sections, with particular attention to possible relationships

with time of observation,

The consequences of these assumptions will be discussed for each

system in Appeandix E.

2. SURVEY OF SELF-CORRELATION ALGORITHMS IN EXISTING SYSIEMS

The mathematical documentation of seversal of the ELINT radar self-~
correlation algorithms has been surveyed. Self-correlation algorithms compare
new intercept estimates (candidate radars) with prior estimates (known radars)
of location, descriptive signal parametrics, and time of obtservation, If a
match is found, the new information may be used to update the old; if none is
found, the new estimate is added to the databage of "'known’'’ radars. Some
dats analysis systems also take into account possible movement or change in
operating signal parametrics. Figure 2-1 illustrates a gemeral self-correla-
tion algorithm,

Two sets of tests compare new estimates with those already in the
database. Ome is based on radar location, the other on signal parametrics,
such as frequesncy, pulse width, pulse repetition interval, and time of observa-
tion. Most systems sssume that location estimates are normally distridbuted and
base these tests on standard statistics, Tests based on signal parametrics are
handled by several statistiocal and non-statistioal techmiques., These tests,
and their assumptions, will be discussed in the remainder of this section, The
focus will be on stationary radars: those that change neither their signal

-10-




Fig. 2-1: General Self-Correlatioa Algorithm
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parametrios nor their location, and the section will conclude by discussiag a
specific example, the radar self-correlation algorithms in the BETA system,
The discussion will bde limited to gemeral statistical forms and comcepts’, those
interested in the underlying mathematics should consult the annotated reference
l1ist (Appendix A). The specific algorithms used in the systems surveyed will
be considered in Appendix E.

As Figure 2~1 indicates, systems use both sequential and simultaneouns
decision tests, simultansous tests can be based on either s joimt distributiom
or s (usually linear) combination of tests of individual charscteristics.
Before looking at the mathematical form of the tests, or measurements, for
individual radar characteristics (location and various signal parametrics), it
will be useful to consider the mathematical implications of choosing sequential

or simultaneous tests.

Sequential tests normally assume that the characteristics being tested
are statistically independent, If this assumption is true, sequentially test-
ing hypotheses based on the one~dimensional marginal distributions will even-
tually lead to rejectiom, if there are enough dimensions, whereas ''averaging’’
the noise over sll the dimeasions im a test based on the joint distribution may
rosult in scoeptance., If the characteristics are correlated, however, a pro-
perly constructed test based om the joint distribution approaches one dimen-
sionality, making the sequential approach redundantly test the same thing, so
that sequential and simultaneous results are the same., Vhers some charac-
teristics are correlated and some sre not, whichk osually implies monlinearity,
the outcomes using simultaneons or sequential testing are hard to compare,
unless both tests are carefully comstructed to refleot the same behavior,
Further, by using the joint distribution, behavior of individual characteris—
tics is obscured, Omne way to retain some control over the influence exerted by
individual characteristics on the outcome of the test and to provide the flexi-
bility of easilly performing a set of tests sequentially or simultanesously is
to use the weighted sum of the statistics for each charscteristic. This
approach, and some of its possible statistical interpretations and derivations,
will be considered in the section on simultaneous tests. The statistioal basis
for these simultaneous tests, or lack of it, will becore particularly important

when discussing non—-stationary radars,

-12~
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2.1. Looation Tests for Statiomary Radars

The initial, often tacit, sssumption made is that each location esti-
mate comes from a set of observations of the same radar, The consequences of
rolaxing this assumption will be discussed later in this report.

Most of the systoms surveyed use s chi-square statistic for locatiom
tests, either as an individual hypothesis test or as part of a simnltaneons
test. The choice is based on established statistics, a brief heuristic diacus—

sion of which follows.

Figure 2-2 shows schematically the observational data used to deter—
mine the location estimate ¥ and elliptical error probable., Different platforms
belonging to the same sensor system take several lines~of-bearing to the radar,
loading to measurement error in the angle specifying the line~of-bearing and,

especially in airborne platforms, also in the platform location, Thess are
translated into error in the location estimates which are assumed to have a

bivariate normal distribution with mean X and covariance matrix S. The level

curves of this joint distridbution sre ellipses (Figure 2-3) and not circles
chiefly because the total angle of observation is smalls; could the sensors

surround the radar, the level curves would most likely become circles,

Now letting X; and X5 bo the means, S; and Sy the known population
covariance matrices, and ny and ny the number of observations in two samples,
the statistioc

12

~ = T, -1 1q (= _ =
= (x1 xz) (n1 81+ n, Sz)(x1 xz)

has a non—central chi—-square distribution with non~centrality parameter

ij
x-}éjs 5151

where 83 is the difference in means for the ith characteristic snd slj are the
elements of S=njl18; + 2318, inverse. If the hypothesis that the two samples

refer to the same radar is true, then 8;=0 for i=1,2 (cf. Johnaon aad Leone,
section 17.7).
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Fig. 2-3: Maltinormal Distzibution of Lesation Estimates

D(X1:Xz)

level curves are !
confidence ellipses !

Xy

X2

P R S




Consider the model of the observatiom of a single characteristic made
by the kth sensor system,

;k(t)"wl'bk(t) + sy (t)

where
;k(t) is the sample mean (estimated location) sampled at time t
R is the true location of the radar
by(t) is the location bias introduced by that sensor system at
time t and
ey (t) is the error, usually assumed distributed N(0,1)—normal

with zero mean and unit variance

If "belonging to the same population’’ means ‘‘observing the same radar’’ -
and that is what self-correlation is testing — then the nom—centrality parame-
ter is not zero, if different semsor systems introduce different biases, even
though they are observing tho same radar. Thus, for the statistic X2 to have a
central chi-square distribution, as is usually assumed, the observations must
be unbiased, or all have the same bias, Further, the error must be invariant
with respect to time., Although this may initially seem to be s harmless
sssumption, error probably does depend on range which changes with time,
Potential dependence of measurement error om distance to the emitter usually
can be aocounted for, and in no case should be overlooked.

Two different methods of handling the locsation tests were found in the
systems surveyed. The first, part of a sequence of tests, was a central chi-
square test for a predetermined confidence level (1-a) using the statistioc X2,
The second involved simultanecus tests with signal parametrics, needed to
convert the chi-square statistic value into a value compatible with the other
tests, in particular, to map it into [0,1], the functions used for this mapping
or transformation were usunally of the form
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where x is the chi-squared statistic. As it is the '‘quadratic fora’ for beta
equaled to 2, the above equation gives the umnormalized prodbsbility density for
the bivariate normal distribution and is the standard mapping of s chi-squared
distribution onto the unit interval. Either of thess approaches is reasomable
as long as the estimates are unbiased, the samples statistically independent,
and the distributions normaly and sormality is s standard assumption for dis-
trxibution of sample means,

2,2, Signal Parametrics Tests for Stationary Radarcs

As stated above, a stationary radar is not only ome that is not mobile
but 8130 has 2o basic changes in its operating signal parametrics, Although
tests on time of observation usually appear with these signal parametrics their
discussion will be postponed to the section on non—stationary emitters. Unlike
those for location, there is no well-developed statistical literature for these
characteristics. The three main approaches to hypothesis testing found in the

systoms surveyed were:

1) test whether the new characteristic estimate is within preestab-
lished limits or preestablished bounds of the known estimate’

2) calculate a value (to be used in a simultaneous test) using a
simple function of the difference boetween new and known charac—

teristic estimates;

3) calculate individual measures of correlation for each character—
istiec (to be used in a simultaneocus test) that reflect the proba-
bly that the new estimate fzlls within the (1-a) confidence band
of the known estimate,

These three approaches will be considered separately.

Tests on whether the new estimate falls within a given interval are of

two types.

1) Those for which all known operating intervals of enemy radars are
predetermined, so for two observations to be of the same radar,
they must both 1ie in the same intesval,
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2) Those for which the variability about a given signal parametric
for ememy radars is predetermined, so the new estimate must lie
within that distance of the known one,

The first type has no statistical content; it is a deterministic
decision based on certain prior knowledge. The second lends itself to a stat-
istical interpretation, especially if real-timo data is used to modify the
bounds, leading to a ''Bayesian’’ approach. Neither of these need deal with
the classical statistics arising from errors in measuroment. The second tech-
nique may take into account priors arising from measurement methods as well as
radar performance, but that can not be determined by the mathematical form of
the test alone. Such motivations are kmown only to the creator of the '’data—
base’ of predetermined bounds.

The second class of tests, those using a simple function of the diffe-~
rence between new and known estimates, are designed to be used in simultaneous
tests, considering several signal parametrics with or without location., The
functions are used to emphasize differences between estimates in certain
ranges, to map the differences into [0,1] so they cam be combined, or to
reflect some assumed distridution for that characteristic. These distributions
may reflect variability in enemy radar performance or friendly sensor
observations,

The third approach assumes some distribution for ths estimates, usual-
ly normsal. It also assumes that the (1-B) confidence intervals for the new and
known ostimates are given (they are not given in the unclassified portion of
the TACELINT message format given in the referenced technical directive). The
measure of correlation is

2

-g2 -
x x éx

/ (1-a peu)N(1-a ho'n). axf (1-a “')o

vhese (1-a ) indicates tho closed 1-a confidence interval for the new esti-
mate apnd (1-a hou) for the kmown estimate. Given the sbove assumptions and

statistical independence of measurement, this equation gives the conditional
probability of an estimate coming from the known population, given it is known
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to come from the mev population, hemce a probability that the estimates come
from the same population. Unlike the tests discussed earlier that rest heavily
on priors, this test is based on the variability arisimg ia sampling (that is,
in observing enemy radars). If there is variability in the enemy radar pars-
metric around some fixed value, this variability will be reflected (interming-—
led with variability arising from the messurement technique) in this measure of
correlation. To separate these two contributions to the variance requires
other statistical techniques, and the relevance of the information obtained to
this intelligence problem is unclear.

2.3. Simultasmecus Tests for Stationary Radars

Many of the values discussed above were designed to be used in simul-
taneous tests. Two forms of these tests will be considered:

1) the weighted (convex) sum of values for individual characteris—
tics, and

2) a cumulative point test.

These are indeed the same kind of test, ocumulative point tests being a discrete
version of weighted sums. Cumulative point tests use a predetermined set of
values for each characteristio; among which of these values the test value
falls (often the difference between estimates) determines the number of points
assigned for that characteristic., These points are summed, and the decision to
accept the new and known estimates as referring to the same radar is based on
that sum, Determining the criteria for assigning points is similar to deter—
mining which functions will map the difference in estimates (for signal pars-
motrics) or the chi-square value (for locationm) into [0,1] and to determining
the set of weights.

The weighted linear sum is often known in statistical literature as a
"linear disoriminant’’. VWeights and mapping functions are chosen to enhance
its ability to distinguish between populations based on the characteristics
being measured. Vithout any assumptions on the statistical properties of the
characteristios, this is an often useful tool for constructing a hyperplane
separating different sets of observations (those from, it is hoped, differeat
radass) ian N dimensional spsce, vhere N is the number of independent charaoc~




teristics. Note that dependence between characteristios is reflected by fewer

dimensions of the hyperplame than there are obsorved characteristics, and the
weights assigned to dependent parameters control their contribution to the
independent dimension they define.

To make statistical ststements based on this disoriminant, further
assumptions about the ohsracteristiocs are required. The classical assumptions
aze that the characteristics are normally distributed (true for most mean
estimates based on large samples), are independent (this will be addressed
later), and have equal covariance matrices. Under these assumptions a linear
disoriminator with ususlly caloulable coefficients can be obtained, whose

statistical behavior is known,

One observation on the functions applied to the individual character—
istic differences is that these functions are the vehicle to carry distribu—
tional information about the characteristics. The functions chosen in the
systoms surveyed are almost invariably those classically used to represent

ignorance, not prior kmowledge.

Finally, note that even from this gemeral view of their form, signal

parametrics tests are seen to

1) disoriminate between types of radars, but probably not individual
units unless true tests are very precise, and

2) support decisions, bdbut not make statistical inferences with

confidence.

These limitations will be seen to bocome more important for nom—stationary

radars,

2.4. Nom—Statiomsry Radars

As mentioned in Section 2.3, the tests discussed so far indicate
whether a type of radar observed at a specific location is the same as that inm
s previons siting. VWith straightforward modification the tests also ocan iden~

tify those radars whose signal oharacteristics may vary in a presoribed manner
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as belonging to the same type. Depending on the accuracy of the weapon systeam
to be employed this information may be sufficient for targeting, the specifio
pioc’c of equipment at a location being unimportant as long as it is Imown that
a radar of a given type is there. However, for other intelligence amalyses, it
may be important that the radar that was there has left and a new one of the

same typo taken its place.

The standard approach to testing for s moving radar is that, vhenmever
there is no database entry close emough to the nov siting measured by some chi-
squared valoe, database entries for the same type radar (if it is s mobile
type) within the movement radius of the new siting are considered as possible
matches, as shown in Figure 2-1. To draw a statistical inference concerning
whether the radar moved requires statistical tests for characteristics of that
radazr, not just that type of radar. The omly truly statistical inference being
drawn by the tests discussed above is for the location, and this test is
sbandoned with moving radars. To construct the tests required for statisti-

cally testing hypotheses about the radar itself requires
1) a statistical test of signal characteristics, includimg
2) the time of beam initiatiom,

The tests must be able to not reject the hypothesis that the new locatioam is of
the same radar while rejecting the hypothesis that the radar is in the old
location, even if it has been replaced by ome of the same type.

Such specific identification by radar instead of by type/location pair
becomes important when results are fed into cross—correlation. Unit deployment
depends heavily on terrain, so any unit ocoupying a given terrain is likely to
deploy its radars in the same locationm this is reflected in cross—correlation
templates. If a new unit takes the place of smother, if its radars are of the
same type and in approximately the same location as those of the former umit,
new and known estimates will match in self-correlationm, attaching the radar to
the unit that has just moved in., It is true that this site no longer belongs
to the old unit, and if sites were being kept in the database links should be
brokens dbut the radars formexiy linked to the old unit still are atiached to
it, at some nev loocation. If oross-correlation is the linking of equiparsat,
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not sites, to units (and because units move, their equipment does also), such

bresking and reforming of links loses coatismunity of information and leads t3

counfusion,

Although the character of signal parametrics and their tests will be
discussed more completely later, the particular role of observation time will
be introduced hexe, Curreat incorporation of time into the tests, usually in
the linear disoriminant, seems mainly to be based on how long doctrine says s
given radar will operate with the same characteristics in the same location.
Cortainly a significant time is required for ome umit to leave an srea and
another to redeploy therey and this time is quite terrain dependent (which does
not seem to be taken into account in movement rate or set—up/tear—dowan times),
Such non—statistical decision tests, however, can only give ome a '"good feel-
ing'’ that indeed the radar has moved from one place to another because the
right amount of time has elapsed. Without statistical hypothesis tests on
observed characteristiocs, radar movement can not be inferred with any confi-
dence. If unit movement, and hence tactics, is being inferred from equipment

movement, unsupported ‘‘good feelings’’ canm quickly compound into disaster.

The operating historv of a radar, expressed as a time history of some
of its characteristics, seoms a 1ikely candidate for statistical hypothesis
tosting., This requires time tests emphasizing very short rather than long
windows, Thus time may be crucial, although not as a characteristic irn its own
right treated independently of other charscteristics, but crucial in its rela-
tionship to the other characteristics including location,

2.5. Self-Correlatioa in BETA - An Rxample

BETA is & testbed system for correlating reports from many different
types of intelligence systems. It has self-correlation algorithms for redars,
radios, '"movers,’’ ''shooters,’ compounds, and complexes and has & cross~
correlation slgorithm, This discussion will center on the radar self-correla~
tion sigorithm, BETA correlation is illustrated im Figure 2-4,

BETA nses a simultaneous test that is a limear discoriminant based on

five characteristics: 1locatiom, time, frequemcy, pulse repetitiom interval,
and pulse duration. The figure of merit for each of these is defined so as to
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Fig. 2—4: BETA Proeess Coatrol Flow

L From: TRW Document - BETA CORRELATION CENTER APPLICATIONS COMPUTER PROGRAM
CONFIGURATION ITEM DEVELOPMENT SPECIFICATION - R.C. Fong
§522-43E
26 Nov 1980
Page 1-68
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lie ia [0,1], the measure of correlation (linear discriminant) being their
voighted sum. The vweights may be adjusted dby the operator to refine the
"soreening pover’’ of the test —— that is, to control the fractioa of the
csses handled automatiocally or to rebalance the probabilities of associating
two estimates that really refer to different radars (type I error) sad of not
associating two that do (type II error) — or to respond to the tactical
situation. Weights are normalized, making a convex combination of characteris—
ticsy if information is missing for some characteristics, the weights are
renormalized. These factors and others sffecting the choice of weights are
discussed in Appendix D.

The figures of merit for the individual characteristics have three

basic forms.

1) For location it is ¢™X/2, where x is the chi-squared quadratic
form from the multidimensionsl normal distribution,

2) For time it is max (0,1-d/B), where d is the linear distance
between the two observation time intervals and B)>0 is

predetermined.

3) For signal characteristics it is 1, if the adbsolute differemce
between the closest values for the characteristic, cq and cy is
smaller than some predetermined error, max (0.1-(01/32-.)/(5.”)
where ¢q)¢y, and B>N are predetermined positive bounds.

For the tests for frequency and pulse repetition interval, M is ome, The loca~
tion test is the standard mapping of the chi~-squared statistic onto the unit
interval, giving a non-normalized normal density function., The time test falls
off linearly as the times of observation draw farther apart; this is ia fact
the distribution function for a uniform distribution. The signal characteris~
tics’ measures are seen to have the same form, with atoms possible at the eamds.
Note that, as mentioned above, all known or suspected underlying distridbutioas
are "‘non-informative’’, those used usually to minimixze the (mmspecified) worst
csse losses in the case of ignorance. Also when they are used, the character-

istics sre usuaslly assumed to be statistically independent,
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A further analysis of BETA is givea in Appendix D.

When maay of the assumptions stated above are relaxed, or do not
hold, there is no immediate statistical tool to replace the one lost, The
effect of relaxing the following three aszumptioms will de comsidered in this

section,
1) The variance of the location estimate is known.

2) The location estimate is unbiased.

3) The observations from which the location estimate is derived all

refer to the same emitter,

Whenever possible, alternate approaches will also be considered.

3.1. Known Variance

Knowing the variance of the location estimates made if possible to use
the chi-squared distribution to test the equality of the two estimates (observ-
od sample means). This variance is passed to the self-correlation slgorithm by
the observing sensor system, It would usually be determined by assuming that
the population variance of the observations is known, and dividing it by the
number of observations. This observation variance is just the variance asso-
ciated with the observation error. It may well be range dependent, but even
80, knowing it for a set of ranges for a system that can be extensively field
tested should de possible.

If the observation varisnce, aad thus the variance of the sample
means, is sot knowvn and its unbissed estimate used instead, the choice of
statistiocal test depends on sample size. For an hypothesis that the mean of
the population, from vhich one sample was drawn equals a fixed quantity, Hotel-
1ing’s T2 statistic is used for smaller samples. This statistic has an F
distridbution and is the multidimensional analogue of the Student's t statistie.
Hovever, an F distridbution is the ratio of two chi-squared distributions
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divided by their respective degrees of freedom. Ian this case, the numerator is
one half the chi~squared statistic used to test the hypothesis that the mean
takes on a given value, if the variance is known, and the denominstor is a
distribution of sample varisnces. Thus, the hypothesis tested by a T-squared
statistic is that the sstimates come from the same distridbution, that both
their means and variances are the same. The hypothesis appropriate ia self-
correlation is that they refer to the same emitter, that is, that the means are
the same. The means depend on emitter location slone, but the variance depends
on the sonsor system and are not the same for different semsor systems. Thus
the T-aquared statistic may be used only if there is only one sensor system and
measuroment derived variance is not range dependent,

For a multi-semsor data analysis system it is better to use the chi-~
squared statistic with the twvo known and probably unequal variances. This
roquires that the observations be sufficiently numerous for the uabiased esti-
mator of the variance to be a suitable surrogate, or that the observation
variance be known from field testing snd be monitored (probably by a sample
variance oquals hypothesized population variance ome dimensional F test on the
angle of observation) to ensure that it does no change significantly under

combat conditions.
3.2, Unbiased Nean
A fairly obvious point that should be mentioned is that the estimates

must be undbiased, Unbiased is used here in the same sense as in the model

mentioned above,

Xop+b+e

where b is z6r0, and ¥ is the sample mean from some system, ¢ its error, The

biss b could be nonzero from two causes:
1) Ahardware bias in the measurement and

2) software bias introduced by data analysis and estimation
techaigues.




Bias in the statistical estimation itself can be avoided by using known ua-
biased estimates of the mean., Note that this slso requires an unbissed data
integration method for refining estimates already in the database during self-
correlation, as one of the samples being tested is always the database entry,
Appendix D will consider such data integration methods for location estimates.
Possible bias from hardware or other software, if it is well understood (agsin
through field testing), can be adjusted for before the estimated location is
passed on to self-correlation,

3.3. Single Emitter Population

Homing in on false images is not restricted to intelligence data
analysis systems. The 'centroid problem”, an intelligent missile seeimg two
emitters and seeking their centroid, plagues stand—off missile design. When
the environment is target demse, the targeteer has trouble deciding between so
many often valuable targets, but the intelligence analyst has trouble separat—
ing observations into samples representing only ome emitter so that the tar—
goteer has a target and not a phantom. The problem is real, and curreant Soviet
trends indicate the target density will, if anything, increase,

Separation can be based on locstion, or signal parameters, or both,
Separation of radars of the same type based on location will de comsidered im
this seotion and signal parametrics in the next. Unfortunately, the majority
of the most useful information for separstion is contsined ia the observations
and has been averaged out by the time a location estimate and EEP is passed to
self-correlation. The best self-correlation can do is try to ideantify phantoams
so that ""known’’ database entries are not contaminatedy for a phantom by its
very nature may correlate with one of the true tsrgets it is hiding, thus
pulling that estimate farther from its true value.

Examining the properties of phantoms, and the situations imn which they

are likely to arise, suggests a few rules—of—-thumd for their ideatification,

1) An estimate strongly supported by at least two sensor systems is
probably not s phantom,

2) Phantoms, as s class, have larger variances than true estimates,

-21-




3) Vhea a candidate estimate associates strongly with more than one
known estimate, one of them may be a phantonm.

The onservations leading to these will be comsidered separately.

Unless the mathematics of their separation algorithm is ideatical -
and to this point no two algorithms that are sufficiently the same have boen
seen —~ different sensor systems will tead to produce different phantoms in the
same situation. This follows because the phantoms being considered here are
artifacts of the mathematical separation algorithms used to ideatify observa-~
tions of the same omitter. Thus, if a location is stroagly supported dy at
least two systems, it is probably not a phantom of either, This also points
out & benefit of having different mathematiocs in different systems, in the
absence of a phantomless algorithm whose development in a target—demse emnviron—
ment is unlikely.

Phantoms occur where two or more emitters of the same type are so
clustered that their centroid is within sensor—system tolerance of observations
of sach - that is, targets are dense with respect to measurement sensitivity,
Thus, the observations aro drawn from at least tvo populations; and it is
likely that the sample variance will be larger than if all observations came
from only one emitter population. Also, since the controlling parameter is the

angle of observation the following statements can be made:

1) the true observations are more apt to lie along the major than
ninor ellipse axis for standard shaped eollipses,

2) s suspiciously circular EEP is probably & plantom with true

locations along its minor axis’ and
3) ophantoms are more apt to ocounr at greater ranges,
Thus, suspicion can be cast on an estimate by only knowing its EEP,
Strong association between (or amomng) two or more known estimates may
indicate that one is a phantom. In the missile centroid problem described

above, the phantom will 1ie at a weighted centroid of the true locatioms it is
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hiding, If there are oaly two, it will lie approximately oa the line between
them (the deviation from the line arises because zll values are estimates, not
true locations). Unfortunantely, for three or more true locations, the phantom
can lie anywhere within their convex hull, depending om how many observations
there are of cach emitter. However, since many separation algorithms give trus
emitter estimates if at least 30% of the original set of obsesvations comes
from one emitter, and are most likely to produce phantoms, if the observations
come 50% from each of two emitters, phantoms will most likely be azound the
centroid of the true locations. Simple terrain checking in such situations may
indicate that no radars would be sited in that patterm (even taking into
account EEP),

These very heuristic rules—of-thumbd give some ides of the mathematical
severity of the problem, if phantoms are iaput to self-correlation aslgorithams,
Once their information is integrated with a known estimate, damage seems irre—
parables and based solely on mathematics of location, there seems no certain
way to weed out the phantoms. Some consideration based on signal parametrics
will be discussed in the next section.

4. DEFENDENCE IN SIGHAL PROCESSING

The basioc ELINT problem concerns the location and identification of
signal parametrics for nor—communications emitters based on observations made
by sensors. By non-communications emitters ve mean radars and certain ECN
devices. Subsequent evaluation of these ELINT observations is dependent upon
statistical assumptions made regarding these observations., This section consi-
ders the statistical assumptions that are, and are not, appropriate for these
ELINT observations,

It is nseful to first discuss the ELINT problem from the single semsor
viewpoint with respect to the measurement of the signal parametrios of an
emitter. Emitters to be sensed may be momostatic®, bistatio®, or multistatic’
but, this analysis of emitter signal parametrics will be restricted to the
monostatioc case., The dependencies inherent in the distatic and multistatioe
emitter cases will be deferred.

k

Monostatic radar -~ a single radar
Bistatic radars - a pair of cooperative radars
Multistatic radars - a collection of cooperative radars
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The first approach to emitter signal characteristics is made here
without respeot to their measurement., Further, the discussion will be about

only the charscteristics of relatively naive emitters.

The typical emitter will radiate a formed beam of electromagnetic
energy., The frequency of this emission may be fixed or varying in some fashion
and may be contimuous or intermittent, The beam is polarized and may be
rotated, fitted, nutated, etc. Further the emitter may be mounted on a moving
platform, thus continuously or intermittently changing positiomn, velocity, and
the aspeot of the deam,

Since a radar’s function is inferred through its signal parametrics,
there is an implicit gemersl dependence smong the signal parametriocs which will
not be considered here, Ve will comsider the characteristics and dependencies ;7
of some of the signal parametrics. Radar emissions (carriers) may be con~ :
tinwous or intermittent, Continuous emissions may be of fixed or varying ;
frequencies depending on their purpose, Intermittent emissions may be repeti- ‘

tive or mpon-repetitive. |

Repetitive emissions are characterized by their pulse repetition
interval and their pulse characteristiocs (width, shape, uniform and non—uniform
bursts). Further, the carrier frequency may be varying during each pulse,
Either the pulse repetition interval or pulse width or both may vary over some
range of values in a uniform or nonuniform fashion,

Non-zepetitive emissions are genmerally characterized the same as rope—
titive emissions over short time intervals, The non—repetitiveness is intro-
duced by time, carrier frequencies, and geographioc diversity among a set of
cooperative radars as in bistatic and multistatic systems. For our purpose, we
will consider each of these cooperative radars as a separste emitter,

A ressonable subset of signal parametrics required to locate and
identify a radar inecludes the nature of the transmission,
or pulsed, and the following signal charscteristiocs:

i.e,, continuwouns (CW)




1) carrier frequency

2) pulse width

3) pulse repetition interval

4) beam scan type

5) beam scan rate

6) beam polarization

The location is specified along with the elliptical error probable
(EEP) and relative bearing of the semi-major axis. The semi-major and semi-
minor axes of the EEP are both dependent on the angular accuracy of the semsor,

hence, are not independent measures.

The carrier frequency is an important parameter in both C¥ and pulsed
radars and may be either constant or modulated, as in chirp or linear FX
radars. This characteristic implies tho need for instantaneous as well as
average frequency measurements. Since omly average frequency is included in
the Tactical Electronic Intelligence (TACELINT) message, the frequency charao-—

terization is incomplete.

There is an intrinsic dependence between pulse width and pulse repeti-
tion interval through the peak—to—average power ratio required for s specific
radar performance factor. Even for independently varying pulse widths and
intervals, this lack of independence, on the average, remains.

Pulse width measurements must take pulse mmltipliocity, width agility,
and shape into consideration, However, only a single measure of pulse width is
ingcluded in the TACELINT message.

Pulse repetition interval must take into account interval staggering

with multiple stagger legs. But the TACELINT message includes only pulse
repetition interval and whether it is fixzed, staggered, or jittered.

—31-




The formed antenns besm is described by scan type, scanm rate, and
polarization. Useful measures not inoluded in the TACELINT message are the
horizoatal and vertical beam width and beam multiplicity.

There are two conclusions to be drawn from this brief discussion of

radar signal parametrics:

1) these signsl parametrics are not all independent of ome another,
and certainly not of their inteaded functiom,

2) the set of signal parametrics included in the TACELINT message is
insufficient to ''fingerprint® s specific radar emitter as dis-

tinct from another of the same model.

The sensors measure the location and signal parametrics which lead to the
production of TACELINT messages. There are four distinct cases to consider:

1) single sensor, single emitter,

2) single sensor, multiple emitters,

3) multiple sensors, single emitter,

4) multiple seasors, multiple emitters,

Since a single sensor can only provide a line—of-bearing to an emitter
and & set of measures of the emitters signal parametrics, the sensor must be
mounted on a moving platform to obtain & "f£ix" on the emitter using multiple
lines—of-bearing from different locations at different times. The variances
associated with each sensor of an emitter are the same because these variances
derive from the sensor characteristics only. VWith multiple emitters, the
location and signal parametrics measures may differ, but the variances asso-
cisted with them remain the same.

The situation with multiple semnsor systems is quite different: the
"fizes' on a emitter are usually made based on the same emission in a form of
time coincidence, These systems provide more refined measures of emitter
location based on a Loran—like time of arrival method, However, the sensors
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may be of the same or different model types, so the variances associated with
oach sensing of the emitter may well be different. For multiple emitters the
location and signal parametrics measures may differ and so will the variances

associated with them. i

The conclusions to be drawn from this brief discussion of ELINT sen—

sors are that:

1) The differences in sensor—dependent variances are included in the
EEP associated with each location estimate sent in the TACELINT
messagos. So, location data is suitable for subsequent statisti-

cal manipulation.

2) The differences in soensor~dependent variances for the signal
parametrios, and indeed the variances, are not conveyed in the
TACELINT mossages. This implies that the signal parametrics are

not amenable to subsequent statistical manipulation.

5. OBSERVATIONS AND CONCLUSIONS

Throughout this discussion we have talked interchangeably and indis-
criminantly about two kinds of statistics: those for whichk the distribution is
known and those for which it is not. On the former is based classical statis—
tical inference and the capability to test hypotheses and make statements vwith

some confidence, These are the basis for scientific experimental evidence.

g s s o

The latter are descriptive or "indicative’’: they may indicate something about

the state of the object being studied, but can not rigorously support any such
statoment. They are the basis of much management and financial decision mak-
ing. Most statistics used in these algorithms are indicatives, yet, as in the
ocase of mobile units, fairly sophisticated inferemces are being drawn, Just as
it takes & skilled and experienced manager to make good fimancial decisions, it
takes & very skilled and knmowledgeable intelligence analyst to draw the most
from these analysis tools., He practices mot science but an art form whose
sucocess depends on his individual talents. Antomated systems that give him
more and more raw data to handle, and only minimal help in handing it, are
doing him a disservioce. For these systems to carry with them the comnotation

-33-




of scientific statistios, giving an unwarranted confidence in their results and
obsouring the crucial role played by the analyst does him an injustioce,

To the extent tests can be put on a stronger statistical footing, the
quality and oredibility of the information derived from these systems, and thus
the real support they provide the intelligence anslyst, will inoreasy, Several
initial steps sre possible and recommended to make statistically-based informa-

tion more reliable,

1) Ensure the chi-squared location statistic is good by providing
range—dependent population variances (perhaps obtained initially
from field testing) from semsor systems, and have these varian-
ces monitored within the sensor system to verify their continued
validity.

2) Develop distributions for some signal parametric statistics,
perhaps using a time history. This need aot replace the linear
disoriminate, but could provide a distribution for it.

3) Pay closer attention to distributions, especially when refining
(or integrating) signal parametrics information, This may

involve and developing specific prior/posterior distributions,

Implementing some of these suggestions requires additional information be
carried in the TACELINT message.

Finally, it is not yet clear which or what combination of the mathe-
mstiocal approaches - classical or Bayesian statistics or non-statisticsl - will
best serve the need of the intelligence analyst., It is clear that all three
spproaches should be pursued, in parallel, with special attemtion to the mini-
num information which will dbe required by cross—correlation algorithms, As
stated at the outset, intelligence correlation is an hierarchical process;
each part must not only be as sound as possible within itself, but also proper-
1y fulfill the information processing requirements of its role ian the overall

process,
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APPENDIX A

A. ANNOTATED REFERENCE LIST

Reforences will be listed in the categories: mathematics, radars, and
military systems. Each will be followed by a brief indication of its formal
level (if appropriate) snd applicable areas of this report. Most works listed
include good referenmce 1lists,

Mathematics

Box, G, E. P, and Tiao, G, C, Bavesian Inference in Statistical
Anslysis. Reading, Massachusetts: Addison-Wesley, 1973.

A mathematically thorough applications—motivated semior/gra—
duate text on Bayesian inference, accessible to those in other
technical fields.

Chakravarti, I. M., Laha, R. G., Roy, J. Handbook of Methods of
Applied Statistics, Volume I. John Wiley and Sons, New York:
1967,

A well organized guide to descriptive and inforentisl statisti—
csl techniques, with clearly stated sssumptions snd examples, 2
good section on multivariate analysis,

Deutsch, R. [Estimations Theory. Rnglewood Cliffs, New Jersey:
Prentice~Hall, 1965.

Standard book on location estimation, confidence ellipses, and

mathematical estimation arising especially in radar problems,

Hoel, P. G. Introduotion to Mathomatical Statistics. New York: John
Wiley and Soans, 1971,

Provides necessary background for more sdvanced books.




Hoel, P. G., Port, 8. C,, and Stone, C. J. ]Jntroductiop to Probsbility
Jheozry. Boston: Houghton Mifflian, 1971,

—.» Jntroduotiop to Statisticsl Theory. Boston,
Houghton Mifflian, 1971,

These two volumes provide s thorough contemporary mathematical
introduction to probability and statistiocs.

Johnson, H. L., and Leone, F. C. Statistical and Experimental Design,
New York: John Wiley and Sons, 1977.

Another strong section on multivariate analysis, with examples,
assumptions not as explicitly stated, more applications

oriented.

Kendall, M. G. The Advanced Theory of Statistics, Vols. I and II.
London: Charles Griffin and Company Limited, 1948,

Classical treatment of statistics, multivariate analysis pre—

sented in second volume, more analysis—oriented development.

Lass, H., and Gottleib, P, Probability snd Statistics. Reading,
Massachusetts: Addison—Wesley, 1971.

A unified introduction to probability and statistics with some

focus on engineering requirements,

Scheffe’, H. The Apalvsis of Yariange, New York: Jobhn Wiley and
Sons, 1959,
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David K. Radar System Anelysis. Englewvood Cliffs, New Jersey:
Prentice-Hall, 1968,

This graduate—level toxt treats measurement errors especially
well., MNultistatic radar systoems and their characteristics are

also covered.

Barton, David K., and Ward, Harold. Handbook of Radar Moasurement,
Englewood Cliffs, New Jersey: Preatice~Hall, 1969.

This handbook emphasizes radar measurement errors and discusses

those due to digital signal processing of radar signals.

Cook, Charles E,, and Bernfeld, Marvin, Radar Signals. New York:
Academic Press, Inc,, 1967.

The most comprehensive source for radar signal design.

Oppenheim, Alan V., ed. Applications of Digital Signal Processing.
Englewvood Cliffs, New Jersey: Prentice-Hall, 1978.

This relatively recent compendiuvm contains sn excellent chapter
on spplications of digital signal processing to radar from a
non-hardwasre viewpoinat,

Rabiner, Lawrence R,, and Gold, Bermard. Theory and Application of
Digital Signal Progcessing. New York: MoGraw-Hill, 197S.

This engineering level text devotes an entire chapter to

digital signal processing applications to radar with a strong
hardware emphasis.
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Skolaik, Merrill I. Iptroduction to Radar Systems, New York: MNoGraw-
Hill, 1962,

An excellent general reference on radar systems although dated.

Miljtary Svstems

Bets Correlstion Center Applicstions Computer Program Configuratiom

Jtem Dovelopment Specification (No, SS42-43E Part I). Los
Angeles: TRV, 1980,

Beta Correlation Center Applicstions Computer Program Configuration
Item Development Specifigation, ¥Volume I and Appendix II
[Correlation Processing CPC] (No. 8822-43 Part II). Los
Angeles: TRV, 1981,

-~

Eustace, Lake, and Hartman, eds. The ]atermational]l Countermessures
Handbook, 7th Edition [1981-1982]. Pslo Alto, California: EW
Communiocations, 1982,

Isky, D. C. Yespons and Isctics of the Soviet Army. London: Jane's,
1981,

Technical Directive 005 for TCAC(D)ASAS-SEWS ADM Messsge Prooessing
Tactical ELINT Message (No. CAC-TDN-005). Burlingtom,
Massachusetts: RCA Corporatioa, 1981.

Intelligence Message Formatting and Procedures, User Handbook, Army

Test Unit, DRSEL-SEI-ATU, Fort Monmouth, New Jersey,
21 September 1981,
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package EDR_Package is

type TacellntMsg is private;

type EDR is private;

type Radar T is (type_a,type_b.,type_c);
type REAL is adigits 7

function GET_EDR (Msg:TacellIntMsg) return EDR;
function RADAR_TYPE (Rec:EDR) return Radar_T;
function FETCH (First:Boolean; Radar: Radar_T)
return EDR;
function BOX (OldRec,NewRec: EDR; Radar:Radar_T)
return Boolean:;
praocedure CORRELATE (0Ol1dRec,NewRec: in EDR;

Ragar ! in Ragar_T:
Moc : out Realys
procedure STORE (NewRec: tn EDR; Radar rn Radar _T:
OK : 0out Boolzani;
procegure REPLACE (0OldRec.NeuwRec: in EDR; OK: out Hoolean':
function INTEGRATE (Oldrec,Newrec: in EDR: return (DR

private
-~full type declarations for TacellntMsg and EBR
end EDR_Package:’

--Ins:ide the package body EDR_Package. the
--procedures STORE, REPLACE, ang FETCH wil!l pe
--1mplemented by calling appreciate entries of a
-="monitor’” task (which serves as a synchronization
--agent for accesss:ing the common data Jased,

with EDR_fPackage ; use EDR_Package:
procedure MAIN 1is

Some_Condition :Boolean;
OldRec ., NeuwRec {EDR;

Procedure Keep_Best _EDR is separate;

negin
NewRec =z GET_EDR (MsgJ:
Ragar !z RADAR_TYPE (NewRec:?
while Same_Condition loop
OloRec := FETCH (First, Radar);
t¥ BOX (OlaRec, NewRec< Ragar) then
Keep_Best_EDR;
end [

eng loop:;
1 Moc > Max then
STORE (NewRec. Radar., 9K);
elsif MAac < Min then
REPLACE (0OlgRec, INTEGRATE(QlaRec . NewPer i, K .
eise
GO_TO_OPERATOR:
ena 1+¢;
end main;
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APPENDIX D

PRI SN

The following three pages on the BETA system were provided by Vector
Research Inc. Section D-1,, '"A Location Estimating Algorithm,’’ presents
maximum likelihood estimating methods for radar location supported by more than
one sensor system. Section D-2, "Algorithm Attributes,’’ considers the BETA
system from a Bayesian perspective, Section D-3, '"BETA Self-Correlationnn:
Evaluation Methodology,’” discusses some of the more philosophical aspects of
algorithm anaysis,

These analyses are roferred to within the related sections of the main
report, and some of the more significant conclusions incorporated in the fimal

observationss and conclusions (Section 5).
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1.0 INTRODUCTION

One of the principal functions performed by BETA is the development
of estimates of target locations. This chapter examines one algorithm
that updates estimates of target locations as successive reports are
received and processed. The discussion that follows assumes that the

reports are correctly associated, that is, that each provides an estimate

of the same location. ‘
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2.0 ASSUMPTIONS

Errors in estimating location arise primarily from sensor perform-
ance. As such, sources are both random and systematic, examples of the
latter being improper calibration or incorrect locations of sensor
components. For the discussion which follows we assume that systematic
errors are zero or equivalently that calibration has removed bias. We
further assume that target location estimates are distributed according
to a bivariate normal distribution with the true location given by the
mean W =<z;)

Reported locations are denoted by X; = (X1i>
| X2

with covariance matrix A; = 0112 P 0140924

P 1011924 °2$
where cfi and 051 are the variances of the random variables
X1 and Xp4, respectively and o ; is the correlation coefficient
associated with their covariance. Thus, the density function of a

reported location x is:

e (- —I—‘L-u_)TA'“i'a))
2q7a| 172 2

Reported locations are assumed to be independent, with different
covariance matrixes corresponding to different sensors and/or single
sensors in different locations relative to the target. We assume that if
a report is based on several lines of bearing, or a series of fixes, then
the appropriate reduction in varfance is reflected in the covariance
matrix used in updating the location estimate, {.e., the covariance

matrix is always known.

PR,
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3.0 MAXIMIM LIKELIHOOD ESTIMATE

As an estimate of target location, the maximum 1ikelihood estimate
is derived.l Consider a collection of reported target locations X{ s
{=i=1,2,...,N with covariance matrixes Aj ; 1=1,2,...,N. Then the
1ikel thood the 1ikelihood function is proportional to:

N
exp (-1/2 21 (Li-g)Tﬂi'l(m-_g))

Taking partial derivatives with respect to 1 and 2 and equating the

results to zero one obtains for the estimates ﬁl and Lg:
N . N
L I P 2R
=] =]

N -1 N
12 Ayl e 2 (A1)
1

o

3
ie>

]

j=]
The expected value of u is the true Tocation u and the covariance

matrix is 1

N -
3, M-l
{=1
Note that in terms of implementing this algorithm for estimating . one

must store two quantities namely:

N
w2 Aj-1) x4

and

N
CN Ag-1
&

1For a more general discussion see: Anderson, T.W., An Introduction to

Multivariate Statistics, John Wiley and Sons, Inc., New York, 195A.
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Upon receiving the N+1St report, Xys1, Ays
Myl = My + Ager Ty

and Cnel = Cpy + Ageg -1,

and ‘-:-n+1 = Cys1 " IMys

with covariance c“+1'1
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4.0 ORIENTATION

One of the features of current ELINT sensor systems is that errors

in range generally are larger than those in azimuth. Further, because of

different sensor system locations error ellipses will have different

orientations. Consider a standard Cartesian coordinate system with y =

0. The the error ellipse is described by 5TA'15, where

1 -p
ol . (1-02)0y 2 (1-08)ay02
-p 1
(1-02)0102  (1-p)052
” xTA"1x = _i_ - _..._22'_’.(3_ + __:Z_i__
- = (1_92)012 (1_92)0102 (1-02)022.

Consider the rotation
y1 ® X}C0s 6 - xpsing
yp = xysfne+ xpcCos8
where 8 =1 tan-1 20919,
? T2

2

01 -02

Applying this rotation we obtain a new random vecmr(yl)
Y2

with covariance matrix:
2 2
cose singY ol po}c cose - sine

-sine cosef\po 102 c% sine cose

which has zero correlation, or equivalently @ {s the orfentation of the

error ellipse with the baseline of the coordinate system.
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S.0 OBSERVATIONS

To {1lustrate the implications of the target location algorithm
consider a simplified example in which all reported locations have

covariance matrix

0,2 0
0 012
In this case after N reports, the covariance matrix of the estimate
is:
0,2 0
N
0 0,2

N
If artillery accuracy requirements are expressed in terms of a 100 meter

CEP we require an equivalent variance of:

5 100
R * ———— =284.93
(21m2)1/2
Since day 1s constant across all reports, the number of reports

required to achieve targeting accuracy is given by:

ol i

This function 1s presented in exhibit S-1.
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EXHIBIT 5-1:

Number
Reports

30

20

10

NUMBER REPORTS REQUIRED TO ACHIEVE 100 METER CEP

100

200

300

400

500

600

700

T Wi

Cor e e
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The implications are that achieving adequate accuracy will require a
significant number of reports unless sensor performance improves
substantially. For example, consider a sensor which has a covariance
matrix:

(200)2 0
0 (500)2

representing a system with range errors greater than azimuth errors.
Using an approximation to obtain an equivalent CEP it can be shown that
16 reports would be required to achieve an equivalent CEP of 100 meters.
In terms of current ELINT systems, and artilliery target location accuracy
requirements, the implication is that until precision location systems
are fielded the number of targets developed and nominated for artillery
missions will be limited. This may not preclude use of air assets; both
fixed wing and helicopters. Note, moreover, that the introduction of
precision location systems contributes to the efficiency of self-
correlation, but if errors are sufficiently small, self correlation is
not as necessary for target nomination. This raises the issue of
emphasis in the system: 1is it target development, situation development,
or both? If target development is emphasized, it is difficult with the
current sensor suite. On the other hand, if precision location systems
are introduced, location estimation is unnecessary and context may be

more important.
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1.0 INTRODUCTION

In order to provide an approach to evaluating and classifying
self-correlation algorithms, this paper examines such algorithms in the
context of Bayesian decision theory.l In particular, comparisons are
made of example Bayesian decision criteria with one approach used in
BETA, namely: '

"correlate if 3 ayxy2h.”
In certain instances reports received by BETA do not contain values for
one or more of the data elements. In such cases it is our understanding
that the procedure implemented involves renormalizing the weights used in
the statistic, i.e., if figure of merit xj cannot be calculated, the

weights used are:

3
&
The implications of this procedure are also examined.

The purpose of algorithms such as those employed in BETA is to make
decisions based on some pre-established criteria. Any particular
decision is made by considering data reported by collection systems. As
such, the data is subject to a series of errors which cannot be predicted
with certainty in advance. For example, suppose an emitter is operating
at a frequency f. The frequency f,. reported by a collection system
will not in general equal f, but

fo= Feafg

lror a more general discussion see: DeGroot, Morris H., Optimal
Statistical Decisions, McGraw-Hi11, Inc., New York, 1970,
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where the difference Af; s a function of collection system
performance, enviromment, battlefield geometry, etc. The difference
cannot be predicted in advance, but can be described probabilistically,
1.e., the reported frequency f. is a random variable with an
appropriate distribution function. Similarly, the absolute value fo the
difference between two reported frequencies is a random variable,
although it need not be a figure of merit in the BETA sense, {.e., take
values only between zero and one. However, it is worth noting that 1f§i
is a random varfiable with distribution function F(x):

PriX < x] = F(x),

“then the random variable Y defined by

Y = F(X)
takes values only between zero and one and moreover has a uniform

distribution, i.e.,

=Y 0yl
prly <yl =0 y<o0
=1 y> 1.

The location difference figure of merit used in BETA, exp(-d/2), has this
distribution if the two reported locations are in fact the same.

In general, algorithms such as those in BETA asume that ground truth
falls into a set of mutually exclusive categories or states of nature
(denoted in this paper by W;, only one of which is true). The
algorithms provide a means of deciding which particular state of nature
is true using observed or collected data. The assumption underlying most
such algorithms 1s that the distribution functions describing the random
nature of the data depend upon the states of nature. Differences among

the distributions are then used to construct appropriate decision

N
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criteria and/or analyze algorithm performance. In the remainder of this
paper a Bayesian structure is used as a framework to analyze the 1inear

combination of figures of merit used in BETA self-correlation algorithms.
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2.0 MODEL

Consider a decision problem involving only two states of nature o =
{ wl.wz} and two decisions D = {dl,dz} . Following the observation

of a random vector x, a decision is made with loss matrix:

d &
wy 0 212
w2 £21 0

i.e., if the decision dy is taken when wy is true, a loss of £y
is incurred. Prior to the observation of x, the decisfon maker believes:
PriW = wy] = p, and
PriW = wpl = 1-p,
with the conditional and unconditional densities of x given by f(x|w;)
and f(x), respectively. In this situation it can be shown that the Bayes
decision, i.e., that which minimizes the expected loss, is described by:

Decide dy(w = wy) if

£21
PriN = wp|x] > e = {52y

£21 * £12
and do (W = wp) if
L

Priw = wp|x] > ————
21 * 22
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The posterior probability Pr{W = wy|x] s given by:
pf(x|w)

prix jwy) + (1-p)flx jwp)

Substituting one obtains the rule: decide d; if:
f(x{w) Lo(1-p)

flxw)  pll-gg)

= y say.

Ol Mcimuietd i St e e i e A e ke i bt e i

B _—
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3.0 EXAMPLES

Consider the case when the components of X are independent and

normally distributed. Suppose:

1 -xiz

Filxgw) = exp| —s

104 2012
and 1 ‘("i‘“i)z
filxilwy) = exp | ———

2m o4 2012

Then from the previous examples we have:

f(xlwy) x42 (x4-uq)2
A P 2w B 2
£ x lwp) 204 204

or select dy if

x1u1 uiz
exp (- — - — > Y
2012 E 20'2
Taking logarithms and rearranging terms:
nixXy L :
— < — - n vy
012 2012

This expression bears same resemblance to the BETA algoritmm and it is
worth considering the impact of the BETA procedure for missing data.
First, note that if some value, say X§ is missing, the new decision
rule is select dy if HiXq uyl

< ; — -In v
012 i J 2012

Now consider a normalization of the coefficients. In the first case by

normal 1zing we obtain:

R
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-1 -
2
| | L3 | Hy
— ) X < —_— ey 2
Z%ﬁxzoiz) 1 2 5 e

1! If element xj is missing, renormalization of the coefficients ylelds

i# for the left hand side

N —

-1

M\ [ M
> (=) &=) ™
18] ¢ \ird o

Note, however, that renormalization is only consistent if an appropriate

change is made to the right hand side of the inequality both in terms of

2
u

the sun 3 - and the normalizing factor.

94
Now suppose that ‘

filxy/w) = L4 < x5 < uy
uj-£4
= 0 el sewhere.

In this case the xy are uniformly distributed on the interval [&4,uil
bearing some similarity to the BETA approach. Then the decision criterion

based on x fis:

o gy e e e e

select d; 1f
_ n ( 11)-1
R P 24l1-p)
. — 2 * Ysay
f(x [wp) (1-L4)p
Note that {f for any {
Xj 244
or X4y 2 uy

then d; is rejected. If this {s not the case an appropriate threshold

can be set.




Consider the expression:

p(1-4,) -1

Df;(xq|wp) < i I{ug-4) = vysay
oll-

Again assume that f;(x;|wa) is a normal density with mean uy and

variance oq2. Substituting:

1 “‘1‘"1)2
exp (- < Y
T(27eg2)172 > 20,2 f
(x4- 1512 :
or ! u; > - Iny 4 - In(0 (2m0;2)172),
204
(xi-uﬂz
Provided the figures of merit were in fact the , then the
2

coefficients could be considered to be (012)‘1. The same
normalizing problem as previously discussed exists, namely one must not
only normal ize but also adjust the decision threshold.

We turn now to the case of dependence between the components of the
decision vector x. For a variety of reasons this is likely to be the
case, particularly for the signal parameters. We use the same example,
namely decide dy 1f:

£(x wy)

f(x iwg) > o
As before assume:

fxlwy) 1s NG, T)

and | f(xlwo) 1s N, T,
with non-zero correlations, i.e.,
92 099
I )
o2 R

where 012 and 022 are the variances of x; and xp and ¢, the

correlation coefficient, 1s non-zero.
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Substituting, the criteria becomes:

1 e
exp ( - X% ‘5)

exp <- :— (x- 1)72'1(5-3_)>

1 1
Te~-1 Te-1
or- —x X + —(x-u) (x-u) > In Y
2-2 X 2_._.2_ X-p

or (x-p) T3 1 (x-y) - 572'11 > 2In vp-
This is equivalent to:
1
Iply < -Z-P_TZ'I.u_ - Invg.
As in the case of independence, this criteria can be expressed as a

1inear discriminant. In particular, for m2, the coefficients are:

. ( cz:u;o-zmomzuz |
12%2(1-°15%)
" (01291021 + 91%
012022(1-9122)

where o3 are correlation coefficients,

and
el u12 201 u1u2 . u22
H- - B ceeee—t— - ——————————— S —————— g
7 (1-p122)01 2 a102(1=p122) 022 (1-0122)

For n=3 the coefficient of xj becomes:
(1232)0p%03%u *+ 0102032 (p13023-P12 w2 * 0102%03(p1 202313 3)
012092 32 (1p122-p132-023% + 201213 * 12023 * %13023)

and for xp

0102032 (p1323-p12 M1 *+ (1-p132)01203%u2 * 0122030, 2013 p2303)

01202032 (19122 -0 320237 + 2012013*%1 223 * 21323
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While in the case of independence, provided the threshold was adjusted,
normalfzation made sense, a similar conclusion cannot be made for
dependence among the random variables, as can be easily seen by adding
the coefficients for x; and x; in both cases and then dividing the
coefficients by the resulting sum and comparing the results to a simflar
operation when n=2. Thus, the following observation: decision rules
exist such that subject to alternation of the decision threshold,
normal {zatfon to account for missing data can be justified if the various
components of the decision variable x are independent. If, on the other
hand, the components are dependent or correlated, normal ization cannot be

Justified.

e e A a
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4.0 TIME

In the discussion up to this point, no mention has been made of
time. Given any two candidates for sel f-correlation, the time first
observed and time last observed are available. Suppose for the two
candidates these times are:

Candidate 1: tj9 tyg

Candidate 2: ¢ty; tr1.

The values of these four variables give rise to three cases:
overlap, 15t candidate first;
M overlap, 2" candidate first;

\

@) overlap, 1St candidate contains 2Nd; )
an
overlap, 15t candidate contained in 2Nd;

no overlap, 15t candidate first

(3) no overlap, 2"d candidate first

The analyst, decision maker, or in this case, algorithm, can and should
distinguish among these three general cases. First, all other things
considered, the prior probabilities for the first two probably remain the
same, as do the conditional distributions or 1ikelihood functions. 1In
fact, in the extreme, e.g., simul taneous observation of an emission by
different sensors, differences in reported data should only be due to .
varfiations {n sensor performance and not to such controllable differences
as selection of frequency, etc., whereas, if reports are separated in
time, the conditional probabilities f(x|w;) may be more diffuse. Note
that the location estimates are significant in this case: e.g., 1f the
reports should be correlated, the location should be the same. This is
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| 5 not the case if the reported observation intervals do not overlap. For

simplicity, consider four cases, distinguished by whether or not location

estimates are “close” and whether or not signal parameters are “close.”

If location estimates are not close and signal parameters are not close,

‘,_s sel f-correl ation is probably inappropriate. If location estimates are

| close and signal parameters are not close, the possibility of

“co-located” emitters must be considered! or the posstbility that a new
emitter has replaced the original. Finally, if location estimates are
not close but signal parametrics are consistent, the time and distance
relationships must be considered, i.e., the potential displacement must

t be consistent with teardown, set-up, and travel times. The implications

i in terms of the simple Bayesian example are described as follows. For

| cases 1 and 2 above the analyst is likely to retain the same prior and

3 likelihood functions. If locations are close, the signal parametrics

‘ will decide; if signal parametrics are close, locations will decide. As

time elapses without a report, the prabability that the entity has

U

remained in the same location will decrease, as will the probability that

its signal parametrics remain constant. For the sake of illustrat. n let

the time required for a typical displacement be At and the distance ad.

Further, suppose that the elapsed time is t, and that x measures location 1

difference (x;) and signal parametric difference (xy). Then:

f (x1,x2|wy) may be independent of t
f (xl,x2|w2) =0 {f s>t
f (x1,x2 |w3) may be independent of t

leor example, the LONGTRACK radars at an SA-6 regimental headquarters.

|
i
j
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where w; = same entity, same location, same parametrics

wy = same entity, new location, same parametrics

w3 = different entity, different location, same or different

parametrics.

As an illustration of the characteristics of the problem of time,
consider a simplified sftuation with three decisions:

dy: correlate: same entity, same location;

dp: correlate: same entity, new location; and

d3: do not correlate: different entities, different locations.
Then it can be shown that the same form of decision criteria can be
derived, namely select decision d; if the posterior probability of w;
is greater than a threshold v, or

fx|wy)py -

flxwilpy + fx|wplpz + f(x|w3)p3
Two elements are significant here. First, in the absence of reports
(and perhaps given the knowledge of dwell time and likelihood of observa-
tions) the prior probability p; will decrease and the prior probability
p2 ¥i11 increase. Second, the likelihood f(x|wp) depends upon the
time between observations. In particular, let X; be a measure of the
distance between reported locations at times tpg and tj;, with
t = ti1-t0- Then

P2
fixiwr) = flwpf(x) « —m .
Xlv 2|2 £(x)

If t <ag+ Ay, (tear down plus set up time), then
flwg|x) = 0
and f(x|wp) = 0.
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Similarly, 1f 8¢ + 8, < £ < Vxl +4.+ 8,

where v is a typical travel speed, then
fiwplx) = 0
and fixlw) = 0.

Finally, if t > As*'At*.g. where d is a typical displacement

distance, suppose that f(xfwg) is non-zero. Now consider the decision
dy. For d; we have:
plf(Xle)

p1fixlw) + pofixlwp) + pafixlwg)

For t < ¢* t+_3_, this expression is

p1f(x ’vq)
p1f(xlwy) + p3flxlwg)

For t > Agt+i+d, the expression becomes
v

£ x| wy)
n 1 Y,

p1fixlwy) + pofixlwg) + pafixlwg)

Note that in the BETA algorithm time is used to derive a figure of merit.
While all other figures of merit are random variables, time {is not.

Effectively it 1s known with certainty. Even in this very simplified

example it {s clear that inclusion of time in the decision criteria, l

treated as a random variable, 1s incorrect unless collection management

and tasking are also considered in which case random variation associated l

with detection and signature generation must be considered as well. '
T
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5.0 TYPE I AND TYPE II ERRORS

In the preceding sections a Bayesian structure was utilized to
exanine simple algorithms and decision criteria for self-correlation.
This structure {s attractive because for a number of reasonably general
distribution functions it provides computationally simple decision
criteria. Given that such distributions were used as approximations to
actual distributions (for reasons of clarity and or ease of use) it is
likely that the resulting algorithms would be close to optimal. Aspects
of the BETA problem are difficult and complex, particularly the nature of
the decisions themselves and the prior probabilities. Nevertheless, the
structure does offer insights into various algorithm attributes. For
example, consider the issue of type I and type Il errors. For the simple
problem with two alternati. -, the decision rule derived was to select

dy if:
f(x[wy) Lo(1-p)
f(x|wp) g p(l-4)
Suppose the components of x are independent and normally distributed
and let
f(x|w) = N(O,2)
and flx|w) = N(u,20)
where 012 0
Lo o op2

For this example the criterion was:
ux ke w? u2? (2o(1-p)
+ < + - 1In
012 022 2012 2072 pll-gg)
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The probability of a type I error in this case is:

B1Xxp  Hoxp u12 uzz <(£°(1_p) )
Pr [ + > 1

..
J

+ - 1In
012 02 292 0,2 (1-%)p)
and the probability of a type Il error f{s:

uixg  Maxp 2 wp2 (£5(1-p)
Pr + < + - In{ ————
02 a2 2002 20,2 p(1-4,)

In this example, conditional on Waw;:

1
5 N 0: ’
"1 o2

and k2 up2
iz M%7
% 92

Thus, uXy  HiXp w2 gl

7t MY tem
% 92 qc 9%

and the probability of a type I error is given by:

. 2 g Loli-p ) f/12 2\~
- - 1In — —_—
202 2952 p1-g) I\ 012 o2

where §1s the cunulative nomal distribution function. Similarly, the
probability of a type 11 errcr is given by:

§ w2 uh ol1-m\) jfm2 w2\

—— - In +
2992 2002 \p(1-&) |\ 12 o2

A similar procedure can be carried out for any decision rule derived via

a Bayesian structure and with modification for any other structure in
which the conditional distributions f(xlwj) are specified. The
critical factor is that this specification for a combat scenario is not

simple. Moreover, a range of scenarios probably are required.
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6.0 FIGURES OF MERIT OGN THE UNIT INTERVAL

To exanine the BETA algorithm as currently implemented first note
that all the figures of merit 1ie on the unit interval. To accomplish
this, certain transformations have been made. For example, the measure
of separation is the complementary cumul ative distribution of the random
variadble 572'1'2 where x is the random vector of differences in
location. The remainder of the statistics used can be described as
follows.

Let S be a mcasured difference and suppose S has density f(slvq) .

then define a variate _>-(_' by:

X=1 O<s< g
X=0 u<s
_ u-s
X=— 2<s<u.
u-£
Then:
L
PriX = 1wyl = f f( sl wy)ds
(]
Pr{X = 0lwy]l = f f(slw)ds
u
and PrX € x,x+dx] = flu-(u-2)xlwy)dx L:s<u.

Thus, the prbbabﬂ ity thatg(__ exceeds some threshold h say is:

u -h(u-2)

/f(slw)ds.

(]
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For any linear combination M-}:qg(_i of such varfables it is possible
to determine the probability distribution of M conditional on wy and
thus to determine the type 1 and type Il error probabilities. Consider
an example in which

f(s wy) = “le"uls

and s wp) = ¥pe¥2s |
Then
- fls|w)
> Y,
fls|wy)

is equivalent to

LB SR -
—_— S("l “2) > Yo
H2

or 1
-s(uy=H) > nyg - 'I|<:—)
"2
or s <{In —}[1nvg |fH1-% =Y
H2

!

Hed

The two decision rules are eaivalent if s= ;, x=h, or = h,

In this case the probability of a type I error fis:
Priovylwy] = e ¥171,
and the probability of a type II error is:
Priscryiwy] = 1-e7"2"1
If the rules are not equivalent, then for the criterion:
X2 h
u-s

u-£

we have

or s < u-h(u-L).
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Hence:
=uq (u-hlu-))

-1y (1 =h{u-2))

Prix<hiwy] = e

Prix>h|wy] = 1-e

The BETA algorithms make use of a 1inear combination of figures of :
merit taking values on the unit interval. As with any algoritim (again
provided a scenario is specified) probabil{ties of type I and type II
errors can be determined. As an {llustration consider the following
example:
Let M= ajx + azp

and coelate if

M> o,
Where ay +tap=1 i
0<x <1 f=1,2 '
Assume that: ] ;
fxg|wy) =1 0<x4<1
and
fxpjwa) = 1 0<x; <1
flxg|wp) = wpe™'1%2
T 0<xp<1 .

The assumption of uniform distributions conditioned on W=w; s not

unreasonable because, as noted earlier by chofce of transformation, any

random variable can be mapped into an equivalent that has such a distri-

butifon. In particular, the separation figure of merit exp(-d/2) has a

uniform distridbution for the case in which locations are the same. The

distribution assumed for W=w, has the effect of making values close t 1

zero more probable. Exhibit §-1 {1lustrates the resulting type I and
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type 1I errors for k= 5.0. The example shows the contribution of the
non-uni formly distributed figure of merit: as more weight is given to
x2, it becomes possible ®» achieve lower values of the probabilities of
both type I and type II errors. This will be true in general, 1.e., for
any particular set of weights it is possible to determine the curve
relating the two probabilities as a function of the decision threshold h.
The functions required to carry out the calculations are the conditional
distributions of the decision vector. ldeally one wishes to set thres-
hold values for desired error probabilities on the lowest such curve,
i.e., the weights defining that curve would specify the best "BETA"
algorithm, although not necessarily the best algorithm possible. Note
the implications of renormalization. If a data element is missing the
preferred procedure would be derive appropriate weights by finding the
Towest curve for the remaining elements in the data vector. Provided
that the missing element is not superfluous this curve will be above the
original. Thus, even if thresholds are changed, it will not be possible
to achieve the same performance: one or both probabilfties will
increase. In a Bayesian context this corresponds to an increase in the
expected loss.

The examples in section 3.0 of this paper suggest that if the
figures of merit are stochastically dependent the impact of renormaliza-
tion is to move to an operating point that {s above the optimal curve for
the reduced data. The examples for both independence and dependence
among the data elements suggest that the “best" BETA curve {s above the
theoretical optimum. The magnitude of the difference should be
investigated.

e
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7.0 REMARKS 3

The scope of the examination of the BETA algorithms was restricted

600 e alb s s e

to those used for self-correlation with particular emphasis on ELINT.
j Two questions were addressed:

(1) How well do the algorithms perform? and

(2) 1Is the normalizatfon procedure sound?

The question of algorithm performance is closely related to scen-
ario. The Bayesian structure used within this paper represents this
relationship by means of losses, prior probabilities, and conditiona)
distributions. Within this structure it is possible to calculate, for
any algoritim, the probabilities of type I and type 1I errors. In the
absence of actual numbers and a specific scenario, the procedures were

{1lustrated and an example was provided. The example suggests that the

general concept of weights can be explained, {.e., one wishes to give
greatest value to the best discriminants. Note, however, that all

potential decisions must be considered in such an operation, i.e., both

-y

"correlate" and "don't correlate” must be addressed. In the context of

1inear combinations of figures of merit taking values on the unit
interval it may be the case that the probability of a type I error is not
critical; rather the algorithms have been designed and weights assigned :
to minimize the probability of a type Il error. '“
The guestion of normalization was examined by constructing 1inear
discriminants and examining the impact of missing data. In the case of
independent figures of merit, a case can be made for the normalization
procedure provided that the threshold is changed appropriately, but it is
unifkely the case holds for the figures of merit defined on the unit
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interval. In the case of dependent figures of merit this is not true and
normalization cannot be justified. Since it is likely that the figures
of merit are dependent, different procedures should be adopted to account
for missing data.

The treatment of temporal data in the current BETA algorithms
appears to assume that times are a random variable. Given knowledge of
collection management and sensor tasking such an assumption might be
appropriate, but it does not appear that this {s the case in BETA. A
general approach to the issue is provided in section 4.0 in which both
priors and conditional distributions are made functions of time between
reports.

Currently, results from tests, etc. are the only means of assessing
algorithm performance. Results with which we are familiar suggest that
the current versions of the algorithms foreqgo self- correlation to avoid
incorrect correlation, {.e., type II errors. A1l other things
considered, the BETA alorithms should do reasonably well against
stationary ELINT targets. For a vareity of reasons, including the
treatment of timing, against targets which displace, this is unlikely to
be the case. Nevertheless, given the distances separating most ELINT
targets (exciuding GUNDISH radars) location differences should be a
powerful discriminant. In this respect it may be worthwhile to use an
an alternative approach and enhance the distance figure of merit

exp(-d/2) by explicitly considering alternate decisions.
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1.0 INTRODUCTION

The purpose of this paper is to describe a methodology for evaluat-
ing the self-correlation function of BETA correlation. Briefly stated,
BETA self-correlation is an aid in deciding if two reports describe the
same entity or not. The basic approach of BETA {is to calculate statis-
tics or figures-of-merit based on the contents of two reports, determine
a weighted sum of the statistics to generate an overall statistic, and -’
then compare the value of the statistic to a preset threshold. If the
statistic attains or exceeds the threshold then the reports are corre-
lated, 1i.e., they are said to describe the same entity; otherwise, they
are uncorrelated, 1.e., they are said not to describe the same entity.

The remainder of this paper is divided into five chapters. Chapter

2.0 presents a problem description giving the context and concepts

required fn the discussion of the evaluation methodology. Chapter 3.0
follows with a description of how BETA self-correlation functions.
Chapter 4.0 introduces the evaluation criteria as the cost of making
correlation errors and presents a cost function that depends on the

probabflities of making such errors. Chapter 5.0 gives a mathematical

description of the evaluation methodology. Chapter 6.0 fdentifies some
of the ways in which the methodology could be used to improve the
performance of BETA. An appendix is included which describes the
statistics of BETA in detail.
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2.0 PROBLEM DESCRIPTION

This chapter describes the context and explains the concepts {-
required for understanding the evaluation methodology. First, the con-
cept of a “"scenario” is explained. Next, an “observable" is defined, the
measurement of observables discussed, and the resulting reports are

described. Following this, the function of self-correlation is discussed

and, lastly, the interpretation of the reports after self-correlation is

covered for completeness sake.

2.1 SCENARIO

The evaluation of an aid 1ike BETA requires a knowledge of the
various situations in which it may have to operate. The need for this
knowledge is twofold. First, the value of the aid is typically sensitive
to the importance of the desirable and undesirable events that might
occur and their tendencies to occur. For example, if the importance of I
the possible outcomes of a situation is inconsequential or if all out-

comes are equally acceptable except for one undesirable outcome and the

tendency for its occurence is negligible, then the aid, regardless of its

performance, is of 1ittle value. The identification of the desirable and
undesirable events of a situation will, to some degree, define the situa-
tions in which the aid may have to operate. Second, the need to describe
how the aid will operate necessitates a description of its response for
any given situation. Then, given the situation, we can characterize its
response and measure its performance. The description of the enviromment

or conditions under which the aid is to operate {s called a scenario. In
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summary, a8 scenario is a description, over time, of all evenfs that play
a role in the activities or performance of the aid.

Here, the aid {s the BETA self-correlation, which s concerned with
the correlation of reports summarizing detections made on electromagnetic
emissions such as radar and radio. Some items of a scenario could be the
identity of detectable emitters, where they are located, what detectable
emissions are made, what sensors are used, what detections are made by
the sensors, what are the conditions under which the detections were
made, where are the sensors located, and so on, all given as a function
of time. Once the scenario has been described, the expected performance

of BETA can be specified.

2.2 OBSERVABLES AND MEASUREMENT

As implied in section 2.1, sensors are used to collect information.
The physical characteristics of phenomenon detected by a sensor are
called observables. The observables of electromagnetic radiation used in
BETA are frequency, pulse width, pulse repetition interval, location of
the source (possibly derived from lines-of-bearing), and times of
observation.

When a sensor detects an emission, it results in a measurement of
one or more observables. Normmally the estimated value and actual value
of the observable differ by some unknown amount. The degree to which

they agree is a measure of the performance of the sensor. The probabil-

istic description of how well a measurement might agree with reality

defines the sensor capability.

o, A e
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Given the scenario, the probabilistic nature of the statistics cal-

cul ated in BETA depends completely upon sensor pm'forumm:e.1 In gen-
eral, the more a measurement may deviate fram the actual value, the more
a dependent statistic will vary .n its value. On the other hand, if the
sensors are perfect (measured value and true value agree), then the
dependent statistics are deterministic. The study of the statistics in
BETA will rely primarily on the description of a sensor's capability to

measure observables.

2.3 REPORTS

A report is simply a summary of the measurements made by one or more
sensors on a single element during the same observation time. Reports
are the items correlated during self-correlation. Ideally, a report
should describe exactly one entity; otherwise, the concept of “errors" in
correl ation becomes complicated. For example, if report A describes two
unique entities a and b as though they were one entity and report B
describes entity b, then {s it correct to correlate A and B or to uncor-
relate them? Unfortunately, it may be necessary to merge two correlated
reports into one report to reduce the number of reports to retain. This
may be necessary, for example, when reports are stored in a computer data
base with a small memory capacity. A report that represents the merging
of two or more reports is called an updated report.

lAssun'lng that all measurements, once made, remain unal tered.




2.4 SELF-CORRELATION

The purpose of sel f-correlation is to declare a belief or disbel{ef
that two reports describe the same entity or emitter. This process aids
in resolving the grouping or fusion problem of deciding what set of
reports describes the same entity, thereby obtaining a fuller description
of the entity and avoiding confusion and erroneous conclusions about the
entity due to improper grouping.

The general approach BETA uses in deciding if two reports correlate
or not {s to calculate a statistic based on the types of irnformation com-
mon to both reports and then compare the result to a predetermined thres-
hold. 1If the threshold is attained or exceeded then the reports are cor-
related; that is, they are declared to describe the same entity. Other-
wise they are uncorrelated; that is, they are declared to describe separ-
ate entities.

Envisioning the reports to be stored in a data base of a computer,
the effect of self-correlation can be described as changing a relation-
ship between two reports from an “unknown" status to either "correlated"
or “uncorrelated." If there are no "unknown" relationships, then the
data base has been fully examined and {s ready for further
interpretation.

2.5 INTERPRETATION

For completeness, the step following the sel f-correlation function
{s briefly discussed. Once the reports have been sel f-correlated, the
problem of determining what reports describe the same entity has been at
least partially solved. The problem may be not completely solved because

a chain of correl ated reports may not all correlate with one another

R L VAP WU
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(e.9., A correlates with B, B correlates with C, but A does not correl ate
with C). This problem 1s avoided when all correlated reports are merged
into updated reports, but at the expense of propagating any correlation
errors made earlier in the history of an updated report. Assuming such
problems are somehow resolved, we are left with reports that have been
grouped, hopefully, to provide the highest degree of entity description
the reports have to offer.

The next step 1s to collect groups of correlated reports and examine
than to create more complex relationships among them that imply organiza-
tional structures, deployment, and missions. The BETA correlation
attempts to aid in this interpretation effort, but BETA correlation

beyond self-correlation is not considered here.
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3.0 SELF-CORRELATION IN BETA CORRELATION

The purpose of this section {s to describe, in some detafl, how

sel f-correl ation {s done in BETA.

There are two previously uncorrel ated reports selected for correla-

tion: one report is called the "subject* and the other called the
"candidate.” The perception in BETA has the subject as a new report just
received and the candidate as an old, possibly updated, report retrieved
from a data base of reports.

The estimates of each observable common to both reports individually
compared and a statistic for the type of observable calculated. For
example, suppose both reports have an estimate of frequency. Let

u = frequency estimate of subject, and |

uo = frequency estimate of the candidate. '

The frequency statistic is defined as follows:

1 u-vel< 2 7
Vo= {1 - V- tel- 2 » U -l m |
LI - k
0 , Otherwise,
where %5 and my are arbitrary thresholds.
If Uis 1 MHz, U, 1s 1.1 MHz, 25 1s .05 MHz, and my s .2 MHz,
then the frequency statistic has a value of 2/3. The statistics for the
other observables (location, pulse width, pulse repetition interval,
and observation times) are given in appendix A. Note that the §

statistic varies between zero and one and increases as the absolute
di fference of the measured frequencies decreases. This general behavior

is common to all the remaining statistics.
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An overall statistic is formed as a weighted sun of the individual
statistics calculated. Let H be the overall statistic and V; the
statistic corresponding to observable type i. Then,

244V
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Here, I is the set of i where observable type i has been estimated in
both candidate and subject, and d; is a weighting factor assigned to
observable type 1.

The statistic H is then compared to a predetermined threshold h. If
H attains or exceeds this threshold, then the two reports are correlated;

otherwise, they are uncorretated. Note that the result cannot be

“unknown”, which was the status before the reports were correlated.

Al though not an important assumption, it is assumed that the thres-
hold h exists independently of the contents of the set I defined above.
If h is allowed to depend on I, then there is no real need to renormalize
the weights by the division perfomed above because new thresholds could
be defined by mul tiplying them by the renormalization factor. Huwever,
the effect of renormalization is to restrict H to the interval fram zero
to one which may be a desirable characteristic.
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4.0 EVALUATION CRITERIA

This section develops a mathematical expression for evaluating the
performance of the BETA self-correlation function. The assumptions lead-
ing to the evaluation criteria are first identified, then the expression
is given and discussed.

Typically, the way to investigate the performance of an aid like
BETA is to study the types of errors it may make and the tendancy to make
them under various conditions or scenarios. In BETA there are two types
of errors that can be made: type 1 and type 2. A type 1 error occurs
when two reports are not correlated and they describe the same entity. A
type 2 error occurs when two reports are correlated and they describe two
unique entities. To specify the performance of self-correlation for a
given scenario and correlation event is to give the probability of making
a type 1 and type 2 errors. The concept of a “correlation error" becomes
more complicated when one of the reports, i.e., the candidate, of a cor-
relation event is an updated report and conceivably describes more than
one entity. If the candidate report describes two or more ent{ties as
one entity, then correlating or uncorrelating it with a subject report
results in one or more type 2 or type 1 errors, respectively. For exam-
ple, suppose reports A and B describing entities e, and e,, respec-
tively, are merged into a candidate report C. Further, suppose report S
describing entity ey 1s to be correlated with C. If they are corre-
lated, the effect {s to correlate S with A and B, resulting in a type 2
error. If they are uncorrelated, then S is effectively uncorrelated with
A and B for one type 1 error. Note that if the candidate report is an
updated report, then both types of errors may apply for a given scenario
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and correlation event. If the candidate is not an updated report, then
- only one type of error will apply.
In the remainder of this paper, it is assumed the candidate and sub-
Ject are not updated reports. The primary reason for this assumption is
that an evaluation methodology of BETA sel f-correlation when updated

reports are present will depend on how measurements from two reports are
combined when creating an updated report. It is not clear how this is
done.

The value of an aid 1ike BETA is reflected to the extent undesirable
events are avoided and desirable events are encountered through its use.
Normally the value of an aid is the extent to which it reduces some kind
of average or expected “costs" through its use.

We assume here that a functional relationship exists between cost

. reduction and performance improvement of BETA. This means we can study
the probab{lity of correlation errors and, through a functional relation-
ship, determine the associated costs. If we make the additional assump-
tions that costs resul ting from a correlation error are additive and all
pairs of reports are put through the correlatfon process, then we can

write the expected cost of errors in a given scenario, S, as

CS) = 3 Cyy Pyys
14
where
P”(S) s probability of making a type 1 or type 2 error
(only one will apply) when correlating reports i and j

under scenario S, and
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c”(s) = the cost assocfated with making the error indicated
by P”(S).

Al though this additive form is not necessary for evaluation, the
dependency of expected costs solely on the probabflity of making type 1
and type 2 errors is desirable in order to simplify the problem to that
of determining the probability of making these errors.

To evaluate the performance of BETA over a class or distribution of

scenarios with commensurate costs, the overall expected cost is:

C = X c(s)P(s),
S
where S 1s sumned over all scenarios in the class or distribution, and
P(S) is a weighting factor reflecting the relative likelihood or
probabil ity that scenario S might occur.
The degree to which the use of BETA reduces C(S) or C is a measure

of its value.

e i g e e e -
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5.0 PROBABILITY OF CORRELATION ERRORS

To evaluate BETA self-correlation, we have assumed a cost function
dependent only on the probability of making type 1 and type 2 correla-
tion errors. This section developes a mathematical expression
for calculating these probabilities.

Given the scenario, everything is specified except the actual meas-
urements made by the sensors which are probabflistic in nature. This,
in turn, implies a probabilistic behavior in making correlation errors.
The probabilistic nature of a sensor is given by the general probability
functionl f(my, mp,..., mg| ay, ap,..., ag) which gives the
relative 1ikelihood the measured values of observables 1, 2, ..., § is m,
m2, ..., Mg given the actual values are a;, a3, ..., 3, respectively.
Although not explicitly stated, this function may well be dependent on other
aspects of the scenario (1ike weather).

The dynamics of an observable {1 from a particular entity is given by
its actual value as a function of time or a;(t). The probability of a
type 1 or type 2 error in correlation is P(H < h) or P(H > h), respec-
tively, remembering that only one type of error will apply. The

expression for a type 1 error is:

P(H<h) =
cee g(vy, v25..., vg),
vi: 4 V2! v2 vg: dsvg
< W <h’-d1'1"' <h* - div) - ... - dgvy

15 general probability function may be a probability density function
if the vartiable {s continuous, a probabil{ty mass function if the
variable is discrete, or a combination of both.
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where * = h2 dj over 1 € I, I1s set { such that observable {1 has
been measured in both candidate and subject reports, and glvy, v, ..., vg)

is the joint general probability functionl of the statistics Vis V25 .oy V5

given the scenario and the two reports involved. Note that depending on
the set I, some of the sums above and parameters of g may not appear. An
expression for g in terms of the target dynamics, a(t) and sensor(s)
performance, f(W| a(t)), where m = (m, my, ..., mg) and
at) = (ag(e), ..., ag(t)) fis:
g(v) = _2:_ f(m| a(t)) fim | aclte)),

m, Mg

kA
The subscript c represents values associfated with the candidate,
no subscript refers to the subject, and V(m, me) is the vector with
components Vi{m, m.) that represents the functional relationship between
statistic V; for observable type 1 and the candidate and subject esti-
mates of the observable. Finally, t has a special meaning here: 1t
represents the interval of observation during which the sensor is collect-
ing information to estimate the observables. Note, that in the above, the
sensors are assumed to operate independently.

The probability of making a type 2 error is simply 1 - P(H < h)

under the realization that the two reports now describe separate

entities.

lThus for the continuous statistics the corresponding sums above is replaced

by an integral operator.

mmm

U
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To summarize, we will briefly review what has been done mathemati-
cally above.

The criteria for correlating two reports depends on the value of a
statistic H. Thus, the probability of making a correlation error depends
on the probability the statistic has a value that leads to the wrong
conclusion. The probability distribution of the statistic depends on two
things: the scenario, which includes the system dynamics and all thres-
holds, and the measurement capabilities of the sensors. These factors
define a joint probability distribution of the component statistics which
is the function g(v). To determine the probability of making a
correlation error, we simply sum g(v) over all possible values of

the component statistics, which leads to a value of the overall

statistic H that produces an erroneous conclusion.
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6.0 USES OF EVALUATION METHODOLOGY

There are a number of ways the evaluation methodology could be used
to mprove the performance of BETA self-correlation under given scenar-
fos. Same of these uses are described here.

There exist numerous thresholds and weights in BETA which are to be
determined by some means. Using the evaluation methodology presented
here, values for these parameters could be determined for a given cost
function and scenario or set of scenarfos. The approach is obvious:
determine the values of the parameters which minimizes the expected cost
function.

The selection of better statistics than those used in BETA could be

made using the methodology by selecting those statistics which produce

lower expected costs for a given set of scenarios. In fact, the method-

ology could be used to develop optimal statistics in the sense of mini-

mizing expected costs. The optimal threshold statistic (1ike the "H" t
statistic of BETA) and optimal threshold value can, in theory, be deter-

| mined from the target dynamics, sensor performance and cost function. Of

course, the di fficult part is characterizing sensor performance and the
target dynamics under the scenarios of interest, and developing a reason-
able cost function.

Finally, the methodology can be used to answer questions concerning
the value of information. Simply put, the expected value of obtaining an
additional item of information is the expected reduction in costs that

results in obtaining and using the information.
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l APPENDIX A:
FIGURE-OF -MERIT STATISTICS IN BETA SELF-CORRELATION

et s e L A -

The following describes the figure-of-merit (FOM) statistics of the
BETA self-correlation algoritim. First, the variables used in the calcu-
F lation of the FOMs are defined and then the mathematical expression for

each FOM is given. There are two reports: the subject (a new report)
and the candidate (selected fram a data base of old reports).

Variables
X,Y = Tlocation estimate;
u = frequency estimate;
W = pulse width; :
R = pulse repetition frequency; |

a = first time entity observed; and
b . last time entity observed.
Yariables with no subscript are estimates of the subject. Variables with

a subscript of ¢, e.g., X., are estimates of the candidate. A variable

can be "unknown," which means the variable was not estimated in the
report. If a variable is unknown, a FOM is not calculated for the
variable.

Figure-of-Merit Calculations

The figure of merit statistic for variable i is given by V5. The
mathematical expression for each variable follows.

Location

()& ZY ()




i * Q.D/z,
where

3. = Variance - covariance matrix of (X,Y);

o2xx ol
o2y ody

zc = Varfance - covariance matrix of (X.,Y.).

F requency :
1 JJUu-ue e,

lu-uef-2, s 22U U |cm
m -2

VZ' ] -

otherwise.

0

where i and my are given parameters.

Pulse Width
1

| W - W |- 23 23 2|W - W |<m

m -3

V3 = 1

0

where £3 and m3 are given.
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_ { Pulse Repetition Frequency
= | w2 -Re |
| 1o — (1 -mg)R/2 <R < (1 +my) R/2
| wg R/2
- | R-Rel
. Vg = l o — » (1 -mgR <R < (1 +my)R
m 4R
| & -Re |
1o — » 2 (1-m)R <Rc <2 (1 +m)R
2my R
0 , Otherwise,
where my is a given parameter.
Time
1 »a3<3a <bora<hb. <bor
3 La<b<b
Vg = 1 - (a - b)/mg s b<a<hb+m
1 - (a- bl)/mg ,b-m <b.<b
0 , otherwise
Exhibit A-la through A-le graphically illustrate the dependence of V4 on i

the varfables defined above.
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EXHIBIT A-1: ILLUSTRATION OF FOMS
1 1
ﬂ —
Vi V2
L
]
D L2 m bu - e |
a. location b. frequency
14
V3 Vs
-+ . . —t
L3 m [ w-wel a-b mg mg a - b
c. pulse width candidate ends candidate starts
before subject after subject
begins ends
. observations
overlap in
time
e. time
]
\/} T
A 1 '
s | Y ]
R/2 R R Ro
d. pulse repetition frequency
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APPENDIX B

E. SELF-CORRELATION IN THE OTHER SYSTENS
(bound separately)
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