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Correlation Algorithm Report

1.1. Purpose

) This reportdecribes the findings of the Algorithm Analysis Subtask

group working on the U.S. Army Intelligence Center ad School (USAICS) Software

Analysis and Management System task (USANS) regarding Electronic Intelligence

(ZLINT) correlation algorithms used in five of the intellience-gathoring

systems under USAICS cognizance. The statistical mathematics on which the

algorithms are based is examined with partioular reference to assumptions.

Individual algorithms are analyzed to determine whether they are performing

their functions properly. Algorithms that perform the same function in differ-

eat systems are compared to determine which ones are best according to various

criteria. r -

The algorithms examined in this report are taken from the BETA. TCTA

ELINT, ITEP, QUICKLOOK, and AGTBLXS systems. They were chosen from the more

than 40 deployed intelligence systems for which USAICS is Combat Developer

because sons documentation was available and because they represented a range

of BLINT applications. The ELINT correlation algorithms have boon chosen sines

they are most nearly automatic, that is, require the least operator interven-

tion snd rely on technical parameters most amenable to statistical techniques.

1.2. Baskground

Bach of the more than 40 intelligence systems under USAICS cognizance

employs several types of algorithms to carry out its gathering and processing

of intelligence data. Two important types of those algorithms, goographic

transformation and correlation, have been chosen for analysis during this year.

The former translates grid-zone locations, for example, from latitude-longitude

to Universal Transverse Mercator (UTM), while the latter resolves many idivi-

dual sitings into militarily recognizable targets and situation reports based

chiefly on standard statistical procedures. It is important to develop a set

SA report on geographical transformation algoritas has been submitted in F#82

and a report on possible algorithm analysis nothodolosies is scheduled for
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of parameters to characterize those algorithms to determine how they should be

catalogued. When these activities are completed, it becomes possible to compete

algorithms that perform the same fuaction in different systems and finally to

develop improved algorithms that perform the function.

For this report the JPL Algorithm Analysis Subtask group has examined

.INT radar oorrelation algorithms for five of the systems under USAICS cogni-

saace, namely Battlefield Exploitation and Target Acquisition (BETA). TRADOC

Combined Arms Training Activity (TCATA) ELINT Processor, Interim Tactical

BUNT Processor (1TIP), Airborne Non-Communioation Emitter Location and Iden-

tifioation System (Quicklook), and Automated Ground Transportable Emitter Loca-

tion and Identification System (AGTELIS). BETA is a Test Bed program for

correlatinS data received from several types of sensor systems and making

target nominations. Both automatic correlation and aggregation techniques and

interactive graphics are used in the operator's analysis. The TCATA ELINT

Processor and ITP are similar data analysis tools that integrate many sitings

into various intelligence reports. AGTELIS and Quicklook are both collection

and analysis systems, as collection systems they do not integrate data from as

wide a reae of sensor systems as do the otlers. These systems would generally

be employed at Brigade through Corps level or at an Air Force Tactical Air

Control Element (TACE) or Allied Tactical Air Force (ATAF); target nominations

and tactical situation reports would be available to commanders and their

staffs from Brigade through Echelons Above Corps (AC).

USAICS has cognizance of a large number of algorithms integral to

intelligenoe-gatherig systems in various stages of development and deployment.

The state of "deployment" of algorithms in the USAICS inventory ranges from

that of products of research contracts not yet implemented in any system to

those & fielded systems such as Quicklook. In the latter systems the algo-

rithms are documented in design documents (narrative English and equations).

and/or in machine readable design language, and in code. Often not all of

these forms of documentation are available for any one system. For research

algorithms not yet implemented, actual code, or even detailed flow charts, may

not be available, and analysis must rely solely on mathematical descriptions.

"Algorithms" will mean any set of rules for carrying out a single

conceptual operation on a set of data, such as transforming from latitude and

-2-
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longitude to UTN coordinates or determining a position from a number of direc-

tion measurements taken at known points." Algorithms are often hierarchical,

lover-level algorithms being used to describe higher-level algorithms and

thereby illuminating the underlying logical structure. Thus results from one

algorithm may be data for another. This occars extensively for the correlation

algorithms, and correctly identifying the assumptions made in linking the hier-

archical levels is critioal. USAICS is interested in algorithms performing

intelligence data processing functions central to its systems' missions and

those performing crucial support functions common to a number of systems such

as geographic location. Data management or mathematical function algorithms,

although vital to the efficient functioning of the systems, are not being

treated in these first algorithm analyses.

1.3. User Benefits

These analyses can benefit users in several ways. First, a catalogue

of existing algorithms will help UShTCS avoid having algorithms redeveloped for

new systems from first principles. Second. analysis of individual algorithms

may, in a few cases, identify deficiencies worth correcting on the next system

revision. Third, and most important, the comparison of algorithms performing

the same function in different systems can lead to identifying guidelines for

developing and/or selecting algorithms to include in av and revised systems.

Selected algorithms from the systems studied will begin to form a library of

intelligence algorithms with associated computer subroutines that will be

analogous to the Collected Algorithms of the Association for Computing Machin-

try (ACM). The creation of such a library is in the spirit of Ada+ , the

Department of Defense language for embedded systems, and the Ads environment.

1.4. High-Level Schematics

There are several steps in identifying enemy locations using electro-

nic intelligence methods. These steps are arranged in a hierarchy beginning at

the bottom with ooserving and estimating emitter oharaoteristics and ovaing

*These conceptual models can be presented simply and logically, but the pre-
sentation of their technical implementation is often significantly more compli-
cated to present.

+AdA is a trademark of the Department of Defense.

-3-LI



through, successive levels of data integration. Often Os. of s"veral assump-

tics ooserning the behavior of these observations am be chosen when moving

from one level of the hierarchy to the next. low ech level is modeled and

what analytical techniques are chosen depend on these assumptions. Later in

this report the assumptions behind som* developed systems will be discussed.

* This seotion introduces a framework for the entire hierarchy, providing a

* context for the aore detailed ad technical discussions to follow.

There are four stages in the automatic processing of ELINT data as

implemented in most current systems: collection, separation, self-oorrelation,

and cross-correlation. Those are illustrated schematically in Figures 1-1 and

1-2.

The first stop in this "automatic" radar target acquisition and

nomination process, called oollection, gathers lines-of-bearing and signal

parametrics associated with different emitters. Examples of signal parametrics

normally collected are radar frequency, pulse repetition interval, and pulse

width. During collection, error in the estimates of enemy radar location and

signal parametrics enters, primarily through measurement error. Understanding

this error is vital to understanding self-correlation. The different assump-

tions about the behavior of this error made will be discussed in detail, but

the actual mathematics of collection will be deferred to a later report.

The second step, called separation, identifies which observations ome

from which emitters. A subset of observations is thus identified for each

emitter. Bach subset is a sample from the population of all possible observa-

tions of that radar by a sensor system. If the sensors are unbiased, they will

gather samples whose averages will estimate the true radar characteristics.

(Because the sensors are unbiased, the true radar characteristics and the mean

of all possible observations are identical). The sample variance can be used

to estimate the measurement error. Separating one radar*s sample out of the

collected observations and determining the mean and elliptical error probable

(SEP) is usually called determining the "fix" for a radar. Now well the

observations are separated according to their populations depends on the den-

sity of the radars, the aecuracy of the sensor system for both locations and

signal parametries, and the statistical techniques chosen. Examples of statis-

tical techniques -sod are Jaekknifing and sequential searching.

-4-
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Saokknifing determines if a subset of observations is internally

consistent by evaluating how closely each of the observations can be estimated

using the rest of the observations. To do this, for each observation z the

location estimate of the remaining observations Is calculated and the differ-

ence between its line-of-bearing and that of z is determined. If for every x

in the subset this difference is less than a prospecified value, the subset is

consistent and considered as coming from the same emitter.

Sequential searching usually involves taking all observations falling

within some distance of, or somehow "clustering" with, another observation

and determining if they are dense enough to be considered as coming from one

emitter. This density may be determined by calculating the variance from the

beat location estimate. This process is then repeated for other points. Spec-

ial rules for computing any given fix are usually applied to ensure observa-

tions are made from different locations.

Although no new random error is introduced in separation, other error

is introduced if separation is not done correctly. Both jackknifing and

sequential searching may fail under reasonable conditions, in which case emit-

ter locations or signal paramotrics estimates based on them may be "phantoms"

and not represent existing radar characteristics. Not only can this provide a

false target, but it will simultaneously hide at least one true one. Thus r

separation shapes much of the input to the self-correlation phase, and will be

considered in its own right in another report.

The third stop, and the focus of this report, is called self-correla-

tion. Candidate radars, specified by either directly collected lines-of-

bearing and signal parametrics or their estimates coming from separation, are

compared with "known" radars. If the new information seems to refer to a

radar already identified, it is used to refine what is known about that radar

location. Many self-correlation algorithms also try to determine if the candi-

date represents observations of a "known" radar which has moved or one which

has shifted its signal parametrios logically. A candidate which cannot be

associated with any radar in the database is considered a "new" radar and is

added to the database. In this manner the database of "known"* radars is

built% the first candidate is now by default (since the database is empty), the

second is either successfully associated with the first or is added as a second

i o -7-



database entry. and so on. ho& a database entry is sufficiently refined, or

supported by enough candidates, it can beoome a target nomination.

Rules for associating candidates with database entries vary from

system to system. They usually assume that location estimates are normally

distributed and signal paramotrics either fall between intelligence-specified

bounds or have some statistical distribution whose parameters can be estimated.

All systems analyzed to this point seen to assume that all measured attributes

are independent. Some systems use a final "measure of correlation" for

association which combines the various measures using subjective weighting

factors.

The final stop in this intelligence analysis, called cross-correla-

tion, identifies more complex entities, such as Division Command Posts with the

known simple entities of which they are composed. These simple entities are

provided by previous proceossin. Either the simple or the complex entity may

be the now candidate. The measures of association used rely on information

contained in templates. These templates, based on intelligence estimates,

indicate what specific complex targets should look like. The problems arising

in cross-correlation will be studied in another report.

Turning now to a slightly more detailed view of self-correlation,
figure 1-2 concentrates on its interface with separation, illustrating the

mathematical assumptions made to tie the system together. These assumptions

proscribe which mathematical techniques can be used for building the

algorithms.

Two levels of assumptions underlie the distributions used for location

and signal paranetrios in the self-correlation algorithms. The first is that

all observations used to calculate an estimate weore made of the same emitter.

Ground truth, the array of emitters with which those sensor system must actual-

ly cope, includes multiple emitters. Thus, either the separation algorithm

itself or the operational capability of the collection sensor system is assumed

to classify observations accurately, differontiat:ng those coming from separate

emitters.

The second level of assumptions deals with the shape of the distribu-

tions of the radar characteristics and the statistical independence of the

-8-



Fig. 1-3: esseri jktumatta Asaawtomas for urlf-Cer latim

ESTIM(T CF GOUN Thrm

t
I

822-UCORMEATION ALAO1rThI

t

o locations normally distributed, sample dravn from a population

oentered on the true mean

o signal parmetrios normally, uniformly or point mass distributed,

again sampled from populations oetered on the true neans

o the underlying random variables are independent

o time of observation a knovn oonstant

t

SEPARATION ALAORIIES

t

o single emitter with random noise

o may esitters, eaoh with random noise

"--

an2



samples. Given the validity of the first assumption, the unbiased normal dis-

tribution for location estimates osa be established by classical statistical

arguments. Distributions for the various signal parametrics apparently are

determined by Bayesian techniques supported by intelligsenco-ommunity esti-

mates, where the term Bayesian is understood in the popular sense of relying on

predetermined prior* (probability estimates) which may be modified by incoming

data. (All the statistical inference found in the systems surveyed is classi-

oal). The ubiquitous tacit assumption of independence among signal paramet-

rics, underlying their joint distribution and dictating the appropriate statis-

tical tests, seem dubious at best* even location and signal parametrics are

probably made statistically dependent by tactics. Dependence among the various

radar characteristics measured or inferred will be considered in greater

detail in later sections, with particular attention to possible relationships

with time of observation.

The consequences of these assumptions will be discussed for each

system in Appendix L

2. SUYW OF E- ER IE.A2XII AWOEIK IN m5ZID SYM

The mathematical documentation of several of the ELINT radar self-

correlation algorithms has been surveyed. Self-correlation algorithms compare

new intercept estimates (candidate radars) with prior estimates (known radars)

of location, descriptive signal paranetrics, and time of observation. If a

match is found, the new information may be used to update the old-, if none is

found, the now estimate is added to the database of "known" radars. Some

data analysis systems also take into account possible movement or change in

operating signal parametrios. Figure 2-1 illustrates a general self-correla-

tion algorithm.

Two sets of tests compare new estimates with those already in the

database. One is based on radar location, the other on signal parametrics,

such as frequency, pulse width, pulse repetition interval, and time of observa-

tion. Most systems asue that location estimates are normally distributed and

base these tests on standard statistics. Tests based on signal parametrios are

handled by several statistical and non-statistical techniques. These tests,

and their assumptions, will be discussed in the remainder of this section. The

focus will be on stationary radars: those that change neither their signal

-10-
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parametrics nor their location* and the section will conolude by discussing a

specific example, the radar self-correlation algorithms in the BETA system.

The discussion will be limited to general statistical forms and oonoptr, those
interested in the underlying mathematios should consult the annotated reference

list (Appendix A). The specific algorithms used in the systems surveyed will

be considered in Appendix B.

As Figure 2-1 indicates, systems use both sequential and simultaneous

decision testr sinultaneous tests can be based on either a joint distribution
or a (usually linear) combination of tests of individual oharaoteristics.

Before looking at the mathematical form of the tests, or measurements, for

individual radar characteristics (location and various signal parametrics). it

will be useful to consider the mathematical implioations of choosing sequential

or simultaneous tests.

Sequential tests normally assume that the characteristics being tested

are statistically independent. If this assumption is true, sequentially test-

ing hypotheses based on the one-dimonsional marginal distributions will even-

tually lead to rejection, if there are enough dimensions, whereas "averaging"

the noise over all the dimensions in a test based on the joint distribution may

result in acceptance. If the charaoteristios are correlated, however, a pro-

perly constructed test based on the joint distribution approaches one dimen-

sionality, making the sequential approach redundantly test the same thing, so

that sequential and simultaneous results are the same. Vhere some charac-

teristios are correlated and some are not. which usually implies nonlinearity,

the outoomos using simultaneous or sequential testing are hard to oompare.

unless both tests are carefully constructed to reflect the same behavior.

Further, by using the Joint distribution, behavior of individual characteris-

tics is obscused. One way to retain some control over the influence exerted by

individual characteristics on the outcome of the test and to provide the flezi-

bility of easilly performing a set of tests sequentially or simultaneously is

to use the weighted sum of the statistics for each characteristic. This

approach, and some of its possible statistical interpretations and derivations,

will be considered in the section on simultaneous tests. The statistioal basis

for these simultaneous tests, or lack of it, will besos particularly important

when discussing non-stationary radars.

-12-



2.1. Loeatioa Tests for Statirsy Radars

The initial. often tacit, assumption made is that each looation esti-

sate comes from a set of observations of the same radar. The consequences of

relaxing this assumption will be discussed later in this report.

Most of the systems surveyed use a chi-square statistic for location

tests, either as an individual hypothesis test or as part of a simultaneous

test. The choice is based on established statistics, a brief heuristic discus-

sion of which follows.

Figure 2-2 shows schematically the observational data used to deter-

mine the location estimate 2 and elliptical error probable. Different platforms

belonging to the same sensor system take several lines-of-bearing to the radar,

leading to measurement error in the angle specifying the line-of-bearing and,

especially in airborne platforms, also in the platform location. These are

translated into error in the location estimates which are assumed to have a

bivariato normal distributiou with mean I and covariance matrix S. The level

curves of this joint distribution are ellipses (Figure 2-3) and not circles

chiefly because the total angle of observation is smalls could the sensors

surround the radar, the level curves would most likely become circles.

Now lotting 11 and i2 be the means, 8I and 92 the known population

covariance matrices, and n1 and n2 the number of observations in two samples,

the statistic

2 -- T - -1(l - -I - (al1-li2) (21 1 + u 2 S2( 2)

has a non-central chi-square distribution with non-centrality parameter

ii

where 51 is the difference in means for the ith characteristic and siJ are the

elements of 13 + S 2majlj inverse. If the hypothesis that the two samples

refer to the sane radar is true, then &1-O for 1-1.2 (of. 1ohnson and Leone,

section 17.7).

S -is-
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Consider the model of the observation of a single oharacteristic made

by the kth sensor system.

Xk(t)-P+bk(t) + Sk(t)

where

zk(t) is the sample mean (estimated location) sampled at time t

P is the true location of the radar

bk(t) is the location bias introduced by that sensor system at

time t and

sk(t) is the error, usually assumed distributed N(O,1)-normal

with zero mean and unit variance

If "belonging to the same population" means "observing the same radar"

and that is what self-correlation is testing - then the non-centrality parame-

ter is not zero, if different sensor systems introduce different biases, even

though they are observing the same radar. Thus, for the statistic X2 to have a

central ohi-square distribution, as is usually assumed, the observations must

be unbiased, or all have the same bias. Further, the error must be invariant

with respect to time. Although this may initially seen to be a harmless

assumption, error probably does depend on range which changes with time.

Potential dependence of measurement error on distance to the emitter usually

can be accounted for, and in no case should be overlooked.

Two different methods of handling the location tests were found in the

systems surveyed. The first, part of a sequence of tests, was a central chi-

square test for a predetermined confidence level (1-a) using the statistic 12.

The second involved simultaneous tests with signal parametrios, needed to

convert the chi-square statistic value into a value compatible with the other

tests, in particular, to map it into [0,1], the functions used for this mapping

or transformation were usually of the form

*-z 0)O
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wher x is the ohi-squarod statistic. As it is the "quadratic form" for beta

equaled to 2, the above equation gives the unnormalizod probability density for

the bivariate normal distribution and is the standard mapping of a chi-squared

distribution onto the unit interval. Either of these approaches is reasonable

as long as the estimates are unbiased, the samples statistically independent,

and the distributions noZmal, and normality is a standard assumption for dis-

tribution of sample means.

2.2. Signal Parametric8 Tests for Stationary hdars

As stated above, a stationary radar is not only one that is not mobile

but also has no basic changes in its operating signal parametrics. Although

tests on time of observation usually appear with these signal parametrics their

discussion will be postponed to the section on non-stationary emitters. Unlike

those for location, there is no well-developed statistical literature for those

characteristics. The three main approaches to hypothesis testing found in the :1
systems surveyed were:

1) test whether the new characteristic estimate is within proestab-

lishod limits or preestablished bounds of the known estimate.

2) calculate a value (to be used in a siaultanoous test) using a

simple function of the difference between new and known charac-

teristic ostimates,

3) calculate individual measures of correlation for each character-

istia (to be used in a simultaneous test) that reflect the proba-

bly that the now estimate falls within the (1-a) confidence band

of the known estimate.

These three approaches will be considered separately.

Tests on whether the now estimate falls within a given interval are of

two types.

1) Those for which all known operating intervals of enemy radars are

predetermined, so for two observations to be of the same radar.

they must both lie in the same interval-

-17-



2) Those for which the variability about a given signal parametric

for enemy radars is predetermined, so the now estimate must lie

within that distance of the known one.

The first type has no statistical oontents it is a deterministic

decision based on certain prior knowledge. The second lends itself to a stat-

istical interpretation, especially if real-time data is used to modify the

bounds. leading to a fBayesian" approach. Neither of these need deal with

the classical statistics arising from errors in measurement. The second tech-

nique may take into account priors arising from measurement methods as well as

radar performance, but that can not be determined by the mathematical form of

the test alone. Such motivations are known only to the creator of the "data-

base" of predetermined bounds.

The second class of tests, those using a simple function of the diffe-

rence between new and known estimates, are designed to be used in simultaneous

tests, considering several signal parametrics with or without location. The

functions are used to emphasize differenesa between estimates in certain

ranses, to map the differences into [0,1] so they can be combined, or to

reflect some assumed distribution for that characteristic. These distributions

may reflect variability in enemy radar performance or friendly sensor

observations.

The third approach assumes some distribution for tha estimates, usual-

ly normal. It also assumes that the (1-0) confidence intervals for the new and

known estimates are given (they are not given in the unclassified portion of

the TACELINT message format given in the referenced technical directive). The

measure of correlation is

'(1-. new)nl(l- known /Z f ne)o dz

where (1-a new) indicates the closed 1-a confidence interval for the new esti-

mate and (1-a known) for the known estimate. Given the above assumptions and

statistical independence of measurement, this equation gives the conditional

probability of an estimate coming from the known population, given it is known
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J to coens from the new population, hence a probability that the estimates come

from the same population. Unliko the tests discussed earlier that rest heavily

on priors, this test is based on the variability &rising in sampling (that is,

in observing enemy radars). If there is variability in the enemy radar pacs-

metric around some fixed value, this variability will be reflected (interning-

led with variability arising from the measurement technique) in this measure of

correlation. To separate these two contributions to the variance requires

other statistical techniques, and the relevance of the information obtained to

this intelligence problem is unclear.

2.3. Simultaneous Tests for Stationary Radars

Many of the values discussed above were designed to be used in simul-

taneous tests. Two forms of these tests will be considered:

1) the weighted (convex) sun of values for individual characteris-

tics, and

2) a cumulative point test.

These are indeed the same kind of test, cumulative point tests being a discrete

version of weighted sums. Cumulative point tests use a predetermined set of

values for each characteristio among which of these values the test value

falls (often the difference between estimates) determines the number of points

assigned for that characteristic. These points are summed, and the decision to

accept the now and known estimates as referring to the sane radar is based on

that sum. Determining the criteria for assigning points is similar to deter-

mining which functions will map the difference in estimates (for signal par&-

metrics) or the chi-square value (for location) into [0,11 and to determining

the set of weights.

The weighted linear sum is often known in statistical literature as a

"linear diserininant". Weights and msapping functions are chosen to enhance

its ability to distinguish between populations based on the characteristics

being measured. Without any assumptions on the statistical properties of the

characteristios, this is an often useful tool for constructing a hyperplane

separating different sets of observations (those from, it is hoped, different

radazs) in N dimensional #pae, where N is the number of independent charne-
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teristis. Not* that dependence between oharacteristios is reflected by fever

dimensions of the hyperplane than there are observed charateristics, and the

weights assigned to dependent parameters control their contribution to the

independent dimension they define.

To make statistical statements based on this diseriminant, further

assumptions about the characteristics are required. The classila assumptions

are that the characteristics are normally distributed (true for most mean

estimates based on large samples), are independent (this will be addressed

later), and have equal covariance matrices. Under these assumptions a linear

discriminator with usually calculable coefficients can be obtained, whose

statistical behavior is known.

One observation on the functions applied to the individual character-

istic differences is that these functions are the vehicle to carry distribu-

tional information about the characteristics. The functions chosen in the

systems surveyed are almost invariably those classically used to represent

ignorance, not prior knowledge.

Finally, note that even from this general view of their form, signal

parametrios tests are seen to

1) discriminate between types of radars, but probably not individual

units unless true tests are very precise, and

2) support decisions, but not make statistical inferences with

confidence.

These limitations will be seen to become more important for non-stationary

radars.

2.4. Non-Stationary Radars

As mentioned in Section 2.3, the tests discussed so far indicate

whether a type of radar observed at a speoif ie location is the same as that in

a previous siting. With straightforward modification the tests also can iden-

tify those radars whose signal characteristics may vary in a prescribed manner

-20-
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as belonging to the same type. Depending on the accuracy of the weapon system
to be employed this information may be suffioient for targeting, the specific

piece of equipment at a location being unimportant as lons as it is known that

a radar of a given type is there. However, for other intelligence analyses, it

may be important that the radar that was there has left and a now one of the

same type taken its place.

The standard approach to testing for a moving radar is that, whenever

there is no database entry close enough to the new siting measured by some chi-

squared value, database entries for the same type radar (if it is a mobile

type) within the movement radius of the now siting are considered as possible

matches, as shown in Figure 2-1. To draw a statistical inference concerning

whether the radar moved requires statistical tests for characteristics of that

radar, not just that type of radar. The only truly statistical inference being

drawn by the tests discussed above is for the location, and this test is

abandoned with moving radars. To construct the tests required for statisti-

cally testing hypotheses about the radar itself requires

1) a statistical test of signal characteristics, including

2) the time of beas initiation.

The tests must be able to not reject the hypothesis that the now location is of

the same radar while rejecting the hypothesis that the radar is In the old

location, even if it has been replaced by one of the sane type.

Such specific identification by radar instead of by type/location pair

becomes important when results are fed into cross-correlation. Unit deployment

depends heavily on terrain, so any unit occupying a given terrain is likely to

deploy its radars in the same location% this is reflected in oross-corrolation

templates. If a now unit takes the place of another, if its radars are of the

same type and in approximately the same location as those of the former unit,

now and mown estimates will match in self-correlation, attaching the radar to

the unit that has just moved in. It is true that this site no longer belongs

to the old unit, and if sites were being kept in the database links should be

broken- but the radars formerly linked to the old unit still are attached to

it, at some now location. If oross-Oorrelation is the linking of equipa.*t.
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not sites, to units (and because units move, their equipment does also), such

breaking and reforming of links loses continuity of information and leads to
/

confus ion.

Although the character of signal parametrics and their tests will be

discussed more completely later, the particular role of observation tine will

be introduced here. Current inoorporation of tine into the tests, usually in

the linear disoriminant, seems mainly to be based on how long doctrine says a

given radar will operate with the same characteristics in the same location.

Certainly a significant time is required for one unit to leave an ares and

another to redeploy therej and this time is quite terrain dependent (which does

not seen to be taken into account in movement rate or set-up/tear-down times).

Such non-statistical decision tests, however, can only give one a "good feel-

ing" that indeed the radar has moved from one place to another because the

right amount of time has elapsed. Without statistical hypothesis tests on

observed characteristics, radar movement can not be inferred with any confi-

dence. If unit movement, and hence tactics, is being inferred from equipment

movement, unsupported "good feelings" can quickly compound into disaster.

The operating history of a radar, expressed as a time history of some

of its characteristics, seems a likely candidate for statistical hypothesis

testing. This requires time tests omphasizing very short rather than long

windows. Thus time may be crucial, although not as a characteristic in its own

right treated independently of other characteristics, but crucial in its rela-

tionship to the other characteristics including location.

2.5. Solf-Corrolation in BM - An Example

BETA is a testbod system for correlating reports from many different

types of intelligence systems. It has self-correlation algorithms for radars.

radios, "movers," "shooters." compounds, and complexes and has a aross-

correlation algorithm. This discussion will center on the radar self-oorrela-

ties aiSorithm. BETA correlation is illustrated in Figure 2-4.

MM uses a simultaneous test that is a linear disoriminant based on

five characteristics: location, time, frequency, pulse repetition interval,

and pulse duration. The figure of merit for each of these is defined so as to

-22-



Fig. 2-4: EM Prses* Coatrel now

From: TRW Document -BETA CORRELATION CENTER APPLICATIONS COMPUTER PROGRAM

CONFIGURATION ITEM DEVELOPMENT SPECIFICATION -R.C. Fong

SS22-43E
26 Nov 1980
Page 1-68

-13-L

Iw
I'""



lie in [0.,1, the measure of correlation (linear disorininant) being their

weighted sum. The weights may be adjusted by the operator to refine the
"screening power" of the test -- that is, to control the fraction of the

oases handled automatically or to rebalmnce the probabilities of associating

two estimates that really refer to different radars (type I error) and of not

associating two that do (type II error) - or to respond to the tactical

situation. Weights are normalized, making a convex combination of characteris-

ticss if information is missing for some characteristics, the weights are

renormalized. These factors and others affecting the choice of weights are

discussed in Appendix D.

The figures of merit for the individual characteristics have three

basic forms.

1) For location it is *iz / 2, where x is the chi-squared quadratic

form from the multidimensional normal distribution.

2) For time it is max (0,1-d/B), where d is the linear distance
between the two observation time intervals and B>O is

predetermined.

3) For signal characteristics it Is 1, if the absolute difference

between the closest values for the characteristic, a, and 02 is
smaller than some predetermined error, max (O,-(ol/c2-XM)I(n-))

where 01)02- and B)1 are predetermined positive bounds.

For the tests for frequency and pulse repetition interval, N is one. The loca-

tion test is the standard mapping of the chi-squared statistic onto the unit

interval, giving a non-normalized normal density function. The time test falls

off linearly as the times of observation draw farther apart- this is in fact

the distribution function for a uniform distribution. The signal characteris-

tics' measures are seen to have the same form, with atoms possible at the ends.

Note that, as mentioned above, all known or suspected underlying distributions
are "non-informative", those used usually to minimize the (unspecified) worst

case losses in the case of ignorance. Also when they are used, the charaeter-

istics are usually assumed to be statistically independent.
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A further analysis of MM7 is given Ln Appendix D.

3. NIMM AISMin iaTi 1 w RZIAM3

When many of the assumptions stated above are relaxed, or do not

hold. there is no immediate statistical tool to replace the one lost. The

offset of rolazing the following three assumptions will be oonsidered in this

seotion.

1) The variance of the location estimate is knows.

2) The looation estimate is unbiased.

3) The observations from which the location estimate is derived all

refer to the same emitter.

Whenever possible, alternate approaches will also be considered.

3.1. Knovw Variance

Knowing the variance of the location estimates made if possible to use

the chi-squared distribution to test the equality of the two estimates (observ-

ed sample meas). This variace is passed to the self-correlation algorithm by

the observing sensor system. It would usually be determined by assuming that

the population variance of the observations is known, and dividing it by the

number of observations. This observation variance is just the variance asso-

ciated with the observation error. It may well be range dependent, but even

so, knowing it for a set of ranges for a system that can be extensively field

tested should be possible.

If the observation variance, and thus the variance of the sample

means, is not known and its unbiased estimate used instead, the choice of

statistical test depends on sample size. For an hypothesis that the mean of

the population, from which one sample was drawn equals a fixed quantity, Hotel-

ling's T 2 statistic is used for smaller samples. This statistic has an F

distribution and is the multidimensional analogue of the Student's t statistic.

owever, an F distribution is the ratio of two chi-squared distributions
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divided by their respective degrees of freedom 1n this case, the numerator is

one half the ohi-squared statistic used to test the hypothesis that the mean

takes on a given value, if the variance is known, and the denominator is a

distribution of sample variances. Thus, the hypothesis tested by a T-squared

statistic is that the estimates come from the same distribution, that both

their means and variances are the same. The hypothesis appropriate in solf-

correlation is that they refer to the sane emitter, that is, that the means are

the same. The means depend on emitter location alone, but the variance depends

on the sensor system and are not the same for different sensor systems. us

the T-squared statistic may be used only if there is only one sensor system and

measurement derived variance is not range dependent.

For a aulti-sensor data analysis system it is better to use the chi-

squared statistic with the two known and probably unequal variances. This

requires that the observations be sufficiently numerous for the unbiased esti-

mator of the variance to be a suitable surrogate, or that the observation

variance be known from field testing and be monitored (probably by a sample

variance equals hypothesized population variance one dimensional F test on the

angle of observation) to ensure that it does no change significantly under

combat conditions.

3.2. Unbiased Moan

A fairly obvious point that should be mentioned is that the estimates

must be unbiased. Unbiased is used here in the same sense as in the model

mentioned above,

Z-P+b~t

where b is zero, and Z is the sample mean from some system, a its error. The

bias b could be nonzero from two causes:

1) hardware bias in the measurement and

2) software bias introduced by data analysis and estimation

techniques.
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Bias in the statistical estimation itself can be avoided by using known un-

biased estimates of the mean. Note that this also requires an unbiased data

integration method for refining estimates already in the database during self-

correlation. as one of the samples being tested is always the database entry.

Appendix D will consider such data integration methods for location estimates.

Possible bias from hardwar, or other software, if it is well understood (again

through field testing), can be adjusted for before the estimated location is

passed on to self-correlation.

3.3. Single Emitter Population

Homing in on false images is not restricted to intelligence data

analysis systems. The "centroid problem", an intelligent missile seeing two

emitters and seeking their centroid, plagues stand-off missile design. When

the environment is target dense, the targeteer has trouble deciding between so

many often valuable targets, but the intelligence analyst has trouble separat-

ing observations into samples representing only one emitter so that the tar-

getser has a target and not a phantom. The problem is real-, and current Soviet

trends indicate the target density will, if anything, increase.

Separation can be based on location, or signal parameters, or both.

Separation of radars of the same type based on location will be considered in

this section and signal parametrics in the next. Unfortunately, the majority

of the most useful information for separation is contained in the observations

and has been averaged out by the time a location estimate and EEP is passed to

self-correlation. The best self-correlation can do is try to identify phantoms

so that "known" database entries are not oontauinateds for a phantom by its

very nature may correlate with one of the true tergets it is hiding, thus

pulling that estimate farther from its true value.

Examining the properties of phantoms, and the situations in which they

are likely to arise, suggests a few rules-of-thub for their identification.

1) An estimate strongly supported by at least two sensor systems is

probably not a phantom.

2) Phantoms, as a class, have larger variances than true estimates.
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3) Then a candidate estimate associates strongly with more than one

known estimate, one of them may be a phantom.

The ooservations leading to these will be considered separately.

Unless the mathematics of their separation algorithm is identical -

and to this point no two algorithms that are sufficiently the same have been

seon - different sensor systems will tend to produce different phantoms in the

same situation. This follows because the phantoms being considered here are

artifacts of the mathematical separation algorithms used to identify observa-

tions of the same emitter. Thus, if a location is strongly supported by at

least two systems, it is probably not a phantom of either. This also points

out a benefit of having different mathematics in different systems, in the

absence of a phantomloss algorithm whose development in a target-dense environ-

meat is unlikely.

Phantoms occur where two or more emitters of the same type are so

clustered that their controid is within sensor-system tolerance of observations

of each - that is, targets are dense with respect to measurement sensitivity.

Thus, the observations are drawn from at least two populationsi and it is

likely that the sample variance will be larger than if all observations came

from only one emitter population. Also, since the controlling parameter is the

angle of observation the following statements can be made:

1) the true observations are more apt to lie along the major than

minor ellipse axis for standard shaped ellipses,

2) a suspiciously circular REP is probably a plantom with true

locations along its minor axir, and

3) phantoms are more apt to occur at greater ranges.

Thus, suspicion ean be cast on an estimate by only knowing its SEP.

Strong association between (or among) two or more known estimates may

indicate that one is a phantom. In the missile controid problem described

above, the phantom will lie at a weighted controid of the true locations it is
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hiding. If there are only two, it vii lie approximately on the line between

them (the deviation from the line arises because all values are estimates, not

true locations). Unfortunastely, for three or more true locations, the phantom

can lie anywhere within their convex hull, depending on how many observations

there are of sach emitter. However, sine• many separation algorithms give true

emitter estimates if at least 80% of the original set of observations comes

from one emitter, and are most likely to produce phantoms, if the observations

come 50% from each of two emitters, phantoms will most likely be around the

controid of the true locations. Simple terrain checking in such situations may

indicate that no radars would be sited in that pattern (even taking into

account ElP).

Those very heuristic rules-of-thumb give some Idea of the mathematical

severity of the problem, if phantoms are input to self-correlation algorithms.

One their information is integrated with a known estimate, damage seems irre-

parable, and based solely on mathematics of location, there seems no certain

way to weed out the phantoms. Some consideration based on signal parametrics

will be discussed in the nezt section.

4. 1u IN TML PRO SIN

The basic ILINT problem concerns the location and identification of

signal parametrics for non-commnnications emitters based on observations made

by sensors. By non-communications emitters we mean radars and certain ECU

devices. Subsequent evaluation of these EINr observations is dependent upon

statistical assumptions made regarding these observations. This section consi-

ders the statistical assumptions Oat are, and are not, appropriate for these

ELINT observations.

It is useful to first discuss the ELINT problem from the single sensor

viewpoint with respect to the measurement of the signal parametrics of an

emitter. Emitters to be sensed may be monostatiol, bistatic s , or multistatice

but, this analysis of emitter signal parametrics will be restricted to the

monostatio case. The dependencies inherent in the bistatic and multistatio

emitter cases will be deferred.

Nonostatio radar - a single radar
flstatic radars - a pair of cooperative radars
Nultistatic radars - a collection of cooperative radars
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The first approach to emitter signal characteristics is made here
without respect to their measurement. Further, the discussion vill be about

only the characteristics of relatively naive emitters.

The typical emitter will radiate a formed beam of electromagnetic

energy. The frequency of this emission may be fixed or varying in some fashion

and may be continuous or intermittent. The bean is polarized and may be

rotated, fitted, mutated, etc. Further the emitter may be mounted on a moving

platform, thus continuously or intermittently changing position, velocity, and

the aspect of the beam.

Since a radar's fuaction is inferred through its signal parametrics,

there is an implicit general dependence among the signal parametrios which will

not be considered here. Ve will consider the characteristics and dependencies

of some of the signal parametrics. Radar emissions (carriers) may be con-

tinuous or intermittent. Continuous emissions may be of fixed or varying

frequencies depending on their purpose. Intermittent emissions nay be repeti-

tive or non-repetitive.

Repetitive emissions are characterized by their pulse repetition

interval and their pulse characteristics (width, shape, uniform and non-uniform r
bursts). Further, the carrier frequency may be varying during each pulse.

Either the pulse repetition interval or pulse width or both may vary over some

range of values in a uniform or non-uniform fashion.

Non-repetitive emissions are generally characterized the same as repe-

titive emissions over short time intervals. The non-repetitiveness is intro-

duced by time, carrier frequencies, and geographic diversity among a set of

cooperative radars as in bistatic and mnultistatie systems. For our purpose, we

will consider each of these cooperative radars as a separate emitter.

A reasonable subset of signal parametrics required to locate and

identify a radar includes the nature of the transmission, i.e., continuous (CV)
or pulsed, and the following signal characteristics:
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1) errier frequency

2) pulse width

3) pulse repetition interval

4) bean scan type

5) bean scan rate

6) bea polarization

The location is specified along with the elliptical error probable

(EP) and relative bearing of the semi-major axis. The semi-major and semi-

minor axes of the WP are both dependent on the angular accuracy of the sensor,

hence, are not independent measures.

The carrier frequency is an important parameter in both CV and pulsed

radars and may be either constant or modulated, as in chirp or linear FM

radars. This characteristic implies the need for instantaneous as well as

average frequency measurements. Since only average frequency is included in

the Tactical Electronic Intelligence (TACELINT) message, the frequency oharac-

terization Is incomplete.

There is an intrinsic dependence between pulse width and pulse repeti-

tion interval through the peak-to-average power ratio required for a specific

radar performance factor. Even for independently varying pulse widths and

intervals, this lack of independence, on the average, remains.

Pulse width measurements must take pulse multiplicity, width agility,

and shape into consideration. However, only a single measure of pulse width is

included in the TACELINT message.

Pulse repetition interval must take into account interval staggering

with multiple stagger legs. But the TACELINT message includes only pulse

repetition interval and whether it is fixed, staggered, or jittered.
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The formed antenna bean is described by scan type, scan rate, and

polarization. Useful measures not included in the TACELINT message are the

horizontal and vertical bean width and bean multiplicity.

There are two conclusions to be drawn from this brief discussion of

radar signal parametrics:

1) these signal parametrios are not all independent of one another,

and certainly not of their intended function,

2) the set of signal parametrios included in the TACELINT message is

insufficient to "fingerprint" a specific radar emitter as dis-
tinct from another of the sane model.

The sensors measure the location and signal parametrios which lead to the

production of TACELINT messages. There are four distinct cases to consider:

1) single sensor, single emitter.

2) single sensor, multiple emitters,

3) multiple sensors, single emitter,

4) multiple sensors, multipl, emitters.

Since a single sensor can only provide a line-of-bearing to an emitter

and a set of measures of the emitters signal paraenotrics, the sensor must be

mounted on a moving platform to obtain a "fix" on the emitter using multiple

lines-of-bearing from different locations at different times. The variances

associated with each sensor of an emitter are the same because these variances

derive from the sensor characteristics only. With multiple emitters, the

location and signal paranetrics measures may differ, but the variances asso-

ciated with then remain the same.

The situation with multiple sensor systems is quite different: the

"fixes" on a emitter are usually made based on the same emission in a form of

tine coincidence. These systems provide more refined measures of emitter

location based on a Loran-like time of arrival method. However, the sensors
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may be of the same or different model types, so the variances associated with

each sensing of the emitter may well be different. For multiple emitters the

location and signal parametrics measures may differ and so will the variances

associated with them.

The conclusions to be drawn from this brief discussion of ELINT sen-

sors are that:

1) The differences in sensor-dependent variances are included in the

RIP associated with each location estimate sent in the TACELINT

messages. So, location data is suitable for subsequent statisti-

cal manipulation.

2) The differences in sensor-dependent variances for the signal

parametrics, and indeed the variances, are not conveyed in the

TACELIN messages. This implies that the signal parametrics are

not amenable to subsequent statistical manipulation.

5. * CSATUeI I CaN UMIS1048

Throughout this discussion we have talked interchangeably and indis-

criminantly about two kinds of statistics: those for which the distribution is

known and those for which it is not. On the former is based classical statis-

tical inference and the capability to test hypotheses and make statements with

some confidence. These are the basis for scientific experimental evidence.

The latter are descriptive or "indicative": they may indicate something about

the state of the object being studied, but can not rigorously support any such

statement. They are the basis of much management and financial decision mak-

Ing. Most statistics used in these algorithms are indicative% yet, as in the

case of nobile units, fairly sophisticated inferences are being drawn. Just as

it takes a skilled sad experienced manager to make good financial decisions, it

takes a very skilled and knowledgeable intelligence analyst to draw the most

from these analysis tools. He practices not science but an art form whose

success depends on his individual talents. Automated systems that give him

more and more raw data to handle, and only minimal help in handing it, are

doing him a disservice. For these systems to carry with them the connotation

_33-



of scientific statistics, giving an unwarranted confidence in their results and

obscuring the crucial role played by the analyst does him an injuatice.

To the extent tests can be put on a stronger statistical footing, the

quality and credibility of the information derived from these systems, and thus

the real support they provide the intelligence analyst, will increas4. Several

initial steps are possible and recommended to make statistically-based informa-

tion more reliable.

1) Ensure the chi-squarod location statistic is good by providing

range-dependent population variances (perhaps obtained initially

from field testing) from sensor systems, and have these varian-

ces monitored within the sensor system to verify their continued

validity.

2) Develop distributions for some signal parametric statistics,

perhaps using a time history. This need not replace the linear

discriminate, but could provide a distribution for it.

3) Pay closer attention to distributions, especially when refining

(or integrating) signal psrametrics information. This may

involve and developing specific prior/posterior distributions.

Implementing some of these suggestions requires additional information be

carried in the TACmLINT message.

Finally, it is not yet clear which or what combination of the mathe-

matical approaches - classical or Bayesian statistics or non-statistical - will

best serve the need of the intelligence analyst. It is clear that all three

approaches should be pursued, in parallel, with special attention to the mini-

mum information which will be required by cross-correlation algorithms. As

stated at the outset, intelligence correlation is an hierarchical process*

each part must not only be as sound as possible within itself, but also proper-

ly fulfill the information processing requirements of its role in the overall

process.
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APPENDIX A

A. ANOMTATi iIn LST

References will be listed in the categories: mathematics, radars, and
military systems. Baoh will be followed by a brief indication of its formal
level (if appropriate) and applicable areas of this report. Most works listed

include good reference lists.

Mathemat ics

Box, G. E. P. and Tiso, G. C. Bayesian Inference in Statistical

Analysis leading, Massachusetts: Addison-Wesley, 1973.

A mathematically thorough applications-motivated senior/Sra-

duate text on Bayesian inference, accessible to those in other

technical fields.

Chakravarti, I. M., Laha, R. G., Roy, T. Handbook of Methods of

Aonlied Stalistics Volume I. John Wiley and Sons. Nev York:

1967.

A well organized guide to descriptive and inferential statisti-

cal techniques, with clearly stated assumptions and exampler, a

good section on multivariate analysis.

Deutsch, L Estimations Theo. Rnglewood Cliffs, Now Jersey:

Prentice-Hall, 1965.

Standard book on location estimation, confidence ellipses, and

mathematical estimation arising especially in radar problems.

Heel, P. G. Itoci jo MathematicL Statistics. New York: John

Wiley and Sons, 1971.

Provides necessary background for more advanced books.
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Heel, P. G., Port, S. C., and Stone, C. 1. Introution Il Probkbili

Teo. Boston: Houghton Mifflin, 1971.

Introductiotn o Statistical Thoor Boston.

Houghton Mifflin. 1971.

These two volumes provide a thorough contemporary mathematical

introduction to probability and statistics.

Johnson, . L., and Leone, F. C. Statistical and Experimental Desis

New York: John Wiley and Sons, 1977.

Another strong section on multivariate analysis, with examplesf

assumptions not as explicitly stated, more applications

oriented.

Kendall, N. G. IMe Advanced Theory of Statistics, Vols. I and II.

London: Charles Griffin and Company Limited, 1948.

Classical treatment of statistics, multivariate analysis pre-

sented in second volume, more analysis-oriented development.

Lass, L, and Gottleib, P. Probability an Statistics. Reading,

Massachusetts: Addison-Wesley, 1971.

A unified introduction to probability and statistics with some

focus on engineering requirements.
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t00
299 package EDRPackage is
30e
400 type TaceltntMsq is private;

o50 type EDR is private;
600 type Radar_T is (type_artype_b,typec);
700 type REAL is digits 7;
800
900 function GETEDR (Msg:TacellntMsg) return EDR;
1000 function RADAR_TYPE (Rec:EDR) return Radar T;
1100 function FETCH (First:Boolean; Radar: RadarT)
1200 return EDR;
138 function BOX (OldRec,NewRec: EDR; Raaar:Raar _T)
1400 return Boolean;
1500 procedure CORRELATE (OldRecNewRec: in EDR;
1600 Radar : in Raaar _T;
1700 Mac : out RealJ;
1300 procedure STORE (NewRec: in EDR; Radar n PdarT;
1900 OK : out Boolean);
2000 procedure REPLACE (OldRecNewRec: in EDR; OK: out :on.leanl;
7-130 function INTEGRATE (OldrecNewrec: in EDR! return L21R;
2200
2300 private
2486 --full type declarations for TacelIntMsg and EDR
7500 end EDRPackage;

2-00 -- Inside the package Dody EDRPackage, the
-So8 --procedures STORE, REPLACE, and rETCH Wil! Oe
Z300 --implemented oy callinq appreciate entries of a
3000 -- monitor" task (which serves as a syncnronization
3100 -- agent for accesssing the common data Jase).
3200
3300 with EDR_Package ; use EDR Package;

3400 procedure MAIN is

3500
3608 Some Condition :Boolean;
3700 OldRecNewRec :EDR;
3800

6900 Procedure KeepBest _EDR is separate;
4800

4100 tegin
4280

4300 NewRec :: GETEDR (Msg);

4400 Radar :: RADARTYPE (NewRec-;
4500 while SomeCondition loop
4600 OldRec :: FETCH (First, Radar);
4700 if BOX (OldRec, NewRec Radar) then
4800 KeepBestEDR;
4900 end if;
5000 end loop;
5160 if Mac > Max then
5200 STORE (NewRec, Radar, OK);
5300 elsif Mac < Min then
5400 REPLACE (OldRec. INTEGRATE(OIdPecvePer:..OK.;
550 else
5600 GOTOOPERATOR;
5700 end if;
5880 end main;
"900



200i
* 300 MODULZ' ACSPET tINPUT.C'UTPUT);

* 500 PROCEDURE ACSRET;
* 600

700 (NtwME: ACSFET-tCOMPARI ;ON PROCE-SS CONTROL)Y

900 CpPPPOE: COMPARISON DETERMINES THE S3:tlrLAPIT'( BETWECEN Siui3:F:T AND)
.000 ,:4D:DAiT EDRS. SUBTECTr AND CANDIDH4TE EDPS ARP11.)f: Ar
1100 I::CMPt-)PISON FOLLOWING DATA BASE RETRIE1-'4L VIA~ POCK:GS CON-pTP).
1200 .A MEASURE OF CORRELATION (MOC) DEFINING THE LIV'ELIHOOD THAT rm:--
1300 (32E~EZ1 AND THE *-AHD1IDATE EDR PEF -- 70 THE SA;Ml: EtNTITY I;
1400 ,C:DmP(J-ZD. THIS tEASUPC IS COMPUTED AS A '-!NEAR C0MD3INATIQ'N OF THUF
1500o (.OEiULrsS :-r FIELD COMPARISONt TESTS FOP CEPTA:IN COR.f:sPOtNDtlj'3 RFlFD!")
1.600 C.'F THE SU'E:Ec AND CANDrEAT: EDr)S
I T~

1: E:

2400:&t *

2 G
2700 EL _'

3000
3100:
320 0 ~ :
3300
3400 TIAE: :i F:
3500 ic
3600 -Z !4

3700 R E:
3900

400a

.4300 iNTEI&PNT3CR

4!700 1TE~r APR 1 1. . 5~ 1 F INvrE-q:
;70 _7C'7P A4PPAY 1 1. .531 OF REA~L;

47 U

4900i
01000 =0-- :ZDURE AC'S;L. r; E. E
510 0 = : :EDUPE -)kC3RF'; E.", 7_.
5200 :>DUC C3F;.E~q*
5300 E,,uR -C~t 9'I;
5400 PPO)-EDUPE -4CS3r:); E:'-Eli!~

T600 -:iE

.5300:TE::-:



7100
7200 (SET TABLE LENGTHS BY TYPE)
7300
7400 LETL: =ZRMDAR;

7600 CSTART COM1PARISON PROCESSINiG)

7300 &,-HE-K lt!E:' TO TABLES.'

.9 1* 00 7$3.U87. 0) AND ( IXS3UBJ ~:LENTBL)
a cc) THEN ~'~

ITO~ -:EFR -1T3 FPTlE
IE f) I

T FRT

2 0

E 01 ACSRFr;

3 0)I<I 00 AN0IE'

-10 EPERFOR

*0:300

1060 f:SUMAT (>0MTEOCC MO/U
I .30 OP r := I T
10 S DO

i 1 3I ELE 3 ~CL 3

S. M SUM~ + W



1309
400 PROCEDURE ACSRLT;
Soo59
609 (NAME: ACSRLT - FOM TEST FOR LOCATION)

Soo (CPURPOSE: THIS FIGURE Or MERIT TEST MEASURES THE LIIKLIHO C THAT THE>
900 (SUBJECT & CANDIDATE EDRS, REFER TO THE SAME ENTir,( ,)N rHE 3k~TLLFICLo.)
1000 CTHIS FIGURE OF MERIT IS COMPUTED AS PROBAJ2ILITY GIVEN THEIR LOCXiTION.
1100 (&LOCATION ERRORS THAT THE SUBJECT & CANDIDATE EDP 3 ARE C)LOCf~TED).

1300 ((PARAMETER EDFLT =20,000,000, NDFLTz10000,
1469 (PARAMETER MA>:DIS =1S.412 !EXP'k-.5*DIST) < M0~il)
11500 (INCLUDE "ACCEDR.COM")
1600 (COMMON 'CMPL C/FOMCMP(5),IUCi-),(5),I'TERRt5-))
i-0

I iEou CONST

zl.oo EDFLT =0000
_.200 '"DFLT =1:200000;

.00 '..CAL 'VARIABLES,
3 :IFFE REAL;

3i~i ~PEAL;

3! 2 =ZAL;

220 37 : ~ zEAL;
Z-Zoi D :3 T PEAL;

'Z!!00 rOLOEAL .)ARIASLES)
3600 3LOC ARRAY E 1.. 5) OF REAL;
Zo cQQ : L_0C rRH :1_ 51 OF REAL;
3800 C G ARPAY ll. .5) OF REAL;
3 G 0 SS:GMA APPPAY C 1. .5)3 OF REAL;
.4000 lUCK ARRAY Cl. .51 OF INTE 3ER;
-.u00 ITERR ARRAY C 1 .51 OF INTEGER;
-10 FOM1CMP oARRAY Cl. .5) OF REAL;

_45 i00
-4600 CCHECK FrE!D5) FOR VALID DATA)
4-00
4300 '-F CI'ABSSSL CEl) EDFLT I OR

-1?0 f P8s ICL1:C:l: 1 ) EDFLT) OR
6:000 ABE (SLO)CC!23 ) N D FL r , o
5100 (ABS 0:L-XA.21) NDFL T)
5200 THEN1 It')CkCI) := i
511300 ELSE :F 'SSIGMA[l) 0 1 OR fSS13MA[3) 0')
,!400 'CSIGMA 1 J 0) OR S-1'3MAE D1

t-1 t plo HEN :QC;<l 1

5700 C-CZMPUTE DETERMIJNAN' -DE7 :F ZAT1 13 ,L.

P3 1. loo E, r I -L 3 'I':

630 p:qr> L -



7000 THEN BEGIN

71.00
7200 (COMPUTE FOM FOR LOCATION)
7300
741a8 DIST :t (DD22 * (DIFFE**2) 2.0 D1VfrN :~DIFMN ADCD12

7500 + ADDtI * (DIFFN **Z)) / DET;
760!F DIST <t r MAXDZS );
7700 THEN FOMCMPCI1J: EXP(-0.5 DIST)
7800
7900 END
3000 --:-SE ITERRC1J : 1;

329 CNO ELSE AS FOMCMP PRESET TO ZERO'

")F 10;JUL.' t:3P7'L7-



300 PROCEDURE ACSRFT;
400
500 CNAME: ACSRFT-(F0M TEST FOR TIME,)-
600
700 (PURPOSE: THIS FIGURE OF MERIT TEST MEASURES THE LIKELIHOCOD BPA.;D UJN)
800 (THE TIME OF~ THEIR FIReST AND LATEST OBSERIQATIONS T14#41' rHE :37FB~:rr .iD
Soo (CANDIDATE EDRS REFERS TO THE SAME ENTITY ON~ THE BrTELFIELD. THIS;)

1000 CFIGURE IF MERIT Is BASED ON THE RELATIV.E POSITION OF r.-, c3urI3N
1100 (INTERVJALS (TIMIE BETWEEN THE FIRST AND LATEST OBSER.;Ar:JNZ; :jr THE7--
1200 (SUBIECT AND CANDIDATE EDRS.)
1300
1400 (RESRTICTICNS: NONE)
1500
1600 (ri'-lx:UCE -AC'---R.C0'*)

:100 -

Z "3 :H)-TiE *i)-T PEE rX I'. 4 -,H

3400 L
2s o 7 :

';o 3:C~ -a8A Ll .5) OF LE:

5100 ' -
5108~ I, (3RW P R ri C ScJ 1:0 5N 1 OF '', AN

SHE -- BE PA I"IO 1N'
-173 0 I~ API k [15 OFL'E~ :Y:U2r4L

5400IO P i.BIr
j:00 p5: ' -Ap 4 rjE3INUP

46300

-1700 FcA')PT ');rl DA7 I iE

5 -40 :F-

15500 "'Ea4 BEGI
510 S713 CA --- L,4 E = -.) T:,iE.



6 ,0h3 :.63 A UALUE BETWEENI E)11.1

6900 IF ((CFOT >= SFOT) AND (CFOT <= SLOT ))

7000 THEN FOMCMP [2] := 1.0

7100 ELSE IF ((SFOT >: CFOT) AND (SFOT < CLOT))
1200 THEN FOMCMP [23 1.0

7300

74Q3 ELSE IF' ((PCFOT > RSLOT) AND (RCI'OT < ,RSLiDT + i'iG)))
7-=00 THEN FOMCMP [2] := 1.0 - (RCFO'r - PSLOT),-3iI
-600 ELSE IF ((RCLOT > RSFOT - BIG) AND 'RCLOT < RSFOT))

7700 THEN FOMCMP 121 1.3 - (RFOT - Rr;Or:,JG
7Saoo END

7300 ELSE ITERRt2] 1

3000 END
a I ] ELSE IUCK.Z] 1

3 2 0
B330 £ ,; (0F m. CEDbPE AC IF r:
340

3t 0 E' Z" r_. MC LLE -:C , ' ,.

i



* 3013 PPQC:-70jPE 4CSPFF;

1503 :t4HME: 4CS3F-IFOM TEST Kk-DiAR IC.EJUENCYi)'

7o "1l FM'7 rP'JPPC,-iE. THI-S FIGURPE ORMT3 EA UPE3 ;>HF- E1ErCt~&
800 CSUBJECT -:MD CA~NDIDATE CDPS RF TO THr SeAMrE ~i ~ -T

900 (9B;SED CN THEIR FREQUENCIES. TH :S FI3UtPE OF -E'E IT IS C 7ri:uD :

10 :FUNCTION OF THE ABSOLUTE DIFF:F-ENCE BETWJE!4 'HE ATT.42CVLrii
I10~0 'FPEuENC IES.)

1~J' 15Q0 NCL.U;E ",41::EDR. CoM-

E, TA!'

-3 0, Z

-. L

~~~~~" E2:: S * ~ * ~-
3 T- 0 4Y S

41.3 R:E; ; -T.-TI h

4 0 i'P Lj

4 ? i 3E

-r li 0 ~

vjL J.J
-3F Z 1) -E,.

r3~



GecioJ THEN BE,31i

73003 (CE P'*OR :)ALI:) TA~BLE VALUJES)
71!00
4-200 '1Z.. )ALJEO)F L 1XSU:3I. THPEEJ;

730 %;, L L E f '.j S Un R9 1.J

i-- 3THEN4 scGrN

7 90. *'3 ~ ' T.IE OF FPEQLJFNCIES CLOS3EST TQ'>3ETHC:2}

3 1 J 0.

F~l~ E' * I Ef -:C

I - CF E r

DfN
"-

I F

ELSE FI)iMPZ 31 1.- 3

IT-E I

KEUP 3 :3R
* - ,., ,,



150 (N. t'E: iF-(FOM TEST iUc,, PlJ'E=E 0DATE TNrEP'JAL '

600 C,. PR I TEI ;r 7
7001

slap]'~ T-.IS TE,-r 7'E-5': HE uIK LH OI .E ) -jN T-E
900r~r Pt 'LE PEPETIT t~i4~:'2-l THAT rHE 31?TKC_,T ,', fl E

1000 T,) THE i- Sr4ME tChTIT m T-4w& SATrLErT!:.,.7

11) 2:' -~E NTHE ,:3EL : FFEENCE BET :<D>r::;
1200 D THiE zL'S;E(T PR: (OR A HARMONI!C '7 HE Sub c v.

E 7. 7 FE r P 1i 4

E ~

* 3 0 L

C~-. T).. OF IriTE3ER;
*~~~~ Tj~.P-~r~ ~ OF lr-3EP;

i ,.jA~ 4: li.C51 OF E L
P C~ I.NT:C I OCFDUPE3

45,0 _E:* 0 -r O.~OT OF REAL;

- ~ ~ ~ ~ M -. ps 1 .1:F ~ i: : JJA

f. .4 0 E 13 E" 3

- :'

T~ E 1 E



I ~~ in"HEN EN
~: - I:H1

THiFN IF (D > PIMI"4)

7HEN 8fE3tN

I FO '>P P , P R I l

0 f.) T li V 4f P P I C "

.2 of)L.E 
ppC C P-RIT'SP J ;

*~~, : 7P- : pULS3C RATE INTEPJL)

77'-! -1 tgrl rpt p l2 0

E: SEF MCP

O o -!--
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- i... Fl'RF ir4p-,r. u riv',r
z0o Z Z

300 P'ROCEDURE ACSRFD;
-0~
1500 .'NAME: ACSRFD-(70M TEST FOR RADAR PULSE DURATION))

700 (PURPOSE: THIS FIGURE OF MERIT TEST MEASURES rHE LII ELIHCOD 3A ~JD Ow~
190 (THEIR PULSE DUJRATION'S TiHAT THE SUBJE:r AND CANDID~FE EDRS PEFU:R rol
900 KTHE SAME ENTITY ON THE B3ATTLEFIELDS. THIS FOM IS BASED 01-4 rHF ',Zlo!O

1000 KOF THE SUBJECT AND CANDIDATE PULSE DURATIONS.)

1200 C':'v:LUDE "ACCEDR.COM"Y
1300 (P'iCLUDE -ACCRDR.COi-)
1400 CINCLUDE -XCMPRR.COM-)
1500 (:)MPONCPPLOC/FOMCMP(5),IVCK(5),ITERR(5))-

7 ONE, T-i'> rirPEE, F,)IP, F:'!E : EE2,. E - H.

2Z30

2 tLCK-~L .F~~BLE "'')

:2T p -:4 Q -L

C 1P~ F I cF- N TE3-f-:?:

3X 0 '~i 0A R P. t- ! -;-:. I

41090 : E:Ht;PS A~ r!JNC7ION PROCFTDURE)
* 4!2J i 30 APRA'( CSHOPT,SHOPT! OF

-4 -T0 5E3UJ

.4 L: 0~r 0- Ed .

-4-00 T 1~ t ' 5 1)w ,

.4 V3 EL.SE IF 1PDM.N --P.A *: .a. 1) pp!)e *

t~o- .-- -PPDMA 3P DM,.,-

E- .* - T Z -



67CJ0
6800 IF (.D > PDMIN)

6900 THEN BEGIN

7to COMPUTE FcOM BETWEENl 0 AND 1)

7300 IF (Sfi)UR CPDjUR)
r40 HEN PRO SPDLJP'CPDUR

7500 ELSE PRO -POUPISPOUP;
7600
7700 IF ( PtQ F!' "M I N
7-900 THEN FMCPI l SI 1. 0
7900 ELSF :F *POO PPDMA;:)

S000 THEN FOrICMP[53 1.A3 - - PPDI:N)
eiea !~r1~c( - P1)M -4)

(0 0

3900 F'i :D' E AC P F
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APPENDIX D

D. VI3IR 11AC EAML!35 W BT

The following three pages on the BETA system were provided by Veotor

Researoh Inc. Section D-l,, 08A Location Estimating Algorithm," presents

maximum likelihood estimating methods for radar location supported by more than

one sensor system. Section D-2, "Algorithm Attributes," considers the BETA

system from a Bayesian perspective. Section D-3, BETA Self-Correlationnn:

Evaluation Methodology," discusses some of the more philosophical aspects of

algorithm anaysia.

These analyses are referred to within the related sections of the main

report, and some of the more significant conclusions incorporated in the final

observationss and conclusions (Section 5).
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1! 1.0 INTROCUCTIOM

I

One of the principal functions perfomed by BETA is the development

of estimates of target locations. This chapter examines one algorithm

that updates estimates of target locations as successive reports are

received and processed. The discussion that follows assumes that the

reports are correctly associated, that is, that each provides an estimate

of the same location.

Ii-

I:I
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2.0 ASSUMPTIONS

Errors in estimating location arise primarily from sensor perform-

ance. As such, sources are both random and systematic, examples of the

latter being improper calibration or incorrect locations of sensor

components. For the discussion which follows we assume that systematic

errors are zero or equivalently that calibration has removed bias. We

further assume that target location estimates are distributed according

to a bivariate normal distribution with the true location given by the

mean 1.2 = (
Reported locations are denoted by Xi = (Xji)

kX2i)

with covariance matrix Ai = (PI:1:21 P italt2i1

2

where aji and ajt are the variances of the random variables

Xji and X2 i, respectively and pi is the correlation coefficient

associated with their covariance. Thus, the density function of a

reported location x is:

Reported locations are assumed to be independent, with different

covariance matrixes corresponding to different sensors and/or single

sensors in different locations relative to the target. We assume that if

a report is based on several lines of bearing, or a series of fixes, then

the appropriate reduction in variance is reflected in the covariance

matrix used in updating the location estimate, i.e., the covariance

matrix Is always known.
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j 3.0 NAXIRN LIKELIHOOD ESTIMATE

As an estimate of target location, the maximum likelihood estimate

is derived. 1 Consider a collection of reported target locations xj ;

i-ial,2,...,N with covariance matrixes Ai ; I-1,2,...,N. Then the

likelihood the likelihood function is proportional to:

.1 / N
exp -1/ 2  (i -_u) TA-iI (xi -. )IJu

Taking partial derivatives with respect to 1 and 2 and equating the

results to zero one obtains for the estimates 1 and 'u2:

or 1: . 1) . Ai - .i

The expected value of _u is the true location _p and the covariance

matrix is (N Ai1, Ai -

Note that in terms of implementing this algorithm for estimating _ one

must store two quantities namely:

MN

*! and

N

CN ENA

1For a more general discussion see: Anderson, T.W., An Introduction to
Multivariate Statistics, John Wiley and Sons, Inc., New York, 1959.

L
I
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Upon receiving te l4+lst report, _X+I AN+l

M+1 MN + A+-!~

and ClaC N + A~

and Nl0CHl-M~

with covariance CN.-14.
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4.0 ORIENTATION

One of the features of current ELINT sensor systems is that errors

in range generally are larger than those in azimuth. Further, because of

different sensor system locations error ellipses will have different

orientations. Consider a standard Cartesian coordinate system with U -

o. The the error ellipse is described by xTA'x, where

A" 1 . 11- 12 (1-P2 )a02

1
(1 -p2lala2 (1-2)02 2

or
or x12  2xjx 2  x2

2
xTA-lx - .___ _ ____ + _ __

(1-p2)012 (1-p2)1 a2 (1-p2)a22.

Consider the rotation

yl 0 x1cse- x2sine

Y2 w x1sln e+ x2 cose

where 8 1 tan -1  200102I_

Applying this rotation we obtain a new random vector(Yl)\2/
with covariance matrix:

(Cose sin~V o6 a o; ( a case - sine)

\.sine Cos C 02 02 / sine Cse

which has zero correlation, or equivalently 8 is the orientation of the

error ellipse with the baseline of the coordinate system.

1.1
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5.0 OBSERVATIONS

To illustrate the implications of the target location algorithm

consider a simplified example in which all reported locations have

covariance matrix

In tis cse fterN ( 12 012
0 012

In this case after N reports, the covariance matrix of the estimate

is:

(1 )
0 o1__Z

N

If artillery accuracy requirements are expressed in tens of a 100 meter

CEP we require an equivalent variance of:

100
_R _-_ -=84.93

R (21n2) 1/2

Since a1 is constant across all reports, the number of reports

required tD achieve targeting accuracy is given by:

Na 2

This function is presented in exhibit 5-1.

jLJ
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EXHIIBIT 5-1: NUMBER REPORTS REQUIRED TO ACHIEVE 100 METER CEP
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The implications are that achieving adequate accuracy will require a

significant number of reports unless sensor performance improves

substantially. For example, consider a sensor which has a covariance
matrix:

(200)2 0

0 (500)2)

representing a system with range errors greater than azimuth errors.

Using an approximation to obtain an equivalent CEP it can be shown that

16 reports would be required to achieve an equivalent CEP of 100 meters.

In terms of current ELINT systems, and artillery target location accuracy

requirements, the implication is that until precision location systems

are fielded the number of targets developed and nominated for artillery

missions will be limited. This may not preclude use of air assets; both

fixed wing and helicopters. Note, moreover, that the introduction of

precision location systems contributes to the efficiency of self-

correlation, but if errors are sufficiently small, self correlation is

not as necessary for target nomination. This raises the issue of

emphasis in the system: is it target development, situation development,

or both? If target development is emphasized, it is difficult with the

current sensor suite. On the other hand, if precision location systems

are introduced, location estimation is unnecessary and context may be

more important.
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1.0 INTRO TION

In order to provide an approach to evaluating and classifying

self-correlation algorithms, this paper examines such algorithms In the

context of Bayesian decision theory. 1  in particular, comparisons are

made of example Bayesian decision criteria with one approach used in

BETA, namely:

"correlate if E aix>_h."

In certain instances reports received by BETA do not contain values for

one or more of the data elements. In such cases it is our understanding

that the procedure implemented involves renonnalizing the weights used in

the statistic, i.e., if figure of merit xj cannot be calculated, the

weights used are:

al

The implications of this procedure are al so examined.

The purpose of algorithms such as those employed in BETA is to make

decisions based on some pre-establ ished criteria. Any particular

decision is made by considering data reported by collection systems. As

such, the data is subject to a series of errors whtch cannot be predicted

with certainty in advance. For example, suppose an emitter is operating

at a frequency f. The frequency fr reported by a collection system

will not in general equal f, but

fr f +A fs

1For a more general discussion see: DeGroot, Morris H., Optimal
Statistical Decisions, McGraw-Hill, Inc., New York, 1970.
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where the difference Af5 is a function of collection system

A; performance, environment, battlefield geometry, etc. The difference

cannot be predicted in advance, but can be described probabilistically,

i.e., the reported frequency fr is a random variable with an

appropriate distribution function. Similarly, the absolute value ft the

difference between two reported frequencies is a random variable,

although it need not be a figure of merit in the BETA sense, i.e., take

values only between zero and one. However, it is worth noting that if X

is a random variable with distribution function FWx:

Pr[X <xJ *F(x),

then the random variable Y defined by

Y F(..

takes values only between zero and one and moreover has a uniform

distribution, i.e.,

PrY < yJ *O y O

The location difference figure of merit used in BETA, exp(-d/2), has this

distribution if the two reported locations are in fact the same.

In general, algorithmns such as those in BETA asune that ground truth

falls into a set of mutually exclusive categories or states of nature

(denoted in this paper by Wd., only one of which is true). The

algorithms provide a means of deciding which particular state of nature

is true using observed or collected data. The assuption underlying most

such algorithms is that the distribution functions describing the random

nature of the data depend upon the states of nature. Differences among

the distributions are then used to construct appropriate decision
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criteria and/or analyze algorithm performance. In the remainder of this

paper a Bayesian structure is used as a framework to analyze the linear

combination of figures of merit used in BETA self-correlation algorithms.

A

I
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2.0 NOCEL

Consider a decision problem involving only two states of nature a -

{wl,w2 I and two decisions D d 1d21 . Following the observation

of a random vector x, a decision is made with loss matrix:

dl d2

w2 Z21 0

i.e., if the decision d, is taken when w2 is true, a loss of Z2 1

is incurred. Prior to the observation of x, the decision maker believes:

PrEW =w 1J a p, and

Pr[W = w2] = 1-p,

with the conditional and unconditional densities of x given by f(xlw i )

and fix), respectively. In this situation it can be shown that the Bayes

decision, i.e., that which minimizes the expected loss, is described by:

Decide d1 (w w1 ) if

PrEW = wx)_x > -. =.osay

£21 ' 12

and d2 (W 2.w2 ) If

1-21
PrEW - w2lx._ > 2

£21 + £12

Mani
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The posterior probabil ity PrEW *w 1l X3 is given by:

pf x jw1 )

Pf (x 1w) + (1 -P)f(x Jw2 )

Substituting one obtains the rule: decide dl if:

f(xjw1 ) to(1 -P)
-Ysay.

P(I-zI
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3.0 EXAMPLES

Consider the case when the components of X are independent and

normally distributed. Suppose:

f1(x l1lW ) - - -x(x ) 2and 1-(xi- ,
fi(xllw 2 ) - - exp 2,2

Then from the previous examples he have:

f(xlw1 ) x,2 (x-i u )2

f(x1 2a1i2 2ai2

or select dl if

Taking logarithms and rearranging terms:

--- I n y

This expression bears sane resemblance to the BETA algorithn and it is

worth considering the impact of the BETA procedure for missing data.

First, note that if some value, say xj, is missing, the new decision

rule is select d l if P tx t P11 In y
,-- < t -- -i2

Now consider a normalization of the coefficients. In the first case by

normalizing we obtain:

[
I;
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/1 2
12 t~j 2 a -

If element xj is missing, renormalization of the coefficients yields

for the left hand side

i Aj (T 2  ( - x

Note, however, that renormalization is only consistent if an appropriate

change is made to the right hand side of the inequality both in terms of

112
the sun - and the normalizing factor.

Now suppose that

ft(xtjw1 ) < <u
u1 -Zt

= 0 elsewhere.

In this case the xi are uniformly distributed on the interval Eti,u ij

bearing some similarity to the BETA approach. Then the decision criterion

based on x is:

select dl if

n -

to(1-p)

> Y say
f(x lw2 ) (1 -- o ) p

Note that if for any i

or xi > uj

then d1 is rejected. If this is not the case an appropriate threshold

can be set.
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Consider the expression:

nfj(xlJw2 ) < - . n (i-L) - YlsayI L0 (1-p)

Again assume that fi(xilw2 ) is a normal density with mean pi and

variance ai2. Substituting:

1 (xt-i t) 2

I - (2 )1/2 exp -I 2 <Yi
n (2 ira9 )a/Z

(xt- v,)2
or --- > - nY t " ln( I1 (2nai2)1/2).

Provided the figures of merit were in fact the - , then the
2

coefficients could be considered to be (a 1
2 ) " . The same

normalizing problem as previously discussed exists, namely one must not

only normalize but also adjust the decision threshold.

We turn now to the case of dependence between the components of the

decision vector x. For a variety of reasons this is likely to be the

case, particularly for the signal parameters. We use the sie example,

namely decide dl if:

f(x1w 2 )

As before assume:

f(xIw1 ) is N(O',E)

and f( xw 2 ) is N(u_, ),

with non-zero correlations, i.e.,

(a12 PY12)

where 012 and 022 are the variances of x, and x2 and P, the

correlation coefficient, is non-zero.
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Substituting, the criteria becomes:

exp (- xT -lx>

1 1

or - 1.~:1 -(X-u)Tll(x-Jy) >In Y 0
2 2

or (x-_y)T: "1 (x-Y) - xTE1x > 21n YO-

This is equivalent to:

T-1 <1xTEl < - kTF--I lnyo ,

2

As in the case of independence, this criteria can be expressed as a

linear discriminant. In particular, for n-2, the coefficients are:

022u1 - p12aa2u2XI)
I-1221 + 0l12? 2

a1222(1-P 122)

where P j are correlation coefficients,

and

P12 
2pj2PL2 u 22

ITE-14 2), 2- + 2 2
(1-P$212 olo2(1-P12) a22(1-P12)"

For n3 the coefficient of xi becomes:

(1-232 )a2732 u1 + a1(2032 (p13P23-P12)u2 + 01a22a3(P12P23-P13)u3)

a12C2
2 3 2 (1-P12 2 _P 132-P23 2 + 2plV13 + 2012P23 + 2o13P23)

and for x2

0102032 (P1323-P12)U + (1-p13 2N1 2o32u2 + a12a2a3(oQi213-P23)u3)

012022c32(1-0122 -13 21.p232 + 2plj313+2P1oV23 + 2013P23)
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While in the case of independence, provided the threshold ts adjusted,

nomalization made sense, a similar conclusion cannot be made for

dependence among the random variables, as can be easily seen by adding

the coefficients for x1 and x2 in both cases and then dividing the

* coefficients by the resulting su and comparing the results tD a similar

, operation when n=2. Thus, the following observation: decision rules

exist such that subject to alternation of the decision threshold,

normalization to account for missing data can be Justified if the various

components of the decision variable x are independent. If, on the other

hand, the components are dependent or correlated, normal ization cannot be

justi fied.

i-[
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4.0 TIME

In the discussion up to this point, no mention has been made of

time. Given any two candidates for sel f-correlation, the time first

observed and time last observed are available. Suppose for the two

candidates these times are:

Candi date 1: t10 t20

Candidate 2: t1l t21.

The values of these four variables give rise to three cases:

() {overlap, 1st candidate first;

overlap, 2nd candidate first;

overlap, 1st candidate contains 2nd;
(2) and

~overlap, 1st candidate contained in 2ndj

(no overlap, Ist candidate first

(3) no overlap, 2nd candidate first

The analyst, decision maker, or in this case, algorithm, can and should

distinguish among these three general cases. First, all other things

considered, the prior probabilities for the first two probably remain the

same, as do the conditional distributions or likelihood functions. In

fact, in the extreme, e.g., simultaneous observation of an emission by

different sensors, differences in reported data should only be due to

variations in sensor perfonnance and not to such controll able di fferences

as selection of frequency, etc., whereas, if reports are separated in

time, the conditional probabilities f(xlw1) may be more diffuse. Note

that the location estimates are significant in this case: e.g., if the

reports should be correlated, the location should be the same. This is
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not the case if the reported observation intervals do not overlap. For

simplicity, consider four cases, distinguished by whether or not location

estimates are *close" and whether or not signal parameters are "close.'

If location estimates are not close and signal parameters are not close,

self-correlation is probably inappropriate. If location estimates are

close and signal parameters are not close, the possibility of

Oco-located" emitters must be considered1 or the possibility that a new

emitter has replaced the original. Finally, if location estimates are

not close but signal parametrics are consistent, the time and distance

relationships must be considered, i.e., the potential displacement must

be consistent with teardown, set-up, and travel times. The Implications

in termns of the simple Bayesian example are described as follows. For

cases 1 and 2 above the analyst is likely to retain the same prior and

likelihood functions. If locations are close, the signal parametrics

will decide; if signal parametrics are close, locations will decide. As

time elapses without a report, the probability that the entity has

remained in the same location will decrease, as will the probability that

its signal parametrics remain constant. For the sake of illustrat', n let

the time required for a typical displacement be at and the distance Ad.
Further, suppose that the elapsed time is t, and that x measures location

difference (x 1 ) and signal parametric difference (x2 ). Then:

f (x1 ,x21wl ) may be independent of t

f (xl,x 21 w2 ) * 0 if At>t

f (x1 ,x2 iw3 ) may be independent of t

1For example, the LONGTRACK radars at an SA-6 regimental headquarters.
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where w, a same entity, same location, same parametrics

w2 u same entity, new location, same parametrics

w3 a different entity, different location, same or different

parametrics.

As an illustration of the characteristics of the problem of time,

consider a simplified situation with three decisions:

d1 : correlate: same entity, same location;

d2 : correlate: same entity, new location; and

d3: do not correlate: different entities, different locations.

Then it can be shown that the same form of decision criteria can be

derived, namely select decision di if the posterior probability of wt

is greater than a threshold Y1 , or

f(x) W YPi

f(xlwl)pl + f(xiw2 )p2 + f(xjw3 )P3

Two elements are significant here. First, in the absence of reports

(and perhaps given the knowledge of dwell time and likelihood of observa-

tions) the prior probability P, will decrease and the prior probability

P2 will increase. Second, the likelihood f(xjw 2 ) depends upon the

time between observations. In particular, let X1 be a measure of the

distance between reported locations at times t2O and t 11 , with

t a tjj-t2 O. Then

P2
f(xLw2) - f(w2jx.) • -

f( x)

If t < a s + 4 t , (tear down plus set up time), then

f ( w2 I.) - 0

and f(xjw2) - 0.

Ii
I
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Similarly, if 4s + A t < <a +4 s + It
V

where v is a typical travel speed, then

f(w2lx) - 0

and f(xlw 2) - 0.

Finally, if t > As+At+d where d is a typical displacment
v

distance, suppose that f(xw 2 ) is non-zero. Now consider the decision

d1 . For d1 we have:

plf(xl w1)

pif(xIw1 ) + p2f(xlw2 ) + p3f(xlw 3 )

For t < s+ + this expression is
V

pjf( x L1)

plf(x 1w1 ) + p3f(xIw3 )

For t > As+bt+.d, the expression becomes
V p1f(x(I w)

plf(xlw1) + p2f(xiw2 ) + p3 f(xlw3 )

Note that in the BETA algortthm time is used to derive a figure of merit.

While all other figures of merit are random variables, time is not.

Effectively it Is known with certainty. Even in this very simplified

example it is clear that inclusion of time in the decision criteria,

treated as a random variable, is incorrect unless collection management

and tasking are also considered in vhich case random variation associated

with detection and signature generation must be considered as well.

:(
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7 5.0 TYPE I AD TYPE II ERRORS

In the preceding sections a Bayesian structure was utilized to

examine simple algorithms and decision criteria for self-correlation.

This structure is attractive because for a number of reasonably general

distribution functions it provides computationally simple decision

criteria. Given that such distributions were used as approximations to

actual distributions (for reasons of clarity and or ease of use) it is

likely that the resulting algorithms would be close to optimal. Aspects

of the BETA problem are difficult and complex, particularly the nature of

the decisions themselves and the prior probabilities. Nevertheless, the

structure does offer insights into various algorithm attributes. For

example, consider the issue of type I and type II errors. For the simple

problem with two alternati. -, the decision rule derived was to select

dl if:

f(xw 1 ) Lo(l-p)

f(xIw 2) p(l-to )

Suppose the components of x are independent and normally distributed

and let

f(xlw1 ) - N(O, )

and f(xlw 2 ) - N(P,)

where a (o 2  0)
( 0 o2

For this example the criterion was:

UixI V2x2  I 2  P22 /(o(p)

1 2+ a2- < , 2+ 2a In}(l )

I
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The probability of a type I error in this case is:

Pr " n n(t \
+ + 2- N T + --

and the probability of a type I error Is :

Pr 11 2 P-2 U2
2  In -- p) W+

I;2 + 2  a+ 2 2  p(- )) W2
In thi s exanpe, conditional on Wabw:

' /N(O /\.

a1
2 -

Thus Uj / 21
2  N 2 

2

aBa 1 fa2

wherech the c latlvonal distribution function.aSispilafly,.the

critical factor is that this specification for a combat scenario Is not
simple. Moreover, a range of scenarios probably are required.
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6.0 FIGURES OF MERIT ON THE UNIT INTERVAL

To examine the BETA algoritho as currently implemented first note

that all the figures of merit lie on the wnilt interval. To accompl ish

this, certain transformations have been made. For exauple, the measure

of separation is the complementary cumulative distribution of the random

variable xT~j:1,, wtere x is the random vector of differences in

location. The remainder of the statistics used can be described as

fol l ows.-

Let S be ' mreasured difference and suppose S has density f(slwj).

then define a variate T by:

0= u<s

u- s
X t <s~u.

u-t

Then:

P rCX 11 iI)-* J f(s wi) ds

P rfy=jJ - 1W f f(sl wj)ds

and Pr[TC x,x+ dx) f( u- (u-C) xIwj ) dx Z &s<u.

Thus, the probability thatX exceeds some threshold h say is:

u- h(u-C.)

ff(s 1wj)ds.

0

*wo
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For ay linear combination NmEa4yj of such variables it is possible

to determine the probability distribution of M conditional on wI and

thus to determine the type I and type I1 error probabilities. Consider

an exuiple in wtich

f(s wj) - "ile ' iS

and fs w2) - 1ze- " 2s

Then

f(slwj)

f(sl w)

is equivalent to

"1e'S(P1'u2' > YO
;A2

-r 1
-s(Aj-2)> l~i' 0

or s < (In )(nyo)( 1"hu2 "r 1

The two decision rules are equivalent if so 1, x-h, or - h.

In this case the probability of a type I error is:

Pr[s>Yllw1) - e'1 1,

and the probability of a type II error is:

Pr[s<Y11w23 - 1.e'*2Y1

If the rules are not equivalent, then for the criterion:

x> h

U-S
whave - > h

or s < u-h(u-Z).
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Hence:

Pr~x<hl w1 ] - e *141 (u-h(u

and Pr~x>hIw 2 1 a -e"

The BETA algorithms make use of a linear combination of figures of

merit taking values on the unit interval. As with any algorithm (again

provided a scenario is specified) probabilities of type I and type II

errors can be determined. As an illustration consider the following

example:

Let M - alx I + a2a2

and ceelate if

M > h,

Where a1 + a2  1

0x _1 j- 1,2.

Assume that:

f(xjlwi) " 1 O<x 1(.

and

f(xtIw2 ) " 1 O<x 1<1

f(x 21w2 ) - vje1 '0x 2

1O<x2 <1 

The assumption of uniform distributions conditioned on Wxw 1 is not

unreasonable because, as noted earlier by choice of transformation, any

random variable can be mapped into an equivalent that has such a distri-

bution. In particular, the separation figure of merit exp(-d/2) has a

uniform distribution for the case in whIch locations are the same. The

distribution assumed for W-w2 has the effect of making values close to

zero more probable. Exhibit 6-1 illustrates the resulting type I and

_i
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type II errors for U~ 5.0. The example show the contribution of the

non-uniformly distributed figure of merit: as more weight is given to 1

x2, it beces possible in achieve lower values of the probabilities of

both type I and type II errors. This will be true in general, i.e., for

any particular set of weights it is possible to determine the curve

relating the two probabilities as a function of the decision threshold h.

The functions required to carry out the calculations are the conditional

distributions of the decision vector. Ideally one wishes to set thres-

hold values for desired error probabilities on the lowest such curve,

i.e., the weights defining that curve would specify the best "BETA"

algorithm, although not necessarily the best algorithm possible. Note

the implications of renomjalization. If a data element is missing the

preferred procedure would be derive appropriate weights by finding the

lowest curve for the remaining elements in the data vector. Provided

that the missing element is not superfluous this curve will be above the

original. Thus, even if thresholds are changed, it will not be possible

to achieve the same performance: one or both probabilities will

increase. In a Bayesian context this corresponds to an increase in the

expected loss.

The examples in section 3.0 of this paper suggest that if the

figures of merit are stochastically dependent the impact of renormaliza-

tion is to move to an operating point that is above the optimal curve for

the reduced data. The examples for both independence and dependence

among the data elements suggest that the "bestN BETA curve is above the

theoretical optimum. The magnitude of the difference should be

investigated.
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7.0 EDUWXS

The scope of the examination of the BETA algorithms was restricted

to those used for self-correlation with particular emphasis on ELINT.

Tw questions were addressed:

(1) How well do the algorithms perform? and

(2) Is the normalization procedure sound?

The question of algorithm performance is closely related tD scen-

ario. The Bayesian structure used within this paper represents this

relationship by means of losses, prior probabilities, and conditional

distributions. Within this structure it is possible to calculate, for

any algorithm, the probabilities of type I and type 11 errors. In the

absence of actual nubers and a specific scenario, the procedures were

illustrated and an example was provided. The example suggests that the

general concept of weights can be explained, i.e., one wishes to give

greatest value to the best discriminants. Note, however, that all

potential decisions must be considered in such an operation, i.e., both

"correlate" and "don't correlate" must be addressed. In the context of

linear combinations of figures of merit taking values on the unit

interval it may be the case that the probability of a type I error is not

critical; rather the algorithms have been designed and weights assigned

to minimize the probability of a type 11 error.

The question of normalization was examined by constructing linear

discriminants and examining the impact of missing data. In the case of

independent figures of merit, a case can be made for the normalization

procedure provided that the threshold is changed appropriately, but it is

unlikely the case holds for the figures of merit defined on the unit
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interval. In the case of dependent figures of merit this is not true and

normalization cannot be justified. Since it is likely that the figures

of merit are dependent, different procedures should be adopted to account

for missing data.

The treatment of temporal data in the current BETA algorithms

appears to assume that times are a random variable. Given knowledge of

collection management and sensor tasking such an assumption might beI appropriate, but it does not appear that this is the case in BETA. A
general approach to the issue is provided in section 4.0 in which both

priors and conditional distributions are made functions of time between

reports.

Currently, results from tests, etc. are the only means of assessing

algorithm performance. Results with which we are familiar suggest that

the current versions of the algorithms forego self- correlation to avoid

incorrect correlation, i.e., type 11 errors. All other things

considered, the BETA alorithms should do reasonably well against

stationary ELINT targets. For a vareity of reasons, including the

treatment of timing, against targets which displace, this is unlikely to

be the case. Nevertheless, given the distances separating most ELINT

targets (excluding GUNOESH radars) location differences should be a

powerful discriminant. In this respect it may be worthwhile to use an

an alternative approach and enhance the distance figure of merit

exp(-d/2) by explicitly considering alternate decisions.
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1.0 INTRODUCTION

The purpose of this paper is to describe a methodology for evaluat-

Ing the self-correlation function of BETA correlation. Briefly stated,

BETA self-correlation Is an aid in deciding if tw reports describe the

same entity or not. The basic approach of BETA is to calculate statis-

tics or figures-of-merit based on the contents of two reports, detemine

a weighted sum of the statistics to generate an overall statistic, and

then compare the value of the statistic to a preset threshold. If the

statistic attains or exceeds the threshold then the reports are corre-

lated, i.e., they are said to describe the same entity; otherwise, they

are uncorrelated, i.e., they are said not to describe the same entity.

The remainder of this paper is divided into five chapters. Chapter

2.0 presents a problem description giving the context and concepts

required in the discussion of the evaluation methodology. Chapter 3.0

follows with a description of how BETA self-correlation functions.

Chapter 4.0 introduces the evaluation criteria as the cost of making

correlation errors and presents a cost function that depends on the

probabilities of making such errors. Chapter 5.0 gives a mathematical

description of the evaluation methodology. Chapter 6.0 identifies some

of the ways in which the methodology could be used to improve the

performance of BETA. An appendix is included which describes the

statistics of BETA in detail.
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2.0 PROBLEM DESCRIPTION

This chapter describes the context and explains the concepts

required for understanding the eval uation methodology. First, the con-

cept of a "scenario" is explained. Next, an "observablen is defined, the

measurement of observables discussed, and the resulting reports are

described. Following this, the function of self-correlation is discussed

and, lastly, the interpretation of the reports after self-correlation is

covered for completeness sake.

2.1 SCENARIO

The evaluation of an aid like BETA requires a knowledge of the

various situations in which it may have to operate. The need for this

knowledge is twofold. First, the value of the aid is typically sensitive

to the importance of the desirable and undesirable events that might

occur and their tendencies to occur. For example, if the importance of

the possible outcomes of a situation is inconsequential or if all out-

comes are equally acceptable-except for one undesirable outcome and the

tendency for its occurence is negligible, then the aid, regardless of its

performance, is of little value. The identification of the desirable and

undesirable events of a situation will, to some degree, define the situa-

tions in which the aid may have to operate. Second, the need to describe

how the aid will operate necessitates a description of its response for

any given situation. Then, given the situation, we can characterize its

response and measure its performance. The description of the envi ronmient

or conditions under which the aid is to operate is called a scenario. In
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summary, a scenario is a description, over time, of all events that play

a role in the activities or performance of the aid.

Here, the aid is the BETA self-correlation, which Is concerned with

the correlation of reports sumarizing detections made on electromagnetic

emissions such as radar and radio. Some items of a scenario could be the

identity of detectable emitters, where they are located, what detectable

emissions are made, what sensors are used, what detections are made by

the sensors, what are the conditions under which the detections were

made, where are the sensors located, and so on, all given as a function

of time. Once the scenario has been described, the expected performance

of BETA can be specified.

2.2 OBSERVABLES AND MEASURENENT

As implied in section 2.1, sensors are used to collect information.

The physical characteristics of phenomenon detected by a sensor are

called observables. The observables of electromagnetic radiation used in

BETA are frequency, pulse width, pulse repetition interval, location of

the source (possibly derived from lines-of-bearing), and times of

observation.

When a sensor detects an emission, it results in a measurement of

one or more observables. Normally the estimated value and actual value

of the observable differ by some unknown imount. The degree to which

they agree is a measure of the performance of the sensor. The probabil-

istic description of how well a measurement might agree with reality

defines the sensor capability.

i.



2-3

Given the scenario, the probabilistic nature of the statistics cal-

culated in BETA depends completely upon sensor performance. 1 In gen-

eral, the more a measurement may deviate froa the actual value, the more

a dependent statistic will vary ,n its value. On the other hand, if the

sensors are perfect (measured value and true value agree), then the

dependent statistics are deterministic. The study of the statistics in

BETA will rely primarily on the description of a sensor's capability to

measure observables.

2.3 REPORTS

A report is simply a summary of the measurements made by one or more

sensors on a single element during the sane observation time. Reports

are the items correlated during self-correlation. Ideally, a report

should describe exactly one entity; other'ise, the concept of "errors" in

correl ation becomes complicated. For example, if report A describes the

unique entities a and b as though they were one entity and report.B

describes entity b, then is it correct to correlate A and 8 or to uncor-

relate them? Unfortunately, it may be necessary to merge tw correlated

reports into one report to reduce the number of reports to retain. Thi s

may be necessary, for example, when reports are stored in a computer data

base with a small memory capacity. A report that represents the merging

of two or more reports is called an updated report.

lAssuming that all measurements, once made, remain unaltered.
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2.4 SELF-CORRELATION

The purpose of sel f-correlation is to declare a belief or disbelief

that two reports describe the same entity or emitter. This process aids

in resolving the grouping or fusion problem of deciding what set of

reports describes the san entity, thereby obtaining a fuller description

of the entity and avoiding confusion and erroneous conclusions about the

entity due to improper grouping.

The general approach BETA uses in deciding if two reports correlate

or not is to calculate a statistic based on the types of ififormation com-

mon to both reports and then compare the result to a predetermined thres-

hold. If the threshold is attained or exceeded then the reports are cor-

related; that is, they are declared to describe the same entity. Other-

wise they are uncorrelated; that is, they are declared to describe separ-

ate entities.

Envisioning the reports to be stored in a data base of a computer,

the effect of sel f-correlation can be described as changing a relation-

ship between two reports from an "unknown" status to either "correlated"

or "uncorrelated." If there are no "unknown" relationships, then the

data base has been fully examined and is ready for further

interpretation.

2.5 INTERPRETATION

For completeness, the step following the self-correlation function

is briefly discussed. Once the reports have been self-correlated, the

problem of determining what reports describe the same entity has been at

least partially solved. The problem may be not completely solved because

a chain of correlated reports may not all correlate with one another

te



(e.g., A co.-rates with B, B correlates with C, but A does not correlate

with C). This prabli. is avoided when all correlated reports are merged

into updated reports, but at the expense of propagating any correl ationt

errors made earlier in the history of an updated report. Assuing such

problems are somehow resolved, we are left with reports that have been

grouped, hopefully, to provide the highest degree of entity description

the reports have Wo offer.

The next step is to collect groups of correlated reports and examine

them to create more complex relationships among them that imply organiza-

tional structures, deployment, and missions. The BIETA correlation

attempts to aid in this interpretation effort, but BETA cot-relation

beyond self-correlation is not considered here.
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3.0 SELF-CORRELATION IN BETA CORRELATION

The purpose of this section is to describe, in some detail, how

self-correlation is done in BETA.

There are two previously uncorrelated reports selected for correl a-

tion: one report is called the "subject" and the other called the

"candidate." The perception in BETA has the subject as a new report just

received and the candidate as an old, possibly updated, report retrieved

from a data base of reports.

The estimates of each observable common to both reports individually

compared and a statistic for the type of observable calculated. For

example, suppose both reports have an estimate of frequency. Let

u - frequency estimate of subject, and

uc a frequency estimate of the candidate.

The frequency statistic is defined as follows:
1 U -u -uc <

U -cUc -2

V2 " 1 - 1*2 , -2 < U -Uc I we

0 , otherwise,

where L2 and *2 are arbitrary thresholds.

If U is 1 MHz, Uc is 1.1 MHz, Z2 is .05 MHz, and N2 is .2 MHz,

then the frequency statistic has a value of 2/3. The statistics for the

other observables (location, pulse width, pulse repetition interval,

and observation times) are given in appendix A. Note that the

statistic varies between zero and one and increases as the absolute

difference of the measured frequencies decreases. This general behavior

is common to all the remaining statistics.

2I
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An overall stlstc is formed as a weighted sun of the individual

statistics calculated. Let H be the overall sttstic and Vi the

statistic corresponding to observable type i. Then,

1.I
H

Edj

I41

Here, I is the set of i viiere observable type i has been estimated in

both candidate and subject, and di is a weighting factor assigned to

observable type i.

The statistic H is then compared to a predetermined threshold h. If

H attains or exceeds this threshold, then the two reports are correlated;

otherwise, they are uncorrelated. Note that the result cannot be
"unknown", which was the status before the reports were correlated.

Although not an important assuption, it is assuned that the thres-

hold h exists independently of the contents of the set I defined above.

If h is allowed to depend on I, then there is no real need to renormalize

the eights by the division performed above because new thresholds could

be defined by multiplying them by the renormalization factor. Hvuever,

the effect of renormalization is to restrict H to the interval frau zero

to one which may be a desirable characteristic.

1
'L
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4.0 EVALUATION CRITERIA

This section develops a mathematical expression for evaluating the

performance of the BETA self-correlation function. The assumptions lead-

ing to the evaluation criteria are first identified, then the expression

is given and discussed.

Typically, the way to investigate the performance of an aid like

BETA is to study the types of errors it may make and the tendancy to make

them under various conditions or scenarios. In BETA there are two types

of errors that can be made: type 1 and type 2. A type 1 error occurs

when two reports are not correlated and they describe the same entity. A

type 2 error occurs when two reports are correlated and they describe two

unique entities. To specify the performance of self-correlation for a

given scenario and correlation event is to give the probability of making

a type 1 and type 2 errors. The concept of a "correlation error" becomes

more complicated when one of the reports, i.e., the candidate, of a cor-

relation event is an updated report and conceivably describes more than

one entity. If the candidate report describes two or more entities as

one entity, then correlating or uncorrelating it with a subject report

results in one or more type 2 or type 1 errors, respectively. For exam-

ple, suppose reports A and B describing entities ea and eb , respec-

tively, are merged into a candidate report C. Further, suppose report S

describing entity eb is to be correlated with C. If they are corre-

lated, the effect is to correlate S with A and B, resulting in a type 2

error. If they are uncorrelated, then S is effectively uncorrelated with

A and B for one type 1 error. Note that if the candidate report is an

updated report, then both types of errors may apply for a given scenario
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and correlation event. If the candidate is not an updated report, thon

only one type of error will apply.

In the remainder of this paper, it is assmed the candidate and sub-

ject are not updated reports. The primary reason for this assumption is

that an evaluation methodology of BETA sel f-correlation whien updated

reports are present will depend on how measurements frtm two reports are

combined when creating an updated report. It is not clear how this is

done.

The value of an aid like BETA is reflected to the extent undesirable

events are avoided and desirable events are encountered through its use.

Normually the value of an aid is the extent to Which it reduces some kind

of average or expected "costs" through its use.

We assume here that a functional relationship exists between cost

reduction and performance improvement of BETA. Thi s means we can study

the probability of correl ation errors and, through a functional rel ation-

ship, determine the associated costs. If we make the additional assump-

tions that costs resulting from a correlation error are additive and all

pairs of reports are put through the correlation process, then we can

write the expected cost of errors in a given scenario, S, as

C(S) - Cij 'p~j

where

PUj(S) a probability of making a type 1 or type 2 error

(only one will apply) when correlating reports i and j

wnder scenario S, and
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Cuj(S) uthe cost associated with making the error indicated

by P j(S).

Although this additive form is not necessary for evaluation, the

dependency of expected costs solely on the probability of making type 1

and type 2 errors is desirable in order to simplify the problem to that

of determining the probability of making these errors.

To evaluate the performance of BETA over a class or distribution of

scenarios with commensurate costs, the overall expected cost is:

C * C(S) P (S).

S

where S is stsmed over all scenarios in the class or distribution, and

P(S) is a weighting factor reflecting the relative likelihood or

probability that scenario S might occur.

The degree to which the use of BETA reduces C(S) or C is a mneasure

of its value.
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5.0 PROBABILITY OF CORRELATION ERRORS

To evaluate BETA self-correlation, we have assumed a cost function

dependent only on the probability of making type 1 and type 2 correla-

tion errors. This section developes a mathmatical expression

for calculating these probabilities.

Given the scenario, everything is specified except the actual meas-

urements made by the sensors which are probabilistic in nature. This,

in turn, implies a probabilistic behavior in making correlation errors.

The probabilistic nature of a sensor is given by the general probability

function' f(m1, m2 ,..., mSI al, a2,..., a5 ) which gives the

relative likelihood the measured values of observables 1, 2, ... , 5 is m1 ,

m2, ... , m5 given the actual values are a1, a2, ... , a5, respectively.

Although not explicitly stated, this function may well be dependent on other

aspects of the scenario (like weather).

The dynamics of an observable i from a particular entity is given by

its actual value as a function of time or a1(t). The probability of a

type 1 or type 2 error in correlation is P(H < h) or P(H > h), respec-

tively, remmbering that only one type of error will apply. The

expression for a type 1 error is:

P(H c h) "

E "'.g(vj' v2 ... , vS),

vj: djv1  v2: d2 v2  vS: d~vS
< h' < h* - dlv 1"" < h* - djv1 " ... " d4 v4

1A general probability function may be a probability density function
if the variable Is continuous, a probability mass function if the
variable is discrete, or a combination of both.

.

--- - :, -. . .. . ... . .. . . . . ... .. .. . . . .. . o = .... . .| i l"''*" " ' I " .. . .. ..
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where h* = hEd t over i e I I is set i such that observable I has

been measured in both candidate and subject reports, and g(v1 , v2 , ... , vS )

is the Joint general probability functionI of the statistics v1 , v2 . ... , vS

given the scenario and the two reports involved. Note that depending on

the set 1, some of the sums above and parameters of g may not appear. An

expression for 9 in terms of the target dynamics, i(t) and sensor(s)

performance, f(i i(t)), where i (m m2 , ... , mS) and

7(t)- (al(t), ., aS(t)) is:

g(-~)- _~ J i(t)) f(ici ic(tc)),

such that

V (M, ic) = .

The subscript c represents values associated with the candidate,

no subscript refers to the subject, and 7(1, ic ) is the vector with

components V1(m, mc ) that represents the functional rel ationship between

statistic V1 for observable type i and the candidate and subject esti-

mates of the observable. Finally, t has a special meaning here: it

represents the interval of observation during which the sensor is collect-

ing information to estimate the observables. Note, that in the above, the

sensors are assumed to operate independently.

The probability of making a type 2 error is simply 1 - P(H < h)

under the real ization that the two reports now describe separate

entities.

1Thus for the continuous statistics the corresponding sums above is replaced
by an integral operator.F
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To sumarize, we will briefly review what has been don, mathemati-

cally above.

The criteria for correl ating tw reports depends on the valuie of a

statistic H. Thus, the probability of making a correlation error depends

on the probability the statistic has a value that leads to the wrong

conclusion. The probability distribution of the statistic depends on two

things: the scenario, which Includes the system dynamics and all thres-

holds, and the measurement capabilities of the sensors. These factors

define a Joint probability distribution of the component statistics which

is the function g(v). To determine the probability of making a

correlation error, we simply sum g(i) over all possible values of

the component statistics, which leads to a value of the overall

statistic H that produces an erroneous conclusion.
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6.0 USES OF EVALUATION NEIODLOGY

There are a nuber of winys the evaluation methodology could be used

to improve the performance of BETA sel f-correl ation wnder given scenar-

ios. Same of these uses are described here.

There exist numerous thresholds and weights in BETA which are tD be

determined by some means. Using the evaluation methodology presented

here, values for these parameters could be determined for a given cost

function and scenario or set of scenarios. The approach is obvious:

determine the values of the parameters which minimizes the expected cost

function.

The selection of better statistics than those used in BETA could be

made using the methodology by selecting those statistics which produce

lower expected costs for a given set of scenarios. In fact, the method-

ology could be used to develop optimal statistics in the sense of mini-

mizing expected costs. The optimal threshold statistic (like the "N"

statistic of BETA) and optimal threshold value can, in theory, be deter-

mined from the target dynamics, sensor performance anid cost function. Of

course, the difficult part is characterizing sensor performance and the

target dynamics under the scenarios of interest, and developing a reason-

abl cost function.

Finally., the methodology can be used to answer questions concerning

the value of information. Simply put, the expected value of obtaining an

additional item of information is the expected reduction in costs that

results in obtaining and using the information.
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MPENDIX A:

FIGURE-OF-MERIT STATISTICS IN BETA SELF-CCRRELATION

The following describes the figure-of-merit (FOM) statistics of the

BETA self-correlation algorithm. First, the variables used in the calcu-

lation of the FOMs are defined and then the mathematical expression for

each FON is given. There are two reports: the subject (a new report)

and the candidate (selected from a data base of old reports).

Variables

X,Y - location estimate;

U - frequency estimate;

W = pulse width;

R - pulse repetition frequency;

a - first time entity observed; and

b - last time entity observed.

Variables with no subscript are estimates of the subject. Variables with

a subscript of c, e.g., Xc , are estimates of the candidate. A variable

can be "unknown," which means the variable was not estimated in the

report. If a variable is unknown, a FO4 is not calculated fbr the

variable.

Figure-of-Merit Calculations

The figure of merit statistic for variable i is given by V1. The

mathematical expression for each variable follows.

Location

c
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where

E Variance - covariance matrix of (X,Y);

" "Variance - covariance matrix of (Xc,Yc).

I -,lu -uc 1<12
lu -u -. I, I u - U c I_. £2

V2  1 U - Uc L 2 9 '2 11 u - uc Z

2 -L2

Pl otherwi se.

where -2 and n2 are given parameters.

Pulse Width

1 W - Wc -&£3

3w. - Wc j- .3 £3 .j1 W - Wc IM3
V3 11-

0 o otherwise.

where Z3 and m3 are given.
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Pulse Repetition Frequency
I ,/2 - Rc

41- R/2(1 - R/2 <Rc (1 + i%) R/2

R R/2

* 1- R4-  , (1 -i <)R_< c _ c(1 + %) RVm 4R

2R - Rc
24 R , 2 (1-v%)R <Rc 2 (1 + m4)A

0, otherwise,

where m4 is a given parameter.

Time

1 , a< ac< b or a < bc< b or

ac<a < b _< bc

V5  1 - (ac - b)/n 5  , b < ac < b+ s

1 - (a - bc)/1% , b - i% < bc < b

0 , otherwise

Exhibit A-la through A-le graphically Illustrate the dependence of V1 on

the variables defined above.

I
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EXHIBIT A-1: ILLUSTRATION OF FOMS

V1 V2

0 R2U UcI

a. location b. frequency

V3  V5

133W WCI a -bc m5 M ac~ 8 b

c. pulse wdth candidate ends candidate starts
before subject after subject

begins ends

oberations
overlap in

timie

e. time

4 

R.

d. pulse repetition frequency
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