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ABSTRACT

Wide classes of high order "viscosity" terms are determine, o- r c%

small amplitude shock wave solutions of a nonlinear hyperbolic system of

conservation laws u + f(u) - 0 are realized as limits of traveling wave

solutions of a dissipative system ut + f(u)x - VDu x ) +

+ Vn (D u (n)) . The set of such "admissible" viscosities includes those for
n x

which the dissipative system satisfies a linearized stability condition

previously investigated in the case n - 1 by A. MaJda and this author.

When n - 1, we also establish admissibility criteria for singular

viscosity matrices D1(u), and apply our results to the compressible Navier-

Stokes equations with viscosity and heat conduction, determining minimal

conditions on the equation of state which ensure the existence of the "shock

layer* for weak shocks.
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SIGNIFICANCE AND EXPLANATION

SMany equations of mathematical physics take the form of nonlinear

hyperbolic systems of conservation laws. With small dissipative effects

neglected, typically smooth solutions must develop discontinuities (shocks) in

finite time. R-incorporating dissipation helps select those discontinuities

which are physically relevant. For this purpose, many different sorts of

dissipation will do; in particular, the physical viscosity is typically

degenerate and not convenient.

In this paper-mv provide an understanding of what high order viscosity

terms smooth the physical discontinuities. A natural class of-admissiblew -

viscosity terms is determined based on a simple linearized stability

criterion. In addition,wdetermine a class of degenerate second order

viscosity terms of physical type which are admissible. These results are

applied to the equations of compressible fluid dynamics, to determine what

conditions ensure the existence of the shock layer vith viscosity and heat

conduction. This should be of interest to others interested in general

equations of state for compressible fluids, such as those investigating phase

transitions.

The responsibility for the wording and views expressed in this descriptive

suary lies with NXC, and not with the author of this report.



BYAWlA VZCOSZZES AND SHOCK PROFZZZS
FOR SYSS OF CONSUVATION LAWS

Robert L. Pogo

11. jntroduction

Consider a hyperbolic system of m conservation laws in one space dimension,

(1.1) f(u)x - , U

The problem we consider is to determine those matrix n-tuples (DI, ...,Dn ) with the

following property: A simple discontinuous solution of (1.1) in the form

UL x¢at

(1.2) 
u(x,t) =

UR x > at

V x-st
Is the limit of smooth traveling wave solutions u = U( ) of an "approximating" system

of higher order,

(1.3) a + f(U) - V(D u ) 4 ... + V (D v(n)
t lxx n x

as v + 0 if (and only if) the solution (1.2) satisfies a suitable entropy condition (see

Section 3). Such an n-tuple is called admissible. A solution (1.2) is called a shock wave

if the entropy condition Is satisfied. (1.2) Is a weak solution of (1.1) precisely when

the Rankine-Nugoniot jump conditions are satisfied:

(1.4) f (ut ) - f (uL ) - S (uR -u L ) - o.

The traveling wave solution U(-) of (1.3) is called a shock erofile. with

- (x-st)/v. U() Is required to satisfy the system of ODEs

(1.5) f(U) - f(u a (U - u DI  * + + D Al

L UL)DI dt 3

Sponsored by the U.S. Army under Contract No. DAMG290-C-0041. This material is based
upon work supported by the National Science loundation under Grant No. NCe-7927062. mod. 2.
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together with boundary conditions

uR  as C.

(1.6)

djUd 0 as C. :* , J-"1,..., n-1I.

Dj may be a smooth function D j Cux...u(n'1)) for J - I,..., n.

A system (1.3) may naturally be associated with (1.1) in several way.. Physically,

(1.1) often arises as a model for a system with mall, high order viscosity and/or

dispersion terms. Prototype examples are the compressible Navier-Stokes equations in one

space dimension, and the XdV-Srgers equation Ut  Cu /2) + V u XX+ I u secondly,

weak solutions to the Cauchy problem for (1.1) are not unique, and one hopes to identify

unique solutions mathematically as limits of solutions of some regularied equation. Nigh

order terms may be associated with (1.1) in a third way: given a finite difference

approximation to ( 1), it often approximates to better accuracy solutions of an equation

with additional dissipative and dispersive terms 5].

We assu e that the system (1.1) is strictly hyperbolic, so that if Au) - 3f/Bu is

the Jacobian matrix, A(v) has m distinct real eigenvalues, ordered XI(u) < ... < A (u)

with corresponding right and left eigenvectors rk(U) and Lk(u) k satisfying

(A A i )r Cu) - 0 A - ) I k(u) - 0
z jk j a kj

An eigenvalue Xju) is called genuinely nonlinear (reap. linearly degenerate) if

VXj r (u) does not vanish (reep. vanishes identically).

The problem above originated with Gelfand (2], who suggested that the entropy

condition singles out those simple discontinuities (1.2) which are limits of traveling wave

solutions of parabolic systems associated with (1.1) (the case n - 1 here). In more

concrete form, the investigation of the "shock layer" in gas dynamics dates back much

further (see (31 ). most previous work on the problem has been for the case n = 1j however,

Shapiro (91 and Smoller and Shapiro (101 have obtained some results in the case n - 2,

assuming genuine nonlinearity.
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The present work Is based on the analysis (for the case n - 1) of Najda and Pego [6],

who describ, a natural algebraic condition on the viscosity matrix D - 0, called strict

stability, and show that any strictly stable matrix Is admissible for all weak shock@

(Iu.-l small). They also obtain conditions which characterise (up to a degenerate

class) those matrices admissible for weak k-shocks (those associated with a particular

sk' 4s 3).

This paper extends the analysis of [61 in two directions. First, admissibility

criteria and a notion of strict stability are developed for n-tuple (D 1 , ... # D.) for any

n (sections 2 and 3). Second, admissibility criteria are established in the case n - I

for singular viscosity matrices D(u), typical in physical systems (section 4). Indeed, in

the last section we apply our results to the copressible Savier-Stokes equations of gas

dynamics, determining minimal conditions the equation of state must satisfy to ensure the

existence of the shock layer for weak shocks, and to ensure that the stability condition

holds.

12 Stable viscosities for strictly hv"erbolic system.

Following (61, the notion of stability for an n-tupla (D o n ) may be motivated as

follows: Linearize (1.3) at a constant state u, obtaining

(2.1) ut + A(Uo)ux . VDIuxx + ... + vnDn u(n+l)

If (1.3) ts to be a good approximation to (1.1), a reasonable requirement to be imposed is

that the Cauchy problem for (2.1) be strongly well posed, independent of V as V 0

In L
2

, using the Fourier transform gives this notion an algebraic interpretation:

Definition. We call the n-tuple (DI,.... Dn ) stable for (4.1) if for each T > 0 there

exists C(M) such that

(2.2) sup I exp t(-iEA(u )-VF2O I + ... + v n(iM)n+ D n1 C(T)

v)0
real

We denote by Sn(uo) the set of stable n-tuples, considered topologically as a subset of
2

IPM An n-tuple in the interior of Sn (uo ) is called strictly stable at u o .

-3-



Remark. Introduce the matrix polynomial

NO - -iA(u ) - 2 D + ... + (i n+) Dn

The condition (2.2) in equivalent to the condition

(2.3) sup I exp tP(C) 1 4 C
t)O

€ real

This section is devoted to describing the structure of the set of stable n-tuples.

Sowever, we point out that a major objective of this paper is to prove the following:

Theorem 2.1 Suppose the n-tuple (Die.... n ) is strictly stable at u0 . If n is even,

also assume in Is nonsingular. Then (Di,...,Dn ) is admissible for all shocks in some

fixed neighborhood N of u0 . That is, If uL and uR are in N and satisfy (1.4),

then a corresponding shock profile solution of (1.5), lying in N and satisfying (1.6),

exists if and only if Liu's strict entropy condition (2) (see 13) is satisfied by the jump

(1.2).

This theorem is a corollary of Theorems 2.3 and 3.1 below. We state here another

corollary of Theorem 2.3, giving a convenient sufficient condition for strict stability:

Corollary 2.2. An n-tuple (Di,...,Dn) is strictly stable at u0  if there is a positive

definite symmetric matrix 2 such that UFt(u 0 ) Is symmetric and

i) gD is symmetric if j is even

ii) RDji
1 Is positive definite if j is odd

If n is even, we also require that On has distinct eigenvalues.

The basic result of this section is Theorem 2.3 below, which characterizes strictly

stable n-tuples. Theorem 2.4 cmpletes the description of the set of stable n-tuples for

odd n. The difficulties encountered in trying to extend the result to even n are

analogous to those involved when (1.1) is not strictly hyperbolic.

Theorem 2.3 The n-tuple (DI,...Dn ) is strictly stable at if and only if the

following conditions hold:

i) LkDlrk(uo) , 0, k-

1i) If + 0, then P(C) has no purely imaginary eigenvslue.

iii) a) If n is odd, the eigenvalues of Bn
in
'

1  
have positive real part.

-4-



b) If a is even, the elgenvalues of On  are real and distinct, and if

. k  and r denote corresponding left and right elgenvectors

(with £ -r; , a1 } ) then I kD 2 r i n 2 ± O.

Theem 2.4 The set %(% ) of stable n-tuples to the closure of its interior if n is

odd.

In the rest of this section, we prove 2.2-2.4. We begin by developing necessary

criteria for stability. If (2.3) holds, then the elgenvalues of P(C) must have

nonpositive real part for all real t. Using this principle, we may establishr

Proposition 2.5 Assume (D11 .... OD) is stable at uo . Then

i) (LDlru(uo) ) 0, k =

ii) Wor any eigenvalue K (M) of WO, aK j(C) i , ,

ti) a) If n Is odd, the elgenvalues of Dnin1 have nonnegative real part.

b) If n is even, the cigenvelues of Dn are real, and if they are

distinct, then D 0; n- > 0. k ,... (notation as in 2.3 tii b).

Proof. it) is Immediate. For convenience, we define

3(O) - -P(tane)(coso)n/tane

- (cos) tI A(uo ) + sinO(cose)n-lD ... + (sne) ni n'D n

From Ji) and continuity, the eigenvalues ,p (0) of S(e) satisfy

(sinS)Re Pj(0) > 0 , -w/2 ( 8 4 w/2 , j -

setting 0 - + 1/2 vs obtain iLi a) and part of III b). For i), 9(0) - IA has distinct

eigenvaluee, so for small 6 there exist smooth eigenvaluee POO) and elgenvectors

(O), with Uk (0) iXk(uo), ROO) - r k(0), satisfying

(ae) - k(O)) O) - 0

Itferentiate, set 0 - 0 and dot with t(o), obtaining

IkD Irk(u) - 0;(0)

whence i). For iii b), a similar procedure played at S - w/2 yields

i
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Proof of 2.3: The necessity ot the conditions is easily established for the most part, by

considering scalar perturbations of DVD Dn_ 1 as appropriate. To show that Dn must

have distinct eigenvalues when n is even, we remark that a Jordan block for a single

multiple eigenvalue may be perturbed in the (1,2) and (2.1) positions so as to give rise to

complex eigenvalues.

The sufficiency of the conditions is established as for the case n - I in [6), using

the Kreiss matrix theorem, and the fact that S(8) may be smoothly diagonalized for 6

near 0 (and for 6 near + %/2 if n is even).

Theorem 2.4 follows directly from 2.5 and 2.3. For if n Is odd and (D 1,...,D n ) is

stable, then it is easy to check that (DI+61,D2 ....Dn.1'Dn + i t161) is strictly stable

for any 6 > 0.

Proof of Oorollary 2.2. Observe that if N is any real symetric matrix, and z a

complex vector, then zn Is real. Also if N Is positive definite, but not necessarily

symmetric, then Re(z*Nu) ) C 2 
2 Now suppose (M(e) - U (8))z = 0. Then

Re M (8) * 3032 -(cose)n I (tanG)
j 
Re zEtD i

1
Jz 

j odd

So for -w/2 <e < x/2, Re u (8) + 0, so ii) of 2.3 holds. Also, for 0 > 0 small,

Re 1 (0) )C e, so q (0) = DIr k > 0, and I) holds. Similarly, if n is even, iii b)

holds, for then

Re 1 (8) s*Zz- (sine)n I (cote)
n 'j 

Re z*ED IJ'1z
j odd

) C(w/2-0) for w/2 - 8 > 0 small.

13 AdmissIbIlItv for weak k-shocks.

In this section we characterize, up to a degenerate class, those n-tuples

(D'...'D n. ) which are admissible for weak shocks of a particular family. As in [6], the

center manifold theorem is used to find a trajectory connecting critical points in an

appropriate system of ODfs.
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We begin by defining Liu's strict entropy oondition. First consider the structure of

the RBuonlot set of solutions of the Rankine-Hugonlot conditioms (1.4). Fixing UL, the

local structure of this set is well known [11 In some neighborhood of uL the possible

solutions u lie on m curves, % " kU P), k - I, ...., passing through UL With

corresponding shock speeds a - k(p), k w 1,...,m, satisfyi7g
- s kco)-

u0)u 0U -a )Ak.)

-kk
d, dos

(3.1) -(0) - rk (uL) -(0) -1/"k* (L

P - ik(u L ) . ( )k(P}-uL)

Liu's strict entropy condition for a k-wave (1.2) with u3 - u (P ) is that

a() a k(p) > a - k (PR) for P between 0 and P R

if A (u) Is genuinely nonlinear and IuL-uI small, this condition is equivalent to

Lax's shock inequalities (see [61).

Theorem 3.1 Fix u 0  IF and k, 1 4 k mi. Assume k k(u) is not linearly degenerate

in any neighborhood of u0 . Assume that the n-tuple [D,,..,Dn) satisfies the following

nondegeneracy conditions at uo:

i) Dn is nonsingular

ii) zkDlrk + 0

iI) -9(t-A k )(U)g2DI + ... + (IC)n+ID n  is nonsingular for all real + 4 0.

Then the following are equivalents

1) 1kDrk(u o) > 0

2) The n-tuple (D1 ,...,D n ) is locally admissible for all k-shocks in a neighborhood

of uo . That is, there exists 6 ) 0 so that if uL and an in S(u o) satisfy the jump

conditions (1.4) for somes - a (P ), then a shock profile lying in n6 (u o ) exists

connecting uL to alt if and only if Liu's strict entropy condition s(9) Is satisfied.

Theorem 2.1 is an imediate corollary of this theorem, using 2.3. We proceed to the

proof of 3.1. Our first step is to rewrite (1.5) as an equivalent first order autonomous

system of ODls. introduce variables - u( J  for j - 0,a...,n-1 and introduce the

-7-



parameters v = and s as additional variables. (1.5) is now written, in block form,

as

0 1
W -W

1 2

.

n

v =0

a -0

The existence of a shock profile satisfying (1.6) corresponds to the existence of a

trajectory of the systm (3.2) connecting the critical point (uL, 0.-.0, UL, a) to the

critical point (u., 0 ...O0, 11L, a). Our analysis in based on the description of the center
manifold of (3.2) at the critical point (u., 0 ...0, U., .(u.

______ 'C))'

Without loss of generality, assume uo - 0, \(u) - 0. For convenience, introduce

the colum vector W - (wO-v,wl,...,wI
e

lv
e

), so that V
° - w°-v. Then (3.2) is written

(3.3) w - T(W)

For the statement of the center manifold theorem, consult (6]. To apply the theorem,

it suffices to describe two invariant subspaces for the linearization dT at the critical

point 0: algebraic eigenspaces corresponding to eigenvalues with zero and nonzero real

parts, respectively. To calculate these, compute, in block form on nx ' x R,

C°  0 0

(3.4) dT(0) 0 0 0 0

0 0 0

where C0 is a block companion matrix,

0 I 0 0

0 0 I 0

000 I

Dn1  
-D'1 Dnn-1 w I

D- I A -D- -D DInl I n -1 lJ W 0



since det Dn 40 (and X ku o ) - 0) the characteristic equation for dT(0) way be written

det(-A I+ ... )nD) - 0

Condition i1) of 3.1 guarantees that 4 (0) has no nonzero sigenvalues with zero real

parts. Condition il) of 3.1 guarantees that the zero eigenvalue is semisiaple, that is,

the algebraic sigenspace for dT(0) for the eigenvalue zero is equal to ker dT(0). This

kernel is spanned by a + 2 vectors, (Rk , 0, 0), (0, 0, 1), and (0,r ,O), j -....

Here k = (rk, 0...E0) S e and r - r (0).

Let Y - ker dT(0) and X - range dT(0). Then Y and X are complementary

invariant subspaces corresponding to eigenvalues with zero and nonzero real parts,

respectively. Applying the center manifold theorem, we have (see (61 1:

Prooaltion 3.2 Assume that (Dl,..., Dn ) satisfies the nondegeneracy conditions i-iii)

at u. - 0 with Ak (u) - 0. Then there exists 6 > 0 and a Cr function (r)2)

g I Y + X defined on B(0) r) Y - (y e Yi lhyi 6 so that

1) Me - ( x + y e Ra m+m+1 x - g(y)) is a locally invariant manifold for the system

(3.3).

2) g(O) - 0 and dg(O) - 0. Thus 14 is tangent to Y at 0.

3) Any trajectory of (3.3. which lies in 8a(0) for all E lies in M'. In

particular, critical points of (3.3) in B6 (0) lie in N'.

The connection problem for (3.2) is Inuediately reduced to one for a scalar equation

as followes Define a line in Y parametrized by y(n) - (nR.,UL, S). The curve

W(n) I yWn) + g(y(n)) lies in M* while- Jy(n)J < 6, and is itself locally invariant

for (3.3), because v and s are constant, while g, mapping into X, is of the form

g(y(n)) - (G(n,uL,*),O,O), G e Returning from W to the (w,v,s) coordinates of

(3.2), we find that the system

0 1
wc w

(3.5) 1 2w 
w

wni- D71 (fWC f ( -w0
cUL - I

w~ n )fUL)swuL i.i

-9-
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or w - T(w) admits an invariant curve

w(n,uvs.} - (Uenrk,O ... o) + G(n*,o)

so long as Iy "I)-lrkI 
+  u L u 1o + Is - k(U)1 < a. It follows from part 3) of the

above proposition that the point (uto 0... 0) lies oan this invariant curve if

uR 6 s(u o ) and (1.4) holds.

The flow on the invariant curve w(n,u V8) is now determined by a scalar equation for

(3.6) n- F(n.UL to)

where F is determined from the relation

w F(n,u L, ) - T (w(n,u Ls)

The remainder of the proof, an analysis of the connection problem for the scalar

equation (3.6), is virtually identical with that presented in [6] for the case n = 1, and

is omitted.

d. missibility for singular viscosity matrices

Ps mentioned in the introduction, viscosity matrices in physical systems are usually

singular. In this section we establish quite general admissibility criteria for weak

k-shocks for such singular viscosity matrices D(U) (in the case n-1). Our result will be

applied in the next section in a physical example, the compressible Naviar-Stokes

equations.

In the case n - 1, with D - D1 (u), a shock profile U(E) must satisfy the system

(4.1) D(U)U - f(U) - f(uL) - s(U- 1 )

and boundary conditions

U(E) + uL as E -',U(C) u as t +

Theorem 4.1 Fix u0 e IF and k, 1 ( k 4 m. Assume Ak U) is not linearly degenerate

in any neighborhood of uo . Assume the viscosity matrix D - Dl(u) satisfies the

following conditions:

i) D(u) has constant rank in a neighborhood of uo

i) 'rk(uo) + 0

-10-



since dot Dn +0 (and X k W 0 0) the characteristic equation for dT(0) may be written

A 0+1 det(-A+AD ... + n) 0ha n ozr

Condition i1) of 3.1 guarantees that d?(0) has no nonzero gigenvalues with zero real

parts. Condition 11) of 3.1 guarantees that the zero elgenvalue is seuisimple. that Is.

the algebraic eigenspace for dM(O) for the eigenvelue zero is equal to ker dT(O). This

kernel Is spanned by m + 2 vectors, (Rk, 0, 0), (0, 0, 1), and (OryeO), i - 1....

Here 3k - (r , 0...o) 6 
n  and r - r (0).

Let Y - ker dT(O) and X - range dT(O). Then Y and X are complementary

invariant subspaces corresponding to eigenvalues with zero and nonzero real parts,

respectively. Applying the center manifold theorem, we have (see [61):

Progsition 3.2 Aasme that (DI,..., Dn ) satisfies the nondegeneracy conditions i-iii)

at % -0 wIth Ak(Uo, 0. Thenthereexists 6>0 anda Cr function (r>2)

g Y + X defined on 3 (0) r Y - [y e yI lyl < 5 } so that

1) H. - { x + y e un  I x - g(y)) is a locally invariant manifold for the system

(3.3).

2) g(0) -0 and dg(0) - 0. Thus N is tangent to Y at 0.

3) Any trajectory of (3.3) which lies in B6(0) for all C lies in Me. In

particular, critical points of (3.3) in Ba(0) lie in K'.

The connection problem for (3.2) is imediately reduced to one for a scalar equation

as followas Define a line In Y parametrized by y(n) - (nR.,kuL'8). The curve

W(n) - y(n) + g(y(n)) lies in N' while ly(n)l C 8, and is itself locally invariant

for (3.3), because v and a are constant, while g. mapping into X, is of the form

g(y(n)) (G uLO *)0'0)' G e Returning from W to the (w,v.s) coordinates of

(3.2), we find that the system

0 1
WC w

(3.5) 1 2
w n-WC

nv1 V -1 (f(w)-f(UL)-(w -L) D j )
WC n jai

i-I



or w. n ;w) admits an invariant curve

W(1,uLs) a (uLCI+rkO...0) + G(n,u,@)

so long as IY()I - Inr I + lu - u I + Is (a 8. It follows from part 3) of the
k L 0 0

above proposition that the point (u3 , 0...0) lies an this invariant curve if

Ul 6 a (u) and (1.4) holds.

The flow on the invariant curve w(n,uL, a) Is now determined by a scalar equation for

1~~~3.6) ln s

where P is determined from the relation
w "(n,uL s) - T (w(n,u Ls))

The remainder of the proof, an analysis of the connection problem for the scalar

equation (3.6), is virtually identical with that presented in (61 for the case n - 1, and

is omitted.

14. Admissibility for singular viscosity matrices

as mentioned in the introduction, viscosity matrices in physical systems are usually

singular. In this section we establish quite general admissibility criteria for weak

k-shocks for such singular viscosity matrices D(u) (in the case n-1). Our result will be

applied in the next section in a physical example, the compressible Navier-Stokes

equations.

In the case n - 1, with D = D(u), a shock profile U(C) must satisfy the system

(4.1) D(U)U = 
f(O) - f(UL) - s(T-uL)

and boundary conditions

(9) + as * -an () u as

Theorem 4.1 Fix u 0 IF and k, 1 4 k 4 m. Assume X. (u) is not linearly degenerate

in any neighborhood of uo0 . AssuMe the viscosity matrix D - D1(u) satisfies the

following conditionst

i) D(u) has constant rank in a neighborhood of u0

ii) LkDrk(uo) + 0

-10-



ill) For all real r, the matrix [i/(A-Y-D (u) Is one to one on the

subspace Z 0 •2 , where

z 2 - {v S 1rI(A-\)(%)v e range D(%0 ))

Then the following are equivalent:

1) £ kk (u 0 ) >0

2) D Is locally admissible for all k-shocks in a neighborhood of s. That it, there

exists 6 > 0 so that if a and u in B,(u) satisfy the jump conditions (1.4) for

one 0 .*k(P ), then a shock profile lying in 34( o ) exists connecting aL  to uR  if

and only if Liu's strict entropy condition &MN) I# satisfied.

The main steps in the proof of this theorem are the same as those for Theorem 3.1

above, or Theorem 3.1 of (6]. The difference is that it is a more delicate matter to

obtain an autonomous system, like (3.2), to which the center manifold theorem may be

applied. Our approach is to use an algebraic condition implied by (4.1) when 0 is

singular to eliminate some variables, then obtain an autonomous system for the remaining

variables.

As before, introduce v = u L  and a as variables, writing (4.1) as

D(U) U - fCC) - f(v) - s(U - v)

(4.2) vC 0

s " 0

We motivate our elimination procedure in the case that D is constant, f linear and

s - Ak (u ). Then (4.21) is consistent only if P(&-s)(u-v) - 0 where P Is a

projection with ker P - range D. write u - w+v for w in ker P(A-a). In order to

reduce (4.21) to an equation for w , we should require that D : ker P(A-s) + range V

be one-to-one. Note that this entails Drk + 0 and Ik D + 0, for

dim ker P(A-s) - rank 0.

Returning to the case at hand, without lose of generality we assume u 1 0,

k (u ) - 0. Let 21 - range D(0). Recall that D(0) is one-to-one on Z2 from iI),

so dim 22 - dim Z1 - b. We may choose (inductively on dimension) a subspace a3

complementary to both Z, and 221 with dim 23 - m - b. For u sufficiently mall, we

-11-
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may choose a smooth projection P(u) with range Z3  and kernel range(D(u)); note that

ker PM) -X 2

Given (Mv,s) in I2 u+ 1 , write U - U3 . u2 + v, where u3 is in Z3 and u2  in

Z2. We seek to express u3 as a function of (u2,vs), using the consistency criterion for

(4.21),

(4.3) P(U)(f(U) - f(v) - s(U - v)) - 0

We find it convenient to Introduce Isomorphisms

I2 Z I r,-b Z

2  2 3 3ndo rie u '.w 3  -t1;

and to write u2 . 2 W, - 3w. Then we can apply I3 to (4.3), writing

h(w,w,v,s) - 0
,a-b ib x a-b

where h : zx x R x R+R . In block form. the Jacobian matrix of h at

(w 'w v ,s ) - 0 i s - (I PA (0 )1 0 0 0]

since ker PA(O) - Z2. The first component is an isomorphism on Rb , since PA(0) is

one-to-one on Z 3 to itself. Thus the implicit function theorem applies, so that in a

neighborhood of 0 we may write w - w(wvs), and indeed the total derivative

dw(0) - (0.0,01. We may express

U(w,v,s) 13w(w'vs) + 12w + v

and replace (4.21) by the equation

aU
D wqvvv) - f(U(wvs)) - f(v) - N(U(W.v,s) - v)

By construction, the right hand side lies in range (D(U)). The matrix

D au : b 'I, range D is an isomorphism at (wv,s) - 0, so also in a neighborhood, since

D has constant rank. We may find a smooth generalized inverse

(D 1) t (wvs) I 
b

so that (D "-)w(D -) - I in . We have reduced (4.2) to an autonomous system in

x -x R



Sa (D a~t(f(U(wv,8)) - f(v) - s(V(vvs) - v)

(4.4) vC - 0

84 -o0

which we write W, - T(W) for the variable V - (wvs).

We proceed to apply the center manifold theorem to (4.4) at W- 0. In block form,

since (3U/3w)(0) - I and (OU/Sv)(0) - I in we have

2o

dT(O) - 0D0

0

Condition iII) of the theorem implies that dT(0) has no nonzero imaginary eigenvalues.

spanned by 3 + 2 vectors (0,0,1), (O.rj.0), j 1 1, ... ,m, and (R,0,0), where 1 2 R - rk.

So, defining Invariant subspaces X - range dT(O), Y - kar dT(O), ws apply the center

manifold theorem as in 13 to obtain:

Proosition 4.2 Assume that D(u) satisfies the conditions I-ilu). Then there exists

6 > 0 and a Cr function (r)2) g . T + X defined on 8a(O)nY in R' U so that

1) W - (xsy R b+m+lI x - g(yl) Is a locally invariant manifold for (4.4).

2) g(0) - 0 and dg(0) -0. Thus Ke is tangent to Y at 0.

3) Any trajectory of (4.4) which lies in B6(0) for all 9 lies In N*.

As in 13, the connection problem for (4.1) is immediately reduced to one for a scalar

equation: Define a line in 7 by y(n) - (nl, uL,s). The curve W(O) - y( ) + g(y(n)) is

locally invariant for (4.4), meaning it is composed of solution curves. The curve

U(W(r)) to then composed of solution curves or (4.1). We may write this curve

U(nUL.P) - UL + k(o) + G(rL's)

where G - 13 w (nR+g(y(n)),uLs) + 12 g(y(n)). Vote that G(0) - 0, dG(0) - 0.

If uN is in Ba(0) , and satisfies (1.4), then uR - U(wRuUL*,s) for some wR, and

(wRuL,e) is a critical point of T(W), so lies in M*, hence on W(n). 7hus for some

R'I

-13-
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The flow an the Invariat curve U(fl~u .s) to determined by a =&alar equation

where
D(U) U, P(w.UL's) -~u - fL)- *U%

The remainder of the proof is identical to that for nonsingular D(u),* and my be found In

15. Weak shock layers In compressible fluid dynamics

Hlere we use 'Theorem 4.1 to obtain very week condition~s on the equation of state In the

compressible Wavier-Stokes equations in one space dimension which guarantee the existence

of weak shock profiles. We also make a brief remark concerning the linearized stability of

these equations.

In Lagrangian coordinates, the equations are written In conservation form as

--v -o
t x

+ (pv) - ( vv ) + 0
t x T x x T xx

Raere st is the Lagrangian mas coordinate, t Is time, T is specific volume, v in

velocity, p Is pressure. e Is temperature,. Iis energy density per unit mass, and

p and Kc are, respectively, the coefficients of viscosity and heat conduction.

& - a + v 2/2, where e is the internal energy per unit mass. We assume that T and 0

determine the thermodynamic state of the material, and that e and p are given by

sufficiently smooth equations of state, e - *(T,O), p - p(r,O). p and K are positive,

and may also depend smoothly on T and S. T, 6, and p are positive.

We assume that the specific heat at constant volume is a positive function:

(5.2) c(r,O) - e6 Cr,O) 0

So 6 O (i,e) and with u -(T,v,EZ), (5.1) my be written In the form

(S.3) ut + f(u) - (D(U)ux~

-14-
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We @hall mee presently that the equation ut + 1(u) x  0 with diffusion of heat and

smmentom negloted (v-irO) is strictly hyperbolic if and only if

.2
(5.4) 0 < -dP/dT 8 constant a

Nere 8 denotes the entropy, and a - S(T,S). This function is related to a and p

through the Gibbs relations,

(5.5) ads - de + pdT

Our main result below is that no additional conditions are required to ensure the

existence of shock profiles for weak shocks. (The situation is different for stronger

shockso see [M].)

Theorem 5.1 Fix u 0 - Cr a ao) 6 It 3 , T O and assume that (5.2) and (5.4) hold at

u T. Then there exists 8 3 0 so that if uL. uR and a satisfy the Rankine Rugoniot

conditions (1.4) with uL' uR in 9,(ua) - (ul Ju-u o < 8), then a shock profile solution

u(x-st) of (5.3) lying in B8 (u0 ) exists connecting uL to uR if and only if Liu's

strict entropy condition a(z) is satisfied.

The study of the "shock layer" in compressible fluid dynamics has a long history.

Most relevant here are the results of Gilbarg [3] and of Liu [4). Gilbarg established the

existence of shock profiles for shocks of any magnitude, under two additional conditions on

the equation of state:

(5.6) 0 < d
2
p/dT

2 
IS constant

(5.7) pa(T,8) > 0

The convexity condition (5.6) implies that the eigenvalues X, - -a and A 3 - a are

genuinely nonlinear. (X 2 " 0 is linearly degenerate. see below.) in that case the

entropy condition has a simple form. Liu introduced an entropy condition appropriate for

the nongenuinely nonlinear case, and showed that, with no heat conduction c - 0), shock

profiles exist for discontinuities satisfying his entropy condition (see 13). This result

holds for strong shocks so long as the Hugoniot curves (see (3.1)) remain regular.

Theorem 5.1 is proved by verifying conditions i-iii) and 1) of Theorem 4.1 for the

first and third wave fields (k - I and 3). Discontinuities associated with the second wave

field, called contact discontinuities, cannot satisfy the strict entropy condition s(S).

-MI S-



Th* J&abian of f(u) takes the form (with V(u) -p(T,O(Ta-v 2/2)))

[0 -1 0 1
PT (~u) pV Cu) P&MI

Vp(u) +pv(u) VP &(u)

The viscosity matrix is

00 0

where ).- /c > 0. The information vs need will be computed after performing a

convenient change of basis (simultaneous similarity transformation of A and D). First,

note that

pT (u) - p (T,O) (U SrO Pu -VOT*.

T 01

it follows that D - T D T - diaq (0,iu,X) and

-10 -1 1
A, . i'A T pT 1 + p e ( ,8) 0 PaCTO

0P'4e T(TOO) 0

The eigenvalues of A, are -a, 0, and a. To see this, compute

(5.8) - P(ceO(r.))T - P (T,e) + p 0(r,e) ae (T.9)

and observe that eTr ('r,S) - -p from (5.5).

Condition i) of 4.1 is obviously satisfied. We turn to condition ii). A matrix R-

Cr,, r 2 - r3) of right eigonvectors of A1 IIs

p-e Pe-

R -6 01 -

P+* T -(p +p 0 T p+%



Thus A1 R - R diag (-ae0. a) and the corresponding matrix of left eigenvectors is

L3 -

L 22  2(p+* 1) 0 2 '2

2a (Pt +p) i:]-a Le1
we compute

LIDtr1 - 3DIr 3 - ( 
2 +p(,t,*)(p+e (T,B))/2,

2

From (S.5) and the equality 2 o8 - SOT  one may verify the thermodynamic Identity

(5.9) OPolT,O) - p + *TiTe}

Also, PS(T,0) PO(Te) a, so

IDr,1 - L3Dtr 3 -(R
2  9,p2 ) /2a2 > 0

and 1) of 4.1 is satisfied. For later reference# we compute

(5.10) a212Dr2 - -X(pT(T,e) + p (T,e)@ (T.9)) - -xpT (T,)

It remains to verify condition iII) of 4.1 for k - I and 3. Take k = 1.

z2- ( ue R3 1 Gu1 -u 2 ) - (ue R31( I+a)u e range D1)

To show iT (A1+4) + D1 II one-to-one on tz 2, it suffices to show (cf(S.10)) that

iT jy: ;:' P . a :ul(:) 0

for an complex a. A calculation similar to (5.8), using (5.9), yields

(5.11) pT (TU) - p (1,0) - *cp (T'es)

Therefore, multiplying by diag (1,1/a) from the left and diag (1/Sc, 1) from the right,

it suffices to show that ITA 2 + D2  Is nonsingular for any T, where

0e ( ZPc D2"2 Pe PO10 X/O

But D2  Is poeltive definite and m ayimetric, so this Is true. So 111) of 4.1 holds

for k- 1. ror k - 3, replace -a by +a in the argment above. This finishes the

proof of Theorem 5.1.
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we conclude with a brief remark concerning the linearized stability condition (2.3),

2
where P(C) - -iCA-C D. Prom Proposition 2.5 and (5.10), & necessary condition for (2.3)

to hold Is that pT (T,G) 4 0. The nondegenerate condition

(5.12) 0 < -pT(TO)

is stronger than (5.4), by (5.?1). Zn fact, 15.2) and (5.12) are sufficient to Imply the

linearized stability condition, a fact used by latsumura and Wiahida in 171 to establish

the full nonlinear stability of the constant state for the compressible Xavier Stokes

equations in three space dimensions. A proof that the linearized stability condition holds

is similar to the proof of Theorem 2.3 for n -1, given in [61.

Acknowledftment

I am grateful for many discussions with Professor Andrew Majda. most of the present

work appears In my thesis, written under his direction at O.C. Berkeley.

-IS-

dl



I] Conlon, 3., A theorem in ordinary differential equations with an application to

hyperbolic conservation laws. Advances in Math., 35 (1980) 1-18.

[21 Gelfand, 1. N., Some problems In the theory of qasilinear equations, Usp. Nit.

Hank. 14 (1959) 87-158, English translation in Amer. Math. Soc. Trans., See 2, no. 29

(1963).

(31 Gilbarg, D., The existence and limit behavior of the one-dimensional shock layer,

Amer. 3. Math 7 (1951) 256-274.

[41 XAs, T. P., The entropy condition and the admissibility of shocks, J. Math. Anal.

Appi. 53 (1976) 78-68.

[51 Najda, A. and Osher, S., A systematic approach for correcting nonlinear

instabilities, Nun. Math. 30 (1978) 429-452.

(61 Najda, A. and Pego, R., Stable viscosity matrices for systems of conservation

laws. Mathematics Research Center TSR #2491, University of Wisconsin, Madison.

(71 Natsumura, A. and Kishida, T., The initial value problem for the equations of motion

of compressible viscous and heat-conductive fluids, Proc. Japan Aced. 55, Ser A (1979)

337-341.

[8) Pogo, R., Nonexistence of a shock layer in gas dynamics with a nonconvex equation of

state. To appear.

(91 Shapiro, R., Shock waves as limits of progressive wave solutions of higher order

equations, Ph. D. thesis, University of Michigan, 1973.

[101 Smoller, 3. and Shapiro, R., Dispersion and shock wave structuoe, 3. Diff. Uqns.,

44(1982) 281-305.

RLP/jgb

-19-

4

____ ____ ____ ____ ____ ____ ___



SECURITY CLASSIFICATION OP THIS PAGE ~ DAM& EZaefeo_
REA INTRCTON

REPO DMIENTAION AGEBEFORE COMPLETING FORM
1. REPORT HUM89"50 12.-iGV .ASSON NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subdle) .TYPE Of REPORT & PERIOD COVERED

Stable Viscosities and Shock Profiles for Summary Report - no specific
Systm ofConervaion awsreporting period

Systems of Conservation Laws ,. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*) S. CONTRACT OR GRANT NUMBER(&)

Robert L. Pego A L~-O l&Robert . PegoDAAG29-80-C-0041
WS-7927062 2 %d 2

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Mathematics Research Center, University of AREA, WORK UNIT NUMBERS
Work Unit No. 1-

610 Walnut Street Wisconsin

Madison, Wisconsin 53706 Applied Analysis
it. CONTROLLING OFFICE NAME AND ADDRESS It. REPORT DATE

April 1983
See Item 18 IS. NUMBER OF PAGES

19
14. MONITORING AGENCY NAME & AODRESS(tf dlflerent ban Contr|hlg Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS& DECLASSI FICATION/DOWNGRAOINGSCHEDULE

16. DISTRIBUTION STATEMENT (of le Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol fhe &be&"# entorod in Slock 20. If dllmemit from Report)

18. SUPPLEMENTARY NOTES

U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, D.C. 20550
Research Triangle Park
North Carolina 27709

19. KEY WORDS (Continue an reveroo aide it ncesear amd Identify by block number)

Shock profiles, viscosity, traveling waves, center manifold, compressible
Navier-Stokes equations, shock layer.

20. ABSTRACT (Continue on reverse side if neoeeeym ad Identity bj block member)

Wide classes of high order "viscosity" terms are determined, for which

small amplitude shock wave solutions of a nonlinear hyperbolic system of

conservation laws ut + f(u)x 0 0 are realized as limits of traveling wave

solutions of a dissipative system ut + f(u) x  I v(D Iux )x + .

D FORM 1473 EDITION OF I NOV SO IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION Or THIS PAGE (Rfwn Date Entered)

........... __........ .... . . . . .. . .. .. . . . . .. ....... .. - - - ; ~~-- ... -- -- -' ... .. .... . '' - " e IJ. .. Ii . .. .. . . ... . .. i E



ABSTRACr (Cotinued)

+ ( n ( ) )x" The set of such "admissible" viscosities includes those tor

which the dissipative system satisfies a linearized stability condition

previously investigated in the case n - I by A. Majda and this author.

When n - 1, we also establish admissibility criteria for singular

viscosity matrices DI(U), and apply our results to the compressible Wavier-

Stokes equations with viscosity and heat conduction, determining minimal

conditions on the equation of state which ensure the existence of the *shock

layer" for weak shocks.


