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Wide classes of high order "viscosity” terms are determined, for which
small amplitude shock wave solutions of a nonlinear hyperbolic system of

conservation laws u_+ f(u)x = 0 are realized as limits of traveling wave

solutions of a dissipative system u + f(u)x = V(D1ux)x + .ae

(n)) The set of such "admissible”™ viscosities includes those for

n
+v (Du o
n

which the dissipative system satisfies a linearized stability condition
previously investigated in the case n = 1 by A. Majda and this author.
When n = 1, we also establish admissibility criteria for singular
viscosity matrices D4(u), and apply our results to the compressible Navier-
Stokes equations with viscosity and heat conduction, determining minimal

conditions on the equation of state which ensure the existence of the “shock

layer”® for weak shocks.
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SIGNIFICANCE AND EXPLARATION

=

Many equations of mathematical physics take the form of nonlinear
hyperbolic systems of conservation laws. With small dissipative effects
neglected, typically smooth solutions must develop discontinuities (shocks) in
finite time. Re-incorporating dissipation helps select those discontinuities
which are physically relevant. For this purpose, many different sorts of
dissipation will do; in particular, the physical viscosity is typically
degenerate and not convenient.

Lk oA

In this paper-we provide an understanding of what high order viscosity
terms smooth the physical discontinuities. A natural class o;{‘adnisslblc')L_-'
viscosity terms is determined based on a simple linearized stability
criteiion. In addition, determine a class of degenerate second order
viscosity terms of physical type which are admissible. These results are
applied to the eguations of compressible fluid dynam;cs, to determine what
conditions ensure the existence of the ;2;;ck layer'j::;h viscoeity and heat
conduction. This should be of interest to others interested in general

equations of state for compressible fluids, such as those investigating phase

transitions.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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STABLE VISCOSITIES AND SHOCK PROPILES
POR SYSTEMS OF CONSERVATION LAWS

Robert L. Pego

!1. Introduction
Consider a hyperbolic system of m conservation laws in one space dimension,
m
(1.1) L f(u)x =0 , uenr
The problem we consider is to determine those matrix n-tuples (D,o...,bn) with the

following property: A simple discontinuous solution of (1.1) in the form

v x < st
(1.2) u(x,t) =
uR x > st
is the 1limit of smooth traveling wave solutions uv = U(x-:t) of an “"approximating” system
of higher order,
n {n)
(1.3) LI f(u)x - “(°1°x)x L TR ) (Dnv )x

as VvV + 0 if (and only if) the solution (1.2) satisfies a suitable entropy condition (see

Section 3). Such an n-tuple is called admissible. A solution (1.2) is called a shock wave
if the entropy condition is satisfied. (1.2) is a weak solution of (1.1) precisely when
the Rankine-Hugoniot jump conditions are satisfied:

(1.4) f‘“n) - !(uL) - '(“R - uL) = 0.

The traveling wave solution U(x:'t) of (1.3) is called a shock profile. With

£ = (x=at)/v, U(E) is required to satisfy the system of ODEs

n
- - - ap M 44
(1.5) £(0) !(“L) s(U uL) D, at 4+ oeee * Dh e

Spongored by the U.S. Army under Contract No. DAAG29-80-C=0041. This material is based
upon work supported by the National Science Poundation under Grant No. MC8-7927062, Mod. 2.
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together with boundary conditions
uL as E +» -»

u(g) »
u, @ £+
(1.6)
de
— 4+ 0 as § + 2= , j-‘,-uo,ﬂ-‘o
aed

=1 gor ja 1,00, n.

l)j wmay be a smooth function Dj (u.ux,...u
A system (1.3) may naturally be associated with (1.1) in several ways. Physically,

(1.1) often arises as a model for a system with small, high order viscosity and/or

dispersion terms. Prototype examples are the comwpressible Navier-Stokes equations in one

space dimension, and the XdV-Purgers equation - (nz/z)x + v L. + L— Secondly,

Ve
weak solutions to the Cauchy problem for (1.1) are not unigue, and one hopes to identify

unigue solutions mathematically as limits of solutions of some regularized equation. High
order terms may be associated with (1.1) in a third way: given a finite difference
approximation to (1.1), it often approximates to better accuracy solutions of an equation
with additional dissipative and dispersive terms [S].

We assume that the system (1.1) is strictly hyperbolic, so that if A(u) = 3£/ is
the Jacobian matrix, A(v) has m distinct real eigenvalues, ordered A1(u) < ooe € X.(u)

with corresponding right and left eigenvectors tk(u) and I'k(“)' k= 1,...,m, satisfying

(A - Xj)rj(u) =0 (A* - Xk) Lk(u) =0

"k . rj = ij
An eigenvalue A j(\x) is called genuinely nonlinear (resp. linearly degenerate) if
ij-rj(u) does not vanish (resp. vanishes identically).

The problem above originated with Gelfand [2], who suggested that the entropy
condition singles out those simple discontinuities (1.2) which are limits of traveling wave 1
solutions of parabolic systems associated with (1.1) (the case n = 1 here). In wore
concrete form, the investigation of the "shock layer” in gas dynamics dates back much
further (see [3]). Most previous work on the problem has been for the case n = 1; however,
Shapiro (9] and Smoller and Shapiro (10} have obtained some results in the case n = 2,

assuming genuine nonlinearity. i




!

The present work is baged on the analysis (for the case n = 1) of Majda and Pego [6],
who describe a natural algebraic condition on the viscosity matrix D = Dy called strict
stability, and show that any strictly stable matrix is admissible for all weak shocks

(|“L'“n' ssall). They also obtain conditions which charscterize (up to a degenerate
class) those matrices admissible for weak k-shocks (those associated with a particular
kk, ses § 3).

This paper extends the analysis of [6) in two directions. First, admigsidbility
criteria and a notion of strict stability are developed for n-tuples (Dgs oeey Dn) for any
n (sections 2 and 3). Second, admissibility criterias are established in the case n = 1
for singular viscosity matrices D(u), typical in physical systems (section 4). 1Indeed, in
the last section we apply our results to the compressible Navier-Stokes equations of gas
dynamics, determining minimal conditions the eguation of state must satisfy to ensure the
existence of the shock layer for weak shocks, and to ensure that the stability condition
holds.

2 Stable viscosities for strictly hyperbolic systems.

Following (6], the notion of stability for an n~tuple ‘Dl""'on’ may be motivated as
follows: Linearize (1.3) at a constant state u,, obtaining
(n+1)

n
(2.1) L Muo)ux - vn,uxx + cee + V Dn u

If (1.3) is to be a good approximation to (1.1), a reasonable regquirement to be imposed is

that the Cauchy problem for (2.1) be strongly well posed, independent of v as v ¢+ 0 .

In Lz, using the Fourier transform gives this notion an algebraic interpretation:

Definition, We call the n-tuple (D,,...,D,) stable for (4.1) if for each T > 0 there

—

existe C(T) such that

(2.2)  sup 1 exp t(-4EA(B )=-vE'D, + .ou + V(100 "D 11 < cm)
1314
v>0
£ real

We denote by sn(uo) the set of stable n-tuples, considered topologically as a subset of
2
™. a n-tuple in the interior of S,(u,) is called strictly stable at u

-]
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Remark. Introduce the matrix polynomial
P(E) = ~1EAu) = £2D, + oo+ 1O™TD

The condition (2.2) is eguivalent to the condition
(2.3) sup 1 exp tP(Z) < C

©0

{ real

This section is devoted to describing the structure of the set of stable n-tuples.

However, we point out that a major objective of this paper is to prove the following:
Theorem 2.1 Suppose the n~tuple (D1,...,D“) is strictly stable at u.. If n 1is even,

o

also assume Dn is nonsingular. Then (D‘,...,Dn) is admissible for all shocks in some
fixed neighborhood N of U That is, if u and up are in N and satisfy (1.4),
then a corresponding shock profile solution of (1.5), lying in N and satisfying (1.6),
exists if and only if Liu's strict entropy condition (B) (see §3) is satisfied by the jump
(1.2).

This theorem is a corollary of Theorems 2.3 and 3.1 below. We state here another
corollary of Theorem 2.3, giving a convenient sufficient condition for strict stability:
Corollary 2.2. An n-tuple (D1,....Dn) is strictly stable at u, 1if there is a positive
definite symmetric matrix B such that !A(uoi is symmetric and

1) !Dj is symmetric if 3§ 1is even

1) mjxj" is positive definite if j 1is odd
If n {is even, we algo require that D, has distinct eigenvalues.

The basic result of this section is Theorem 2.3 below, which characterizes strictly
stable n-tuples. Theorem 2.4 completes the description of the set of stable n-tuples for
odd n. The difficulties encountered in trying to extend the result to even n are
analogous to those involved when (1.1) is not strictly hyperbolic.

Theorem 2.3 The n-tuple (D1,...Dn) is strictly stable at u, if and only if the
following conditions hold:

1) lkD‘rk(uo) >0, k= 1,c00,m

14) 1f € ¢ 0, then P(§) has no purely imaginary eigenvalue.

i11) &) If n 1is 0d4, the eigenvalues of B 1" ' have positive real part.
n pa

4=
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b) If n is even, the eigenvalues of B, are real and distinct, and {f

denote corresponding left and right eigenvectors

*4™2, .,

z. -«
X and Ty
£ ox, =38 hen 1o

- -
(with N x'j lj) then k'n-‘l’k

Theorem 2.4 The set sn(uo) of stable n~tuples is the closure of its interior if n is

“d.

In the rest of this section, we prove 2.2~2.4. We begin by developing necessary

— e

criteria for stability. If (2.3) holds, then the eigenvalues of P({)} wmust have
nonpositive real part for all real ¢£. Using this principle, we may establish:
Proposition 2.5 Aasume (D1,....Dn) is stable at u,e Then

1) Lkoltk(“o) 20, k= 1,,.,,m

i1) wor any eigenvalue l:j(E) of ¥(£), Re -:j(c) €0, 3= 1,...,m.

e e

11i) a) It n 4s odd, the eigenvalues of Dn1“'1 have nonnegative real part.
b) If n {s even, the eigenvalues of D, are real, and if they are

® n~2

T i >0, k= 1,...,m (notation as in 2.3 {iil b).

Proof. 1i) is immediate. Por convenience, we define

-
distinct, then zk Dn

B(8) = -P(tand)(cosd)™/tand
= (cos8)™ A(uo) + .1ne(eo-e)""o, L I (.1ne)“1""o
From i) and continuity, the eigenvalues uj(e) of B(8) satisfy

(sinB)Re u ,(0) > 0, =w/2 €0 < %/2, § = 1,.00,m

3
Setting 0 » + %/2 we obtain 1ii a) and part of {ii b). Por i), B(0) = iA has distinct
eigenvalues, so for small 9 there exist smooth eigenvalues uk(e) and eigenvectors
IS((O), with "k(o’ - uk(uo). &(0) - :k(o), satisfying

{(B{6) - uklb))l&(a) -p,
.'tferentiate, wet 0 = 0 and dot with !*(no), obtaining

lknitk‘“o) - u"‘(o)

whence {). Por iii D), a similar procedure played at 06 = w/2 yields

n-2 & - .
T A DTy T Wy(W/2)

-$=

¥
!
;
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Proof of 2.3: The necessity ot the conditions is easily established for the most part, by

considering scalar perturbations of Dy¢Dp¢D,_4 28 appropriate. To show that D, sust
have distinct eigenvalues wvhen n is even, we remark that a Jordan block for a single
multiple eigenvalue may be perturbed in the (1,2) and (2,1t} positions 30 as to give rise to
complex eigenvalues.

The sufficiency of the conditions is established as for the case n = 1 in (6}, using
the Kreiss matrix theorem, and the fact that B(0) may be smoothly diagonalized for 6
near 0 (and for 6 near + %/2 if n is even).

Theorem 2.4 follows directly from 2.5 and 2.3, For if n is odd and (D,,...,Dn) is
stable, then it is easy to check that (D +SI,D,,...,D _,D + i"7'41) 1a strictly stable
for any § > 0.

Proof of Oorollary 2.2. Observe that if M is any real symmetric matrix, and z a

complex vector, then z£*Mz is real. Also if M is positive definite, but not necessarily

symmetric, then Re(z*Mz) > (:llzl2 « Now suppose (B(8) - uj(e))z = 0. Then

Re 1,(8) * z*Ez = (cosd)” ) (tane)j Re z'!Djij-1z .
b j odd

So for -n/2 < 0 <w%/2, Re u,(0) ¢+ 0, 8o ii) of 2,3 holds. Also, for 6 > 0 small,

3

(0) = D.r >0, and i) holds. Similarly, if n 18 even, iii b)

Re u (8) > C 9, so u! xP1

3j k
holds, for then
Re uj(e) £*Ez = (sin6)" ) (cotO)n-j Re z*ED 1j-1:
3 odd 3

> C(n/2~8) for x/2 - 6 > 0 small.

i 3 Admissibility for weak k-shocks.

In this section we characterize, up to a degenerate class, those n-tuples
(D,,...,Dn) which are admissible for weak shocks of a particular family. As in (6], the
center manifold theorem is used to find a trajectory connecting critical points in an

appropriate system of ODEs.

6=
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We begin by defining Liu's strict entropy condition. Pirst oconsider the structure of
the Hugoniot set of solutions of the Rankine-Hugoniot conditions (1.4). PFixing u,, the
local structure of this sst is well known [1]. In some neighberhood of u,. the possible
solutions u, lie on = curves, uw, - ;k(p). k=1...,m, passing through u, with

corresponding shock speeds s = lk(o), k= 1,.0.,m, satisfying

(o) = f0) = ) tu)
“x X !
-d—! - 2 -1 ° H
(3.1) % (0) = r, (w) % (0) /,vxk tk(%) &
‘
“x 3
p = "k(“!.) * (u “”-“t.) [
Liu's strict entropy condition for a k-wave (1.2) with up = ;k(pnl is that ?:
s(E) -k(o) >g = sk(pn) for p between 0 and Pa*

Ir XK(u) is genuinely nonlinear and IuL-vuRI small, this condition iz equivalent to
Lax's shock inequalities (see [6]).
Theorem 3.1 Pix u e and k, 1<k <m Assume Ak(u) is not linearly degenerate

in any neighborhood of u,. Assume that the n-tuple (D,n...bn) satisfies the following

nondegeneracy conditions at Uyl

i) D, is nonsingular

i1) sz'rk $0
111) -15(1—Xk)(u°)-5201 + oees * (ii)nﬂbn is nonsingular for all real £ # 0.
Then the following are equivalent:

1) !,RD‘!.'*(BO) >0

. 2) The n~tuple (D,:....Dn) is locally admigsible for all k-shocks in a neighborhood

of u,. That is, there exists § > 0 so that if w amd L

conditions (1.4) for some s = .k(pn), then a shock profile lying in ls(uo) exists

in '8(“0) satisfy the jump

connecting uw to Uy if and only if Liu's strict entropy condition e(E) is satisfied.
Theorem 2.1 is an immediate corollary of this theorem, using 2.3. We proceed to the
proof of 3.1. Our first step is to rewrite (1.5) as an equivalent tirst order autonomous

system of ODEs. Introduce variables v’ - u(” for 3 = 0,1,...,0~1 and introduce the

7=
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parameters v = u, and s as additional variables. (1.5) is now written, in block form,

as
v° - '1
3
o - w2
3
n-1 -1 o o nat b )
(3.2)  wg =D {f(w) - £(v) = 8w’ - V) - X?w)
n ! u1
VE =0
IE =0

The existence of a shock profile satisfying (1.6) corresponds to the existence of a

trajectory of the system (3.2) connecting the critical point (u;, 0...0, u;, s} to the

critical point (uR, 0...0, w, s). Our analysis is based on the déncription of the center

manifold of (3.2) at the critical point (u,, 0...0, Uy, Ak(uo)).

Without loss of generality, assume u, = 0, Xk(uo) = 0. For convenience, introduce
the column vector W = (wC-v,w',...,w""1,9,8), s0 that W* = wO-v. Then (3.2) is written
3.3 W,
( ) 3
For the statement of the center manifold theorem, consult [(6]. To apply the theorem,

= T(W)

it suffices to describe two invariant subspaces for the linearization 4T at the critical
point 0: algebraic eigenspaces corresponding to eigenvalues with zero and nongero real

parts, respectively. To calculate these, compute, in block form on R x 2 x R,

(3.4) 4aT(0) = 0 0 0

—

where Cy is a block companion matrix,

0 I 0 0 W

c = (] 0 I 0
[
0 0 1
-1 -1 -1
Dn A -Dn D1 ~Dn Dn-1 w=0 .
L J
-8
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Since det Dn $0 (and lk(uo) = 0) the characteristic equation for 4T(0) may be written

xl*i

det(-A+AD .+ ... + x"nn) =0

Condition 1ii) of 3.1 guarantees that 4aT(0) has no nonzero eigenvalues with zero real

o (an e

parts. Condition ii) of 3.1 guarantees that the zero eigenvalue is semisimple, that is,
f the algebraic eigenspace for 4aT(0) for the eigenvalue zero is equal to ker 4T(0). This

kernel is spanned by m + 2 vectors, (Rk, o, 0), (o, 0, 1), and (o,rj,O), I =1,...,m.

Here R = (r,, 0...0) € ™ ana £, = r(0).

Iet Y = ker AT(0) and X = range dT(0). Then Y and X are complementary
invariant subspaces corresponding to eigenvalues with zero and nonzero real parts,

respectively. Applying the center manifold theorem, we have (see [6]):

Proposition 3.2 Assume that (D‘,..., Dn) satisfies the nondegeneracy conditions i~i1ii)
&t uy =0 with X (u) =0, Then there exists §> 0 and a C° function (r>2)
gt Y Xdefined on B (0)N ¥ = {yeyl lyl] < 8§} so that
1) M ={x+ye IP-*-+1 | x = gly)} is a locally invariant manifold for the system
(3.3).
2) g(0) =0 and d4g(0) = 0. Thus M is tangent to Y at O.
3) Any trajectory of (3.3 which lies in 36(0) for all £ 1lies in M*. In
particular, critical points of (3.3) in 56(0) lie in M*,
The connection problem for (3.2) is immediately reduced to one for a scalar equation
as follows: Define a line in Y parametrized by y(n) = (“Rk'“L'.)' The curve
Wwin) = y(n) + g(y(n)) 1ies in M* while- ly(n)| < &, and is itself locally invariant
for (3.3), because v and s are constant, while g, mapping into X, is of the form
E gly(n)) = (G(n,uL,-),o,O), G ez Returning from W to the (w,v,s) coordinates of

(3.2), we find that the system

U°.\l1
4
(1.5) W =2
4
) n=1
n-1 - -1 o, _ - o_ - b}
ve D (£l )=f(u )-s(w - ) 32‘ o v
-9=
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or v‘ = T(w) admits an invariant curve
U(’\tllt‘o.) - (IIL""tk'O--.o) + G("I%l')

80 long as |y{n)| = |nrk| + IuL - uol + s - Ak(uo)l < 8§ It follows from part 3) of the
above proposition that the point (“R' 0...0) lies on this invariant curve if
v e 36(“0) and (1.4) holds.

The flow on the invariant curve H(H,UL,I) is now determined by a scalar equation for
n(g),
(3.6) nE - r(n,uL.l)
where P is determined from the relation

-nrmmy-)-r(wnmusn i

The remainder of the proof, an analysis of the connection problem for the scalar :

equation (3.6), is virtually identical with that presented in [6] for the case n = 1, and

i
1
is omitted. ﬁ

§4. Adniasibility for singular viscosity matrices

As mentioned in the introduction, viscosity matrices in physical systems are usually

singular. 1In this section we establish quite general admissibility criteria for weak

k-shocks for such singular viscosity matrices D(u) (in the case n=1). Our result will be
applied in the next section in a physical example, the compressible Navisr-Stokes j
equations.

In the case n = 1, with D = D,(u), & shock profile U(f) must satisfy the system
(4.1) D(U)UE = £(0) - f(uL) - -(U-uL)
and boundary conditions

gy » w as £ + ~», U(E) » u, as £ +w

Theorem 4.1 Fix u, e 'y and k, 1 € k < m, Assume Xk(u) is not linearly degenerate
in any neighborhood of u,. Assume the viscosity matrix D = D1(u) satisfies the
following conditions:

i) D(u) has constant rank in a neighborhood of u,

ii) nkDrk(uo) $0

~10~
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S8ince det D, 40 (and lk(uo) = 0) the characteristic equation for d4aT(0) may be written

xl#i

det(-A+D ¢ ... + x"nn) -9

Condition 11i) of 3.9 guarantees that 4T(0) has no nonzero eigenvalues with zero real
parts. Oondition ii) of 3.1 gusrantees that the zero eigenvalue is semisimple, that is,
the algedbraic eigenspace for dT(0) for the eigenvalus zero is equal to ker 4T(0}. This
kexrnel is spanned by = + 2 vectors, (R, 0, 0), (0, 0, 1), and (O.rj,O), J= Yeeu,me
Here R = (r,, 0...0) ¢ 8™ and £y = £ 00,

Let Y = ker 4T(0) and X = range d4AT(0). Then Y and X are complementary
invariant subspaces corresponding to eigenvalues with zero and nonzero real parts,
respectively. Applying the center manifold theorem, we have (see [6)):

Proposition 3.2 Assume that (Dgsees, D,) satisfies the nondegeneracy conditions 1-iii)
at u, = 0 with Ak(uo) = 0. Then there exists 6> 0 anda C° function {r>2)
g 31 Y+ X defined on BG(O)QY-(yeyl Iyl < § } so that

1) M ={x+ye . gly)} 1is a locally invariant manifold for the system

(3.3).

2) g{0) =0 and dq(0) = 0. Thus H' is tangent to Y at 0.

3) Any trajectory of (3.3) which lies in 36(0) for all £ lies in M*. 1In

particular, critical points of (3.3) in BG(O) lie in Mm*.

The connection problem for (3.2) is immediately reduced to one for a scalar equation
as follows: Define a line in Y parametrized by y(n) = ‘“‘k'“n")' The curve

W(n) = y(n) + g(y(n)) lies in M* while |y(n)| < §, and is itself locally invariant
for (3.3), because v and s are constant, while g, mapping into X, is of the form
gly(n)) = (G(n.ub.l).o,O), Gce™. Returning from W to the (w,v,s) coordinates of

(3.2), we find that the system

'0 - w
g
(3.5) 1 - 2
" -
e 07! (e(w)-fu )-n(wCu ) - n? ,w)
4 n v % vy a1 3
9=

T L3 s A AT gD

PR R TR o salihia Ny . . 'Iiam".l — Il“‘h mihai



or v( = T(w) admits an invariant curve

L U(“i%:.) - (“L"“k'o'"o) + G(nl%,.)

so long as {y(n)| = Inrkl + '“L - uol + le - Ak(uo)l < §. Tt follows from part 3) of the

above proposition that the point (nn. 0...0) lies on this invariant curve it

up e '6(“0) and (1.4) holds.

The flow on the invariant curve v(n,ut‘,l) is now Aetermined by a scalar equation for j

n(g),
(3.6) “E - r(n.uh,-)
where P 1is determined from the relation
v, r(n,uL.l) =T ('("’“L"”
The remainder of the proof, an analysis of the connection problem for the scalar

equation (3.6), is virtually identical with that presented in (6] for the case n = 1, and

{s omitted.
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§4. AMdmissibility for singular viscosity matrices

As mentioned in the introduction, viscosity matrices in physical systems are usually
singular. In this section we establish quite general admissibility criteria for weak

k-shocks for such singular viscosity matrices D(u) (in the case n=1). Our result will be

applied in the next section in a physical example, the compressible Navier-Stokes

equations.

In the case n = 1, with D = D,(u), a shock profile U({) must satisfy the aystem

(4.1) D(l!)l)E = £(0) - ﬂ“‘L) - l(U‘\lL)
and boundary conditions
u(g) » W as £ » -, WE) » u, a8 L >
Theorem 4.1 Fix u e ana k, 1 € k € m. Assune Xk(u) is not linearly degenerate

in any neighborhood of u,. Assume the viscosity matrix D = Dy(u) satisfies the

following conditions:

i) D(u) has constant rank in a neighborhood of u,

i1) lthk(uo) $0 «
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111) ror all real T, the matrix [u(A-lk)-Dl(uo) is one to one on the
subspace ¢ ¢ 2,, vhere
z, = (ve R-I(A-\‘)(uo)v € range D(uo))
Then the following are eguivalent:
1) "kmk(“o) >0
2) D 1is locally admissidble for all k-shocks in a neighborhood of u’o- That is, there

R in 36(“0) satiafy the jump conditions (1.4) for

k
some 8 = 8 (pn), then a shock profile lying in lc(uo) exists connecting u;, to up if

exists § > 0 so that if L and u

and only if Liu's strict entropy condition s{E) is satisfied.

The main steps in the proof of this theorem are the same as those for Theorem 3.1
above, or Theorem 3.1 of [6]. The difference is that it is a more delicate matter to
obtain an autonomous system, like (3.2), to which the center manifold theorem may be
applied. Our approach is to use an algebraic condition implied by (4.1) when D is
singular to eliminate some variables, then obtain an autonomous system for the remaining
variables.

As before, introduce v = u, and s as variables, writing (4.1) as

D(U) U, = £(U) = £lv) - s(U - v)

g
(4.2) Ve = 0
.5 =0

We motivate our elimination procedure in the case that D is constant, f 1linear and
s - Xk(uo). Then (4.21) is consistent only if P(A-s)(u~v) = 0 wvhere P is a
projection with Kker P = range D. Write u = wév for w in ker P(A-s). In order to
reduce (4.2i) to an equation for "'g' we should require that D : ker P(A-s) + range D
be one-to-one. Note that this entails m‘k $0 and ,'kD $0, for
dim ker P(A~g) = rank D.

Returning to the case at hand, without loss of generality we assume u " 0,
Xk(uo) = 0. Let 2z, = range D(0). Recall that D(0) is one-to-one on Z, from iii),
so dim 2, = dim Z, = b. We may choose (inductively on dimension) a subspace 3,

complementary to both 2z, and Z,, with dim Zy=n- b PFPor u sufficiently small, we
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may choose a smooth projection P(u) with range 2, and kernel range(D(u)); note that

ker PA(O) = Z,.

3

Given (U,v,s) in '2-01. write U =y -u2¢v, where u3 is in Z, and u2 in

Zye Ve seek to express u3 as a function of (uz,v,l), using the consistency criterion for
(4.21),
(4.3) P(U)(£(U) ~ £(v) -~ (U =~ v)) = O

We find it convenient to introduce isomorphisms

b b
S I, L S z,
and to write “2 - 12 w, u3 - 13;. Then we can apply I;‘ to (4.3), writing

h(;,v,v,l) =0

where h : l-b x lb x ™ x R » R'-b. In block form, the Jacobian matrix of h at

(w,w,v,8) = 0 is
an(o) = [x;'rA(0)13,0,0,01
since ker PA(0) = zz. The first component is an isomorphisa on lb, since PA(0) is
one-to~one on 23 to itself. Thus the implicit function theorem applies, so that in a
neighborhood of 0 we may write ;- ;(w,v,l), and i{ndeed the total derivative
d;(o) = (0,0,0]. We may express

U(w,v,s) = Izv(w,v,n) + xzv + v

and replace (4.2i) by the equation
au
D -a-;(v,v,-) We = £(U(w,v,s8)) ~ £(v) - s(U(w,v,s) ~ v)

By construction, the right hand side lies in range (D(U)). The matrix

D %—% H lh * range D is an isomorphiem at (w,v,s) = 0, so also in a neighborhood, since

D has constant rank. We may find a smooth generalized inverse

(D %—) t {w,v,8) : © . Ilb
y. 4+, 30U b
so that (D -a-;) (D '5-;) =1 in R . We have reduced (4.2) to an autonomous system in
l’ x l. x R,

-12-
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ve = (® -g—g)*(t(c(-,v,-n - £(v) - 8(T(w,v,8) ~ v)

(4.4) 'E =0

e
which we write l'E = T(W) for the variable W = (w,v,s).

We proceed to apply the center msnifold theorem to (4.4) at W = 0. In block form,

since (3U/3w)(0) = I_. and (3U/3v)(0) = I in R‘, we have

2
toz,) T acoyz 0 0

2 2
ar(o) = 0 0 0
o 0 0

Condition 1ii) of the theorem implies that dT(0) has no nongero imaginary eigenvaluas.

Condition 1ii) implies that the eigenvalue 0 1is semisimple. The kernel of 4T(0) is

spanned by = + 2 vectors (0,0,1), (0.:1.0), =1 ...,m and (R,0,0), wvhere IR = 1.
80, defining invariant subspaces X = range daT(0), Y = ker 4AT(0), we apply the center

manifold theorem as in §3 to obtain:

Proposition 4.2 Assume that D(u) satisfies the conditions i-i{ii). Then there exists

§ >0 and a cr function (r>2) g : Y + X defined on BB(O)r\Y in R ! so that

‘l x = g(y)} 1s a locally invariant manifold for (4.4).

1) M* = {x¢y € R
2) g(0) =0 and Aag(0) = 0. Thus M* is tangent to Y at O.
3) Any trajectory of (4.4) which lies in 86(0) for all £ 1lies in M*.

As in §3, the connection problem for (4.1) is immediately reduced to one for a scalar
equation: Define a4 1ine in Y by y(n) = (nR,uL,s). The curve W(n) = y(n) + g{y(n)) is

locally invariant for (4.4), meaning it is composed of solution curves. The curve

u{W(n)) 1is then composed of solution curves of (4.1). We may write this curve
u(“l%‘.) - \11‘ + “tk(o) + G(n.\ll.,l)

vhere G = 13 v (m&g(y(n)),%-) + 12 gly(n)). TNote that G(0) = 0, 4G(0) = 0,
If uy is in !5(0), and satisfies (1.4), then ug = U('R'“L") for some wp, and
{wprup,8) 1o a critical point of T(W), so lies in M*, hence on W(n). Thus for some

"R'
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up = u + n.r‘ + G('\Rlll!‘:l)
The flow on the invariant curve U(n,uL,-) is determined by & scalar equation
nE - '(“'%,l)
where
D(u) Un r(n.%.-) = £(0) - f(%) - l(U-uL)
The remainder of the proof is identical to that for nonsingular D(u), and may be found in

(e).

§5. Weak shock layers in compressible fluid dynamics

Here we use Theorem 4.1 to obtain very weak conditions on the equation of state in the

compressible Navier-Stokes equations in one space dimension which guarantee the existence
of weak shock profiles. We also make a brief remark concerning the linearized stability of
these equations.
In Lagrangian coordinates, the equations are written in conservation form as
Tt - vx -0
(5.1) v, +p, = o)

t
&t * (pv)x = (%! vx)x * (f ex)x

Rere x 1is the Lagrangian mass coordinate, t is time, vt is specific volume, v is
velocity, p is pressure, 8 1is temperature, & is energy density per unit mass, and
M and « are, respectively, the coefficients of viscosity and heat conduction.
& = o+ vz/z, where e 1is the internal energy per unit mass. We assume that Tt and 0
determine the thermodynamic state of the material, and that e and p are given by
sufficiently smooth equations of state, e = e(7,0), p= p(1,0). ¥ and « are positive,
and may also depend smoothly on T and 6. 1, 8, and p are positive.

We assume that the specific heat at constant volume is a positive function:
(5.2) c(1,0) = oe(r,a) >0
8o 6 = 08(tr,e) and with u= (1,v,&), (5.1) may be written in the form

(5.3) u + f(u) = (D(v)u)_ .
t x x ' x
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We shall see presently that the equation u, + !(u)x =0 with diffusion of heat and
momentum neglected (u=x=0) {g strictly hyperbolic if and only if
(5.4)  oc-aparly 0= a?
Here 8 denotes the entropy, and 8 = S(v,08). This function is related to e and p
through the Gibbs relations,
(5.5) 848 = de + par

Our main result below is that no additional conditions are required to ensure the
existence of shock profiles for weak shocks. (The situation is different for stronger
shocks; see [8).)
Theorem 5.1 Pix u, - (1°,v°,a°) e ‘3' LR 0; and assume that (5.2) and (5.4) hold at
uge Then there exists § > 0 so that if “L' uR and s satisfy the Rankine Hugoniot
conditions (1.4) with w, up in Bg(u ) = {u] |u-“°| < 8§}, then a shock profile solution

u{x-st) of (5.3) lying in BG(uo) exists connecting vu, to u, if and only if Liu's

strict entropy condition s(E) 1is satisfied.

The study of the "shock layer™ in compressible fluid dynamics has a long history.
Most relevant here are the results of Gildbarg (3] and of Liu [4]. Gilbarg established the
existence of shock profiles for shocks of any magnitude, under two additional conditions on
the equation of state:
(5.6) 0« dzp/d‘zls constant
(5.7) pb(t,e) >0
The convexity condition (5.6) implies that the eigenvalues X‘ = -q0 and Aa = q are
genuinely nonlinear. (Xz = 0 {s linearly degenerate, see below.) In that case the
entropy condition has a simple form. Liu introduced an entropy condition appropriate for
the nongenuinely nonlinear case, and showed that, with no heat conduction (x = 0), shock
profiles exist for discontinuities satisfying his entropy condition (see §3). This result
holds for strong shocks so long as the Hugoniot curves (see (3.1)) remain regular.

Theorem 5.1 is proved by verifying conditions i~iii) and 1) of Theorem 4.1 for the

first and third wave fields (k = 1 and 3). Discontinuities associated with the second vave

field, called contact discontinuities, cannot satisfy the strict entropy condition s(E).
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The Jaccbian of f£(u) takes the form (with p(u) = p(t,O(‘l’,&-vz/Z)))

g

0 -1 0

} ! AMr,v,8) = pt(u) pv(u) pglu)
4 ‘ _"pt(“) ptvpv(u) vp y(u)
B The viscosity matrix is

i ~
1 | 0 0 0

E ™mW({t,v,8) = [ u 0

§ L-uot(r.O) (u=A)v b

wvhere A = x/c > 0, The information we need will be computed after performing a
convenient change of basis (simultaneous similarity transformation of A and D). First,

note that

pt(u) - pt(t.o) ’ p&(U) - p.(f.C), Pv(“) - -Vp.(t,.).

with 1 ° 0
T=10 1 0 .
s or(t,e) v 1

it follows that D = T 'tD T = diag (0,u,A) and

0 -1 0
-9
A;=T AT= pT(T.O) + p.OI(T,e) 0 pg(r.e)
0 p+ot(t.0) 0

The eigenvalues of A, are -a, 0, anda a. To see this, compute
2
(5.8) -« = p(t,o(t.S))‘ - p‘(t.o) + p.(t,c) or(r.S)
and observe that 01(1,8) = «p from (5.5).

Condition i) of 4.1 is obviously satisfied. We turn to condition ii). A matrix R =

(rq, Toe r3) of right eigenvectors of Ay 1is




Thus Ay R = R diag (-a,0, a) and the corresponding matrix of left eigenvectors is

L=r"Y,
- L
. (P * p.o‘) L Py (]
L= 2:2 2(pte ) 0 2 - %
(P *+ Pge,) @ Py 5
We compute

LDr, = LD, = (u02+lp.(‘l,o)(Wt(t.e))/hlz

17171 313
From (5.5) and the egquality l“ - 301' one may verify the thermodynamic identity
(5.9) Opett,e) =p 4+ ct(‘l‘,O)
Also, pa(t,a) - p.(‘l',.) ¢, so

2 2 2
l'D'r‘ = L,Dr, = (ua ﬂecp. ) /2a° > 0
and 1) of 4.1 is satisfied. PFor later reference, we compute
2

(5.10) a lzb'tz - -X(p‘(‘l‘,d) + p.(t,o).t(t,b)) - -Xpt(t,O)

It remains to verify condition iii) of 4.1 for k= 1 and 3. Take k = 1\,

z, = {ue a’ | au, = u, } ={ue n’l(n‘m)n € range D‘)

1

To show it (A‘M) + D, 1is one-to~one on tzz, it suffices to show (cf(5.10)) that

1

p.l,(‘r,O)-mz P \ ya (] 1
it e £0
A z

, +
aOcp. [} 0

for any complex s. A calculation similar to (5.8), using (5.9), yields
2
(5.11) pt(t,l) = pt(r,O) - Ocp. (1,0)
Therefore, multiplying by diag (1,1/a) from the left and diag (1/8c,1) from the right,

it suffices to ghow that ltlz + Dz is nonsingular for any T, where

] 2 P ap/éc 0
e [ ]

Iz - Dz -
», 1 0 \a

But D, is poeitive definite and Az symmetric, 0 this is truve. 80 111) of 4.1 holds

for k= 1. Por k= 3, replace =-a by +a in the argument above. This finishes the

proof of Theorem 5.1,
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We conclude with a brief remark concerning the linearized stability condition (2.3),
where P(E) = -1EA-£29. Prom Proposition 2.5 and (5.10), a necessary condition for (2.3)
to hold is that p‘(t +,0) € 0. The nondegenerate condition
(5.12) 0 < -pt(T,O)
is stronger than (5.4), by (5.11). In fact, {5.2) and (5.12) are sufficient to imply the
linearized stability condition, a fact used by Matsumura and Righida in (7] to establish
the full nonlinear stability of the constant state for the compressible Navier Stokes
equations in three space dimensions. A proof that the linearized stability condition holds

is similar to the proof of Theorem 2.3 for n =1, given in [6].
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